TECHNISCHE UNIVERSITAT MUNCHEN

Lehrstuhl fiir Informatik IX
Computer Vision and Pattern Recognition

Representation, Acquisition and Use of Expectations
for Domestic Service Robots

Michael Karg

Vollstandiger Abdruck der von der Fakultit fiir Informatik der Technischen Uni-
versitdt Miinchen zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Darius Burschka
Priifer der Dissertation: 1. Univ.-Prof. Dr. Daniel Cremers

2. Jun.-Prof. Dr. Alexandra Kirsch,
Eberhard Karls Universitidt Tiibingen

Die Dissertation wurde am 16.06.2014 bei der Technischen Universitdt Miinchen
eingereicht und durch die Fakultat fiir Informatik am 03.11.2014 angenommen.

Abstract

Robots that are supposed to work together with people in everyday environ-
ments are confronted with a wide variety of situations. Not all such situations
can be taken into account by a programmer when implementing the system. This
is why robots often show strange behavior when encountering situations that
their programmer(s) did not expect. We propose a knowledge-based approach
to explicitly represent expectations in robot control programs. Comparing such
expectations to the current situation allows a robot to detect unusual situations
on its own and react appropriately. Our framework can incorporate expecta-
tions from different knowledge sources and allows to flexibly combine different
expectations. We focus our work on the generation of expectations about habit-
ual human behavior. By using models of human activities and a human activity
recognition approach, we enable a robot to generate expectations about human
task performance, which can be combined with various other expectations in
the proposed framework. The validation of such expectations allows a domestic
service robot to detect unexpected situations by combining all modeled expec-
tations. We demonstrate the feasibility of the approach in simulated as well as
in real-world experiments. We furthermore show how models of habitual hu-
man activities can be generated by a robot and how such models can be used
in combination with activity recognition to generate and validate expectations
about human behavior. The proposed framework can easily be integrated into a
existing systems. It thus presents a first step towards equipping domestic service
robots with a situational awareness, which enables them to better adapt their ac-

tions to the situation and their users.

Zusammenfassung

Roboter, die zusammen mit Menschen in Alltagsumgebungen arbeiten, sind mit
einer Vielzahl von Situationen konfrontiert, von denen lediglich ein Bruchteil
schon bei der Programmierung der Roboter beriicksichtigt wurden. Deshalb
zeigen solche Roboter in vielen solcher unvorhersehbaren Situationen oft ein
fiir Menschen seltsam wirkendes Verhalten. In dieser Arbeit stellen wir einen
wissensbasierten Ansatz vor, der Robotern die explizite Modellierung von Er-
wartungen ermoglicht. Der Abgleich solcher Erwartungen mit der aktuellen
Situation erlaubt es einem Roboter, unerwartete Situationen zu erkennen, um
angemessen darauf reagieren zu konnen. Unser allgemeiner Ansatz erlaubt die
Integration und Kombination verschiedenster Erwartungen aus einer Vielzahl
von Wissensquellen, wobei wir uns in dieser Arbeit speziell auf Erwartungen
basierend auf menschlichem Gewohnheitsverhalten konzentrieren. Dazu stellen
wir auch ein Verfahren zur Erstellung von Modellen von menschlichem Gewohn-
heitsverhalten vor und beschreiben, wie solche Modelle zusammen mit einem
Ansatz zur Erkennung von Aktivititen verwendet werden konnen. Diese Er-
wartungen konnen mit dem vorgestellten Framework mit anderen Erwartungen
kombiniert und validiert werden, um einem Roboter die Erkennung von uner-
warteten Situationen zu ermoglichen. Wir demonstrieren die Anwendbarkeit
des Ansatzes sowohl in simulierten als auch in realen Experimenten und zeigen,
wie Roboter durch das vorgeschlagene Framework mit der Fahigkeit ausgestat-
tet werden konnen, verschiedene Situationen zu bewerten und unerwartete Sit-
uationen zu erkennen. Das vorgestellte Framework kann einfach in ein bereits
vorhandenes Planungssystem fiir Roboter integriert werden und von heutigen
und zukiinftigen Robotersystemen verwendet werden um ihr Handeln besser

an die Situation und die Menschen in ihrer Umgebung anzupassen.

Acknowledgements

This work would not have been possible without the help of many people who
I want to thank on this page. First, I thank Juniorprof.Dr. Alexandra Kirsch who
provided me with advice, encouragement and opportunities and at the same
time gave me the possibility to freely follow my own ideas. I thank Prof.Dr.
Daniel Cremers for his help and advice. I furthermore thank Prof.Dr. Michael
Beetz and Dr. Jiirgen Sturm for helpful advice whenever I had questions. 1
am very thankful for the great work with my colleagues Thibault Kruse and
Christina Lichtenthdler from the Human Centered Artificial Intelligence Group.
Further thanks go to the Intelligent Autonomous Systems Group. In particular,
I thank Lorenz Mosenlechner, Tom Riihr, Alexis Maldonado, Uli Klank, Moritz
Tenorth, Nico Blodow, Daniel Nyga, Mihai Dolha, Lars Kunze, Ingo Kresse, Do-
minik Jain and Karinne Amaro. I also thank the members of the CVPR group, in
particular: Martin Oswald, Mohamed Souiai, Jan Stithmer, Evgeny Strekalovskiy,
Frank Steinbriickner, Rudolph Triebel, Julia Diebold, Thomas Windheuser, Young-
wook Kee, Claudia Nieuwenhuis and Eno Toppe. I thank all people involved in
the MORSE simulator, specifically Séverin Lemaignan, Gilberto Echeverria, Ar-
naud Degroote, Sebastian Schmidt, Felix Ruess, and Florian Lier. Thanks go to
Dr. Martin Sachenbacher, Sabine Wagner, Wibke Borngesser, Quirin Lohr my
colleagues from LT-Z-4 at BMW Research and Technology as well as my former
flatmate Martin for inspiring me with the surfing flatmate example. My deep-
est gratitude goes to my family for their love and support during my whole life.

Finally, I thank Dani for her love during all these years.

This work received funding from the Institute for Advanced Study and the Clus-
ter for Excellence Cognition for Technical Systems, funded by the German Excel-

lence Initiative.

Contents

. Introduction 1
1.1. Development of Service Robots 2
1.2, Motivation 5
1.3. ApplicationDomain 7
1.4. Challenges 8
1.5. Contributions 9
1.6. Reader’sGuide 10

. Background 13
2.1. BayesianNetworks 13
2.2. HiddenMarkovModels 15
23. ReactivePlanning 31
24. Semantic EnvironmentMaps 34

. A Framework for Expectations 37
3.1. Systemoverview 39
3.2. Application: Expectation classes for Human Robot Interaction . . . 47
33. RelatedWork 49

. Human Activity Models 53
4.1. Context Dependent Spatial Regions (CDSRs) 54
4.2. Spatio-Temporal Plan Representations (STPRs) 63
43. Related Work 68

. Activity Recognition 71
5.1. Challenges in Activity Recognition 72
5.2. Hierarchical Hidden Markov Models for Activity Recognition . . . 74

Contents

5.3. Simultaneous Plan Recognition and Monitoring (SPRAM)
5.4. Integration of SPRAM into the Expectations Framework
55. Related Work

6. Human Activity Datasets
6.1. Available Datasets
6.2. Contributed Datasets

7. Evaluation
7.1. The MORSE Simulator
7.2. Evaluation of Activity Recognition
7.3. SPRAM
7.4. Application: Expectations for a Household Robot

75. Conclusion

8. Discussion
8.1. Expectations Framework
8.2. Human ActivityModels
8.3. Activity Recognition L

9. Conclusion
91. Summary
9.2. Related Visions for Roboticsand AI.

A. Appendix
A.l. Law of Total Probability
A2. Markov Assumption.
A3. ProductRule
A4 Bayes’Rule

Prior Publications
Bibliography

Index

ii

109
109
112
129
132
141

143
143
149
152

157
157
158

161
161
161
161
162

162

165

179

Chapter 1

Introduction

Intelligent robots that assist persons with unpleasant chores in their homes have
been in the dreams of many people for a long time. Rapid progress in the areas
of Artificial Intelligence and Robotics inspired researchers to spend a significant
amount of work on making this dream a reality and bring service robots to hu-
man homes. Huge progress in the area of industrial robotics from 1973 on and
especially during the last decades seemed to provide evidence that robots would
enter human homes in the near future and household chores would be a relic of

the distant past.

Today, more than 40 years after the first industrial robot was introduced, we still
rarely see robots in areas that are inhabited by humans. Moreover, robots are
still far away from being universal helpers for tasks like domestic chores. Al-
though robots have widely succeeded in manufacturing environments, where
they work separated from humans in controlled and well-defined environments,
the transition towards dynamic and uncertain environments is far harder than
one might expect. Designers of robots for controlled, industrial environments
can foresee almost all possible events and errors that can occur during a robot’s
life and provide appropriate reactions to those. In dynamic environments, it is
impossible to foresee all possible events that a robot might encounter. Persons
living in the robot’s environment introduce even more uncertainties and sooner
or later, situations will occur that could not be foreseen when designing and im-
plementing a robot. In the context of intelligent devices that interact with the
real world, Norman [62] states: "We know two things about unexpected events:
tirst, they always occur, and second, when they do occur, they are always unex-

pected." Norman also points out that "The same mechanisms that are so helpful

1. Introduction

when things are normal can decrease safety, decrease comfort, and decrease ac-
curacy when unexpected situations arise. For us, the people involved, it leads to
danger and discomfort, frustration and anger." We think that those observations
especially apply to domestic service robots, which we put to work in intimate
spaces such as our homes. However, most of those robots today lack the ability

to recognize unexpected events and react appropriately to them.

The research work in this thesis investigates a general approach to enable do-
mestic service robots to identify unexpected events, enabling them to better react
to such situations and adapt their behavior by doing the right thing at the right
time. Humans are excellent in dynamically reacting to rapidly changing situa-
tions and, amongst other factors, this is due to the fact that persons make strong
expectations towards all kinds of situations. Humans seem to constantly cre-
ate expectations and validate them against the current situation. This not only
enables us to detect and react on unexpected situations, but also to prevent fail-
ures before they even occur. In this thesis, we investigate an approach to bring
such a predictive situation awareness to domestic service robots by the explicit
representation and validation of expectations. We will show how expectations
can enable robots to detect various kinds of unexpected events that can occur in
domestic environments where robots and humans live together. Explicit models
of expectations can enable robots to improve their awareness of persons and the
situation in general and thus better adapt their behavior to human habits and dy-
namic environments. This important property can make domestic service robots
more intelligent and pleasant for persons and contribute to the overall goal of

bringing service robots into human homes in the near future.

1.1 Development of Service Robots

When thinking about a robot, most people think about human-like machines
that move on their feet and seamlessly interact with their environment and per-
sons. This image has been crafted by decades of robot-appearances in Holly-
wood movies and cartoons, where most robots are able to understand their envi-
ronment and often communicate with persons or even other robots. But reality
in robotics today looks quite different than what Hollywood is showing. Most of

1.1. Development of Service Robots

today’s commercial robots perform simple tasks in manufacturing, often without
knowing about their environment or even human presence. And while robotic
arms of manufacturing robots might be inspired by human arms, many robots
don’t have any human-like features at all. One reason for their missing percep-
tual capabilities and their non-human-like appearance is the fact that most of
today’s robots work strictly separated from humans, in environments that were
designed specifically for them. As a consequence, their design has been driven
purely by their functionality, accounting neither for a pleasant appearance nor
advanced sensing capabilities. Such robots were never intended to work in areas
created for human beings and thus do not posses any means of detecting persons
or even interacting with them. But as the field of robotics is progressing, more
and more research focuses on robots that are intended to work together with
persons in human-like environments like medium-sized companies, hospitals or

even the homes of persons.

Fortunately, not only researchers are interested in bringing robots closer to human-
inhabited areas. The market for such service robots is predicted to increase dra-
matically within the next years as the estimated sales for the years 2011-2012
and the corresponding projection towards the year 2016 indicate. From 2011 to
2012, World Robotics (the statistical department of the International Federation
of Robotics) recorded an increase of 53 % in the sales value of service robotics and
predicts a huge continuing increase of sales of service robots for personnel/do-
mestic use for the years 2013-2016'. While in 2012, 1.96 million domestic robots
were sold, grossing a total of 697 million US$ according to the estimates, the pro-
jections for the years 2013-2016 for all types of domestic robots reach up to 15.5

million units with an estimated value of 5.6 billion US$ (see Figure 1.1).

As domestic service robots are intended to become available for a broad range of
consumers, the majority of users of such robots will most likely be no experts in
the area of robotics. With an increasing usage by non-expert users in areas pop-
ulated by humans, the capabilities of such robots will have to grow. Today’s ser-
vice robots are only able to perform simple pick- and place tasks, mostly in labo-
ratory environments after the application of a large amount of programming and

expert knowledge. Tomorrow’s service robots will likely be able to perform more

1http: / /www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

1. Introduction

Service robots for personnel/domestic use.
Units sales Forecast 2013-2016, 2012 and 2011
18,000
16,000
14,000
12,000

10,000

8,000

'000 of units

6,000

4,000

2,000

Household robots Entertainment and leisure robots

m2013-2016 m2012 2011 Source: World Robotics 2013

Figure 1.1.: Number of sold robots for domestic use in 2011 and 2012 and the
projection of those number for the years 2013-2016. Image courtesy
of World Robotics 2013

complex tasks together with persons that might not have any expert knowledge
at all. Within the last four years, we have already witnessed strong development
towards service robots that will someday be able to live with humans in their
homes. The PR2 robot, shown in Figure 1.2 on the left, has been released in 2010
as a universal research platform that is designed to work in human-centered en-
vironments and marked a milestone in the development of personal robots. It
was designed to not be harmful for persons that work close to the robot and
was relatively cheap (compared to other robotic platforms at the time). In 2012,
Rethink Robotics released the Baxter robot as a commercial robotics platform in-
tended to work in direct proximity to persons and to be trained by demonstration
from non-expert users. The UBR-1 robot by Unbounded Robotics (Figure 1.2 on
the right) was released in 2013 to revolutionize affordable mobile manipulation
by providing a cheap and reliable robotics platform that is suitable for use in
domestic scenarios. The development of those robots within the last three years
clearly contributed to the vision of making affordable domestic service robots a

reality in a future that is not too far away.

1.2. Motivation

Figure 1.2.: Robots that were specifically designed to work together with hu-
mans. Left: The PR2 robot, one of the first universal robotic research
platforms. Middle: The Baxter robot that is intended to provide a
low-cost robot platform, which can be instructed without program-
ming. Right: UBR-1 is a one-armed robot platform that is intended
to revolutionize affordable mobile manipulation. Image courtesy of
Michael Bahlo, DPA (right picture), Christina Hernandez (middle
picture), Unbounded Robotics (left picture).

1.2 Motivation

As future robotic applications will bring more robots into human homes and fur-
ther progress in research will presumably enable domestic service robots to fulfill
elaborate tasks, completely new possibilities for robotic systems will arise. But
with new possibilities, robots will also be confronted with a wide variety of sit-
uations that have to be taken into account to guarantee that the robot’s goals are
achieved while constantly accounting for the safety of persons. Due to the infi-
nite number of possible events that can happen, not all situations that a robotic
system will experience can be taken into account when designing and imple-
menting it. This fact is on the one hand caused by the unpredictable nature of
life itself. On the other hand, an unpredictable situation can be produced by a
human behavior that has not been foreseen. Even though persons can anticipate
many events to a certain degree, no one can claim to be able to predict all situa-
tions one will encounter during his/her daily life. For a robot, such predictions,
even of the simplest kind, are even harder to achieve. If a robot is confronted with
a situation that has not been anticipated at design time, it will possibly keep ex-
ecuting its standard behavior until an error is detected. Robots that show such

1. Introduction

behavior may look strange to persons and are not comprehensible for them, thus
limiting their perceived reliability and causing problems in the mutual under-
standing. Imagine, for instance a robot that is intended to pass a glass of water to
a person but loses the glass on its way. If the loss of the glass is not detected, the
robot will possibly just reach out its empty hand to the person even if it detected
a glass of water lying on the floor just before. This example shows just one pos-
sible unexpected situation that could happen at some point in a robot’s life and
calls for an appropriate response. Such a robot should recognize that something
is not as expected when the glass of water, that is to be delivered to the person, is
not in the robot’s hand but lying on the floor (with a wet stain on the carpet next
to it). Specifically, robots that share the environment with persons should be able
to distinguish normal situations, where everything is as expected, from situations
that deviate from the robot’s expectations and possibly call for a reaction of the
robot. This is due to the fact that, compared to an uninhabited area, a person
introduces a high amount of dynamics into an environment. He/she will move
around rather fast, possibly changing his/her directions in an unpredictable way
and moving objects, leading to an increased frequency of situations that have not
been anticipated. The ability to detect unexpected situations enables a robot to be
of better service to the human by showing situation-aware behavior and reacting

on and preventing possibly dangerous situations.

A robot that is a useful helper for humans should not only react to unexpected
events caused by itself, but also have certain knowledge about human task per-
formance to be able to take into account human behavior and react adequately
to it. We think that this capability plays a key role for future robotic helpers that
are to perform complex tasks in human-centered environments and is essential
to enable commercial success of such robots. Imagine a household robot that is
supposed to clean the kitchen after its user had dinner. Such a robot should be
aware whether the human has already had dinner and not clean the table in a
case where the human has not eaten yet. It should also not start vacuuming the

floor when the person is watching TV or even sleeping.

In this thesis, we propose a novel approach to equip domestic service robots with
the capability to detect unexpected situations by the validation of expectations.

To this end, we introduce a framework that allows the modeling of various kinds

1.3. Application Domain

of expectations, where we focus on expectations about human behavior. We use
models about human activities in combination with activity recognition to gen-
erate expectations about human task performance. We demonstrate how such
expectations can be combined with a variety of other expectations to estimate

the normality given situations.

1.3 Application Domain

The work in this thesis is tailored towards being applicable in any kind of en-
vironment, but we specifically focus on service robots that are intended for use
in domestic areas. We believe that such a scenario represents a domain where
robots can increase the quality of life of persons. Especially elderly people with
minor disabilities are seen as beneficiaries of domestic robot helpers. Such robots
could help them to live independently in their own home as long as possible
which is being preferred to a life in retirement home by many people [81]. To
gain first insights towards the acceptance of robots by elderly persons, Mitzner
et al. [54] asked 21 independent living seniors for which activities they would
prefer assistance rather from a robot than a human and found that this was the
case for 28 out of 48 activities, which mostly involved household duties (e.g.

cleaning and washing) or manual labor (e.g. gardening, mowing the lawn).

In such domestic scenarios, a robot will have to operate in a dynamic environ-
ment tailored towards the needs of persons. It will possibly collaborate with
persons or at least have to take them into account when performing various ac-
tivities. This calls for the need to detect and react on unexpected events instantly,
thus possibly preventing dangerous situations. One simple example could be a
person lying on the ground of the kitchen. In this case, a robot should detect that
something is wrong and initiate a response, such as calling a doctor. One could
also think of using a domestic service robot for surveillance during night times
or when a person is not home. In this case, it would be beneficial if the robot
could detect that a strange person, who is entering the flat at night and taking
valuable things, might not be a normal situation but rather a burglary, which it
should report.

1. Introduction

1.4 Challenges

The problem of detecting unexpected events and failures is more difficult than
it might look at first glance. In many robotics systems, a common way to tackle
errors is to check for specific failures at specific points in time, often shortly after
the robot has performed an action. But due to the unpredictable nature of the
world and the multitude of errors that can occur, such an error detection results
in a large number of "if ERROR then HANDLE_ERROR" constructs, even when
trying to cover only a fraction of possibilities that might happen. As such error
detection routines mostly have to be defined when creating a robot, errors that
are not expected by the programmer at design time, will not be handled by the
robot when they occur. Also, error checking at fixed points in time will lead
to a robot not detecting failures that happen in between. In our scenario of a
robot acting in an environment inhabited by persons, the probability of such
errors will be significantly higher than in static environments. A person in the
environment makes it very hard for a programmer to predict failures that might
happen during the operation of the robot. Thus, a more general approach for
the detection of unexpected events and failures would be desirable for service
robots in general, but specifically for service robots sharing the environment with

persons.

Domestic service robots that interact with persons in their environment should
detect unexpected situations caused by abnormal behavior of their human part-
ners. This implies that the robot has to be able to recognize human behavior at all.
Since robots always have to deal with noisy sensor readings, current approaches
in human activity recognition are mostly based on probabilistic approaches that
are subject to uncertainties. Even if a robot is able to detect different activities
that are executed by a person with high probability, it is still difficult to detect if
the activity is carried out correctly since activities can be carried out in different
ways. Thus, it is hard for a robot to know whether it detected an error in the
execution of the currently observed activity or the person just did an activity in a
different way. Since most robots have to rely on limited sensor data, this problem
becomes even harder. Persons also tend to execute several activities at the same
time, for instance cleaning some dishes while cooking, which makes it hard for a

robot to distinguish between different activities.

1.5. Contributions

Another important fact that a robot has to consider when working together with
persons is the unpredictability of human behavior. Human behavior generally is
hard to model and in many cases it is hard or even impossible to predict, even
for other persons. Humans tend to sometimes quickly change their mind and
thus their actions due to some thoughts or insights they gained spontaneously
by observations or information sources like a television or radio. In such cases,
the cause of the change in behavior is not observable and will inevitably lead to
events that a robot cannot foresee but which it will possibly need to consider. But
not every unexpected event necessarily has to be an error. Some events caused
by unexpected human behavior might not require any actions of the robot at all,
while others demand immediate action of a robot to prevent a dangerous situa-
tion. Imagine, for instance, a person unexpectedly interrupting his/her current
activity because the doorbell rang. In this harmless case, a robot does not have
to take any action, while in a situation where a person suddenly breaks down
and falls onto the floor, an immediate action of a robot is necessary. In any of the
cases, a prerequisite is that the robot is able to detect unexpected situations and
unexpected behavior of persons.

The following chapters present first steps to enable the detection of unexpected
events which hopefully will bring robots one step further towards a more gen-
eral way of accounting for dynamic environments as well as the behavior of per-

sons.

1.5 Contributions

This thesis demonstrates a way of enabling robots to integrate models of habitual
human activities along with other types of information to create expectations
about its surroundings and assess the normality of an observed situation. There
are three main contributions that span the following chapters.

The first main contribution of this thesis consists of a general, modular and ex-
tensible framework enabling autonomous robots to explicitly model expectations
and estimate the normality of a situation by the combination and validation of
different expectations. Although, there is work using single expectations implic-
itly to detect anomalies, to our knowledge, so far there is no work that focuses

1. Introduction

on the combination of a variety of different expectations to assess the normality
of a situation. This capability can enable a robot to detect abnormal situations
without the need of having an explicit model for each failure, which will ulti-
mately free robot engineers from having to predict every possible failure that
can happen to a robot.

The second main contribution focuses on the automatic generation of qualitative
models of habitual human behavior from the observation of task performance.
A robot that is able to create such models is able to distinguish different human
activities from each other. Humans tend to pattern daily actions into sequences
which they repeat at particular times in particular places [87]. Models of such
habitual activities can serve as the input for a system for activity recognition and
monitoring to ultimately enable a robot to generate and validate expectations

using the aforementioned expectations framework.

The third main contribution consists of a system that performs activity recog-
nition and monitoring in real-time in a spatially limited environment using a
simple and cheap sensor setup and qualitative models of habitual human activi-
ties. The approach is able to generate predictions about likely future locations of
persons performing habitual activities and integrate these into the expectations
framework. This way, information about human behavior can be combined with
arbitrary expectations to assess the normality of a situation, thus increasing a

robot’s situation awareness.

1.6 Reader’s Guide

The chapters of this thesis build on each other and are thus best read in consec-
utive order. We first explain the theoretical foundations that were used in this
work and continue with a description of a framework that enables the seamless
integration of expectations into a robot’s planning system. We then show how
to generate models of human behavior to ultimately enable the generation of
expectations. Afterwards, we propose an approach for activity recognition and
monitoring that enables a robot to dynamically generate expectations using the
human behavior models. Then, an overview over the datasets used for evalua-

10

1.6. Reader’s Guide

tion is described and followed by a careful evaluation. Finally, the results of the

thesis are discussed and concluded.

® Chapter 2 features a collection of theoretical foundations that were used in
this thesis.

® Chapter 3 provides a detailed description of the expectations framework,
including concepts as well as implementation details. It also describes a
method for combining and validating different expectations to enable an
autonomous robot to assess the normality of a situation in its planning

framework.

* Chapter 4 describes how an autonomous robot can generate models of hu-
man habitual behavior from the observation of motion tracking data.

* Chapter 5 is about an approach for activity recognition and monitoring which
enables a robot to generate predictions about human behavior based on
models of habitual human behavior. We also explain how such predictions

can be integrated into robot planning using the expectations framework.

* Chapter 6 showcases existing datasets that were used for evaluation. We

will furthermore describe two datasets that were created during this thesis.

* Chapter 7 evaluates the contributions of this thesis and provides application

scenarios to demonstrate the practical applicability of our work.

* Chapter 8 discusses the results of the evaluations and assesses benefits as

well as limitations of our work.

* Chapter 9 concludes this thesis and addresses possible future directions af-

ter a short summary.

Some aspects of former versions of this work have been published in [32, 33, 31,
30, 28,29,27,17,47, 44, 34].

11

Chapter 2
Background

This chapter describes approaches and concepts on probabilistic reasoning and
reactive planning, which the work of this thesis is based on. We assume the
reader to be familiar with basic knowledge about probability theory. In particu-
lar, we follow the definitions and notation of Russel and Norvig [74] and refer the
interested reader to their book. Especially chapters 13, 14 and 15 guide the reader
from the basics of probability theory towards probabilistic reasoning over time,
which is applied in this work. The following sections will first describe relevant
concepts of probabilistic reasoning over time, in particular Hidden Markov Mod-
els, a variant of Bayesian networks. We will furthermore describe the Cognitive
Robot Abstract Machine and its plan language that was used for the implemen-
tation of the approaches described in this thesis and explain recent research work

in the area of autonomous semantic mapping.

2.1 Bayesian Networks

Bayesian networks define probability distributions over a directed graph where
each node represents a random variable (discrete or continuous). The topol-
ogy of the graph defines the conditional independence relationships between
the random variables. Each node of the graph X; has a conditional probability
P(X; | Parents(X;)) that quantifies the effect of the parents on the node. Intu-
itively, an arrow or directed edge from the node X; to node X; means that ran-
dom variable X; has a direct influence on X;. Given a Bayesian network, we can
represent the full joint distribution P(X;,...X,,) over all random variables X; in the
following way:

13

2. Background

P(X,,..X,)= ll[P(Xi | Parents(X;)) (2.1)

i=1

The key advantage of modeling probability distributions using Bayesian Net-
works instead of the full joint distribution lies in the compact representation in
most domains. Assuming, each random variable in a domain of n random vari-
ables is influenced by at most k other random variables, the complete Bayesian
network can be described by n2* values in contrast to 2" — 1 values when using
the full joint distribution. While for a fully connected graph (where n = k), this
makes no difference, for many domains with a large number of random vari-
ables, the representation using Bayesian networks is significantly smaller. If we
consider, for instance, a domain with 20 random variables, where each random
variable is at most influenced by 5 other random variables, the full joint distri-
bution has 1048575 values. A Bayesian Network of the same probability distri-
bution can be described by only 640 values. The representation of probability
distributions by Bayesian Networks thus makes the handling of domains with
a large number of random variables feasible. The exemplary Bayesian Network
illustrated in Figure 2.1 consists of the five random variables A,B,C,D and E. The
full joint distribution P(A, B, C, D, E) that is represented by the Bayesian Network
can be described as the product of the probabilities of each node conditioned on
its parents:

P(A,B,C,D,E)=P(A)P(B)P(C |A,B)P(D | C)P(E | C) (2.2)

This representation enables us to describe the probability distribution by 10 val-
ues (instead of 31 values with the full joint distribution).

As the topology of a Bayesian network defines conditional independence as-
sumptions between the nodes, we can draw several conclusions. First, a node
is conditionally independent of its predecessors given its parents. In the exam-
ple of Figure 2.1, for instance, the random variable D is independent of E given
C. Furthermore, a node is conditionally independent of all other nodes given its

Markov Blanket, which consists of the node’s parents, children and all parents of

14

2.2. Hidden Markov Models

B)

) O,

Figure 2.1.: An example of a Bayesian network consisting of the random vari-
ables A,B,C,D and E.

the children. Also, a node is conditionally independent of its non-descendants

given its parents .

2.2 Hidden Markov Models

Random variables in Bayesian Networks can be related to each other over ad-
jacent time steps. Bayesian Networks of such nature are also called Dynamical
Bayesian Networks (DBNs). DBNs are defined by a transition model. The transi-
tion model specifies the probability distribution over all state variables at time
t given all previous states: P(X, | Xy.,_1). Xo..—1 is unbounded as the time t in-
creases, which will lead to an increasing number of states at each time step and
will ultimately make working with the DBN computationally unfeasible. To pre-
vent this, we can use the Markov assumption that assumes the current state to
only be dependent on a finite fixed set of predecessor states. Such processes are
called Markov Chains or Markov Processes. The simplest Markov Process is a
tirst order Markov process, where the current state only depends on one prede-

cessor state.

For the Bayes Networks described so far, we assumed the states to be directly
observable at any point in time. In many cases, the direct observation of a state is
not possible. Instead, a system like a mobile robot has a variety of sensors which

allow it to estimate its current state based on observations it obtained so far. The

15

2. Background

states are not directly observable, but observations, which are dependent on the

states, are.

A Hidden Markov Model (HMM) can be considered the simplest case of a DBN
where each state — and thus each node of the Bayesian Network —is described by
a single discrete random variable that is not directly observable. HMMs make
use of the Markov assumption which allows for the following simplification of
the transition model:

P(Xt |XO:L'—1) = P(Xt |Xt—1)' (2-3)

We assume the state to provide enough information to make future states con-
ditionally independent of past states. This assumption might not hold for some
systems, but it makes HMMs applicable to a large number of domains and works
well for many applications. The Markov assumption relies on the assumption
that changes in the world that influence our states are caused by stationary pro-
cesses, meaning that the process of changes obeys laws that do not themselves

change over time.

HMMs handle the indirect state observations y,., by a sensor model that models
the probabilities of each observation being made at each state. Also, the observa-
tions can depend on previous variables as well as the current state variable. As
for the state transition model, the number of states would increase with the num-
ber of time steps. To prevent the computational load from increasing with each
time step, the Markov assumption is also applied to the sensor model, making
the current observation solely dependent on the current state:

P(Yt | X0:t5 YO:t—l) = P(Yt | Xt) (2.4)

In addition to transition and sensor models, a HMM needs a prior probability
distribution m modeling the probabilities over all states at time 0. This initial state
distribution can have arbitrary formats depending on prior domain knowledge,
but is often defined to be uniformly distributed when no prior knowledge is

available.

16

2.2. Hidden Markov Models

aiz as3
asa
b11 blz b13 b23 b33 b34

Figure 2.2.: An example of a Hidden Markov Model consisting of the random
variables X, X,, X5 and observations Y;, Y, Y3, Y,. Transition prob-
abilities a;; define the probability of a transition from node X; to X;
while observation probabilities b;; define the probability of observ-
ing Y; while being in state X;.

As a HMM is a variant of a Bayesian Network, we can compute the complete

joint distribution over all states using equation 2.1:

P(Xo Vi) =1 | [PG [X2)P(Y; | X)), (2.5)

i=1

The three terms in equation 2.5 are the prior 7, the transition model P(X; | X;_,)
and the sensor model P(Y; | X;) and fully describe a HMM. Figure 2.2 shows an
illustration of a HMM where the probabilities a;; represent the probabilities of a
transition from node X; to X; stored in the transition model A;; = P(X, | X,.._1).
Probabilities b;; correspond to the probability of making an observation Y; while
being at node X; stored in the sensor model B;; = P(Y, | X,).

The Surfing Flatmate Example. Imagine living in a shared flat with your flat-
mate Martin that is a surfer. It is Wednesday evening and when you come home
from work, you want to know if your flatmate has been surfing today. He is
not home, so you cannot ask him directly but you can see if his wetsuit, which
is hanging in the bathroom, is wet. You know that Martin has been surfing on
Monday and that commonly, after he went surfing on one day, he doesn’t go
surfing the following day since he is exhausted. After having made a surfing-
break one day, he commonly, if he has no other appointments, goes surfing the
following day, since he otherwise starts feeling lazy. You can now represent such

17

2. Background

0.8

0.2 0.1

wetsuit dry

wetsuit wet

Figure 2.3.: This exemplary HMM models the dependencies of surfing days of
an imaginary flatmate and the fact that his wetsuit is observed to be
wet.

information in a HMM, modeling a surfing-day and a lazy-day as nodes and the
transitions between surfing- and lazy-days in the transition model of the HMM.
The fact that you know, your flatmate has been surfing on Monday can be repre-
sented in the initial state distribution of the surfing-days and lazy-days states. In
our example, you cannot observe the states of the HMM directly and the wetsuit
being wet does not guarantee that Martin was surfing. There might be warm
summer days when he does not wear a wetsuit at all, so the wetsuit can be dry
although Martin was surfing. Also, the wetsuit can be wet but Martin has not
been surfing but washed his wetsuit. Such information can be represented in
the sensor model of the HMM. Figure 2.3 illustrates the HMM that models the
surfing days of the flatmate including the transition model and the sensor model
with exemplary probabilities. Once this HMM defined, we can draw several con-
clusions about the surfing days of our imaginary flatmate, some of which will be
described in the following sections. We will refer to the surfing flatmate example
from time to time to provide a better understanding of the algorithms.

2.2.1 Inference in HMMs

Commonly, inference problems for temporal, probabilistic models, such as the
HMM, are grouped into the following basic inference tasks:

18

2.2. Hidden Markov Models

e Filtering: The filtering task, also called the state estimation task, covers the
calculation of the belief state, meaning the posterior distribution P(X, | y;.;)
over the most recent state, given all instances of observations y;., so far.
Using the example of the surfing flatmate, this would estimate the proba-
bilities of today being a surfing day or a lazy day given all observations of
the wetsuit so far.

¢ Prediction: The prediction task computes the posterior distribution over
a future state: P(X, | ¥i..) for some k > 0. This task is often used to
evaluate possible courses of action based on their expected outcomes. In
the surfing flatmate example, this would correspond to the prediction of
the probability of the flatmate to go surfing at some day in the future given

all wetsuit observations so far.

¢ Smoothing: The smoothing task is about computing the posterior distribu-
tion over some past state: P(X; | y;..) for some k such that 0 < k < t. This
provides a better estimate of the state than a calculation with information
given at time k since more evidence is available. In the surfing flatmate
example, the smoothing task would calculate the probability that the flat-
mate has been surfing at some day in the past given all observations of the
wetsuit until the present day.

* Most likely explanation: Given a sequence of observations, this is the task
of finding the sequence of states that is most likely to have generated the
observations: argmax, P(x;. | ¥;.). This corresponds to calculating a se-
quence of surfing and lazy days in the past that represents the most likely
behavior of the flatmate given all wetsuit observations so far.

* Learning: The learning problem is essential for the generation of HMMs. It
enables transition- and sensor models to be learned from observations us-
ing a variant of the Expectation Maximization (EM) algorithm [57]. An in-
ference provides estimates about which transitions are most likely to have
occurred and which states have most likely generated the sensor read-
ings. These estimates can then be used to provide new estimates for the
transition- and sensor model. The process iterates until it converges. The

Baum-Welch Algorithm [73] is an instance of an EM algorithm that solves

19

2. Background

the learning problem for HMMs and is described in section 2.2.3. In the
surfing flatmate example, the learning task would provide the most likely
parameters for the transitions between surfing and lazy days as well as the
probabilities of the wetsuit being wet or dry given the flatmate has been

surfing or not.

In the following, we will describe solutions to two of the problems that were
of relevance for this thesis: The learning task and the smoothing task. A detailed
description of all of the aforementioned problems lies beyond the focus of this
thesis and we refer the interested reader to [74], chapter 15.

2.2.2 Forward Backward Algorithm

The Forward-Backward algorithm offers a solution to the smoothing problem
and allows a more precise estimation of the posterior distribution P(X; | y;.,)
than it is possible with filtering.

The Surfing Flatmate Example. The Forward-Backward algorithm in the surfing
flatmate example calculates the probabilities that model if the flatmate has been
surfing at one specific day given all wetsuit observations so far. For instance, on
sunday we can calculate the probabilities of the flatmate having had a surfing
or lazy day on Wednesday given the wetsuit observations over the whole week.
Therefore, the forward step calculates the probabilities of the flatmate surfing on
Wednesday by recursively filtering forward from Monday to Wednesday. Af-
terwards, the backward step calculates the probabilities of the flatmate having
been surfing on Wednesday based on the wetsuit observations from Thursday to
Sunday. The results of the forward- and backward step are combined and offer
a more accurate estimation than it would have been possible when considering

only observations from Monday to Wednesday.

2.2.2.1 Formal Description

The Forward-Backward Algorithm [72] calculates the posterior distribution over
all past state variables P(X | y;..) given a sequence of observations y;., for 0 <

20

2.2. Hidden Markov Models

k < t up to the present. The computation of P(X; | y;.,) can be split into two
parts:

PXi [y1:) = P | Yoo Yirr,e)
= a PXi | Y1) PWiesree | Xio Yaue)
= a PXi | Y1) PWiesre | Xi)
= afix X briq- (2.6)

We apply Bayes’ rule (see appendix, section A.4) in line two of equation 2.6 and
use a conditional independence assumption between y,., and y;, ., given X in
line three. a represents the normalization factor from the application of the Bayes
rule. In line four, we define two new functions: The forward message f;., and the

backward message b, ;... X represents point-wise multiplication of vectors.

Forward Step. The forward message f;.; can be computed by filtering forward
from 1 to k. A filtering algorithm maintains and updates an estimation of the
current state. It recursively computes the result for time t + 1 from the result of

the filtering up to time t and a new observation y,,; for some function f:

P(Xei1 | Y1:e41) = Feq1, PXe | Y1) (2.7)

This process is called recursive estimation and can be decomposed into two parts
in the following way:

P(Xt+1 |J’1:t+1) = P(XH-I |y1:t1yt+1)
= aP(y. |Xt+11y1:t) P(X;41 | ¥1.0)
= aP(y. |Xr+1) P(X, 14 | ¥1.0)- (2.8)

We make use of the Bayes’ rule in line two and the Markov assumption of the
sensor model in line three. The second term of the resulting two parts is the

21

2. Background

prediction of the next state given the observations so far P(X,,, | y;..), which is
updated with the new observation y,,,. The first term P(y,,, | X,,,) is directly
given by the sensor model. We can now calculate a prediction of the next state
X.41 conditioned on the current state X,:

PXiy1 |l Y1e41) = aP(yoq |Xt+1)ZP(Xt+1 [x0 ¥1.0) POx, | ya.0)

= @ P(Yis1 | Xes1) D PKeay | xIP(x, | 11,0). (2.9)

Xt

We use the Markov assumption of the transition model in the second line. The
resulting form is the desired recursive formulation where the first term of the
result of equation 2.9 is obtained from the sensor model, the first part in the sum-
mation is given by the transition model and the second part in the summation
is defined by the current state distribution. We define the calculation of the fil-
tered state estimate P(X, | y,.,) as a recursive function that is propagated forward
among the sequence of observations by modifying each transition and updating
with each new observation:

fi.e11 = € FORWARD(f1.;, ¥ 41)- (2.10)

Here, FORWARD represents the implementation of the filtering described in equa-
tion 2.9 (we exclude the normalization constant a here). Given, all state variables
are discrete, the time for each update is constant and so is the required mem-
ory. The forward step itself is also a solution to the filtering/state estimation task

since it computes the belief state over the most recent state P(X, |y;..).

The Backward Step. The backward message b, ., in equation 2.6 is computed

recursively using a process that runs backward from t:

22

2.2. Hidden Markov Models

P(Yrsre | X)) = ZP(J’kH:r | X, X341)P (xpeq | X3

Xk+1

= Zp(yk-i-l:t | Xk+1)P(xk+1 |Xk)

Xk+1

= ZP(J’kH’}’ka | X34 1)P(Xpqr | Xi)

Xk+1

= > PO | X DPOigze | Xs)PCagn 1 X) - (211)

Xfe4+1

We condition P(y;1.. | Xi) on x;,; in the first line and use the conditional inde-
pendence assumption of the observations y,,; and X; given x;,, in the second
line. In the last step, we use the conditional independence of y,,; and y,,,.; given
Xi41- The resulting summation consists of three factors where P(y; | x4,) is di-
rectly obtained from the sensor model and P(x,,; | X;) is given by the transition
model. The term in the middle is the recursive part of the equation. Defining the
update described by equation 2.11 as BACKWARD, we can describe the backward

step in the following recursive formulation:

bii1:c = BACKWARD(bk+2t:yk+1)' (2.12)

As for the forward step, time and memory needed for each update are constant,
and thus independent of t, when the states are discrete. The backward step is
initialized with b, 1., = P(¥,41.. | X;) = P(1| X,), where 1 is a vector of 1s. Since at
initialization of the backward step, y,,;., is an empty sequence, the probability of
observing it is 1. Given equations 2.10 and 2.12, the two terms f;,, and b;, ., can
both be computed by recursions in time. In case of the forward step, the recursion
runs forward from 1 to k and in case of the backward step, the recursion runs
backward from ¢ to k + 1.

23

2. Background

2.2.2.2 Implementation

Both recursions needed to calculate the forward and the backward step require a
constant amount of time per step, leading to a complexity of O(t) at a particular
time step k. Smoothing the whole sequence by running the smoothing process
for each time step would lead to a time complexity of O(¢*). Using a simple ap-
plication of dynamic programming can reduce the complexity for smoothing the
whole sequence to O(t). This is done by recording the results of the forward step
over the whole sequence and reusing them in the backward recursion. Thus, we
can compute the smoothed estimate at each time k from the computed backward
message by, ., and the stored forward message f,... In the activity recognition
approach that we will introduce in chapter 5, we use an implementation of the
forward-backward algorithm as illustrated by Algorithm 1.

Algorithm 1 Forward-Backward Algorithm

Require:
obs, vector of observations
prior, initial state distribution 7
forward[0] « prior
fori=1tot do
forward[i] « FORWARD(forward[i — 1], 0bs[i])
end for
fori=tto1ldo
states[i] < NORMALIZE(forward[i] x backward)
backward «— BACKWARD (backward, obs[i])
end for
return states

The local variable forward represents the state distribution as a vector of state
probabilities after performing the forward step. The local variable backward ac-
cordingly contains the state distributions after the backward step. The local
variable states represents the state distribution after the forward and backward
step as a vector of state probabilities, which is returned at the end of the algo-
rithm. The functions FORWARD and BACKWARD implement the forward- and
backward-step according to the definitions in equations 2.10 and 2.12. The func-
tion NORMALIZE ensures that the summation of all state probabilities is 1 by
calculating the normalization constant a of equation 2.6.

24

2.2. Hidden Markov Models

One should mention that the forward-backward algorithm comes with two prac-
tical drawbacks. The space complexity can become high with large state spaces
and long observation sequences. Furthermore, it does not work in online set-
tings where smoothed state estimates need to be computed for earlier times as
new observations are continuously added to the end of the sequence. Those
drawbacks lie beyond the scope of this thesis and we refer the interested reader
to [74], chapter 15 for a discussion of solutions.

2.2.3 Baum-Welch Algorithm

The Baum-Welch algorithm [73] is named after Leonard E. Baum and Lloyd R.
Welch and offers an iterative procedure to solve the learning problem by adjust-
ing the parameters of the HMM to maximize the probability of the observation
sequence given the model. It uses the Expectation Maximization (EM) algorithm
[57] to calculate the maximum likelihood estimate of the parameters of the HMM

given an observation sequence.

The Surfing Flatmate Example. In our example, the Baum-Welch algorithm pro-
vides an estimation about the most likely parameters of the HMM. In the surfing
flatmate example, the learning task would provide the most likely parameters
for the transitions between surfing and lazy days as well as the probabilities of
the wetsuit being wet or dry given the flatmate has been surfing or not. There-
fore, the Baum-Welch algorithm first computes the probability of the flatmate
having been surfing at a specific day given all wetsuit observations so far. It uses
the same forward- and backward steps as the Forward-Backward algorithm ex-
plained in section 2.2.2. For instance, it calculates the probability of the flatmate
having surfed on Wednesday given the wetsuit observations of the whole week
until Friday. It therefore uses initial distributions for the transition and sensor
model which are either distributed uniformly or randomly if we have no prior
knowledge available. They can also include prior information if we have a rough
guess about the models. Next, the Baum-Welch algorithm iteratively updates the
model parameters of the HMM, meaning the transition model, the sensor model
and the initial distribution until it converges at a point where the model param-

eters are most consistent with the observations. Therefore, the algorithm uses

25

2. Background

the observations to estimate a new transition matrix by comparing the expected
total number of transitions from any state to any other stated based on the ini-
tial transition model. In the example, this would correspond to comparing our
guess of the probability of a surfing day being followed by a lazy day with the
probabilities estimated from the observations. Furthermore, an updated sensor
model is estimated based on the expected numbers of observations at each state.
The parameters of the HMM are updated with the new transition- and sensor
model and the steps are repeated until the parameters reach a desired level of

convergence.

2.2.3.1 Formal Description

At the beginning of the algorithm, the transition model A;;,

and the initial distribution 7 are assigned random initial values if no prior infor-

the sensor model B; j

mation is present. If prior information is available, those parameters can also be
set accordingly. The Baum-Welch algorithm can be divided into two steps: the
forward-backward step and the update step.

The Forward-Backward Step. In the first step, we calculate the probabilities af
of seeing a partial sequence y;, and ending up in state i at time k given the
current parameters 6 of the HMM by recursively filtering forward as described
in section 2.2.2.1.1:

ai'{ = P(y1:k7Xk =1 | 9) (213)

Furthermore, the probability of ending the observation sequence y,, .., given we
started in state i at time k, is calculated using the Backward-step as explained in
section 2.2.2.1.2:

BE=P(Yisre X =1,0). (2.14)

The Update Step. We define the temporary variable y as the probability of being

in state i at time k given the observation sequence y ..

26

2.2. Hidden Markov Models

ri(t) = PXy=1i]yy.0)
P(yy. | X, =1,0) P(X, =1|6)
P(ylzk | 9)

P(y1.. | 0) PX=1i]0)

P(y14 | 6)
P(yy., X, =116)

P(yl:t |9)
P(y1 . Xe=110)

N
Zp(ylzt:Xk :J | 0)

j=1

(2.15)

We use Bayes rule in the second line of equation 2.15 and conditional indepen-
dence of y;., and X, given 6 in the third line. The fourth line applies the product
rule (see appendix, section A.3) and the sum in the fifth line arises using the law
of total probability. Given af from equation 2.13 and 8f from equation 2.14, we
can write:

a;(K)Bi(k) = P(y1Xe=1]0)P(Yy1. | Xx=1,0)
= P(y116Xi=1]0) P(¥iy1.. | 0)
= P(y,..Xx=1]6). (2.16)

We use the Markov assumption of the sensor model and the conditional inde-
pendence of y; ., and X, given X, , in the second line. Thus, equation 2.15 can
be defined in terms of a¥ and S as follows:

k ok
a; 3;
N

2, o}
j=1

ri(k) = (2.17)

27

2. Background

We describe this term by the temporary variable y¥, which represents the proba-
bility of being in state i at time k as explained in equation 2.15. We furthermore

introduce the second temporary variable & f‘] as follows:

gfj = PX=1,Xe11=J 1 Y1,0)

al.‘ai.[a’Hlb.(y)
- Uty TR (2.18)

N N :
Z Z aﬁqamnﬁrlf-‘rlbn(yk-i-l)

m=1n=1

3 i‘] represents the probability of being in state i at time k and being in state j at
time k + 1 given the observation sequence y,., and the model parameters 6. We
can now start to update the model parameters 6 = (m,A, B) by first calculating
the new initial distribution 7} as the expected frequency spent in state i at time
1:

=y, (1). (2.19)

In the next step, the expected number of transitions from state i to j compared to

the expected total number of transitions away from state i is computed:

t—1 .
Z gij
__ k=1

T ot-1
27k
k=1

*
aij

(2.20)

Also, new emission probabilities b;(k) are calculated for each state i at time k:

t
Z 1)’1=ka$
bi(k) == . (2.21)

t
PN
=1

2.2. Hidden Markov Models

Here, 1, _, represents an indicator function which is defined as follows:

1 ify,=v
1,_, = T= (2.22)
0 otherwise.

The steps from equation 2.17 to equation 2.22 are repeated and iteratively com-
pute new values for the model parameters 6 of the corresponding HMM until
a desired level of convergence is reached, thus obtaining the most likely model
parameters according to the observations. One should note that the Baum-Welch
Algorithm does not guarantee to find a global maximum but rather local max-
ima. However, there are many applications in which the parameters computed
by the Baum-Welch algorithm provide good results as the evaluation of the work

of this thesis will show in chapter 7.

2.2.3.2 Implementation

One possible implementation of the Baum-Welch algorithm is illustrated in Algo-
rithm 2. The algorithm has a vector of observations as input as well as an initial
guess of the parameters of the HMM. One will probably recognize that lines 1
to 7 of the algorithm look almost the same as the initial lines of the Forward-
Backward algorithm illustrated in Algorithm 1 in section 2.2.2.2. This comes as
no surprise since the forward- and backward probabilities that are used for the
calculation of the updated parameters are computed in exactly the same way. In
line 8 to 14, the parameters of the HMM are recalculated iteratively as explained
by equations 2.17 to 2.22 until a desired level of convergence is reached. The up-
dated transition model new_tm is calculated as explained by equation 2.20, the
updated sensor model new_sm is computed as explained by equation 2.21 and
the updated initial distribution new_prior is derived as explained by equation
2.19. At each iteration, the level of convergence is computed by comparing the
parameters of the HMM before the update with the updated parameters. Once,
a desired level of convergence is reached, the algorithm ends and returns the
parameters of the HMM.

29

2. Background

Algorithm 2 Baum-Welch Algorithm

Require:

e S e S S G
LIl S O el

obs, vector of observations

prior, initial guess initial state distribution 7
tm, initial guess of transition model

sm, initial guess of sensor model

forward[0] « prior
fori=1tot do
forward[i] « FORWARD(forward[i — 1], 0bs[i])
end for
fori=tto1ldo
backward < BACKWARD(backward, obs[i])
end for
while convergence > threshhold do
new_tm «— NEW_TRANSITION_MODE L(forward, backward)
new_sm «— NEW_SENSOR_MODEL(forward, backward)
new_prior < NEW _PRIOR(forward, backward)
convergence «<— CONV ERGEN CE(tm,sm,new_tm,new_sm)
tm,sm, prior <— new_tm,new_sm,new_prior
: end while
: return tm,sm, prior

30

2.3. Reactive Planning

CPL KnowRob
Extension CRAM-kernel computable Extension
Modules KnowRob Reasoner <+~ """ Modules
= =]
T
-
> e SWI Prolog | >a
<> i
i =
-?_ population <6
<> _ assert Belief State of the belief =
—i— CPL - CRAM Plans retract - Object designators state <o
= query - Entity designators J—
<> LISP - KnowRob knowledge base <>
| activation/deactivation/parametrization using ActionLib abstraction /m\
1 1
Program —
‘] - v |
Perception Navigation Manipulation computable predicates
I I I i

Figure 2.4.: The CRAM architecture consists out of the light-weight CRAM ker-
nel, the KnowRob knowledge processing system as well as several
modules that control the access to the robot’s sensors and actuators.
The CRAM kernel can easily be extended by CPL extension modules.
(Image courtesy of Michael Beetz [6])

2.3 Reactive Planning

Classical approaches in planning often try to achieve correctness and optimality
and therefore require a detailed model of the world.Thus, they are often sub-
ject to rather long planning times in large domains. However, if we consider
robots working together with humans, such requirements can be problematic.
The real world consists of an unlimited variety of situations and possible actions
and cannot be captured in a restricted model. Also, a robot working together
with a human will in many cases only have a limited amount of time for plan-
ning available. For many cases, a quick, possibly non-optimal reaction of a robot
is preferred over an optimal reaction that the robot executes too late.

2.3.1 The Cognitive Robot Abstract Machine (CRAM)

Beetz et al. [5], introduced the Cognitive Robot Abstract Machine (CRAM), as
a toolkit for the specification of complex robot behavior for cognitive mobile
robots. It comes with the CRAM Plan language (CPL), which offers a reactive

31

2. Background

planning framework and allows to program plans as modules that are stored in
a plan library. CRAM is specifically tailored to the needs of autonomous robots
performing complex everyday manipulation activities in human-centered envi-
ronments. It has been designed to enable the effective and efficient implementa-
tion of higher-level capabilities like learning, knowledge processing and action
planning into robot control programs to produce flexible, reliable and efficient
behavior. The CRAM architecture, as illustrated in Figure 2.4, consists of the
lightweight CRAM kernel, the KnowRob knowledge base and several modules
for robot capabilities and extensions. It is based on the open-source robotics mid-
dleware ROS [71] for communication between the different modules. The CRAM
kernel is defined to be lightweight, standard and configurable, extending the
CommonLISP programming language. It uses LISP compilers instead of defin-
ing an own interpreter. The CRAM kernel consists of only 3000 lines of code
and can easily be extended with optional modules to provide additional cog-
nitive capabilities. One such example is the knowledge processing framework
KnowRob [83]. It is implemented as an extension to the CRAM kernel and can
be added or removed as needed. CRAM equips robots with lightweight reason-
ing mechanisms that can infer control decisions rather than requiring them to be
preprogrammed. This enables robots to be much more flexible, reliable and gen-
eral than robots that lack such capabilities. Furthermore, CRAM does not need
the whole domain to be explicitly stated. Instead, it relies on means of grounding

symbolic expressions into a robot’s perception and actuation routines.

In several demonstrations of robots performing tasks of daily living in a labo-
ratory kitchen environment, CRAM has repeatedly been used on real robots as
illustrated in Figure 2.5. In particular, the two robots Rosie and James were ca-
pable to make pancakes, sausages, popcorn, a sandwich and go shopping using
the CRAM architecture [4].

2.3.2 The CRAM Plan Language

The CRAM framework comes with the CRAM Plan Language (CPL), which is
an expressive behavior specification language enabling autonomous robots to

not only execute their control programs but also reason about and manipulate

32

2.3. Reactive Planning

Figure 2.5.: The two robots Rosie and James performing everyday tasks in a lab-
oratory kitchen using the CRAM architecture.

them - even during execution. It is based on the Robot Plan Language (RPL) [51]
but specifically focuses on the control of real robots performing complex manip-
ulation tasks in human-centered environments. Robot plans written in the CPL
language specify concurrent, sensor-guided, reactive behavior and let us define
how a robot should respond to sensory events, changes in its belief state and de-
tected plan failures. The desired world-state has an explicit representation that
lets a robot check if a goal already holds before trying to achieve it. Further-
more, a robot can validate if a routine is successful by perceiving the state after
achievement. Instead of regarding plans as a partially ordered set of atomic ac-
tions, CRAM specifically considers concurrency, action synchronization, failure
handling, loops and reactiveness. Therefore, CPL offers control structures for
parallel execution, partial ordering of sub plans, sophisticated failure handling
and the annotation of control programs. The multithreading library enables com-
plex synchronization, partial orderings, blocking and in particular clean failure

handling that propagates from sub-plans to parent-plans.

One important aspect of CPL is the fact that not only the goal, but also many con-
trol decisions, including complex reasoning actions, are turned into first-class ob-
jects, meaning entities that parameterize the plan and can be queried, analyzed,
and reasoned upon. This is achieved by so called designators which describe de-
cisions by a set of constraints that have to be satisfied. Designators represent
objects, locations and actions by conjunctions of symbolic properties and are re-
solved only at the very last moment when the decision actually needs to be taken.

33

2. Background

This allows the system to base a decision on all information that can be gathered

until the code that needs to take the decision gets executed.

The second important concept that we use in this thesis are fluents. Fluents are
variables that are used to describe objects and can be equipped with values e.g.
derived from low-level sensor input. They can be pulsed which allows them to
wait for changes of its values and notify the high-level layer. Commonly, fluents
from ongoing sensor values are produced by process modules that provide the
interface to the low-level sensors of the robot. The use of fluents enables a robot
to react to changes without actively monitoring each object or sensor reading
since the fluent itself takes care of the monitoring and notifies the robot when
changes occur.

The work described in the remainder of this thesis is based on CPL and will im-
plement an extension to CPL that allows a robot to model and validate different
types of expectations to enable a robot to distinguish normal from abnormal sit-

uations as we will show in chapter 3.

2.4 Semantic Environment Maps

Any mobile robot that is intended to perform more sophisticated tasks than ran-
domly driving around will need some representation of its environment. One of
the most common kinds of such a representation are two dimensional gridmaps
[58]. Two dimensional gridmaps divide the environment into a grid where each
cell represents the probability of a cell being free or occupied by an obstacle.
Such maps can be generated from two dimensional sensor data of a laser scan-
ner, sonar or similar and are the representation of choice for robot localization

and navigation.

However, when it comes to sophisticated tasks like manipulation tasks in human-
centered environments, a two dimensional representation of the environment is
often not sufficient. A robot needs an elaborate environment representation to be
able to perform complex mobile manipulation activities. Such a representation
should include the three dimensional structure of its surroundings as well as se-

mantically annotated knowledge about their environment like information about

34

2.4. Semantic Environment Maps

Drawers5
type: Drawer
subClassOf: Box-Container
width: 0.31"Meter
parts: Door58

Refrigerator67
type: Refrigerator
subClassOf: Box-Container
width: 0.58""Meter
parts: Door70

Figure 2.6.: Semantic object map of a kitchen including three dimensional models
of furniture objects as well as articulation models for the opening of
doors (illustrated by the yellow points). (Image courtesy of Moritz
Tenorth [65])

objects, object-types, doors and so on. Recent development in autonomous se-
mantic mapping allows robots to have semantically annotated knowledge about
their environment by autonomously generating semantic maps using laser scans,
3D-pointclouds and cameras. While some approaches focus on detecting room
categories [96], others include 3D CAD models that categorize objects, geometric
information about objects, articulation models for opening doors and functional
components like the handle of doors [9]. These semantic maps can widely be
generated autonomously by the calculation of next best view poses. From these,
3D pointclouds are gathered and the application of various segmentation meth-
ods generate initial hypotheses for furniture, drawers and doors as illustrated in
Figure 2.6. Tenorth et al. [85] offer a way to create knowledge-linked semantic ob-
ject maps that combine information of semantic object maps with common sense
knowledge of publicly available data bases. This enables a robot to do reason-
ing about the objects in its environment, like querying its database for common

locations of objects in its specific environment.

In this thesis, we will use semantic object maps to obtain knowledge about the
location, dimensions and types of furniture objects like cupboards and drawers.
This information will help us to estimate a spatial model about where persons
generally are located during pick- and place actions from container objects as we

35

2. Background

will show in chapter 4. Semantic object maps are integrated into KnowRob and

can thus be conveniently queried from within the CRAM architecture.

36

Chapter 3
A Framework for Expectations

In this chapter, we will introduce a framework that generally enables a robot
to represent different kinds of expectations and provide a situational awareness
based on various sources of information. This capability can enable a robot to
distinguish normal from abnormal situations and help it to ultimately adapt its

planning to react on or even prevent possible failures.

Since it is hard to find a general definition of a failure, we propose a general
notion of expectations that can be met to certain degrees in a situation. Such
expectations can be represented explicitly in the robot program using different
knowledge sources to describe facts that the robot expects in the current situa-
tion. Figure 3.1 illustrates some categories of expectations and gives an impres-
sion about how expectations can be used to classify situations. The image on the
left shows objects that are floating in the air, which violates the laws of physics
and would contradict a continuous naive physics reasoner. A human lying on
the floor obeys the laws of physics but is unusual behavior as long as it is not ob-
served at the beach or in similar context. The right image shows a less surprising
situation, although a pile of boxes on a table might not be very common in a typ-
ical household (while they would be expected in places like a warehouse). The
causes of unexpected situations can be of various kinds. They might be caused
by failures in the robot program (for instance due to unreliable action execu-
tion of inaccurate sensors), unexpected human behavior like dropping objects or
forgetting things (the latter being specially relevant in the care of people with
dementia), or completely different events like the emergence of a storm.

37

3. A Framework for Expectations

Figure 3.1.: Left: An "abnormal" simulated scene in human robot interaction.
Right: A "normal" simulated scene in human robot interaction.

As Orthony et al. [64] stated as early as in 1987, the registration of and the re-
action to failed expectations, failed assumptions and unanticipated events are
crucial components of general intelligence. This chapter introduces a framework
that enables a robot to combine different kinds of knowledge to explicitly repre-
sent expectations. These expectations can be of different kinds according to the
type of knowledge that is available, and the requirements of specific applications.
Promising candidates to provide such knowledge are naive physics reasoning
[1], simulation-based projection [40], geometric reasoning [59] or knowledge-
based inference [41]. Each of these approaches use single expectations in a rather
implicit way to model specific parts of situations and detect anomalies, but none
of them offers the possibility of combining several expectations to enable a com-
bined, general representation of the normality of situations. Figure 3.2 shows an
overview about the use of expectations for estimating of the normality of a situ-
ation. Different knowledge sources generate expectations that are maintained in
the Expectations Framework. An estimation about the normality of the current
situation is returned from the Expectations Framework by the validation of the
available expectations.

An unexpected situation is not necessarily an error or a failure and some unex-
pected events may not require a reaction of the robot at all. Imagine a person
and a robot cooking together in the kitchen when suddenly the doorbell rings
and the human leaves the room. In this case, the doorbell might not have been

38

3.1. System overview

Observations Lotz
Features

Expectations
Framework

Common
Experiences Sense
Knowledge

Expectation Generation

Expectation Validation

Situation
Normality
Estimation

Figure 3.2.: An overview of our system for using expectation to estimate the nor-
mality of situations. Different expectations are generated and vali-
dated to enable a robot to obtain an impression about the normality
of a given situation.

expected but it might not represent a situation which requires a response of the
robot. Other cases like a person lying on the ground or the detection of smoke in
the living room may require clarification actions of the robot such as asking the

human for assistance or locating the source of smoke.

In this work, we do not deal with the reactions to unexpected situations, but
rather offer a general and modular framework that enables robots to represent
normal situations by a combination of different types of expectations. Our frame-
work offers the possibility to detect unexpected situations and their degree of
unusualness by validating expectations and gives hints for possible solutions by

explicitly representing which expectations are currently violated.

3.1 System overview

We define an expectation as any piece of knowledge that describes normal mech-
anisms of the world, such as physical laws, robot behavior or habitual human
behavior. The normality of a situation is assessed by validating the available ex-
pectations. The validation of an expectation can be seen as a comparison between
what has been expected and what has really happened. It returns a value indicat-
ing to what degree the corresponding expectation has been fulfilled. The values

39

3. A Framework for Expectations

of all expectations are combined in one overall value that expresses the average

normality of the current situation.

To keep the handling of expectations as simple as possible, our framework offers
the same interface for all expectations regardless of their type. From an imple-
mentation point of view, this interface is defined by an abstract class expectation
that defines the interface. Specific expectations are created by sub-classing the
abstract expectation class. Each expectation class has to implement a validation
method that provides a measure to which degree the corresponding expectation
has been fulfilled by returning a value between 0 and 1. We will call this value the
normality of an expectation. If the validation of an expectation returns a normality
of 1, the expectation has been perfectly fulfilled, whereas a value of 0 means that
the expectation has not been fulfilled at all. Since the validation of different types
of expectations can be necessary at different points in time, each expectation can
trigger the validation by a validation hook, which is implemented depending on
the type of expectation. The validation hook must be created by the client ap-
plication and ensures that expectations are generated and updated at the correct
point in time. Consider, for instance, expectations about general physical laws
in contrast to expectations about possible future locations of a person. While ex-
pectations about physical laws should probably be validated on a regular basis,
expectations about possible future locations of a person can only be validated as
soon as the next location of the person is known. If we expect a person to go to
the dining table in the next step, knowing that he/she just finished preparing a
meal, we can only validate this expectation as soon as we know where the person
actually went, while we can constantly validate if objects obey physical laws like

gravity.

The expectations framework also offers the possibility to group expectations, cre-
ating categories of expectations that are treated as composite objects and offer the
same interface as single expectations, similar to the Composite pattern from object
oriented software design patterns [21]. Composite expectations also implement
a validation method, which recursively validates all expectations in the category
and combines their normality values to one single value. This combined value
expresses to what degree the expectations of the corresponding category have

been fulfilled. One could, for instance, think about the creation of an expecta-

40

3.1. System overview

Human Activity Object Physical

Expectations
Pool

next
location:
oven

duration:

static
4s

object

cup: on table

table:

Figure 3.3.: Illustration of an expectations pool including expectation categories.
The white squares represent single expectations grouped in different
expectations categories which are illustrated as light blue squares.

tions category “Object Physical” to group expectations about physical properties
of objects in the environment. Due to the recursive structure of expectation cat-
egories, it is also possible to create categories of expectations that include other
categories of expectations, thus creating nested structures. One might for ex-
ample use an expectations category “Object Physical” as in the example before
and at the same time have a group of expectations “Object Locations”, modeling
likely locations of objects. Those two expectation categories can themselves be

aggregated in a category called “Object Expectations”.

All expectations are maintained in an expectations pool where they can dynami-
cally be added and removed depending on the context of the current situation. If
a robot’s activity recognition, for instance, detects that a human just finished an
activity like preparing a meal and will probably start eating the prepared meal,
the robot would remove the expectation that it expects the human near the oven,
and add a new expectation expecting the human to be at the dining table. An
exemplary expectations pool containing different types of expectations grouped

in categories is depicted in Figure 3.3.

The introduction of expectation categories as well as the different types of ex-
pectations themselves strongly depend on the scenario of application. Figure 3.4
illustrates the class structure of single expectations and expectation categories.
While all expectation classes share the same interface defined by the Expectation
class, only classes of ExpectationCategory implement the methods that are specific
to categories like Add, Remove and GetChildren. This class structure allows us to
represent the expectation pool as a tree structure where expectations represent
nodes of the tree. Single expectations correspond to leaf nodes, while composite
expectations represent non-leaf nodes. Due to the way expectation categories are

41

3. A Framework for Expectations

implemented, we can recursively define structures of expectations with an arbi-
trary number of levels. However for our experiments, we limited the number of

expectations levels to less than three.

3.1.1 Expectation Models

Using the expectations framework, arbitrary types of expectations can be cre-
ated as long as they conform to the interface defined in the class structure. For
our application of a robot helper in a typical human household, we introduce
three different types of expectations: Logical Expectations, Temporal Expectations
and Probabilistic Expectations.

3.1.1.1 Logical Expectations

Logical expectations are composed of logical propositions that either hold in the
current situation or are violated. The validation of a logical expectation will re-
turn 1 if the proposition holds and 0 otherwise. An example of a logical expecta-
tion is: Cup_1 on the table, which expresses that the robot would expect the object
called Cup_1 being located on the table. This can either be true or false. Generally,
logical expectations can be seen as binary logical propositions that return their

truth-value when they are validated.

3.1.1.2 Temporal Expectations

Temporal expectations only hold for a certain duration. They are an extension of
logical expectations and consist of logical propositions and a duration during
which the expectation is expected to hold. When a temporal expectation is vali-
dated, the duration during which a fact holds is compared with the duration the
fact is expected to hold. As long as the measured duration of a fact is smaller
than the expected duration, the situation is considered to be normal and the val-
idation returns 0. When the measured duration exceeds the expected duration,

the normality decreases with time until it reaches 0. By default, we define the

42

3.1. System overview

Expectation
validate()
Add(expectation)

Remove(expectation)
GetChildren()

T

‘ SingleExpectation ‘ ExpectationCategory — children
‘ validate() ‘ validate()

E Add(expectation)

: Remove(expectation)

: GetChildren()

validation hook 1

validation hook 2

Figure 3.4.: The class structure of our implementation of expectations. The ab-
stract class Expectation defines the common interface that all concrete
expectations implement. Each expectation consists of a validation
method returning a value between 0 and 1, indicating the degree to
which the expectation has been fulfilled. SingleExpectation classes can
directly model expectations about any type of information that can be
perceived by the robot. ExpectationCategory classes implement com-
positions of expectations that enable the client to group expectations
in categories. In addition to a validation method, ExpectationCategory
classes also implement functions for adding and removing expecta-
tions as well as accessing the expectations in the category. Validation
of an ExpectationCategory is done by recursively validating all expec-
tations in the category.

43

3. A Framework for Expectations

decrease of the normality linearly but other functions are possible as well de-
pending on the application. An example of such an expectation is the duration
that a human spends at certain locations when performing activities. One might
for example expect a person to usually be located approximately 4 seconds in
front of a cupboard when picking up objects from it. When a person is standing
longer in front of the cupboard, it becomes more unlikely that he/she is actually

performing a pick- and place action.

3.1.1.3 Probabilistic Expectations

Not in all situations we are certain about single events or actions that we expect to
happen. Sometimes we cannot clearly state what will happen next, instead there
will be several possibilities for future events or actions of which we are aware,
possibly some more probable than others. In such cases, we can use Probabilistic
Expectations which have probability distributions over random variables instead
of binary propositions assigned to them. Using Probabilistic Expectations, we can
describe a set of events that we expect to happen and assign each event a prob-
ability, expressing how likely we think the corresponding event is to occur. For
example, a robot might observe a person being at the table, and, given it knows
about the typical behavior of that person, the person will commonly clean the
table after breakfast, before going to work. But there is also the possibility that
he/she will directly go to work without cleaning the table (e.g. when he/she is
late) or go to the bathroom (e.g. when he/she is late but not too late to brush
his teeth). Such multiple possibilities of expected events can be modeled with
a probabilistic expectation. The validation of a probabilistic expectation returns a
value between 0 and 1 corresponding to the probability assigned to the random
variable (representing one event) of the expectation that is observed to be true.

Possible implications of this validation method are discussed in section 8.1.

3.1.2 Expectation Validation

Each single expectation has a validation function which, when invoked, expresses
to what degree an expectation has been fulfilled by returning a value between 0

44

3.1. System overview

and 1. We call this value the normality n; of an expectation e;. But we are not only
interested in the normality value of single expectations, but want to use the con-
cept of expectations to describe the normality of a situation that consists of sev-
eral different facts and events by combining different expectations. So we com-
bine the normality values of all available expectations in the current situation.
Therefore, we construct a normality tree from all expectations in the expectations
pool. The normality tree contains single normalities that result from the valida-
tion of single expectations as well as combined normalities that are generated by
the validation of expectation categories. The combined normalities are computed
by recursively validating each expectation in the expectations category with the
validation function g,4;4q;c and combining the corresponding values as shown

in equation 3.1.

dare(€;), if ; is single expectation
n, :{ gvalldate(1) g p (31)

fcombine(gvalidate(ei)): else

To this end, the way all normalities n; are combined is defined by a combination
function f,,,pin.- For our experiments, we defined f,,,.in. to simply be the aver-
age of all expectations returned from the validation of a combined expectation as
shown in equation 3.2, but one could as well think about other techniques, such

as weighted sums, thresholds or maximum.

fcombine = (32)
The overall normality is calculated by combining all expectations in the expecta-
tions pool. We therefore calculate the overall normality of the situations — which
is also the single value on the highest level in the normality tree — according to
equation 3.1 and 3.2.

The structure of the normality tree is defined by the structure of the expectations,
so the number of levels of the expectations tree is basically unlimited. However,
in the experiments we conducted, we mostly used three layers as shown in the
exemplary normality tree in Figure 3.5. In this example, a situation is observed

that mostly fulfills the robot’s expectations, resulting in a high overall normality

45

3. A Framework for Expectations

Overall
Normality:
0.95

Human
Normalities:
0.89

Cup on Next
Table static: p location:
table:
1.0 1.0 Table

0.92

Object
Normalities:
1.0

Location
duration: 4 s

0.85

Figure 3.5.: An exemplary normality tree generated by the implementation of dif-
ferent expectations of a household robot. The highest level represents
the overall normality of the situation by combining the normalities of
all expectations in the expectations pool. The lower levels allow for a
more fine-grained representation of specific expectations. Blue nodes
represent composite expectations that contain several single expecta-
tions, which are illustrated as white nodes.

of 0.95. The Figure shows two expectation categories, “Human normalities” and
“Object normalities”, which consist of two single expectations each. The robot
observes the table to not have moved and the cup being on the table, so the two
logical object expectations hold, both returning a normality of 1. Accordingly,
the category "Object normalities” has a combined normality of 1. The probabilis-
tic normality “Next locations: Table” returns a value of 0.92 indicating that the
robot correctly expected the human to move to the table next with a probabil-
ity of 0.92. The temporal expectations “Location duration: 4s” returns the value
0.85 meaning that the human is staying at the current location for a little longer
than 4 seconds already. Averaging over the “"Human normalities”, the compos-
ite expectation has a normality value of 0.89 and combining all expectations, we
obtain an overall normality of 0.95 indicating that in general, the current situa-
tion mostly fulfills the robot’s expectations and we consider the situation as quite
normal. As soon as one of the normalities changes it value, the normality tree is
updated ensuring that the robot maintains a constant situational awareness that

is up-to-date.

The representation of the normality of situations using the normality tree pro-

vides a limited but general way of finding the cause of unexpected events. A

46

3.2. Application: Expectation classes for Human Robot Interaction

Figure 3.6.: A simulated robot assistant in a kitchen environment.

robot could, for instance, consider to take action when the overall normality
drops below a certain threshold. It could also traverse the normality tree to find
out which expectation has not been fulfilled and use this information as a hint
for finding the cause of surprise and take actions (like clarifying the situation,
possibly with human help).

3.2 Application: Expectation classes for Human Robot
Interaction

The following scenario demonstrates how a domestic service robot can benefit
from expectations using the proposed framework. We will assume to have a
robot assistant that is expected to work in the kitchen, executing tasks that are
inconvenient for its human owner, like setting the table or cleaning the table af-
ter meals. A simulation of such a scenario is illustrated in Figure 3.6. Using
knowledge about typical places of objects like tableware required for breakfast,
the robot can generate expectations about these objects and validate them. Such
information can be learned from observations or inferred from common sense

knowledge as we will discuss in section 8. Reasonable expectations can, for in-

47

3. A Framework for Expectations

stance, include likely storage locations of objects before, during and after the
meals, or simply the fact that commonly, objects like tableware or cutlery are
expected to be on the table for breakfast. Such a robot could, for instance, gener-
ate logical expectations expressing that we expect an object to be located on the
table after a table-setting activity. To generate such an expectation, we create a
logical-expectation expressing an expected location for an object. Objects can be
described by fluents of a type that include the position of the object as explained
in section 2.3.2. The modeling of objects as a fluent has the advantage that their
position is updated as soon as it changes, thus the expectation can be validated
each time a change is detected. The validation function checks if the object is
located on the expected location e.g. either simply realized using a comparison
of two dimensional coordinates or using more elaborate approaches like a naive
reasoner. The validation of the logical expectation returns 1 if the object is at
the expected location and 0 in the other case. Similarly, we can define a tempo-
ral expectation modeling the duration that a human is expected to be standing at
a certain location using models of human task performance as we will explain
in chapter 4. Furthermore, a robot can generate probabilistic predictions about
likely future locations of a person performing certain activities of daily living

and use such predictions to generate a probabilistic expectation.

To evaluate the applicability of our expectations framework, we set up several
different exemplary environments for a domestic robot helper and equip the
robot with different types of expectations similar to the ones shown in this chap-
ter. We furthermore set up a real world scenario (using a dataset described in
chapter 6) that combines expectations about human task execution and an ap-
proach for activity recognition (described in chapter 5) to dynamically generate
and validate expectations depending on the context of the situation. The goal
of these experiments is to enable a robot to distinguish normal situations from
unexpected situations by validating different types of expectations about the en-
vironment, the human, the robot, etc. The experiments as well as the results of

the validation and the insights we gained are described in chapter 7.

48

3.3. Related Work

3.3 Related Work

The proposed expectations framework follows the aim of offering a general ap-
proach for failure detection for autonomous robots. Research in the areas of
model-based programming [78] and discrete control theory [35] follow similar
objectives, where mostly technical systems are described by formal models such
as state automata with probabilistic transitions or Petri nets. Failure states are
often modeled explicitly, enabling a system to avoid them or diagnose reasons

for failures when they are encountered.

In the field of robotics, such approaches are commonly used for diagnosing in-
ternal faults of system components of robots. Gerald Steinbauer [77] introduces
observers to perform model based diagnosis on robot components without affect-
ing the control system, while Kuhn et al. [39] propose the paradigm of pervasive
diagnosis, simultaneously enabling active diagnosis and model based control.
Using model based autonomy, Wiliams et al. [92] enable autonomous systems to
be aware of their states and possible failures in uncertain environments. Utiliz-
ing models of nominal system behavior as well as models of common failures,
they perform extensive reasoning to recognize and recover from errors. The ap-
proaches mentioned so far consider only errors in components that are part of the
robot, so called internal faults of technical systems. Akhtar and Kuestenmacher
[1] use qualitative reasoning on naive physics concepts for diagnosis for the pre-
diction of errors that do not occur in system parts of the robot itself, but in its
environment, so called external faults of autonomous systems.

Such approaches are not suitable for failures that occur in high-level behavior
of autonomous service robots. The definition of possible interactions between a
human and a robot in a finite state machine would mean a huge modeling ef-
fort. In contrast to discrete control theory, where a formal model can often be
directly generated from system specifications (usually given in a work-flow pro-
gramming language), such an automaton would have to be hand coded in the
case of a robotic system that interacts with humans. That means that a system
designer would have to take into account all failure situations that can possibly
occur when modeling the robot behavior. Even more important, in many situa-

tions it is impossible for a robot to decide whether it is in a failure state or not.

49

3. A Framework for Expectations

A typical failure state for a domestic service robot, that is cooperating with a
human, would be “human has abandoned task” which can be indicated by the
human partner suddenly leaving the room. But the fact that a person has left the
room does not necessarily mean that he/she has really abandoned the task. The
person could as well just fetch a necessary object or answer the doorbell. Model-
ing on a direct observation-level would also lead to extremely complex models,

which would have to include the context of situations.

The proposed expectations framework enables autonomous robots to detect fail-
ures without an explicit model of failure states. Similar to models of nominal
behavior of technical systems proposed by Wiliams et al. [92]. They model po-
tential failures as observations that are not compliant with the robot’s experience
and knowledge about how the world and in particular humans should behave.
The combination of different evidence and the consideration of the degree of
divergence from the robot’s expectations prevent the robot from being overcau-
tious. Other work on such explicit use of expectations has been proposed by
Minnen et al. [53]. They find that humans have strong prior expectations about
actions in activities and propose that technical systems can use explicit expecta-
tions about high-level activities to improve activity recognition. Therefore, they
use extended stochastic grammars to constrain an activity recognition approach
that recognizes a human playing “Towers of Hanoi” from video data by analyz-
ing object interaction events. Maier and Steinbach [50] make use of expectations
for autonomous robots to enable a mobile robot to detect unexpected scenes from
video data. They generate a dense image-based map of the robot’s environment
and compare luminance and chrominance values of the images at different time
points. This enables a robot to detect changes in its environment and make as-

sumptions about the uncertainties and expectations.

Lately, the field of Goal Directed Autonomy (GDA) has gained attention in the
robotics community and some work includes the use of expectations. Goal di-
rected agents generally are engaged to deliberation to select which goal among
several concurrent goals they should choose to achieve and adapt their behavior
accordingly. Molineaux et al. [55] use a discrepancy detector to compare the cur-
rent situation with expectations and use the output of the discrepancy detector

as an indicator for the creation of new goals. Kurup et al. [43] make use of ex-

50

3.3. Related Work

pectations that are constantly generated to match them against observations and
enable cognitive systems to react when inconsistencies are detected. They imple-
ment their system in the ACT-R cognitive architecture and evaluate it by creating
expectations about the tracks of pedestrians that cross an intersection. Piunti et
al. [69] use expectations to generate affective states, thus equipping goal directed
agents with adaptive and anticipatory abilities. Therefore, expectations are mod-
ulated with emotions like excitement, disappointment, relief, etc. that influence
the desirability of goals based on an anticipatory feeling.

All of the approaches work well for diagnosing faults in specific domains. But to
our knowledge there is no approach that incorporates a combination of different
models, including humans, to enable robots to perform diagnosis on cooperative
everyday tasks. The expectations framework we presented in this chapter is de-
signed to comprise ideas from all of the aforementioned fields and enables an
autonomous robot to generalize its failure recognition by the combination and

validation of explicit models of expectations.

51

Chapter 4

Human Activity Models

As Tapus et al. find [81], socially assistive robots that are intended to cooperate
with persons in their homes must be aware of human presence and their prefer-
ences. Moreover, they should produce behavior that is not only acceptable, but
also appealing for their human user. Hence, service robots that work together
with persons should have an understanding about the activities of their human
partners in order to better adapt to their user’s behavior thus being a more ef-
ficient and user-friendly helper. A prerequisite for the capability of a robot to
understand human activities and show adaptive and user-friendly behavior are
models of human activities which are ideally learned from observations. We
claim that robots that are intended to live together with humans can widely ben-
efit from knowledge about human activities on which they can base their plan-

ning.

This chapter describes an approach for equipping robotic systems with models
of human activities to ultimately allow a better integration of humans into plan-
ning frameworks for autonomous robots. One step towards this goal is the au-
tonomous generation of human activity models from observations of human task
performance. Such models can, for instance, be used by an activity recognition
system as we will show in chapter 5 thus allowing a robot to explain observa-
tions of human motion tracking data in terms of known activities. Information
about observed activities can then be included into the expectations-framework
introduced in chapter 3 to generate and validate expectations. This enables a
robot to distinguish common behavior of persons from unexpected behavior as
we will show in chapter 5 and 7.

53

4. Human Activity Models

We will first explain, how Context Dependent Spatial Regions (CDSRs) can be used
to provide a qualitative, human-like description of spatial areas and then present
an approach for the generation of Spatio-Temporal Plan Representations (STPRs)
from the observation of motion tracking data and semantic environment maps.
Those STPRs serve as general models of typical activities that are performed by
a person in his/her home. Furthermore, we will show, how STPRs can be trans-
ferred to different, but similar environments such as different kitchens and how
STPRs can directly be compared based on different features to allow for a simple
recognition of repeatedly executed activities.

4.1 Context Dependent Spatial Regions (CDSRSs)

Most of today’s robotic approaches use representations of the environment that
are designed for specific purposes and are often quite different to the way hu-
mans might think of their environment. Approaches for robot navigation are
mostly based on two dimensional grid maps. For object manipulation, three di-
mensional environment representations based on point clouds or Octrees [24]
are common representations. Such representations are in most cases purely geo-
metrical and lack qualitative, semantic information about entities in the environ-
ment. With robots more and more working together with persons, the difference
between representations used by robots and humans can cause difficulties in the
mutual understanding which the cartoon in Figure 4.1 illustrates in a humorous
way. In contrast to many approaches in robotics, humans often think of spa-
tial regions in terms of their functional use. Instead of relating positions in the
environment to one fixed, global origin, humans tend to think of locations rela-
tive to other objects in their environment. A person might, for example, rather
say: “Get the butter from the refrigerator” instead of “Go to global coordinate
2,3,0 and move your hand to point 2.5,3.5,1.4, ...”. As indicated by this exam-
ple, humans often seem to find furniture objects to be suitable reference points
for locations, especially when referring to objects that are stored in or on the
corresponding furniture objects. Robots mostly use coordinate-based represen-
tations of locations. Thereby, the coordinates usually are in reference to a specific
reference frame like the origin of a two dimensional gridmap or the origin of a

sensor. While such representations are perfectly suitable for a variety of basic

54

4.1. Context Dependent Spatial Regions (CDSRs)

IT'S IN THE CONVEX CONTAINER PLACED ON WHAT COLOR WAS THAT?
X:0.45 Y:0.23 Z: 1.5 WITH R:255 6:17 B:35 COLOR!

CAN YOU BRING US A #512 FROM THE FRIDGE?] {?? CONVEX PP X, Y ,Z?]

[

PFF... DO YOU THINK HUMANOTICS
WILL EVER BE SUCCESSFUL?

I DUNNO... HE DOESN'T EVEN
UNDERSTAND OUR SIMPLEST
COMMANDS. THERE IS A LOOONG
WAY TO GO IN ROBOT HUMAN
INTERACTION !

Figure 4.1.: Different representations of objects and spatial areas between hu-
mans and robots cause problems when it comes to Human-Robot
Interaction. While many representations used by robots only relate
to coordinates, humans rather use qualitative representations that in-
clude semantics. The differences between those representations can
cause difficulties in scenarios where humans and robots work to-
gether as this cartoon illustrates in a humorous way. (Image courtesy
of Mathieu Warnier and Mathias Fontmarty)

55

4. Human Activity Models

robotic tasks like mapping, localization, navigation etc., they lack the ability of
equipping spatial areas with qualitative information about their context. Seman-
tic information about the context of spatial regions becomes more and more im-
portant when robots are intended to communicate with persons since contextual
information can provide a common base of information between robots and hu-
mans. Semantic environment maps, for example, extend two dimensional grid
maps with knowledge about objects in the environment. They typically include
the proportions of furniture objects as bounding boxes or even three dimensional
models. Furthermore, they can be equipped with articulation models for open-
ing different containers like doors, cupboards or drawers as shown by Pangercic
et al. [65]. Some semantic maps offer support for object detections and allow the
times and places of detected objects to be stored. It is even possible to link objects
in semantic maps to a knowledge base that can provide common-sense knowl-
edge about objects, thereby enabling a robot to reason about those objects [85].
Thus, queries like “Where do objects of daily use belong?”, or “What is inside
of a drawer?” can be answered using inference mechanisms of the associated
knowledge base. However, most of the aforementioned approaches consider
contextual information of specific objects, but do not account for information

about persons that interact with those objects.

In this chapter, we enable a robot to be aware of spatial regions that are related
to activities performed by persons. Therefor, we use Context Dependent Spatial
Regions (CDSRs), which are spatial regions that are not solely defined by their
geometry but also by their context. Context in this sense can be seen as the func-
tional use of the space by an agent, for example a bus stop, a safe zone in a bat-
tlefield [48] or a cooking place in a kitchen. Such regions are important for com-
munication between humans and robots since they are related to the activities
of persons and robots in the environment and in this work, we will specifically

focus on CDSRs that are related to human task execution.

As humans think of places in terms of relative locations to entities in the en-
vironment [2], we can classify locations according to which activities or actions
persons commonly perform close to specific objects. Considering, a robot detects
a person performing an action at a location from which a cupboard is in reach.

In this case, the performed action will likely be an action related to this cupboard

56

4.1. Context Dependent Spatial Regions (CDSRs)

like it is the case when a person fetches an object from it. Generally, persons that
pick up objects from that specific cupboard will most likely be located near that
location. The addition of context to spatial areas, like the location from which
humans are likely to perform pick- and place actions enables us to equip robots
with a human-like representation of spatial regions. This way, a robot is able
to express its knowledge in a human-readable way, facilitating communication
between humans and robots. And as Kennedy et al. state, “... a system that
uses representations and processes or algorithms similar to a person will be able
to collaborate with a person better than a computational system that does not.”
[36].

4.1.1 Generation of Transferable CDSRs

A domestic robot helper might not be equipped with knowledge about CDSRs
when it arrives in a new environment. Hence, it would be desirable if it could
automatically learn CDSRs by observing motion tracking data of human task
performance. Although, there are actions that some humans perform while mov-
ing, like grabbing an object while passing by the table, we assume that for most
actions, like picking up objects from a cupboard, a person will stand still at a
specific location for at least a short time. Based on this assumption, we can ob-
serve motion tracking data of human task execution, identify places where the
observed person is executing an action and relate those places to furniture objects

nearby.

4.1.1.1 CDSRs of Kitchen Activities

We decided to create exemplary CDSRs of typical activities that a person per-
forms in his/her kitchen since we think that the kitchen will be one main ap-
plication domain of domestic robot helpers. We therefore use motion tracking
data of the TUM Kitchen Dataset that was described in section 6.1.2. Observing
the two-dimensional position of the tracked person, we classify positions where
the human is standing still and where interactions with objects occur. For the
detection of object interactions, we use the ground truth labels of the hands and

57

4. Human Activity Models

account for pick- and place actions as well as the opening or closing of cupboards
and drawers. One might as well think of using more elaborate approaches for
the detection of object interactions like the analysis of full-body motion tracking
data [7] or object detections based on sensor data [66]. Since this chapter is not fo-
cused on object perception, we utilize the labels provided by the dataset to limit
the complexity of the experiments. Positions are extracted for the 10 impaired-
person experiments of the TUM Kitchen Dataset where a human is setting the
table for breakfast. The clustering of the extracted positions is performed based
on the Expectation Maximization Algorithm [52] using WEKA [93] which re-
turns the four clusters as pictured in Figure 4.2. We assume to know the number
of clusters which correspond to the different storage locations of the objects that
the human interacts with during task execution. In the TUM kitchen dataset, the
objects used for the table setting task are stored on the oven, in the drawer and
in one of the cupboards at the beginning of the table setting activity. All of the
objects are located on the table when the table setting activity is finished. As we
aim to equip robots with an impression about the likelihood of specific tasks be-
ing executed at certain positions, we fit a probability distribution to each cluster
of points. The clusters in our example seemed to be almost equally distributed
and also for reasons of simplicity, we decided to use two dimensional Gaussian
distributions for the fitting. One could as well think about using more elabo-
rate probability distributions like Stulp et al. in their work about Action Related
Places (ARPlaces) [79].

These probability distributions thus represent CDSRs and equip the spatial re-
gions with context about human activities. To build general models that are inde-
pendent of specific environments, we model the CDSRs relative to the furniture
objects that they relate to instead of relative to the origin of the global coordi-
nate frame. This generalizes our model and allows the application of CDSRs not
only to specific instances in our environment, but also to furniture objects that
are similar. Once we know, where humans typically are located when picking
up objects from a cupboard, we can, for instance, generate an assumption about
where humans will be standing when picking up objects from another, similar
cupboard. Therefore, we use the semantic map of our environment to locate the
containers the human interacts with and put the means of the two dimensional

gaussian distributions of our CDSRs into relation to them. We assume that the

58

4.1. Context Dependent Spatial Regions (CDSRs)

e
o

Figure 4.2.: Clustered 2D locations of 10 humans when standing still and interact-
ing with objects during a table setting task in a kitchen. The different
colors indicate the four different clusters returned from an Expecta-
tion Maximization based clustering.

59

4. Human Activity Models

position at which the human is standing while interacting with objects is depen-
dent on the dimension and the opening direction of the corresponding container.
When an object is picked up from a plane like a table, we assume the person’s lo-
cation being dependent on the location of the object as well as the closest edge of
the plane. Given information about the type of the storage location of an object,
we generate reference coordinate frames relative to these storage location using
information from the semantic map, thereby distinguishing between objects that
are stored in containers (e.g. a cupboard or drawer) and objects that are located
on planes (e.g. table).

4.1.1.2 Objects in containers

For interactions with cupboards and drawers, we include the locations of their
centroid, their depth and width into the calculation of the origin of our reference
frame. For cupboards, we furthermore use information about the location of the
door as well as the direction in which the door opens, depending on the location
of the hinge. Such information is often annotated in the semantic maps, but can
as well be extracted from the articulation models or the position of handles of the
doors. We set the origin of the reference frame of a cupboard to be at the middle
of the door. Thereby, the x-axis points to the direction from which objects can be
fetched when the door is open in an angle of 90 degree to the closed door. The
y-axis points along the door (when closed), away from the hinge as illustrated in
Figure 4.3 on the left. This position can easily be calculated for each cupboard
given information from the semantic map. The position of the hinge, respectively
the direction to which the door opens, is important because it — among other
factors — directly influences the position where a person is standing when picking
up objects from a cupboard. For the case of drawers, we use the same position
as origin for the reference frame, but do not account for the direction a hinge
or similar (since there is none). In theory, we assume that the positions of the
human relative to the drawer are distributed uniformly around one point that is
offset from the middle of the drawer in the direction of the x-axis of our reference
frame. In practice, however, we experienced slight deviations in direction of the
y-axis. These deviations are not influenced by the drawer itself, but rather by
other factors like the structure of the environment or the walking direction of the

60

4.1. Context Dependent Spatial Regions (CDSRs)

person. In our current implementation, we see such deviations as neglectable.

Further implications of such dependencies are discussed in section 8.2.

4.1.1.3 Objects on planes

In contrast to cupboards or drawers, planes do not have a general orientation
that can be used to calculate the origin of a reference frame. The position where
a person is standing while grabbing an object from a plane mostly depends on
the location of the object and the structure of the environment. Specifically, it is
influenced by other objects in the environment that limit the reachability of the
object to grab. In the example of the TUM Kitchen Dataset, the placemat and
the napkin are placed on the oven at the beginning of the table setting activity.
In such cases, we take the position of the corresponding object into account and
calculate the position on the edge of the supporting plane that corresponds to a
projection of the position of the object along a line that has a 90 degree angle to
the side of the supporting plane and points to the position from which objects are
picked up or put down as illustrated in Figure 4.3 on the right. Unfortunately,
the TUM kitchen dataset does not include detections of all of the objects that the
human interacted with. Hence, we approximate the object locations using the
full body motion tracking data as well as the labels of both hands. We assume
consistent placing in all of the experiments and extract the positions of the hands
when pick- and place actions occur. Thanks to the separate labeling of both hands
in the experiments of the TUM Kitchen Dataset, we can directly approximate
the object positions when one-handed pick- and place actions are performed by
averaging over the hand positions of the 10 experiments. For object-interactions
where the person used both hands, we assume the position of the object to be
in the middle of a direct line between both hands and again average over the 10

experiments.

Having defined reference coordinate frames for the objects involved in the table-
setting task, we can put the gaussian probability distributions, which we ob-
tained from the clustering, in relation to the corresponding reference frame. This
way, we obtain a set of locations [; as tuple of a two-dimensional probability
distribution P; and a label label;. [; thus represents locations at which we ex-

61

4. Human Activity Models

cupboard _ furniture object
hinge

reference-
frame

Figure 4.3.: The left figure shows how reference frames for human positions are
calculated based on information about a cupboard from a semantic
map. In a two-dimensional view from above, the origin of the refer-
ence frame is placed on the middle of the door of the cupboard and
the x-axis is pointing towards the open side of the cupboard (when
the door is open). The y-axis is pointing away from the hinge of the
cupboard thus indicating the opening direction. The right picture il-
lustrates the calculation of the reference frame for objects on planes.
Here, the object position is taken into account and the origin of the
reference frame is defined on the edge of the supporting plane, with
the x-axis pointing to the position of the observed locations of the
person.

pect pick- and place actions from the corresponding containers/planes label; to
occur. We will call this set of locations the spatial model +):

Y ={l,,1y,...,1,} with [, = (P, label,)

This spatial model links two dimensional gaussians with context about human
actions, in this case places where pick- and place actions occur are linked to cor-
responding furniture objects.

4.1.2 Transferring CDSRs

With the modeling of CDSRs relative to instances of furniture objects, we assume
the models to be general enough to enable assumptions about locations related
to pick- and place actions not only in the environment where we generated the

models, but also in similar, but different environments. This can help a robot to

62

4.2. Spatio-Temporal Plan Representations (STPRs)

obtain a general understanding about how a table-setting task might look like
in a new environment, even though, it has never observed one. To verify this
hypothesis, we can transfer the CDSRs learned in one kitchen environment to
another kitchen environment as we will demonstrate in section 7.2.1.2. Due to
the relative description of the locations, this can easily be done be querying the
semantic map of the IAS kitchen for the storage locations of the objects involved
in the table setting plan (we assume those to be known) and query those contain-
ers for their type. Having obtained the storage locations, we can calculate the
position of the CDSRs by generating the reference frame for each storage loca-
tion. We calculate the location of the mean using the relative distances that we
learned for the corresponding entity type and set the variance according to the
type of container. This way, we can transfer CDSRs across different, but simi-
lar environments and thus generate a spatial model learned in one environment
to another environment. This gives a robot an impression about how certain
activities that were observed in one environment would look like in other en-
vironments, thus enabling it to detect those activities in environments where it

never observed such an activity before.

4.2 Spatio-Temporal Plan Representations (STPRs)

So far, we described how we can enable a robot to generate a set of CDSRs that
are related to activities in its environment by generating a spatial model. But
the spatial model itself does not provide enough information to serve as model
for different activities. For models of human activities, we want to include in-
formation about the durations that a human spends at certain locations as well
as the patterns of locations that he/she visits during task execution. To achieve
this goal, we use the spatial model to perform a segmentation of motion tracking
data to automatically generate symbolic task descriptions that incorporate time
and the patterns of visited locations. We will call such symbolic task descriptions
Spatio-Temporal Plan Representations (STPRs).

63

4. Human Activity Models

oven | table oven table cupboard |
0.6s 1.6s 1.2s 1.8s 4.2s

t

Figure 4.4.: Timeline-like visualization of an automatically generated, spatio-
temporal plan representation of a table-setting task.

4.2.1 Concepts

We define a STPR STPR,, of an activity a as a sequence of n tuples that consist of

a location [; and a duration t; as elements.

STPRa = ((ll, tl)’ (12: tZ)'": (ln: tn))

An example of a spatio-temporal plan description of a table setting task is shown
in Figure 4.4. With STPRs, we use the activity related context of spatial regions
to model activities not by the actions that are executed during the activity, but
by the locations that are visited during the activity. The advantage of such a
representation is that a robot does not have to perform action recognition, which
is a complex task and is often not feasible for an autonomous robot due to a
manifold of challenges like (self) occlusions of the human, limited sensor range,

sensor noise, uncertainties, etc.

4.2.2 Generation of Spatio-Temporal Plan Descriptions

Once a spatial model is generated, a robot can use it for the segmentation of mo-
tion tracking data while observing human task execution and generate STPRs.
To this end, the robot observes the motion tracking data and, as soon as it de-
tected the human standing still for a short moment, the spatial model is queried
to which CDSR the current position of the human most likely corresponds. Here,
we consider the human “standing still” as soon as its center of mass is moving

less than 25 cm withing 0.5 seconds (0.5 m/s) and a data preprocessing module is

64

4.2. Spatio-Temporal Plan Representations (STPRs)

responsible for providing positions at which this constraint is satisfied. To obtain
the durations of the STPR, we measure the time which the human remains at the
current location. As a result of this segmentation of the observed motion track-
ing data, we obtain an STPR as illustrated in a timeline-based representation in
Figure 4.4. An overview of the generation of STPRs including the generation of
a spatial model is illustrated in Figure 4.5.

We perform this segmentation using the data of the TUM kitchen dataset and
evaluate the transferability of STPRs as well as their applicability for activity
recognition in chapter 7.

4.2.3 Comparison of STPRs

STPRs can directly be compared and enable a robot to estimate the similarity
between different observations of activities, which can be useful for a robot for
simple activity recognition and the detection of habitual activities that are repeat-
edly executed in the same way. For the comparison of STPRs, we consider two
different features: the durations that a human spends at certain locations and the

patterns of locations that a human visits during task execution.

Durations

We assume the time a person is spending at certain locations to be a significant
indication towards the activity that he/she is executing at this specific locations.
Consider, for example, a robot observing a person standing at the sink. If the
person is just putting down an object at the sink, he/she will most likely spend
only a few seconds at this specific location. But if the person will, for instance,
spend a few minutes at the sink, it is likely that he/she does not perform a pick-
and place action there, but rather doing the dishes. We can exploit these depen-
dencies between the actions and the durations and define a confidence value,

that expresses how similar the durations of one activity are to the durations of

65

4. Human Activity Models

/Motion tracking data

S

clustering

Semantic Map

reference objects

Clustered probability distri-
butions for human position in
reference to semantic objects

segmentation

lp

Transferable, spatio-temporal plan representa-

tions

oven
1.7s

table
1.5s

drawer
3.3s

table
1.9s

Figure 4.5.: An overview of the generation of general models about human lo-
cations during plan execution. Labeled motion tracking data is clus-
tered for locations where the human interacts with objects. The clus-
tered locations are then referenced to furniture objects obtained from
a semantic map of the environment. This model is then used to do
an automatic segmentation of the motion tracking data and create
symbolic, time-line based models that are transferable to different

environments.

66

4.2. Spatio-Temporal Plan Representations (STPRs)

another activity thus obtaining a measure of similarity between two activities.
Therefor, we model the durations that a person generally spends at certain lo-
cations during the execution of one activity as gaussian distributions that are

learned from observations:

) 1 16—,
t;))y =———exp| —= .
ALY o, o P 5 o,

4

Here, t; corresponds to the duration that a person is observed to be standing at a
location, p(t), represents the gaussian distribution assigned to location [;, where
y;, and o are the mean and the variance of the durations at location [; of our
reference-plan. To obtain a confidence measure c, that describes how well the
observed locations of the human fit to the model, we calculate the average confi-
dence values over all n durations t; of the observed locations [; for an activity a,

as follows:)
n et I
Zi:o (“ li)z

i

=

Location patterns

As a second feature for calculating a similarity measure, we use the patterns of
locations that a person visits during specific activities. We therefore assume that
the same tasks are commonly executed in the same manner. This assumption
is based on the work of Townsend et al. [87] who found that humans tend to
pattern daily actions into sequences which they repeat at particular times in par-
ticular places. That means that the majority of activities of daily living (ADLs)
are based on habits and thus are mostly carried out in the same way at the same

locations.

For the comparison of plan patterns (without regarding for durations), we gen-
erate a string representation of the STPRs. We therefore use a unique acronym
for each location involved in the STPR. Based on these acronyms, we can create
a simplified string representation of an STPR that just considers the order of lo-
cations that a person visited during the execution of an activity. Such a string
representation of the exemplary table setting activity in Figure 4.4 looks like the

67

4. Human Activity Models

following: “ADADCDBDBDBDCD”. Given such a representation, we can use
standard string comparison methods such as the Generalized Levenshtein Similar-
ity (GLS) [95] to calculate similarity measures between two STPRs. The GLS is
based on the Levenshtein distance between to strings which describes how many
editing steps are needed to transform one string into another. A GLS value of 1
describes a perfect match of two strings, while a value of 0 expresses no correla-

tion at all.

4.3 Related Work

For the generation of our CDSRs, we rely on semantic information about the
robot’s environment that is provided by a semantic map. Such semantic maps
are of increasing interest to the robotic community and recent development in
autonomous semantic mapping enables robots to gather such knowledge widely
autonomously combining sensor information like laser scans, 3D point clouds
and camera images. Depending on the intended application of a semantic map,
the granularity between different approaches varies. Zender et al. [96], for in-
stance focus on the detection of room categories in indoor environments accord-
ing to their use and they create a hierarchy of layers that represent the environ-
ment at different levels of abstraction. They also include the possibility of using
a linguistic framework to communicate with a person to include information
from humans into the generation of the semantic map. Joho et al. [26] annotate
environment models of supermarkets which include information about typical
object arrangements to increase the efficiency of a mobile robot that is searching
for those objects. Blodow et al. [9] classify different types of furniture objects and
include them into a semantic map along with other information. They also learn
articulation models for the opening and closing of container objects by the detec-
tion of handles of cupboards and drawers thus providing a robot with informa-
tion about how to open such containers. Tenorth et al. [85] link semantic maps to
a common sense knowledge base and create knowledge-linked semantic object
maps thus enabling a robot to reason about objects in its environment. Such com-
mon sense knowledge can, for instance, be obtained from existing databases and

converted to ontological concepts that a robot can use for inference as Kunze et

68

4.3. Related Work

al. show [42]. This way, a robot is able to infer likely locations of different types
of objects without having yet explicitly detected an object.

Although, first approaches in semantic mapping aim towards the generation of
semantically enriched environment models, a majority of environmental repre-
sentations in robotics purely relies on geometric information like coordinates,
bounding boxes, etc.. Humans tend to classify spatial regions according to their
functional use and a robot that operates in an environment populated by humans
should be able to understand its surroundings in terms of human spatial con-
cepts [96]. To achieve such a human-like understanding, Liao et al. [46] use hier-
archical conditional random fields to analyze human behavior from GPS traces
and learn reoccurring patterns. They recognize significant places a person vis-
its during activities of daily live and generate labels according to their function
(home, working place, home of a friend, ...). They show, how such models can be
transferred to different persons and use the models to estimate the intentions of
the a person. A similar approach to the generation of our CDSRs is proposed by
Stulp et al. [79]. They define ARPlaces that equip spatial regions with information
about the utility of positions in the context of mobile manipulation. Therefore,
they create probability distributions that model the probability for a successful
grasp of a mobile robot in reference to the pose of objects in the environment.
In contrast to our approach, they consider the position of objects only and do
not account for furniture or containers. Klenk et al. [37] find that “the ability
to understand and reason about spatial regions is essential for cognitive systems
performing tasks for humans in everyday environments”. They define CDSRs
that are learned from qualitative spatial representations and semantic labels and
use them to identify similar environments. They also show how to transfer the

CDSRs across similar but different environments.

In this chapter, we introduced models of human activities that are defined by a
sequence of location at which a person is standing still for a short time. A similar
concept is used in the work of Bennewitz et al. [8]. They state, that when per-
forming everyday activities, people are not in permanent movement but rather
move between resting places at which they are standing still. They state that mo-
bile robots that are to work together with persons can benefit from knowledge

about the locations of people in their environment and use motion patterns to

69

4. Human Activity Models

actively maintain a belief about human positions and anticipate their possible
intentions. In contrast to our approach, their focus lies on trajectories between
the resting places and they use Hidden Markov Models to estimate and anticipate
positions of a person. Also Tipaldi et al. [14, 86] use models of human activities
for path planning of a mobile robot. They model human activities in a probabilis-
tic spatio-temporal gridmap using a spatial Poisson process. Luber et al. [49]
tind that people “... typically move and act under environmental constraints.”
and describe how to learn the spatial affordance map that is used in [14, 86] .
In contrast to our approach, the spatial affordance map they use only includes
information about the locations of persons at different points in time without
providing a link to a knowledge base. Orkin et al. [63] use spatial regions to
model nominal behavior of persons while playing a computer game simulating
a restaurant. They learn models of nominal behavior and generate and validate
expectations trying to detect exceptional situations of the players. Beetz et al. [7]
propose the automated generation of probabilistic models of everyday activities
that describe human activities at various levels of abstraction to enable robots to
analyze actions in their situational and activity context. Therefor, they use sev-
eral learning approaches to classify sequences of activities and combine symbolic
knowledge with sequences of motion tracking data.

70

Chapter 5
Activity Recognition

Effective and socially acceptable robots should take into account human activi-
ties and adapt their behavior accordingly. We think that this capability plays a
key role for future domestic helpers that are intended to perform complex tasks
in unstructured environments, such as a human home, and is essential to enable
commercial success of such robots. Consider a household service robot that has
the duty to clean the table after a person had breakfast. Such a robot should be
aware that the person already had his/her meal and clean the table afterwards.
A robot that is not equipped with such a capability might clean the table before
the human actually ate. Such situations could, for instance, happen when the
person leaves the kitchen to answer the door after setting the table. In addi-
tion, activity recognition plays an important role for the detection of errors and
anomalies. A person sleeping in the morning or late evening can be classified
as normal, but a person lying down in the middle of a cooperative task might
be a sign that the person is not feeling well (especially when thinking about the
application of robot helpers in the domain of elderly care). Thus, the ability to
perform activity recognition and distinguish different human behaviors is essen-
tial if household assistants should become useful and comfortable assistants in

human environments.

While there already exists a variety of different approaches to equip robots with
activity recognition, the environment has often to be equipped with loads of
sensors like RFID tags and readers or extremely expensive motion tracking sys-
tems. Such setups offer precise data, but might not be available in typical human
homes which are the intended operation areas of our domestic service robots.

Future domestic service robots might have only inexpensive sensors mounted on

71

5. Activity Recognition

| "m 95 % sure this was
a table setting task!

P

Figure 5.1.: The image shows a PR2 robot that is performing Activity Recognition
in a kitchen environment using sensor data from a Kinect.

their bodies to reduce their costs and free their users from the burden of equip-
ping their home with sensors. In this chapter, we investigate an approach for
activity recognition that uses one Kinect sensor for motion tracking and allows
for reliable activity recognition in spatially limited environments as illustrated in
tigure 5.1. Here, a PR2 robot observes a table setting activity of a person using
a Kinect sensor and estimates a percentage of 95 % of having observed a table
setting task.

5.1 Challenges in Activity Recognition

Given, a robot is equipped with models of human activities as we generated in
chapter 4, the recognition of human behavior is still far from trivial. Approaches
in activity recognition have to deal with a number of challenges, some of which
are explained in the following.

* Activities executed in parallel: When performing tasks, humans tend to
execute activities in parallel. A person might, for example, clean parts of
the kitchenette while cooking or drink a glass of water in the middle of a

72

5.1. Challenges in Activity Recognition

cleaning task. This poses challenges for the generation of models of human
activities, but also when recognizing activities from sensor data since the

separation of different activities is often not observable or even nonexistent.

e High variability in the way similar/same actions can be performed: While
many activities of daily living are performed in a similar way, humans
sometimes vary subtasks of activities depending on opportunities or with-
out further reasons. A person that is setting a table might, for example,
sometimes get the cutlery before a cup, but sometimes he/she might do it
the other way round.

¢ Cheap, non intrusive sensor setting: Future domestic robots will presum-
ably use rather low-cost sensors in order to be affordable for a wide range
of people. Therefore, we think that they will have to rely on sensors that are
subject to a certain amount of noise and low accuracy. This poses challenges
for activity recognition since a system cannot rely on accurate data from its
motion tracking or object detection module. The sensor setup should be as
unobtrusive as possible to avoid making the human user feel uncomfort-
able and also keep the effort of equipping the environment with sensors as
low as possible.

* Occlusions: Especially in confined environments, vision-based sensors have
to deal with occlusions when tracking humans. Occlusions might, for ex-
ample, occur when a human is standing behind doors while opening con-
tainers like the fridge or when sitting at the table. In the case of opening
containers like a refrigerator, the upper part of the body is often occluded
by the door of the fridge (depending on the position of the sensor) while
in the case of sitting at a table, the lower parts of the body are likely to
be occluded. There are several ways of dealing with occlusions depending
on the environment and the sensor setting. Some approaches merge data
from several cameras [82], others use model-based approaches to include
occluded body parts into a model in the tracking algorithm [12].

In the remainder of this chapter, we will introduce an activity recognition ap-
proach that relies on Hierarchical Hidden Markov Models (HHMMs) and the
Forward-Backward algorithm (see section 2.2.2) to deal with the aforementioned

73

5. Activity Recognition

challenges. The approach will be evaluated in chapter 7 and advantages and

limitations of the approach will be discussed in chapter 8.

5.2 Hierarchical Hidden Markov Models for Activity
Recognition

With the introduction of Spatio Temporal Plan Representations (STPRs) in chap-
ter 4, we introduced a way to enable a robot to autonomously generate models
of human activities. These models can be compared based on several features
which can be seen as a simple variant of activity recognition. They can even be
transferred across similar environments given a semantic description of its struc-
ture . Although, STPRs are a good means of modeling general human behavior
that is repeatedly executed in the same way while providing a simple model for
activity monitoring, they lack the ability to represent partial variations of sub-
activities. A person setting a table for breakfast might, for instance, first get the
plate and then the cup on one day, while at another day, he/she might do it the
other way around. Moreover, the order of the activities themselves might be
subject to variations. While one day, a person might set the table for cereals after
having a shower, he/she might set the table for bread on another day, or even
leave the house without having breakfast (in case he/she is late for work). Since
we model STPRs as sequences of Context Dependent Spatial Regions (CDSRs)
that are stored in a spatial model, STPRs lack the ability of modeling uncertain-
ties in the observations. The performance of activity recognition based on STPRs
and a spatial model as explained in section 4.2.3 heavily relies on the correct as-
signment of detected locations of the human to a CDSR in the spatial model.
In confined places it is often hard to distinguish between CDSRs in the spatial
model since CDSRs that are close to each other might overlap. This is prob-
lematic since we base our activity recognition on CDSRs using the same spatial
model that was used for the generation of STPRs. Advantages of using CDSRs in-
stead of the detection of actions and/or objects are the simplicity of the approach
as well as the inexpensive and non-intrusive sensor setting that is required. We
will not need to perform complex action recognition or equip the environment
with loads of sensors. Instead, we solely rely on motion tracking data of one

Kinect sensor, a spatial model of the environment and human activity models as

74

5.2. Hierarchical Hidden Markov Models for Activity Recognition

HHMMs to enable a robot to get an impression about the activities that a person

performs.

5.2.1 Hierarchical Hidden Markov Models

To represent human activities using context dependent spatial regions, we can
train an Hidden Markov Model (HMM) from the sequences of observed location
detections based on the spatial model of the environment. The spatial model can
easily be generated from a semantically annotated map of the environment and
learned relative locations of a person towards container objects in the environ-
ment as shown in section 4.1. The representation of activities using a HMM has
the advantage over STPRs that, as a probabilistic model, it can account for uncer-
tainties in the observations as well as uncertainties in state transitions. Due to the
hierarchical nature of activities, we decided to use Hierarchical Hidden Markov
Models (HHMM) for our activity recognition approach. A HHMM introduces
the concept of hierarchies to HMMs by allowing each state of the HMM to be
an HMM itself as indicated in Figure 5.2. This allows the modeling of model
multi-level stochastic processes like activities that are defined by sequences of
CDSRs. HHMMs differentiate between two types of states: internal states and
production states. The internal states are hidden states that are HMMs themselves
and do not emit single observation symbols but rather sequences of observations
by recursive activation of one of their sub-states. In our model of activities, in-
ternal states represent single activities. States that actually emit output symbols
and are located at the lowest hierarchical level are called the production states and
correspond to CDSRs in the HHMM. The activation of a sub-state by its internal
state is called a vertical transition in our HHMM. This corresponds to a person
starting to perform a new activity. A transition between two production states
is referred to as horizontal transition and happens when a person goes from one
CDSR to another. Every sequence of production states has exactly one termi-
nal state which, when reached, ends the process of recursive state activation and
leads to a vertical transition upwards in the hierarchy. In our case, this happens
when one activity is detected to be finished and the observed person starts per-

forming another activity.

75

5. Activity Recognition

Prepare
curd
cheese

Prepare
Corn-
flakes

Table
terminal

Bottle
Place

‘ Cupboard ‘ ‘ Bottle-place ‘

Figure 5.2.: An exemplary hierarchical HMM for activity recognition generated
from a STPR. Light gray nodes represent internal states (activities)
which are HMMs themselves. For visualization, only the “Drink
Water” activity is illustrated in detail. White nodes are the produc-
tion states which correspond to CDSRs where the observed human
is standing. A dark gray node is a terminal (production) state which,
when reached, leads to a vertical transition upwards the hierarchy of
the HHMM (indicated by the dotted arrow). Rectangles represent ob-
servations that are expected at the production states. Transitions be-
tween states are labeled with their corresponding (exemplary) prob-
abilities.

76

5.2. Hierarchical Hidden Markov Models for Activity Recognition

In a more formal description, a HHMM can be described as a three-tuple consist-
ing of a topological structure {, an observation model Y and a set of parameters
0. The topology defines the number of levels D = {d,,...,d,} of the hierarchy,
parent-child relationships between levels and the state space at each level. The
observation model Y describes the set of possible observations Y = {y, ..., y,,}.
Given ¢ and Y, the set of parameters of the HHMM 6 is defined by

* d,p* d,p* K s .
9 = {By|p5 ﬂ:d,p :Al’,JP JAi,epnd | v (J’, p, d;p) l:])} (51)
where B, describes the probability of an observation y € Y while being in pro-

duction state p. 7% represents the initial distribution over all children of the in-
ternal states p*. The transition probabilities between child nodes i, j € child (p*)
are described by A‘ii”jp " and the probability of an internal state terminating, given

its child, is the production state i is A?f; i

5.2.2 Generation of HHMMs

To generate such a HHMM, we need to calculate values for the variables in equa-
tion 5.1 and define the topological structure { and the observation model Y. Since
we want to use sequences of CDSRs to model human activities, we define the
topological structure { manually in a two-level HHMM consisting of high-level
activities and CDSRs. The higher level defines sequences of activities that a per-
son executes. All states in this level are internal states p* and do not emit single
observations. The lower level consists of CDSRs that are production states p and
emit observations y. The set of possible observations Y includes all CDSRs that
are defined in the spatial model. For the parameters 6, we assume the initial
distribution of state probabilities 7%*" and A‘i’f)

beginning. One could as well think of biasing this initial distribution using prior

to be distributed uniformly at the

knowledge like activities that are more likely to be executed before others (a per-
son will, for instance, most likely first eat and then clean the table), but using
an initial uniform state distribution is more general. The transition probabilities
A‘iij’ "and A‘if n ;4 can be learned by observations using the Baum-Welch Algorithm
as explained in section 2.2.3.

77

5. Activity Recognition

Figure 5.3.: Left: Two exemplary CDSRs that overlap. Right: The regions of CD-
SRs A and B consist of non-overlapping areas as well as overlapping

areas. The approximate proportions of these areas can be used for the
estimation of emission probabilities in the HHMM.

The emission probabilities B, |, can be learned from observations as well. As-
suming that those probabilities are proportional to the degree of overlapping of
the corresponding gaussians in the spatial model, it is also possible to estimate
them from the spatial model. The advantage of the latter method is that we do
not have to run separate (time-consuming) experiments for the estimation of the
emission probabilities, but instead estimate them once from the spatial model.
This is helpful in cases where large amounts of training data are unavailable.
Two exemplary, overlapping CDSRs "A" and "B" are illustrated in Figure 5.3.
Here, we assume the CDSRs to be modeled as two dimensional gaussian proba-
bility distributions and all CDSRs to be maintained in the spatial model. In the
example of Figure 5.3, CDSR "A" consists of an area that is not overlapping with
any other CDSR and an overlapping area which is marked hatched on the right
image. But the exemplary borders that are illustrated in figure 5.3 do not really
exist in continuous gaussian probability distributions. We use a variant of a sam-
pling procedure for the estimation of the sensor model of the HHMM. To obtain
the emission probability P(y | p) for each production state p and each emission
¥, we repeat the following procedure for each CDSR in the spatial model:

¢ Randomly draw two dimensional sample points from the area of the gaus-
sian that defines the CDSR. This is done in a way such that the probability
of drawing each sample point is proportional to the probability of the point
in the gaussian it is assigned to.

78

5.2. Hierarchical Hidden Markov Models for Activity Recognition

* For each sample point, we query the spatial model for the most likely CDSR
and save the result. In the example in figure 5.3, this would return the
CDSR "A" for each point that is in the non-overlapping area. If, in the first
step, we drew a sample point that is located in an overlapping area of the
CDSRs, the query will return the CDSR with the highest probability accord-
ing to their corresponding gaussians. In the example of figure 5.3 with only

two overlapping CDSRs, the query would either return "A" or "B".

* Both steps are repeated for a fixed, large number of times (around 5000 -
10.000 in our experiments seemed to suffice) and the results are kept in a
table.

From the results for each CDSR, we generate a statistical estimation for P(y|p)
for each production state p, thus obtaining an estimate of the observation model

Bylp'

5.2.3 Activity Recognition using Forward-Backward Algorithm

Once we generated an HHMM in the aforementioned way and have a spatial
model of the environment available, we can perform activity recognition using
the Forward-Backward Algorithm (see section 2.2.2) as illustrated by the pseudo
code in Algorithm 3. We observe a stream of motion tracking data we call mo-
tion_stream that we are provided by a Kinect sensor and a motion tracking soft-
ware framework. Specifically, we obtain a stream of x,y and z coordinates as
well as the three dimensional orientation as a quaternion for each joint. The
stream is constantly monitored for situations where the tracked person is likely
to stand still and execute an action. As for the generation of the CDSRs (chapter
4), we assume a person to be standing still when his/her center of mass is mov-
ing less than 25 cm withing 0.5 seconds (0.5 m/s). As we found in experiments,
solely using such a detection is prone to errors, especially when relying on noisy
motion tracking data, such as data from Kinect-based tracking systems. To im-
prove recognition results, we use simple motion patterns that we assume to be
characteristic for typical pick- and place actions of a person. Therefore, we as-

sume a person to be standing at a CDSR related to a pick- and place action when

79

5. Activity Recognition

he/she is first moving towards a furniture object, staying there for a little while
(meaning at least one detection of standing still) and then moves away from the
furniture object. If those conditions are satisfied, we assume to have detected a
person standing at a CDSR and we query the spatial model to which CDSR the
coordinates of the detected two dimensional location correspond to (line 3, Al-
gorithm 3). The query will return the CDSR that most likely corresponds to the
detected location and we add this CDSR to the observations of the HHMM (line
4, Algorithm 3).

Algorithm 3 Activity Recognition using Forward-Backward Algorithm

Require: hhmm, motion_stream
1: while motion_stream do
2. ifisStandingStill(motion_stream) == TRUE then
3 cdsr = querySpatialModel(motion_stream.x, motion_stream.y)
4 hmm.addObervation(cdsr)
5: P(p;,p; | y1..) = hmm.forwardBackward()
6 P(p; | y1..) = getInternalStateProbabilities(hhmm)
7. endif
8: end while

Each time, an observation is added, the Forward-Backward algorithm is used to
calculate the posterior marginals P(p},p | y,..) of all states of the HHMM (line
5, Algorithm 3). Since for our activity recognition, we are interested only in the
probabilities of the activities, we use a probability distribution over the internal
states of the HHMM P(p; | y;..) (line 5, Algorithm 3).

One should note that any HHMM can be decomposed into a standard, non-
hierarchical HMM using the “flattening” method [91] which makes all algo-
rithms that work on HMM applicable to HHMMs. There are also algorithms
that exploit the hierarchical structure of HHMMs for performance improvements
[19]. We use a variant of the Forward-Backward Algorithm as described by Ra-
biner et al. [73] on the flattened HHMM, thus obtaining the posterior marginals
for all states. If we would only want to account for the most likely explanation
of the observations, we could as well use the Viterbi Algorithm to find the most
probable state sequence of an (H)HMM. For a more detailed formal description
of HHMMs, which lies beyond the scope of this thesis, we refer the interested
reader to the work of Fine et al .[19] and Bui et al. [11].

80

5.3. Simultaneous Plan Recognition and Monitoring (SPRAM)

5.3 Simultaneous Plan Recognition and Monitoring (SPRAM)

Hidden Markov Models, being a special case of Dynamical Bayesian Networks,
make use of the Markov assumption (see appendix A.2) to improve computa-
tional and mathematical tractability. This means they assume every state to only
be dependent on a fixed number of predecessors. In our application we assume
a first order Markov process and the states of the HHMM representing CDSRs
that a person visits. This means that we assume the locations that a person visits
to only be dependent on the one location he visited before. While this assump-
tion will hold for activities in which each location is visited only once, it will not
be true for activities where locations are visited several times. In a typical table-
setting task, for instance, a person will visit several locations like the table or the
fridge more than once, so the probabilities for some locations will also depend
on how often specific locations have already been visited. We propose that it is
beneficial for a robot to keep track of the current state of task execution, in par-
ticular, by counting how often specific locations are expected to be visited by a
person and how often the person has actually been at this location. This informa-
tion can be used to predict possible future locations on the one hand and on the
other hand obtain an impression about the progress of the current activity. Sung
et al. state, activity recognition [80] mostly is not 100 % certain about the activity
the human is executing. They found that uncertainties are highest among very
similar activities, even when using sensor data without occlusions. As experi-
ments will show in chapter 7, we can confirm these findings for our application.
To enable predictions based on uncertain results from activity recognition, we
propose a simple, heuristic monitoring technique. It keeps track of the progress
of activities even without exactly knowing which activity the observed person
is currently executing. The monitoring runs in parallel to activity recognition
and receives updates when a new observation is added to the HHMM of activity
recognition. We will call the process Simultaneous Plan Recognition and Moni-
toring (SPRAM).

81

5. Activity Recognition

5.3.1 Monitoring of the activity progress

We decided to monitor activities that have high probabilities and are thus likely
to be executed. In all of our experiments, the number of activities was limited
to eight activities at the most, thus it was even tractable to monitor all modeled
activities in real time. Given STPRs as models of human activities together with
a stream of observed CDSRs and probabilities for each activity, we propose a
simple heuristic monitoring technique that keeps track of the state of execution
of each activity. It monitors if a location included in an activity has already been
visited the expected number of times or if it is expected to be visited by a person
in near future. Therefor, a locations cache is maintained for each activity, which
keeps track of a list of locations that have been visited while the probability for
the specific activity was high. When the probability for an activity falls below a
certain threshold, i.e. the activity is unlikely to be executed, the locations cache
of this activity is reset to an empty list. Using such a simple routine, we can
distinguish between observations that are likely to belong to a specific activity
and locations that do not. This property is important for our system, since, for
instance, we do not want to mark the location refrigerator as visited in a prepare
cereals activity when we are quite sure that the person is currently not preparing
cereals. In such a situation, we would rather want to keep all locations of, for
instance, the prepare cereals activity marked as not yet visited and keep them as
possible next locations (most likely with a low weight). For each activity, we
compare the locations in the locations-cache [!°°7**"¢ with the locations of the
STPR [of the activity a; and simply check if each location has already been
visited the expected number of times while the probability for the activity was
high according to the activity recognition. This way, we generate probabilities
Pt (1.]a) about the location we expect a person to visit during the execution of

mon

the current activity and which locations we do not expect to be visited any more.

next

next (1;]a) for a location [; to be 1 if the number of visits

We define the probability p
according to the locations cache [!°°7°*" js smaller than the expected number of

82

5.3. Simultaneous Plan Recognition and Monitoring (SPRAM)

times. If a location has already been visited the expected number of times, we set
the probability to 0 as illustrated by the following equation:

1 if |1

0 otherwise

Zloc—cache
i

>0

P (Lila) = { (5.2)
Note: This extremely simple way of monitoring is used as proof-of-concept. More
elaborate approaches for monitoring are discussed in section 8.3.

5.3.2 Prediction of Likely Next Locations

One of the reasons for using activity recognition and monitoring simultaneously
is the prediction of likely future locations of a person based on models of its be-
havior. This can be useful for a domestic robot to adapt its behavior better to a
person’s habits and behavior. A robot that can predict where a person will go,
is able to avoid getting into a person’s way when it should not disturb him/her.
In case of an emergency, a robot could as well use its predictions to find the
person. To enable such predictions, we can use the Forward Step of the Forward-
Backward algorithm on the HHMM and calculate the probability distribution
ppext (l 2 IaJt.“) over the production states (the locations) [*!, which represents
the likelihood of the locations to be visited in the next step t + 1 conditioned on
the activity a]?“. This calculation does not produce any more additional compu-
tational effort since it is already done in the Forward-Backward algorithm that
we use for activity recognition. We can use the probabilities of the monitoring
step Pt ([;|a) to weight plan-dependent locations in P} (Zf“ Ia;.“) based on
the binary probability distribution P**" (I;|a) from the monitoring. This assigns
CDSRs that are not expected to be visited again a lower weight which results in a
merged probability distribution over plan-dependent locations that we expect to
be visited next: P75 (lf“ IaJt.“). For the prediction of likely next locations, we
are interested in the plan-independent likely next locations of a person. If we, for
instance, want to know if the observed person will got to the table next, we do
not care if he/she will go to the table because he/she is setting the table or clean-
ing the table, especially when the activity recognition returns ambiguous results.

To enable the best possible prediction given the uncertain information collected

83

5. Activity Recognition

so far, we marginalize out aj™* from P}°*" | (lit“ Ia;.“) and obtain a probability
distribution over all locations to be visited in the next step taking into account

the results from activity recognition and monitoring:

P(I*1) = J p (z;+1|a;.+1) «P (a§+1) da. (5.3)

a;

As we represent locations [; by two dimensional gaussian probability distribu-
tions, we can see P(I{*') as a spatial model comprised of a set of weighted, two
dimensional gaussians with their corresponding probabilities as weights. This
weighted spatial model represents locations that are likely to be visited by the
observed person in the next step and it is updated with every belief-update of
activity recognition. This simple approach enables a robot to have an impression
about where the human is likely to be in near future or which locations are un-
likely to be visited by him /her. The inclusion of several activities for the predic-
tion has the advantage that even in cases where activity recognition is uncertain,
a robot can still generate a weighted spatial model with knowledge about spatial
areas that are likely to be visited in near future as illustrated in Figure 5.4. In
the left picture, the robot is quite certain that the observed person will go to one
gaussian, which corresponds to the table in this example. In the right picture, the
robot is uncertain about where the person will go next, but nevertheless, it is able
to create a weighted spatial model indicating several regions where the person
is likely to be next. In the case of a household robot, a robot could try to avoid
regions with a high likelihood of human presence in order to not disturb its user

or search those locations if it is trying to find a person.

5.4 Integration of SPRAM into the Expectations Framework

Our approach of simultaneously performing activity recognition and monitoring
allows the prediction of likely future locations of a person performing an activity
based on models of his/her routine behavior. This means that the output of the
SPRAM approach can be seen as expectations that model a typical or normal be-
havior of a person. Thus, the approach is a perfect candidate to be included into
the expectations framework described in chapter 3. The predictions of a person,

84

5.4. Integration of SPRAM into the Expectations Framework

4000 4000

3500

3500

3000

3000

2500

2500

2000

2000

1500

1500

1000 1000

800 1000 1200 1400 1600 1800 2000 2200 800 1000 1200 1400 1600 1800 2000 2200

Figure 5.4.: This weighted spatial model displays probabilities about where the
human is expected to go next. In the left picture, one location has
a very high probability of being the next one while on the right pic-
ture, the predictions are not unique. Nevertheless, the spatial model
shows likely next locations with corresponding probabilities.

for instance, about his/her likely next locations, are continually updated and de-
pend on the complete integration of the HHMM-based activity recognition and
monitoring, including the spatial model of the environment. To integrate this
complete pipeline, we propose a three-layered architecture as illustrated in Fig-
ure 5.5. Here, the Data Preprocessing Layer directly works on the sensor data of
the motion tracker to detect situations in which the tracked person is standing
still for a short time and is likely to execute an action. This Static Location De-
tection therefore also includes the motion patterns described in section 5.2.3 and
has a semantic map available which is queried for the coordinates of detected
locations of the person. These coordinates are passed to the SPRAM Layer which
queries its spatial model for the most likely qualitative description of the coordi-
nates. Given models of human activities as HHMMs, the SPRAM Layer performs
simultaneous activity recognition and monitoring as explained in the previous
sections and returns a set of weighted, two-dimensional gaussian probability dis-
tributions. Those represent likely next locations of the observed person. We can
map these expectations almost directly into probabilistic expectations that were
described in section 3.1.1. We create a new expectation called Next Location Ex-
pectation and use the qualitative label of each gaussian probability distribution

in the spatial model as the name of the random variable of the expectation and

85

5. Activity Recognition

assign the corresponding probability returned from the SPRAM Layer. Perform-
ing this procedure for each gaussian in the spatial model, we obtain a discrete
probability distribution over the possible next locations of the person embedded
as a probabilistic expectation in the expectations framework. The validation of
this expectation is triggered each time a new observation is added to the HHMM.
This integration enables a robot to distinguish typical behavior of a person from
atypical behavior and to combine this information with other expectations in
the expectations framework, thus including human behavior into its situational
awareness. In chapter 7, we will test the fully integrated system and depict use

cases in a real-world scenario as well as a simulated scenario.

5.5 Related Work

The research field of human activity recognition deals with the question of how
to recognize human behavior from sensor readings using a variety of different
sensors and approaches. In general, most activity recognition systems use prob-
abilistic approaches to calculate a probability distribution over a discrete set of
activities. Activities are therefore often modeled as states in discrete Markov
Chains.

To enable computationally expensive probabilistic approaches to be tractable,
many approaches are based on the Markov Assumption (see appendix A.2) which
assumes states in a Markov Chain to be dependent only on a fixed number of
predecessor states. Most commonly, a first-order Markov process is used, thus
the current state is only dependent on one predecessor state. Depending on the
models of states, this assumption might not hold in some cases but often these
approaches produce good accuracy of the recognition while still being compu-
tationally tractable in a certain time, often even in real time. In this section,
will provide an overview about different approaches and applications of activity
recognition approaches that have been successfully used so far.

Many approaches in the field of activity recognition make use of HMMs to dis-
tinguish between various high level tasks. Buettner et al. [10] equip a large set of
everyday objects in an apartment with RFID-based sensors and record sequences
of object detections while a person performs typical everyday activities. They use

86

5.5. Related Work

Data
Preprocessing
Layer

Static Location Detection

SPRAM
Layer

Expectation Generation

Expectations
Layer

4 4 N
Motion-tracking data Semantic Map
\ 4\ j
Furniture Objects
4 N)
Qualitative Represen- Activity Models
tation of Locations . ‘
\ NS j

SPRAM

/Weighted Probabilities for\
Next Locations: P(I/*")

Next Location Expectation

Other Expectations

oven
weight: 0.12

table
weight: 0.04

duration 1
timne: 2s

duration 2

time: 4s

Figure 5.5.: The integration framework for human activities consists out of three
layers. In the first layer, sensor data from motion tracking is pre-
processed to fit the interface of the SPRAM module. Therefore, lo-
cations where the human is standing still as well as a semantic envi-
ronment map is made available to the SPRAM module. The SPRAM
module uses this information and its models of activities to generate
weighted probabilities of likely next locations of the observed person.
Those weighted probabilities are then transformed into expectations
about the human and can seamlessly be integrated into the expecta-
tions framework along with other types of expectations.

87

5. Activity Recognition

these sequences of detected objects to train an HMM which they can then use for
activity recognition. Nguyen et al. [60], in contrast, use manually assigned spa-
tial regions and a multi-camera tracking system to train a HMM for recognizing
high level activities. They use an Abstract Hidden Markov Model and extend it
with a memory that allows them to model a richer class of context-free and state-
dependent behaviors. Also other researchers use different extensions to HMMs
to overcome various limitations. Nguyen et al. [61] and Bui et al. [11] introduce
the general concept of hierarchies to HMMs which become Hierarchical Hidden
Markov Models (HHMMs) while Duong et al. [15] propose to use different lay-
ers in the HMM to account for hierarchies and durations. But HMMs are not
the only models used for activity recognition. There are also approaches using
Hierarchical Conditional Random Fields (CRFs) [88, 90], Hierarchical Maximum
Entropy Markov Models (MEMM) [80] or Monte-Carlo based approaches [68].

Except for Sung et al. [80], who use RGBD cameras to detect activities from hu-
man body posture, most approaches rely on the use of object detections or mo-
tion tracking systems, which produce quite reliable data but are very expensive
and intrusive. Perkowitz et al. [68] equip everyday objects in a human household
with RFID tags to obtain sequences of object detections while humans perform
everyday activities. For object detection, the users have to wear special gloves
that serve as RFID readers. To free the participants of wearing special gloves for
the RFID-tags Buettner et al. [10] developed a combination of RFID tags and ac-
celerometers, called WISPs, which make their approach less intrusive and offer
reliable object detections. But still the apartment they used for testing had to be
equipped with four antennas and sensors had to be attached to the 25 objects

they used.

88

Chapter 6
Human Activity Datasets

As robotics advances towards robotic helpers working together with humans,
the field of activity recognition becomes increasingly important as a key enabler
for effective and acceptable human-aware robot behavior. Recently, different ap-
proaches have evolved that use diverse methodologies and algorithms to recog-
nize human activities from sensor data like motion tracking information. The in-
creasing number of approaches makes it necessary to have more general datasets
about human activities that enable researchers to compare the quality of their
techniques using similar or even the same sensor modalities. In many cases, such
datasets use sensor settings that include variants of RFID sensors [68, 10] to track
the positions of objects or persons, but also approaches using video cameras for
human motion tracking data [45, 82] are popular. Other sensor modalities like
GPS [46], pressure sensors, reed switches or water-flow sensors [20] are also used
in some datasets. In our work, we are specifically interested in analyzing human

motion tracking data.

In this chapter, we give an overview about human activity datasets that use mo-
tion tracking data as sensor modality and highlight their specific advantages and
disadvantages. We then document two new contributed datasets that were de-
signed to support researchers in the fields of activity recognition and learning
by capturing a variety of typical activities of daily living in a domestic environ-

ment.

89

6. Human Activity Datasets

6.1 Available Datasets

To generate human activity models and to test our approaches, we need realistic
data that a robot deployed in a real human home would find. Since we assume
our robot to be equipped with sensors that allow it to perform person tracking,
human motion tracking data gathered in domestic environments is most suitable
for our scenario. Unfortunately, the public availability of large datasets including
such motion tracking data is limited. This is due to several challenges that one
has to face when collecting realistic and comprehensive datasets of human task

execution, including:

¢ Sensor setting. The choice of the sensor setting is of critical importance for
the dataset. Different types of sensors produce different types of data, so
the choice of an appropriate sensor setting strongly depends on the envi-
sioned application of the data. The financial component plays an important
role as well since a complex and high-accuracy sensor setting can very fast
exceed 100.000 €. Cheaper sensors often have to deal with low accuracies or
can only record data that contains less information. But depending on the
type of application, low-cost sensors can already be sufficient to produce

reasonable results for some activity recognition systems.

¢ Ground truth data. To enable researchers to evaluate their approaches, it
is important that not only sensor data is available, but also labels for the
ground truth about e.g. the activities that the human currently performs or
the positions of the tracked person. Such labels are needed to enable eval-
uation and offer researchers a common basis on which they can compare
different approaches. However, the generation of such labels is a tedious
and time-consuming task since in most cases, the data has to be labeled
manually. Ideally, the labeling of the data should be performed by a third
party that is not involved in the data acquisition or the later use of the data.

* Scenario selection. The selection an appropriate environment can be an
issue as well. Having machines that constantly monitor a person’s activities
immediately raises privacy issues, especially when collecting data that will
be available online. Recording video data in private homes and making it
publicly available is a big intrusion into a person’s privacy. Therefore, most

90

6.1. Available Datasets

datasets are recorded in lab environments with participants that explicitly
agree with the data being made available to the public.

* Activity selection. Once a scenario is selected, one still has to decide which
activities a participant should be performing. When regarding activities
of daily living, such a selection should realistically reflect typical activities
that a person performs in his/her daily life. In this case, one has to take
care that the set of activities will not be too artificial since persons might act

differently in a laboratory than in their accustomed homes.

e Participants. The recording of data about human activities can be very
exhausting and time consuming for the participants. Finding participants
that are willing to spend such an amount of time while not getting bored
can thus be a problem. A very convenient solution for this challenge are a
live-in laboratories where participants are offered to live in a sensor equipped
home free of cost for an extended period of time, but not every institution

has the means for such an option.

The focus of our research lies in the analysis of motion tracking data generated
with low-cost sensor modalities like depth cameras, so we focus on datasets that
allow the extraction of information about the location of persons over time. Usu-
ally one had to put much effort in the creation of such data since the recording
implied setting up complex and expensive systems that were mostly based on
cameras or markers. Such setups are expensive not only regarding their cost
but also their computational efforts. With the recent introduction of cheap depth
cameras like the Microsoft Kinect, the cost for capturing motion tracking data
significantly decreased, enabling more people to capture data with less effort.
However, this does not come without cost. Motion tracking data recorded with
such depth cameras suffers from inaccuracies and the tracking range is spatially
limited (usually to 0.5 to 4 meters distance from the sensor).

There are already a few datasets available that try to deal with some of the chal-
lenges in different ways and offer various types of sensor settings and thus dif-
ferent types of data. We will discuss a few datasets that looked promising for our
application and explain two contributions towards datasets for human activities
in this chapter.

91

6. Human Activity Datasets

6.1.1 The MIT PlacelLab

The MIT PlaceLab' is a sensor-equipped apartment laboratory in Cambridge,
MA. The apartment consists of a living room, dining area, kitchen, office, bed-
room, full bath and half bath, with each room including a micro controller and
up to 30 sensors to record audio-visual data. A detailed overview of the MIT
PlaceLab data is given by Intille et al. [25]. The apartment has been used to
perform several studies and to record several datasets in which participant were

asked to perform common tasks of daily living.

6.1.1.1 The PLIA2 (PlaceLab Intensive Activity 2) Dataset

This dataset is intended to be a short test dataset of manageable size in which a
researcher was asked to perform different activities of daily living during a pe-
riod of four hours in the live-in laboratory. Therefore, the participant followed a
set of instructions and executed activities like cooking, washing, cleaning, mak-
ing the bed and light cleaning around the apartment. Unfortunately, ground
truth annotations are only partially available for this dataset and some of the
tiles like the instructions that the participant followed, are not available online

any more.

6.1.1.2 The PLCouplel (PlaceLab Couple 1) Dataset

The most interesting dataset for our research is the PLCouple dataset which con-
sists of anonymous sensor data of a couple that has been living in the apartment
for 2.5 month. The advantages of this dataset are that it was independently la-
beled by a third party. Since the participants were living in the live-in laboratory
for a long time, the activities that were recorded can truly be regarded as routine
activities of daily living.The dataset focuses specifically on activities that happen
between 6 and 12 am. During this time frame, the couple performed 23 different
activities of which only 11 were performed in the kitchen area. However, also

1ht’rp:/ /architecture.mit.edu/house_n/data/PlaceLab/PlaceLab.htm

92

http://architecture.mit.edu/house_n/data/PlaceLab/PlaceLab.htm

6.1. Available Datasets

this dataset comes with a set of restrictions: annotations of the PLCouple dataset
are partly available for the public, but we could not use the sensor data since the
two participants of the experiment shared many tasks. Due to financial restric-
tions, only one of the persons was tracked using a RFID reader. Also, the full
audio and video data are not included due to privacy issues, so sensor data of

many tasks that are part of a typical human routine were missing.

6.1.2 The TUM Kitchen Dataset

The publicly available TUM kitchen dataset” [82] offers several recordings of hu-
mans performing a table-setting task in a typical kitchen environment in two
different ways. The dataset includes video sequences from four cameras, full
body motion tracking data of the human, RFID tag readings of objects and mag-
netic sensor readings from furniture objects like cupboards and drawers in the
environment. The data has been manually labeled to provide a ground truth
for motion segmentation. Labels are provided for actions of the human body in
general and for each hand separately. During the table-setting task, the partici-
pants used 6 objects (placemat, napkin, fork, knife, plate, cup), that were stored
at three different locations (drawer, cupboard, stove), and the table that has to
be set. The dataset uses two variations of a table-setting task: For the first varia-
tion, which we will call impaired-person in the rest of the chapter, the participants
were only allowed to transport one item at a time. This task has been performed
by all 10 participants where the order in which the objects were to be picked up
has been fixed. Furthermore, two of the 10 participants also executed a second
table-setting task in a mode we call able-bodied-person , where they were allowed
to carry several items simultaneously. The motion tracking data of the TUM
Kitchen Dataset is obtained by a marker-less motion tracking system with four
cameras mounted at the ceiling of the kitchen as sensor input. The human poses
are estimated in a recursive Bayesian framework using a variant of particle fil-
tering [3]. This sensor setup helps the handling of occlusions since, in a majority
of cases, most of the body parts are visible by more than one camera resulting in

a quite accurate estimation of the human poses.

2h’rtp: / /ias.cs.tum.edu/software/kitchen-activity-data

93

6. Human Activity Datasets

Figure 6.1.: Illustration of the data acquisition in the TUM Kitchen Dataset. The
upper image illustrates 3D models of furniture objects according to a
semantic map of the environment. The lower images show the out-
put of the four video cameras that were used to obtain the human
motion tracking data. Image courtesy of Moritz Tenorth [82]

A semantically annotated map of the environment is available in the KnowRob
knowledge processing framework [84] which includes positions of the furniture,
including the containers where the objects were stored. Furthermore, it includes
articulation models of container objects that express how to open certain doors of
cupboards and drawers. Tenorth et al. [85] even show how to create knowledge-
linked semantic object maps that combine information of a the semantic map of
this environment with common sense knowledge of publicly available data bases
thus enabling a robot to perform reasoning e.g. about likely storage locations of
different kinds of objects. A visualization of the semantic map, gathered motion
tracking data and images of the four video cameras used for motion tracking, is
shown in Figure 6.1

In chapter 4 we will explain how we use the TUM Kitchen Dataset to create a
semantically annotated spatial model about positions that a person visits during

a table setting task. Therefore, we will use the full body motion tracking data,

94

6.2. Contributed Datasets

the ground-truth labels of the body and the hands as well as the the semantic

map.

6.2 Contributed Datasets

The previously explained datasets are a valuable source of information to the
community and we used the TUM kitchen dataset for the generation of our mod-
els as we will explain in chapter 4. However, each of the datasets had some draw-
backs that made them only partially useful for the evaluation of our anticipated
activity recognition and expectations framework. To this end, we decided to cre-
ate two more datasets, especially focusing on the needs of our system but also
trying to keep the datasets as general as possible to make them useful for other

researchers in the community.

6.2.1 TUM Kitchen Dataset 2

The TUM Kitchen dataset offers a decent set of motion tracking data featuring 10
different persons that perform two variations of a table setting task. However,
the persons that were recorded only perform one task in two different ways. For
our application of activity recognition, we need motion tracking data of persons
performing different types of tasks to be able to test if our system can distinguish
between different activities. We decided to create a new dataset and record ad-
ditional motion tracking data in the same kitchen as the TUM kitchen dataset as

well as in a different experimental kitchen.

6.2.1.1 Kinect Data in Garching Kitchen

This data was recorded in the same kitchen as used in the TUM kitchen dataset
with the only difference that we varied the position of the table. A layout of the
kitchen environment is shown in figure 6.2. We let 9 participants, which were
mainly researchers of the area Computer Vision, perform the same two variants
of the table setting task as in the TUM kitchen dataset, also keeping the order, in

95

6. Human Activity Datasets

A: Location of placemat and napkin

n B: Drawer, location of cutlery
C: Cupboard, location of cup and plate
v D: Table, place to be set

Figure 6.2.: The layout of the first environment used for the the TUM Kitchen
Dataset 2. Blue rectangles mark the locations of dishes and objects
that were used by the participants during our experiments.

which the objects had to be picked up, fixed. Furthermore, they were asked to
clean the table after having a meal, including doing the dishes and putting the
cleaned dishes back to where they belonged. One instance of a table-setting and
cleaning activity is shown in Figure 6.3. In contrast to the TUM Kitchen Dataset,
we used only one Kinect sensor instead of a complex multi-camera tracking sys-
tem for human motion tracking and we recorded the 2D positions and orien-
tation of the participants. The Kinect sensor is subject to less accurate motion
tracking of human body joints as well as more occlusions than the multi-camera
system of the TUM Kitchen Dataset. Another issue is the range of the Kinect
sensor. The cupboard in the kitchen was located at the edge of the sensor range
which caused even more inaccuracies and resulted in the motion tracking loos-
ing track of the human in some cases. Figure 6.4 shows recorded motion tracking
data for the three activities executed by five of the 9 participants.

6.2.1.2 Kinect Data in IAS Kitchen

For this data we kept the assignments of tasks of the participants the same but
used another kitchen environment that differs in the layout of the furniture ob-
jects. The layout of the kitchen is shown in Figure 6.5. Again, 10 participants
were asked to perform the two variations of a table setting task as in the TUM
Kitchen Dataset and an additional cleaning task as in the TUM Kitchen Dataset
2 explained before. The participants were mainly researchers from the area of

96

6.2. Contributed Datasets

B9 ™

Figure 6.3.: The experimental TUM kitchen that has been used in the TUM
Kitchen dataset as well as for TUM Kitchen Dataset 2. Motion track-
ing data of three activities is collected using one Kinect sensor instead
of a complex motion tracking system. The upper pictures show one
participant performing a table-setting task while the lower pictures
show the same participant cleaning the table and doing the dishes.

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5

/ 7 ~ . "
' e b "
< “— ¢ v ay
g ! - —

Y=

L

4 ;)
% % F) S N [¥ 77
| = ,

! L I8 < / (/ P

f : - [

Figure 6.4.: Motion tracking data of five different participants of the experiment.
The plots show 2D positions of the person tracked in the environ-
ment. The upper row consists of positions where the participants
performed the able-bodied-person table setting task while in the mid-
dle row, they performed the impaired-person table setting task. The
bottom row shows data recorded while the participants cleaned the
table and did the dishes.

97

6. Human Activity Datasets

Setup 2
A: Location of placemat and napkin
n B: Drawer, location of cutlery
C: Cupboard, location of cup and plate
v D: Table, place to be set
L =
X

Figure 6.5.: The layout of the second kitchen environment used for the TUM
Kitchen Dataset 2. Blue rectangles mark the locations of dishes and
objects that were used by the participants during our experiments.

Robotics and Artificial Intelligence. The 2D positions of five of the 10 partici-

pants performing the three different tasks are shown in Figure 6.6.

6.2.2 An Activity Dataset of a Human Morning Routine

The dataset described in the following section is one of the primary sources of
information for testing and evaluation in this thesis. It has been created with the
aim of capturing a typical morning routine of a single person in an apartment.
In contrast to other datasets like the TUM kitchen dataset [82], which consists of
several persons performing the same task, the focus for this dataset was to cap-
ture several activities of daily living performed by the same person at different
days during an extended period of time. Furthermore, we specifically focused
on a low cost sensor setting using only two Kinect sensors, which cost below 250
USD, in contrast to relying on complex motion tracking systems that are very
costly. We decided to go for such a sensor setting since we think that a commer-
cial service robot that will be deployed on the consumer market will use rather
low cost components in order to be affordable for a wide range of people. Thus,
our dataset reflects a realistic impression about how such a robot would perceive

routine activities of its user when deployed in a human apartment.

The dataset has been released to the public on September 24th, 2013 and is avail-
able for download at https:/ /hcai.in.tum.de/research/dataset.

98

https://hcai.in.tum.de/research/dataset

6.2. Contributed Datasets

Participant 1 Participant 2 Participant 3 Participant 4 Participant 5
3 i 1~ o >«
T ' -~ N \ o) ; - | 4
oo Y3 ¢ = {7
. ‘ .
S Meer e M e
¢ Y/ ' & 'a -
g 4 ‘\f,; 7 . ~E A - A
A\ } B o
v { 4 - \1; -
N A & “ L
p A \

Figure 6.6.: Motion tracking data of five different participants of the experiment
in the IAS kitchen. The plots consist of 2D positions of the per-
son tracked in the environment. The upper row consists of posi-
tions where the participants performed the able-bodied-person table
setting task while in the middle row, they performed the impaired-
person table setting task. The bottom row shows data recorded while
the participants cleaned the table and did the dishes.

6.2.2.1 Data Acquisition

Since our envisioned robot assistant is expected to detect and react on several
routine activities of its human partner, we decided to record a dataset that in-
cludes such activities in a typical domestic setting. We first investigated typical
morning routines of the annotated MIT PlaceLab PLCouple dataset and found
that in a common morning routine of a person, the set of different activities that
a human performs is very limited. To keep the already huge effort of collecting
the data limited, we decided to limit the time-consuming parts of our dataset
(e.g. the recording of motion tracking data) to activities that are performed in the
kitchen.

We investigated a period of 14 workdays of a voluntary male test person that
did not know about our system and was living in a rental apartment by himself.
We asked the test person to note the activities that he performed before going
to work as well as the locations at which he stands still while performing those

99

6. Human Activity Datasets

activities over 3 weeks. The exemplary notes of one day are shown in figure
6.7.

A typical morning routine of our participant consisted of 12-15 activities of which
7 happened in the kitchen area. The activities that were performed in the kitchen

consisted of the following:

* preparing a drink

drinking a glass of water

* preparing breakfast

having breakfast

cleaning the table

packing a bottle of water

leaving the room with the backpack.

In accordance with the MIT PlaceLab dataset also our data shows that the set
of activities that a person performs during his morning routine is quite restricted
and the execution of different activities does not show much variation. While the
drinking water action mostly looked alike regarding the locations where the par-
ticipant was standing, he took three different kinds of breakfast at different days:
8 times the participant had cereals for breakfast, 4 times he had curd cheese and
2 times he ate bread with butter and cheese. For comparison, in the MIT Place-
Lab dataset, there were 23 activities that were performed between 6 and 12 am
of which 11 were performed in the kitchen area. The set of activities that a per-
son performs in specific rooms at specific times is a key insight that can have
a beneficial effect on activity recognition systems targeted towards domestic ar-
eas. Taking the current time of day, which is very easily obtained, and the rooms
where the activities are performed as a prior (assuming we have a semantic rep-
resentation of our environment), such a system can limit the set of activities to
consider for activity recognition to only a few ones. This limitation can have an
advantageous effect on both the accuracy of the activity recognition as well as

the run time of such systems.

100

6.2. Contributed Datasets

™v
Rack
Chair

Table

5d1)
®

Chair

Bed

Washbowl

Shower

505359 5b

Fridge Cupboard

Closet @

@ Waking up, turning off alarm clock

1 Drinking Water

@ Washing hair, blowing-dry

Getting dressed

)

Making the bed

Fetching milk

Fetching a spoon and a bowl

Fetching cereals

Eating cereals

Bringing back cereals

Bringing back the milk

Bringing back the spoon and bowl

@Watching v
@Primping hair

Packing bag

£y Gl 69 B 66 O O

©

Figure 6.7.: One day of the notes the participant took showing the order of loca-
tions he visited during his morning routine. The left picture shows
a schematic top view of the apartment while at the right you can see
the annotated activities that the participant performed at the corre-
sponding locations.

101

6. Human Activity Datasets

6.2.2.2 Recording motion tracking data

To obtain real sensor data of human motion tracking as well as detected objects,
we asked our participant to reenact his morning routine according to his notes
in a sensor equipped kitchen environment. Therefore, we equipped an experi-
mental kitchen-environment with two Kinect sensors. We use one of the Kinects
to perform motion tracking of the human using the OpenNI tracker® and the
second Kinect for object detections based on visual markers using the ar_pose*
wrapper for ARToolKit. We decided to use visual markers for object detections
in order to simulate an object detection system that might be available in future
while keeping the effort limited. Since the size of the visual markers was of criti-
cal importance for the detection, we could only use markers on objects that were
of a certain size. We equipped the following objects with markers: Cornflakes,
Milk, Backpack, Curd cheese, Bottle. The ar_pose object detection returns the
approximate pose of all detected objects in reference to the Kinect as coordinate
transformations in the ROS TF framework’.

Since in previous work, we made good experiences with the testing of algorithms
in simulation, we also set up a simulated environment of the same kitchen us-
ing the MORSE simulator® [16]. This simulator provides us with a human avatar
that can be controlled by a person to perform pick- and place tasks in simulated
environments like in 3D computer games as explained in section 7.1. Simula-
tions are used by several robotics groups for making the development process
more efficient [89]. In the field of human-robot interaction, Woods et al. [94] have
compared user behavior in simulation and a real-world study and have come to
the conclusion that simulation-based experiments are a viable approach for first
evaluations of novel techniques. Figure 6.8 depicts the experimental kitchen in
its simulated version as well as the real kitchen environment. Furthermore, the
picture shows a visualization of the motion tracking data and object detections

that are obtained by the two Kinect sensors. The objects were placed at the same

Shttp:/ /ros.org/wiki/openni_tracker
4h’[tp: / /www.ros.org/wiki/ar_pose
>http:/ /www.ros.org/ wiki/tf

®http:/ /morse.openrobots.org

102

http://morse.openrobots.org

6.2. Contributed Datasets

/ \

Figure 6.8.: The simulated environment in the MORSE simulator is shown on the
upper left picture, while the upper right picture shows the real exper-
imental kitchen environment. In the lower picture the sensor input
of the real scenario is shown. The motion tracking returns coordinate
transformations for each joint of the human while the visual marker
detection returns a coordinate transform for each detected object. The
map and the Pointcloud data are only shown for visualization.

103

6. Human Activity Datasets

typical locations in both scenarios (butter in the refrigerator, cutlery in a drawer
etc.). The participant was asked to perform his typical morning routine in simu-
lation as well as in the real kitchen in the same way as he did in the 14 days that
he took notes of. A visualization of video data of parts of one activity along with

the corresponding motion tracking data is shown in Figure 6.9.

In the simulated scenario, the test person used the human avatar of the MORSE
simulator to open and close drawers, and move objects around. We tracked the
position of all objects using a simulated object tracker and the human using a
simulated person tracker. Instead of eating or drinking, the person was asked
to take each object (glass, spoon) that is part if the corresponding task with the
simulated human avatar for a short time and wait for a while (1 minute for drink-
ing, 3 minutes for eating). In the real environment, we used a Microsoft Kinect
for approximate human motion tracking. Although the motion tracker worked
quite well while the test person was walking, it sometimes lost track of the per-
son while sitting at the table or getting objects from the refrigerator. Especially
when parts of the body are occluded, the motion tracking data is very inaccurate,
which results in a “jumping” of some body joints of the tracked person. The per-
formance of the marker-based object detection was varying in its quality quite a
lot. While in many cases we had correct object detections, it often happened that
objects were detected at wrong places or some detections of objects even were

confused with other objects.

6.2.2.3 Comparison between Simulated and Real Data

To get an impression about how well experiments with our simulated human
avatar can be compared to experiments in the real world, we investigated 2D
motion tracking data of both experiments. Therefore, we plot the 2D location
of the joint of the human neck over time and compare the 2D trajectories of the
simulated experiments with the 2D trajectories of their corresponding real world
version. We decided to use 2D trajectories as feature for the following reasons:
On the one hand the activity recognition system (explained chapter 5) that we
aim to implement into our expectation-based framework (explained in chapter
3) is based on 2D motion tracking data of humans. On the other hand, we don’t

104

6.2. Contributed Datasets

. [

Figure 6.9.: A typical table-setting activity of the participant performed as part of
his morning routine in the experimental kitchen environment. The
upper images show video data of different parts of the preparation
for having cereals as breakfast. The lower pictures show a visual-
ization of the motion tracking data and object detections that were
recorded using two Kinect sensors. For visualization, a 2D gridmap
of the kitchen environment is shown as well. In the rightmost picture
of the lower images, parts of the body of the participant were oc-
cluded by the table, resulting in inaccurate and even wrong tracking
for many joints of the tracked human model.

think it makes much sense to compare full-body motion tracking data between
simulation and real world since the simulated avatar in the MORSE simulator
is currently not designed to produce movements that realistically mimic move-
ments of real persons. A qualitative comparison between motion tracking data

from different simulated and real world experiments is shown in Figure 6.10.

The comparison between the 2D motion tracking data of the simulated and real
world experiments suggest that a human using a simulated avatar tends to per-
form movements in a more straight-line fashion and not following curved paths
too much. We think this is due to the fact that the control of such an avatar with
keyboard and mouse is rather unnatural to humans. This leads to behavior that
prefers safely reaching the goal instead of optimizing paths with respect to time.
In our experiments this resulted in the participant mostly turning in place and
then approaching the goal in a straight line when using simulation. Another rea-
son for the differences in the movements can be the acquisition of the human po-
sition. While in simulation, the person is more or less static regarding its joints,

105

6. Human Activity Datasets

Preparing and drinking water
y y

y y y
& £
=7 7o &F- e s
X X X X X
y y y y y
SF = = 5 =
X X X X X
Setting the table
y y y y y
& N4 Z
i >z s
4 g i ‘_.)
X X X X X
y y y y y
4 4\ ‘\h‘ f“\ ‘
/ Vi Vi 2 7
/
X X X X X
Cleaning the table
y y y y y
2 o »
X X X X X
y y y y y
X X X X X
Preparing for work
y y y y y
- 31- ‘ b ¢
X X X X X
y y y y y
! / ,
B SR B e AT/
1 A l) J
: — J V4 [~
X X X X X

Figure 6.10.: 2D motion tracking data of different tasks in simulation (lower
rows) and real world experiments (upper rows).

106

6.2. Contributed Datasets

a real person never really has the same posture while moving. It might lean a
bit forward while accelerating or sidewards when grabbing an object. These al-
terations in the human posture can also be the reason for the motion tracking
data in the real world example looking less linear than the simulated data. An
overview of positions where the human was standing still (i.e. moving less than
50cm/second) summed over all 14 experiments is shown in figure 6.11 for the
real world experiments (left picture) as well as for simulation (right picture). As
can be seen, those positions are in similar areas which comes as no surprise since
the simulated scenario has been created as an exact model of the real kitchen
and the proportions of the human avatar match roughly the proportions of a real
person. This has the consequence that a human that is grabbing an object from
a storage location in simulation should approximately have the same distance to
that storage location as a real person would have in a real world scenario. Dif-
ferences can mainly be seen at the location that corresponds to the position in
front of the table (approximately at 2,3.5). At this location there is a much higher
variation of positions in the real data than there is in the simulated scenario. This
is due to various reasons: On the one hand, the person moves away the chair
in front of the table and sits on it in the real scenario while, in simulation, the
person just stands in front of the table for a fixed time. On the other hand, in
the real data, the parts of the body of the participant are occluded when he is
sitting at the table and eating or drinking. This has the effect that the tracker
has a hard time correctly tracking the positions of the joints of the human which
results in a “jumping” of some of the joints and leads to inaccurate 2D position
estimations as is shown in Figure 6.12. Also the position that corresponds to the
location of the door (approximately at 4,4) is different in the datasets. This is due
to the limited range of the Kinect tracking. While in simulation the person was
tracked until he reached the door, in the real world scenario, the door was out of
the range of the Kinect tracking. In this case, the last detection of the person was
mostly in the area around the 2D location at 3.5,3.5, which represents the border

of the Kinect tracking range when walking towards the door.

107

6. Human Activity Datasets

‘aHis‘tati‘c.csv' using EX

Figure 6.11.: These plots show 2D positions where the participant stood still for
a little while. The left picture shows the positions for the real world
experiments while the right picture shows the corresponding posi-

tions for the simulated data.

.

Figure 6.12.: Partial occlusions of the body of the participant give the motion
tracker a hard time in estimation the positions of the joints. This
results in a “jumping” of some of the joints of the person when e.g.
sitting at the table. The images have been taken shortly after another
when the person was sitting at a table and the legs were occluded
from the Kinect sensor.

o

108

'aHis‘tati‘c‘csv‘ using 3a

Chapter 7

Evaluation

In this chapter, we carefully evaluate the approaches that were introduced in
this thesis. We will first provide evaluations of the contributions separately and
finally show an exemplary application of the fully integrated system. It enables
a robot to detect unexpected behavior of a person in a simulated and a real-
world scenario. To this end, it will be using human activity models (as explained
in chapter 4) to perform activity recognition and monitoring (as explained in
chapter 5) and embed predictions about likely next locations of a person in the

expectations framework (explained in chapter 3).

Parts of the evaluation and application scenarios were performed in simulation
using the open-source simulator MORSE. Several contributions to this simulator
were also developed throughout this thesis and were integrated into MORSE. An
introduction to the MORSE simulator as well as the relevant contributions that
were developed within this thesis are provided in section 7.1. Experiments in
real world environments as well as simulated experiments are evaluated using

the datasets described in chapter 6.

7.1 The MORSE Simulator

The availability of realistic simulation tools have drastically reduced the effort
for robot testing by providing safe and readily available tools. Robot simulations
are used by various robotics groups for making the development process more
efficient [89]. In the field of human-robot interaction, Woods et al. [94] have

compared user behavior in simulation with a real-world study and have come to

109

7. Evaluation

the conclusion that simulation-based experiments are a viable approach for first

evaluations of novel techniques.

For testing and first evaluations of this work, we use the Modular OpenRobots
Simulation Engine (MORSE)' [16] , which is a project of LAAS-CNRS to sup-
ply researchers with a realistic, physical simulator for a wide variety of robot
tasks. This simulator is based on the free and open-source 3D modeling software
Blender? that has the open-source physics engine Bullet® integrated in its game
engine, which is used for realistic physics simulation. MORSE comes with differ-
ent types of robots that can interact with the environment and can be controlled
via robotics middlewares like ROS, Yarp, Pocolibs or MOOS. It also offers the
possibility to control the degree of realism of the simulation by providing differ-
ent levels of abstraction for sensors and controllers. While, for instance, some-
body working in the field of perception might want to access low-level sensor
data from sensors like depth cameras, someone working on high level planning

might only want to deal with the positions of objects in the environment.

One unique feature of MORSE is the possibility to include an animated human
avatar that can move in the world and manipulate objects in real time during the
simulation. The human avatar has not only been used for testing human-aware
navigation strategies before carrying out experiments with real humans [38], it
has also been used to evaluate such strategies using video-based user studies as
shown by Lichtenthiler et al. [47] . We have contributed to the MORSE project
by adding an intuitive control for the human avatar oriented along 3D computer
games [44]. The avatar enables the combination of the reactive and sometimes
unpredictable behavior of a person with a simulated robot. The user takes a
third-person perspective behind the human to move around as illustrated in Fig-
ure 7.1 on the left. While moving around, the camera tries to avoid objects and
walls placed between the camera and the human avatar to prevent occlusions.
All objects that can be interacted with can be displayed by pressing a key (also
illustrated in Figure 7.1 on the left). When the user decides to interact with an

http:/ /morse.openrobots.org
*http:/ /www.blender.org/
Shttp:/ /bulletphysics.org

110

http://morse.openrobots.org
http://www.blender.org/
http://bulletphysics.org

7.1. The MORSE Simulator

object, the camera switches to a first-person perspective and offers an interface
showing possible actions the user can take when pointing to specific objects (as
shown in Figure 7.1 on the right). Those actions include picking up and releas-
ing objects, opening and closing drawers, cupboards and doors and switching
on and off specific objects like a light or an oven.

Figure 7.1.: Left: third-person view of the human avatar that is used to navigate
in the environment, displaying the names of objects that the human
can interact with. Right: first-person perspective of the human avatar
that indicates a possible “pick-up-action” with the bread.

The motions of the avatar are animated using Blender armatures, inverse kine-
matics, and predefined movement loops. The avatar can easily be controlled us-
ing the mouse and keyboard. Also a combination of the Microsoft Kinect and the
Nintendo Wiimote are possible. This enables users to perform pick and place ac-
tions in a simulated world, while at the same time, simulated robots can be con-
trolled by the supported robotic middlewares. Tracking of the simulated human
can be done at two different levels of abstraction. Using the video cameras or
depth sensors in combination with motion tracking approaches, the recognition
of the human position and body pose can be done realistically with the associ-
ated computational cost and uncertainties. Alternatively, the avatar can directly
export the position of all of its joints and feed them back to the robot, simulating
a full motion capture system and avoiding the processing costs and uncertain-
ties. For our experiments, we chose to use the directly exported positions of the

human joints since human motion tracking is not the focus of this work. In the

111

7. Evaluation

following sections of this chapter, we will repeatedly use the MORSE simulator

for testing and evaluation of the approaches described in this work.

7.2 Evaluation of Activity Recognition

In this section, we evaluate our approach on activity recognition based on Con-
text Dependent Spatial Regions (CDSRs) as described in chapter 4 and 5. We
therefore first assess the quality of distinguishing single activities using a string
comparison method as explained in section 4.2 in a kitchen environment. Af-
terwards, the results will be compared to activity recognition results based on
HHMMs as explained in chapter 5 and an evaluation of activity recognition and

monitoring in real time will follow.

7.2.1 Single Activity Recognition

For this part, we use data of the TUM Kitchen Dataset and TUM Kitchen Dataset
2, which come with motion tracking data different persons performing two dif-
ferent types of table-setting activities as well as a cleaning activity as explained
in chapter section 6.2.1. The evaluation of activity recognition will be performed
based on two different features. We will first evaluate the use of durations during
which a person is standing at certain locations as feature. Afterwards, we will
evaluate the order in which different locations are visited as a feature for activity

recognition.

7.2.1.1 Activity Recognition Based on Durations

Generally, the duration a person spends at certain locations during the execution
of an activity differs from person to person to some degree. In this first exper-
iment, we try to figure out, if the time that different persons spend at certain
locations can be enough evidence to distinguish different activities. Therefore,
we assume those durations to be dependent on the amount of manipulation that

a person performs at a specific location. For instance, we assume a person to

112

7.2. Evaluation of Activity Recognition

spend a longer amount of time in front of a drawer when picking up objects from
inside the drawer than he/she would when picking up objects from a plane like
a table. We used data from the TUM Kitchen Dataset (see section 6.1.2) and the
TUM Kitchen Dataset 2 (see section 6.2.1) to investigate if durations at the dif-
ferent locations are an adequate feature for activity recognition across different
persons and environments. The datasets include motion tracking data of dif-
ferent persons performing two different variations of table setting activities in
an experimental kitchen environment (Setup 1). Furthermore, the TUM Kitchen
Dataset 2 features a third cleaning activity data in the same kitchen environment
and an additional second kitchen environment (Setup 2), in which both table set-
ting activities as well as the cleaning activity were performed by the participants.
We investigate the durations that persons spend at furniture objects in both se-
tups of the datasets. Figure 7.2 shows average durations over 10 participants of
each dataset at four different types of locations for a table-setting activity. The
upper picture represents data from the TUM Kitchen Dataset, whereas the lower
two pictures illustrate data from TUM Kitchen Dataset 2. The locations represent
positions of the objects that the participants interact with when executing the two
table-setting activities and the cleaning activity. In Setup 2, there are no objects
stored on a cupboard, but in another drawer instead, resulting in no values for
the cupboard in the chart. Dishwasher, stove and table represent general planes,
but we distinguish between the table and the other planes since the table repre-
sents the final location of the objects and we assume that the duration might also
be different between picking-up and placing actions. Intuitively, picking up an
object should consume less time than placing objects when e.g. setting a table
since a correct placement should consume more care then a simple grasp of an

object.

For this experiment, we will estimate how well we can distinguish between the
different activities in the different settings by the calculation of confidence values
that indicate how confident we are of having observed a specific activity. Using
the (ground-truth) Spatio Temporal Plan Representations of the the impaired-
person table setting task generated from the TUM Kitchen Dataset as a model,
we calculate confidence values as explained in section 4.2.3 for all activities of the
two experimental setups of the TUM Kitchen Dataset 2. The confidence values
express a measure of similarity between the model and the observations. The

113

7. Evaluation

TUM kitchen dataset

Cupboard Drawer Stove Table

o Setup 1

Cupboard Drawer Stove Table

o Setup 2

Cupboard Drawer Dishwasher Table

Figure 7.2.: The pictures show average durations of a person standing still at dif-
ferent locations during task execution, illustrated by their means and
variances. The upper picture shows the data from the TUM kitchen
dataset, the middle picture shows data from Setup 1 of the TUM
Kitchen Dataset 2 and the lower picture represents data from Setup 2
of the TUM Kitchen Dataset 2.

114

7.2. Evaluation of Activity Recognition

higher the confidence value, the better the observations fit to the model and the
more likely it is that the corresponding activity has been executed by the ob-
served person. Table 7.1 shows the confidence values c, for each activity in both

scenarios averaged over all participants.

a) Impaired-person table setting activity

Activity Cp sewp1 Cpy Setup2
Impaired-person table setting 0.524 0.593
Able-bodied-person table setting 0.448 0.506
Cleaning task: 0.191 0.350
b) Able-bodied-person table setting

ACtiVity Cp Setup1 Cpy Setup?2
Impaired-person table setting 0.175 0.068
Able-bodied-person table setting 0.081 0.134
Cleaning task: 0.076 0.151
¢) Cleaning task

Activity Cpy Setup?
Impaired-person table setting 0.564
Able-bodied-person table setting 0.581

Cleaning task: 0.368

Table 7.1.: Confidence values for different activities of the TUM Kitchen Dataset
and TUM Kitchen Dataset 2 using only durations as features.

The confidence values for an observation of the impaired-person table setting
task in section a) indicate that the most likely activity corresponds to a table set-
ting task in both scenarios. However, the able-bodied-person table setting tasks
also have a relatively high confidence value compared to the cleaning tasks. This
can be explained by the fact that the time, a human spends at a storage location
does not vary significantly between actions where he picks up one single object
or several objects. One could regard the recognition of activities based solely
on durations as successful in this case. Section b) of table 7.1 shows the confi-
dence values when observing the able-bodied-person table setting task. In this
case, the activity recognition does not perform well. In Setup 1, it detects the
impaired-person table setting task as the most likely one and in Setup 2, it even
detects the cleaning task as the one with the highest confidence. Observing the
cleaning task generated from data of Setup 1 of the TUM Kitchen Dataset 2 (the

115

7. Evaluation

TUM Kitchen Dataset itself provides no cleaning task) leads to the confidence
values shown in section c) of table 7.1. In this experiment, the confidence values

identify the wrong activities to be the most likely ones.

Considering the results of all of the experiments, the durations that persons
spend at certain locations might be an indicator for some activities but solely
this information cannot be used as a reliable feature for activity recognition. We
think, the unreliable recognition rates of the able-bodied-person table setting
task and the cleaning task result from the high variances of the activity models
regarding the durations. The durations that persons spend at certain locations
seem to be quite different from person to person but also from time to time, since

it might be influenced by factors that we don’t account for in our model.

In the next sections, we will thus focus on the evaluation of activity recogni-
tion based on the patterns of locations that a person visits during task execution

which seem to be a more promising candidate feature for activity recognition.

7.2.1.2 Activity Recognition Based on Location Patterns using
Generalized Levenshtein Similarity

In this experiment, we evaluate how well we can distinguish different activities
based on the order in which different locations are visited by a person during
task performance. We therefore use data from the TUM Kitchen Dataset to gen-
erate a spatial model of the environment as explained in section 4.1. The spatial
model consists of Context Dependent Spatial Regions (CDSRs) modeled as two-
dimensional gaussians . It represents locations at which a person is standing
still while performing an action during the execution of an activity. The spa-
tial model generated from data of the TUM Kitchen Dataset is used for activity
recognition in the same kitchen based on data of the TUM Kitchen Dataset 2
(Setup 1). We furthermore transfer the spatial model to the second scenario of
TUM Kitchen Dataset 2 as explained in section 4.1.2 to test if activity recognition
can be performed in a previously unknown environment based on a transferred

model (Setup 2). Both spatial models are illustrated in Figure 7.3.

116

7.2. Evaluation of Activity Recognition

TUM kitchen dataset Setup 2

E n

Figure 7.3.: The left picture shows the setup of the TUM Kitchen Dataset and
corresponding spatial model (Setup 1). Location "A" represents the
position of the place mat and napkin, "B" describes the drawer where
the cutlery is stored, "C" represents the cupboard where the plate and
cup are in and "D" is the table that is to be set. On the right picture,
Setup 2 is shown. Here our model is transferred to the second kitchen
of TUM Kitchen Dataset 2. The expected locations of the model have
been adapted to the new environment resulting in the spatial model
shown on the lower right picture.

117

7. Evaluation

Using data from the TUM Kitchen Dataset and the corresponding spatial model,
we generate STPRs of the impaired-person table setting task and the able-bodied-
person table setting task as explained in section 4.2. Using this STPR as a model,
we calculate confidence values for each plan based on the Generalized Levenshtein
Similarity (GLS) [95] for Setup 1 and Setup 2 as explained in section 4.2.3 These
values express a measure of likelihood of the observed activity towards each
modeled activity. Table 7.2 illustrates the confidence values when observing the
impaired-person table setting task in section a) and the values when observing
the able-bodied-person table setting task in section b). The values indicate that
in our experiments consisting of three different tasks, we are able to identify the
table-setting task.

a) Impaired-person table setting

ACtiVity GLS setpr GLS setup2
Impaired-person table setting 0.982 0.943
Able-bodied-person table setting 0.429 0.429
Cleaning task: 0.357 0.340

b) Able-bodied-person table setting

ACtiVity GLS setup1 GLS setup2
Impaired-person table setting 0.429 0.500
Able-bodied-person table setting 0.929 0.964
Cleaning task: 0.714 0.714

Table 7.2.: Confidence values for different activities of the TUM Kitchen Dataset
and TUM Kitchen Dataset 2 using the Generalized Levenshtein Simi-
larity (GLS).

In contrast to the durations in section 7.2.1.1, the values of the impaired-person
table setting task strongly deviate from the able-bodied-person table setting task
since their patterns are quite different. Thus, a reliable distinction between the
two table setting tasks is possible in this case. Unfortunately, we were not able to
create a general model of the cleaning task that could have been used for activity
recognition. This is due to the fact that while recording the data of TUM Kitchen
Dataset 2, we did not specify the order in which the persons should clean which
object. Thus, the order deviated from person to person and the strictly linear
structure of STPRs does not provide the possibility to model such variations.

118

7.2. Evaluation of Activity Recognition

In the experiments conducted so far, the spatial model, which is used to map
positions of a person to CDSRs, only consists of four CDSRs that furthermore
were distributed around the kitchen in a way that their corresponding gaussians
did not overlap. Thus, the qualitative descriptions of locations queried from
the spatial model could easily be assigned correctly when the spatial model was
queried with a position. But when trying to recognize several activities in con-
fined spaces, the mapping from two dimensional coordinates to qualitative spa-
tial regions might not always be as unique as in the examples so far. To evaluate
our approach in such a setting, we set up a second scenario using the Morning
Routine Dataset described in section 6.2.2, accounting for a variety of activities
that are to be detected. The challenge in this environment is that the person is
standing at several CDSRs that are close to each other during the performance
of different tasks. When building the spatial model, this results in gaussians of
the CDSRs that are close to each other and partly overlap as illustrated in Figure
7.4.

Figure 7.4.: The left picture shows the spatial of the TUM Kitchen Dataset with
only a four context dependent spatial regions as used in the first ex-
periments. In this case, it is easy to distinguish between different
locations. The right picture shows the spatial model of the same
kitchen environment when accounting for more CDSRs. Since some
furniture objects are close to each other, some of the CDSRs overlap,
making a correct assignment of human positions to a CDSR challeng-

ing.

We decided to use only 12 of the 14 days of the Morning Routine Dataset, where
the participant had cereals or curd cheese for breakfast to keep the effort lim-
ited on the one hand. On the other hand, there were only 2 more days where
the participant had bread for breakfast and the generation of a general model

119

7. Evaluation

for "Prepare Bread" and meaningful tests can hardly be done with such a small
number of instances. We define the activity models from ground truth data and
perform activity recognition for each of the 12 days using the GLS approach.
Activity recognition has quite a hard time distinguishing between the different
activities as can be seen in the exemplary case of “Prepare Cereals”. Results for
this activity averaged over 8 days of the dataset (in which the participant of the
dataset had cereals) can be seen in table 7.3 for the simulated and the real dataset.
Here, P(a),;, represents the probability of activity a being observed in experi-

ments of the simulated dataset and P(a),,, corresponds to the same probability

rea
for experiments in the real dataset. For this evaluation, we calculated probabili-
ties from the confidence values by normalization over all activities. This step is
necessary to enable a comparison between activity recognition using GLS with
activity recognition based on Hidden Markov Models as we will show in the
next section. Even though, the maximum of the average values indicates that
mostly “Prepare Cereals” is correctly classified as the most likely activity, vari-
ance between the mean values of all plans is small and in some cases, activity
recognition is undecided or wrong. In the simulated data, still 7 of the 8 “Pre-
pare Cereals” instances are classified correctly, but with low confidence. In one
out of the 8 cases, “Prepare Cereals” has been classified wrongly as one of “Pre-
pare curd cheese” or “Clean table after cereals” (with the same probability). For
the real data, only 2 of the activities were correctly classified, in 4 cases, classifi-
cation was wrong and in the remaining 2 cases, probabilities for two plans were

the same (including the correct one).

Activity P(a)sim (%) P(a),eq1(%)
Drink water 11.24 11.87
Prepare cereals 23.40 19.94
Prepare curd cheese 21.40 19.49
Clean table cereals 18.34 18.11
Clean table curd cheese 16.61 17.66
Prepare work 9.00 12.93

Table 7.3.: Probabilities for activities when “Prepare cereals” is performed using
STPRs and GLS for activity recognition.

In contrast to the first experiment, activity recognition performs significantly

worse, which we found to be caused by observations of incorrectly labeled spa-

120

7.2. Evaluation of Activity Recognition

tial regions when querying the spatial model. In the first experiment, there were
only few spatial regions that did not overlap as shown in Figure 7.4 on the left.
Thus, the spatial model could return one unique CDSR with high confidence
when queried with a position. In the second setting, we accounted for far more
spatial regions that were located close to each other, resulting in an overlapping
of the corresponding gaussians illustrated in Figure 7.4 on the right. This is due
to the fact that in some kitchens, cupboards are for example located above draw-
ers or other cupboards, which results in the human standing at the almost same
location when picking up an object from a drawer or a cupboard that is directly
above the drawer. The overlapping of such CDSRs results in high uncertainties
in the assignment of a location of a person to a CDSR. Our approach of activ-
ity recognition performs such an assignment by querying the spatial model each
time the person is standing still. Since STPRs currently do not support a model
of uncertainty in the observations, activity recognition using the GLS approach
heavily relies on the correct assignment of positions towards CDSRs and thus

performs worse in settings like this one.

7.2.1.3 Activity Recognition Based on Patterns using HHMMs

To account for the high uncertainties that come with overlapping CDSRs and also
for uncertainties in the activity patterns, we found the application of Hierarchical
Hidden Markov Models (HHMMSs) to be a perfect fit. HMMs have already been
proven to work well in the area of activity recognition. We use the same data as
in the last experiment for the generation of the activity models from the ground
truth data of the Morning Routine Dataset to learn the state transition model of
the HHMM. The observation model of the HHMM is estimated as explained in
section 5.2.2 using 10.000 iterations.

To perform activity recognition using the HHMM, we estimate probabilities for
all of its internal states, the activities, at each time step using the Forward-Backward
Algorithm as explained in section 5.2.3. This provides us with the posterior
marginals over all internal states and thus a probability distribution over all
modeled activities. Table 7.4 shows probabilities for each activity averaged over
the 8 days when the observed person performs the “Prepare Cereals” activity.

121

7. Evaluation

Compared to the probabilities when using GLS as in table 7.3, we see that HHMM-
based recognition clearly outperforms the GLS approach. The probabilities indi-
cate that the observations fit well to one of the “Prepare Food” tasks. However,
the distinction between “Prepare Cereals” and “Prepare curd cheese” is difficult,
since the difference between both plans is rather small. When preparing cere-
als, the person goes to the ceramic glass cook top (location of the cereals) first,
whereas when preparing curd-cheese, he first visits the fridge. The location of
the ceramic glass cook top and the refrigerator are very close to each other (as
can be seen in picture 6.8 in chapter 6), so especially when using the noisy Kinect

tracking, we can hardly distinguish between those places.

Activity P(a)im (%) P(a),eq(%)
Drink water 2.30 1.78
Prepare cereals 55.56 41.98
Prepare curd cheese 26.68 34.08
Clean table cereals 9.84 5.57
Clean table curd cheese 3.44 14.20
Prepare work 2.18 2.42

Table 7.4.: Probabilities for activities when “Prepare cereals” is performed using
HHMMs for activity recognition.

This experiment shows that activity recognition based on patterns of locations
using HHMMSs can better cope with uncertainties in the observations. One fur-
ther advantage is the possibility of using HHMMs with a continuous stream of
observations, making it applicable for live-activity recognition. Since the GLS
approach needs to be given the full sequence of observations to compute a simi-
larity measure, such a live application would not be possible in the current GLS-

based implementation.

7.2.2 Live Activity Recognition Using HHMMs

The experiments illustrated above show that the HHMM based approach is able
to detect single activities even though some spatial regions are close to each other
and thus overlapping. However, both experiments so far tried to recognize single

activities, given the starting- and ending times of the activities are known. The

122

7.2. Evaluation of Activity Recognition

more interesting, although more difficult use case of our activity recognition is
the observation of a person performing several activities after another. We there-
fore set up our HHMM based approach to perform live activity recognition in a
kitchen environment. In the following experiments, we will measure how well
this approach is able to detect different activities over time, including transitions
between activities. We used the Morning Routine Dataset again and calculate

precision and recall values for each activity a in the following way:

t, Nt

precision =

*
t(l

t, represents the time when activity a has been executed by the participant ac-
cording to the ground truth labels of the dataset and t’ stands for the time where
the detection estimates activity a to be the most likely one. Accordingly, recall is

calculated in the following way:

t, Nt

recall =
t

a

Furthermore, we calculate the accuracy which is the proportion of true classifica-
tion results (true positives and true negatives) and all classification results during

the whole observation period t,y,:

ty N 1]+

fo N €

accuracy =
t

obs

t, corresponds to the time when activity a has not been performed and t* rep-
resents time periods when activity a has not been classified as the most likely
activity.

The transition probabilities of the HHMM were manually generated using the
ground-truth data of the Morning Routine Dataset. We did the experiment using
data from simulation as well as the real data and the resulting precision, recall
and accuracy values for each activity can be found in Table 7.5 a) for the simu-
lated data and Table 7.5 b) for the real data. Although, the precision and recall
rates might suggest otherwise, the “Prepare Work” activity is recognized very

well in most cases as can also be seen in a qualitative evaluation in figure 7.5.

123

7. Evaluation

The reason for having lower precision and recall rates in our experimental set-
ting is that, when recording the Morning Routine Dataset, we unluckily chose
the position that was used for the initialization of the motion tracker (and the
starting position of the human in simulation) close to a CDSR that is (uniquely)
assigned to the “Prepare Work” activity. This created a strong bias towards this
activity in the beginning resulting in lower precision rates of the “Prepare work”

activity and lower recall rates of the “Drink water” activity.

a) Simulated data

Activity Precision (%) Recall (%) Accuracy (%)
Drink water 66.3 62.5 86.8
Prepare cereals 95.1 96.6 94.4
Prepare curd cheese 63.8 46.5 62.8
Clean table cereals 87.9 64.7 94.0
Clean table curd cheese 45.2 447 89.5
Prepare work 44.6 68.0 92.6

b) Real world data

Activity Precision (%) Recall (%) Accuracy (%)
Drink water 35.9 37.0 76.4
Prepare cereals 51.9 67.5 62.9
Prepare curd cheese 34.8 25.0 63.0
Clean table cereals 68.4 23.2 82.3
Clean table curd cheese 85.8 34.1 84.9
Prepare work 63.4 91.3 92.6

Table 7.5.: Average precision and recall for 12 experiments of the simulated and
real data using only locations with HHMMs.

The values indicate that using our approach, we can distinguish between the
different activities. Again, if it comes to the recognition of the different food-
preparing and cleaning activities, distinction between them is rather difficult due
to their similarity which seems to be a bigger problem in the noisy real-data
than in simulation. To get an impression if our the approach is able to reliably
recognize the different categories of activities, we performed another experiment
using the real data. We merged the “prepare cereals” and “prepare curd cheese”
activities into one “prepare food” activity as well as both clean table plans into
one. Again, we calculated precision, recall and accuracy for this experiment,
which resulted in the values shown in Table 7.6.

124

7.2. Evaluation of Activity Recognition

I
|
|
|
08 !
|
> |
+ |
— 06 |
|
© Prepare ann| | |
0O . Prepare curd cheese | n J
Prepare cereals |
o Clean after cereals !
— Clean after curd cheese
Q_ Prepare for work
02 GT Prepare drink s | [~
GT Prepare cereals Y
GT Prepare curd cheese \
GT Clean after cereals |
GT Clean after curd cheese ,‘_(
GT Prepare for work .
1.34632+09 1.34632e+09 1.34632e+09 1.34632e+09 1.34632e+09 1.34632e+09
1
08
-]
= 06
(4] "*"W o
Q Prepare curd cheese
04 Prepare cereals
(@] Clean after cereals
jul Clean after curd cheese
o Prepare for work
02 GT Prepare drink s
- GT Prepare cereals =——
GT Prepare curd cheese
GT Clean after cereals s
GT Clean after curd cheese /—}%
N GT Prevare for work A\
1. 1. 1. 1. 1. 1. 1 1. 1
1
08
.
— 06
g 0al]
— Prepare drink
o Prepare food
Clean table
02| prepare for work
GT Prepare drink |
GT Prepare food
GT Clean table s
GT Prepare for work n
1 1. 1 L 1 L 1 L 1

Figure 7.5.: The upper picture shows probabilities of the activities over time as
well as the ground-truth of one morning routine of the simulated
dataset using the online activity recognition. In the middle picture,
the same plan probabilities are illustrated for the real data. Here, the
activity recognition has a hard time distinguishing between the dif-
ferent food preparing and cleaning tasks due to their similarity. The
lower picture shows plan probabilities of the same morning-routine
as the middle picture, but in this case, “Prepare cereals” and “Pre-
pare curd cheese” are merged to a “Prepare food” activity and the
two clean-table activities have been merged to a single one.

A plot of plan probabilities over time for the simulated data, real data and real

data with merged “prepare food” and “clean table” plans can be seen in Figure
7.5. The results suggest that most of the time, we can draw conclusions about

125

7. Evaluation

Activity Precision (%) Recall (%) Accuracy (%)
Drink water 64.0 61.6 87.0
Prepare food 69.4 68.7 73.8
Clean table 49.2 79.5 79.9
Prepare work 90.6 48.5 94.4

Table 7.6.: Average precision, recall and accuracy for 12 experiments of the real
data using only locations with HHMMs and combined plans.

different human activities using only CDSRs. Only the “Drink water” activity is
not recognized at all in some cases. We think this effect is due to being the first
activity the participant performed, thus only few observations are given to the
HHMM. Since we initialize the probabilities of all of our states of the HHMM uni-
formly, it has a hard time finding the correct activity at the beginning when only
one or two observations are available. To improve recognition rates at the begin-
ning, one could think of biasing the initial state distribution (which currently is
initialized uniformly) of the HHMM for some activities since, for instance, a hu-
man will most likely have breakfast and afterwards clean the table not the other
way around.

Another way to increase recognition rates is the inclusion of object detections.
Since one of our goals is to avoid equipping the environment extensively with
sensors, RFID tags, etc., we investigated the use of only few object detections
that we use to bias our recognition rates by only observing which objects appear
in an activity at all and which don’t. Therefore, we penalize the probability of an
activity by a factor of 0.5 if we detect an object that is not being used in the ac-
tivity and we reward the probability of an activity by a factor of 0.5 if a detected
object is used in the activity. We decided to use this rather simple approach as a
proof-of-concept, but there are also more elaborate systems based on sequences
of object detections, for example by Buettner et al. [10, 61, 11]. We classified
a detected object as “used by the human” when it was in reach of the human
and changed its position. Precision, recall and accuracy for the simulated dataset
with partial object detections can be seen in Table 7.7. Here, out of the 25 object
interactions of the human user, on average 15 were detected. Using those 60.3 %
of detected object interactions already allows us to bias the activity recognition
and increase the system performance (on average: Accuracy of 94.1 %). Unfortu-

126

7.2. Evaluation of Activity Recognition

nately, for the real data, the inclusion of object detections we recorded with visual
markers and a Kinect did not significantly improve our results due to rather bad
recognition of the objects. Because of the small size of our markers and long dis-
tances between objects and Kinect, we obtained many wrong object detections.
Also, objects that were standing still were wrongly classified as moving due high
sensor noise. The accuracy values when using real data with the marker-based
object detections ranged between 57.5 % and 91.0 % with an average of 76.41
%.

Activity Precision (%) Recall (%) Accuracy (%)
Drink water 90.2 73.5 94.2
Prepare cereals 96.9 98.1 96.4
Prepare curd cheese 97.9 88.4 91.0
Clean table cereals 84.1 73.4 96.2
Clean table curd cheese 61.7 48.2 91.3
Prepare work 68.8 86.5 95.7

Table 7.7.: Average precision and recall for 12 experiments of the simulated data
with partial object detections using HHMMs.

7.2.3 Learning Transition Probabilities Using the Baum-Welch
Algorithm

In the experiments so far, we used the ground truth data to manually generate
activity models that were used for the HHMM-based activity recognition. But
it is also possible to directly learn the parameters of the HHMM only from ob-
servations. This is commonly done using the Baum-Welch Algorithm [73] as
explained in section 2.2.3 in chapter 2. The algorithm uses an initial guess of
the state-transition probabilities and the emission probabilities as input and em-
ploys a variant of Expectation Maximization [57] to calculate a maximum like-
lihood estimate of the state-transition model and the sensor model. If no prior
data is given for the initial guess, mostly the initial probabilities are chosen to
be distributed uniformly. We performed one experiment where we learned the
parameters of the HHMM using 13 experiments of the Morning Routine Dataset
as training data and one experiment for a qualitative evaluation. As input for
learning, we use the observations, which, in our case, represent CDSRs at which

127

7. Evaluation

the observed person is standing still. We obtain those CDSRs by querying the
spatial model for the most likely CDSR at the position where the person is stand-
ing. We assume the robot to be provided with the current activity that the person
is performing at every time but it does not know about the order in which CD-
SRs are visited during task execution. We decided to use this simplification since
the detections of transitions between activities is a non-trivial task and is not
the focus of this thesis. We use emission probabilities estimated from the spatial
model as explained in section 5.2.2 as initial guess for the sensor model and ini-
tialize the state transitions uniformly since we assume our robot to have no prior
knowledge about the activities at the beginning. We iteratively apply the steps
of the Baum-Welch algorithm until it converges and use the updated HHMM
to perform activity recognition on the test data. A qualitative evaluation of the
experiment is shown in Figure 7.6. We see that activity recognition for the all ac-
tivities except for the "Prepare Cereals" activity performs really well. However,
"Prepare Cereals" is wrongly classified as "Prepare Curd Cheese" and "Prepare
Drink". This can on the one hand be explained by the similarity of "Prepare Curd
Cheese" and "Prepare Cereals" as already mentioned in the experiments before.
On the other hand, one should note that commonly, large sets of training data
are needed by learning approaches to enable them to perform well. The Morn-
ing Routine Dataset we used in our experiments only consists out of 14 instances
of data and when trying to learn a model for "Prepare Cereals", we can even only
use data of the 8 days where the participant had cereals for breakfast. Splitting
these data into training and testing data limits the training data for the "Prepare
Cereals" activity to 7 days. In the case of "Prepare Curd Cheese" (5 days in total),
it even looks worse and for "Prepare Bread", we only have two instances of data.
However, this exemplary, qualitative evaluation proves that generally, the learn-
ing of the parameters of an HHMM for activity recognition is possible, but one
would need a larger amount of data to obtain good results. A domestic service
robot could, for instance, could collect such data when observing a person for a

long time.

128

7.3. SPRAM

08 -

06 -

o4 Prepare drink
Prepare curd cheese

Prepare cereals
Clean after cereals
Clean after curd cheese ,

Prepare for work
GT Prepare drink s
GT Prepare Cereals s

GT Prepare curd cheese
GT Clean after cereals s

GT Clean after curd cheese ‘—ﬁi /I
GT Prepare for work =\ =\ / . l=- 7/ A

0
1.34623e+09 1.34623e+09 1.34623e+09 1.34623e+09 1.34623e+09 1.34623e+09 1.34623e+09 1.34623e+09

0.2

Figure 7.6.: The picture shows results of HHMM based activity recognition of the
test data using parameters that were learned by the application of the
Baum-Welch Algorithm.

7.3 SPRAM

Most of our experiments show that the different food-preparing and cleaning-
tasks can only be distinguished with a certain amount of uncertainty. Given
these uncertain results from activity recognition, predictions about future lo-
cations can be generated as visualized in Figure 7.7. We use the results of the
Forward-Backward Algorithm (see section 2.2.2) that is used for activity recog-
nition. The Forward-Backward algorithm provides us with a state distribution
over all states of the HHMM, meaning not only the internal states, but also the
production states, which represent CDSRs. Given this state distribution, we can
use the Forward Step of the algorithm to compute predictions about likely next
locations of the observed person as explained in section 5.3.2. Some of the loca-
tions (in our case the table) can be predicted very reliably resulting in only one
gaussian with a high weight as shown in the second picture of the first row in
Figure 7.7. The figure shows a weighted spatial model representing a probabil-
ity distribution about which CDSRs the person is likely to visit next based on
the results of activity recognition. In other cases, our system was not too certain
which location would be visited next resulting in several gaussians with similar
weights as illustrated in the first image of the first row in Figure 7.7. However, in

this case, we still have a weighted spatial model which gives information about

129

7. Evaluation

Figure 7.7.: The spatial model displays probabilities about where the human is
expected to go next. These 20 images show the predictions of likely
next locations of the person each time, a new observation is added to
the HHMM.

several locations that are possibly visited in near future. The advantage of such
a weighted spatial model is the fact that even in situations when activity recog-
nition can only provide uncertain results, a robot has an impression about which
regions are more likely to be visited by the person than others. In the case of
a household robot, the robot could try to avoid these regions in case it does not
want to disturb the human or search those locations if it is looking for a person.

An exemplary, qualitative evaluation is presented in Figure 7.8. Here, we see the
probabilities of predicted locations plotted over time for one day of the Morning
Routine Dataset. We can see that mostly, our approach can quite reliably predict
a person going to the table, while most other location predictions have a lower
probability of being visited. This can be explained by similarities between the
different activities the person performed during his/her morning routine. In

most of the activities, like table setting, table cleaning, etc, the person visits the

130

7.3. SPRAM

table] — — 1M
bottle-place
cupboardl
refrigerator
cupboard0
drawer
even

sink
table2 — —
door

[

probability
I

[T

o1 E 4
o B — = =
1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09 1.34624e+09

time

Figure 7.8.: This image shows likely next locations of a person during his/her
morning routine according to SPRAM.

table after he/she visited another location. This way, our system exploits those
similarities to generate reliable predictions even when activity recognition is not

exactly sure which activity is actually performed.

Although, the advantage of the proposed approach is the fact that no unique
prediction of one CDSR is needed to be useful, we still want to present a quan-
titative evaluation. The next table shows the correctness of the predictions that
were generated by our system. A prediction is defined to be correct, if the ob-
served person visits the predicted CDSR with the highest likelihood in his/her
next step.

Day Correct predictions (%) Day Correct predictions (%)

1 42 7 68
2 61 8 64
3 61 9 60
4 60 10 65
5 65 11 60
6 72 12 54

Table 7.8.: Correctly predicted next locations of the person averaged over each of
the 12 experiments.

We can see that the correctness of the predictions ranges between 42 % and 72 %
with an average of 61 %. While this might seem like a rather low value, one
should keep in mind that those predictions were made based on unreliable data
and even when a prediction in this table has been wrong, the robot still has its
weighted spatial model.

131

7. Evaluation

7.4 Application: Expectations for a Household Robot

This section will demonstrate the application of the expectations framework de-
scribed in chapter 3 in two simulated scenarios and one real-world scenario. The
simulated scenario features a domestic robot assistant using a variety of differ-
ent expectations to detect unexpected situations in an apartment. Furthermore,
we use the Morning Routine Dataset described in chapter 6 to equip a domes-
tic robot helper with expectations about human routine behavior and showcase
the applicability of the expectations framework by enabling it to distinguish nor-
mal from unexpected behavior in a kitchen environment. The expectations are
generated based on the integration of activity recognition into the expectations

framework as explained in section 5.4

7.4.1 Simulated Human Apartment

In this simulated scenario, we demonstrate the applicability of the expectations
framework explained in chapter 3 in different situations. We use 5 to 15 expec-
tations grouped in different categories to estimate the normality of situations in
a simulated apartment environment including a person and a domestic service
robot as shown in Figure 7.9. The person is modeled using the avatar of the
MORSE simulator that can be controlled like players in 3D computer games as
explained in 7.1. The robot is equipped with an object detection sensor that re-
turns the name of objects within the field of view of the robot and their positions.
The robot is also able to detect if doors are open or closed as well as the positions
of humans, while it is not aware of the identity of different persons. The robot
is controlled using the ROS middleware and the “move_base”* package for 2D

navigation.

*http:/ /wiki.ros.org/move_base

132

http://wiki.ros.org/move_base

7.4. Application: Expectations for a Household Robot

Figure 7.9.: A simulated apartment scenario including a person and a domestic
service robot in the MORSE simulator.

7.4.1.1 Kitchen robot

For this scenario, we assume the robot to be located in the kitchen where the ta-
ble has been set for breakfast as illustrated in Figure 7.10 on the left. Expectations
about the objects on the table tell the robot that the objects are not expected to lie
on the ground and the objects are not expected to move. For each object, we cre-
ate one expectation to express that the object is not expected to move and another
one modeling that the object is not expected to lie on the ground. The following
objects were considered in this scenario: fork, knife, jam, hazelnut spread, cere-
als, bowl and plate. We furthermore generate an expectation modeling that the
table is expected to stand still. We obtain 15 expectations in total that are con-
tinually validated every two seconds, returning an average normality value. A
summary of the types of expectations used for this scenario along with their cor-
responding category (according to section 3.1.1) and weight in the normality tree
is illustrated in table 7.9.

Expectation Type Category Weight
Object-on-floor ~ Logical Expectation 1
Object-movable Logical Expectation 1

Table 7.9.: Expectation types used in the Kitchen Robot scenario.

133

7. Evaluation

Figure 7.10.: The kitchen robot scenario in the simulated apartment. Left: A sim-
ulated PR2 robot starts navigating away from the table. Middle:
The robot inadvertently hits the table causing objects to fall to the
ground. Right: The robot looks back, detecting more objects lying
on the ground.

In our scenario, we assume the robot to just have finished setting the table and
it is navigating towards the door when it inadvertently hits the table with its
side. The hit causes some objects on the table to drop onto the kitchen floor as
illustrated in Figure 7.10 in the middle. The detections of moving objects and
objects lying on the ground immediately causes the average normality to drop.
When the robot turns around at a later point in time, it detects more objects lying
on the ground as shown in Figure 7.10 on the right. Figure 7.11 shows the average
normality plotted over time.

As soon as the robot hits the table, the average normality decreases since it de-
tects objects within its field of view moving unexpectedly, falling onto the floor.
Since the robot is moving away from the table, not all objects that fell onto the
floor are in the field of view of the robot’s object detection sensor. After all objects
stopped moving, the average normality is around 0.7. When the robot later turns
around and detects more objects lying on the ground, it also recognizes that some
of the objects have moved since their last detection, which leads to another drop
of the average normality to a value around 0.4. It finally slightly increases since
no objects are moving any more and converges at a value of around 0.5. The
normalities in this scenario are a valuable indicator to the robot that an action of
the robot could have caused a change in the normality of the situation and could
serve as input for an Explanation Generator, which could use discrepancies be-
tween expectations and measured facts to create a new goal and ultimately react
appropriately. Such an approach has, for instance, been proposed in the work of
Klenk et al. [56].

134

7.4. Application: Expectations for a Household Robot

average normality ——

average normality

robot hits table

robot detects more objects on the ground

L L L L L L
1.37891 1.37891 137891 1.37891 1.37891 1.37891

time

Figure 7.11.: Average normality of the simulated kitchen robot scenario plotted
over time.

The same set of expectations could also enable a robot to detect damages caused
by an earthquake or an infant throwing objects on the floor. Although, the robot
may not be equipped with the appropriate sensors to detect the cause of an ab-
normal situation, it will at least be aware that something is unusual and it might

have to take action.

7.4.1.2 Patrol Robot

The second scenario is located in the same apartment, where our household robot
— while having no other duties over night — is guarding the apartment while
the human is sleeping. It patrols between several locations, staying two seconds
at each location, checking if everything is as expected. Therefore, five expecta-
tions are used: The TV is expected to be on the console in the living room and it
is expected not to move. Humans are only expected to be in the bedroom or out-
side the house during nighttime and the entrance door of the apartment should
be closed. We furthermore expect the navigation of the robot to function nor-
mally. This can, for instance, be of advantage if a burglar would try to block the
robot. The robot navigation expectation is generated as a temporal expectation
each time the robot starts moving to a new waypoint. It queries the navigation
path planner for a new path plan and estimates the time to the location given
the length of the path plan and the robot’s average speed. It can then estimate

135

7. Evaluation

the expected time needed to reach the next waypoint and generate a temporal
expectation. When a waypoint is reached, the expectation is removed until the
robot navigation computes a new navigation plan for the next waypoint. This
means that, while the robot is moving, five expectations are validated, but when
the robot is standing still for a short time, only four expectations are active. Ta-
ble 7.10 lists the different expectation types that were used in this scenario along

with their categories (according to section 3.1.1) and weights in the normality

tree.
Expectation Type Category Weight
Object-at-location Logical Expectation 1
Object-movable Logical Expectation 1
Human-at-location Logical Expectation 1
Door-closed Logical Expectation 1
Navigation-functional Temporal expectation 1

Table 7.10.: Expectation types used in the Patrol Robot scenario.

We use the human avatar to simulate a burglar entering the apartment during the
robot’s patrol. He opens the entrance door and passes the hallway, entering the
living room. There, he grabs the TV and leaves the apartment through the door,
passing the hallway a second time. Figure 7.12 illustrates the simulated burglary.
In Figure 7.13, the average normality during the burglary is plotted over time. As
soon as the open entrance door is detected and a person is walking in the hallway,
the average normality drops. The slight increase after the first drop is caused by
the robot navigation expectation. When the average normality drops for the first
time, only four expectations are active since the robot was temporarily standing
still. When the robot starts moving again, a new navigation expectation is gener-
ated, causing a slight increase of the average normality. When the TV is detected
to have moved and is outside of the living room, the average normality drops
to its lowest value of around 0.2. However, the average normality never drops
to 0 since the navigation of the robot is still working correctly. After the burglar
has left the apartment, the average normality slightly increases again. Leaving
the apartment with the TV, the burglar has to pass the robot really closely, which
causes the robot’s navigation to temporarily being blocked due to security rea-

sons. Due to this blocking of the navigation, the robot is not able to reach its

136

7.4. Application: Expectations for a Household Robot

J

Figure 7.12.: The patrol robot scenario. Left: The robot detects the open door
and the burglar in the hallway. Middle: The robot detects the TV
moving and outside in the living room. Right: The burglar has left
the apartment with the TV.

T
average normality ——

robot detects TV moving and
outside the living room human outside again

robot detects open door robot b.locked

and human in corridor

13789 13789 13789 13789 13789 13789 13789

Figure 7.13.: Average normality of the patrol robot scenario plotted over time.

next waypoint in time, and the robot’s temporal navigation expectation causes
the average normality to decrease linearly towards the end.

In an integrated system, the robot should of course not just observe the situation
until a burglar has left, but start to take action in the case of such a low average
normality. An open question here is the threshold of starting a corrective action.
Just noticing a person might not be enough evidence to call the police since the
person might be another inhabitant coming home late. In this scenario, an ad-
equate reaction of the robot could be trying to identify the intruder, notify the
inhabitant of the flat or even calling the police at some point.

137

7. Evaluation

7.4.2 Scenario: Expectations about a Human Morning Routine

This last scenario will demonstrate the applicability of the expectations frame-
work in a real world scenario using motion tracking data of the Morning Rou-
tine Dataset explained in chapter 6. It uses a semantically annotated map of the
environment in a module that performs SPRAM as explained in chapter 5 based
on models of human activities as explained in chapter 4. The SPRAM module
enables us to detect typical human activities from the observation of human task
performance and to predict future locations of the observed person as explained
in section 5.3.2. The semantically annotated environment map is combined with
learned models of locations where humans typically are located when picking
up objects from cupboards, drawers and planes as explained in chapter 4. The
activity models used for activity recognition were hand-coded in this experiment
and include locations that a person visits during task performance as well as the
durations that he/she commonly spends at the corresponding locations. How-
ever, such models of activities of daily living can also be generated automatically
by observing motion tracking data as explained in chapter 4. The SPRAM mod-
ule provides our robot with a probability distribution about which activity the
human is likely to be executing as well as probabilities about which location the

human is likely to visit next.

Given the limited data of the Kinect sensors, we used the following two expec-
tations, grouped in a composite expectation that we call human activity expecta-
tions:

* Location expectation: A probabilistic expectation about the locations that the
person is likely to visit next;

* Duration expectation: A temporal expectation about the duration that a hu-

man usually stays at certain locations.

Each time the observed person is detected to be standing still, we query our spa-
tial model to which location the current position most likely corresponds. We
then add an observation to the HHMM and update the location expectation and
the duration expectation. The person is considered to be “standing still” when
the center of mass of the person is moving less than 25 cm within 0.5 seconds (0.5

138

7.4. Application: Expectations for a Household Robot

m/s). In this case, the SPRAM module returns a new probability distribution
estimating probabilities for each location being visited next by the person. This
probability distribution is used to generate a probabilistic expectation over likely
next locations of the person. Given the durations that a person typically spends
at certain locations, we can also create a temporal expectation about these dura-
tions when the person is standing still. We define the validation function of the
temporal expectation to linearly decrease its normality value when the expected
time at a location is exceeded. Both expectations generated so far are dynamically
updated each time the person is standing at a new location. Table 7.11 shows the
expectation types used in this scenario along with their categories (according to
section 3.1.1) and weights in the normality tree.

Expectation Type Category Weight
Duration-at-location Temporal Expectation 1
Next-location Probabilistic Expectation 1

Table 7.11.: Expectation types used in the Morning Routine scenario..

In Figure 7.14, the estimated average normality over time is shown for three
different situations: The green line represents a typical morning routine of the
participant, mostly corresponding to the robot’s expectations. In this case, the
average normality is quite high (0.83 on average). In some cases, the normal-
ity drops to almost 0.6, which is due to uncertainties in the activity recognition.
The blue dotted line shows the average normality of an experiment where the
person starts performing his typical morning routine but then just stays sitting
at the table instead of continuing his usual activity. In this case, the situation is
classified as quite normal as long as the duration expectation does not exceed its
expected duration. As the expected duration is exceeded, the temporal expec-
tation causes the average normality to decrease linearly as time advances. One
possible reason for the person not to move any more could be that he/she is sick
or even unconscious, but maybe he/she just needs more time than usual due to
any other reason. The red line illustrates the average normality when the robot
observes a task that is not part of the morning routine and thus is not expected.
In this case, the person is performing a cleaning task that was generated using
the data of the TUM Kitchen Dataset 2. In this case, one can clearly see that

139

7. Evaluation

morning routine

normality
o

02

time

Figure 7.14.: Estimated average normality of three different situations over time.
Green line: average normality during a typical observed morn-
ing routine; dotted blue line: average normality for an interrupted
morning routine; red line: average normality when observing a
cleaning task.

Dayl | Day2 | Day3 | Day4 | Day5 | Day 6 | Day 7
0.76 | 0.75 | 0.84 0.82 0.76 0.81 0.80
Day8 | Day9 | Day10 | Dayll | Day12 | Dayl3 | Dayl4
0.75 | 0.84 | 0.80 0.81 0.83 0.82 0.83

Table 7.12.: Average normalities while the participant performed his morning
routine using expectations about the next expected location and the
duration the person stays maximally at each location. Averaging over
all days, the overall normality of the observed situations is 0.80.

the average normality is significantly lower most of the time when the person

executed the unexpected cleaning task.

The average normality values averaged over time for all 14 days of the morn-
ing routine data set are illustrated in Table 7.12. The average normality of the
cleaning task data (when expecting the morning routine) averaged over time is
shown in Table 7.13. The tables indicate that in most cases only the two sim-
ple expectations about the predicted future location and the duration can distin-
guish between expected and unexpected behavior in a real-world setting. For the
last example, we used data of the nine different persons that were performing a
cleaning task in the TUM Kitchen Dataset. We are aware that the use of data of

140

7.5. Conclusion

Person 1 2 3 4 5 6 7 8 9
Avg. normality | 0.40 | 0.45 | 0.53 | 0.49 | 0.48 | 0.57 | 0.71 | 0.51 | 0.46

Table 7.13.: Average normalities while the the nine participants of the TUM
Kitchen Dataset 2 performed a cleaning task which is not expected
during the morning routine. Averaging over all persons, the overall
normality of the observed situations is 0.51.

different persons is not optimal in this case, but we think this still provides an

indication about the way, our system reacts to activities that are not expected.

7.5 Conclusion

In this chapter, we evaluated the techniques that were proposed in this thesis to
enable a robot to explicitly account for persons and distinguish normal from un-
expected situations. We therefore investigated the use of the times that persons
spend at specific locations during the execution of different activities as features
for activity recognition. We found that solely the use of such durations does not
provide sufficient evidence to enable a reliable distinction between activities. As
a second feature for activity recognition, we examined the order in which specific
locations were visited by persons during task execution and found that the use
of these patterns of locations can enable a robot to distinguish between activities.
We identified the use of HHMMs to be superior to using STPRs and the GLS met-
rics, especially in confined spaces. We showed, how HHMMs for activity recog-
nition can be learned from training data and set up an activity recognition system
that performs live-activity recognition in an experimental kitchen using simula-
tion and real motion tracking data from Kinect sensors. We evaluated the quality
of our system and showed how recognition rates can be improved by varying the
detail of activity models and the consideration of object detections. We thereby
found that when integrating object detections, the activity recognition heavily
relies on the quality of the object detection system, thus only a reliable object
detection can improve recognition results. We furthermore showed how an ex-
tension of the activity recognition approach can enable a robot to estimate future
locations of persons based on models of common activities of persons and we as-

sessed the quality of such predictions. Finally, we proposed scenarios where the

141

7. Evaluation

expectations framework proposed in chapter 3 can be used to enable a robot to
detect unexpected situations by combining and validating various expectations
in two simulated scenarios. We concluded with a real-world scenario where we
demonstrated an integrated system that uses the expectations framework in com-
bination with predicted locations of the activity recognition approach to estimate

the normality of a situation while observing a person’s morning routine.

142

Chapter 8
Discussion

In this chapter, we discuss the advantages and limitations of the work introduced
in this thesis. We will therefore highlight the challenges we met during the im-
plementation of the approaches described in chapter 3, 4 and 5 and the insights
we gained by the evaluation of the approaches in chapter 7. We will furthermore
propose possible future applications of our work which showcase possibilities

for generalization.

8.1 Expectations Framework

The expectations framework described in chapter 3 is designed to offer a gen-
eral, modular and knowledge-based approach to assess the normality of situa-
tions by validating different expectations. This capability can be useful for an au-
tonomous robot to increase its situational awareness and detect and adequately

react upon unexpected events.

In the current implementation, we make no assumptions about the knowledge
used for the generation of expectations, except that it can be used to quantify the
normality of a situation. The framework sets a high value on modularity, making
it extensible to arbitrary types of expectations, depending on the needs of client
applications. By the combination of different expectations in the normality tree, a
robot is provided with (limited) means of diagnosing the cause of surprise. This
can be achieved by traversing the normality tree and checking which of its expec-
tations has not been fulfilled, thus giving the robot a first hint towards possible
reactions. Using knowledge that the robot may also need for its decision making

143

8. Discussion

or state estimation, like the activity executed by a person or storage locations of
objects, the robot can itself detect unexpected situations, freeing engineers from

considering every situation that the robot might encounter.

8.1.1 Generation of Expectations

An open question is how to generate expectations from available data. The num-
ber and types of expectations a robot or technical system needs to identify abnor-
mal situations largely depends on the desired application. While, for instance, a
vacuum robot can benefit from expectations about typical locations of persons at
different points in time, expectations about storage locations of tableware will be
of no interest for such a robot. In contrast, a more elaborate household robot that
is designed to assist a person with activities of daily living will find such infor-
mation useful. In most of the application scenarios that we presented in chapter
7, we partly manually define expectations that seem useful for the specific situ-
ation. We also make use of models about the expected behavior of a person by
learning models about typical routine activities from motion tracking data. In
section 7.4.2, we demonstrated how to use such learned models of human task
execution in combination with an activity recognition module to dynamically

generate and validate expectations about human task performance.

It is also possible to infer expectations from common sense knowledge. Tenorth
et al. [85], for instance, use Knowledge-Linked Semantic Object Maps in the
knowledge processing system KnowRob [84] to infer likely storage locations of
objects in a kitchen and model those as expectations. The following example
query uses common-sense knowledge about objects stored in ontologies and a
semantic map of the environment (both included in the KnowRob Knowledge
Processing System) to infer the most likely storage location for a piece of butter.

?— storagePlaceFor(Place, map_obj: butter1).
Place = 'http://ias.cs.tum.edu/kb/knowrob.owl#Refrigerator67’ ;

The query returns the object Refrigerator67 as most likely storage location which
is a furniture object that can be located using the semantic map. Such information

can easily be modeled as a logical expectation using our expectations-framework

144

8.1. Expectations Framework

by creating an “object-in-container” expectation where the validation method
queries KnowRob for the dimensions of the container called Refrigerator67 in our
example and checks if the object is inside the container. The bounding boxes of
the container are stored in the semantic map of the environment in KnowRob.
Being embedded in the CRAM plan language [5], our expectations framework
already comes with an interface to the KnowRob System. The validation should
be triggered as soon as the object in question is detected. Thus, a the robot would
for example consider butter stored in a refrigerator as “normal” and butter stored

in an oven as “not normal”.

Similar queries can even be made for categories of objects or for their attributes.
The following query returns likely storage locations for all known tableware ob-
jects:

?— owl_individual_of (Object, knowrob:’HandTool "),

storagePlaceFor (StoragePlace , Object).

A = ’http://ias.cs.tum.edu/kb/ccrl2_map_objects.owl#knifel’,

StoragePlace = 'http ://ias.cs.tum.edu/kb/knowrob.owl#Drawer1’ ;

A = ’http://ias.cs.tum.edu/kb/ccrl2_map_objects.owl#knifel’,

StoragePlace = 'http://ias.cs.tum.edu/kb/knowrob.owl#Drawer103’ ;

(...)

Here, likely storage locations for tableware like a knife or spoon are all drawers
in the environment. The inference does not provide us with probabilities for
any of the storage locations, so one could think of modeling such information as
logical expectations using a logical “or”:

locationy,;s,; = Drawerl || Drawer103 || ...

But one could as well model such information as one probabilistic expectation
with a probability distribution that is uniformly distributed directly after the in-
ference process. Although, the inference process does not provide us with prob-
abilities in the first place, a representation in a probabilistic way has the advan-
tage that the expectations can be updated when new information is obtained.
Given the example above, a robot observing that knifel is located in Drawer103,
could update its expectation about knife objects, increasing the probability of

145

8. Discussion

knives being in Drawer103 while decreasing the others. A robot could even in-
fer likely storage locations for other cutlery objects like spoons or forks and up-
date corresponding expectations, since humans tend to store cutlery in the same
container. Such information can for instance be obtained using semantic object
similarity measures like the WUP similarity'. This functionality is also available
in KnowRob, enabling queries for likely storage locations of objects based on
semantically similar objects [76], assuming prior information about storage loca-
tions is available. It can, for instance, be inferred that a likely storage location
for a fork is a drawer in which spoons and knifes are stored. As Beetz et al. [4]
showed, one can also query for the likely storage locations of objects that have
certain properties like the typical location of objects that are perishable:

?— owl_individual_of (A, knowrob: Perishable’),

storagePlaceFor (Place, A).

A = ’http://ias.cs.tum.edu/kb/ccrl2_map_objects.owl#butter1 ',

Place = ’http ://ias.cs.tum.edu/kb/knowrob.owl#Refrigerator67’ ;

A = ’http://ias.cs.tum.edu/kb/ccrl2_map_objects.owl#buttermilk1’,

Place = 'http://ias.cs.tum.edu/kb/knowrob.owl#Refrigerator67’ ;

A = ’http://ias.cs.tum.edu/kb/ccrl2_map_objects.owl#cheesel ',

Place = ’http://ias.cs.tum.edu/kb/knowrob.owl#Refrigerator67’ ;

(.)

This query equips the robot with the knowledge that perishable goods like the
butter, buttermilk or cheese are typically stored in a refrigerator and, in the spe-
cific environment in our example, in Refrigerator67, which can be found in the
semantic map. This information can be translated into expectations that a robot
can validate when it detects objects. So our expectations framework enables a
robot to use already available common-sense knowledge to create expectations
about objects, thereby increasing its situational awareness and enabling it to de-
tect anomalies like perishable goods that a person forgot to put back into the
fridge. Furthermore, when the robot uses an Al planner, the effects of the plan-
ning operators can directly be used as expectations about the outcome of the

action.

lhttp:/ /search.cpan.org/dist/ WordNet-Similarity /lib/ WordNet/Similarity /wup.pm

146

http://search.cpan.org/dist/WordNet-Similarity/lib/WordNet/Similarity/wup.pm

8.1. Expectations Framework

8.1.2 Weighting of Expectations

Another difficulty that we did not consider so far lies in the weighting of different
pieces of information. Even though, we used the average of different expectation
values, probabilistic expectations will implicitly have a lower weight if the prob-
ability distribution over possible outcomes is no degenerate distribution at one
specific outcome. Let us consider the example of a robot observing a person that
performs an activity and trying to predict future locations of that person.

Given its observations o,., of locations visited by the person so far, the robot
might generate the following discrete probability distribution P(I{*|o,.,) about
likely next locations [*! of the person:

P(I{*o;.,) = {refrigerator: 0.75, oven: 0.15, drawer: 0.05, table: 0.05}

The robot predicts the refrigerator as the most likely next location of the person
(with probability 0.75) and models this information in a probabilistic expecta-
tion. Given, the person will actually go to the refrigerator next, the validation of
the expectation will return a normality of 0.75 % using the validation method de-
scribed in section 3.1.1.3. Although, the expectation has been perfectly fulfilled,
the normality value is still lower than a value returned by the validation of a log-
ical expectation. In another case, the robot might not be quite certain about the
next location of the observed person e.g. due to uncertainty in its activity recog-
nition or noisy sensor readings. The probability distribution of the expectation

about likely next locations in this case might look as follows:
P(lf“lolm) = {refrigerator: 0.4, oven: 0.4, drawer: 0.15, table: 0.05}

The robot is quite certain that the person will either go to the refrigerator or the
oven next, with equal probabilities assigned to both locations and validation will
return a normality of 0.4 if the person will go to one of the two most likely loca-
tions. The robot’s expectation has basically been fulfilled, but the validation of
the expectation returns a rather low normality value of 0.4 due to uncertainties in
the predictions. Generally, this means we make the normality of a situation de-
pendent on the uncertainty of our predictions when using probabilistic expecta-

147

8. Discussion

tions. This can be problematic, especially when such expectations are combined
with other expectations that do not include any models of uncertainty such as
logical expectations. Thus, the comparability of the expectations is affected. One
possible solutions towards this problem could be a weighting of probabilistic
expectations in proportion to the uncertainty, so expectations that have high un-
certainties have a lower impact on the overall normality, while expectations that
have no uncertainty have the same impact on the overall normality as logical

expectations (and thus are equally weighted).

8.1.3 Combination of Normalities

So far, we chose the average as combination function for normality values of
expectations, which can be justified by the tallying heuristic of humans, where
weights are ignored for decision making [22]. However, the choice of an ap-
propriate combination function in general is an open question and it is unclear
whether our proposed representation of the normality tree can cover all neces-
sary interactions of the normality values. As already indicated in the last subsec-
tion, in some cases weights may be necessary and in other situations, non-linear

combination methods may be appropriate.

Consider, for instance, situations including expectations that imply a state of
danger, like the detection of a fire or smoke. In this case, a robot should im-
mediately raise an alarm or take appropriate actions, but just averaging over all
normalities might not affect the overall normality strong enough. A possible way
to achieve such behavior is to not only monitor the average normality, but also
single critical values like the expectations about fires or smoke in the environ-

ment.

8.1.4 Integration into Cognitive System
The integration of our expectation framework into a complete cognitive system

is a crucial question that was only mentioned briefly so far. On the one hand,

many single expectations are based on the input from the robot’s perception,

148

8.2. Human Activity Models

respectively the knowledge-base in which percepts can be stored. Considering,
for instance, expectations about the locations of a person, the robot will need to
know at which locations the person has been observed; analogously expectations
about likely storage locations of objects need information about object detections.
But expectations can also serve as an input to perception. An unmet expectation
can also simply be caused by a wrong interpretation of the world. Thus, the
expectations framework can serve as a bridge between perception and reasoning
by causing the perception system to re-evaluate the situation.

Similarly, an adequate action might have to be taken when the situation strays
too far away from the expected. Ideally, knowledge sources that indicate strong
deviations of normality could also provide means for determining the severity
of the unexpected situation as well as possible reactions. Action selection and
planning methods can be invoked to find the most appropriate reaction. The
action that the robot takes can then again interact with its perception since in
many cases the best reaction might be a clarification of the situation by acquiring

more detailed sensor information or communicating with a person.

Our proposed expectations framework constitutes a first step towards a general
handling of failures and unusual situations by autonomous robots. Being an
extension to the CRAM plan language, it can easily be integrated with exist-
ing methods of failure recognition and handling, which offer a robust way of
handling frequent failures and dangerous situations. Our knowledge-based ap-
proach increases the situational awareness of autonomous robots and enables it
to cover a large variety of situations that an engineer might not think of when
designing a robot or for which specific coding would be too costly. In this thesis,
we demonstrated how the expectations framework can also be used to seam-
lessly integrate expectations about human task performance into the contextual
awareness of a robot, thus bringing service robots one step further towards the

goal of being aware of human presence and behavior.

8.2 Human Activity Models

In chapter 4, we illustrated how we can use Context Dependent Spatial Regions
(CDSRs) to generate models of human activities without explicitly modeling ac-

149

8. Discussion

tions but by using action related context of spatial regions instead. Such models
enable us to perform a cheap and simple activity recognition without the need
for complex action recognition systems or object detections, which will be specif-
ically interesting for low cost robots in domestic environments. However, these
advantages do not come for free and there are several points that should be dis-
cussed.

8.2.1 Spatial Model Generation

When generating the spatial model, we cluster the 2D positions of a person using
an Expectation Maximization based clustering method. The advantage of such
a clustering is that, in contrast to a simpler nearest neighbor clustering, the clus-
ters can be of different sizes and resulting clusters can be easily returned as two
dimensional gaussian distributions, which we directly use to describe CDSRs.
However, such a clustering has the disadvantage that the number of clusters has
to be known beforehand. We argue that in our application scenario, we can get
the number of clusters from prior information about the objects by querying their
storage location but such information might not always be available. In this case,
one has to use other clustering techniques that are not subject to this restriction
such as variants of density-based clustering algorithms [18, 75].

Anther restriction of the current generation of the spatial model is the fact that the
relation of the locations to the furniture objects has to be unique. For the table-
setting activities used in the experiments in section 7.2.1.2, this relation can easily
be obtained by just querying the semantic map for the object storage location that
is closest to the mean of the current gaussian. But in other, more complex envi-
ronments, simply the smallest distance of the positions towards the containers
might not be enough to identify the correct container object or supporting plane.
There might be several containers or objects in reach of the human - like cup-
boards that are mounted above a kitchenette -, so the relation of the location to an
storage location might not be unique. Possible solutions to this problem can ei-
ther be the inclusion of more data to detect the furniture object that the human is
interacting with. Beetz et al. [7], for instance, use full body motion tracking data

and identify movements of the arms and hands that describe the opening of cup-

150

8.2. Human Activity Models

boards and drawers or pick- and place actions. Also, the use of contact sensors
in cupboards or drawers would be possible to guarantee a correct and unique
detection of the correct furniture object. Another possibility of accounting for
ambiguous relations of locations towards furniture objects is to relax the prop-
erty that this relation has to be unique. One location could as well have several
furniture objects assigned, possibly including probabilities about the likelihood

of a human interaction with each container from the current position.

8.2.2 Transferring the Spatial Model to Other Environments

When transferring a spatial model to other environments, we assume the human
locations to be dependent on the relative positions towards the opening side of
the container and the position of the hinge. This enables a robot to get an im-
pression about where to expect a person when he/she interacts with furniture
objects. But the relative position of the human towards container objects like
drawer or cupboards and especially the relative position towards planes when
performing pick- and place actions depends on other factors as well. Especially
when objects are picked up from supporting planes, a person’s location is also
influenced by furniture objects that limit the reachability of the object. To ad-
ditionally include such information, one would have to perform a sophisticated
analysis of the environment structure. Also, the direction from which a person
approaches an object storage location as well as the direction the person will go
after picking up or putting down an object seems to be of relevance. While in-
formation about the approaching direction can easily be obtained, information
about the direction, that the human heads to after the object interaction is harder
to gather since it requires a projection into the future. However, the transfer of
the spatial model as explained in section 4.1.2 can offer a robot a first impression
that can already be used to distinguish between different activities as we showed
in chapter 7. Also, it can further be refined by learning from more observations
of task execution or the inclusion of more information about the environment

and the walking direction of the person.

151

8. Discussion

8.2.3 Comparison of STPRs

When comparing STPRs, we evaluated the use of durations that a person typi-
cally spends at certain locations as feature as well as the order in which certain
locations are visited during task execution. This comparison can be seen as a
simple kind of activity recognition and the evaluation of the use of durations as
tfeatures proved to be rather unreliable in our experiments as shown in section
7.2.1.1. The use of patterns of visited locations in combination with the Gen-
eralized Levenshtein Similarity (GLS) worked well as long as the detection of
visited locations of a person is reliable, thus offering a fast and simple way of
distinguishing activities. However, in some cases, the location detection might
not be able to reliably detect the CDSR where a person is standing or it will pos-
sibly detect a wrong location. This problem arises when furniture objects are
located close to each other as in the second experiment in section 7.2.1.2. To be
able to cope with unreliable location detections, a more elaborate, probabilistic
approach should be used to enable the comparison of activities while account-
ing for uncertainties in the detection of locations. In section 7.2.1.3, we showed
how to overcome this problem in an approach for activity recognition based on
Hidden Markov Models.

8.3 Activity Recognition

In chapter 5, we introduced an approach for activity recognition and monitoring
based on CDSRs, a semantic environment map and motion tracking data. The
proposed approach enables a robot to make assumptions about human task ex-
ecution and generate predictions about likely next locations of a person during
task performance. The approach is designed to work with low cost sensors like
a Microsoft Kinect in spatially limited environments and the evaluation proved
the applicability in simulated and real-world settings. However, we made cer-
tain assumptions during the design of our system and the most important of
which will be discussed in the following.

152

8.3. Activity Recognition

8.3.1 Occlusions

Our approach does not explicitly handle occlusions. Since it only depends on the
two dimensional position of a person according to his/her center of mass, the oc-
clusion of single body parts of the tracked person it not a big issue as long as not
too much of the body is occluded. For our experiments with real-world data in
chapter 7, we used a motion tracker that does not specifically include occluded
body parts into it's model. Nevertheless, we showed that our approach is robust
even though in some cases some body parts of the tracked person are occluded
and even sometimes the motion tracker looses track of the person. This is one
advantage of the use CDSRs for activity recognition instead of full-body motion
tracking data or sequences of object detections. To further improve tracking re-
sults, one can think of using a motion tracker the specifically models occlusions
as, for instance proposed by Buys et al. [12].

8.3.2 HHMMs as Activity Models

The use of HHMMs as models for activities in the activity recognition framework
provides us with means of modeling variations in subtasks of single activities as
well as uncertainties in the observations. However, in contrast to STPRs, the fully
automated generation of such models is still an issue, especially when a person
performs activities in parallel. In such a case, a robot observing such activities
would not be able to know if e.g. drinking a glass of water is part of a cleaning
task or if it is to be considered an own activity. It is even hard to detect when one
specific activity has ended an another activity is starting. However, such deci-
sions are also treated very differently by humans and there is no correct or incor-
rect way of modeling them. Variable subtasks during an activity can be modeled
with our HHMM by providing different transition probabilities from one CDSR
belonging to a specific sub-task to another one. In chapter 7, we gave an example
on how such an HHMM can be generated and how the most likely set of param-
eters can be learned from observations. To be able to learn the parameters, we
assumed to know which activity is currently being observed. This restriction is
due to the fact that the detection of transitions between activities and thus the

153

8. Discussion

hierarchical topology of a our HHMM cannot be generated autonomously in the
current implementation. But once the HHMM is generated, we showed that such
a model can successfully be used to perform activity recognition using models

generated from prior knowledge and with learned parameters.

8.3.3 Action Detection

One initial assumption for our system is the ability to detect locations where a
person is standing still for a short time while performing actions. In our current
system, we therefore use a constant monitoring of the current moving speed of
the person and additionally apply simple motion patterns. The motion patterns
consist of movements where the observed person is moving towards a furniture
object, spends a little while at a furniture object and moves away again. We as-
sume such a motion model to be a good indicator for a person performing a pick-
and place action at the corresponding furniture object. However, such a motion
might not be general enough for all pick- and place actions in every environ-
ment. Although, the following did not happen during our experiments, a person
might, for instance, grab objects while passing a table. Our rather simplistic pre-
processing might not be able to detect such situations (especially when it comes
to pick- and place actions from planes). One possibility to improve this detec-
tion would be the employment of more sophisticated motion patterns like the
Qualitative Trajectory Calculus [23]. Of course, the inclusion of object detections
can also widely improve the recognition of locations in which object interactions
occur as we showed in section 7.2.2. But a reliable object detection system would
mean a huge effort and possibly equipping the environment with loads of sen-
sors [60] (which we wanted to avoid in the first place). For interactions with
containers like drawers or cupboards, the use of magnetic sensors in the doors of
the containers is widely used [82, 25] but it would also require the environment

to be equipped with those sensors before usage.

So far, we only considered CDSRs that are related to pick- and place actions.
When it comes to the detection of other actions than pick- and place, one might
also have to use other motion patterns and sensor modalities. Fogarty et al. [20],

for instance, use water flow sensors in the basement of an apartment to perform

154

8.3. Activity Recognition

low-cost and unobtrusive activity recognition. Such sensors could also be used
to extend our approach to the detection of CDSRs that are related to activities

using water like doing the dishes.

8.3.4 Monitoring

In the monitoring part in section 5.3.1, we briefly mentioned that we suggest to
monitor activities that have a high probability of being executed. However, we
cannot provide a general answer about the quantity of these probabilities. As
our robot is ultimately intended to react upon uncertain information from activ-
ity recognition, our system has to run in real-time, which is the limiting factor
for the amount of activities that can be monitored. As we use a very simple ap-
proach for monitoring, we did not run in any problems when monitoring up to
eight activities at once, but the scalability of the approach towards more activ-
ities and/or more elaborate monitoring techniques will remain a question for
future research. The monitoring technique that was used for our system only
considered the amount of times that certain CDSRs were visited, not even con-
sidering their order. This technique is rather a proof-of-concept and can be re-
placed with more elaborate monitoring approaches, such as Quantitative Tempo-
ral Bayesian Networks [70] or Constraint-Based Temporal Knowledge [13], both
of which have successfully been used for activity monitoring.

8.3.5 Prediction of Likely Next Locations

In section 5.3.2, we predicted likely next locations of a person based on the results
of our HHMM-based activity recognition, The evaluation in section 7.3 showed,
that in our experiments, some locations could be predicted with very good ac-
curacy due to similarities between different activities. While this enabled us to
exploit such similarities to increase the accuracy of our predictions, similarities in
the order of locations might not be given when modeling other activities. While
we expect our activity recognition to perform better when detecting activities
that share less similarities, we expect worse results when using activities that are

dissimilar and consist of CDSRs that are hard to distinguish. In such a worst-

155

8. Discussion

case scenario, activity recognition is likely not able to distinguish which activity
is currently performed and a precise prediction for the next location of a person
presumably cannot be generated. However, the weighted spatial model can still
be used to obtain a set of possible next locations that is weighted by the proba-
bilities of the person visiting them as we showed in 7.3.

156

Chapter 9
Conclusion

In this final chapter, we will first sum up the contents of this thesis and then

provide one possible outlook into the future of autonomous service robots.

9.1 Summary

In this thesis, we illustrated techniques that enable service robots to become bet-
ter aware of situations to ultimately enable adequate reactions in unexpected
situations. Therefore, we proposed an expectations framework that can easily be
integrated into existing approaches in reactive robot planning and enable a robot
to estimate the normality of situations by the validation of various expectations.
While such expectations can be used to model anything that is measurable, this

thesis focused on expectations about human behavior.

We therefore showed how to automatically generate models of habitual human
behavior from motion tracking data and a semantically annotated map of the
environment. We demonstrated how such models can be used by a robot to per-
form activity recognition and showed that a low-cost sensor setting in a spatially
limited environment can suffice to enable human activity recognition and the
generation expectations about future locations of a person. Such expectations
were used to estimate the normality of the situation by fully integrating human
activity recognition and monitoring into the expectations framework. The com-
ponents of the approach as well as the fully integrated system were evaluated in
simulated as well as in real-world settings. The results indicate that the seam-

less integration of human activity models, low-cost activity recognition and our

157

9. Conclusion

proposed expectations framework into robot planning can enable a robot to de-
tect situations that diverge from normality, thus making it better aware of the

situation and its human partner.

The expectations framework is not limited to human behavior. On the contrary,
its modular structure enables a robot to model and combine any kind of expec-
tations and to obtain a general estimate about the normality of a situation. The
approaches presented in this thesis constitute only a small, first step towards
situation-aware, adaptive domestic service robots and hopefully will motivate
researchers to make robots more situation-aware to enable user-friendly and

adaptive robots in near future.

9.2 Related Visions for Robotics and Al

As for many technologies we use today, the ease of use seems to be a key-enabler
when it comes to commercial success. Consider, for instance, the development
of tablet computers which started in the 1980s. Since then, several devices were
available for sale with one of the first ones being the EO Personal Communica-
tor released in 1992. Many other manufacturers - including Microsoft, Apple,
Atari and Palm - released tablet computers but commercial success failed to ap-
pear. It was until the release of the Apple iPad in 2010 that tablet computers
were commercially successful and today, in 2014, they even fully replace tradi-
tional computers for many people. What were the reasons that the iPad is such a
commercial success while other products failed completely? While some might
say, Apples huge success was caused by releasing their product at just the right
time, I think that there is another significant reason. In contrast to other man-
ufacturers, Apple put a huge effort into their operating system making it easy
to use for a wide variety of people, including some that otherwise rarely have a
relation to technology. One key objective was to design a technical device that is
extremely simple and intuitive and is consistent over several platforms (like the
iPhone or the iPod). Most applications were very simple and intuitive to use and
only needed a few settings that had to be made instead of complex setup routines
that could only be handled by experts. One might say, the operating system and

158

9.2. Related Visions for Robotics and Al

the applications of the iPad were specifically designed towards the needs of their

(non-expert) users.

Maybe, development in robotics can be seen in a similar fashion. So far, most
robots, especially robots that are capable of complex tasks, can only be oper-
ated by people that had sophisticated training or a spend a huge amount of time
working with the robot. But recent development in robotics aims towards robots
that are easy to use and capable to perform complex tasks widely autonomously.
This development seems to not only appear for end-users, but also for develop-
ers, which the example of the Robot Operating System (ROS) illustrates. Many
platforms in robotics were based on individual control- and operating systems,
leading to developers re-implementing things that already existed in other plat-
forms due to incompatibilities. This made the development and use of robots
hard, even for the developers (who basically are users of their robots as well!).
The PR2 robot was one of the first universal robotics platforms available that
came with a common software and community. ROS was specifically designed
to make components of the robot software reusable on a variety of robotic plat-
forms, preventing developers to reinvent the wheel over and over again. It pro-
vided a common platform to be used on very different robotic systems like hu-
manoids, autonomous cars and boats, quadrotors and robot arms. While those
first improvements in the usability might be of more interest from a develop-
ers point of view, there are already the first commercial applications that focus
on enabling a robot to learn new pick- and place actions trained from non-expert
users by demonstration [67]. Robots that are equipped with such capabilities will
lower the learning curve for non-expert users and hopefully make service robots
usable for a wider range of people. As more and more people are able to use
robots, sales will continue to increase. One example for this effect are vacuum
robots that autonomously clean parts of the room only providing a very limited
user interface that is understandable for everybody (mostly they offer only one
ON/OFF button). Sales of such vacuuming robots make up a wide part of robot

sales in general?.

thttp:/ /www.ros.org/

2http: / /www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

159

http://www.worldrobotics.org/uploads/media/Executive_Summary_WR_2013.pdf

9. Conclusion

As robots enter human-inhabited domains and perform complex tasks in coop-
eration with humans, I think the usability of such robots will strongly depend
on the ability to adequately react upon situations and especially consider human
behavior. As the operating system of the iPad mentioned above, robots should
be designed towards the needs of their users. A robot intended to work with
a person will not be very user-friendly if it has to be told every detail in ad-
vance, it should rather learn from observations. To furthermore be able to work
together with persons, the ability to consider human behavior is a prerequisite
for a user-friendly robot and I think, without accounting for different situations
and human behavior, personal robots cannot be made as user-friendly as they
have to be to succeed as an effective commercial product. If robots will more
and more be able to perform complex manipulation tasks while at the same time
becoming more and more user-friendly, there might be a chance that robotics
will experience a development similar to tablet computers in the last decades. If
the user-friendliness will include persons and their behavior, maybe someday in
near future, we will see domestic service robots to become a successful commer-

cial product.

160

Appendix A
Appendix

A.1 Law of Total Probability

In probability theory, the law of total probability relates the total probability
of the outcome of a random variable by the probabilities of each of its distinct

events:

P(A) = ZP(A/\BJ = ZP(A | B;)P(B;) (A1)

A.2 Markov Assumption

In Bayesian networks, the Markov Assumption states that the current state only
depends on a finite fixed number of previous states. Bayesian networks that sat-
isfy the Markov Assumption are called Markov Processes or Markov Chains.

A.3 Product Rule

The product rule follows from the definition of a conditional probability and is
defined as follows:

P(AAB)=P(A| B)P(B) = P(B AA)P(A). (A.2)

161

A. Appendix

A.4 Bayes’ Rule

The Bayes’ Rule is defined as follows:

P(B|APA)

P(A|B)=) = aP(B | A)P(A). (A.3)

We abbreviate ﬁ with the normalization constant a since it is independent of A

and can P(B) be computed using the law of total probability (see section A.1):

P(B)= D P(A;AB) =) P(B|AIP(A) (A4)

162

List of Prior Publications

The work presented in this document is partly based on prior publications. Sec-
tions of this work that drew upon content from prior publications cited the re-
spective publications where appropriate. A complete list of publications that
were (co-)authored during my research as a doctoral candidate is provided be-
low.

Michael Karg and Alexandra Kirsch. Low Cost Activity Recognition Using Depth Cam-
eras and Context Dependent Spatial Regions In Proceedings of the Workshop on Au-
tonomous Robots and Multirobot Systems (ARMS), in conjunction with the Ninth Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS), 2014.

Michael Karg and Alexandra Kirsch. Low Cost Activity Recognition Using Depth Cam-
eras and Context Dependent Spatial Regions In Proceedings of the Ninth International
Conference on Autonomous Agents and Multiagent Systems (AAMAS), Extended Abstract,
2014.

Michael Karg and Alexandra Kirsch. A Human Morning Routine Dataset In Proceed-
ings of the Ninth International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), Extended Abstract, 2014.

Michael Karg and Alexandra Kirsch. An Expectations Framework for Domestic Robot

Assistants In Proceedings of Conference on Advances in Cognitive Systems (ACS), 2013.

Michael Karg and Alexandra Kirsch. Situation Awareness for Goal-Directed Autonomy
by Validating Expectations In Proceedings of the Workshop on Goal Reasoning at the Con-
ference on Advances in Cognitive Systems (ACS), 2013.

Michael Karg and Alexandra Kirsch. Simultaneous Plan Recognition and Monitoring
(SPRAM) for Robot Assistants In Proceedings of the Human Robot Collaboration Workshop
2013, in conjunction with RSS 2013, 2013.

163

A. Appendix

Severin Lemaignan, Arnaud Degroote, Simon Lacroix, Michael Karg, Pierrick Koch,
Charles Lesire, Gilberto Echeverria, Serge Stinckwich. Simulating complex robotic
scenarios with MORSE In Proceedings of the International Conference on Simulation, Mod-
eling, and Programming for Autonomouns Robots (SIMPAR), 2012.

Michael Karg, Alexandra Kirsch. Acquisition and Use of Transferable, Spatio-Temporal
Plan Representations for Human-Robot Interaction. In Proceedings of the IEEE/RS]
International Conference on Intelligent Robots and Systems (IROS), 2012.

Christina Lichtenthaeler, Tamara Lorenz, Michael Karg, Alexandra Kirsch. Increasing
Perceived Value Between Human and Robots - Measuring Legibility in Human Aware
Navigation. In Proceedings of the IEEE workshop on Advanced Robotics and its Social
Impacts (ARSO), 2012.

S. Lemaignan, Echeverria G., M. Karg, M. Mainprice, A. Kirsch, R. Alami. Human-
Robot Interaction in the MORSE Simulator. In In Proceedings of the 2012 Human-Robot
Interaction Conference (HRI), late breaking report, 2012.

Michael Karg, Martin Sachenbacher, Alexandra Kirsch. Towards Expectation-based Fail-
ure Recognition for Human Robot Interaction. In In Proceedings of the 22nd International

Workshop on Principles of Diagnosis, Special Track on Open Problem Descriptions, 2011.

164

List of Figures

1.1.
1.2.

2.1.
2.2.
2.3.
24.
2.5.
2.6.

3.1.
3.2
3.3.
34.
3.5.
3.6.

4.1.

4.2.
4.3.
44.
4.5.

5.1.
5.2.
5.3.

Estimated sales of domestic service robots, 2011-2016
Robots that were developed to work together with humans

Exemplary Bayesian Network
Hidden MarkovModel
The surfing flatmate example HMM
The CRAM architecture.
Two robots performing everyday tasks using CRAM
Semantic object map of akitchen

An “abnormal” and a “normal” simulated scenein HRI
Overview of the expectations framework
Expectationspool
Implementation structure of expectations
Normality tree generated by expectation validation

Simulated robot assistant in a kitchen.

Different representations of humans and robots cause interaction
problems
Clustered 2D locations of 10 persons during table setting
Calculation of reference frames for different furniture objects. . . .
Automatically generated, spatio-temporal plan representation . . .
Overview of our approach to generate spatio-temporal plan rep-

resentations e e e e e e e e

A PR2 robot performing activity recognition in a kitchen
Hierarchical HMM for activity recognition
Two exemplary overlapping CDSRs

165

List of Figures

54.

5.5.

6.1.
6.2.
6.3.

6.4.

6.5.
6.6.

6.7.

6.8.
6.9.

6.10.

6.11.
6.12.

7.1.
7.2.
7.3.
7.4.
7.5.

7.6.

7.7.

7.8.
7.9.

Weighted spatial model representing likely next locations of a per-

) T 85
Integration of human activities into the expectations framework . 87
Data acquisition in the TUM kitchen dataset 94
Layout of the first environment of TUM Kitchen Dataset2 96
Motion tracking data recorded during three different tasks in TUM
KitchenDataset2 97
Motion tracking data of recorded during the execution of two dif-
ferent types of table setting tasks in TUM Kitchen Dataset2. 97
Layout of the second scenario in TUM Kitchen Dataset2. 98
Motion tracking data of the second scenario of TUM Kitchen Dataset

2 during th execution of three differenttasks. 99
Notes about the locatios the participant visited during his morning
routine 101
The scenario of the Morning Routine Dataset 103

Video frames and motion tracking data of a typical table-setting

activity 105
2D motion tracking data of four activities in simulation and real

world. 106
Static positions of the participant during his morning routine ... 108
Wrong detections of the motion tracking due to partial occlusions 108
Human avatar in the MORSE simulator 111
Average durations of a person standing still during task execution 114
Setup of the two kitchens used for evaluation 117
Spatial models of two different kitchen scenarios 119
Qualitative evaluation of activity recognition using the Morning

Routine Dataset 125
Qualitative evaluation of activity recognition using learned pa-

rametersofthe HMM o L. 129
Predictions of likely next locations represented in a weighted spa-

tialmodel 130
Predictions of likely next locations represented of a person 131
Simulated apartment scenario 133

166

List of Figures

7.10. Video frames of the simulated kitchen scenario 134
7.11. Average normalities in the simulated kitchen scenario 135
7.12. Video frames of the simulated burglar scenario 137
7.13. Average normality of the simulated burglar scenario 137
7.14. Average normality in the real-world morning routine scenario . . . 140

167

[1]

2]

[3]

[5]

[6]

Bibliography

N. Akhtar and A. Kuestenmacher. Using naive physics for unknown exter-
nal faults in robotics. In 22nd International Workshop on Principles of Diagnosis
(DX-2011), volume 1, page 23, 2011.

A. Aydemir, K. Sjoo, J. Folkesson, A. Pronobis, and P. Jensfelt. Search in
the real world: Active visual object search based on spatial relations. In
Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages
2818-2824, May 2011.

J. Bandouch and M. Beetz. Tracking humans interacting with the environ-
ment using efficient hierarchical sampling and layered observation models.
In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, pages 2040-2047, Sept 2009.

M. Beetz, U. Klank, I. Kresse, A. Maldonado, L. Mosenlechner, D. Pangercic,
T. Rithr, and M. Tenorth. Robotic roommates making pancakes. In Humanoid
Robots (Humanoids), 2011 11th IEEE-RAS International Conference on, pages
529-536, Oct 2011.

M. Beetz, L. Mosenlechner, and M. Tenorth. Cram - a cognitive robot ab-
stract machine for everyday manipulation in human environments. In In-
telligent Robots and Systems (IROS), 2010 IEEE/RS] International Conference on,
pages 1012-1017, Oct 2010.

M. Beetz, L. Mosenlechner, M. Tenorth, and T. Rithr. Cram - a cognitive

robot abstract machine. In 5th International Conference on Cognitive Systems
(CogSys 2012), 2012.

169

Bibliography

[7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Beetz, M. Tenorth, D. Jain, and J. Bandouch. Towards automated models
of activities of daily life. Technology and Disability, 22(1):27-40, 2010.

M. Bennewitz, J. Pastrana, and W. Burgard. Active localization of people
with a mobile robot based on learned motion behaviors. 2008.

N. Blodow, L. C. Goron, Z.-C. Marton, D. Pangercic, T. Riihr, M. Tenorth, and
M. Beetz. Autonomous semantic mapping for robots performing everyday
manipulation tasks in kitchen environments. In 2011 IEEE/RS] International
Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA,
September, 25-30 2011. Accepted for publication.

M. Buettner, R. Prasad, M. Philipose, and D. Wetherall. Recognizing daily
activities with rfid-based sensors. In Proceedings of the 11th International Con-
ference on Ubiquitous Computing, Ubicomp "09, pages 51-60, New York, NY,
USA, 2009. ACM.

H. H. Bui, D. Q. Phung, and S. Venkatesh. Hierarchical hidden markov mod-
els with general state hierarchy. In Proceedings of the 19th National Conference
on Artifical Intelligence, AAAI'04, pages 324-329. AAAI Press, 2004.

K. Buys, C. Cagniart, A. Baksheev, T. De Laet,]. De Schutter, and C. Panto-
faru. An adaptable system for rgb-d based human body detection and
pose estimation. Journal of Visual Communication and Image Representation,
25(1):39-52, Jan. 2014.

A. Cesta, G. Cortellessa, R. Rasconi, F. Pecora, M. Scopelliti, and L. Tiberio.
Monitoring elderly people with the robocare domestic environment: Inter-

action synthesis and user evaluation. Computational Intelligence, 27(1):60-82,
2011.

G. Diego and K. Arras. Please do not disturb! minimum interference cover-
age for social robots. In Intelligent Robots and Systems (IROS), 2011 IEEE/RS]
International Conference on, pages 1968-1973, Sept 2011.

T. V. Duong, H. H. Bui, D. Q. Phung, and S. Venkatesh. Activity recog-
nition and abnormality detection with the switching hidden semi-markov
model. In CVPR “05: Proceedings of the 2005 IEEE Computer Society Confer-

170

Bibliography

ence on Computer Vision and Pattern Recognition (CVPR’05) - Volume 1, pages
838-845, Washington, DC, USA, 2005. IEEE Computer Society.

[16] G. Echeverria, N. Lassabe, A. Degroote, and S. Lemaignan. Modular open
robots simulation engine: Morse. In Robotics and Automation (ICRA), 2011
IEEE International Conference on, pages 46-51, May 2011.

[17] G. Echeverria, S. Lemaignan, A. Degroote, S. Lacroix, M. Karg, P. Koch,
C. Lesire, and S. Stinckwich. Simulating complex robotic scenarios with
morse. In I. Noda, N. Ando, D. Brugali, and J. Kuffner, editors, Simulation,
Modeling, and Programming for Autonomous Robots, volume 7628 of Lecture
Notes in Computer Science, pages 197-208. Springer Berlin Heidelberg, 2012.

[18] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm
for discovering clusters in large spatial databases with noise. In KDD, vol-
ume 96, pages 226-231, 1996.

[19] S. Fine, Y. Singer, and N. Tishby. The hierarchical hidden markov model:
Analysis and applications. Mach. Learn., 32(1):41-62, July 1998.

[20] J. Fogarty, C. Au, and S. E. Hudson. Sensing from the basement: A feasibility
study of unobtrusive and low-cost home activity recognition. In Proceedings
of the 19th Annual ACM Symposium on User Interface Software and Technology,
UIST 06, pages 91-100, New York, NY, USA, 2006. ACM.

[21] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns: Elements
of reusable object-oriented software. 1995.

[22] G. Gigerenzer and W. Gaissmaier. Heuristic decision making. Annual Review
of Psychology, 62(1):451-482, 2011. PMID: 21126183.

[23] M. Hanheide, A. Peters, and N. Bellotto. Analysis of human-robot spa-
tial behaviour applying a qualitative trajectory calculus. In RO-MAN, 2012
IEEE, pages 689-694, Sept 2012.

[24] A.Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard. Oc-
tomap: An efficient probabilistic 3d mapping framework based on octrees.
Auton. Robots, 34(3):189-206, Apr. 2013.

171

Bibliography

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

S. Intille, K. Larson, E. Tapia,]. Beaudin, P. Kaushik, J]. Nawyn, and R. Rock-
inson. Using a live-in laboratory for ubiquitous computing research. In
K. Fishkin, B. Schiele, P. Nixon, and A. Quigley, editors, Pervasive Computing,
volume 3968 of Lecture Notes in Computer Science, pages 349-365. Springer
Berlin Heidelberg, 2006.

D. Joho and W. Burgard. Searching for objects: Combining multiple cues
to object locations using a maximum entropy model. In Robotics and Au-
tomation (ICRA), 2010 IEEE International Conference on, pages 723-728, May
2010.

M. Karg and A. Kirsch. Acquisition and use of transferable, spatio-temporal
plan representations for human-robot interaction. In Intelligent Robots and
Systems (IROS), 2012 IEEE/RS] International Conference on, pages 5220-5226,
Oct 2012.

M. Karg and A. Kirsch. An Expectations Framework for Domestic Robot
Assistants. In Conference on Advances in Cognitive Systems (ACS), 2013.

M. Karg and A. Kirsch. Simultaneous Plan Recognition and Monitoring
(SPRAM) for Robot Assistants. In Proceedings of Human Robot Collaboration
Workshop at Robotics Science and Systems Conference (RSS) 2013, 2013.

M. Karg and A. Kirsch. Situation Awareness for Goal-Directed Autonomy
by Validating Expectations. In Proceedings of the Workshop on Goal Reasoning
at the Conference on Advances in Cognitive Systems (ACS), 2013.

M. Karg and A. Kirsch. A human morning routine dataset. In Proceedings of
the Ninth International Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS), Extended Abstract, 2014.

M. Karg and A. Kirsch. Low cost activity recognition using depth cameras
and context dependent spatial regions. In Workshop on Autonomous Robots
and Multirobot Systems (ARMS), Proceedings of the Ninth International Confer-
ence on Autonomous Agents and Multiagent Systems (AAMAS), 2014.

M. Karg and A. Kirsch. Low cost activity recognition using depth cam-

eras and context dependent spatial regions. In Proceedings of the Ninth Inter-

172

Bibliography

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

national Conference on Autonomous Agents and Multiagent Systems (AAMAS),
Extended Abstract, 2014.

M. Karg, M. Sachenbacher, and A. Kirsch. Towards expectation-based fail-
ure recognition for human robot interaction. In 22nd International Workshop
on Principles of Diagnosis, Special Track on Open Problem Descriptions, 2011.

T. Kelly, Y. Wang, S. Lafortune, and M. Welsh. A formal foundation for
tailure avoidance and diagnosis. Technical Report HPL-2009-203, HP Labo-
ratories, 2009.

W. G. Kennedy, M. D. Bugajska, M. Marge, W. Adams, B. R. Fransen,
D. Perzanowski, A. C. Schultz, and J. G. Trafton. Spatial representation
and reasoning for human-robot collaboration. In Proceedings of the 22Nd
National Conference on Artificial Intelligence - Volume 2, AAAT'07, pages 1554—
1559. AAAI Press, 2007.

M. Klenk, N. Hawes, and K. Lockwood. Representing and reasoning about
spatial regions defined by context. In AAAI Fall Symposium Series, 2011.

T. Kruse, A. Kirsch, E. Sisbot, and R. Alami. Exploiting human cooperation
in human-centered robot navigation. In RO-MAN, 2010 IEEE, pages 192-
197, Sept 2010.

L. Kuhn, B. Price, J. de Kleer, M. Do, and R. Zhou. Pervasive diagnosis:
Integration of active diagnosis into production plans. In proceedings of AAAI
2008.

L. Kunze, M. E. Dolha, E. Guzman, and M. Beetz. Simulation-based tem-
poral projection of everyday robot object manipulation. In The 10th Inter-
national Conference on Autonomous Agents and Multiagent Systems - Volume 1,
AAMAS 11, pages 107-114, Richland, SC, 2011. International Foundation
for Autonomous Agents and Multiagent Systems.

L. Kunze, M. Tenorth, and M. Beetz. Putting people’s common sense into
knowledge bases of household robots. In Proceedings of the 33rd Annual Ger-
man Conference on Advances in Artificial Intelligence, KI'10, pages 151-159,
Berlin, Heidelberg, 2010. Springer-Verlag.

173

Bibliography

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

L. Kunze, M. Tenorth, and M. Beetz. Putting people’s common sense into
knowledge bases of household robots. In Proceedings of the 33rd Annual Ger-
man Conference on Advances in Artificial Intelligence, KI'10, pages 151-159.
Springer-Verlag, Berlin, Heidelberg, 2010.

U. Kurup, C. Lebiere, A. T. Stentz, and M. Hebert. Using expectations to
drive cognitive behavior. In Proceedings of the 26th AAAI Conference on Arti-
ficial Intelligence, July 2012.

S. Lemaignan, G. Echeverria, M. Karg, J. Mainprice, A. Kirsch, and R. Alami.
Human-robot interaction in the morse simulator. In Human-Robot Interaction
(HRI), 2012 7th ACM/IEEE International Conference on, pages 181-182, March
2012.

M. Leo, P. Spagnolo, T. DOrazio, and A. Distante. Human activity recogni-
tion in archaeological sites by hidden markov models. In Proceedings of the
5th Pacific Rim Conference on Advances in Multimedia Information Processing -
Volume Part 1I, PCM’04, pages 1019-1026. Springer-Verlag, Berlin, Heidel-
berg, 2004.

L. Liao, D. Fox, and H. Kautz. Extracting places and activities from
gps traces using hierarchical conditional random fields. Int. J. Rob. Res.,
26(1):119-134, 2007.

C. Lichtenthaler, T. Lorenz, M. Karg, and A. Kirsch. Increasing perceived
value between human and robots - measuring legibility in human aware
navigation. In Advanced Robotics and its Social Impacts (ARSO), 2012 IEEE
Workshop on, pages 89-94, May 2012.

K. Lockwood, J. D. Kelleher, M. Klenk, and N. Hawes. The role of context
in spatial region identification. In Proceedings of Second Annual Conference on
Advances in Cognitive Systems (Poster Collection), Baltimore, MD, 2013.

M. Luber, G. Diego Tipaldi, and K. O. Arras. Place-dependent people track-
ing. Int. J. Rob. Res., 30(3):280-293, Mar. 2011.

W. Maier and E. Steinbach. A probabilistic appearance representation and

its application to surprise detection in cognitive robots. Autonomous Mental

174

Bibliography

Development, IEEE Transactions on, 2(4):267-281, Dec 2010.
[51] D. McDermott. A reactive plan language. Technical report, Citeseer, 1991.

[52] G.J. McLachlan and T. Krishnan. Basic Theory of the EM Algorithm. John
Wiley and Sons, Inc., 2007.

[53] D. Minnen, I. Essa, and T. Starner. Expectation grammars: leveraging high-
level expectations for activity recognition. In Computer Vision and Pattern
Recognition, 2003. Proceedings. 2003 IEEE Computer Society Conference on, vol-
ume 2, pages [1-626-11-632 vol.2, June 2003.

[54] T. Mitzner, C. Smarr, J. Beer, T. Chen,]. Springman, A. Prakash, C. Kemp,
and W. Rogers. Older adults” acceptance of assistive robots for the home.
2011.

[55] M. Molineaux, M. Klenk, and D. Aha. Goal-driven autonomy in a navy
strategy simulation. In AAAI Conference on Artificial Intelligence, 2010.

[56] M. Molineaux, M. Klenk, and D. W. Aha. Goal-driven autonomy in a navy
strategy simulation. to appear. 2010.

[57] T. Moon. The expectation-maximization algorithm. Signal Processing Maga-
zine, IEEE, 13(6):47-60, Nov 1996.

[58] H. Moravec and A. Elfes. High resolution maps from wide angle sonar. In
Robotics and Automation. Proceedings. 1985 IEEE International Conference on,
volume 2, pages 116-121, Mar 1985.

[59] L. Mosenlechner and M. Beetz. Fast temporal projection using accurate
physics-based geometric reasoning. In Robotics and Automation (ICRA), 2013
IEEE International Conference on, pages 1821-1827, May 2013.

[60] N. Nguyen, H. Bui, S. Venkatsh, and G. West. Recognizing and monitoring
high-level behaviors in complex spatial environments. In Computer Vision
and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer Society Confer-
ence on, volume 2, pages 1I-620-5 vol.2, June 2003.

175

Bibliography

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

N. T. Nguyen, D. Q. Phung, S. Venkatesh, and H. Bui. Learning and de-
tecting activities from movement trajectories using the hierarchical hidden
markov models. In CVPR “05: Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition (CVPR’05) - Volume 2,
pages 955-960, Washington, DC, USA, 2005. IEEE Computer Society.

D. Norman. The design of future things. 2007. New York: Basic Books, 2007.

J. Orkin and D. Roy. The restaurant game: Learning social behavior and
language from thousands of players online. Journal of Game Development
(JOGD), 3(1):39-60, December 2007.

A. Ortony and D. Partridge. Surprisingness and expectation failure: what’s
the difference? In Proceedings of the 10th international joint conference on Artifi-
cial intelligence - Volume 1, IJCAI'87, pages 106-108, San Francisco, CA, USA,
1987. Morgan Kaufmann Publishers Inc.

D. Pangercic, B. Pitzer, M. Tenorth, and M. Beetz. Semantic object maps
for robotic housework - representation, acquisition and use. In Intelligent
Robots and Systems (IROS), 2012 IEEE/RS] International Conference on, pages
4644-4651, Oct 2012.

D. Pangercic, M. Tenorth, D. Jain, and M. Beetz. Combining perception and
knowledge processing for everyday manipulation. In Intelligent Robots and
Systems (IROS), 2010 IEEE/RS] International Conference on, pages 1065-1071,
Oct 2010.

P. Pastor, M. Kalakrishnan, S. Chitta, E. Theodorou, and S. Schaal. Skill
learning and task outcome prediction for manipulation. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on, pages 3828-3834, May
2011.

M. Perkowitz, M. Philipose, K. Fishkin, and D. J. Patterson. Mining models
of human activities from the web. In Proceedings of the 13th International
Conference on World Wide Web, WWW ’04, pages 573-582, New York, NY,
USA, 2004. ACM.

176

Bibliography

[69] M. Piunti, C. Castelfranchi, and R. Falcone. Expectations driven approach
for situated, goal-directed agents. In WOA, pages 104-111. Citeseer, 2007.

[70] M. E. Pollack, L. Brown, D. Colbry, C. E. McCarthy, C. Orosz, B. Peintner,
S. Ramakrishnan, and I. Tsamardinos. Autominder: An intelligent cogni-
tive orthotic system for people with memory impairment. Robotics and Au-
tonomous Systems, 44:273-282, 2003.

[71] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs, R. Wheeler, and
A.Y.Ng. Ros: an open-source robot operating system. In ICRA workshop on
open source software, volume 3, 2009.

[72] L. Rabiner. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2):257-286, Feb 1989.

[73] L. Rabiner and B. Juang. An introduction to hidden markov models. ASSP
Magazine, IEEE, 3(1):4-16, 1986.

[74] S.]J. Russell, P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards. Artificial
intelligence: a modern approach, volume 74. Prentice hall Englewood Cliffs,
1995.

[75] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-based clustering in
spatial databases: The algorithm gdbscan and its applications. Data Min.
Knowl. Discov., 2(2):169-194, June 1998.

[76] M. Schuster, D. Jain, M. Tenorth, and M. Beetz. Learning organizational
principles in human environments. In Robotics and Automation (ICRA), 2012
IEEE International Conference on, pages 3867-3874, May 2012.

[77] G. Steinbauer and F. Wotawa. Detecting and locating faults in the control
software of autonomous mobile robots. In 19th International Joint Conference
on Artificial Intelligence (I[CAI-05), pages 1742-1743. Citeseer, 2005.

[78] P. Struss. Model-based problem solving. In F. van Harmelen, V. Lifschitz,
and B. Porter, editors, Handbook of Knowledge Representation, pages 395—465.
Elsevier, 2008.

177

Bibliography

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

E. Stulp, A. Fedrizzi, and M. Beetz. Action-related place-based mobile ma-
nipulation. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RS] In-
ternational Conference on, pages 3115-3120, Oct 2009.

J. Sung, C. Ponce, B. Selman, and A. Saxena. Unstructured human activity
detection from rgbd images. In Robotics and Automation (ICRA), 2012 IEEE
International Conference on, pages 842-849, May 2012.

A. Tapus, M. Mataric, and B. Scasselati. Socially assistive robotics [grand
challenges of robotics]. Robotics Automation Magazine, IEEE, 14(1):35-42,
March 2007.

M. Tenorth, J. Bandouch, and M. Beetz. The tum kitchen data set of ev-
eryday manipulation activities for motion tracking and action recognition.
In Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International
Conference on, pages 1089-1096, Sept 2009.

M. Tenorth and M. Beetz. Knowrob - knowledge processing for autonomous
personal robots. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RS]
International Conference on, pages 4261-4266, Oct 2009.

M. Tenorth and M. Beetz. KnowRob — A Knowledge Processing Infrastruc-
ture for Cognition-enabled Robots. International Journal of Robotics Research
(IJRR), 32(5):566 — 590, April 2013.

M. Tenorth, L. Kunze, D. Jain, and M. Beetz. Knowrob-map - knowledge-
linked semantic object maps. In Humanoid Robots (Humanoids), 2010 10th
IEEE-RAS International Conference on, pages 430435, Dec 2010.

G. D. Tipaldi and K. O. Arras. I want my coffee hot! learning to find people
under spatio-temporal constraints. In ICRA, pages 1217-1222. IEEE, 2011.

D. Townsend and T. Bever. Sentence comprehension: The integration of habits
and rules. MIT Press, Cambridge, MA, USA, 2001.

T. T. Truyen, D. Q. Phung, H. H. Bui, and S. Venkatesh. Hierarchical Semi-
Markov Conditional Random Fields for Recursive Sequential Data. ArXiv
e-prints, Sept. 2010.

178

Bibliography

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

R. Ueda, T. Ogura, K. Okada, and M. Inaba. Design and implementation
of humanoid programming system powered by deformable objects simu-
lation. In Proceedings of the 10th International Conference on Intelligent Au-
tonomous Systems, pages 374-381, 2008.

T. van Kasteren, A. Noulas, and B. Krose. Conditional random fields ver-
sus hidden markov models for activity recognition in temporal sensor data.
Advanced School for Computing and Imaging (ASCI), 2008.

M. Weiland, A. Smaill, and P. Nelson. Learning musical pitch structures
with hierarchical hidden markov models. Journees d’Informatique Musical,
2005.

B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur, and G. T. Sul-
livan. Model-based programming of fault-aware systems. AI Mag., 24(4):61-
75, Jan. 2004.

I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools
and Techniques, Second Edition (Morgan Kaufmann Series in Data Management
Systems). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2005.

S. Woods, M. Walters, K. Koay, and K. Dautenhahn. Comparing human
robot interaction scenarios using live and video based methods: towards a
novel methodological approach. In Advanced Motion Control, 2006. 9th IEEE
International Workshop on, pages 750755, 2006.

L. Yujian and L. Bo. A normalized levenshtein distance metric. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 29(6):1091-1095, June
2007.

H. Zender, O. Martinez Mozos, P. Jensfelt, G. J. M. Kruijff, and W. Burgard.
Conceptual spatial representations for indoor mobile robots. Robot. Auton.
Syst., 56(6):493-502, June 2008.

179

	Introduction
	Development of Service Robots
	Motivation
	Application Domain
	Challenges
	Contributions
	Reader's Guide

	Background
	Bayesian Networks
	Hidden Markov Models
	Reactive Planning
	Semantic Environment Maps

	A Framework for Expectations
	System overview
	Application: Expectation classes for Human Robot Interaction
	Related Work

	Human Activity Models
	Context Dependent Spatial Regions (CDSRs)
	Spatio-Temporal Plan Representations (STPRs)
	Related Work

	Activity Recognition
	Challenges in Activity Recognition
	Hierarchical Hidden Markov Models for Activity Recognition
	Simultaneous Plan Recognition and Monitoring (SPRAM)
	Integration of SPRAM into the Expectations Framework
	Related Work

	Human Activity Datasets
	Available Datasets
	Contributed Datasets

	Evaluation
	The MORSE Simulator
	Evaluation of Activity Recognition
	SPRAM
	Application: Expectations for a Household Robot
	Conclusion

	Discussion
	Expectations Framework
	Human Activity Models
	Activity Recognition

	Conclusion
	Summary
	Related Visions for Robotics and AI

	Appendix
	Law of Total Probability
	Markov Assumption
	Product Rule
	Bayes' Rule

	Prior Publications
	Bibliography
	Index

