Technische Universitat Minchen
Informatik 5 — Lehrstuhl fiur Wissenschaftliches Rechnen

Partitioned Fluid-Structure Interaction
on Massively Parallel Systems

Benjamin Walter Uekermann

Vollstandiger Abdruck der von der Fakultat fiir Informatik der Technischen Universitat
Miinchen zur Erlangung des Akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzende(r): Prof. Dr. Dr. Arndt Bode

Priifer der Dissertation: 1. Prof. Dr. Hans-Joachim Bungartz
2. Prof. Dr. Miriam Mehl, Universitat Stuttgart

3. Prof. Dr. Carol Woodward,
North Carolina State University, USA

Die Dissertation wurde am 30.08.2016 bei der Technischen Universitdt Miinchen einge-
reicht und durch die Fakultat fir Informatik am 12.10.2016 angenommen.

Abstract

Today’s multi-physics applications suffer from a lack of either flexibility or scalability. Only
reconciling both will allow to translate the higher compute power of the forthcoming exa-
scale era into more complex scenarios with more relevant physical effects covered. Only then,
the promised tremendous advances in the most challenging multi-physics applications, such
as climate modeling or simulations of the human body, are feasible.

The coupling library preCICE enables the coupling of multiple black-box single-physics
solvers at runtime. In my thesis, I introduce parallelization on two levels into preCICE
without compromising this flexibility. First, parallelization on an intra-solver level: A new
parallel concept renders a central coupling instance unnecessary, but executes all preCICE
features on distributed data. Second, parallelization on an inter-solver level: I develop
novel parallel quasi-Newton coupling schemes, which show the same convergence speed as
state-of-the-art sequential alternatives.

These parallelization concepts allow for a high scalability of complete multi-physics setups.
The coupling does no longer degenerate the solvers’ scalability significantly. Applications
can now be ported from moderately to massively parallel machines. Thus, mesh resolutions
can be adjusted for simulations of turbulent fluid-structure interaction, blood-flow with real
geometries, or multi-field scenarios such as fluid-structure-acoustics interaction.

Contents

1 Introduction

1.1 No Multi-Physics without Multi-Core
1.1.1 A Practical View on Fluid-Structure Interaction
1.1.2 Computational Costs of Fluid-Structure Interaction

1.2 On Partitioned and Monolithic Fluid-Structure Interaction

1.3 Challenges of a Scalable Partitioned Approach
1.3.1 Avoiding Idling Processes by Parallel Coupling Schemes
1.3.2 Avoiding a Central Coupling Instance by a Pure Peer-To-Peer Approach

An Introduction to preCICE

2.1 User Perspective L e
2.1.1 Application Programming Interface L.
2.1.2 Features e e
2.1.3 Configuration

2.2 Developer Perspective e

2.3 Review of Alternative Coupling Software
2.3.1 Scope of the Review
2.3.2 Listof Tools

2.4 Used Single-Physics Solvers

Inter-Solver Parallelism: Parallel Coupling Schemes

3.1 Ingredients of the Partitioned Coupling Approach
3.2 Fixed-Point Equation Solvers
3.2.1 Introduction to Multi-Secant Methods
3.2.2 Anderson Acceleration and Generalized Broyden
3.3 Quasi-Newton Coupling Schemes for Fluid-Structure Interaction
3.4 Basic Numerical Tests: 1D Tube
3.4.1 Testcase Description L L
3.4.2 Results and Conclusions L
3.5 Implementation in preCICE
3.6 Advanced Topics e
3.6.1 A Numerically Demanding Testcase
3.6.2 Improving the Robustness of Quasi-Newton Schemes: Filtering
3.6.3 A Preconditioner for the Jacobian Systemo
3.7 Advanced Numerical Experiments
3.7.1 FSI3 Benchmark e
3.7.2 Straight 3D Elastic Tube
3.7.3 Driven Cavity with Flexible Bottom
3.7.4 Results and Conclusions
3.8 Generalization to Multi-Coupling
3.8.1 Fluid-Structure-Fluid Model Problem
3.8.2 Various Solution Attempts
3.8.3 Numerical Experiments

Intra-Solver Parallelism: preCICE on Distributed Data

4.1 Steering Concept and Re-Partitioning of Meshes
4.1.1 Algorithmic Description
4.1.2 TImplementation e e e
4.1.3 Scaling Results

4.2 Communication on Distributed Data L 0oL
4.2.1 Algorithmic and Technical Description
4.2.2 Implementation
4.2.3 Scaling Results

-

O O =N ==

13

13
13
17
20
20
22
22
24
26

29

29
32
32
33
36
37
38
39
44
46
46
48
49
54
54
56
o7
98
62
62
63
65

4.3

4.4

4.5

Interpolation Methods on Distributed Data
4.3.1 Basic Concepts and Projection-Based Mapping
4.3.2 Radial Basis Function Mapping oL,
4.3.3 Scaling Results
Coupling Schemes on Distributed Data
4.4.1 Numerical Kernels of Multi-Secant Methods
4.4.2 Porting the Numerical Kernels to Distributed Data
4.4.3 Scaling Results e
Overall Scaling Experiments L o
4.5.1 Ateles Cube L
4.5.2 PfS-la Benchmark

5 Show Cases

5.1
5.2
5.3

5.4
5.5
5.6

Overview on Show Cases o v it e
Aortic Blood Flow
Fluid-Structure-Acoustics Interaction
5.3.1 Fluid-Acoustic Interaction
5.3.2 Three-Field Flow Coupling around a 2D Subsonic Free Jet
5.3.3 Fluid-Structure Acoustic Coupling for a 3D Bending Tower
Turbulent Flow around an Elastic Hemisphere
Simulation of a Brush Seal — Feasability Study
Uncertainty Quantification of the FSI3 Benchmark
5.6.1 The Multi-Challenge
5.6.2 Mathematical Setup
5.6.3 Results e

6 Conclusions

6.1
6.2

Summary of the Thesis
Future Challenges of Partitioned Multi-Physics

References

107

107
109
113
113
114
119
121
123
127
127
128
132

135

135
136

140

1 Introduction

The forthcoming exa-scale era promises immense computational power. Naturally, there is a strong
belief that this comes along with breakthroughs in the most challenging multi-physics applications,
including simulations of the human body or predictions of climate change. A simple question, however,
remains: does more compute power automatically lead to more resolved physical effects? My answer to
this question is: yes, but this comes with challenges. The automatically needs to be dropped.

In 2013, a large group of researchers collected future perspectives of general multi-physics simulations
in a common effort [122]. As starting point of my thesis, I want to revisit the inherent complexity of
multi-physics simulations as discussed in this publication. Every further added physical effect comes
with more parameters and algorithms to tune. Multi-physics complexity does not mean that we can
simply add up the complexities of the single-physics simulations. I would say, we have to multiply
them if we think about the amount of parameters of every single-physics simulation. Furthermore, the
coupling itself brings additional complexity. Thus, we have to develop robust algorithms that work in a
variety of situations and that avoid tuning of parameters.

Multi-physics simulations can be distinguished into two overall approaches. The monolithic approach,
on the one hand, deduces an overall equation system for a coupled-system, solved at once in a single
software. The partitioned approach, on the other hand, couples existing single-physics software on a
high level. The monolithic approach can be more robust and more efficient for a single application. If we
think, however, about making simulations more realistic by adding or exchanging physical components,
only the partitioned approach allows to keep a feasible time-to-solution. By time-to-solution, I refer to
the overall time from the developing process of the algorithms and the software to the final simulation.
Only reusing existing single-physics experience allows us to tackle the increasing complexity.

This thesis deals with the question how we can translate the black-box flexibility of the partitioned
approach into software flexibility while, at the same time, allowing efficient usage of modern, massively
parallel computing architectures. As an example, I mainly focus on fluid-structure interaction (FSI).
At multiple occasions in this thesis, I add more physical effects to illustrate the increasing complexity.
The main goal, however, is not to achieve breakthroughs in FSI itself, but to deduce general algorithms
and software concepts that can be applied to any other surface-coupled multi-physics problem.

In the remainder of the introduction, Section 1.1 discusses FSI in more detail and revisits the terms
multi-physics and multi-core and their relation. Afterwards, Section 1.2 discusses the two worlds of
monolithic and partitioned coupling for FSI. This section comes along with a broad literature review on
FSI. Finally, in Section 1.3, I deduce concrete research questions for a scalable, partitioned approach.

1.1 No Multi-Physics without Multi-Core

This section starts with a practical view on FSI in Section 1.1.1. T give a basic definition of FSI and
collect various applications. Afterwards, Section 1.1.2, discusses the computational cost of FSI and
concludes that high scalability of FSI simulations is a desired goal.

1.1.1 A Practical View on Fluid-Structure Interaction

FSI encompasses all applications in which a solid body is deformed under fluid excitation. In general,
the coupling is bi-directional as the deformation of the solid also influences the fluid. This mutual
influence is the core of a broad spectrum of practical applications. In the following, I try to list the
most important applications. I do not intend to give a full literature overview over single applications,
but to give representative publications for every application.

Applications of Fluid-Structure Interaction The first FSI simulations in literature appeared in
the middle of the '90s [11, 51, 136, 162, 179, 189, 218, 226] and the importance has ever grown since.
One of the most classical application is aeroelasticity — the stability of an elastic body exposed to a
fluid flow. This is important for aircrafts [81] or wind turbines [12], but also for lightweight structures
such as tents [102, 230]. Other classical engineering applications are parachutes [190, 174] or inflatable
structures such as airbags [210]. Marine engineering is another area where FSI plays a prominent role:

fields of research are the interaction of foils — thin profiles, placed under the hull of a ship — with the
surrounding water [134] as well as wind interaction of the sail in a sailing boat [159]. In recent years,
hemodynamics have played a more and more important role. This includes the simulation of the human
heart such as in [120, 167] or the flow in arteries with aneurysms [192, 7]. Exotic FSI applications are
the aquatic locomotion of fish [19] or insect flight [194].

Adding Further Physical Effects Many FSI applications are no stand-alone simulations, but are
enriched by further physical effects. Heat transfer is a very classical add-on. Often, pure conjugate
heat transfer is also referred to as FSI or thermal FSI [21]. In this thesis, however, FSI always refers to
the classical mechanical FSI. An important application of added heat transfer are combustion engines
[149]. Another example for an added physical effect is acoustics, which is required for noise predictions
[130, 175]. Heart simulation requires coupling to electronic propagation [212]. Furthermore, to emulate
the full blood circle, coupling to ODEs or 1D models is required. In blood-flow simulation, adding
poro-elastic structures can be important [37]. Multiple fluid fields are needed for partially filled tanks
on container ships [105], for example. Finally, coupling with control signals is important for many
applications [182]. All in all, there is a need for FSI simulations to be inherently flexible and, thus, to
allow for an easy extension by further physical effects.

1.1.2 Computational Costs of Fluid-Structure Interaction

In general, FSI is a compute-intensive problem: two possibly non-linear sub-problems need to be solved
together. Adding up the costs of both problems, however, underestimates the total cost drastically,
as the coupling increases the overall difficulty. At the same time, each field still needs to be solved
carefully. Otherwise, the increased modelling effort of moving from single-physics to multi-physics
models, does not pay off. For blood flow simulations, for example, moving from a single fluid simulation
to an FSI simulation does only give more realistic results if the boundary layer in the fluid domain is
carefully resolved. The overall cost increases even more when further physical effects are added. Next,
I discuss a concrete turbulent FSI benchmark from literature, which illustrates clearly that flexibility
and scalability are both a must, although they are sometimes hard to combine. I use this benchmark
to test the scalability of this thesis’ concepts in Section 4.5.2. Afterwards, I conclude this section by a
literature review on highly scalable FSI approaches.

PfS Benchmark for Turbulent Fluid-Structure Interaction In 2014, De Nayer et al. published
a numerical and experimental study of the turbulent FSI benchmarks PfS-1a and PfS-2a [58]. In the
same year, they reported on the performance of their numerical approach at the SuperMUC Status and
Results Workshop! [57]. The benchmark is an important contribution to future FSI research on, for
example, light-weight structures, since numerical and modelling approaches can be carefully tested. This
includes, for example, the turbulence model, the structural elements, and the FSI coupling approaches.
For such scenarios, the flexibility of the FSI approach is essential. The fluid and the structure solver show
both very different characteristics, which need to be taken care of by tailored discretization techniques.
Specialized single-physics solvers and the related experience need to be exploited in every field to match
the experimental data. The authors of the benchmark paper apply a partitioned coupling approach
based on the coupling tool CoMA, the predecessor of EMPIRE, which I discuss in Section 2.3. CoMA
uses a central serial server, over which all coupling data is communicated and which computes coupling
algorithms as well as interpolation methods between non-matching coupling meshes. For the PfS-2a
benchmark, the fluid domain is discretized with 13.5 million control volumes to carefully resolve the
boundary layer. The structure domain, however, only uses 100 quadrilateral four-node shell elements,
which leads to a tremendous cost asymmetry between both domains. Two seconds of physical time are
simulated such that enough statistical data is collected for comparison with experimental data. The
complete simulation runs on 93 cores, one for the structure solver, one for the coupling server, and all
other 91 cores for the fluid solver. This results in a runtime of approximately a thousand compute hours,
which is over a month. This is unsatisfactory, in particular because multiple simulation are necessary to
find the optimal experimental setup, the correct turbulence model, the correct inflow condition, the right
mesh, and so forth. A higher scalability would have a significant influence on the engineer’s research.

Ihttps://www.lrz.de/services/compute/supermuc/magazinesbooks/supermuc_results_2014/

K ‘ Y 93
.:kt
.:;;CHQ
Fo1

Figure 1: PfS-2a, parallel setup from [57], (a) distribution of tasks to cores, (b) compute and idle
periods of the cores over runtime. Scalability is limited due to (a), the central instance, through which
all communication runs and which computes the mapping, and (b), the staggered coupling scheme,
which probably suffers from the compute intense mapping operation at the central instance. F1 to F91:
fluid cores, C: core on which the central instance (coupler) runs, S: structure core.

=N W

time

The fluid solver, at the same time, should allow for a higher scalability. The overall scalability is limited
by the coupling approach because the coupling software was developed for smaller scenarios with distinct
focus on flexibility, but not on scalability. I already mention above: this thesis’ main topic is on how to
improve the scalability of such coupling approaches without interfering with the flexibility. Therefore,
I solve two problems, which I already want to briefly mention here. Section 1.3 further discusses both
problems.

The first problem is the sequential coupling scheme. This means that fluid, structure, and coupling are
always computed one after the other. Figure 1 (b), sketches this approach. During the computation of
the coupling and during the structural computations, the 91 fluid cores idle. The structural computation
might be fast, but the ratio 91 to 1 is also tremendous. The problem becomes more severe if the fluid
solver is scaled further.

The second problem is depicted on Figure 1 (a). All coupling computations, including the interpolation
between both coupling surface meshes, are executed on the centralized server, which requires commu-
nication of data on the complete fluid surface mesh. This 1:N communication limits the scaling of the
fluid solver to a higher number of cores. A centralized coupling approach cannot take advantage of
the scenario’s asymmetry. Furthermore, for the interpolation, a severe compute step at the server is
required. Both problems need solutions to further scale up partitioned FSI scenarios. Further research
concerning turbulent FSI involves more complex 3D flows, such as the flow around a half-sphere. [227]
discusses single-physics fluid results. Here, the fluid mesh even counts 30 million control volumes, so ap-
proximately 2.3 times more than for the PfS-2a benchmark. An FSI simulation with the same approach
as in [58] is hardly feasible. I present preliminary FSI results for this case using the newly developed
concepts of this thesis in Section 5.4.

Scalability of Fluid-Structure Interaction in Literature The scalability limitation of the PfS-2a
benchmark is no special case, but a general problem for FSI or, more general, surface-coupled multi-
physics problems. Therefore, I end this section with a brief literature review on the most important
scalability results for FSI. Partitioned approaches almost always suffer from a centralized server-like
instance. To my best knowledge, there is no partitioned FSI simulation published that scales significantly
beyond 100 cores. In [121], for example, scalability up to 64 cores is shown. For monolithic FSI, more
scalability results are published. Often, the concepts are very complex and specific to single applications.
Typically, the challenge is to formulate the right preconditioner for the asymmetric linear system. The
higher the asymmetry, the harder it gets to formulate such a preconditioner. For hemodynamics, which
marks an only moderately asymmetric case, several scalability studies are available. Cai and several
generations of PhD students increased the scalability from 512 cores in [9] (Barker and Cai), to 3,072
cores in [229] (Wu and Cai), up to slightly over 10,000 cores in [125] (Kong and Cai). In different
work, several students of Deparis and Quateroni increased the scalability from 768 cores [54] (Crosetto
et al.) to 8,096 cores [95] (Forti). Scalability for monolithic simulation is achievable, but comes with
many application-specific challenges. The partitioned approach, however, has the advantage that the

expertise on how to scale up single-physics can be reused. The solvers Alya and Ateles, which are used
in this thesis, for example, have proven to run efficiently on approximately 100,000 cores [213, 239].
Reproducing this scalability in coupled simulations is a natural task. Section 2.4 gives an overview on
all single-physics solvers that I use in this thesis.

A highly scalable partitioned approach should have a large impact on engineering. While I already
mention this further above for the Pfs benchmarks, this also holds true in general. A faster time-to-
solution, including the development time, allows us to develop more complex multi-physics applications,
since coupling approaches can be tested and validated earlier. Furthermore, additional algorithmic
layers, such as uncertainty quantification or shape optimization become feasible — especially such that
have no inherent additional parallel layer. Section 5.6 presents an example for uncertainty quantification.

1.2 On Partitioned and Monolithic Fluid-Structure Interaction

Further above, I already briefly introduce the different philosophies of the monolithic and the partitioned
approach for a general multi-physics problem. For FSI, the differentiation between both is sometimes
rather fuzzy. Many mixed forms exist. I prefer to look at this as a continuous range of methods as
visualized in Figure 2. From left to right, more and more information from single-physics solvers is
used, from only black-box access up to full access. Hence, from left to right, a tighter coupling is
possible, at the cost of a lower flexibility and a longer software development phase. It is not clear,
at which point a method is no longer partitioned, but monolithic. Sometimes, certain mixed-forms
are discussed as partitioned in one publication, while similar methods are referred to as monolithic in
another publication. In the following, I give an extensive literature review for all sub-steps, organized
from left to right. While I try to make this overview exhaustive, this is close to impossible for FSI
seeing the vast amount of published methods. While you read these lines, a new method is probably
developed. Afterwards, I discuss how the characteristics of the methods in Figure 2 change from left to
right and which impact this has.

Partitioned Coupling Monolithic Coupling

robustness, application-specificity

-
flexibility, generality, time-to-solution
-

e B L S R R —
Black-Box Multi-Level Robin Access to Access to Access to Pre-Cond. Fully
Coupling Coupling Coupling Discr. at Sub-Oper. Linear. of Coupling Monolithic

Interface Sub-Solvers (BB LA Solver)

Figure 2: Overview on various coupling techniques for FSI ranging from minimal black-box access on
the left to a fully monolithic approach with a black-box linear algebra solver on the right.

A Whole Range of Methods The partitioned approach can be seen as a domain decomposition
method (see e.g. [23]) for the coupled problem: each sub-problem is formulated separately while the
coupling is enforced via boundary conditions. While the term partitioned is also already introduced in
very early publications [87], also different terms are used for the same concept. This applies for the terms
co-simulation [236] or staggered approach [83], for example. I do not prefer the latter expression, as
staggered coupling could infer sequential coupling. Partitioned coupling can, however, also be parallel.
The complete Chapter 3 deals with such approaches. Black-box methods mark the very left of Figure 2.
Such methods only access nodal values at the surface mesh. No discretization details and, therefore, no

Jacobian information is used. Only standard Dirichlet and Neumann boundary conditions are applied.
Black-box methods are typically grouped into explicit and implicit schemes. Explicit schemes only
perform a fixed amount of solver calls during one timesteps whereas implicit schemes aim to recover
the fully coupled solution through sub-iterating. The expressions weakly and strongly coupled are
sometimes used similarly. Implicit schemes are necessary to overcome numerical instability caused by a
significant added-mass effect. I discuss this issue further down. Purely explicit schemes, often applied
for aeroelastic scenarios, are discussed by Farhat et al. [83, 85] or Dettmer et al. [69]. Simple implicit
schemes are based on an underrelaxation, possibly via an adaptive Aitken procedure such as discussed
in [128]. Quasi-Newton coupling schemes grew in importance during the last 10 years. An earlier work
uses a finite-difference approximation of the Jacobian [140]. Jacobian approximations without additional
evaluations are discussed in [33, 60, 144, 146, 148, 216]. The schemes that are developed as part of this
thesis also fall in this category [129, 142, 202]. A separate literature review in Section 3.3 discusses quasi
Newton coupling schemes in detail. Coupling methodologies that operate on a multi-level hierachy of
each single-physics domain [29, 65, 178, 209, 240] can still be seen as black-box methods. However,
such methods require more effort to establish the coupling. A multi-level hierarchy can be a hierarchy
of meshes, but also a hierarchy of models. A combination of multi-level methods with the parallel
approaches developed as part of this thesis is discussed in [28]. The next set of methods in Figure 2
are Robin coupling schemes. The stability of the pure Dirichlet-Neumann coupling can be improved by
using Robin boundary conditions, which are typically not yet supported by pure single-physics fluid or
structure solvers. These methods have been discussed in numerous publications [4, 8, 47, 157], reviewed
in [90]. Further methods need access to the discretization of both solvers to assemble and solve an
interface system [68, 170, 171]. Even more invasive are methods which add or modify terms in either
solver. The coupling stability can be improved by adding an artificial compressibility term in the fluid
solver [32, 64]. The authors of [61] show the close relation between this method and Robin boundary
conditions, while also discussing limitations of the approach. A similar improvement of stability can
be achieved by adding terms in the structure solver [187, 235]. Terms on both sides are adapted in
[72]. Semi implicit schemes need access to sub-operators to only iterate pressure terms implicitly while
treating the velocity terms explicitly [5, 38, 89]. Besides necessary modification of terms, this results
in a further restriction, since the fluid solver must be based on a splitting scheme then. Methods
that need access to full linearizations of solvers are sometimes still referred to as partitioned methods
[66, 91, 101, 127, 156, 183], but denoted monolithic in other publications such as in [14]. Finally,
methods that couple on a preconditioner level can be regarded as truly monolithic. A global Newton
linearization leads to a highly ill-conditioned Jacobian. A global preconditioner is constructed by re-
using preconditioners of every single-physics domain, possibly in a multi-grid sense. Such schemes are,
for example, discussed in [7, 9, 14, 54, 100, 125, 174, 193, 229]. One could argue that a fully monolithic
scheme would simply assemble the complete linearized system and use a black-box solver together with
a black-box preconditioner. [200] uses such an approach although the Jacobian matrix is not computed
explicitly, but approximated. Typically, such schemes significantly suffer from the bad condition of the
Jacobian.

Discussion Figure 2 already sketches the most important distinguishing features between a parti-
tioned and a monolithic approach. The partitioned approach allows for a faster code development due
to the inherent flexibility and, therefore, the reuse of existing, sophisticated single-physics solvers (see
e.g. [12, 22, 46, 83, 86, 102, 140, 175, 194]). The flexibility also allows to easily add further physical
components, compare the discussion in Section 1.1.1. Furthermore, tailored numerical schemes can
be applied in every domain. A fact that grows in importance if the time and spatial scales in both
domains differ significantly. Tailored methods can also be used for pre- and post-processing. On the
other hand, the partitioned approach suffers from the inherent added-mass instability [50, 94, 208],
caused by freezing the coupling boundary condition during one timestep. The instability increases for
relatively light and elastic structures or a fluid with a high viscosity. Contrary, the monolithic approach
often requires the development of a new software from scratch. This can also be an advantage as the
development can be highly tailored towards a specific application. Furthermore, a monolithic approach
allows to derive overall error estimators [168]. Sometimes, people argue that the monolithic approach
is better suited for massively parallel simulations. I contradict this believe with this thesis. Also the
partitioned approach can be used in a massively parallel setting. In a way, even less communication
is necessary, since values only need to be exchanged after every coupling iteration. The locality of the
computation, meaning that neighboring domains are also solved on neighboring processors, however,

might be better for a monolithic approach, based on an overall mesh decomposition. Time adaptivity
and higher temporal order is possible for both approaches — the partitioned approach [22, 211] and
the monolithic approach [53, 141]. The FSI literature provides several comparisons between both ap-
proaches. An early work is [145], which concludes on the higher stability of the monolithic approach
by means of a 1D example. Several publications aim for runtime comparisons (e.g. [60, 111, 180]), in
which the monolithic approach typically slightly outperforms the partitioned approach. A fair runtime
comparison is, however, not only close to impossible, but, in my opinion, also the wrong angle. The
goal of the partitioned approach is not to compete runtime-wise, though this is sometimes possible, but
to provide a faster development time. Often, the choice upon the better approach is dominated by the
application. FSI in hemodynamics features a high added-mass effect, but similar time and spatial scales.
A monolithic approach might, therefore, be advantageous. Aeroelastic applications, on the other hand,
have smaller added mass effects, but different scales. Here, the partitioned approach is normally used.
I give the main reason to intensify the research into the partitioned approach at the very beginning of
this thesis. Multi-physics application become more and more complex and need, therefore, the inherent
flexibility of the partitioned approach. Only then, a feasible time-to-solution is possible. Prototyping
new applications must be easy. Software and robust algorithms that can cover multiple applications
should be our research guideline.

Treatment of Moving Geometries As a final remark of this section, I collect information on the
treatment of moving geometries in the fluid solver. This is also an important characterization of FSI
approaches, but plays no central role in this thesis. Still, for the sake of completeness, I want to
mention several aspects. Two basic methods exist to resolve moving geometries. Either the reference
frame of the fluid solver and therewith also the mesh is moved with the geometry, or the boundary
condition on the geometry is enforced in a weak sense. For the fluid solver, the first approach uses
an arbitrary-Lagrangian-Eulerian (ALE) framework, while the second approach uses a pure Eulerian
approach. Numerous expressions for both approaches exist: conforming versus non-conforming, moving
grid versus fixed-grid, interface tracking versus interface capturing, and so forth. Often methods of
the second group are also called immersed boundary methods. Methods of the first group, the ALE
group, are typically better suited to resolve boundary layers, but require re-meshing techniques for too
large movements and fail to handle topology changes in the geometry. The second group, the immersed
boundary group, can handle arbitrarily large movements and topology changes but mesh elements are
not aligned with the geometry. Both approaches can be used with either a structured or an un-structured
mesh. Immersed boundary methods for FSI have first been considered by Peskin [160] in 1972. A good,
but already slightly outdated review can be found in [150]. In recent years, methods based on the
Nitsche approach [155] got very popular in FSI (see e.g. [16]). Besides the two main groups, also more
exotic approaches exist, such as a combination of ALE and the immersed boundary method in [82],
complete Eulerian FSI [74, 75, 221] or complete Lagrangian FSI [117]. The most important conclusion
from this paragraph is that this characterization of FSI can be regarded fully independent from the
equation coupling.

1.3 Challenges of a Scalable Partitioned Approach

FLUID 3\
intra-solver
parallelism

> inter-solver

parallelism
STRUCTURE

intra-solver
parallelism

Figure 3: Two layers of parallelism for an FSI simulation: intra-solver parallelism, left, see Chapter 4,
and inter-solver parallelism, right, see Chapter 3.

Further above, I mention two problems which prevent the PfS benchmarks from reaching a higher

scalability: idling processors due to a sequential coupling scheme and a central instance through which
all coupling meshes need to be sent. In this section, I deduce two challenges from theses two problems.
Both can be seen as introducing parallelism on different levels. First, an inter-solver parallelism, meaning
a coupling scheme that allows the simultaneous execution of both solvers. Second, an intra-solver
parallelism, meaning the computation of all interface numerics directly on the solver ranks and not on
a central instance. Figure 3 sketches both parallelization levels. These two parallelization levels are
the two main topics of this thesis. While the first one relies on the mathematical, numerical branch of
scientific computing, the second one is rather a computer science, high-performance computing topic.
Next, I present both challenges and briefly sketch their solution: the inter-solver parallelism in Section
1.3.1 and the intra-solver parallelism in Section 1.3.2.

1.3.1 Avoiding Idling Processes by Parallel Coupling Schemes

cores cores

a) b)

time time
cores cores

time time

Figure 4: Parallel layout of different FSI coupling strategies. Blue and orange rectangles refer to fluid
and structure computations, respectively. a) Classical sequential schemes let idle half of the processes
in average. b) Reusing compute resource does only result in a slightly better situation. c¢) Unfeasible
layout: the structure solver does not scale on all fluid cores due to the immense cost asymmetry. d) A
parallel coupling leads to a clean solution.

Classical partitioned coupling schemes for FSI use a sequential coupling of the fluid and the structure
solver. They are solved one after the other. Figure 4 (a) depicts this situation. Half of the processes
idle in average. Theoretically, one could reuse the processes of each solver for the other (discussed e.g.
in [49]). Technically, this is far from trivial. Still, it only leads to the situation depicted in Figure
4 (b) and not to the situation of Figure 4 (c). Most FSI scenarios, such as the earlier discussed PfS
benchmarks, feature an immense asymmetry between both solvers. The fluid problem consists of many
degrees of freedom, which makes it compute intensive. At the same time, this makes the fluid problem
also scalable on many cores. The structure problem, on the other hand, is cheap and scales, thus, only
on a few cores. The situation of Figure 4 (c¢) is not feasible since the structure solver does not scale
on the same amount of cores as the fluid solver. In the limit case, going from (a) to (b) results in no
speed-up. This drawback of the sequential coupling worsens if more than two solvers are coupled. For
n coupled solvers, at worst, a ratio of (n — 1)/n of all processes constantly idle. The only clean solution
to this problem is a parallel coupling scheme, allowing the simultaneous execution of the fluid and the
structure solver. In case of a perfect load-balancing, this results in no idling processes as depicted in
Figure 4 (d). Compared to (a), a theoretical speed-up of two is possible. For explicit coupling, such

parallel coupling schemes have been known and used since the very beginning of FSI simulations [83, 86].
For implicit coupling, the story is a different one. If the number of iterations to converge to a fixed
convergence criterion doubles when going from the sequential coupling (a) to the parallel coupling (d),
nothing is won. For non-black-box coupling schemes, implicit parallel approaches already exist [66, 170].
One of the main contribution of this thesis is the development of implicit parallel black-box coupling
schemes that feature the same convergence speed as their sequential, state-of-the-art counterparts. The
construction of such parallel coupling schemes is not overly complicated. The state-of-the-art sequential
coupling scheme IQN-ILS [60] is a combination of the sequential Gauss-Seidel coupling and an Anderson
acceleration [1]. The sequential part relies on the sequential non-linear block-Gauss-Seidel fixed-point
equation. Replacing this sequential fixed-point equation by a parallel one, such as a block-Jacobi one,
leads to a parallel coupling scheme. Balancing both components via a dynamic weighting restores the
same convergence speed. Chapter 3 discusses all these topics in detail. An interesting work about the
inverse direction has recently been presented in [131]. Here, the parallel Jacobi like solver ASPIN has
been transformed into its sequential counterpart MSPIN, to improve the robustness and the convergence
speed of the algorithm. This does not hold true for the methods developed in this thesis: the robustness
and convergence speed of the parallel coupling schemes is similar to the sequential ones.

1.3.2 Avoiding a Central Coupling Instance by a Pure Peer-To-Peer Approach

Many coupling tools use a central instance to manage the overall workflow. This includes the earlier
discussed results for the PfS benchmarks. The central instance acts as a server and is often executed
in a single thread. Each rank of a parallel single-physics solver registers as a client at the server. All
communication between different solvers runs through the central server. Coupling data is held at
the server. Accessing this data requires communication. All interface numerics such as interpolation
between non-matching grids or coupling schemes are executed on the central instance. This setup is
sketched in Figure 5 (a). It is not astonishing that most early developments of multi-physics coupling
software chose this approach. The central instance can easily overview the overall steering logic. 10
years ago, it was important to simplify things since many other challenges such as finding stable coupling
schemes and the right interpolation methods were still ahead. For massively parallel simulation, this
centralized layout is however not suitable for different reasons:

1. The 1:N communication between each solver and the server can result in a throughput bottleneck.

2. Many small messages are required for accessing coupling data if the solver features a de-centralized
data structure.

3. All coupling meshes and the associated coupling data need to be communicated to the server.

4. All interface numerics are computed in serial.

For a certain application, it is not always trivial to judge upon the most severe bottleneck among these
four. One should be careful with too early conclusions. In [99], a parallelization of the server is proposed.
A similar approach is used in [121]. Such a parallel solver could be a remedy for problem 1 and 4, and
also partially for problem 2, but not for problem 3.

A clean solution for all four problems is a fully parallel peer-to-peer approach as depicted in Figure 5
(b). No central instance needs to be executed. Communication of coupling data between solvers works
locally. Interface numerics are directly computed on the solver ranks on distributed data. For highly
asymmetric cases, only the smaller coupling mesh has to be communicated. Such a pure parallel peer
to peer approach is realized as part of this thesis. The starting point of this realization is the coupling
library preCICE. Next, I first briefly introduce preCICE before then arguing why preCICE marks the
perfect starting point for the development of a parallel peer-to-peer coupling concept.

The Coupling Library preCICE preCICE is the successor of the coupling tool FSIxce. The latter
was developed by Markus Brenk [34] more than 10 years ago as part of the DFG Research Unit 493
Fluid-Structure Interaction: Modelling, Simulation, Optimization®. FSIxce was a server-based coupling

2http://fsu.informatik.tu-muenchen.de/

Tom ® " @ 0
0\ @ . —®
QH ®: —+®

®- +®
Figure 5: Parallel layout of a coupling approach using a central instance (a) compared to parallel
peer-to-peer approach (b).

tool. Bernhard Gatzhammer continued this development by re-developing the server-based concept of
FSIxce into a peer-to-peer concept for preCICE [99]. This peer-to-peer concept, however, still uses a
server per solver. This means, for two coupled solvers, two server threads need to be executed. My
thesis renders central instances completely unnecessary by introducing a fully parallel concept. preCICE
offers various coupling schemes, methods for interpolation between non-matching coupling meshes and
means for communication between separate executables. The library features a high-level application
programming interface (API), which makes it easy to use. Chapter 2 introduces preCICE thoroughly
along with a review of alternative coupling software.

P EQUATION COUPLING P
of+—] g *--9---0-» s |<—|o
X
Y E E Y
SN
v O vV
P E E P
R R
ol——| R COMMUNICATION R |— |0
X X
Y A -0 A Y
A==
H P ﬁﬂ P .
L] T T L]
E DATA MAPPING E
R K R
: :
@ gf «—> A B |e— 0
Y Y

00 00

COUPLING DATA A COUPLING DATA B

Figure 6: Old parallelization concept of preCICE [99]. Coupling data is held at a server for each parallel
solver. Accessing data requires communication to the server. Interface numerics are executed on the
servers. A single communication channel is established between both servers.

Porting preCICE to a Fully Peer-to-Peer Layout Figure 6 sketches the old parallelization con-
cept of preCICE. Whereas it already features a peer-to-peer layout — no central instance is present —
each solver still needs a separate server thread. The coupling data is held at this server thread and
all interface numerics are computed there. For the interpolation, the coupling mesh of one solver is
communicated from its server to the other. The old parallelization concept still suffers from all four
problems that I discuss further above. The steering logic, however, works already without any central
instance. Porting this layout to fully peer-to-peer concept without any servers is, thus, much easier

than starting from a central-server based tool. The high-level API, on the other hand, provides the full
flexibility of the partitioned approach as discussed at the very beginning of this thesis. Furthermore,
ready-to-use adapters for sophisticated single-physics solvers are already available. Also, preCICE is a
long-term software project with a well-designed software architecture, a full unit-testing of every single
component and various integration tests of the API. All in all, the original preCICE, as in [99], marks
the perfect starting point for developing a coupling tool for massively parallel multi-physics simulations.

Before briefly describing the new parallelization concept of preCICE, I want to discuss a first introductory
experiment. I perform a strong scaling study of the Ateles Cube scenario with the original server-based
parallelization concept. The Ateles Cube scenario simulates a density pulse travelling through a cubical
FEuler domain. For testing purpose, the cube is cut at an artificial interface and coupled via preCICE.
Section 4.5.1 gives a detailed explanation of the testcase and the experimental setting. Figure 7 shows
the time per timestep of the coupled simulation compared to a monolithic simulation. The coupled
simulation shows a drastic overhead. The overhead is due to the large amount of small messages that
each solver rank has to send to access data. From 32 to 64 and from 256 to 512 total cores, this
overhead remains constant as the amount of cores at the interface does not increase, compare Section
4.5.1. With the new parallelization concept of this work, the coupled simulation features almost no
overhead compared to the monolithic simulation. The impatient reader might directly want to peek at
Figure 79 on page 100. Furthermore, no scalability degeneration for up to 32,000 cores is visible [181].

102k —E— Monolithic Simulation 4
E Old Server-Based Concept]

101:' 3

100F 3

L1 1 1 1 1 1 1 1
4 8 16 32 64 128 256 512
Total Number of Solver Cores

Figure 7: Strong scaling of the work per timestep for the Ateles Cube. A monolithic simulation is
compared to the old server-based parallelization concept of preCICE. The same figure, complemented
by the results of the new parallelization concept is used in Section 4.5.1, Figure 79. For the old server-
based concept, the resources for both server processes are neglected. The initialization of the server-based
coupling takes approximately 50s independent of the total number of cores. This is mainly due to the
serial compute effort of the nearest-neighbor mapping.

Figure 8 sketches the new parallelization concept of preCICE. Data is stored locally at each solver
rank. All three feature groups of preCICE — equation coupling, interpolation, and communication — are
executed at the solver ranks on distributed data. At the same time, the API of preCICE and therewith
the flexibility is not changed at all. Scalability is combined with flexibility — the core of this thesis.
The usability of preCICE even improves as no server threads need to be started any longer. With
the original preCICE, pinning these threads is a non-trivial task. The basis for the parallelization is
the re-partitioning of communicated coupling meshes at the receiver. This re-partitioning needs to be
computed in a way such that the interpolation methods can be computed locally. Afterwards, local
communication channels between both solvers can be established. A general assumption of this thesis
is that the re-partition remains constant throughout a simulation. This is true for many applications

10

such as coupling at bounding boxes or FSI between a Lagrangian structure solver and an arbitrary-
Lagrangian-Eulerian fluid solver. FSI with an Eulerian fluid solver would contradict this assumption.
Still, building blocks from this thesis can be re-used for this future challenge. Due to this assumption,
I do not port the geometry interface of preCICE (compare [99]) to the new parallel layout. This is
out of scope for this thesis, though I expect no fundamental limitations. A further conclusion from the
constant re-partition is the different importance of the initialization phase compared to the work per
timestep. The initialization, including the re-partitioning of the received coupling mesh is only executed
once per simulation, compared to a possibly tremendous amount of timesteps and coupling iterations.
For the earlier discussed Pfs-2a benchmark, for example, [58] uses 2 - 10° timesteps. Thus, the main
focus of the new parallelization concept of this thesis is to optimize the time per timestep which is spent
in preCICE while achieving a tolerable initialization time. As tolerable, I consider an initialization time
for the coupling that is of the same order as the initialization effort of each single-physics solver. For
the largest cases with 10° cores and 10? total unknowns, an initialization time below 10s is the goal.
As the coupling interface is a lower-dimensional manifold of the complete simulation domain, this goal
is achievable by simple global operations. The work per timestep should, however, not include any
unnecessary global operations and, thus, be ready for the forthcoming exa-scale machines. The new
parallelization concept of preCICE is studied in detail in Chapter 4.

ADAPTER
EQUATION COUPLING
--9---0-> — % SOLVER B.1
I/ I/ I/ MASTER
0---0---0-p ADAPTER
f. COMMUNICATION 153 —p SOLVER B.2
E E
: ~00, %
R ‘ R
I ﬁﬁ I
N N
. ﬁ G G ﬁ L]
DATA MAPPING
< ADAPTER
—

SOLVER B.M

Figure 8: New parallelization concept of preCICE, developed as part of this thesis. Coupling data
is stored locally at each solver rank. Interface numerics are, thus, executed at the solver ranks on
distributed data. Communication is fully local between individual solver ranks.

Application of both Parallel Levels The two new parallelization levels — the inter-solver parallelism
in Chapter 3 and the intra-solver parallelism in Chapter 4 — can be studied independently of each other.
The only reason to read Chapter 3 before Chapter 4 is the realization of the coupling schemes on
distributed data, discussed in Section 4.4 which builds upon the serial description in Section 3.2. Both
chapters need the introduction to preCICE in Chapter 2 as a prerequisite. Afterwards, in Chapter 5
various show cases, encompassing applications in aeroelasticity and hemodynamics, demonstrate the
full potential if both parallel layers are combined.

About this Thesis I expect the reader of this thesis to have a basic understanding of computational
fluid dynamics and computational structural mechanics. To fill possible knowledge gaps, I recommend
[14, 106, 164, 223, 228]. The thesis of Bernhard Gatzhammer also gives a nice introduction [99]. Multi-
physics simulations, in particular in a high performance computing context, are always a team effort.
Therefore, it is quite obvious that parts of my thesis are the product of joint work. I mention my
collaborators at the beginning of each chapter separately.

11

-

Summary of Chapter 1

To advance multi-physics research, in particular at the dawn of exascale, a flexible
and scalable simulation environment is necessary.

A partitioned black-box coupling strategy gives the required flexibility. This thesis
deals with the question on how to make such a strategy scalable.

Therefore, FSI is studied as an important and challenging representative of a general
multi-physics problem. The goal, however, is to derive general concepts.

FSI itself has a tremendous need for more scalability, in particular partitioned FSI.
To obtain more scalability, parallelism on two levels is studied in this thesis.

Inter-solver parallelism: parallel coupling schemes allow for a simultaneous execution
of multiple solvers. I study such schemes in Chapter 3.

Intra-solver parallelism: a coupling tool without central instances avoids coupling
bottlenecks. I study such a concept in Chapter 4.

The coupling library preCICE marks a perfect starting point for theses developments,
since preCICE features a high flexibility and already uses a peer-to-peer layout. In
Chapter 2, I give an introduction to preCICE.

Finally, in Chapter 5, I study how the two new parallel layers can be used for practical
applications.

12

2 An Introduction to preCICE

In the introduction to this thesis, in Section 1.3.2, I motivate why the coupling library preCICE marks a
perfect starting point for this thesis. preCICE is a coupling library that uses a peer-to-peer approach and
features a high-level application programming interface (API). preCICE offers numerical methods for
equation coupling, methods to interpolate between non-matching meshes, and means for communication
between separate executables. This chapter gives a compact introduction to preCICE. Many aspects of
this chapter are already described in [99] and are repeated here mainly for the sake of completeness and
as a starting point for the explanations in the next two chapters. One of the strengths of this thesis
is that all necessary adaptions allowing for an executions of preCICE on distributed data and allowing
for a simultaneous execution of multiple solvers, do not result in any alteration of the API of preCICE.
Thus, the high level of flexibility of preCICE is not reduced. Furthermore, solver adapters do not
need to undergo any changes. Still, backward compatibility is achieved, such that the old server-based
parallelization concept (cf. Figure 6) is still fully functional. T focus my explanations in this chapter, in
the rare cases where necessary, however, on the new fully parallel concept (cf. Figure 8).

preCICE is a joint software project, currently developed by Florian Lindner, Klaudius Scheufele and
myself. As already mentioned in the introduction, the original software was implemented by Bernhard
Gatzhammer [99, 39], based on earlier work by Markus Brenk [34]. The software is open-source and
available on github®. We published the recent state of preCICE in [42]. In this chapter, I introduce
preCICE in two steps. First, Section 2.1 gives a detailed explanation of the user perspective of preCICE,
meaning everything a user of preCICE needs to know in order to couple his or her solver to any other
solver. This includes the API of preCICE, a list of features as well as an overview of the configuration.
I focus on a driving code example to give the reader a simple first impression. Second, Section 2.2
introduces the developer perspective, meaning everything a developer of preCICE needs to know in
order to implement new features. This part acts mainly as a starting point for the new implementations
presented in Chapters 3 and 4. Afterwards, the chapter closes with a review of alternative coupling
software in Section 2.3 and an introduction of all coupled single physics solvers used in this thesis in
Section 2.4.

2.1 User Perspective

Building preCICE gives the user the library libprecice and an auxiliary executable binprecice. The
latter can be used to start a server for the old parallelization concept, to run tests, or to auto-generate
an xml reference. In this section, I first introduce the reader to the API of preCICE, i.e., I explain how
to incorporate libprecice into a single-physics solver. Afterwards, I have a closer look at the features
of preCICE as well as at the configuration.

2.1.1 Application Programming Interface

preCICE is written in C++. The API is, however, available in all major scientific programming languages:
C++, plain C, Fortran 90/95, Fortran2003 and Python. The code listings in this section are restricted
to C++, though.

The API is located in the class SolverInterface, which is enclosed in the namespace precice. Figure
9 lists the constructor of the class along with the API function configure. As input arguments, the
constructor needs the name of the solver and rank and size of the current thread for parallel runs.
The solver thread with rank 0 internally serves as a master thread to preCICE, as detailed in Section
4.1. The API function configure reads and validates an xml file to configure all coupling features
at run-time. Afterwards, the master-slave communication, i.e. the intra-solver communication, is set
up. Section 2.1.3 gives more details on the configuration. For procedural programming languages such
as Fortran, both functions are combined into one routine. For the sake of simplicity, I omit in the
following the prefix SolverInterface as well as the namespace precice. Next, I explain the rest of
the API functions in three groups: steering methods, mesh and data access and auxiliary methods. I
do not cover the geometry API as it is not part of this thesis and has not yet been ported to distributed
data. Still, it is fully functional in the server mode and explained in detail in [99].

Shttps://github.com/precice/precice

13

namespace precice {
class SolverInterface

{
public:
SolverInterface (
const std::string& solverName,
int solverProcessIndex,
int solverProcessSize);
void configure (
const std::string& configurationFileName);
b

Figure 9: preCICE APIL: main class SolverInterface. The constructor uses the solver name as well
as the rank and size of the current thread as input arguments. configure allows for a configuration at
run-time by means of an xml file.

T use a driving example for all API functionality to give the reader a simple first impression of preCICE.
Figure 10 lists the original single-physics state of the example solver. This example solver plays the
role of a fluid solver in a fluid-structure interaction scenario and consists of some initialization and
finalization calls as well as a simple time loop. I refer to the solver as FluidSolver. In preCICE
nomenclature a solver is also refered to as a participant of a coupling. This example is already used in
a couple of preCICE publications (e.g. [42]) as well as on the preCICE github wiki.

turnOnSolver(); //e.g. setup and partition mesh

while (not simulationDone()){ // time loop
beginTimeStep(); // e.g. compute adaptive dt
computeTimeStep() ;
endTimeStep(); // e.g. update variables, increment time

}

turn0ffSolver();

Figure 10: Driving API example without preCICE functionality. The example FluidSolver consists of
an initialization and a finalization call as well as a simple time loop.

Steering Methods The steering API methods allow the user to steer the behavior of preCICE. This
group consists of the four methods initialize, initializeData, advance, and finalize, which are
listed in Figure 11.

double initialize();

void initializeData();

double advance (double computedTimestepLength);
void finalize();

Figure 11: preCICE API: steering methods. initialize sets up data structures and communication
channels, initializeData can be used optionally to communicate non-zero initial data to other solvers,
advance indicates preCICE to advance the overall coupling procedure after each timestep or coupling
iteration and finalize tears down data structures and closes communication channels.

initialize initializes the coupling. To do so, various steps are performed. First, data structures and
master communication channels to other participants are set up. Next, meshes are communicated and,
if necessary, re-partitioned (cf. Section 4.1). Afterwards, communication channels between slaves are
established (cf. Section 4.2). Optionally, initialize can also cover the computation of static mappings
(cf. Section 4.3), the reading of restart data, or the first receiving of coupling data in a serial coupling

14

10

11

12

13

14

16

17

scheme (cf. Section 3.5). initialize returns the maximum timestep length the solver should compute
next. This functionality can be used to impose the timestep length by one coupling participant onto
another. Afterwards, initializeData can be used optionally to communicate non-zero initial data to
other participants. This can be helpful, for example, if a structure solver starts in a non-referential
state after a restart or if an acoustic solver needs a physical condition close to a background state for
a successful first timestep. If no initial data communication is configured, this method returns without
any effect.

advance needs to be called after the computation of every timestep to indicate this to preCICE. Here,
preCICE applies mappings schemes, communicates coupling data, and computes fixed-point acceleration
techniques. Furthermore, exports to track certain so-called watchpoints, to visualize coupling data or
to write restart data, are treated if required. As an argument, the last timestep size has to be passed
to advance to inform preCICE about a possible subcycling. The return values indicates, again, the
next maximum timestep size. Finally, finalize tears down data structures and closes communication
channels. In Figure 12, the driving code example is extended by the steering methods.

turnOnSolver(); //e.g. setup and partition mesh
precice: :SolverInterface precice("FluidSolver",rank,size);

precice.configure("precice-config.xml");

double dt; // solver timestep size
double precice_dt; // maximum precice timestep size

precice_dt = precice.initialize()

while (not simulationDone()){ // time loop
beginTimeStep(); // e.g. compute adaptive dt
dt = min(preciceMaxDt, dt);
computeTimeStep();
precice_dt = precice.advance(dt);
endTimeStep(); // e.g. update variables, increment time
}
precice.finalize();
turn0ffSolver();

Figure 12: Driving API example, extented with the steering API.

Mesh and Data Access To couple two participants at a common coupling interface, both need to
define a surface mesh at this interface, the so-called coupling mesh. Coupling meshes and their data
fields are defined in the configuration (cf. Section 2.1.3). These data structures can now be accessed via
the API. Therefore, each mesh or data entry and also each mesh vertex is identified via an integer ID.
Figure 13 lists all necessary mesh API methods. hasMesh allows to check if a certain mesh is defined
in the configuration, while getMeshID returns the ID for a certain mesh. To define the actual vertex
coordinates, setMeshVertex allows to define a single mesh vertex and returns a vertex ID to reference
this vertex. For performance reasons, multiple vertices can be defined at once via setMeshVertices.
Afterwards, optional connectivity information can be added via setMeshEdge and setMeshTriangle.
Such connectivity information is only needed for projection mappings or geometry queries.

Once the mesh data structure is defined, coupling data can be accessed. Figure 14 collects the relevant
API methods. preCICE distinguishes between scalar and vector valued data. writeVectorData, for
example, allows to write vector-valued data to the preCICE data structure. For performance reasons,
again, multiple data values can be written at once via writeBlockVectorData. Similar methods exist
for scalar data and for reading data. Figure 15 shows the driving API examples, extended by mesh and
data access. The code is ready to use for explicit coupling. Still, small modifications need to be applied
for implicit coupling, which I explain next.

Auxiliary Methods preCICE offers various auxiliary methods for specific solver needs. For ex-
ample, actions allow to trigger certain events. Figure 16 lists the corresponding API methods. Via

15

bool hasMesh (const std::string& meshName) const;
int getMeshID (const std::string& meshName);

int setMeshVertex (
int meshID,

const double* position);

void setMeshVertices (

int meshID,
int size,
double* positions,
int* ids);

int setMeshEdge (
int meshID,
int firstVertexID,
int secondVertexID);

void setMeshTriangle (
int meshID,
int firstEdgelD,
int secondEdgelD,
int thirdEdgelD);

Figure 13: preCICE API: coupling mesh access. setMeshVertex and setMeshVertices allow to define
vertex coordinates for a certain mesh. With setMeshEdge and setMeshTriangle optional connectivity
information can be added.

bool hasData (const std::string& dataName, int meshID) const;
int getDatalD (const std::string& dataName, int meshID);

void writeVectorData (
int datalD,
int vertexID,
const double* value);

void writeBlockVectorData (

int datalD,
int size,
intx* vertexIDs,

double* values);

Figure 14: preCICE API: data access. writeVectorData and writeBlockVectorData allow to write
vector-valued coupling data into the preCICE data structures. Similar methods exist for scalar data as
well as for reading data.

isActionRequired, the necessity of a certain action can be inquired. With fulfilledAction, on the
other hand, the user informs preCICE once a certain action has been fulfilled. Actions are referenced
via strings, which are defined in the nested namespace constants. actionReadIterationCheckpoint
and actionWriteIterationCheckpoint allow, for example, to steer an implicit solver coupling. Further
auxiliary methods are collected in Figure 17. isTimeStepCompleted and isCouplingOngoing also allow
to trigger specific actions in the solver, or the end of the simulation, respectively. isReadDataAvailable
and isWriteDataAvailable can prevent unnecessary data access in case of subcycling. Figure 18 lists
the necessary changes for the driving example to enable the capability for implicit coupling.

16

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

turnOnSolver () ; //e.g. setup and partition mesh
precice: :SolverInterface precice("FluidSolver",rank,size);
precice.configure("precice-config.xml");

int dim = precice.getDimension();

int meshID = precice.getMeshID("FluidMesh");
int vertexSize; // number of vertices at wet surface
// determine vertexSize

double* coords = new double[vertexSize]; //
// determine coordinates

/

coords of vertices at wet surface
int* vertexIDs = new int[vertexSize];
precice.setMeshVertices(meshID, vertexSize, coords, vertexIDs);
delete[] coords;

int displID = precice.getDatalD("Displacements", meshID);
int forcelID = precice.getDataID("Forces", meshID);
double* forces = new double[vertexSize*dim] ;

double* displacements = new double[vertexSize*dim];

double dt; // solver timesetp size
double precice_dt; // maximum precice timestep size

precice_dt = precice.initialize()

while (not simulationDone()){ // time loop
beginTimeStep(); // e.g. compute adaptive dt
dt = min(preciceMaxDt, dt);
computeTimeStep();

computeForces (forces) ;
precice.writeBlockVectorData(forceID, vertexSize, vertexIDs, forces);
precice_dt = precice.advance(dt);
precice.readBlockVectorData(displID, vertexSize, vertexIDs, displacements);
setDisplacements(displacements) ;
endTimeStep(); // e.g. update variables, increment time

t

precice.finalize();

delete[] vertexIDs, forces, displacements;

turn0ffSolver();

Figure 15: Driving API example, extended by mesh and data access. For convenience, the solver
functions computeForces and setDisplacement are added. The solver is ready to use for explicit
coupling.

2.1.2 Features

In Section 1.3, I mention the three main feature groups of preCICE: coupling schemes, communication,
and interpolation methods (cf. Figure 8). In this section, I briefly list all available options for these
three feature groups as they are available after this thesis. I give a brief literature review of mapping
methods along with the list for those methods that are implemented in preCICE. For coupling schemes,
Section 3.3 already gives a broad literature review. I, thus, avoid the repetition here.

Interpolation Methods For the sake of generality, preCICE only considers fully non-conforming
meshes. This means that not even mesh elements of two surface meshes are aligned to each other, but
that there can be gaps and overlaps. As preCICE is built for black-box coupling (cf. Section 1.2),
mapping methods cannot access shape functions of any of the solvers. preCICE offers two kinds of
mapping methods: projection-based mapping methods and radial basis function (RBF) interpolation.
Both types are supported in a consistent variant, guaranteeing the exact mapping of constant values,

17

bool isActionRequired (comst std::string& action);
void fulfilledAction (const std::string& action);

namespace precice {
namespace constants {
const std::string& actionWriteInitialData();
const std::string& actionWriteSimulationCheckpoint();
const std::string& actionReadSimulationCheckpoint();
const std::string& actionWriteIlterationCheckpoint();
const std::string& actionReadIterationCheckpoint();

Figure 16: preCICE API: action methods. isActionRequired can trigger specific events in the solver.
On the other hand, via fulfilledAction, the solver can tell preCICE about the successfull fulfillment
of such an action. Actions are referenced via strings and various possibilities are defined in the nested
namespace constants.

bool isTimestepComplete();

bool isCouplingOngoing();

bool isReadDatalAvailable();

bool isWriteDataRequired (double computedTimestepLength);

Figure 17: preCICE API: further auxiliary methods. isTimeStepComplete and isCouplingOngoing
allows to steer specific events in the solver. isReadDataAvailable and isWriteDataAvailable can
prevent unnecessary data access in case of subcycling.

and in a conservative variant, guaranteeing the conservation of integral values. Section 4.3.1 gives formal
mathematical definitions of these two terms. Projection-based mapping methods comprise a nearest-
neighbor mapping and a nearest projection mapping. While the first method is a first order scheme, the
latter one is second order if the projection distance from one mesh to the other is much smaller than the
mesh width. In practice, this typically holds. [34] gives more information. RBF mappings use a linear
combination of vertex-centered radial-symmetric basis functions, together with a single globally defined
polynomial. preCICE supports various such basis functions, which can be grouped by their support
into global and local functions and lead, therefore, to dense or sparse system matrices, respectively.
The original server-based preCICE version supported already a serial LU decomposition to solve the
corresponding system matrix. This is, however, highly inefficient for sparse matrices and not well-suited
on distributed data. This thesis introduces an iterative solver procedure based on the PETSc library
[6]. Section 4.3.2 gives details on the realization.

The thesis of Bernhard Gatzhammer already gives a detailed literature review on mapping methods
[99]. I give a summary of the most important contributions and an update on recent developments.
The first mapping approaches for FSI were projection mappings [51, 136]. Farhat et al. introduced
the concept of a conservative approach [84] to better handle conservation-critical data values. [31] got
known as a standard review paper, which also details the unphysical oscillations a conservative mapping
can cause. In recent years, mortar methods [18] became the most popular choice if access to the shape
functions is given. These methods use a Galerkin approach at the interface, which leads to a simple
mass-matrix system to solve. Part of the popularity stems from the fact that an elegant combination
with isogeometrical analysis is possible [13]. Furthermore, using dual test functions, the mass matrix
system can degenerate to a plain diagonal system. This approach got known as dual mortar method
[225] and is used for FSI, for example, in [124]. [88] is a further valuable review paper and [220] a very
recent work, which compares numerical results for mortar, dual mortar and projection methods.

RBF interpolation is a very powerful approach if only pure scattered data, without any mesh connectivity
information, is given. The most important early works are [36, 185]. Beckert et al. first applied RBF
methods in FSI [15]. While RBF methods with global support give better convergence properties, they
suffer under an inherently bad condition, in particular for very large systems [36]. Recent work tries to

18

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

turnOnSolver (); //e.g. setup and partition mesh
precice: :SolverInterface precice("FluidSolver",rank,size);
precice.configure("precice-config.xml");
const std::string& coric = precice::constants::actionReadIterationCheckpoint();
const std::string& cowic = precice::constants::actionWriteIterationCheckpoint();
[...]
precice_dt = precice.initialize()
while (precice.isCouplingOngoing()){

if (precice.isActionRequired(cowic)){

save0ldState(); // save checkpoint
precice.fulfilledAction(cowic)
}
[...]
precice_dt = precice.advance(dt);
...]
if (precice.isActionRequired(coric)){ // timestep not converged
reload0ldState(); // set variables back to checkpoint
precice.fulfilledAction(coric)
b
else{ // timestep converged
endTimeStep(); // e.g. update variables, increment time
}
}
precice.finalize();
[...]
turn0ffSolver();

Figure 18: Driving API example, adaptions to enable the capability for implicit coupling. This is
realized via actions for reading and writing iteration checkpoints. The solver then needs to provide the
methods saveOldState and reload0ldState. isCouplingOngoing lets preCICE steer the end of the
simulation run.

overcome this drawback and make RBF methods ready for massively parallel applications. Torres et
al. cut the support from global to local, but recover global influence by iterating [195]. [234] discusses
already a PETSc-based realization. [67] uses a local rescaling to avoid the classical polynomial term
and therefore allow for an easier and more efficient parallelization. RBF methods are also a popular
approach for many other applications besides data mapping. A full review of such work is beyond the
scope of this thesis. Important for FSI is, for example, also a mesh moving technique based on RBFs
[56].

Coupling Schemes preCICE allows to decide at runtime whether a coupling scheme should be serial
or parallel and whether it should be explicit or implicit. Here, serial refers to an execution order
of two participants one after the other, parallel refers to a simultaneous execution. Explicit schemes
only compute one step for every participant in every timestep, whereas implicit schemes sub-iterate
until convergence. Serial-explicit and parallel-explicit correspond, thus, to the conventional schemes
described in [83]. All four combinations can be combined with subcycling, meaning one participant
performing multiple small timestep during one large timestep of the other participant.

The convergence and stability of implicit schemes can be improved by an acceleration technique — in
preCICE nomenclature a post-processing scheme. preCICE offers static or dynamic-Aitken underrelexa-
tion [128] and more sophisticated quasi-Newton schemes. Two quasi-Newton approaches are supported:
interface quasi-Newton inverse least-squares (IQN-ILS) [60], which corresponds to an Anderson accel-
eration [1], or interface quasi-Newton multi vector Jacobian (IQN-MVJ) [129], which corresponds to a
generalized Broyden scheme [78]. Section 3.2 and 3.3 give detailed information on the schemes and Sec-
tion 3.7 elaborates a numerical convergence study. The implementation on distributed data is discussed
in Section 4.4.

19

To couple more than two participants, coupling schemes can be combined arbitrarly (composition of
coupling schemes, first discussed in [99]) or can be be coupled fully-parallel (multi-coupling [44]). Section
3.8 discusses both variants.

Communication Three basic variants for communication are supported: MPI, TCP/IP sockets,
implemented with Boost.Asio*, or communication via files. The MPI communication allows for
a start-up in a common communicator (referred to as mpi-single), based on MPI_Comm_split and
MPI_Intercomm_create, or in separated communicators (simply referred to as mpi), based on the three
methods MPI_Open_port, MPI_Comm_accept, and MPI_Comm_connect. These basic variants are all imple-
mented in a 1:N fashion and can be used directly for communication between a server and all solver
threads, such as in [99], or for communication between the master thread and all other solver threads.
Furthermore, they can be used to build up M:N communications between participants. These come in
two variants: a gather-scatter scheme, which is mainly intended for test purposes, and a fully point-
to-point scheme. An M:N communication based upon the communication via files is not supported.
Details on the M:N implementation and performance evaluations are given in Section 4.2.

2.1.3 Configuration

Earlier in this chapter, I mention that preCICE is configured at runtime via an xml file. In the driving
example, Figure 18, this happens in line 3. In this section, I have a brief look on how this configuration
file precice-config.xml is composed. I simply reuse the driving example and couple the FluidSolver
to a StructureSolver. Figure 19 shows the example configuration. A brief reminder: binprecice can
auto-generate a complete xml reference.

The complete configuration is encapsulated in the element <precice-configuration>, followed by the
element <solver-interface>, where the dimension of the scenario is defined. In lines 3-14, the data
fields and meshes are defined. Please note that these fields correspond to the names used in Figure 15.
The participant FluidSolver is defined in lines 16-28. Here, line 17 defines the communication between
the master and all slave threads of this participant. The next two lines specify that FluidSolver holds
two meshes. One mesh, FluidMesh is provided by this participant. This means that FluidSolver
needs to define the vertices of FluidMesh via setMeshVertex or setMeshVertices. The second mesh,
StructureMesh is not defined by FluidSolver, but received from StructureSolver. Holding two
meshes, the participant can now define a mapping between both. Here, radial basis function mappings
with multiquadrics as basis functions, solved by PETSc, are used for both directions, compare lines
22-27. After the second participant, StructureSolver, is defined, line 37 specifies the communication
between both participants. A point-to-point communication based on TCP/IP sockets is used. Finally,
lines 39-58 define the coupling scheme between both participants. A parallel-implicit coupling with an
IQN-ILS post-processing is used. Lines 41-42 show the timestep size and the maximum time. Lines
43-44 lists which data values are exchanged. Line 46-47 define the convergence measures. Lines 49-57
specify the details of the post-processing.

2.2 Developer Perspective

For the sake of completeness and also as the starting point for the implementation details in the next
chapters, I also give a brief introduction to the developer perspective of preCICE. Of course, a more
detailed description can be found in [99]. preCICE is composed of hierarchically structured components
with a loose layering, cf. Figure 20. This means that each component can only access functionality from
packages that lay on a lower level in the hierarchy. Table 1 lists all components together with a brief
description of their purpose. This thesis benefits highly from the clean and clear software architecture
of preCICE. New implementations can be added easily. I altered the component structure compared to
[99] only in a minimal way — only the m2n package is added.

Figure 21 lists the structure of a single component. The interface of each component is accessible from
other packages and is separated from its implementation in the subfolder impl. Each interface class
has a corresponding unit test class in the subfolder test. The component precice holds integration

4http://wuw.boost.org

20

1 <precice-configuration>

2 <solver-interface dimensions="3">

3 <data:vector name="Displacements"/>

4 <data:vector name="Forces"/>

5

6 <mesh name="FluidMesh">

7 <use-data name="Displacements"/>

8 <use-data name="Forces"/>

9 </mesh>

10

11 <mesh name="StructurelMesh">

12 <use-data name="Displacements"/>

13 <use-data name="Forces"/>

14 </mesh>

15

16 <participant name="FluidSolver">

17 <master:mpi-single/>

18 <use-mesh name="FluidMesh" provide="yes"/>

19 <use-mesh name="StructureMesh" from="StructureSolver"/>

20 <write-data name="Forces" mesh="FluidMesh"/>

21 <read-data name="Displacements" mesh="FluidMesh"/>

22 <mapping:petrbf-multiquadrics shape-parameter="0.1" solver-rtol="1le-5"
23 direction="write" from="FluidMesh" to="StructureMesh"

24 constraint="conservative" timing="initial"/>

25 <mapping:petrbf-multiquadrics shape-parameter="0.1" solver-rtol="1e-5"
26 direction="read" from="StructureMesh" to="FluidMesh"

27 constraint="consistent" timing="initial"/>

28 </participant>

29

30 <participant name="StructureSolver">

31 <master:mpi-single/>

32 <use-mesh name='"StructureMesh" provide="yes"/>

33 <write-data name="Displacements" mesh="StructureMesh"/>

34 <read-data name="Forces" mesh="StructureMesh"/>

35 </participant>

36

37 <m2n:sockets from="FluidSolver" to="StructureSolver" network="ib0" exchange-directory="../"/>
38

39 <coupling-scheme:parallel-implicit>

40 <participants first="FluidSolver" second="StructureSolver"/>

41 <max-time value="1.0"/>

42 <timestep-length value="1e-3" />

43 <exchange data="Displacements" mesh="StructureMesh" from="StructureSolver" to="FluidSolver"/>
44 <exchange data="Forces" mesh="StructureMesh" from="FluidSolver" to="StructureSolver"/>
45 <max-iterations value="20"/>

46 <relative-convergence-measure data="Displacements" mesh="StructureMesh" limit="1e-3"/>
a7 <relative-convergence-measure data="Forces" mesh="StructureMesh" limit="1e-3"/>
48 <extrapolation-order value="2"/>

49 <post-processing:IQN-ILS>

50 <data name="Displacements" mesh="StructureMesh"/>

51 <data name="Forces" mesh="StructureMesh"/>

52 <initial-relaxation value="0.1"/>

53 <max-used-iterations value="50"/>

54 <timesteps-reused value="5"/>

55 <filter type="QR1" limit="1le-6" />

56 <preconditioner type="residual-sum" />

57 </post-processing: IQN-ILS>

58 </coupling-scheme:parallel-implicit>

59

60 </solver-interface>
61 </precice-configuration>

Figure 19: An example configuration for a fluid-structure interaction coupling between the participant

FluidSolver and the participant StructureSolver. This example matches the driving API example
from Figure 18.

21

precice

N

mapping cplscheme geometry
spacetree m2n action
query com io
\A\ / w 11
mesh o

Figure 20: Loosely layered preCICE components with dependencies marked by arrows. A component
might also access other components further down the dependency graph. Every component can access
the component util. The package m2n is newly introduced in this thesis. A similar figure is also used
in [99].

tests. Furthermore, the configuration is decentralized and implemented in the subfolder config. Various
packages are extended in this thesis: the geometry package for the mesh repartitioning in Section 4.1.2,
the cplscheme package for the parallel coupling schemes and the new post-processing methods in Section
3.5, the mapping package for PETSc-based RBF mappings. Section 4.2.2 details the m2n package and
necessary changes in the com package.

2.3 Review of Alternative Coupling Software

After the brief introduction to preCICE from a user, but also from developer perspective in the last two
sections, I now review other software for multi-physics coupling and draw some conclusions on where
preCICE currently stands. Obviously, there is a vast amount of available multi-physics software. Thus,
the first part of the review is to decide to what exactly I want to compare preCICE. As, surely, I want
to compare preCICE to similar software, this becomes a question of what preCICE actually is.

2.3.1 Scope of the Review

Since preCICE is a coupling library for partitioned multi-physics, I exclude monolithic FSI software from
the review and also general multi-physics packages. I solely want to focus on stand-alone coupling tools.
I do not want to restrict the review solely to FSI, but also include other surface-coupled problems as
preCICE can also be used for them, compare various examples in Chapter 5. For the sake of compactness,
the review does not include multi-scale coupling tools. Multi-scale simulations share similar problems
as multi-physics simulations, but have not exactly the same focus. [107] gives a thorough survey on such
software. Furthermore, I include only library approaches to omit tools that do not have more or less
the same goals as preCICE, such as the Uintah framework [143] or the SIERRA framework [191]. The
grid-glue component of the DUNE framework [10] offers methods for interpolation and communication,
but is not meant as a general tool for code coupling. Also, I exclude only partial solutions, such as
the Component Template Library (CTL), which is used for FSI in [139], for example, since it solely
offers communication means. The thesis of Bernhard Gatzhammer [99] gives a brief review on the latter

22

component /
ClassA
ClassB

Constants

impl /

ImplementationClassl
ImplementationClass?2

tests /

TestCaseClassA
TestCaseClassB
TestCaseImplementationClassi
TestCaseImplementationClass?2
TestCaseConfigurationClassA
TestCaseConfigurationClassB

config /
ConfigurationClassA
ConfigurationClassB

Figure 21: Substructure of a general component. The component interface lies directly at the root of
the component. The implementation is separated in a subfolder impl. tests contains unit tests of all
classes whereas config contains the decentralized configuration classes. A similar figure is also used in

[99].
action | Auxiliary methods to modify coupling data or meshes at specific mo-
ments during a simulation. Built-in variants are offered as well the pos-
sibility to define new actions at run-time through Python callbacks.
cplscheme | Steers the time-dependent coupling between different participants. Of-
fers methods for fix-point acceleration.
com ‘ Provides basic 1:N communication means via TCP/IP, MPI, or files.
geometry | Methods to create meshes from built-in geometries, communicated ge-
ometries or loaded geometries.
io | Functionality to input and output mesh data structures or coupling
states.
m2n ‘ Constructs m:n communications between participants.
mapping ‘ Provides methods to interpolate data between non-matching meshes.
mesh | Defines a mesh data structure consisting of vertices, edges, and triangles
and associated data containers.
precice ‘]Deﬁnesthe application interface of preCICE.
query | Provides geometrical query operations for the mesh data structures, e.g.
closest distances or volume queries for bounding boxes.
spacetree | Constructs spatial data structures to reduce the number of query oper-
ations.
util | Provides utility functionality, e.g. master-slave communication, debug-

ging tracer, time measurement, etc.

Table 1: Brief description of all preCICE components.

23

software. Also, ASCoDT [3] only offers communication means. Other tools are no longer under active
development, such as FSI*ce or CoMA, or were never meant to be community codes, such as FLECS
or Tango. I skip a description of these, especially since they are already covered in [99].

For the reviewed tools, I rely solely on information given and did no exhaustive testing as this would
be beyond the scope of this thesis. Information is gathered from publications, web pages, user manuals
or brief looks into the code. Other software packages have different design goals than preCICE such
that a fair evaluation is not always possible. Like mentioned above, [99] already presents a certain
review on coupling software. Throughout the last couple of years, however, the landscape has changed
significantly, such that an update is necessary. In particular, I want to focus this review on the main
multi-physics goals derived in Chapter 1: flexibility and scalability. Parts of this review are also part
of the master thesis of Alexander Shukaev [181]. Last, this list of tools is certainly not exhaustive, but
relies on information that has been published the last couple of years, many conference discussions, and
a thorough web search.

Aspects of the Review I evaluate the reviewed tools in terms of four aspects. The first aspect is
the level of the API. I distinguish between a low level API, which operates on a similar level as MPI, an
intermediate level, which is more flexible than a low level API, but which still uses explicit sending and
receiving operations, and a high level API, which allows to configure arbitrary coupling schemes — serial
or parallel, explicit or implicit, matching or non-matching timestep sizes — at run time. Of course, the
transition between these levels is not always sharp. Next, I evaluate the HPC compatibility. A coupling
tool is HPC compatible if it has no central instance as a bottleneck, compute-wise or communication-
wise, but a clear parallel communication layout. Furthermore, I have a look at the legal situation,
meaning whether the software is open-source, in-house, or commercial. Finally, not every coupling tool
offers coupling schemes. I distinguish those which do from those which do not.

2.3.2 List of Tools

The tools are listed in alphabetic order.

ADVENTURE The ADVanced ENgineering analysis Tool for Ultra large REal world (ADVEN-
TURE) is developed by the University of Tokyo and colaboration partners®. It is an environment
of different solvers and different physics and claims high parallel efficiency. In this environment, the
coupling library ADVENTURE_Coupler was recently added [121]. The tool is specifically designed to
coupled the ADVENTURE fluid and structure solvers. The purpose is, thus, not generic. Many mod-
ules of the ADVENTURE project are open source, the ADVENTURE_Coupler, to my best knowledge,
however not. The coupling library is server-based. The server is, however, parallelized. It runs on
M + N threads if N and M are the number of threads of the coupled solvers at the interface and
establishes a parallel communication between the solvers and the coupler. [121] shows scalability results
up to 64 threads. The API level is intermediate. ADVENTURE_Coupler offers coupling schemes such
as a Broyden scheme and performs interpolation based on the element shape functions of both solvers.

Data Transfer Kit (DTK) and PIKE The DTK [184] is developed at the Oak Ridge National
Laboratory as part of a broader coupling toolkit, which is generated by The Consortium for Advanced
Simulation of Light Water Reactors. It uses a library approach and is open-source®. It offers methods for
parallel communication. In particular, the initialization of the communication and the mesh partitioning
are optimized such that it also allows for volume coupled problems. Interpolation can be based on simple
projection schemes, but also on shape function interpolation or spline interpolation. The API level is
low. DTK itself does not offer methods for equation coupling, but it is often combined with the PIKE
package from the Sandia National Laboratories, which offers steering functionality and, for example,
equation coupling based on Anderson acceleration. PIKE is part of Trilinos” and there are plans to
include DTK as well.

Shttp://adventure.sys.t.u-tokyo.ac.jp/
Shttps://github.com/ORNL-CEES/DataTransferkKit
"http://trilinos.org/

24

EMPIRE The coupling tool EMPIRE [219, 182] is the successor of CoMA and uses a library approach.
A centralized serial server is used to compute interpolation schemes and coupling schemes. EMPIRE
suffers therefore from the same bottlenecks as the server-based version of preCICE, compare Section
1.3. Interpolation can be a simple projection scheme, but also based on NURBS or Mortar approaches.
EMPIRE offers a methodology for multi-coupling, which can also deal with Neumann-Neumann or
Dirichlet-Dirichlet couplings (compared to the classical Dirichlet-Neumann coupling, detailed in Section
3.1) and ODE signals. It is open-source® and has an intermediate API level.

MpCCI The Fraunhofer Institute for Algorithms and Scientific Computing (SCAI) develops the cou-
pling tool MpCCI® [119], which has become the commercial standard for FSI coupling software. It
was one of the first successful coupling libraries, available already since 2002. It can be seen as a mix-
ture between a library and a framework approach, since a library can be used for steering, but the
data exchange works in a more framework-like way. MpCCI works mainly with ready-to-use adapters
for commercial solvers and standard open-source solvers, but it also offers a C++ API, which can be
included in other codes. In contrast to nearly all other academic software, it offers a graphical user
interface to control and overview the simulation progress. Interpolation schemes are based on shape
functions or projection. While MpCCI offers, since recent years, implicit coupling schemes, it lacks
sophisticated acceleration schemes. Also, to my best knowledge, multi-coupling is not possible in a
straight-forward way. On the other hand, coupling to 1D or ODE problems is possible. The tool is
based on a serial server, which leads to the usual scalability limitations. This is, however, also not the
primary focus of MpCCI. Communication works solely with TCP/IP, MPT is not supported. The latter
might, however, also be problematic, since MpCClI is a binary distributed software, which could lead to
MPT consistency issues when linked with other solvers.

OASIS3 and Model Coupling Toolkit (MCT) CERFACS in Toulouse and the Centre National
de la Recherche Scientifique in Paris co-develop the coupling tool OASIS3, which is mainly designed
for massively parallel climate modeling [205]. The tool is build upon the Model Coupling Toolkit
(MCT) from the Argonne National Laboratory and is open-source!’. It uses a library approach and
offers interpolation and communication both in parallel. Furthermore, OASIS3 offers a methodology to
interpolate in time. The API is at a low level. In particular, no coupling schemes are supported.

OpenPALM and CWIPI CERFACS and ONERA also co-develop the open-source coupling library
OpenPALM!", which uses the library CWIPI'? as a backbone. OpenPALM features parallel communi-
cation based on MPI and also a parallel setup phase. [73] shows scalability results up to 12000 threads.
Interpolation can be done via projection schemes. In particular, there is a possibility to define own
higher order projection schemes via a callback functionality. A GUI named PrePALM allows to estab-
lish the coupling and monitor the simulation at run-time. OpenPALM features a high-level API and
offers, to my best knowledge, no coupling schemes.

PLE Electricité de France (EDF) develops the open-source fluid solver Code_Saturne!3, which also
features the coupling library Parallel Location and Exchange (PLE)!*. PLE claims to perform parallel
mapping and communication, a thorough evaluation is, however, not possible due to limited information
provided.

Conclusions Table 2 lists the evaluation of all reviewed tools compared to preCICE. The main design
goal of preCICE is to provide a minimal time-to-solution for legacy codes, where time-to-solution refers
to the complete time spent in the development and setup of a multi-physics simulation. Therefore,
preCICE features black-box coupling capabilities and a high-level API. The latter not only simplifies

8http://www.empire-multiphysics.com/
Mttp://www.mpcci.de/mpcci-software. html
Onttps://verc.enes.org/oasis
HMhttp://www.cerfacs.fr/globc/PALM_WEB/index.html
2http://sites.onera.fr/cuipi/
http://code-saturne.org/cms/
Mhttp://code-saturne.org/doxygen/src/ple/index . html

25

‘ API Level HPC Legal Coupling Schemes

ADVENTURE intermediate yes in-house yes
DTK (+PIKE) | low (DTK) / high (PIKE) yes open source yes (PIKE)
EMPIRE intermediate no open source yes
MpCCI intermediate no commercial yes
OASIS3 low yes open source no
OpenPALM high yes open source no
preCICE | high yes open source yes

Table 2: Summary of other coupling libraries compared to preCICE in several aspects. Section 2.3.1
gives an explanation of the evaluation of the aspects.

the first integration, but also the testing phase until an application runs in a stable way due to the
higher flexibility at run time. Thus, it comes at no surprise that preCICE offers a higher API level than
most other tools. Meanwhile, most coupling libraries offer parallel communication and interpolation
to support massively parallel solvers. A unique selling point of preCICE might be the sophisticated
coupling schemes which are also fully parallel. Some limitations of preCICE compared to other software
are the missing support of volume coupling and ODE coupling. Furthermore, industrial relevance has
not yet been proven. Finally, coupling to particle codes is not included.

2.4 Used Single-Physics Solvers

This section gives brief descriptions of all single-physics solvers that are used in this thesis as test or
show cases. Furthermore, all other solvers that are currently, to my knowledge, coupled to preCICE are
listed. I give no exhaustive description of the physical modeling or the numerical schemes of each solver,
but refer the reader to the corresponding references. Table 3 gives an overview of all coupled solvers.

Alya System The Alya System is a finite element multi-physics code developed at the Barcelona
Supercomputing Center'®. The different physics are organized in modules such as Nastin or Nastal
for incompressible or compressible flow, respectively, Solidz for non-linear solid mechanics or Alefor for
mesh deformation. Furthermore, there are modules for species transport equations, excitable media, heat
transport, n-body collision, electro-magnetism, quantum mechanics, and Lagrangian particle transport.
The preCICE adapter [203] is written in a general form, such that, in principle, it is usable with any
module. The focus however lies on Nastin, internally coupled to Alefor, and Solidz. Nastin and Solidz
are part of the benchmark suite of the Partnership for Advanced Computing in Europe (PRACE)!6, and
thereafter open-source to some extent, but in principle Alya is an in-house code. Alya uses unstructured
grids and a domain decomposition based on METIS!'”. The parallel performance of Alya is analyzed in
[115] and good weak scalability up to 100,000 cores is shown in [213]. Nastin uses a stabilized finite
element formulation based on the varitational multi-scale method [116] and the sub-grid scale tracking
technique described in [114]. To resolve the equations, Orthomin(1), a fractional step technique, is
used for the Schur complement of the pressure [113]. [201] gives an overview on turbulence models
that can be coupled to Nastin. Nastin can be used in an ALE formulation. Then, Alefor describes the
mesh movement, governed by a simple Laplace equation with pseudo-physical properties to preserve
the quality of the mesh in boundary layers. Solidz uses constitutive equations for small and large
deformation. Various elasticity models are available. Discretization is solely based on lower order finite
elements, no shell elements are available. For both modules, Nastin and Solidz, various explicit and
implicit time-integration schemes are implemented.

Ateles The group for Simulation Techniques and Scientific Computing of the University Siegen (STS)
develops the in-house discontinuous Galerkin solver Ateles [239, 238]. The solver uses a pure explicit
time integration scheme up to order four and is specifically designed for high order spatial elements.

Bhttp://www.bsc.es/es/computer-applications/alya-system
Bhttp://www.prace-ri.eu/ueabs
Thttp://glaros.dtc.umn. edu/gkhome/views/metis

26

Solver ‘ Physics View-Point Discr. Legal Group
Ateles Acoustics A Eulerian DG in-house U Siegen
Ateles Euler CF Eulerian DG in-house U Siegen
Ateles Navier-Stokes CF Eulerian DG in-house U Siegen
Alya Nastin IF ALE FE in-house BSC
Alya Solidz S Lagrangian FE in-house BSC
A*STAR Flow CF ALE FV in-house A*STAR
Calculix S Lagrangian FE open-source A*STAR
Carat S Lagrangian FE in-house TUM STATIK
COMSOL S Lagrangian FE commercial TUM SCCS
EFD IF Eulerian FD in-house TUM SCCS
FASTEST | IF+A ALE FV in-house TU Darmstadt
FEAP S Lagrangian FE in-house TU Darmstadt
FEM-shell S Lagrangian ~ FE open-source U Stuttgart SGS
Fluent IF ALE FV commercial TUM SCCS
OpenFOAM CF ALE FV open-source U Delft
OpenFOAM IF ALE FV open-source U Delft
OpenFOAM S Lagrangian FV open-source U Delft
Peanol IF Eulerian FE in-house TUM SCCS
Structure0815 RB Lagrangian - in-house TUM SCCS
SU2 CF ALE FV open-source TUM SCCS

Table 3: List of single-physics solvers that are currently coupled to preCICE. Physics: A — acoustics
(linearized Euler equations), CF — compressible flow (Euler or Navier-Stokes equations), IF — incom-
pressible Navier-Stokes equation, RB — rigid body movement, S — structural mechanics. Discretization
(in space): DG — discontinuous Galerkin, FD — finite differences, FE — finite elements, FV — finite
volumes. Group: either the group which develops the solver or, for community or commercial codes,
the group which develops the preCICE adapter.

Ateles is part of the APES suite [123], which holds amongst various solvers also tools for pre- and
postprocessing, all based on the structured adaptive mesh library TreEIM!8. The APES framework is
designed to run efficiently on massively parallel systems and uses a space-filling curve to minimize the
required storage and to maximize data locality. Ateles shows a very good strong scalability down to a
single element per core [123]. An embedded high order representation of material properties allows to
resolve complex geometries. The preCICE adapter is developed by Verena Krupp and documented in
[41].

OpenFOAM OpenFOAM is an open-source finite volume solver!?. The preCICE adapter, which is
also freely available??, is written by David Blom from the Technical University Delft and build upon
the foam-extended-3.1 fork?!. OpenFOAM is originally designed as a solver for the incompressible
Navier-Stokes equations, but also implementations for compressible flow and non-linear elasticity [48]
are available. OpenFOAM uses unstructured grids. The flow solver is based on a second order implicit
time integration combined with a fully implicit pressure-velocity solver. The equations are formulated in
the ALE setting, while the mesh deformation is solved by an RBF interpolation. The structure solver is
based on the Saint-Venant-Kirchhoff hyperelastic constitutive relation to allow for large displacements
and is also second order in time.

Carat The STATIK group?? from the Technical University of Munich develops the in-house structural
mechanics code Carat++ [24, 92]. Just as the structure codes from Alya and OpenFOAM, Carat++
is also based on the Saint-Venant-Kirchhoff hyperelastic constitutive relation. The code is, however,

Bhttps://bitbucket.org/apesteam/treelm
Ohttp://www.openfoam.org

2Ohttps://github. com/davidsblom/FOAM-FST
2Ihttp://www.extend-project.de
22nttps://www.st.bgu.tum.de/en/lehre0/research/carat/

27

developed with an emphasis on the prediction of shell or membrane solver and offers various finite element
shape functions for this purpose. Special focus is put on form finding and non-linear dynamic problems.
Different time-integration schemes are available such as, for example, the implicit generalized-a method.

SU2 The Aerospace Design Laboratory of Stanford University initiated the open-source?® CFD code
SU2 - Stanford University Unstructured?*. The code is developed from an aerodynamical point of view,
including classical CFD analysis, but also design-driven tasks such as shape optimization. SU2 uses
a dual-mesh finite volume method [158]. Currently, only the compressible flow module is coupled to
preCICE as it is the only module that supports an ALE moving mesh technique. The preCICE adapter
of SU2 is described in [172], along with a detailed description of SU2 as well as the adapter.

Other Solvers Various other solvers are coupled to preCICE. I only list these solvers here, without a
deep description, due to the fact that they are not used for any tests in this thesis. The TU Darmstadt
develops the incompressible flow solver FASTEST, which uses a splitting scheme to also resolve acoustic
phenomena [126]. The same group coupled FEAP?5, a commercial finite element structure solver. In
the thesis of Bernhard Gatzhammer [99] as well as in [142], the commercial solvers Ansys Fluent and
COMSOL are used. [99] uses furthermore the rigid body solver Structure0815, which is included in the
preCICE source tree, and Peanol [45, 152], an incompressible flow solver which is developed at the chair
for Scientific Computing in Computer Science (SCCS), Technical University of Munich, and is open-
source. The Institute of High-Performance Computing (IHPC) at the A*STAR institute in Singapore
adapted the open-source solver Calculix for plastic deformations and their own in-house flow solver
[153]. Finally, Viacheslav Mikerov and Stephan Herb developed in their master theses the fixed-grid,
finite difference, incompressible flow solver EFD?¢ [147] and the finite element shell solver FEM-shell?”
[112], respectively.

()
Summary of Chapter 2

e preCICE enables the coupling of black-box single-physics solvers at runtime.

e To this end, methods for interpolation between non-matching coupling meshes, com-
munication means between separate executables, and fixed-point acceleration schemes
are provided.

e To prepare a solver for coupling via preCICE, an adapter needs to be written. I give
a general example, which has less than 40 additional lines of code.

e preCICE uses a layered package structure, which facilitates the introduction of new
features.

e [compare preCICE to other coupling tools. A unique selling point of preCICE is the
high-level API besides sophisticated quasi-Newton coupling schemes.

e preCICE is already used by various in-house and open-source solvers.

23nttps://github. com/su2code/SU2
24nttp://su2.stanford. edu
25http://www.ce.berkeley.edu/projects/feap/
26nttps://github. com/precice/efd
2"https://github.com/precice/fem-shell

28

3 Inter-Solver Parallelism: Parallel Coupling Schemes

In the introduction of this thesis, I mention several ingredients for a scalable partitioned approach
(Section 1.3). One of these ingredients is a coupling scheme that allows for a simultaneous execution
of the fluid and the structure solver. Due to the load imbalance of both solvers, this is the only
clean strategy to avoid idling processors. In this chapter, I describe such parallel coupling schemes,
along with a general introduction to coupling schemes. The focus of this chapter is a numerical one.
This means that I essentially rely on iteration numbers to judge the efficiency of algorithms. For
practical applications, however, many different aspects determine the final efficiency of an algorithm.
Load-balancing between the fluid and structure solver, for example, plays a crucial role. Such issues,
including run-time comparisons, are exemplarily studied in Section 5.2.

Besides the description of parallel coupling schemes, a further contribution of this chapter is the sys-
tematic comparison of interface quasi-Newton schemes, which have been a topic of research in the
partitioned fluid-structure interaction (FSI) community over the past decade, with the acceleration
techniques that go back to the original paper of Donald G. Anderson from 1965 [1]. These acceleration
methods regained new attention over the last decade as well as the methods are promising if applied to
multi-physics problems or, more general, if applied to legacy codes. Until very recently, probably 2014,
the two communities, the partitioned FSI community and the Anderson acceleration (AA) community
were, to my best knowledge, not aware of the similarities of their methods.

Another aspect of this chapter is the reduction of parameters of the coupling schemes. As mentioned in
the introduction, the success of multi-physics simulations highly depends on the complexity and thereby
the usability of each of its components. This chapter describes a coupling scheme variant, based on a
generalized Broyden scheme, that allows for an implicit reuse of information from past timesteps and,
thus, renders an explicit tuning parameter dispensable. Furthermore, I describe efforts for an automatic
numerical scaling of the parallel coupling system in this chapter.

Finally, the generalization of parallel coupling schemes allows for a stable coupling of multi-physics
scenarios with more than two components. To my best knowledge, this is the first method that allows for
such a partitioned strong multi-problem coupling, although similar work was documented independently
for FSI in [182] and for pellet-cladding interaction in [197].

Just as in the last chapters, I want to mention my collaborators. Besides Miriam Mehl, I worked with
David Blom and Bernhard Gatzhammer on the testing of the parallel coupling schemes. We published
first results in [202] and more detailed results in [142]. In the master thesis of Klaudius Scheufele [176],
we worked on the generalized Broyden coupling schemes, which resulted in a joint publication [129].
Also, the structure of this chapter follows [176] to some extent. A review on our work on coupling
schemes was published in [27]. The studies concerning the scaling of the parallel system were developed
during my stay at the Lawrence Livermore National Lab, a joint work of John Loffeld, Carol Woodward
and myself. The filtering techniques were a joint effort of Alfred Bogaers, Robby Haelterman, Miriam
Mehl, Klaudius Scheufele, and myself, and were published in [109]. The generalization of the parallel
coupling schemes to multi-coupling scenarios were published in [204, 44].

This chapter is structured as follows: Section 3.1 introduces the general mathematical setup, including
the fixed-point equation systems that describe the physical coupling conditions at the fluid-structure
interface. As the second building block, Section 3.2 gives a detailed introduction to fixed-point equation
solvers, including a broad literature review. Both building blocks are then combined in Section 3.3 to
formulate concrete coupling schemes for FSI, which are first tested in Section 3.4 by means of a simple
1D testcase to reduce the zoo of methods to the most efficient ones. Section 3.5 then describes the
implementation of those methods in the coupling library preCICE. Section 3.6 gathers the advanced
topics filtering and preconditioning of the coupling schemes. Advanced numerical results are shown in
Section 3.7. Finally, Section 3.8 explains how to generalize parallel coupling schemes to multi-coupling
schemes.

3.1 Ingredients of the Partitioned Coupling Approach

This section introduces basic ingredients for a black-box fluid-structure coupling. As we have no influence
to or details from the internals of a black-box solver, we abstract the discretized solvers to simple

29

operators on the coupling interface:
F:R" 5 R"d—f and S:R"—=R", f—d.

F refers to the computation of one fluid timestep. This means displacements d, relative to the last
timestep, are read from interface, transformed to velocity and set as Dirichlet boundary conditions.
Then, one fluid timestep is solved and forces or tractions f are computed. The structure solver S, on
the other hand, reads f, uses it as Neumann boundary conditions and computes one timestep. This
coupling approach is, therefore, referred to as Dirichlet-Neumann coupling. Both coupling variables d
and f live in the same discretized space, meaning on the same vertices (n is the number of vertices times
the dimension of the scenario). In the case of non-matching grids at the coupling interface, necessary
mapping operators are part of F' or S and, thus, hidden in this notation, see also Section 4.3. The
same applies if, for example, the fluid solver discretizes velocity and force values at different grid points.
Furthermore, a strategy to deal with moving boundaries, an arbitrary Lagrangian-Eulerian approach or
an immersed boundary method are also part of F'.

Fixed-Point Systems As mentioned in the introduction, the partitioned coupling approach suffers
inherently from the added-mass effect. To control instabilities, a solution of equal quality than a
monolithic solution has to be recovered in every timestep. This encompasses the kinematic interface
condition, the balance of displacements and velocities, and the dynamic interface condition, the balance
of forces. These conditions lead to fixed-point equations, which need to be resolved by a sub-iteration
process.

The classical fixed-point system is based on a GauB-Seidel execution of both solvers:
(SoF)(d)=d. (GS)

A multiplication from left by F' yields the force balance. This fixed-point equation strictly infers a
sequential execution of both solvers and therefore suffers from the aforementioned parallel efficiency
drawback. Sometimes, this system is also referred to as serial or sequential system.

The straightforward way to allow for a simultaneous execution of both solvers is to reformulate the
fixed-point equation as a Jacobi system:

(r o) (7)-(7) 2

This system is also referred to as vectorial system. An alternative parallel formulation is based on the
inversion of the structure operator, which is a standard operation in contrast to the inversion of the
fluid operator. Starting from identical displacement values, the force balance reads

F(d)=S~'(d),
which can be transformed to a fixed-point equation?®
F(d)— S 'd)+d=d. (SP)

This system has been used in [66] under the name of Steklov-Poincaré and is also referred to as parallel
system. Finally, for sake of completeness, I also introduce the block-iterative system or simple B-system,

which is used in [216]:
(0 w2)(7)-(7) ®

This system is to some extent connected to (J), as it is equal to the squared operator of (J). A
block-iterative solution of this system leads, however, to a sequential execution of both solvers.

To unify the further studies, we abstract the four introduced systems into one general notation:

H:R"—>R" H(x)==x. (H)

28The fixed-point equation is not unique as the force balance could, of course, be multiplied by any « # 0. To this end,
differences in scale of the force and the displacement values could be numerically adjusted.

30

In the remainder of this chapter, an upper index k denotes the iterative procedure to resolve any
fixed-point equation per timestep: z°,xl,... z¥. A tilde denotes the Picard iterate #*¥ = H(z*).
All introduced methods of the next section follow the same two-step outline. First, a Picard step is
computed, and then, second, accelerated to find the next iterate:

Picard .} Accel.
$k ~ a:k ~ .Tk+1.

Figures 22 to 25 review and compare the four introduced fixed-point equations under this notation and
show the underlying data flow and execution order of the solvers.

/ F 'fk+l\
&= F [S | & >Accl> & d* d* —>|Acc|—> ¢!
T | \ S'l 'fk+1
k—k+1 ks k1
Figure 22: Flow chart for (GS) Figure 23: Flow chart for (SP)
+ ko b+ 1
dk) F) flc \ / fk+1
Acc "+ F |>f*>Acc|>* | S > d" > Acc|>d""
fk > S) Jk / \Adk+l T |
Figure 24: Flow chart for (J) Figure 25: Flow chart for (B)

In this chapter, I assume that all costs involved into the acceleration are negligible compared to the
Picard step. This is reasonable, as the Picard step typically consists of solving non-linear problems on
the complete domain, whereas the acceleration shrinks to cheap problems at the coupling interface, a
by one dimension smaller space. Therefore, I compare different acceleration techniques in the following
by simple iteration counts per timestep.

Convergence Criteria The formulation of convergence criteria is a non-trivial task, since it highly
influences the performance judgment of each method. To only look at convergence criteria built on the
abstract notation (H) yields no fair comparison since this leads, for example, to a pure displacement
check for (GS), but to a displacement and force check for (J). In particular, the fact that the convergence
of (GS) is only checked by a displacement measure is a pure numerical conclusion, not a physical one.
I conclude from this observation that a fair convergence criterion must be based on a solely physical
argument. Therefore, I always check for displacements and forces. This is also the closest possible
criterion to a monolithic formulation, following the guideline coupled until proven decoupled [122]. As,
furthermore, displacements and forces might live on rather different scales, a purely relative measure is
used. For sake of a clean understanding, I detail this measure for every fixed-point equation:

(GS) [N5 = fHll2 < erer - IF* M2 & Id* — d*l2 < erer - [|d* |2
D) | =l < e 1F*ll2 & Id* — d*l2 < erer - [|d*][
(SP) [I = fPl2 < ever - 1/ l2 & ISUHHY) = d¥lla < erer - IS
B) [I/ = Pl < e - 174l & ld* — d*|l2 < erer - |d¥]|2

The convergence criterion for (SP) includes the solution of a further structure step to enable a fair
comparison. In production use, this step should be avoided. Please note that the choice on this outer
convergence measure also influences the choice of the convergence measure of a possible inner iteration
in F or S. In particular, an inner convergence measure must be sufficiently tight. For more information,
the reader may consult the general concept in [77] or the specific FSI consideration in [20].

31

3.2 Fixed-Point Equation Solvers

The simplest way to solve (H) is a pure Picard iteration, i.e. no acceleration is applied. This is sometimes
referred to as multiplicative Schwarz procedure for (GS), respectively additive Schwarz procedure for (J).
Numerous studies show that this does not yield any stability improvement if no relaxation is applied,
compare, e.g., [218, 128]. The relaxed Picard iteration reads

AR NN S § LS L

While a constant (under-)relaxation paramter w”® €]0,1] might be sufficient for certain applications, a
dynamic Aitken choice [118] is widely used,

wk ke (Rk—l)T (Rk _ Rk—l)
|RE—REYE
with RF := #* — 2F denoting the residual. For most applications, such an Aitken underrelexation,

is however outdated, since outperformed by the more sophisticated quasi-Newton coupling schemes.
These methods are based on multi-secant methods, whose general concepts the following section intro-
duces. Afterwards, Section 3.2.2 details the most relevant two examples: Anderson acceleration and the
generalized Broyden method.

3.2.1 Introduction to Multi-Secant Methods

Incorporating previous information beyond just the last iterate allows for the construction of more
sophisticated methods. Fang and Saad introduced the following characteristics for non-linear problems
R(x) = H(z) — z = 0 for which multi-secant methods are the best choice [78]:

1. The dimension of R is large, n > 0.

2. R is continuously differentiable, but the analytic from of its Jacobian is not accessible (or simply
too expensive to compute).

3. The cost of evaluating R(x) is high.

4. The problem is noisy, i.e. the evaluation of R(x) contains errors.

Except the first characteristic, the partitioned FSI problem falls into this class of problems. This first
characteristic has mainly implications in the storage requirements, but not in the overall design of the
algorithm, for which characteristics two and three are dominant. The fourth characteristic is a fuzzy
one as too much noise renders multi-secant methods unusable. We revisit this issue later in this section.
For the following considerations, I follow the multi-secant viewpoint of Fang and Saad [78], but stick to
the familiar FSI notation, of e.g. [60].

An inversion of the non-linear problem allows to also include the newest Picard step,
R(z)=2-H (i) =0.

Let us assume that we have already successfully computed k > 2 iterates, after the computation of the
first step by an underrelaxtion. The Newton update from the Picard step Zj to the next iterate xpy1
reads

solve [I — Jy-1(3%)] AzF = Jp(3%) A%k = —R(z%) | (1)
set 2Ftl =F 4 AzF (2)

As the Jacobian Jp (%) is not available, we construct an approximation based on input-output infor-
mation from past iterates of H, stored in the tall and skinny matrices

Wi = (w)iZy = [A°,Az,...,AzF1], with A% =3z -3,

Vi = (v)iZy = [AR®,AR',...,ARF"!] | with AR'=R"™ —R'.

32

We seek for the next update AZ* in the column space of Wj,. If W}, was formulated in terms of z* and
not ¥, the search space would always stagnate at the original dimension 2 (start-value and underrelaxed
first iterate). Therefore, it is a crucial ingredient to formulate the Newton update from the Picard step
Z* to the next iterate z**! and not directly from z* to z**1.

FSI applications make use of fixed-point algorithms in a transient setting, i.e. we solve a fixed-point
problem in every timestep. For multi-secant methods, the reuse of information from past timesteps is
important for the efficiency of the applied algorithms. By adding further blocks to W} and Vj, we can
explicitly reuse past information:

W,ﬁR) _ {W(NJrlfR)’W(NfR)’ o ,W,ﬁN“)} ’

Vk(R) _ {V(N—&-l—R),V(N—R)’ o 7Vk(N+1)} _

An upper index (N) refers to the timestep throughout this work and is typically suppressed for the
current timestep N + 1. W) respectively V() then refer to the complete matrices after convergence
in timestep V. The above matrices reuse, thus, information from R previous timesteps. Please note that
information from different timesteps is not consistent as the underlying fixed-point equation changes.
It is, therefore, necessary that the multi-secant method can handle such noise to some moderate extent.
In the following, I suppress the upper index (R) and refer to the dimension of W}, and V}, as € R™** for
the sake of readability.

By a direct approximation of the inverse Jacobian, we can render the solution of the Newton update
(1) needless. The multi-secant equation for the inverse Jacobian reads

JHE) Vi = W, (3)

To approximate the inverse Jacobian, we solve (3), enhanced by further conditions to establish a unique
solution. The choice of further conditions leads to different methods, which the next section elaborates.
Please note that I refer to the exact Jacobian and the approximate Jacobian with the same notation as
one can always easily discriminate between both from context.

3.2.2 Anderson Acceleration and Generalized Broyden

This section first introduces the basic principles of Anderson acceleration and the generalized Broyden
method before diving into a broader literature review discussing applications as well as theoretical
properties of both methods.

Anderson Acceleration Let us seek for a minimal norm approximate Jacobian, which fulfills the
multi-secant equation (3) and
ngl(i'k)”}? — min .

Adding the side condition (3) as a Lagrange multiplier reads

. 1,) _
L(‘]Rl’A) = 5”‘]1?21”% +)"(J1:31Vk — Wi) — min .

L denotes the Lagrange functional and A € R* the Lagrange multiplier. The solution (J~',) has to
fulfill the optimality conditions

VLl sy =T AW 20,
VALl = J Ve — Wi =0.
Inserting the first equation into the second one gives
A=-Wi(VVi)™t,

and hence

J P =We(VIV) VT

33

A QR-decomposition of Vj allows to implement this method as a matrix-free version as detailed in
Algorithm 1, left. This also shows the equivalence to the least-square problem

o = argming cgi | Vi@ + R¥|2 ~ AZF = Wia

which is, for example, used in [60] to derive the same method.

Generalized Broyden One drawback of Anderson acceleration is the choice upon R, the number of
reused timesteps, which is unclear and highly problem dependent. This is the starting point for the
generalized Broyden method. By the condition

1751 (@) = T (@)]| e — min

we keep the recent Jacobian close to the one of the previous timestep J ~L(m) Hereby, we hope to capture
information from past timesteps in an implicit fashion, rendering the parameter R dispensable. Analog
to the Lagrange calculation for the Anderson acceleration above, we can derive an update formula for
the Jacobian:

_ —1,(N —1,(N _
T = (W= IOV (V) TV

In practice, again, a QR-decomposition is applied, which, however, does not allow for a matrix-free
implementation in this case, as there is no remedy for storing the previous Jacobian. Still, a QR-
decomposition is favored over the solution of the normal equation, since V* tends to be rank-deficient
(compare [217]). Section 3.6.2 shows more details on this topic. Algorithm 1, right, lists the details. In
[176], variants based on a multi-secant equation that span several timesteps as well one that spans only
a fixed amount of columns are studied, without efficiency benefits.

Algorithm 1 Quasi-Newton methods in pseudocode. Underrelaxation with w € [0;1] is only performed
in the first timestep.

Anderson Acceleration Generalized Broyden
initial value z° initial value z°, J ;%N)’_l from prev. timestep
7% = H(2") and R’ = 7° — a° 7% = H(2%) and R® = 3% — 2©
$1:$O+UJ'RO z1:x0+w.RU
for k=1...do for k=1...do
#* = H(2") and R* = &% — 2" % = H(2*) and R* = 3% — 2
Vi = [AR®,...,AR* '], AR" = R"™"! — R Vi = [AR®,... ,AR*!], AR! = R+l — R
Wi = [AZ0,... AZF71], AZY = §H! — 7 Wi = [AZ°, ..., AZFY), Azt = i+1 — &
decompose VF = QU decompose VF = QU
sg)lve ({Ac/y = -Q"RF solve UZ = QT for Z € RF*7
T =Wia -1 _ 7-L(N) _ gL
SRl _ 2k Ak Jp =J5 + (W, I Vi) Z
Azk = —J 1 (@F)RF
end for R
it = gk 4 Azk
end for

Discussion Anderson acceleration dates back to the original work of Donald G. Anderson from 1965
[1]. For along time, the method was mainly applied for electronic structure computations. The chemistry
community referred to the method as mixing (compare e.g. [154]), sometimes also Pulay mixing [165]
or direct inversion in the iterative subspace (DIIS) [169]. The method regained interest recently as it
shows promising features in many different applications, ranging from maximum-likelihood estimates
in computational statistics [217] to dislocation dynamics [98] and groundwater flow problems [135]. In
particular, multi-physics applications, where complicated models and often legacy codes need to be
coupled, can benefit from the black-box nature of Anderson acceleration (see e.g. [97, 198],).

The recent new attention manifested itself in theoretical works by Fang and Saad in 2007 [78], Walker
and Ni in 2011 [217], and Toth and Kelley in 2015 [196] . A minisymposium?® at the SIAM CSE 2015
conference as well as the ICERM workshop on Numerical Methods for Large-Scale Nonlinear Problems
and Their Applications®® further showed the recently grown interest in Anderson Acceleration. At the

2Mttp://meetings.siam.org/sess/dsp_programsess.cfm?SESSIONCODE=19874
30nttps://icerm.brown.edu/topical workshops/twl5-5-nmlnp/

34

ICERM workshop, Donald Anderson himself first talked about this topic after the recent developments
[2]. He reported on the re-invention of his method in various communities over the past 50 years, a fact
that comes as no surprise as the least-squares idea of the method appears quite natural. In fact, as
stated above, Anderson acceleration has also been known as DIIS or Pulay mixing, but also as non-linear
GMRES. Finally, also the partitioned FSI community has re-invented this method, a fact that Donald
Anderson was not yet aware of. I discuss the connection to the FSI methodology in the next section.

Fang and Saad distinguish between type I and type II multi-secant methods [78]. Type I methods
minimize in terms of the actual Jacobian, whereas type II methods minimize in terms of the inverse Ja-
cobian. This can be the difference between the current and a previous (inverse) Jacobian, for generalized
Broyden, or the norm of the Jacobian itself, for Anderson. Walker and Ni reuse this classification [217].
Type I methods lead, thus, to approximations of the Jacobian itself. They can, however, be explicitly
transformed to approximations of the inverse Jacobian, by means of the Sherman-Morrison-Woodbury
formula®'. The above, in Algorithm 1, introduced version of Anderson acceleration is identical to the
type II method of Fang and Saad3? and identical to the original formulation by Anderson if we set the
mixing parameters ¥ > 0 in both descriptions to 1. These mixing parameters constitute an under-
relaxation between the Picard value #* and the accelerated value z**! and therefore “reflect the tacit
assumption that the underlying Picard iteration is converging”, [2]. The above introduced generalized
Broyden method, however, differs from the type II description by Fang and Saad. The latter uses an
update directly from z* to 2**! whereas the variant above uses an update from the Picard iterate &*
to 21 compare Table 4 for details. This is important, as, in general, generalized Broyden methods
are sensitive to the initial (inverse) Jacobian, whose choice is in practice non-trivial. Setting it to 0™*",
for example, renders the above type II variant to an Anderson type II method in the first timestep,
while the type II method of Fang and Saad uses —I™*". Marks and Luke [137] also use the Fang and
Saad generalized Broyden method type II, but they use quite involved application specific heuristics to
choose an effective initial inverse Jacobian. The related type I update of the above introduced variant
would need the “inverse” of 0"*™ as a favorable starting value. Such a choice is not unfeasible (compare
the results in Section 3.4), but far from being robust in practical applications.

‘ Type I: ||J — J™| = min ‘ Type IL ||J 7' — J~ 5™ || = min
JrX =V | Jr=J + v -dMxX)XTX)'XT | J;t=Jt W (X — gV Ty) v T

JaW =V | Jp=J + (v — IO Wy WTw) S wT | gt =g e w - g vy v Ty) v T

Table 4: Jacobian update formulas for generalized Broyden methods. The first row corresponds to the
original formulations by Fang and Saad [78], whereas the second row are the methods introduced in this
work. X, = [Az? Azl, ... Az*7], with Az’ = 2+ — 2.

The interpretation of Anderson acceleration as a multi-secant method by Fang and Saad is of practical
importance, but gives no new insight into the convergence of the method. Walker an Ni proof that
Anderson acceleration type II is essentially equivalent to GMRES in the linear case, meaning that both
iteration series can be constructed from each other. In the same spirit, they conclude the equivalence
of Anderson type I to the Arnoldi method. Haelterman et al. show in independent work a relationship
of Anderson type I to GMRES [110]. The authors refer to the method, however, as quasi-Newton least-
squares method. I come back to this fact in the next section. Again in independent work, Rohwedder
and Schneider also show the analogy to GMRES in the linear case, the interpretation as a secant method
and, furthermore, an interpretation as a quasi-Newton method with a finite difference approximation of
the Jacobian [169].

All results, those of Walker and Ni, those of Haelterman et al. and those of Rohwedder and Schneider
give convergence of Anderson acceleration in the linear case for k > N. This case is, however, of poor
practical relevance. Rohwedder and Schneider further try to deduct (heuristic) conditions for the linear
dependence of the columns of V' under which a superlinear convergence can be observed. Toth and
Kelley give in 2015, finally, more practically relevant convergence results [196]. Anderson type II is

31A e R det(A) #0,U € RMX™ V € R™MX™ det(A+UV) #0: (A+UV) 1= A" 1+ AU -VATIU)" VAL,
compare for example [103].

32The formulation of Fang and Saad uses JpX = V, combined with ”ng,(N)) + I||p — min, which leads to the same
type II method as the present formulation, JzW =V, combined with HJ;%L(N»”F — min. This does, however, not hold
not true for Anderson type I. For the results of Section 3.4, I use the Anderson type I form of Fang and Saad formulation.

35

locally r-linearly convergent if the fixed-point map is a contraction and the coefficients stay bounded.
This means, 3¢ € [0; 1] and M > 0 such that, if 2 is close enough to the fixed-point x*,

¥ — &l < McHja® — 2 .

The authors argue that the boundedness of the coefficient is no limitation in practice. The fixed-point
map being a contraction, however, hinders the theoretical result to hold for most FSI cases. This would
mean that the Picard iteration already converges, which is not true for most challenging FSI scenarios.
In the linear case, the authors show that the results also hold in the global case (i.e. for any starting
point z%), and can even be tightened to q-linear convergence (i.e. M = 1). Furthermore, the authors
test numerically how the substitution of the ly-minimization by Iy or liys influences the performance
of Anderson acceleration. Both cases lead to a linear program, which comes at a higher cost than the
least-squares problem, but finally at no better convergence rate.

I close this theoretical discussion with a loose comparison between the methods of Newton, Picard and
Anderson. This comparison follows a similar panel discussion held at the above mentioned ICERM
workshop. One important difference between Picard and Anderson is that Picard forgets about the past
itmmediately. Therefore, Picard can better cope with noisy iterations, such as encountered in turbulent
FSI. In absence of such noise, Anderson typically outperforms Picard, whereas the ratio between both
methods highly depends on the application. For FSI, for example, Picard even tends to diverge such
that Anderson can be viewed as a stabilization technique. On the other hand, if an analytical Jacobian
is available, Newton tends to perform better in terms of iteration counts than Anderson. This does
typically not hold true, if the Jacobian stems from a finite difference approximation. [135, 217] give
comparisons of Anderson and Newton. For FSI, a clean comparison is hard to establish and rarely
studied, compare the discussion in Section 1.2. The general believe of the community is that an exact
Newton method outperforms a quasi-Newton method, but not by orders of magnitude. An exact Newton
is, however, not available for black-box solvers and cumbersome to construct for all other solvers. If we
boil the discussion down to a pure local convergence order, Newton would beat Anderson two to one.
Further away from the fixed-point Newton shows, however, only linear convergence (or even divergence),
just as Anderson does. To do a fair theoretical comparison, a non-asymptotic convergence theory might

be of help, such as discussed by Matthew Knepley at several occasions®3.

3.3 Quasi-Newton Coupling Schemes for Fluid-Structure Interaction

This section combines the fixed-point systems of Section 3.1 and the fixed-point equation solvers of
Section 3.2 to construct concrete coupling algorithms for FSI. Along with this construction, the link
between the FSI coupling schemes and the fixed-point acceleration techniques is established. To this
end, well-known quasi-Newton coupling approaches from the literature are sorted in these categories.
Figure 26 visualizes the recent history of this link. For a broader review of FSI black-box coupling
schemes, the reader may refer to, for example, [99].

Section 3.1 introduced four coupling systems, which result together with the four solvers of Section 3.2
(Anderson acceleration and generalized Broyden, both in type I and II) in 16 combinations:

{(GS), (J), (SP), (B)} x {AA-I, AA-II, GB-I, GB-1I} .

Please remember: all type I methods can be reformulated as approximation to the inverse Jacobian by
means of the Sherman-Morrison-Woodbury formula.

Historically, the first described method in this spirit is the interface-Newton-Krylov method or the
interface-GMRES method, respectively by Michler, van Brummelen and van Borst from 2004 [144,
146, 207], formulated for (GS). This method marks an important milestone in the development of FSI
coupling schemes, though it is of no practical relevance any longer as the method is clearly outperformed
by other variants (e.g. [63]) and therefore also not covered in Section 3.2. The block-iterative system
(B) cannot be combined with any arbitrary fixed-point solver as the system requires a block-iterative
solution by definition. Otherwise, the system would fall back to (J). For further details, the reader may
consult Section 4.4 of [176]. Vierendeels et al. use (B) to formulate the interface block quasi-Newton
least-squares (IBQN-LS) coupling scheme in 2007 [216]. This method corresponds to Anderson type I.

33To my best knowledge, such work has not yet been published.

36

FSI Interface Quasi-Newton Fixed-Point Acceleration

Anderson
1965, AA [1]

Brummelen et al.
2005, I-GMRES [207]

Vierendeels et al.
2007, IBQN-LS [216]

Fang and Saad
2007, Theory: AA & GB [78]

Walker and Ni
2010, Theory: AA [217]

Degroote et al.
2009, IQN-ILS [60]

Rohwedder and Schneider
2011, Theory: AA [169]

Uekermann et al.
2013, V-IQN-ILS [202]

Lott et al.
2012, AA groundwater flow [135]

Bogaers et al.
2014, MVQN [33]

Figure 26: Developments during the last decade and literature excerpt of the partitioned FSI community
compared to the fixed-point acceleration community.

Recently, in 2014, Bogaers et al. formulate the multi-vector quasi-Newton (MVQN) scheme [33], which
corresponds to generalized Broyden type I for (B). In 2009, Degroote et al. describe the interface
quasi-Newton inverse least-squares (IQN-ILS) method [60], which corresponds to Anderson type II for
(GS). In the same spirit, Haelterman et al. study the quasi-Newton least-squares method (QNLS)
[110], the Anderson type I variant. Minami and Yoshimura solve (GS) by means of a line extrapolation
technique respectively by a classical Broyden scheme [148]. The results of [176] suggest that such simple
schemes are outperformed by the more advanced schemes from Section 3.2. (SP) is already studied in
the literature, e.g., [66, 127], but not yet in a clean black-box manner.

Various performance comparisons between the different approaches exist in literature. [63] shows a
similar performance of IQN-ILS compared to IBQN-LS, with the advantage of IQN-ILS of being easier
to implement. Both methods outperform Aitken underrelaxation and Interface-GMRES. Depending on
the testcase, the difference can be a slight one or a tremendous one. [206] gives theoretical insight into
the difference between Aitken underrelaxation and I-GMRES by means of a simple testcase. Aitken
underrelexation can perform well if the initial error in every timestep is dominated by only a few smooth
modes. [60, 215] show that the spatial low-frequent modes dominate in terms of the added-mass effect.
Whereas Aitken underrelaxation tries to stabilize all modes uniformly, sophisticated methods like IQN-
ILS adapt better to the unstable modes. [33] shows that MVQN performs similarly as IBQN-LS without
the need to tune the number of reused timesteps. Both methods outperform Aitken underrelaxation
and a simple Broyden method.

The contribution of this work consists in generalizing the IQN-ILS method, i.e., Anderson type II, to (J)
and (SP), to obtain parallel coupling schemes. Preliminary results are already published in [202] and
extensively studied in [142]. Please note that these publications denote (J) as the vectorial system and
(SP) as the parallel system. Furthermore, this work introduces generalized Broyden coupling variants
for (GS), and similarly for (J) and (SP). These results are part of the master thesis of Klaudius Scheufele
[176] and already published in [129]. A method similar to the generalized Broyden scheme for (GS) was
also introduced in independent work by Rob Haelterman [108]. Table 5 gives an overview on the FSI
coupling schemes, their original names and main reference, and their connection to the multi-secant
methods discussed in the last section.

Various authors discuss the application of these FSI coupling schemes in a multi-level context [29, 65,
178, 209, 240]. While classical approaches are based on (GS), this is no necessity. In joint work, we
show the possibility to apply a multi-level approach to (J) [28].

3.4 Basic Numerical Tests: 1D Tube

This section studies a simple, yet very standard FSI testcase: the flow through an elastic tube is
formulated by means of a 1D model. This testcase is certainly of no practical meaning, but it fully

37

| (GS) () (SP) (B)

AAT QNLS [110] V-IQN-LSHJ* [176] ~ SP-AA1* IBQN-LS [216]
AATI IQN-ILS [60] V-IQN* [202] P-IQN* [202] -
GBI | S-IQN-MVJ* [176] V-IQN-MVJ* [176] SP-GB1* MVQN [33]

GBII | S-IQN-IMVJ* [176] V-IQN-IMVJ* [176] SP-GB2* -

Table 5: Quasi-Newton coupling schemes for fluid-structure interaction: original names and main refer-
ence. Legend: * Methods that mark a contribution of this work. - Combinations that are not applicable.

captures the added-mass instability and, thus, allows to study coupling schemes by simple MATLAB code.
The testcase is for example used in [62] and the results of this chapter are partly already published in
[202, 142, 176]. The purpose of this section is to compare and overview the complete zoo of methods of
Section 3.3 and draw conclusion on the practical relevance of each one of them. This leads, in particular,
to the decision which methods are supported by preCICE.

3.4.1 Testcase Description

Analytical Description The scenario consists of an incompressible and inviscid flow through a flex-
ible tube. The flow is assumed to be radial-symmetric. Averaging over the radial coordinate leads to
a 1D model. Compare Figure 27 for a schematic drawing of the scenario. Conservation of momentum
and mass reads

O(au) + &T(au2) +ad,p = 0, (4)
oa+ Oz(au) = 0, (5)

where u denotes the flow velocity in axial direction, p the kinematic pressure, and a the cross section
area of the tube. A time-varying inlet velocity and a non-reflecting outlet condition are imposed:

o . 4 1
Uin = U0 = 755 st(ﬂ'T) and Oyu = Eatp ,
with the wave speed ¢? := a/dpa = ¢, — &, the Moens-Korteweg wave speed i = /Eh/2pro and

Young’s modulus £ . The elastic wall is modeled by a Hookean constitutive law. The inertia of the

« I .
Figure 27: 1D flow through a flexible tube: schematic drawing of the deformed tube. Left: cut along

the tube. Right: lateral cut through the tube. The test scenario is based on [62]. Picture taken from
[99].

tube wall is, therefore, neglected, which leads to a significant added-mass effect. As the inviscid fluid
exerts only stress in circumferential direction on the structure, this leads to a pure radial motion of the
tube wall. The cross section area becomes, thence, an explicit function of the pressure:

2 2
Po — Qka
a=a(p) =ap (
p—2c2, ’
where ag and py denote fixed reference values. For further details on the modeling of this scenario, the

reader may refer to [62]. Please note, that, due to the 1D nature of the scenario, the coupling variables
f and d are substituted by the pressure p and the cross section area a.

38

Discretization The computational domain of length L is discretized with n equidistant cells of length
Az = L/n. The variables u;, p; and a; are defined at the cell centers. The grid of the fluid domain
coincides with the structure grid and the coupling interface. Equations (4) and (5) are discretized by a
second-order central finite volume scheme, combined with a first order upwind scheme for the convective
term. A pressure stabilization with coefficient
ao

a=——
Ug + %‘f
is applied. For time discretization, a backward Euler scheme with fixed timestep size At is used. The
discretized system reads: : =1,...,N —1

AT ((N+1) (N+1) _ (N) (N) (N+1)
Kt (ui a; —u; a;) + [uiui+%ai+% — Uifluz;%az;%]
1 (N+1)
+§ [aer%(pH—l —pi) + a%%(pz Pi—1 } =0,
Az (N+1) (N+1)
At (GENH) - GEN)) + [UH%GH% - ui—%ai—%} - Q{Pz‘q —2p; +pi+1} =0

The subscript ¢ &= 1/2 denotes values at the cell interfaces, e.g.

1
i—t = 9 (wi—1 + u;) -

The superscripts (N) refers to the time level t(N) = N . At. For the boundary conditions, the applied
linear extrapolation of the inlet pressure and the outlet velocity reads

Pin = 2p1 — D2 and Uput = 2Up — Up_1 ;

whereas the pressure-outlet condition is discretized as

2
_ 2 2 pgut Uout — ugut
Pout = 2 cm,k - cmk} - 2 - 4

Initially, velocity, pressure, and cross section area are set to their reference values ug, pg, and ay. Similar
to [62], I define the dimensionless structural stiffness

Eh _ po
2pro 2

Uo
and the dimensionless timestep size
UOAt
L
as parameters of the scenario. The stability analyses of [62] shows that the added-mass effect grows
in significance for decreasing x and decreasing 7. n is fixed to 100, whereas a full period of the inlet
velocity [0; T is simulated with 100 timesteps.

3.4.2 Results and Conclusions

This subsection gives an overview of numerical results for (GS), (J), and (SP), solved by either a pure
Picard iteration, an Aitken underrelexation, an Anderson acceleration or a generalized Broyden method.
For the latter two, both types I and II are analyzed, whereas type I is based on an explicit linear system
solve, i.e. not transformed by means of the Sherman-Morrison-Woodbury formula. I do not analyze any
results for (B) as the focus of this chapter is on parallel coupling schemes and (B) implies a sequential
scheme. Furthermore, [63] showed that schemes based on (B) show similar performance as schemes
based on (GS), whereas the latter clearly simplifies the implementation. The interested reader is, once
again, referred to [176] for more comparisons. For this thesis, (GS) serves as the sequential baseline. I
use the notation J-AA2, to refer to, for example, an Anderson acceleration type II for (J). If columns
from previous timesteps get reused, I add the number of timesteps in brackets, e.g., J-AA2(5) for 5
reused timesteps. The 1D elastic tube is parametrized by & € {10,100,1000} and T € {0.001,0.01, 0.1},
similar to, e.g., [62]. Figure 28 shows the simple physical results of the scenario over various timesteps.
All converged coupling algorithms result in similar physical results up to an absolute Iy error of 10~7
with respect to the cross section area.

39

©
3 ‘ ‘ ‘ ‘
c 1.001
S 7=0.4
S 1
(%)
[
2 1.001}
5 t7=0.6
©
1.001} 1
tT=0.8
1
0 0.2 0.4 0.6 0.8 1

Spatial coordinate x/L

Figure 28: Cross section area values a/ag for different timesteps for 7 = 0.01 and x = 10. Picture taken
from [202].

Numerical Settings The numerical results are obtained by means of a simple MATLAB implemen-
tation. The fluid solver uses a Newton iteration as a non-linear solver up to a relative error in the
residual of 10716 or 50 iterations. The linearized system is solved by a direct solve. The fix-point
iterations in every timestep start with the converged values from the previous timestep as initial guesses
(constant extrapolation). I use a relative convergence criterion of 10~7 for both, cross section area
and pressure, compare the discussion in Section 3.1. If convergence is not achieved in 100 iterations,
I treat a run as diverged. Aitken underrelexation and all quasi-Newton methods start with an under-
relexation of w = 0.1 in the first timestep. Aitken underrelaxation starts, further, each other timestep
with w = min(wyq,0.5), whereas w,q refers to the last relaxation parameter of the previous timestep.
Quasi-Newton methods use all columns of the previous timestep as the search space of the first itera-
tion in every timestep, even if no reuse is specified. Always, all columns of the current timesteps are
considered. Additionally, columns from previous timesteps are added if specified. For reused timesteps
with more than 5 columns, only the first 5 are added (i.e., the oldest 5). Furthermore, to avoid a nearly
quadratic system, the oldest columns are dropped if the total reused columns exceeds N/2. Section 3.6.2
gives more information on how to formalize such heuristics. I use the built-in MATLAB functions qr and
linsolve for the QR-decompostion and the linear solve, respectively. Only Anderson acceleration type
IT uses a QR-decompostion. All other quasi-Newton scheme use a direct linear solve instead. For the
generalized Broyden schemes, I use the initial Jacobian 0"*™ and the initial inverse Jacobian 107 - I"*™,

Simple Schemes Table 6 lists average iteration numbers for a plain Picard iteration and an Aitken
underrelexation, applied to all three coupling systems. Picard diverges for the more challenging scenar-
ios, whereas Aitken shows mostly stable results. For both methods, (GS) and (SP) show very similar
results, while (J) leads, with Picard, to roughly twice as many iteration than (GS). This comes at no
surprise as a simple Picard iteration applied to (J) leads to two independent chains of (GS) systems
[142]. Figure 29, left, illustrates the corresponding residual zig-zag behavior. However, even Aitken does
not succeed in connecting these two chains, but deteriorates the performance. I conclude that simple
Picard-based schemes are no option for (J). The results further below show, furthermore, that Aitken is
clearly outperformed by the quasi-Newton schemes, up to a factor of roughly 8 for the more challenging
scenarios.

Quasi-Newton Schemes Table 7 lists the mean iteration numbers for Anderson acceleration and
generalized Broyden, in both types, for all three coupling systems. All schemes, with the exception of
GBI, show a robust performance. GB1 tends to behave sensitively to the initial Jacobian. The fixed
choice of 107 - I™*™ leads to divergence for certain parameter settings, which furthermore depend on
the applied coupling system: GS-GB1 diverges for the easier x = 1000, whereas J-GB1 diverges for a
higher added-mass effect. AA1 and AA2 show very similar performance, whereas GB2 outperforms GB1
persistently. In general, GB2 also outperforms AA1 and AA2. This is due to the implicit capturing of
past timesteps. AA1 and AA2 can make up for this by explicitly reusing columns from past timesteps

40

GS-Picard ‘ J-Picard ‘ SP-Picard

7\« 1000 100 10 T\K 1000 100 10 7\k 1000 100 10
0.1 4.27 7.23 div 0.1 9.00 15.07 div 0.1 4.26 7.23 div
0.01 6.53 div div 0.01 14.75 div div 0.01 6.53 div div
0.001 44.51 div div 0.001 101.46 div div 0.001 44.62 div div
GS-Aitken ‘ J-Aitken ‘ SP-Aitken
7\x 1000 100 10 7\x 1000 100 10 7\x 1000 100 10
0.1 4.01 5.03 10.04 0.1 16.71 19.49 54.45 0.1 4.01 5.03 10.06
0.01 4.99 .11 26.32 0.01 18.38 42.08 div 0.01 4.99 8.11 25.99
0.001 7.68 23.15 div 0.001 38.07 div div 0.001 7.68 23.23 div

Table 6: Mean iterations per timestep for the 1D elastic tube. Various coupling systems are compared
for a pure Picard iteration as well as an Aitken underrelexation.

as the results further below illustrate. Just like for the simple schemes above, (GS) and (SP) show very
similar results. (J) shows a worse performance than (GS), but not by a factor of 2, like for the simple
schemes. Thus, the quasi-Newton schemes manage to connect the two chains of (J).

Picard Anderson(10)
10° , : : 100 : ‘ :
—(GS)area || Ao\ ——(GS) area
Nl TNl | (GS) pressure A\ S B (GS) pressure
A (J) area \ '\ (J) area

ETORE . NN — ~ T (9) pressure 1 1072+ e R (3) pressure
T Y _\ = ‘ Y
g 1077 2 10"
2 =
O] 0]
o o
o)
Z 10°} Z 10}
5] S
& &

108} 0% N~

-10 " a0l T
10
10 2 4 6 8 2 3 4 5
Iteration k Iteration k

Figure 29: Relative residual for the 1D elastic tube at timestep 20. Left: Picard iteration for 7 = 0.1
and xk = 100. Right: AA2(10) for 7 = 0.01 and x = 10.

Reuse of Past Information Figure 30 illustrates how the reuse of past information influences the
performance of AA2 and GB2. For GB2, information from past timesteps is already implicitly captured
by the Jacobian update. Thus, there is no huge gain visible if columns are also reused explicitly. Still,
the reuse of 1 or 2 timesteps might be beneficial. Also, for higher values the performance is pretty stable,
especially for (J). This renders a tuning for the optimal reuse value unnecessary. The performance of
A A2, however, depends highly on this parameter. For a higher added-mass effect (here a smaller 7), also
the optimal parameter is higher. Furthermore, (J) shows a higher optimal parameter than (GS). Table
8 summarizes the optimal values for each method and its performance. For this optimal configuration,
GB2 and AA2 show similar performance. In general, all three coupling systems (GS), (J), and (SP) also
show similar performance then. The parallel (J) even outperforms the serial (GS) in the more difficult
cases as the first one often converges in 2 iterations, whereas (GS) needs 3. This difference stem from
the fact that, for example, J-AA2 reuses past information from both, ¢ and p. GS-AA2 only uses past
information from a, which reaches then the p convergence only in the second iteration. Finally, the
convergence criterion sees this behavior naturally shifted by one iteration. Figure 29, right, illustrates
this difference at an arbitrary timestep.

41

GS-AA1 J-AA1 SP-AA1

r\k 1000 100 10 r\k 1000 100 10 T\k 1000 100 10

0.1 299 3.08 429 0.1 401 514 8.68 0.1 299 3.00 431

0.01 3.09 3.74 820 0.01 468 717 16.56 0.01 3.05 3.79 8.20

0.001 383 7.67 div | 0001 7.00 1517 39.46 | 0.001 3.89 7.63 22.06
GS-AA2 J-AA2 SP-AA2

T\ 1000 100 10 7\k 1000 100 10 r\k 1000 100 10

0.1 299 3.00 427 0.1 497 573 9.23 0.1 299 3.09 425

0.01 3.00 3.74 7.90 0.01 534 7.93 17.01 0.01 3.08 3.71 7.96

0.001 3.81 7.48 2294 | 0001 7.62 1546 4045 | 0.001 3.82 T7.53 22.36
GS-GB1 J-GB1 SP-GB1

r\k 1000 100 10 r\k 1000 100 10 r\k 1000 100 10

0.1 div 323 415 0.1 397 451 9.25 0.1 3.00 330 4.24

0.01 div 424 6.36 0.01 4.68 640 div 0.01 322 411 6.37

0.001 div 6.90 div 0.001 642 div div 0.001 440 6.71 div
GS-GB2 J-GB2 SP-GB2

r\k 1000 100 10 r\k 1000 100 10 r\k 1000 100 10

0.1 302 307 3.77 0.1 326 354 549 0.1 301 311 385

0.01 3.06 340 4.92 0.01 3.70 436 6.85 0.01 3.0 342 5.0

0.001 343 530 10.58 0.001 410 6.34 9.15 0.001 324 537 8.70

Table 7: Average iterations per timestep for the 1D elastic tube. Various coupling systems are compared
for Anderson acceleration and generalized Broyden, both for a type I and type II update.

GS-AA2(R) GS-GB2(R)
T\K 1000 100 10 7\ 1000 100 10
0.1 2.99(0) 3.06(3) 3.35(2) 0.1 3.00(1) 3.07(0) 3.37(2)
0.01 3.02(4) 3.10(2) 3.87(4) 0.01 3.02(3) 3.22(1) 3.73(3)
0.001 3.16(5) 3.41(4) 8.43(5) 0.001 3.43(0) 3.66(2) 6.15(6)
J-AA2(R) | J-GB2(R)
\K 1000 100 10 7\ 1000 100 10
0.1 2.75(3) 3.74(2) 4.04(3) 0.1 3.26(0) 3.05(2) 3.87(5)
0.01 2.31(2) 3.37(3) 3.55(8) 0.01 3.07(3) 3.41(3) 3.39(5)
0.001 2.69(3) 3.22(8) 11.54(8) 0.001 2.50(2) 2.95(4) 4.92(6)
SP-AA2(R) | SP-GB2(R)
T\K 1000 100 10 7\K 1000 100 10
0.1 2.99(0) 3.09(0) 3.48(2) 0.1 3.01(0) 3.11(0) 3.43(2)
0.01 3.04(4) 3.10(2) 3.75(6) 0.01 3.03(4) 3.42(0) 3.62(4)
0.001 3.16(5) 3.31(7) 9.40(4) 0.001 3.24(0) 3.48(2) 5.51(7)

Table 8: Optimal choices (in brackets) for the number of reused timesteps and their performances
in terms of average iterations per timestep for the 1D elastic tube. Type II methods for Anderson
acceleration and generalized Broyden with various coupling systems are compared.

Conclusion I conclude from these results to implement in preCICE and further study only GS-AA2,
J-AA2, GS-GB2, and J-GB2. First, (SP) shows no drastic differences in performance to (J) if compared
for optimal methods. The implementation of (SP) would, however, be much more involved than the more
natural choice (J) as it would require a new adapter for the structure solver due to the different choices
of input and output, assumed that (GS) is already implemented. Second, I restrict the further study to
type II methods. Type I methods showed robustness issues (for generalized Broyden) and also mediocre
performance compared to type II methods, though Broyden originally called type I the good and type

42

Anderson Acceleration Generalized Broyden

AY 7
X ,
L —(GS) tau=0.1 | L —(GS) tau=0.1
14y ——(GS) tau=0.01 14 ——(GS) tau=0.01
3\ ——— (GS) tau=0.001 ———(GS) tau=0.001
R Q) tau=02 || | e (J) tau=0.1
R () tau=0.01 1 2y - () tau=0.01
N (J) tau=0.002 || [e (J) tau=0.001
2 210 r
9o =)
2 2
o)
> >
< <
2 2
0 2 4 6 8 0 2 4 6 8
Number of Reused Timesteps Number of Reused Timesteps

Figure 30: Average iterations per timestep for the 1D elastic tube and different number of reused
timesteps. AA2 (left) performance is compared against GB2 (right) performance for (GS) and (J), and
different values for 7. x = 100.

IT the bad update [35]. Finally, there is a valid desire to have both options, Anderson acceleration
type II and generalized Broyden type II, available for practical applications as both have significantly
different properties, in spite of the similar performance. On the one hand, generalized Broyden renders
the tuning of reused information unnecessary. On the other hand, Anderson acceleration allows for a
matrix-free implementation. This makes the method not only more memory efficient, but also simplifies
the parallelization drastically as studied in Section 4.4.

The next section elaborates the implementation of the four methods of choice in preCICE. Afterwards,
Section 3.6 discusses advanced numerical details. Finally, Section 3.7 gives detailed performance results
of the four coupling schemes applied to 2D and 3D testcases.

43

3.5 Implementation in preCICE

This section gives insights into the implementation of the aforementioned coupling schemes in preCICE.
I focus on the general workflow of the coupling schemes, which are independent of whether preCICE is
executed in serial, on a server or on distributed data. Section 4.4 gives more information on how the
underlying numerical operations are ported to distributed data. Originally, the only supported quasi-
Newton scheme in preCICE was Anderson acceleration (type II) applied to (GS) [99]. In the following,
I explain the generalization to (J) and also to generalized Broyden (type II).

The Package cplscheme As detailed in Section 2.2, preCICE consists of several packages. The pur-
pose of the package cplscheme is to steer the data exchange and, thus, the synchronization between two
or more participants. This covers also implicit coupling schemes, where a sub-iteration between multiple
participants is performed in every timestep. Accordingly, cplscheme offers methods for measuring the
convergence and accelerating the fixed-point iterations. The latter is referred to as post-processing in
the implementation. Furthermore, cplscheme offers methods to deal with non-matching time discretiza-
tions, including sub-cycling. Figure 31 lists the API of cplscheme, which follows closely the API of
preCICE itself. For more details, the interested reader is referred to [99].

void initialize();

void initializeData();
void advance ();

void finalize();

bool isCouplingOngoing();

bool isActionRequired(std::string& actionName);
void performedAction(std::string& actionName) ;
void requireAction(std::string& actionName) ;

Figure 31: Interface of the cplschem package (excerpt). The design follows the main preCICE interface
very closely (compare Section 2.1). The interface provides methods to control the workflow as well as
methods to pass actions from the main preCICE interface to cplscheme. Further methods to control
the timestep size and absolute time are suppressed in this listing.

Software Architecture Figure 32 sketches the class hierarchy of cplscheme. I distinguish original
parts, already implemented as part of [99], and recent work by the colors blue and orange, respec-
tively. The overall goal of the newly implemented parts is to allow for a flexible combination of any
coupling system with any post-processing method. A modular programming, which clearly separates
the coupling systems, SerialCouplingScheme or (GS) and ParallelCouplingScheme or (J), from the
post-processing methods, achieves this goal. Arbitrary combinations are possible.

To allow the coupling of more than two participants, two different concepts are implemented. The
CompositionalCouplingScheme, which uses a composite design pattern and the MultiCouplingScheme.
For the first, [99] gives more information on the implementation. For the latter, one participant serves
as a central instance computing the post-processing and instantiates MultiCouplingScheme, whereas
all other participants instantiate ParallelCouplingScheme. Section 3.8 gives detailed information on
the numerical background of both methods. The actual numerical computations of the quasi-Newton
schemes are outsourced to the classes QRFactorization and ParallelMatrixOperation. Section 4.4
gives more details. A further new component of this work is Preconditioner, which is discussed
numerically in Section 3.6.3.

Steering of Coupling Schemes Figure 33 puts the differences between SerialCouplingScheme and
ParallelCouplingScheme in a nutshell. I only consider the difference for an implicit coupling since an
explicit coupling only constitutes a subset of the functionality. The original SerialCouplingScheme
distinguishes between a first participant F' and a second participant S. While both participants start
simultaneously, S is first stopped in initialize to receive data that F' sends at the beginning of

44

/ CouplingScheme=0

CompositionalCouplingScheme BaseCouplingScheme=0
SerialCouplingScheme ParallelCouplingScheme MultiCouplingScheme
cplscheme
1 cplscheme: :impl
ConvergenceMeasure=0 PostProcessing=0
ConstantRelaxationPostProc. Base(QNPostProcessing=0 AitkenPostProcessing
QRFactorization Preconditioner=0 MVQNPostProcessing IQNILSPostProcessing

|

ParallelMatrixOperation

Figure 32: Software architecture of the cplscheme package. The arrow notation follows the UML
standard (empty triangles: inheritence, filled diamonds: containement). The coupling systems are well
separated from fixed-point solvers to allow for modular combinations. The interface of the package is
located in the namespace cplscheme, whereas the internal implementations are wrapped by the sub-
namespace impl. Original components [99] are marked in blue, whereas new components are marked in
orange (post processing parts are joint work with Klaudius Scheufele).

advance. This leads to a staggered execution order of F' and S. During advance, S first measures
convergence of its newly computed data, followed by a post-processing step in case of non-convergence.
The post-processed data is then sent to F' and a receive finally awaits new data from F'.

The ParallelCouplingScheme breaks with this asymmetry. Still, we need to distinguish between F
and S to identify which participant computes the post-processing, but this classification does not longer
imply a staggered execution order. Both participants compute new data simultaneously and then enter
advance. Now F' directly sends data to S as the latter needs the newest data from both participants
for the post-processing. Finally, S sends the post-processed data back to F.

A further difference between the serial and parallel coupling scheme lies in the treatment of initial
data. Initial data, in general, is necessary if the coupling starts from non-zero values, for example
for a fixed initial displacement of the structure or during a restart. In the original serial formulation,
only S can initialize data and send it to F. This is sufficient as S itself gets new data from the first
iteration of F already in initialize. In the parallel formulation, however, setting initial data in both
directions is possible. For both cases, serial and parallel, the internal flags hasToSendInitData and
_hasToReceivelInitData store whether initial data exchange is necessary or not. The user provides this
information in the configuration. Afterwards, this information is passed back to the user by means of
the action WriteInitialData. Furthermore, preCICE uses the flags to steer the initial data exchanges.

45

SERIAL COUPLING

PARALLEL

COUPLING

F

S

F

S

initialize()
data::initialize
-+_hasToReceiveData

initialize()
data::initialize
-+_hasToSendData

if (_hasToSendData)
requireAction(WID)

if (! _hasToSendData)
receive data

initialize()
data::initialize
-+_hasToReceiveData,

-+_hasToSendData

if (_hasToSendData)
requireAction(WID)

initialize()
data::initialize
-+_hasToReceiveData,

-+_hasToSendData

if (_hasToSendData)
requireAction(WID)

-
+ if (actionRequired(WID))

.
’

.
"
.

write data to precice
fulfilledAction(WID)

if (actionRequired(WID))
write data to precice
fulfilledAction(WID)

if (actionRequired(WID))
write data to precice
fulfilledAction(WID)

.
"

initializeData()

if (_hasToReceiveData)

receive data ‘_,'—
.
.

initializeData()

if (_hasToSendData)
send data

if (_hasToSendData)
receive data

initializeData()

if (_hasToSendData)
send data

if (_hasToReceiveData)

receive data ¢——m—

—

initializeData()

if (_hasToReceiveData)
receive data

if (_hasToSendData)
send data

. A 4
calculate ; ‘,/' calculate calculate calculate
advance() . .- advance () advance() advance()
send data measure convergence send data — P receive data

receive data \

post processing
send data

receive data

receive data

™

measure convergence
post processing

send data

Figure 33: Differences between serial and parallel coupling in a nutshell. ' and S refer to the first and
the second participant, respectively. Code parts that belong to the solver itself are marked in red. Data
exchange is marked in blue. WID stands for WriteInitialData.

3.6 Advanced Topics

To bridge the gap between the simple 1D testcase discussed in Section 3.4 and real 2D or 3D testcases,
such as those discussed in Section 3.7, further numerical details need to be taken care of. This section
studies those details and makes choices upon efficient, but robust settings for the further 2D /3D testcases
in Section 3.7. To this end, I introduce a demanding, but simple testcase in Section 3.6.1. Section 3.6.2
uses this testcase to study filtering techniques as well as general guidelines for the QR~decomposition,
which constitutes the numerical kernel of any quasi-Newton method. Afterwards, Section 3.6.3 studies
various preconditioners, which are necessary for the Jacobi system (J) to deal with the different scales
of displacements and forces.

3.6.1 A Numerically Demanding Testcase

Two main characteristics determine this testcase. First, it constitutes a demanding numerical regime.
This implies a strong added-mass effect and a non-stationary time evolution. I do not aim to construct
a testcase in a realistic parameter domain, but a testcase that clearly shows the influence of various
numerical settings. Second, the testcase is very cheap to compute, allowing significant parameter studies
on a simple workstation. Figure 34 shows the geometry of the testcase: a wall-mounted elastic flap in
an incompressible channel flow. On the left boundary, I impose a time-varying inflow condition

Uin = (1 — cos(2m - t - 10)) and vy, =0,

where w;, and v;, are the inflow velocity in x and y direction. On the right boundary, an outflow
condition is prescribed and no-slip walls on all other boundaries. Figure 34 further shows two different
mesh configurations, a regular mesh and an adaptive mesh with 22 and 85 vertices at the coupling

46

fluid density | pr | 1.0kg/m3
dynamic viscosity | p | 0.1kg/(ms)
reference velocity | ug | 1.0m/s

structure density | ps | 0.1kg/m?
Young’s modulus | E | 3 x 10*N/m?
Poisson ratio | v | 0.3

timestep size ‘ At ‘ 1x1073s

Table 9: Wall-mounted flap testcase: baseline setting for the physical parameters.

interface, respectively. Table 9 list the baseline physical parameters of the scenario. To establish robust
initial conditions, the scenario is computed with a fixed geometry over a complete inflow period and
restarted afterwards. For all experiments in this section, I use Anderson acceleration (type II) or
generalized Broyden (type II) with reused columns from 5 and 2 timesteps, respectively, both bounded
by a maximum of 30 columns for the matrices V and W, compare Section 3.2. The initial relaxation is
0.1 and an extrapolation of order 2 is used as initial guess in every iteration. The relative convergence
limit for both, forces and displacement, is 1074, I use Alya Nastin and Alya Solidz as single-physics
solvers. Both solvers use an inner relative convergence criterion of 1076, Figure 35 shows the physical
results at various points in time during the first actual inflow period.

Figure 34: Meshes for the wall-mounted flap testcase: regular mesh M1 (left) and adaptive mesh M2
(right). M1 has 22 vertices at the matching coupling interface whereas M2 has 85. The domain size is
3.0m x 2.0m.

Figure 35: Physical results for the wall-mounted flap testcase (mesh M1): velocity glyphs and structural
displacement at time instances t = 0.025s, t = 0.05s, t = 0.075s, and ¢ = 0.1s (from left to right). Glyphs
are colored according to their magnitude.

47

3.6.2 Improving the Robustness of Quasi-Newton Schemes: Filtering

The numerical kernel of both quasi-Newton methods, Anderson acceleration and generalized Broyden,
is a QR~decomposition of V' (compare Section 3.2). In some cases, the columns of V' can become almost
linearly dependent and V', thus, almost singular, which renders the QR-~decomposition unstable. This
happens quite naturally during the last convergent iterations of one timestep, or if columns from previous
timesteps are reused and the complete FSI scenario converges towards a stationary solution. Also, a
stagnating iteration or simply too many reused columns entail risks. Filtering describes the concept
of deleting columns from V' and, consistently, from W to retain a good condition of V' improving the
robustness of the quasi-Newton schemes.

In a common effort3* [109], we studied and compared three methods, denoted as QR1, QR2, and POD,
to establish such a filtering. QR1 estimates the condition of R, which is equal to the condition of V/,
by comparing the diagonal elements of R to the complete norm of R. More precisely, after a complete
QR-decomposition, the oldest column ¢ of V' is deleted for which

R, <e- ||R||F .

In this case, the QR-decomposition is discarded and started over for the reduced V. QR2 is based on a
column-wise comparison, which allows to discard the QR-decomposition already during its construction.
Algorithm 2 details the filtered modified Gram-Schmidt orthogonalization. Finally, POD is based on a
proper orthogonal decomposition of VTV As this method is numerically much more involved (including
parallelization) and shows no clear performance benefit over QR1 and QR2 [109], we decided not to
implement this method in preCICE. Therefore, I also skip a detailed description of the method in this
work. The interested reader is referred to [109].

In this section, I give results for QR1 and QR2 for the wall-mounted flap testcase and exemplarily for
(GS). The aim is to back-up the results of [109], but also to conclude on robust choices of the filtering
including the limit parameter € for changing physical settings.

Algorithm 2 QR2-filtered modified Gram-Schmidt orthogonalization.

Ry = ||V(7k)|‘27 Q(7k) = V(:7k)/Rkk
fori=kk—1,...,2do
v="V(,1)
for j=i—1,i—2,...,1do
Rji =Q(:,5)" v
v=v—Rj Q(,j)
end for
if [jv]2 < e[|V (:,i)]2 then
Remove column 7 from V and W.
Start over from top.
end if
Ri; = ||vll2, Q(:,i) = v/ Ry
end for

In the FSI community, QR1 is the most widely used technique and was already originally supported in
preCICE though with an absolute criterion [99]. In the fixed-point acceleration community, different
approaches are used to stabilize the QR-decomposition. Marks and Luke [137] use a regularization term
to stabilize the least-squares problem

. B
min ||V -Oz-|—Rk||§ + —\|a||§ , B>0.
acRFk 2

Fang and Saad [78] use a similar approach to POD, but without deleting columns definitely. They,
furthermore, restart the iteration®?, i.e., delete all columns, if

RF >~ IRF1 4 €10.1,0.3] .

34Rob Haelterman, Alfred Bogaers, Miriam Mehl, Klaudius Scheufele and myself.
351n [78], the restart formula actually reads R* > yRF~1, but due to the description, I am almost sure that this must
be a typing error.

48

Walker and Ni [217] simply delete the oldest columns if the condition of R drops below a certain
limit. All these approaches are valid alternatives, but not too promising for transient problems such
as partitioned FSI, as they need methods that filter out particular columns while maintaining as much
information from previous timesteps as possible. To this end, recent timesteps with many iterations
should be reduced to a robust amount while older timesteps should not be discarded completely. For
FSI, restart typically also results in a loss of robustness.

The implementation of QR1 differs slightly from the version of [109] in the sense that it does not
recompute the complete QR-decomposition after the deletion of a column, but uses an update scheme
based on Given’s rotations. Section 4.4 gives details on the implementation in preCICE. Table 10
compares this pure update scheme (Upd) with a modified Gram-Schmidt (GS) re-computation once per
iteration. The difference between both approaches is visible for a non-filtered matrix V. Here, modified
Gram-Schmidt typically results in a more robust QR~decomposition, since recent iterates are emphasized
over older iterates, in contrast to the update scheme. The difference between both approaches vanishes
for a well-filtered V. In principle, QR2 could also be implemented by means of an update scheme.
preCICE, however uses the original approach and can, thus, offer a cheap variant, QR1, and a more
involved, but assumably more robust variant, QR2.

Filter / € ‘ le-2 le-3 le-4 1le-5 1le6 1le-7 1le-8 1e-9 1le-10 1le-11 1le-12 1le-13

Upd-QR1its | 6.67 3.48 3.29 3.38 3.58 343 4.07 434 465 426 412 398
Upd-QR1dc | 546 187 1.04 041 0.2 0.08 012 01 004 009 001 0.00
GS-QR1its | 641 3.50 3.29 337 345 344 357 3.76 503 441 419 419
GS-QR1dc | 520 1.87 1.04 040 0.13 0.08 0.08 0.08 0.18 013 0.00 0.00

Table 10: Average number of iterations (its) and deleted columns (dc) for the wall-mounted flap testcase,
first 100 timesteps. The QR1-filter with an updated QR decomposition (Upd-QR1) is compared against
a full modified Gram-Schmidt orthogonalization (GS-QR1) in every iteration for various limits €. Mesh
M2 is used and pr = 0.1 compared to the baseline parameters.

Table 11 shows the average number of iterations for QR1 and QR2, compared to a non-filtered QR-
decomposition over various physical settings of the wall-mounted flap testcase. For the sake of complete-
ness, Table 12 list the average amount of deleted columns for the same experiments. Both filters manage
to stabilize cases that lead to divergence without filtering. In contrast to the results of [109], QR1 shows
a better behavior than QR2 in terms of efficiency and also in terms of robustness. This may be due
to the significantly more challenging stability problems that the scenario under consideration features
compared to the standard benchmarks in [109], for which filtering is more a question of efficiency than
of robustness. € € [107°,107*] appears to be a good choice for QR1 independent from the physical
settings, again in contrast to [109] where much smaller values are optimal. Similar tests for S-GB2
show a significantly less sensitive behavior to the filtering, which comes at no surprise as no columns
from previous timesteps are reused while information on the Jacobian approximation is kept implicitly.
I conclude from this section and the results of [109] that filtering is a crucial ingredient for Anderson
acceleration and very demanding testcases. The QRI1 filter shows a robust and efficient behavior for
such demanding scenarios while QR2 might outperform QR1 for moderate scenarios.

3.6.3 A Preconditioner for the Jacobian System

The Jacobian system (J) suffers from a possibly bad condition as forces and displacement, concatenated
in 27 = (d7, fT), may live on very different scales. A remedy to this problem is a weighting respectively
pre-conditioning®® of the least-square system

min H(‘Dk Vi ra+ oF . RkHQ s
67398
with the preconditioner ® = diag(¢1, ..., d,). In the QR-setting, this corresponds to a preconditioning

of Vj + @V, and RF < ®*R* for Anderson acceleration. For generalized Broyden, this becomes
more involved as also Wy < ®FWW, needs to be scaled, which requires a backward scaling of the

36] prefer the term preconditioner over the term scaling to not let the reader confuse numerical scaling with HPC
scaling, though the approach presented is in fact a simple scaling of vectors.

49

QR1-Filter QR2-Filter No Filter

Testcase / € le-3 le-4 1le-b 1le6 | 0.25 le-l le-2 1e-3 | Upd GS
M1 6.14 4.73 474 512 | 874 6.73 5.29 div 8.57 10.44
M1 ps =1.0 391 3.71 398 4.14 | 510 5.00 5.10 6.54 | 835 877

M1 E =3-10° 495 4.40 4.75 4.74 | 6.52 556 4.78 513 | 10.84 div
M16t=2-10"2 | 833 581 5.61 582 | 845 6.81 5.33 599 | 6.62 743

M1 ug = 5.0 10.08 6.60 7.17 8.21 | 12.13 7.64 6.44 7.39 div div
M1 pr =0.1 3.4 329 3.22 324 | 488 4.29 3.57 3.42 | 345 341
M2 9.58 828 7.42 8.00 | 13.56 18.37 12.58 div div div
M2 ps =1.0 3.82 405 549 6.18 | 988 873 7.97 9.25 div div

M2 E=3-10° 9.58 828 7.42 8.00 | 13.56 18.37 12.58 div div div
M2 6t=2-10"2% | 13.72 725 6.05 7.76 | 16.08 div 12.20 div div div
M2 ug = 5.0 1192 7.93 8.89 div div. 11.84 10.39 div div div
M2 pr =0.1 3.48 3.29 338 358 | 497 439 418 3.67 | 398 4.19

Table 11: Average iterations per timestep for the Wall-Mounted Flap testcase with S-AA2(5), first 100
timesteps. Physical settings are only indicated when they are different to the baseline setting. Upd
denotes the update QR-decomposition, GS the modified Gram-Schmidt scheme. Best values use a bold
type setting.

QRI1-Filter QR2-Filter No Filter
Testcase / € le-3 le-4 1le-b 1le6| 025 le-l1 1le2 1e-3 | Upd GS
M1 453 216 134 092 | 758 538 3.08 div | 0.00 0.00
M1 psg =1.0 1.56 051 0.28 0.19 | 347 286 241 3.46 | 0.00 0.00

M1 E=3-10° 3.72 276 240 1.61 | 547 449 3.6 355 000 div
M1 6t=2-10"% | 7.07 3.86 2.73 2.02 | 7.39 567 3.73 3.81 | 0.00 0.00

M1 up = 5.0 8.11 3,55 292 279 | 1099 6.33 445 4.24 | div div
M1 pr =0.1 1.80 1.08 046 0.05 | 3.58 2.71 1.43 0.89 | 0.00 0.00
M2 84 686 5.33 5.07| 1249 1732 1144 div | div div
M2 ps =1.0 2.07 168 2.68 2.6 879 759 6.58 7.54 | div div

M2 E =3-10° 84 686 533 5.07 | 1249 1732 1144 div | div div
M2 6§t =2-10"3 | 1241 525 3.18 3.8 | 1498 div 10.7 div | div = div
M2 ug =5.0 9.99 4.87 4.6 div div. 1041 837 div | div div
M2 pr =0.1 1.87 1.04 041 0.2 3.65 2.8 2.0 1.28 | 0.00 0.00

Table 12: Average amount of deleted columns per timestep for the Wall-Mounted Flap testcase with S-
AA2(5), first 100 timesteps. Physical settings are only indicated when they are different to the baseline
setting. Upd denotes the update QR-decomposition, GS the modified Gram-Schmidt scheme.

update AZF « (®%)"LAzFF after each iteration. Furthermore, the previous Jacobian needs to be scaled

ng’(N) — @legl’(N)(q)k)’l. The latter ensures a consistent scaling of both summands in the update

formula

e P A R A\ 7
introduced in Section 3.2.2. Please note that, if combined with a filter, the preconditioner is applied

before the filter.
A straight-forward choice for ®* is to normalize all entries. In a transient context this is often done by
means of the previous timestep. This can either be done in a per-entry basis
N 1
gi)i:(xg)+€abs) Loi=1...n,

where €,ps denotes a lower border to avoid division by zero, or in a per-sub-vector basis
_ 1. n
of = [d™ 3" and o] = [IfM51 =15,

where ¢¢ and (Z){ denote the weighting factors associated to the displacement and to the force entries,
respectively. Both cases necessitate a re-computation of the QR-decomposition from scratch at the

50

beginning of each timestep. Extensive testing shows that the per-sub-vector variant consistently out-
performs the per-entry variant. For the wall-mounted flap testcase, in the baseline setting and mesh
M1, for example, the first results in 5.67 and the latter one in 6.47 iterations per timestep (over the first
100 timesteps)®”. T assume that this is due to the destruction of a natural weighting of the degrees of
freedom by the per-entry variant. Any vertex has the same influence, ignoring whether it is located on
the tip of the flap or close to the lower wall. Therefore, I prefer the per-sub-vector over the per-entry
variants. I refer to this first (per sub-vector) weighting as value weighting.

Forces

Displacements

—1e0 |/
—1lel
—1e2
—1e3
led
le5 |7
1le6

Relative Residual
Relative Residual

Iteration k

Iteration k

Figure 36: Relative residual for displacements (left) and forces (right) for the wall-mounted flap testcase,
at timestep 30, and various constant force weighing factors a.

For a broader comparison, I also introduce a constant weighting. This variant weights force entries by
a simple constant scaling factor a € R, ¢if =1/a, i = 1...n/2, having the advantage of not requiring
any QR recomputations. Figure 36 shows the relative residual of both, displacements and forces, at
timestep 30, for the baseline setting and Mesh M1, and for various factors a. The different influence of
a on both criteria is clearly visible: the color coding flips comparing both subplots. This means, putting
more weight on the forces, i.e. using a smaller a, results in better values for the displacement criterion
in the next iteration as d = S(f) and worse values for the force criterion. The best choice of a should,
therefore, somehow balance both criteria. This observation leads to the idea of the residual weighting

d=|d* —d*|;" and ¢ = |F* - fFlI3t, i=1

|3

This approach requires a QR-decomposition from scratch in every iteration. For some cases, a full
residual weighting can overdue the re-weighting, which leads to a zig-zag convergence behavior. To
overcome this drawback, I finally introduce the residual-sum weighting

-1 -1

k
&7 — |2 s 17 = £7]l2 , n
Z‘ and ¢; = ; ,2:1...57

|27 — 2l 27 — 272

which also requires a QR-decomposition from scratch in every iteration. Marks and Luke also discuss
this approach [137], while finally using the square-root of it to further adjust for possible over-scaling.
I did not observe such problems for FSI and stick therefore to the original formulation.

Tables 13 and 14 list average iteration numbers for all four approaches, different filter configurations
and for J-AA2(5) and J-GB2(2), respectively, over various physical settings of the wall-mounted flap
testcase. In general, the QR1 filter shows better results than QR2 for J-AA(5), similar to the results
of the last section. For J-GB(2), QR2 tends to outperform QR1 for mesh M1, but shows a drastic loss
of efficiency for mesh M2. A better limit parameter ¢ could probably weaken this effect, but this is not
the topic of this section. The best value for the constant weighting is relatively stable over the various
physical settings and both meshes, only the timestep size seems to have a significant influence. The
value weighting is a useful choice as it comes close to the best constant weighting, without reaching it
for most cases. Especially for J-GB(2), the performance of the value variant is rather mediocre. The

37For sake of readability, I omit complete tables for the per-entry variant.

51

residual weighting shows promising results for some cases, but tends to be not robust enough. For the
QR2 filter, this even leads to divergence for many cases. The residual-sum weighting, finally, seems
to be the best choice as it comes close to the best constant variant and even outperforms it regularly.
Furthermore, it is worth mentioning, that J-GB(2) shows significant better results than J-AA(5) with
the exception of the highest added-mass values and mesh M2.

To conclude this section, I can state that the goal to find a dynamic preconditioner is achieved. In-
dependence from an explicit parameter tuning clearly outweighs the possibly additional cost stemming
from, e.g., re-computations of the QR-decomposition. Changing from (GS) to (J) does not result in
additional tuning parameters.

Constant Dynamic
Setup / Precond. Fil. 109 10t 102 103 10* 108 105 | Val. Res. RS

M1 QR1 | 858 828 6.17 520 4.87 530 641 | 501 5.54 4.95
QR2 | 888 886 7.57 537 491 550 841 | 510 594 5.01
M1 ps =1.0 QR1 | 6.79 6.69 5.83 4.71 4.06 4.17 493 | 438 4.62 4.20

QR2 | 6.92 707 6.87 5.07 410 416 494 | 443 5.00 4.13

Ml E=3-10° QR1 | 803 628 484 398 3.71 394 469 | 3.88 416 3.79
QR2 | 803 791 6.26 4.09 376 428 723 | 397 div 3.87

Mlé6t=2-10"% QRI1 | 11.75 7.66 5.79 5.01 504 6.02 7.82 | 4.99 536 5.04
QR2 | 925 9.18 6.21 515 5.08 728 10.03 | 5.09 5.68 5.03

M1 up =5.0 QR1 | 11.04 1098 862 6.73 632 722 896 | 641 746 6.34
QR2 | 11.13 11.12 942 6.81 6.26 7.16 1041 | 6.52 6.68 6.41
M1 pr =0.1 QR1 | 691 493 412 357 355 396 535 | 3.63 3.84 3.50
QR2 | 6.71 647 438 3.63 3.52 426 528 | 3.74 div = 3.59
M2 QR1 | 9.78 857 804 6.72 6.57 791 972 | 6.70 774 7.22
QR2 | 1195 1096 6.73 799 760 861 2817 | 817 8.64 8.55
M2 ps =1.0 QR1 | 946 950 774 722 6.21 7.63 815 | 7.21 839 8.52

QR2 | 995 9.77 851 640 875 10.14 9.84 | 937 div 9.10

M2 E =3-10° QR1 | 875 6.53 519 4.77 4.44 519 6.21 | 471 4.24 4.85
QR2 | 912 874 6.04 507 540 7.04 20.25| 6.07 534 6.60

M246t=2-10"2 QR1| 884 6.52 557 5.10 567 7.19 div 59.35 6.31 5.25
QR2 | 935 839 588 523 6.30 14.03 div 548 div 5.70

M2 ug =5.0 QR1 | 1238 1089 832 740 7.18 930 1194 | 712 747 7.18
QR2 | 1255 1242 876 734 740 1032 1950 | 7.66 7.80 7.14
M2 pr =0.1 QR1 | 572 495 389 3.50 391 459 651 | 3.74 386 3.62

QR2 | 6.11 548 4.03 3.58 4.00 553 640 | 3.97 div = 3.69

Table 13: Average number of iterations over the first 100 timesteps for J-AA2(5), the wall-mounted
flap testcase, and various preconditioner approaches. Physical settings are only indicated when they are
different from the baseline setting. The filters use € = 107> for QR1 and ¢ = 1072 for QR2. Best values
are displayed in bold. RS stands for residual-sum.

52

Constant Dynamic
Setup / Precond. Fil. 10° 10t 102 103 104 10° 108 Val. Res. RS

M1 QR1 | 9.06 942 6.01 4.18 4.00 4.61 6.74 | 526 4.54 4.02
QR2 | 959 9.04 645 474 3.92 497 7.05 5.15 div 3.93
M1 ps =1.0 QR1 | 718 6.67 592 381 321 3.67 464 | 454 4.17 3.47

QR2 | 818 731 645 471 3.16 3.53 4.84 | 4.56 div 3.21

Ml E=3-10° QR1 | 851 6.76 543 3.68 355 3.58 476 | 468 3.33 3.46
QR2 | 819 827 528 439 3.34 358 536 | 4.68 div 3.40

M1§t=2-10"3 QR1 | 1088 873 625 4.45 465 577 7.78 | 550 4.63 4.59
QR2 | 10.38 9.20 5.75 4.67 449 596 10.56 | 5.17 4.75 4.35

M1 up =5.0 QR1 | 13.08 div div 6.21 548 681 9.05 739 848 5.93
QR2 | 12.27 12,19 842 598 5.44 683 9.80 | 7.36 6.57 5.59
M1 pr =0.1 QR1 | 7.09 490 349 2.87 287 346 5.51 451 441 2.87
QR2 | 6.38 555 3.75 288 289 4.04 499 | 4.37 div 2.85
M2 QR1 | 10.65 9.80 885 8.54 9.12 10.29 12.79 | 9.66 1142 8.91
QR2 | 2236 11.86 13.28 15.51 14.78 12.37 23.6 div. 19.46 13.85
M2 ps =1.0 QR1 | 11.04 1143 8.98 9.10 9.03 12.09 13.86 | 11.06 11.53 10.64

QR2 | 1259 13.27 1149 11.16 18.26 13.12 div div div 15.17

M2 E =3-10° QR1 | 9.23 851 6.30 715 6.09 5.25 843 8.40 6.13 6.47
QR2 | 12,53 10.26 9.52 10.09 7.97 881 1521 div. 11.20 14.05

M26t=2-10"2 QR1 | 9.05 647 656 505 520 7.05 div 6.21 555 4.70
QR2 | 10.56 758 7.93 4.55 5.68 10.34 div 6.24 div 5.83

M2 uy =5.0 QR1 | 16.57 11.19 818 730 6.54 1024 1291 | 7.73 6.83 6.25
QR2 | 15.02 12,89 957 13.69 825 941 2257 | 7.68 14.34 9.52
M2 pr =0.1 QR1 | 549 472 334 2.84 321 492 6.77 | 440 5.01 3.12

QR2 | 6.64 466 324 288 3.61 497 7.08 | 443 div 2.90

Table 14: Average number of iterations over the first 100 timesteps for J-GB2(2), the wall-mounted
flap testcase, and various preconditioner approaches. Physical settings are only indicated when they are
different from the baseline setting. The filters use ¢ = 10~ for QR1 and ¢ = 10~2 for QR2. Best values
are displayed in bold. RS stands for residual-sum.

53

3.7 Advanced Numerical Experiments

After some specific preliminary results in the last section, this section gives complete tests for the
coupling schemes for established benchmark scenarios. I revisit and test the robustness of the filters,
introduced in Section 3.6.2, and the preconditioners, introduced in Section 3.6.3. Also, I study the
influence of the number of explicitly reused timesteps. Most important, I conclude on the competitive
position of parallel coupling schemes compared to their classical serial counterparts.

I choose three testcases to encompass a broad spectrum of different physical FSI behaviors, such as an
enclosed structure, an outer structure and also a membrane. Similarly, I cover a significant spectrum
of available single physics solvers, including various numerical schemes. These three testcases are intro-
duced in Sections 3.7.1 to 3.7.3, while Section 3.7.4 collects all results and draws final conclusions. Table
15 overviews the three scenarios. Please compare Section 2.4 for details of all single physics solvers and
their numerical schemes. Table 16 gives an overview on the material and numerical parameters of all
scenarios.

Abbreviation ‘ Scenario Description ‘ Section ‘ Fluid Solver ‘ Structure Solver
FSI3 Elastic cantilever in 2D 3.7.1 Alya Nastin Alya Solidz
channel flow
3D-Tube Travelling pressure wave 3.7.2 OpenFOAM OpenFOAM
in elastic 3D tube
DC 3D lid-driven cavity with 3.7.3 Alya Nastin Carat++
flexible bottom

Table 15: Overview on the advanced numerical test scenarios and their solvers.

To judge on the convergence speed of various coupling schemes, I use a relative convergence criterion
for both, forces and displacements, of 10~%, compare the discussion of Section 3.1. All single physics
solvers use sufficiently tight tolerances for their inner iterations, at least a relative criterion of 1076, so
two orders of magnitude tighter. The quasi Newton schemes use a maximum of 100 columns in their
matrices V and W. Oldest columns are dropped, in case a scheme exceeds this number. As initial
guess of every timestep, I simply reuse the converged iterate of the previous timestep, which relates
to a 0-order extrapolation. If a coupling scheme exceeds the maximum of 50 iterations per timestep, I
regard the test as divergent. The very first iteration uses an underrelaxation with parameter 0.5. All
physical results show no visible difference if two coupling schemes are compared to each other. [142]
gives further physical validation.

| | FSI3 | 3D-Tube | DC

fluid density | pr | 1.0 x 103kg/m3 | 1.0 x 103 kg/m? 1.0kg/m3
dynamic viscosity | p | 1.0kg/(ms) 3.0 x 1072 kg/(ms) | 3.0 x 10~2kg/(ms)
reference velocity | up | 2.0m/s - 1.0m/s
structure density | ps | 1.0 x 103kg/m3 | 1.2 x 103 kg/m3 5.0 x 10?2 kg/m3
Young’s modulus | E | 5.6 x 10N/m? | 3.0 x 10° N/m? 250 N/m?

Poisson ratio | v | 0.4 0.3 0

timestep size | At | 1.0x107%s | 1.0 x 107*s | 1.0x107?s

Table 16: Advanced numerical test scenarios: physical parameters.

3.7.1 FSI3 Benchmark

The FSI3 benchmark was proposed by Turek and Hron [199] following a common effort of the DFG
Forschergruppe 493%%. The benchmark consists of a 2D incompressible channel flow with a fixed, rigid
cylinder and an attached elastic cantilever placed inside. The cylinder position is slightly off-centric to
foster oscillations. Figure 37 sketches the geometry.

38nttp://fsu.informatik.tu-muenchen.de

54

0.41m 10.02m
A A

0.35m

2.5m

Figure 37: Geometrical layout of the FSI3 benchmark scenario. Point C' = (0.2m,0.2m) marks the po-
sition of the cylinder’s center, which is slightly off-centric in y direction to foster oscillations. Measure-
ments of displacements are done at the center of the backside of the cantilever, point A = (0.6m,0.2m).
On the left boundary a parabolic inflow profile is prescribed, the right boundary marks an outflow.
No-slip walls are used for the top and bottom boundary as well as on the geometry. The picture is taken
from [99].

At the inflow, a parabolic velocity profile in z direction with mean wug is prescribed. Originally, [199]
describes three variants of this benchmark, which differ in their used physical parameters. I solely use
the third variant as it marks the strongest added-mass effect. Table 16 lists the physical parameters.
This third variant leads to an unstationary flow with regular oscillations of the cantilever, which can
then be compared to other numerical reference simulations. As initial values, I use a precomputed fluid
field. This renders an up-ramping of ug unnecessary.

Velocity Velocity
1 2 3 4 1 2 3 4
-_— L — -_— L —
0 4.5 0 4.5
[— T [T

[— (—

L —— R — |

Figure 38: FSI3 testcase: velocity magnitude and structure deformation for ¢ = 4.13 s (left) and t = 4.23 s
(right).

I use two different meshes for the FSI3 testcase - a fine and a coarse configuration. For the fine configu-
ration, the fluid and structure mesh consist of 69460 and 15850 triangular elements, respectively. For the
coarse configuration, there are 7928 and 702. For both configurations, the fluid and the structure mesh
match at the coupling interface. Figure 38 shows the flow and the deformed structure at two instances
during the oscillation for the fine configuration. Figure 39 shows the corresponding displacement at the
reference point A during several oscillations and Table 17 compares the frequency and magnitude of this
oscillations to reference values. For the displacement at the reference point, good agreement is achieved.
[199] also proposes reference values for the dimensionless force acting on the complete geometry. With
Alya Nastin, I could not reproduce these force values. I suspect that this is a simple post-processing
issue with no physical influence, considering the correct displacement values. preCICE as well as the
applied coupling schemes can be excluded as error source since a Fluent-preCICE-COMSOL coupling
showed good agreement also in the forces values [142]. To conclude upon the various applied coupling
schemes for the FSI3 testcase, I consider average iteration numbers per timestep between ¢ = 2.0s and
t=3.0s.

95

0 0.04

LA AANAERNA D s NN N NN
e TR R =t R R R A R R R
e T & L
e U gm L LAY
- -0.005 U U U v U > :Z:Zz \/ ./ [\ \/

Figure 39: FSI3 testcase, fine mesh configuration: = and y position of the cantilever at point A between
t=4.0s and t =5.0s.

| @ displacement [107*m] | y displacement [10~m]
Nastin-Solidz —2.53 + 2.34 [10.8] 2.34 + 33.23 [5.4]
Fluent-COMSOL [142] —2.50 £ 2.29 10 9] 1.71 4 31.94 [5.5]
Reference [199] —2.69 +2.53 10 9] 1.48 £+ 34.38 [5.3]

Table 17: FSI3 testcase, fine mesh configuration: displacement values at point A. The values are
given as mean + amplitude [frequency] and are computed from the first full oscillation after ¢ = 4s.
Comparison to a Fluent-COMSOL run as well as the original reference shows good agreement.

3.7.2 Straight 3D Elastic Tube

As a second testcase, I use the wave propagation in a straight, 3D, elastic tube. The benchmark scenario
is described, e.g., in [91], but appeared, to my best knowledge, first in [93]. The scenario setup is provided
as part of the preCICE OpenFOAM adapter® by David Blom. Figure 40 sketches the geometry of the
scenario. Both ends of the tube are fixed.

elastic outer wall

0.00lm 1

pressure inlet outflow 0.01m

A
v

0.05m

Figure 40: 3D Tube: geometry. Both ends of the tube are fixed. An initial pressure wave is prescribed
at the inlet and travels through the domain.

Till + = 0.003 s, the pressure boundary condition at the inlet is set to a fixed values of 1.3 x 10*> N/m?2.
Afterwards, it is set to zero. At the outlet, the pressure is always set to zero. This leads to a pressure
wave propagating through the tube. Table 16 again lists the physical parameters. Due to symmetry, the
simulation is restricted to a quarter of the tube. The fluid mesh and solid mesh consist of 16000 and 800
hexahedral cells, respectively. At the interface, both meshes match. The complete simulation covers
the wave propagating once through the domain during 1 x 1072s. The mean iteration numbers are
averaged over the complete 100 timesteps. Figure 41 shows the physical results during four instances.

39https://github. com/davidsblom/FOAM-FSI

56

Figure 41: 3D Tube: structure deformation and block-structured mesh, from left to right at ¢ =
2.5x1073s, 5.0 x 10735, 7.5 x 10735, 1.0 x 10~2s. For sake of visibility, the structure deformation
is scaled by a factor of 10.

3.7.3 Driven Cavity with Flexible Bottom

The third and last test scenario originates from a classical CFD benchmark: a lid-driven cavity —
incompressible flow over a cavity is modeled as a moving wall. [218] generalized this test scenario to
an FSI case by making the bottom wall elastic and the lid velocity oscillating. To not violate the
incompressibility, small gaps for inflow and outflow were added. I use the exact same setup as in [218],
but generalize the case to 3D. For the boundary in the front and in the back, I use also no-slip walls.
Figure 42 depicts the geometry. Again, Table 16 lists the physical parameters. The oscillating Dirichlet
condition for the x velocity at the lid reads

t
Uyp = Ug - <1 — cos (27TT>) ,

while the y and z components are set to 0. One full period is set to 7' = 5.0s. The inflow condition is a
linear interpolation from the full lid velocity at ¥y = 1.0m to a no-slip condition at y = 0.9 m. Initially,
all quantities are set to zero. This is physically meaningful as the lid velocity also starts from 0.

lid: moving wall — outflow
inflow
y 4 back: nofslip wall T no-slip wall
—>
no-slip wall —» z X
, " flexible bottom
front: no-slip wall

Figure 42: Driven cavity with flexible bottom: geometry and boundary conditions. The cube’s side
length is 1.0m, while the height of the inflow and outflow measures a tenth of the side length.

The fluid solver uses a equidistant hexahedral mesh with 20 x 20 x 20 elements. The membrane solver
uses a matching mesh, thus, 20 x 20 elements. Figure 44 shows various screenshots during one complete
oscillation of the lid velocity. To get a better impression on the initial phase of the simulation, Figure 43
visualizes the vertical displacement of the center point of the membrane. The mean iteration numbers
are average of the first 1000 timesteps, i.e. [0,2T].

57

0.4

Center Point Membrane

o WA LV |V L V|

0.35

E ANV
ANIVANANAVANAY
I R ARV RVEVR VALY
%01/ V 3
>‘0.0.5/

0 5 10 15 20 25 30 35
time [s]

Figure 43: Driven cavity with flexible bottom: vertical displacement of the center point of the membrane
(0.5,0.0,0.5) over time.

3.7.4 Results and Conclusions

I explain the numerical results in several test series. First, I revisit the filtering concept of Section 3.6.2.
To this end, GS-AA5 and GS-GBO0, are compared for various filters and all three scenarios. Table 18
lists the mean iteration numbers. Several conclusions can be drawn. First and most important, filtering
is indeed a crucial ingredient of a quasi-Newton scheme. Compared to the study in [109], an even higher
influence is visible here. Comparing the FSI3 results of [109] with the ones of this work, it becomes clear
that even more than the scenario, the applied solvers influence the best filter choice and its impact. [109]
uses OpenFOAM as the fluid solver, which uses a quite sophisticated mesh movement technique based on
radial basis functions. On the other hand, this work uses Alya Nastin as the fluid solver, which uses
a simple Laplace smoothing for the mesh movement. Besides many other minor differences, this is
probably the most important one. The results of Table 18 show that the Alya Nastin - Alya Solidz
coupling benefits highly from the filtering. With too little filtering, the FSI3 testcases diverges for both
mesh configurations. The right amount of filtering, however, stabilizes the simple mesh movement. Too
much filtering, on the other hand, also leads to divergence, compare FSI3-fine with the QR1 ¢ = 10~*
filter. For the other two testcases, filtering has not a crucial impact on stability, but definitely on
the efficiency. For DC and GS-AA, for example, a well-fitted filtering can improve the mean iteration
number from 5.50 to 3.01. Which filter works best depends on the testcase. For the 3D-Tube testcase,
the QR2 filter shows a better performance, while QR1 outperforms QR2 for the other two scenarios.
Furthermore, also for GS-AA5 and GS-GBO, a different behavior can be observed. For example, for the
DC testcase, GS-GBO0 performs best without any filter, whereas GS-AA5, as mentioned above, shows a
clear performance boost from a well-adjusted filter. I conclude that, in general, a medium-tight filter is
a good choice. Therefore, I use QR1 with € = 10~ for all further experiments in this section, except the
GB for FSI3-fine, where QR1 with € = 10~ appears to be the more robust choice. However, for further
testcases and especially for further coupled solvers, a brief study upon the best filter configuration is
always worth considering.

Next, I study the influence of explicitly reused timesteps on the performance of AA and GB. Table 19
lists mean iteration numbers for AA and GB, for both, (GS) and (J), and for all three testcases. Again,
several interesting aspects are visible. AA clearly needs a good tuning of the number of reused timesteps
R. Here, (J) can benefit from a higher R than (GS). For the latter, a too high R has a slight negative
influence. This negative influence is, however, not as drastic as in preliminary studies, compare Section
3.4 and [176, 142], as apparently the filter can lower such problems. In general, for GS-AA and J-AA a
value of 10 and 20, respectively, tends to be a good and robust choice.

Now, let us look at the influence of R on the performance of the GB scheme. First, I want to remind
the reader about the concepts of Section 3.2: the motivation behind GB is to implicitly reuse past
information and therefore render an explicit tuning of R unnecessary. Indeed, GBO clearly outperforms
AAO0. However, for FSI3-fine and DC, explicitly reused past information has still a beneficial influence,
but in a clear lower extent than for AA. For the 3D-Tube already R = 1 reduces the efficiency. In
principle, the standard and conservative choice for GB should be R = 0. In this case, but probably only

58

i
{((4’1"’(&

L

«
AR ‘N
ANy 'A‘ AV
’W“NVA

g.
o N“w@“
NS o
4 ~s§\’::§$1¥*sfm?“‘§“&
\ £ ANANAY
SR

'r[

«)«
‘ | S
A Sea N \V
L *5“::::‘&5:‘*
L mg:.mvmé:ss;wsﬁﬁg i&é&‘&
V%gﬁwnﬁvvﬁgg&gmm REASER %":'STN SSESC
KRR wmm R n&“&'s’tw‘m

~m&uvv‘ \w
/ Sﬁgwm %3%&&:% SEAA k-‘
= Sosstisas s ;ﬁfwmmmmm A\\‘sm“‘“”
gﬂ&‘%‘%‘y&.& ""“g‘"“ LA ‘ ;mm SARRRRERY %s%‘g V‘v“‘ SR
AVAVM VAV S
AR AR RS e &% SESSNE g\wmmmm&““ MR §§§‘
E S

vwg

SECNNNS %%
m"v“ A“%‘;@\ ess:‘-‘-“»@\
S Sggg& @%‘ R
ENAV '- vuwm&mv w % S
R ﬁ e v.ﬁlu ‘s &A “'&5‘:@‘«%
‘< -'=§ oy “\\Vm mw\m £l 'ewswm R
SN mmum ‘é N mm A AR
gﬂ;sss&mmn MA\VMS “§§§s§§sssmm §‘§N mm ASE)
ARRRRRRRRRRARERROERRA gsgvs» SRR ARARRA A
Velocity Velocity
0! Lmoyzum \9"3\\ | 04 0] \\(\)"2\\\\\\\ (\]ﬁm\ 04 |
0 05 0 0.5

Figure 44: Driven cavity with flexible bottom: membrane deformation and streamlines during one flow
period, from left to right and from top to bottom at ¢ = 10s, 11s, 12, 13s, 14s, 15s.

then, GB is an important alternative to AA.

I also briefly revisit the preconditioner for the parallel (J) system. Table 20 lists the mean iteration
numbers for J-AA20 and J-GBO for the residual-sum and the value weighting for all three testcases.
The residual-sum weighting almost constantly outperforms the value weighting, not tremendously, but

59

QR1-Filter QR2-Filter
Scenario Method /€ | le-4 1le-5 1le6 1le-7 1le-15 | le-l 1le-2 1le-3
FSI3-fine GS-AA(5) | div 452 4.01 div div div div div
GS-GB(0) | 591 712 div dwv div | 6.17 div div
FSI3-coarse GS-AA(5) | 11.65 4.86 4.10 4.15 div | 7.60 8.48 8.86
GS-GB(0) | 5.76 5.75 5.89 5.89 589 | 590 587 5.92
3D-Tube GS-AA(5) | 15.21 878 7.64 7.79 7.87 | 696 826 7.71
GS-GB(0) | 8.48 827 7.88 7.714 7.74 | 800 7.86 7.75
DC GS-AA(5) | 3.15 3.01 3.02 3.15 5.50 | 442 4.02 4.05
GS-GB(0) | 3.88 4.64 4.46 3.84 3.85 | 436 4.95 3.83

Table 18: Average number of iterations per timestep for various filter configurations and all advanced
test scenarios. div marks divergent configurations.

Scenario ~ Method /R | 0 2 5 10 15 20 | 30* 40*

GS-AA(R) | 10.03 5.31 4.01 3.71 3.81 3.96

FSI3-fine GS-GB(R) | 7.12 533 537 531 6.06 9.77
J-AAR) | 14.87 648 448 3.63 338 330 | 3.33 349

J-GB(R) | 554 437 400 374 394 3.94

GS-AA(R) | 10.67 550 4.09 3.91 4.05 4.36

FSI3-coarse GS-GB(R) | 5.89 6.86 6.08 7.30 6.61 6.36
J-AAR) | 16.72 6.45 462 398 378 373 | 391 4.18

J-GB(R) | 537 3.81 358 3.85 427 4.67

GS-AA(R) | 14.40 9.72 7.64 7.45 8.12 8.39

3D-Tub GS-GB(R) | 7.88 10.19 10.49 1212 12.34 1242
Tube J-AA(R) | 26.16 15.79 12,50 10.80 10.46 10.36 | 14.14 16.26

J-GB(R) | 9.61 23.09 20.26 19.42 1942 19.42

GS-AA(R) | 464 362 3.02 3.00 301 3.02

DC GS-GB(R) | 4.46 4.03 3.08 3.04 3.02 3.03
J-AA(R) | 547 3.13 2.49 2.18 2.07 2.04 2.01 2.01

J-GB(R) | 334 234 2.06 2.01 2.01 2.01

Table 19: Average number of iterations per timestep for different number of reused timesteps R and all
advanced test scenarios. All configurations use a QRI filter with e = 1079, except the GB schemes for
FSI3-fine where a QR1 filter with € = 107° is used. All (J) schemes use the residual-sum weighting as
preconditioner. *: for J-AA addtional runs with an even higher R are included to illustrate the negative
influence of a too high R. For these runs, the maximum amount of columns in V' and W is increased to
500.

significantly. Only for J-AA20 and the 3D-Tube, the latter shows a slightly better performance.

J-AA(20) J-GB(0)
Scenario / Precond. | res.-sum value | res.-sum value
FSI3-fine 3.30 3.84 5.54 8.63
FSI3-coarse 3.73 4.43 5.37 5.28
3D-Tube 10.36 9.90 9.61 10.93
Cavity 2.04 2.49 3.34 4.70

Table 20: Average number of iterations per timestep, comparison between the residual-sum and the
value weighting. All configurations use a QR1 filter with e = 1075, except the GB scheme for FSI3-fine
where a QRI filter with e = 107 is used.

60

Finally, I want to conclude on the most important contribution of this chapter, the parallel coupling
schemes and their competitive position compared to the classical serial counterparts. Table 21 compares
the mean iteration numbers of (GS) and (J) for the best value of R for each scenario. The parallel
coupling schemes not only match the performance of the serial coupling schemes, but even outperform
them for the FSI3 and the DC testcase. Only for the 3D-Tube, the parallel schemes show a slight worse
performance. Please remember that a slight worse performance in terms of iterations does not induce a
worse overall performance, as the parallel schemes allow for a simultaneous execution of the fluid and
the structure solver. Section 5.2 gives a concrete runtime comparison.

Furthermore, I conclude from Table 21 that AA and GB show quite similar performance, in general.
Only for the FSI3 testcase, AA significantly outperforms GB. For the fine mesh configuration, this
becomes even more noticeable. The OpenFOAM runs of [176] show, however, a different behavior.
Therefore, Table 21 also lists OpenFOAM runs with an identical coupling configuration. Last, Table 21
also lists mean iteration numbers for an Aitken underrelexation. The latter is drastically outperformed
by the quasi-Newton methods, for the FSI3 testcase by approximately a factor of 4, for the DC testcase
by a factor of 2.5. The 3D-Tube even diverges for an Aitken underrelaxation. I included these results
specifically to raise awareness when reading publications that compare a monolithic FSI approach to a
partitioned Aitken-based one such as, e.g., [180].

Serial Coupling (GS) Parallel Coupling (J)
Scenario #IV | AA(10) GB(0) Aitken | AA(20) GB(0)
FSI3-fine 719 3.71 7.12 17.00%* 3.30 5.54
FSI3-coarse 145 3.91 5.89 18.22 3.73 5.37
FSI3 OpenFOAM | 168 7.75 5.84 - 7.70 6.61
3D-Tube 1600 7.45 7.88 div 10.36 9.61
Cavity 400 3.00 4.46 7.37 2.04 3.34

Table 21: Average number of iterations per timestep, comparison between serial and parallel coupling
schemes. For each method, the best values of reused timesteps is used and displayed in brackets. All
configurations use a QR1 filter with € = 1076, except the GB schemes for FSI3-fine where a QR1 filter
with € = 107° is used. For further comparison, also a OpenFOAM FSI3 run is included [176]. #IV is
the number of interface vertices. *: only averaged over timesteps 2000 to 2170.

61

3.8 Generalization to Multi-Coupling

The idea that leads from the classical (GS) to the novel (J) based coupling schemes, can be further
applied to generalize the (J) schemes to multi-coupling schemes. By multi-coupling schemes, I mean
algorithms that allow for a coupling of more than two single-physics solvers, in contrast to bi-coupling
schemes, which only couple two single-physics solvers. The idea that drives the parallel (J) coupling
schemes, is the concatenation of different sub-vectors to one global coupling vector. For (J), these are
force and displacement sub-vectors. Now, to get to multi-coupling scheme, I concatenate multiple force
and displacement sub-vectors from various solvers to get to a global fix-point equation. Solving this
fix-point equation with the same techniques that I use for bi-coupling schemes, leads to a robust overall
coupling, which furthermore allows for a parallel execution of all involved solvers. In principle, this a
simple idea. A general notation, however, is tedious and tends to make this topic more complicated
than it actually is. Therefore, I use a simple three-field example in this section to introduce these
multi-coupling schemes.

This example consists of two channel flows in opposed directions, separated by an elastic wall. I refer
to this fluid-structure-fluid testcase as FSF and explain details in Section 3.8.1. Afterwards, Section
3.8.2 discusses various solution variants including the aforementioned generalized (J) coupling schemes.
Finally, Section 3.8.3 presents numerical results and draws conclusions. Besides the FSF testcase, I then
also use a second testcase, consisting of a channel flow with four immersed structures. I refer to this
second testcase as F4S. The multi-coupling algorithms were first discussed in [204], including results
for the FSF testcase. Furthermore, [44] presents results for both testcases. Both publications, however,
do not consider the newly developed automatic preconditioner concepts as well as generalized Broyden
schemes.

3.8.1 Fluid-Structure-Fluid Model Problem

Figure 45 depicts the geometry of the FSF model problem: two opposed channel flows, F1 and F2,
are separated by an elastic wall, S. To study various intensities of interactions, I vary the width of the
wall § as well as the densities of all three fields pp1, ps, pr2. At both inflow boundaries, an oscillating
parabolic velocity profile, which points in the respective flow direction, is prescribed. The oscillation
reads 1.0 — cos(27 - t/T) with the period T = 0.1s and a timestep size of At = 1.0 x 10~®s. The total
simulation time is [0, 577].

rigid wall
inflow F2 —_— outflow §
a

§ S

- . g
outflow F1 inflow S
[N}

rigid wall

5.0m |

A
Y

Figure 45: Fluid-structure-fluid model problem: geometry sketch.

62

The dependencies between all involved physical fields, can be modeled as a directed graph, see Figure
46. Here, the vertices correspond to the physical fields, whereas the edges model the dependencies
stemming from the coupling variables. The coupling variables are the force and displacement vectors at
the coupling interfaces, f1, f2,d1,ds. In the following section, this dependency graph is used to visualize
various multi-coupling strategies.

OO ®

Figure 46: Fluid-structure-fluid model problem: dependency graph.

3.8.2 Various Solution Attempts

Composition of Bi-Coupling Schemes The simplest idea to formulate a coupling strategy for the
FSF model problem is to use a bi-coupling scheme for each fluid-structure interaction separately. Figure
47 shows this concept.

........................
.............
,,,,,,
.
e,

1 R 2
«— G

bi-coupling bi-coupling
Figure 47: Fluid-structure-fluid model problem: concatenation of bi-coupling schemes.

Each bi-coupling scheme can be adjusted to specific needs of the corresponding interaction. Whether
we choose an implicit or an explicit, a serial or a parallel bi-coupling scheme, this results in a different
overall execution order. Figure 48 collects several variants. I refer to such schemes by the notation GS-
AA5 / GS-EX, if, for example, an implicit GS-AA5 scheme is combined with a serial explicit scheme.
Such schemes are implemented in preCICE via a composition pattern and already documented in [99],
compare also Figure 32.

If two implicit schemes are combined, compare the lower row of Figure 48, both schemes do not nec-
essarily converge at the same iteration. In this case, the converged scheme simply idles till the second
scheme converges as well. Solving both implicit schemes by a quasi-Newton solver, however, results in
an inconsistency. To grasp this inconsistency, consider two serial-implicit schemes, as in Figure 48 lower
row, left scheme. We aim to solve the fixed-point equation

di\ 9o F1 0 dy
dy) 0 F2)\dy)’
by decomposing it into two fixed-point equations

dl = sz OFl(dl) and
dy = Sy, 0 F2(dy) .

I use the indices f; and f5 to point out the dependency of the structure operator S on these values. Now,
both fixed-point equations are solved separately, by constructing an approximate Jacobian for F'1-S as

63

explicit-serial / implicit-serial explicit—parallel / implicit—parallel
F "N, ? A e 4
S :

\/“x/‘\/‘\ >§>l>l>§
F2 F2 F2' F2

implicit-serial / implicit-serial implicit—parallel / implicit—parallel
; Fl1 __F1
/" "\ »" \4 ~F \4 /" >§ >§ >51 >§ o
\ /‘ \4 /‘ * /‘ N >§ >s‘.)‘. >§
F2 F2 : F2 : F2 F2 F2 | F2
—» data transfer -op data transfer and quasi-Newton - timestep

Figure 48: Fluid-structure-fluid model problem: execution orders for various combinations of two
bi-coupling schemes. For the sake of clarity, I assume that every coupling scheme converges in three
iterations.

well as F'2-S via past input-output information. The structure operator S changes in the meantime,
which renders these past input-output information invalid. This marks an inconsistency. The same
reasoning holds for a combination of two parallel-implicit schemes or a mixed serial-implicit parallel-
implicit variant. This affects not only quasi-Newton schemes, but also, e.g., an Aitken underrelaxation,
since also here past information is used to construct an optimal relaxation factor. To which extent this
inconsistency concerns the robustness of such a composed multi-coupling depends assumably on the
strength of the indirect interaction between both fluid fields. The next section confirms this assumption
by showing a strong influence of the structure’s density pg and width §. In general, this problem appears
as soon as there is at least one strong indirect interaction. Thus, a composition of bi-coupling might be
a valid strategy for some cases, but is no general solution.

Inclusion of Bi-Coupling Schemes A solution to the inconsistency problem of the composition,
while still reusing bi-coupling schemes, is an inclusion of such schemes. Without loss of generality, the
bi-coupling F'1 — S is regarded as an entity from the outside and coupled as a whole to F'2. Figure 49
visualizes this approach. This inclusion introduces a nesting of coupling schemes: the inner schemes is
iterated till convergence, and only then the outer scheme performs one iteration. If one of both schemes
is an explicit scheme, this results in a useful overall scheme. Primarily, however, this is only another
theoretical formulation of similar composition schemes. An inner implicit-serial scheme included in an
outer explicit-parallel schemes, for example, is identical to an explicit-serial /implicit-serial composition,
compare Figure 48, top row, left. On the other side, if both schemes, inner and outer, are chosen to
be implicit, past input-output information remains always consistent. The nesting, however, leads to
a drastic increase of iterations. If more implicit schemes are nested, the number of iteration grows
exponentially with the number of schemes [44]. Therefore, such an inclusion of bi-coupling schemes is
of no practical relevance and, thus, not implemented in preCICE.

True Multi-Coupling As already indicated briefly in the introduction of this section, a generalization
of the idea that leads from (GS) to (J), results in an overall robust multi-coupling scheme. All three
physical field are executed at the same time, all outputs are concatenated in a single vector and serve
as input for the next iteration. This results in the overall fixed-point equation

(F1757F2)(d1ad27f1af2):(dladZaflva)' (M)

64

““““
....

(G0

b1-coupllng
bi-coupling

Figure 49: Fluid-structure-fluid model problem: inclusion of bi-coupling schemes.

This notation allows for a straightforward generalization to other multi-coupling scenarios. The single
dependencies between individual solvers and variables, however, are hidden. I refer to such schemes by,
e.g., M-AA(5), if the fixed-point equation is solved by an Anderson acceleration and, as usual, columns
from five previous timesteps are reused. (M), of course, suffers from the same possible in-balance as
(J), compare Section 3.6.3. Therefore, I apply a similar solution, namely, the residual-sum weighting,
throughout all numerical experiments of the next section.

3.8.3 Numerical Experiments

This section contains numerical results for both testcases, FSF and F4S. First, the FSF model problem is
discussed in detail. Afterwards, the F4S testcase is introduced and serves as further validation. Finally,
I conclude on best practices.

FSF Problem Both fluid solvers are simulated with Alya Nastin, the structure solver with Alya
Solidz. Both fluid domains consist of 2600 elements. Depending on the structural width § = 0.1m,
0.2m, or 1.0m, the structure domain consists of 200, 206 or 1306 elements, respectively. All meshes
always match at the interfaces. The dynamic viscosity of both fluids is 4 = 100kg/(ms). The Young’s
modulus of the structure is £ = 5.6 x 10°N/m? and the Poisson ratio v = 0.4. Figure 50 shows physical
results for § = 0.1m and pr; = 1.0 x 102kg/m?, ps = pro = 1.0 x 103kg/m3. Throughout the first
five periods, no periodic movement of the structure establishes, but a continuous deformation. As FSI
stopping criterion, I choose, as usual, a relative criterion of 10~* for all involved coupling variables, here
fi, f2,d1,ds. A QR1 filter with € = 107 is applied. Table 22 lists the average number of iterations for
all three structural widths § and various density combinations. For each configuration, I compare two
composition schemes GS-AA(10) / GS-AA(10) and J-AA(20) /J-AA(20) with two overall multi-coupling
schemes M-AA(20) and M-GB(0). Furthermore, results for the explicit-implicit combination J-EX /
J-AA(20) are shown.

Several tendencies can be observed. First, an explicit-implicit combination can be useful if one of both
interaction is very weak, but not the other one. If the first grows in strength, however, such a scheme
tends, of course, to be unstable due to the added-mass effect. The first two lines of Table 22 illustrate
this. Next, a combination of two implicit schemes can work out, if the indirect interaction between both
fluid fields is weak. This is the case if both fluid densities are equal and the structure density is not
too small or for a bigger structural width 6. In general, a combination of two (J) schemes tends to be
more robust than a combination of two (GS) schemes. Finally, both overall multi-coupling approaches
appear very reliable and efficient. The number of iterations raises, as expected, with the difficulty of
the scenario, similar to the instability of the combination schemes. M-AA(20) and M-GB(0) show, in
general, very similar results, whereas as the latter tends to be a little bit more efficient for this testcase.

65

Figure 50: Fluid-structure-fluid model problem: pressure values (scaled from 1.0 x 10~*Pa to
1.0 x 10* Pa), velocity vectors and structure deformation, from left to right and from top to bottom
att=17-0.05s, i=1...8. d=0.1m, pp; = 1.0 x 10®kg/m?, ps = pro = 1.0 x 103 kg/m?.

66

PF1 - PS - PF2 Coupling ‘ 6=01m ‘ 0 =0.2m ‘ 6=10m
10° - 103 - 103 J-EX / J-AA(20) | 1.00 / 16,85 | 1.00 / 12.56 | 1.00 / 8.68
10! - 103 - 103 J-EX / J-AA(20) div div div
10° - 103 - 10% | GS-AA(10) / GS-AA(10) div div | 3.71 / 7.06
10! - 103 - 10% | GS-AA(10) / GS-AA(10) div div | 3.02 / 7.09
102 - 103 - 10% | GS-AA(10) / GS-AA(10) div div | 3.21 / 6.63
10% - 103 - 10% | GS-AA(10) / GS-AA(10) div div | 6.23 / 6.33
10% - 102 - 10% | GS-AA(10) / GS-AA(10) div div div
10% - 101 - 10% | GS-AA(10) / GS-AA(10) div div div
10° - 103 - 103 J-AA(20) / J-AA(20) | 9.38 / 17.80 | 4.82 / 12.16 | 4.29 / 9.03
10! - 103 - 103 J-AA(20) / J-AA(20) div | 2.82 /12.23 | 2.10 / 9.32
102 - 103 - 10° J-AA(20) / J-AA(20) | 9.05 / 16.41 | 2.52 /9.42 | 2.24 / 7.71
102 - 10° - 103 J-AA(20) / J-AA(20) | 7.25/9.29 | 7,19 /6.95 | 5.67 / 6.22
103 - 10% - 10? J-AA(20) / J-AA(20) div div | 6.95 / 7.05
10 - 10! - 103 J-AA(20) / J-AA(20) div div div
10° - 103 - 103 M-AA(20) 13.37 11.67 9.62
10! - 103 - 10° M-AA(20) 11.33 9.77 8.38
102 - 103 - 103 M-AA(20) 10.39 7.71 7.45
10° - 103 - 103 M-AA(20) 9.01 7.33 6.71
10° - 102 - 103 M-AA(20) 10.96 8.63 8.46
10° - 10! - 10° M-AA(20) 14.07 9.86 9.81
10° - 10° - 103 M-GB(0) 12.35 8.18 9.04
10! - 103 - 103 M-GB(0) 10.35 8.04 7.66
102 - 103 - 103 M-GB(0) 8.62 6.78 6.48
10 - 103 - 103 M-GB(0) 7.73 6.36 6.41
10° - 102 - 103 M-GB(0) 9.89 7.34 7.02
10% - 10! - 103 M-GB(0) 12.98 8.61 8.33
Table 22: Average number of iterations for various density settings and three different structural

widths 6. Two implicit combination approaches are compared to two overall multi-coupling schemes.
Furthermore, results for an explicit-implicit combination are shown. div marks divergent configurations.
For the combination approaches, the number of iterations are listed for every interaction individually,
separated by a slash.

67

Four

F4S Problem To further validate the multi-coupling schemes, I consider another testcase.
elastic structures are immersed in a channel flow. Each structure has a different density, making the

overall scenario quite challenging. Figure 51 depicts the geometry. The densities read:
F | 51 | 52 | s3 | 54
1.0kg/m? | 1.0 x 10" kg/m? | 1.0 x 10~ kg/m® | 1.0kg/m? | 1.0 x 10> kg/m?

The Young’s modulus of the structure is £ = 5.0 x 10° N/m? and the Poisson ratio v = 0.4. The
. The Alya

dynamic viscosity of the fluid is y = 1.0kg/(ms) and the timestep size 6t = 1 x 10~*s
solvers Nastin and Solidz are used for all fields. The fluid domain is discretized with 4702 elements,

whereas each structure domain consists of 140 elements. All coupling interfaces match. At the inflow, a
constant parabolic velocity profile with mean 50.0m/s is prescribed. Figure 52 shows physical results.

—> F|
—> —>
20m| |— —>
g s1ﬂ s2ﬂ ssﬂ s4ﬂ g
4+ —> <+—> 4> < >
1.0m 0.5m 3.0m

2.0m

Figure 51: F4S multi-flap testcase: geometry sketch.

As FSI convergence measure, all sub-vectors are checked with a relative criterion of 10~4. A QR1 filter
with € = 1076 is applied. All combination schemes fail to converge for this testcase as they cannot
handle the global interaction complexity. The overall multi-coupling, however, shows again a very
robust behavior. The M-AA(20) scheme needs on average 6.44 iterations to converge during the first

200 timesteps, whereas the M-GB(0) schemes requires 8.34 iterations.

AVavarg
PR

avs AN
DAADER]
<,
A
Ravavfi
AVAVAY)
KL
DAADRS
AALRE

‘%VA
N

T
a
Vs

&
SR
PORREH
=
o
Pava
£
PR
i)
S
{ X
prAYS)
PRRK

5

KL

Velocity Magnitude
120

40 80
Hn}mmnu}mmnu“
0 150

Figure 52: Multi-flap F4S testcase: velocity vectors and structure deformation at ¢ = 0.03 s.

Conclusion I want to stress the most important results again. A combination of bi-coupling schemes
is a reasonable way to go if a strong interaction is combined with several weak interactions. Combing
then an implicit scheme with several explicit ones is the right choice. If more than one strong interaction
is present, combination schemes can still work, but are far from being robust. In such case, an overall
multi-coupling approaches tends to be a very good choice. Both variants, either with an Anderson

acceleration or with a generalized Broyden solver show good and robust results.

68

-

Summary of Chapter 3

State-of-the-art sequential coupling schemes, such as the IQN-ILS scheme, are a com-
bination of a sequential block-GauB-Seidel-like fixed-point equation (GS) and sophis-
ticated fixed-point equation solvers.

I introduce two fixed-point equations that allow for a simultaneous execution of the
fluid and the structure solver: a block-Jacobi one (J) and one referred to as Steklov-
Poincaré (SP).

Sophisticated fixed-point equation solvers can be interpreted as multi-secant methods:
they approximate the Jacobian of the residual system by a multi-secant equation.

To get to a unique approximation, I consider two possibilities: The Anderson acceler-
ation (AA) minimizes the norm of the Jacobian itself while the generalized Broyden
method (GB) minimizes the distance to the approximation from the last timestep.

AA allows for a matrix-free implementation, but can reuse information from previous
timesteps only in an explicit fashion, resulting in a tuning parameter. GB requires
the storage of the complete Jacobian, but reuses previous information implicitly.

Both methods come in two flavors: type I directly approximates the Jacobian, while
type II approximates the inverse Jacobian.

I compare all combinations of fixed-point equations and multi-secant methods by
means of a simple 1D FSI example.

(J) and (SP) as well as AA and GB show similar performance. Type II methods are
more robust than type I methods.

I conclude to implement (J) besides (GS) and both multi-secant methods in type II
in preCICE.

The implementation clearly separates the fixed-point equation solvers (post-processing
schemes in preCICE nomenclature) from the fixed-point equations. Thereby, arbitrary
combinations are possible. I refer to such combinations also as quasi-Newton schemes.

A filtering of the column space of AA and GB improves the methods’ robustness and
efficiency.

(J) requires a weighting of its sub-vectors to handle possibly different scales. A weight-
ing by the sum of the squares of the residuals from the current timesteps (residual-sum
weighting) appears to be an efficient and robust choice.

I further compare all in preCICE implemented schemes by means of three FSI bench-
mark scenarios. In general, (J) shows indeed a similar convergence speed as (GS). AA
and GB also show a similar performance, while GB needs no explicit reuse of infor-
mation from previous timesteps. All quasi-Newton schemes significantly outperform
the classical Aitken underrelexation.

(J) can be generalized to include more than two solvers. Such a multi-coupling scheme
allows for a robust coupling of scenarios that involve more than one strong interaction.
A simple composition of classical schemes fails for such cases.

69

4 Intra-Solver Parallelism: preCICE on Distributed Data

In the introduction of this thesis, Section 1.3.2, I motivate why porting preCICE to distributed data
and avoiding, thereby, any central instance is a key ingredient to allow for massively parallel multi-
physics simulations. This chapter explains the concepts, the implementation and the performance of
the parallelization of preCICE. Chapter 2 is a prerequisite for this chapter. Please recall Figure 8 on
page 11, which visualizes the new distributed layout of preCICE. Porting preCICE to this layout, comes
with several challenges. First, a steering concept needs to be realized and communicated surface meshes
need to be re-partitioned on the receiver side according to the receiver’s partitioning and the used
interpolation methods. Section 4.1 details these two topics. Then, the three main feature groups need
to be ported to distributed data. Section 4.2, Section 4.3, and Section 4.4 explain the realization of the
communication, the interpolation methods, and the coupling schemes on distributed data. Section 4.1 is
a prerequisite for all three Sections 4.2 to 4.4. These three sections, however, can be read independently
of each other.

I favor the expression porting to distributed data over the term parallelization, since the main goal is
not a classical speed-up, but rather rendering a central instance unnecessary by a fully parallel peer-to-
peer concept. I, therefore, do in general not consider every single performance delta. More important
is that preCICE does not degenerate the overall scalability of a coupled simulation. preCICE solely
operates on surface data. On the one hand, this limits the scalability of the coupling operations itself,
since the compute effort is limited and often dominated by communication. On the other hand, this
makes the coupling operations cheap and, thus, easy to hide behind compute-intensive single-physics
solvers. I motivate in Section 1.3.2 that optimizing the work per timestep, meaning the time spent in
advance, is of high importance, while the initialization effort, the time spent in initialize, should
remain tolerable. For the latter, Section 1.3.2 defines tolerable as roughly 10 seconds. I follow these two
guidelines throughout this chapter.

The sections of this chapter all share a similar outline. I always start with a simple algorithmic de-
scription, which is followed by a more technical description, focusing on the implementation and on the
parallelization. Finally, I discuss scalability for each section, and thus, for each feature group, separately.
For the latter, I use the Artificial Solver Testing Environment (ASTE), which I explain after this brief
introduction. After the separate discussion of all feature groups, Section 4.5 shows the scalability of
two complete simulations to study the interplay of all parts of preCICE with each other as well as the
influence of preCICE on the overall performance.

As preCICE is a joint software project, also the parallelization is a common effort. The parallel commu-
nication was developed as part of the master thesis of Alexander Shukaev [181]. On the parallelization
of the radial basis function mappings, I worked together with Florian Lindner. The parallelization of
the quasi-Newton coupling schemes was a common effort with Klaudius Scheufele. Parts of the paral-
lelization are already published in [43]. The explanations of this chapter also follow this publication to
some extent. The first physical scaling experiment, the Ateles Cube, is joint work with Verena Krupp.
We published preliminary results for this case in [41]. The second physical scaling experiment, the
PfS-1a benchmark [58] is a joint effort with Juan-Carlos Cajas and Herbert Owen. Guillaume de Nayer
provided us with the original meshes of the benchmark, which I want to acknowledge thankfully.

Like already stated above, the introduction to this chapters ends with a brief presentation of ASTE.
Furthermore, I introduce the testing hardware. The fast reader may directly jump to Section 4.1 as
theses two paragraphs only introduce obvious notation besides technical details.

Artificial Solver Testing Environment ASTE is the simplest way to test parallelized implemen-
tations in preCICE. It is nothing more than an artificial preCICE proxy, which only defines an interface
mesh, writes data to it and reads data from it. ASTE itself is open source® to enable the reader to redo
the scaling experiments. In principle, ASTE operates on the preCICE API level. I use it, however, only
to test the parallel performance on a package level. Like stated above, in Section 4.5, I use real physical
solvers to test the scalability also on the API level. ASTE defines a 2D equidistant Cartesian mesh with
 vertices along each coordinate axis. This sums up to n = #2 vertices. The side length in each direction
is 1. Please note that this mesh corresponds to an interface mesh for an actual physical simulation,

4Onttps://github. com/precice/aste

70

hence a lower-dimensional manifold. The consequences of this must be considered when interpreting
scalability results. For the sake of simplicity, the mesh coordinates are 2D, however, not 3D. The surface
mesh is, thus, a plane instead of a real manifold. To decompose the mesh equally among p cores, the
mesh is linearized and ordered linewise, like depicted in Figure 53. p refers to the number of cores per
participant throughout this thesis. To test preCICE, always two ASTE participants are executed. All
implementations described in this chapter, however, are fully functional for scenarios involving more
than two participants, compare, for example, Section 5.5. I refer to the two participants of the ASTE
tests by A and B. Whereever necessary, I add an index A or B to any variables to distinguish between
both.

Figure 53: Exemplary mesh decomposition of ASTE. Vertices are distributed along a linewise lineariza-
tion among three processors. Arrows indicate the linewise ordering. 72 = 7. A similar figure was already
used in [43].

Hardware and Time Measurement All performance tests of this thesis were executed on Super-
MUC, hosted at the Leibniz Supercomputing Center in Garching. All ASTE tests and the Pfs-1a scaling
experiment in Section 4.5.2 use phase 2 of SuperMUC, holding Haswell Xeon processors of type E5-2697
v3. Such nodes consist of 28 cores and are interconnected with a FDR14 Infiniband. The Ateles Cube
scaling experiment in Section 4.5.1 uses the thin nodes partition of phase 1 of SuperMUC, holding
Sandy Bridge-EP Xeon E5-2680 8C processors, with 16 cores per node, interconnected via a FDR10
Infiniband*!. If not stated differently, all runs always use full nodes. For the time measurement, I use
a built-in event framework in preCICE. A single event has a time resolution of 1ms, which is sufficient
considering the high costs of a typical single-physics timestep. Also, if not stated differently, I always
perform five runtime experiments, from which I drop the minimum and the maximum. Afterwards, the
three remaining experiments are averaged. Furthermore, I always run ten timesteps with five coupling
iterations each. Thus, the work per advance is further averaged over 50 calls. I only list the variance of
single events if it is significant. Finally, I apply an artificial synchronization strategy to avoid diluting
the measurements of single events by a non-perfect load-balancing of preceding events. Therefore, I
synchronize all ranks of a single participant before and after each intra-participant event and the two
master ranks before each inter-participant event.

41For more technical details, see https://www.lrz.de/services/compute/supermuc/systemdescription/.

71

4.1 Steering Concept and Re-Partitioning of Meshes

The old server-based concept of preCICE [99] distinguishes between the client mode, the server mode,
and the coupling mode. A serial participant runs in coupling mode. For a parallel participant, every
rank runs in client mode, while a server needs to be started, which then runs in server mode and
coupling mode. The new fully-parallel concept of preCICE is realized via two further modes: the
master mode and the slave mode. For every participant, rank 0 runs in master mode, whereas all
other ranks run in slave mode. This choice is rather arbitrary and can be adapted easily. Furthermore,
it is hidden from the user, meaning that from the user’s perspective each rank appears similar. This
includes, for example, the fact that the master can also hold a part of the mesh. During the configu-
ration of preCICE, the master-slave communication is established in a generic way. Any existing 1:N
communication can be configured, completely independent from the solvers communication. Compare
Section 2.1.2 or Section 4.2 for more information on communication in preCICE. MPI communication
is the most efficient choice, since optimized routines for reduction or broadcasts are provided. How-
ever, also a TCP/IP communication can be used to avoid any MPI dependency for binary distributed
closed-source solvers.

To briefly recapitulate Chapter 2: the two main steering methods of preCICE are initialize and
advance. initialize needs to be called once at the beginning of a simulation to, among other things,
communicate coupling meshes and set up the communication. After every timestep, the user calls
advance to apply interpolation methods and equation coupling schemes and to communicate data.
Steering between the master rank and the slave ranks can be reduced to a minimal effort during advance.
For explicit coupling, no sychronization at all is needed. For implicit coupling, convergence measures
need to be computed. This reduces to a simple reduction and broadcast of floating point values. Of
course, sophisticated interpolation schemes, such as radial basis function mappings, or equation coupling
with quasi-Newton schemes need further synchronization during advance. Sections 4.3.2 and 4.4.2 give
more details. Furthermore, as depicted in Figure 8, coupling meshes and associated data fields are stored
locally. Reading and writing to and from the mesh does not need any communication, contrary to the
old server-based concept. To sum up, the new fully-parallel concept only needs minimal communication
between the ranks of a single participant during one timestep. This comes however at the cost of
significant work during initialize. I motivated in Section 1.3.2 that this effort does not need to be
highly efficient, but needs to remain tolerable to allow for massively parallel simulations. This section
details a key initialization step: the re-partitioning of communicated coupling meshes. Therefore, Section
4.1.1 gives an algorithmic description while Section 4.1.2 focuses on the implementation in preCICE.
Afterwards, Section 4.1.3 gives performance results.

4.1.1 Algorithmic Description

Let us consider that each participant defines one coupling mesh. As mentioned just above, coupling
meshes are defined locally, hence

pa—1 pp—1
Uri=ra, |JTIp=Ts,
i=0 =0

where T, T'%; denote the local components and I'4,T'g the global meshes. A mesh is nothing else but
a set of vertices. Optionally, a mesh can also hold connectivity information such as edges or triangles.
Such connectivity information is, however, only needed for rare cases in preCICE as, for example, the
nearest projection mapping. For the sake of simplicity, I neglect such cases here. The local mesh parts
are not necessarily disjoint. Depending on the domain decomposition of the solver, the user might define
the same vertex on multiple ranks. preCICE handles such cases by treating identical vertices as different
vertices with the same coordinates. The users needs to be aware of the consequences. A nearest neighbor
mapping, for example, then finds an arbitrary representative of those duplicated vertices. While this
might be a valid approach for certain cases, it is recommended, in general, to define duplicated vertices
only once. For a standard solver, this is typically no restriction.

In order to map values from I'4 to I'g, one of the two meshes needs to be sent to the other participant.
Without loss of generality, I'p is sent from B to A and re-partitioned there. I denote the re-partitioned
local mesh by I';. Then, the user can define a mapping between both meshes at participant A (compare

72

I: Gather Mesh I'p | I'p
II: Communicate Mesh g%%%%% :
III: Broadcast Mesh A\Y pWavay Al 11
IV: Filter Mesh e o]
V: Feedback :
Tl I I L]
A B ;
IV : A !
--------- > — “— 111 .
| |
Z 3 —
Ly Jo
FZ 5 FZB 5 !

Figure 54: Re-partitioning of meshes: broadcast/filter variant. Participants A and B run on three and
four processors, respectively. Each participant defines local mesh contributions, depicted in black for A,
on the left, and in blue for B, on the right. I'p is sent from B to A to allow for a mapping between I'g
and I'4 at participant A. Therefore, I'p = U?_ 'y, is gathered at the master of B (step I) and then sent
to the master of A (step II). Afterwards, I'p is broadcast on A and filtered by each slave locally (step
IV), resulting in a re-partition I'p = U?:oflé» depicted in green. Finally, information on the filtering is
fed back to the master of A (step V). For the sake of simplicity, both masters do not hold an own mesh
partition in this case. Also, slaves could hold empty partitions. Furthermore, optional connectivity
information is visualized in this sketch.

Section 4.3) and data communication between both participants via I' g (compare Section 4.2). I consider
two variants for re-partitioning: broadcast/filter and pre-filter/post-filter. Figure 55 lists both variants,
whereas Figure 54 visualizes the broadcast/filter approach. By filter, I denote the concept of removing
vertices from the global mesh that have no influence on a local partition. In step IV, for example,
both variants apply a mapping-dependent filter. For projection-based mappings, this is realized by the
computation of a preliminary mapping and the withdrawal of all vertices that do not influence the
mapping. This filter can be preceded by a further bounding box filter to speed up the mapping. For
a radial-basis function based interpolation, a filtering step according to the support radius of the basis
function is applied. Section 4.3.2 gives more details.

Discussion The pre-filter/post-filter variant features a serial part in the pre-filter step: the master of
A treats one slave after the other. Therefore, the complexity raises linearly with ng and linearly with p .
The total communicated data is O(np). If the master-slave communication is implemented via MPI, the
broadcast/filter variant can rely on sophisticated MPI broadcast routines, which cost O(npglog(pa)). If
the TCP/IP implementation is used, however, such optimized algorithms are currently not supported,
which leads the complexity degenerate to O(ngpa). The filter step for the broadcast/filter variant,
rises linearly with np, whereas the post-filter step for the pre-filter/post-filter approach only needs to
filter a local mesh, which reduces the computational effort. To conclude, the broadcast/filter variant is
in general favorable, especially for a higher number of cores. The pre-filter/post-filter might, however,
be preferable for a huge mesh I'g and an only moderate number of cores or for a case where an MPI
communication is technically not possible.

73

broadcast /filter | pre-filter /post-filter

I Mp gathers I'p. I Mp gathers I'p.

11 Mp sends I'g from B to A. 11 Mp sends I'g from B to A.

IITa M, broadcasts I'p to each S% (broad- | IIIb Every S sends a bounding box around
cast). ng to M 4. M4 filters I' g accordingly and

sends the filtered mesh to S (pre-filter).
IVa Every S filters the mesh according to the | IVb Every S filters the mesh again according

defined mappings (filter). to the defined mappings (post-filter).
\% M 4 gathers distribution information from | V M 4 gathers distribution information from
all S, all S,

Figure 55: Mesh re-partitioning strategies. The two strategies only differ in step III and IV. S% denotes
a single slave rank from participant A, M4, Mg the master ranks of participants A and B, respectively.

4.1.2 Implementation

The mesh-repartitioning is implemented in the geometry package. Please recall the overview in Table
1 on page 23 and Figure 20 on page 22. Figure 56 briefly sketches the software architecture of the
geometry package, including the newly added components. In preCICE nomenclature, a geometry is
a layer around a mesh, which indicates how the mesh is created. For a SolverGeometry, the mesh is
created by the associated participant, hence by the user. For a CommunicatedGeometry, the mesh is
sent or received by the associated participant. For an ImportedGeometry, the mesh is read from a file.
For more details, please refer to [99]. The newly developed mesh-repartitioning strategies need, hence,
be solely applied for received CommunicatedGeometries.

Compared to the original preCICE version, the order in which the geometries create the meshes needs
to be adapted if more than one coupling mesh is communicated. Both participants, A and B, need to
communicate all such meshes in the same order to avoid deadlocks, since the asynchronous communica-
tion still becomes synchronous for large meshes. Afterwards, however, a re-ordering of the geometries
for the re-partitioning is necessary. Since the mesh re-partitioning strategies depend on the mappings
associated with the received mesh, all SolverGeometries need to create their meshes before the received
meshes can be re-partitioned.

Geometry
SolverGeometry CommunicatedGeometry ImportedGeometry
geometry
1 geometry: :impl
Decomposition=0
PreFilterPostFilterDecomposition BroadcastFilterDecomposition

Figure 56: Software architecture of the geometry package. The arrow notation follows the UML stan-
dard (empty triangles: inheritence, filled diamonds: containement). Original components [99] are
marked in blue, whereas new components are marked in orange. Mesh re-partitioning is referred to
as Decomposition in preCICE nomenclature.

74

4.1.3 Scaling Results

The scalability tests encompass three strong scaling series for n = 4482, n = 8962, and n = 17922
The number of cores per participant is doubled four times from p = 112 to p = 1792. I use the MPI
implementation for the intra-participant communication and TCP/IP sockets for the communication
between both participants. Section 4.2 gives more information on the communication. Between both
meshes, nearest-neighbor mappings are used. The goal of the scalability study of the mesh-repartitioning
is not to resolve and analyze every memory hierarchy feature, but rather to get an overall impression
on this initialization step. This means up to which mesh size do these non-optimized re-partitioning
strategies remain tolerable and how are they influenced by the number or cores. Figures 57, 58, 59
visualize the results for the series, respectively. I compare both strategies, broadcast/filter and pre-
filter/post-filter. Since step I and II are identical for both approaches, they are listed only once. Whereas
step IIT and IV differ essentially, step V is identical for both strategies. Still, step V is again listed twice,
as it operates on different data.

6 R

10 ' I =112 ' ' ' ' RHRHRIE

I p=224 :

10° [p=448 2

[p=896 E

[1p=1792]

4 — i

10 E

g]

=103 E

(0] 3

E .

E]

102 -
100

I lla IVa Va 1o IVb Vb

Figure 57: Mesh re-partition: strong scaling results for ASTE with n = 4482 ~ 2.0 - 10° vertices. The
broadcast/filter approach (a) is compared to the pre-filter/post-filter approach (b).

6 5

10 ' I =112 ' ' ' ' .

I p=224]

10° [p=448 -

[Cp=896 u E

[1p=1792 I

4 -

10 E

7] :

=103 M M 3

[0} — 3

S 3

£]

102 3

10! 3
100

I la IVa Va b Vb Vb

Figure 58: Mesh re-partition: strong scaling results for ASTE with n = 8962 ~ 8.0 - 10> vertices. The
broadcast /filter approach (a) is compared to the pre-filter/post-filter approach (b).

In the following, I first analyze every single step separately, focusing on the influence of n and p. After-

wards, I comment on the relation between the steps and on the overall comparison of both approaches.
In step I, the mesh is gathered at the master rank of B. The total amount of communicated data is not

[0)

I =112 ' : ' ' '

I p=224 _]

10° [p=448 3

[C1p=896 3

4 [p=1792]

10 3

7 g]] _] i

E 53 i

o 10 -

E]

E]

102 E

10! E
10°

[llla IVa Va b IVb Vb

Figure 59: Mesh re-partition: strong scaling results for ASTE with n = 17922 ~ 3.2 - 10° vertices. The
broadcast/filter approach (a) is compared to the pre-filter/post-filter approach (b).

dependent on p, only the decomposition changes. For n = 4482 and n = 8962, there is a pike visible,
which stems from the overlapping of receive operations and the actual mesh creation, meaning reserva-
tion of heap memory at the master rank. If the chunks per slave rank are sufficiently large, the overhead
for accessing memory is minimal, such that the pike disappears. On the other hand, for sufficiently
small chunks, there is a memory hierarchy benefit visible, which also effects other mesh re-partitioning
steps. Except this pike, the runtime is rather independent of p and rises linearly with n. Please note
that the overlapping of receiving mesh data and the mesh creation leaves room for improvement. Also
the usage of MPI_Gather should result in a speed-up. Still, step I is, in general, a cheap operation,
such that further analysis and optimization is not necessary at the moment. Step II simply sends the
complete mesh from the master rank of B to the master rank of A. This operation does not depend on
p and rises, as expected, linearly with n. The same overlapping routine as for step I is used, hence the
same non-optimal performance. However, again, the overall costs are tolerable.

For the broadcast/filter strategy, step IIla broadcasts the complete mesh from the master rank of A to
all ranks of A. While the theoretical logarithmic dependence on p is hardly visible, the costs increase
linearly with n. Step IVa filters the complete mesh locally on every rank, first via a bounding box filter,
then via the pre-liminary mappings. While the first filter scales linearly with n, the second one scales
quadratically with n/p. For n = 4482, the first part dominates, hence the rather constant runtime in
p. For n = 8962 and n = 17922, the second part dominates for a smaller p, hence a quadratic speed-up
with p, while the first one dominates for a higher p. This, of course, also influences the dependence on
n. If the first part dominates, a linear dependence on n is visible. However, if the second part dominates
the overall costs for the filtering step, i.e. large n and small p (e.g. n = 17922, p = 112), IVa increase
quadratically with n, which can, thus, be very costly. Step Va feeds the re-partition information back
to the master rank of A. This marks a serial step at the master rank, though the overall amount of
communicated data remains constant. For n = 8962, there is a drop of the runtime visible from p = 448
to p = 896, due to the send operation of the slave ranks, which becomes asynchronous for smaller chunk
sizes. Except this drop, the master’s overhead per rank lets the runtime increase with p.

For the pre-filter/post-filter strategy, step IIIb pre-filters and communicates the mesh for every rank
individually. This leads to a serial step which increases linearly with p. Afterwards, step IVa post-
filters locally via the preliminary mappings. As this then only features local meshes, the scalability is
quadratic in p, overlaid with a cheap serial overhead. Finally, step Vb shows a similar performance as
Va, though Vb should in theory be slightly more expensive as the master needs to merge the feedback
of both filtering steps. However, as communication dominates here and the timings are close to the
measurement error, this is hardly visible.

Conclusions In general, the broadcast/filter strategy outperforms the pre-filter/post-filter strategy.
The combination of a very large n and a rather small p marks one exception. The other exception

76

is a memory critical setup: a mesh of size n = 35842, for example, does not fit into the memory for
broadcast/filter as every rank on the master’s compute node needs to store the complete mesh. The
pre-filter/post-filter strategy postpones this limitation. Of course, an alternative is to pin the master
rank to a separate compute node, but this deteriorates the usability. For the interested reader: the
used Haswell nodes have a memory of 64GB while the flexibility-oriented implementation in preCICE
roughly uses 200B per vertex. The most interesting physical scenarios feature typically a large n and
a large p. Theses cases show a nearly uniform distribution of the runtime over all five steps of the
broadcast/filter strategy. This means that the optimization of a single step has no crucial influence on
the overall runtime. At the same time, step IIla, for example, is already rather optimal. The only real
performance boost could be realized via a multi-level re-partitioning scheme. This is a necessary step
for an exa-scale ready preCICE, but not necessary for the current applications. Please recall, for ASTE,
n and p are surface dimensions, not volume dimensions. Hence, n = 17922 and p = 1792 mark a huge
testcase, for which a mesh re-partitioning time under 10s is fully tolerable. Section 4.5 compares these
timings to realistic single-physics initialization times.

After the description of the mesh re-partitioning in this section, participant A holds decompositions of
both meshes, T'4 (user-defined) and I'p (re-partitioned), while participant B still holds its user-defined
decomposition. Just next, Section 4.2 studies how data is communicated between both participants on
I'p. Afterwards, Section 4.3 describes the realization of interpolation methods between both meshes at
participant A and Section 4.4 the coupling schemes on ' at participant B.

4.2 Communication on Distributed Data

An important ingredient for the parallel peer-to-peer concept is the local communication. It is chal-
lenging, since both participants possess, in general, different domain decompositions, which then also
entail different decompositions of the coupling interface. Thus, for every rank, we need to identify
which part of the coupling mesh it has to communicate to whom. Furthermore, a technical realization
of these communication channels is necessary. This is also non-standard, since both participants are
typically started in different MPT_COM_WORLDS. From a software engineering point of view, a reuse of the
already existing 1:N communication in preCICE is desirable. It has proven to be very robust and it also
ensures backward compatibility. The latter means, that the old server-based parallelization concept is
still fully functional, which allows to port the various features one by one to the distributed version.
This guarantees a smooth transition for the users and enables early feedback on new implementations
for the developers.

The main requirement for the new local M:N communication is robustness. Deadlocks should never
appear independent of the underlying implementations. Both kernel implementations, MPI and TCP /1P,
should still be supported, the technical level should, however, be well-separated from the algorithmic
level. Finally, the implementation should be fully local, hence ready for exa-scale, during each timestep.
The initialization, however, can still feature global operations as long as they remain tolerable, compare
the discussion in Section 1.3.2. Section 4.2.1 gives an algorithmic and technical description of the M:N
communication. Afterwards, Section 4.2.2 briefly summarizes the implementation. Finally, Section 4.2.3
gives detailed performance results for the ASTE testcase.

4.2.1 Algorithmic and Technical Description

The starting point for the algorithmic consideration are two domain decompositions of the same mesh,
one at participant A and one at participant B. To remain with the notation from the last section, these

are
pp—1 pa—1

I'p= UOF = UOFZ‘B.
1= 1=

FEach domain decomposition can stem either from a local definition, such as for participant B, or from a
re-partitioning, such as for participant A. It is sufficient to only consider vertices, since all data values
are solely stored on them. Theses decompositions are now used to identify which rank of A has to
communicate what to which rank of B and vice versa. The algorithmic initialization is described further
down. I first focus on the technical realization.

7

0 e > e 0
\01

1 e ;02
e 3

2 e > e 4

Figure 60: Example of an M:N communication between participant A (on three processors) and partic-
ipant B (on five processors). The communication layout consists of three 1:N communications, distin-
guished by different colors. A similar figure is used in [43].

Technical Initialization Without loss of generality, A and B play the role of the acceptor and the
requestor of the communication, respectively. This choice is completely independent of the role from
the mesh re-partitioning in the last section. The roles are consistent with the classical nomenclature
of, for example, MPI ports: the acceptor publishes connection information while the requestor pulls
for such information. Technically, the M:N communication between A and B builds upon multiple
1:N communications, which mark the kernel of the communication. The 1:N kernel itself is either
implemented via TCP/IP or via MPI-2.0 ports. I mention this already in Section 2.1.2. Also, [99] and
[181] give detailed technical information. The acceptor of a kernel communication runs on one thread
in a server-like way, while the requestor runs on N threads in a client-like way. To publish connection
information of a single kernel communication, the acceptor writes to a hidden file. The requestor
threads all read the connection file and establish the connection. Afterwards, the acceptor removes
the file again. If multiple such kernel communications need to exchange connection information at the
same time, creating a subfolder per connection speeds-up the file access significantly. Still, publishing
connection information via the file system is not optimal. Section 4.2.3 gives detailed information on the
performance. Figure 60 sketches exemplarily, how the global M:N communication is build upon M local
1:N communications. Every rank of A accepts one 1:N communication as a server, where N refers to the
amount of ranks of B that it has to communicate with. This avoids deadlocks at initialization in a rather
elegant way. Consider, for example, rank 1 of participant B in Figure 60: three 1:N communications
need to be requested. This happens sequentially and in an arbitrary order. Since every rank of A
only has to publish one connection information, all information is always available and no deadlock can
occur. It is easy to see, that a 1:1 kernel communication would not allow for such a simple solution.

Technical Communication Please consider again Figure 60: for the actual communication, different
messages need to be sent along every arrow, so to speak in a 1:1 way. Since the order of the channels
at each rank is arbitrary, another measure is needed to further avoid deadlocks then. Asynchronous
communication for all kernel implementations is a remedy. Possible alternatives are to start each send
and receive operation in a single thread, possibly via OpenMP. This, however, has not proven to be
reliable over a broad range of MPI implementations due to inconsistencies of the thread-safety guaran-
tees [181]. Another idea would be a pulling mechanism, where the receiver opens one single any-tag
communication channel for everybody and every message is tagged by the sender. This appears, how-
ever, rather tedious. We*? decided to choose the asynchronous solution. It has the only drawback that
additional developments are necessary since the original kernel communication in preCICE is blocking
[99]. Besides the additional work, the solution is reliable, elegant and efficient [181].

Algorithmic Initialization I now review the initialization from an algorithmic perspective. Both
decompositions, which are constructed either in the gather step I or in the feedback step V of the

42 Alexander Shukaev an myself

78

(I)B(O) = {174}
(I)A(O) = {0, 1,374,7} (I)B(l) = {072,3,8}
Ba(l) = {2.5.6) | Du(2) = {5.6}
q)A(2) = {63879} (I)B(3) = {}

dp(4) ={1,7,8,9}
w9 (0) = {1,3} 0% (0) = {0,1}
w9 (1) = {0,2} U(0) ={0,2}
U (4) ={1,4} Ui(1) = {1}
(1) = {0} i(2) = {3}
vh(2) ={1,2} 3(1) ={0,1}
wZ (1) = {1} U%(2) = {1}
v%(2) = {0} U3(0) ={0,1}
% (4) = {1,2} U3(2) =1{2,3}

Figure 61: Example for the transformation from vertex distributions ®4 and ®p to local communica-
tion maps W54, pa = 0,...,2 and ¥, pp = 0,...,4. Left: sketch of communication channels and
global vertex indices. Right: corresponding vertex distributions and local communication maps. Empty
communication maps are suppressed for the sake of readability.

mesh-repartitioning strategies, compare Figure 55, are each stored as a so-called vertex distribution
®:{0,...,p—1} = P({1,...,n}),

where P denotes the power set. All vertices are identified by an integer ID. The IDs for a single
rank ®(p) are stored in a vector, ordered naturally. In general, the decomposition for re-partitioned
meshes is overlapping, compare Figure 54. At the start of the initialization, both master ranks only
hold the vertex distribution of their decomposition. Thus, as a first step, the two vertex distributions
are exchanged and both vertex distributions are broadcast to every rank afterwards. The broadcast
is to some extent redundant as local information from the mesh re-partitioning could be reused. Still,
from a software engineering point of view, I choose to fully decouple the M:N communication from the
mesh-repartitioning. Thereby, both steps can be implemented and tested separately. Substituting any
initialization step by an optimized variant at a later point in time should be easy. Now, every rank can
locally extract which vertices it has communicate to whom. This information is stored in a so-called
local communication map in A

O {0,...,pp —1} = P({1,...,n}) VH=0,...,pa—1,

and similarly in B. Here, \IIZA (pB) are the local vertex indices at A at rank p4 that have to communicated
to rank pp at B. \I/’ZA can be identified in a straight-forward way by iterating over ® 4(p) in an outer
loop and over ®5(0),...,®5(ps — 1) in an inner loop. A complexity of O(n?/p) results if ®4(p) holds
O(n/p) vertices. As this concept is not overly sophisticated and can be easily understood from the
example in Figure 61, the fast reader might directly go to the next section.

4.2.2 Implementation

Figure 62 sketches the software architecture of the com package and the newly developed m2n package.
For a general overview of all packages, please recall Table 1 and Figure 20. The main feature of the
applied architecture is the clear separation of the technical implementation of the 1:N kernel commu-
nications in the com package from the logical layer in the m2n package. Thus, arbitrary combinations
of both are possible at runtime. The M2N class manages the overall communication between two par-
ticipants. For every coupling mesh that is used for communication, a DistributedCommunication is
initiated. The PointToPointCommunication follows the description of the last section. In addition, a
GatherScatterCommunication is implemented, which re-directs all communication through both mas-
ter ranks. This variant is merely intended to validate the PointToPointCommunication during the
development process. Both implementations of DistributedCommunication are created by associated
factories to facilitate the configuration. Similarly, in the com package, further factories are added be-
cause the amount of kernel communications is unknown at configuration time. MPICommunication

79

is an abstraction layer for both supported MPI variants: MPIDirectCommunication, which enables a
start-up of both participants in the same MPI communicator, and MPIPortsCommunication, which en-
ables the start-up in separated MPI communicators. SocketCommunication implements the TCP /TP
communication.

M2N

T

DistributedComFactory=0 ~SEE2Y%.p | DistributedCommunication=0
PointToPointComFac. GatherScatterComFac. PointToPointCom. GatherScatterCom.

m2n
com
CommunicationFactory=0 | ... creates Communication=0
MPIPortsComFac. SocketComFac. MPICommunication=0 SocketCommunication
MPIDirectCommunication=0 MPIPortsCommunication

Figure 62: Software architecture of the m2n package. The arrow notation follows the UML standard
(empty triangles: inheritence, filled diamonds: containement). Distributed communication logic in the
m2n package is well separated from technical 1:N communication details in the com package. This allows
for modular combinations of both components. Original components [99] are marked in blue, whereas
new components are marked in orange.

4.2.3 Scaling Results

I, first, have a look at the initialization timings, before looking at the actual communication perfor-
mance. If not stated differently, the master-slave communication is implemented via MPI, while the
M:N communication uses the TCP/IP implementation. Later, I also discuss performance differences
between both.

Building the Communication Maps To setup the M:N communication, the vertex distributions
® of both participants need to be transformed into the local communication maps ¥, compare Section
4.2.1. Figure 63 visualizes a strong scaling of the necessary steps for n = 4482, for n = 8962 and for
n = 17922, The number of cores per participant is doubled four times from p = 112 to p = 1792.
I solely show timings for the acceptor A. The requestor B features almost identical operations and
shows no significant performance difference. The first building block is the communication of both
vector distributions (CVD) between both master ranks. The runtime increases slightly with p, since
the memory layout gets less and less compact. At the same time, the increase with n is only moderate,
probably due to the same effect. Next, both vector distributions are broadcast (BVD) among all
ranks, which shows a similar behavior as the communication. Please note that both steps are always
below 0.1s and, thus, significantly cheaper than similar operations for the mesh re-partitioning, compare
Section 4.1.3. This is due to the lower memory requirement of the vertex distributions compared to the

80

10°

104

Time [ms]

101

C_p=1792

CvD

BVD

n = 4482

BCM

CD

CVvD

BVD BCM CD CVvD BvD BCM

n = 8962 n = 17922

CD

Figure 63: Building up communication maps: strong scalability results for three different mesh sizes.
CVD: communicate vertex distributions &4 and ®p between the master ranks of both participants,
BVD: broadcast vertex distributions ® 4 and &g from the master rank to all slave ranks, BCM: build
(local) communication map %", CD: create directories. All timings are measured on the acceptor
side A. The master-slave communication uses the MPI implementation whereas the inter participant
communication is implemented by TCP /IP sockets. Please note that the CD steps includes a file system
access, which induces fluctuations in the measurements.

associated mesh. Therefore, both steps are always almost negligible. In particular, not using the local
re-partition information, but broadcasting the vertex distribution again, is fully justifiable. The third
step is a pure compute step: the building of the local communication maps (BCM). As noted above, this
step has a complexity of O(n?/p), which is clearly visible in the results. The quadratic dependence on
n can be problematic for huge meshes, but it is still below 5s for n = 17922 and p = 1792, for example.

Time [ms]

T T T T T
(o]
104 F 8 .
(o]]
o |
o -
o -§'
103 E
I 8]
l—
= = o
— —
10 2 1 1 1 1 1
112 224 448 896 1792

Number of Processors

Figure 64: Communication establishment for TCP/IP. Connection information is published via the
filesystem, which leads to an uncertain total establishment time. For each core count p, 30 measurements
are listed. The orange line marks the median, while the blue box limits the second and third quartile.
The whiskers enclose 1.5 times the interquartile range. Further outliers are marked explicitely. Please
note the logarithmic scale.

81

Establishment of the Kernel Communications Figure 63 also lists the creation of directories
(CD). This is a pre-step to the actual establishing of the 1:N communication channels and speeds-up
the file access later. This step is independent of n and shows, despite the file system access, a relatively
low variance. However, the runtime grows faster than linearly in p, though sequentially created by
the acceptor’s master rank. For p = 896, the runtime is still below 10s, but for a higher number of
cores, this step becomes problematic. The establishment of the TCP/IP kernel communication itself
shows a high runtime variance, since it features writing to and reading from the filesystem. Figure
64 shows a box plot with 30 measurements per core count p. The median rises as expected with
p. Still, most measurements stay below 1s and are, thus, tolerable. The amount and runtime of
outliers increases, however, significantly with p. Please note that Figure 64 uses a logarithmic scale.
If the MPI implementation is used as underlying kernel communication, a completely different picture
shows up. First, the Intel MPI implementation does not fully follow the standard3: if more than 8
compute nodes are used, this means more than 8 - 28 = 224 connections, the establishment of port
connections between separate static MPI_COM_WORLDS fails. This was confirmed by Intel through the
SuperMUC support. Increasing the environment variable T_MPT_DAPL_UD_DIRECT_COPY_THRESHOLD step-
wise with the number of connections, can serve as a workaround here. Messages below this threshold
use the DAPL UD direct-copy protocol. I could not measure a negative performance influence of this
workaround though indicated in the Intel documentation?*. For all Intel MPI tests, I use a threshold of
256kB. As this workaround makes the Intel MPI somehow usable, the IBM MPI implementation does
not at all support port connections between separate static MPT_COM_WORLDS. This, again, was confirmed
by IBM through the SuperMUC support. Furthermore, the Intel MPI routines itself show a significant
overhead, which increases at least quadratically with p, up to 80s for p = 1792. Please note, that this
overhead is completely due to the actual MPI implementation and therefore out of scope for a solution
in preCICE.

T T T T T T T T T T T T
102 |- | I p=112 E
E | I p=224 E
- | [p=448 1
| C—p=896 1
r | C—p=1792 1
— 10 E 4
%] - 3
E F ~ 3
) N o]
£
= i]
) ‘ ‘ ‘ |
“ ‘ _ Ml B

Snd-TCP Rcv-TCP Snd-MPI Rcv-MPI Snd-TCP Rcv-TCP Snd-MPI Rcv-MPl Snd-TCP Rcv-TCP Snd-MPIl Rcv-MPI

n = 896> n = 17922 n = 35842

Figure 65: Data communication: strong scalability results for three different mesh sizes. All timings are
measured on acceptor side A.

Communication of Data I first discuss the difference between the kernel implementations, MPI
and TCP/IP. [99] reports a nearly similar performance for the original preCICE version. A case with
8 - 10° doubles, for example, needed 60.5ms with TCP/IP and 46.3ms with MPI on a QDR Infiniband
for sending data back and forth once between two serial participants. The ASTE testcase needs 30.6ms
with TCP/IP and 2.7ms with MPI on a FDR14 Infiniband. I use n = 8962, which translates to
~ 8.03 - 105 doubles, and also measure the time to send data back and forth once between two serial
participants. The improvement of the TCP /TP communication relates very well to the difference between
both Infinibands. The significant improvement for the MPI communication is, however, due to the
asynchronous communication, which is newly implemented in [181]. The TCP/IP communication has
always been asynchronous from a logical point-of-view. Figure 65 shows the actual communication time

Bhttp://www.mpi-forum.org/docs/mpi-2.2/mpi22-report/node214.htm and . ../node215.htm
44nttps://softuare. intel.com/en-us/node/528824

82

for the strong scaling series n = 8962, n = 17922, and n = 3584", for both variants. With the current
implementations, MPI outperforms TCP/IP by a factor of 5 to 10 throughout all experiments. Figure
65 further shows the expected perfect speed-up with p and the expected linear scaling with n. Sending
is typically faster than receiving, since the asynchronous send returns as soon as the buffer memory
can be reused. This does, however, not mean that the message has been received. For n = 35842, an
increase in communication time from p = 224 to p = 448 is visible. I assume that this is caused by a
higher amount of smaller, but not yet small enough, messages. Please note that the fluctuations of the
smaller runtimes are close to the measurement error of lms.

Conclusions I briefly summarize the main findings on the distributed communication. Beforehand,
please note again that n and p relate to the mesh size and the number of cores at the coupling interface
for an actual physical simulation. The communication and the compute effort in the initialization are
fully tolerable. The latter might only be problematic for a high n and a small p. The current publishing
strategy using the file system is tolerable until p = 896, but problematic afterwards. Alternatives, such
as the internal MPI publishing routine, should be easy to integrate, though. The actual connection time
differs significantly between both kernel implementations, TCP/IP and MPI. TCP/IP shows a robust
and fast behavior. MPI is less reliable and can also be quite costly. The communication itself is very
efficient for both variants, since it scales perfectly with p. MPI outperforms TCP/IP significantly, but
both variants are still very fast. For a tremendous interface mesh of n = 35842 ~ 1.3-10" and p = 1792,
for example, a single communication step sending all surface mesh data from solver B to solver A is still
below 5ms for both variants.

4.3 Interpolation Methods on Distributed Data

Interpolation between non-matching meshes is an important ingredient for any multi-physics simula-
tion. If interpolation is supported, the discretization in every single-physics domain can be tuned for
specific needs. For FSI simulations, for example, the fluid domain typically needs a much finer mesh
close to the coupling interface to resolve boundary layers than the structural domain. At the same time,
interpolation methods need to be chosen carefully, to conserve the right properties. Section 2.1.2 gives
a compact literature review on interpolation methods. preCICE supports two different kinds of inter-
polation methods: projection-based mapping and radial-basis function (RBF) mapping. Both types are
already supported in the serial preCICE version [99]. This section focuses merely on their realization
on distributed data. The serial version of preCICE supported four different combinations of mapping
variants: read-consistent, read-conservative, write-consistent, and write-conservative. The realization of
the interpolation methods on distributed data simplifies drastically if only two out of these four variants
are considered, namely read-consistent and write-conservative. To understand this restriction, Section
4.3.1 introduces basis mapping concepts and explains how projection-based mappings work, in serial as
well as in parallel. Furthermore, I argue why this restriction has almost no practical consequences. Sec-
tion 4.3.2 then focuses solely on the RBF mapping. The section encompasses an algorithmic description
as well as technical parallelization details. As the runtime of the projection-based mapping schemes is
almost negligible and furthermore already covered as part of the filtering in Section 4.1.3, Section 4.3.3
focuses on performance results for the RBF mapping solely.

4.3.1 Basic Concepts and Projection-Based Mapping

I start with basic notation. The coupling meshes are nothing else than clouds of vertices,
Ta={af,... 2}, } with 2/ e R®,

and similarly for participant B. I restrict all mapping descriptions to the general three-dimensional case.
The final goal of an interpolation method is to map scalar data viA € R, i =1...n4 associated with
'y onto v? € R, i = 1...np associated with I'g. To simplify the further notation, these values are
collected in vectors V4 € R™4 and Vp € R™B. If vectorial data, such as forces, needs to be mapped, each
component is considered separately. I assume that the meshes I'4 and I'p remain constant throughout
the simulation. Thus, the same holds for the mapping. Note that this is true for an arbitrary-Lagrangian-
Eulerian flow solver coupled to a Lagrangian structural solver, since the positions at the interface stay
constant for both solvers. Only a pure Eulerian flow solver would contradict this assumption.

83

A remark on the notation: I use x; here as the vertex coordinates. In Section 4.4 and Chapter 3, x;
refers to values on the vertices, so to speak to V; here. This corresponds to the standard notation in
the respective literature. The strict separation in different sections, should prevent the reader from any
confusion.

Four Mapping Variants An interpolation method is nothing but a linear mapping and can, thus,
be written as
Va=HapVs,

with Hap € R"4*"B_ Tt is called consistent if the entries of every row sum up to one [31],

np

Z(HAB)ij =1 VZZlTLA

j=1

This ensures the exact mapping of constant functions, which is typically a desired property for the
mapping of deformations, fluxes or densities, for example. If the entries of every column sum up to one,
a mapping is called conservative,

na

Z(HAB>ij =1 ijlnB .

i=1

This property, on the other hand, guarantees the conservation of the sum of the mapped values and is
normally applied to integral values such as forces. Every consistent mapping H 4p induces a conservative
mapping via Hg4 = HY 5. preCICE further distinguishes between read and write mappings. To simplify
this terminology, let us reconsider the standard setting, already used in Sections 4.1 and 4.2: T'p is sent
from B to A and re-partitioned at A. This means that data is communicated via I'g and mapped from
and to '4 at participant A. A read mapping is now applied before data is read from I'4, this means
the mapping ' — ['4 is a read mapping. On the other hand, a write mapping is applied after data
is written to I'A. Hence, the mapping I'y — I'p is a write mapping. The Cartesian product of both
categories finally gives the four mapping variants: read-consistent, read-conservative, write-consistent,
and write-conservative. The original serial implementation in preCICE did not need to distinguish
between read and write mappings in the computation of the mappings. This categorization was only
needed to decide when a mapping is applied. Please note that transposing a mapping Hga = H}QB does
not only transform a consistent mapping into a conservative one and vice versa, but also transforms
a read mapping ' — I'4 into a write mapping 'y — I'p and vice versa, by inverting the mapping
direction. Thus, the four variants are essentially two pairs: read-consistent and write-conservative, and
read-conservative and write-consistent.

e o

Nearest Neighbor /. Nearest Projection /.

Figure 66: Schematic view of both projection-based mappings in a two-dimensional case. Both mappings
are depicted in their consistent variant. Arrows point in data transfer direction. A similar figure is also
used in [43].

Projection-Based Mappings Two kinds of projection-based mappings are supported in preCICE:
the nearest neighbor mapping and the nearest projection mapping. To explain both, let us consider a

84

consistent mapping I'g — I'4. As explained further above, this comes without any loss of generality, as
through transposing every consistent mapping induces a conservative mapping and vice versa. For the
nearest neighbor mapping, every vertex of z* of "4 looks for the closest vertex J:JB of I'p and copies the
value from xf to 21, Here, closest relates to the Eucledian distance. This method is only first order
accurate (see e.g. [99]). Still, it plays an important role for many applications such as the handling of
matching meshes with non-matching decompositions. The nearest-projection mapping needs additional
connectivity information of I' g, meaning surface elements. In 3D, this can be triangle or quad elements,
in 2D simple lines. Now, each vertex :cf‘ of I 4 searches for the closest element ef of I'p and projects
its coordinates orthogonally onto ef . The values of the element’s vertices are interpolated (bi-)linearly
in the projection point. This value is then copied to x{‘. If the orthogonal distance between xf‘ and eP
is much smaller than the element’s width, this is a second order method (see e.g. [99]). This holds for
most applications. Figure 66 sketches both projection-based mappings.

read-consistent / read-conservative/
write-conservative write-consistent
o— .o oi— o
o— °
o e
F?q BB(FB)O F% BB(FB)O
“— e
° . .
——————— ———=e | unique NN non-unique NN
o
©
o
ry —=e BB(I'p) r BB(I'5)"
a .= (T's) A (I's)

Figure 67: Schematic comparison between a read-consistent (resp. write-conservative) and a read-
conservative (resp. write-consistent) nearest-neighbor mapping. The first combination leads to a unique
mapping while the second one does not in the overlap region. BB(I's)? refers to mesh I'g, bounding
box-filtered with respect to I'Y. T'4 is a local mesh, whereas I'p is received and re-partitioned. Arrows
point in search direction.

Parallelization of Projection-based Mappings As mentioned above, I restrict the mapping vari-
ants from four to two to simplify the parallelization. These two valid variants are read-consistent
and write-conservative, which are essentially identical, as explained above. Please recall the mesh re-
partitioning strategies from Section 4.1.1, Figure 55. In step IV, a mapping-dependent filter is applied.
In Figure 67, this step is visualized for a nearest neighbor mapping. I'g is already filtered via a bound-
ing box corresponding to each partition of ' 4, denoted as BB(I'g)’. This results in an overlap. Next,
preliminary mappings are computed. For the two supported variants, this is depicted on the left of
Figure 67. Each vertex of I'Y; searches for the closest vertex in BB(I'p)?, visualized by arrows. Any
vertex of BB(I'g)? that is not found by this search, meaning that this vertex is not closest to any vertex
of 'Y, has no influence on the actual mapping and can be further filtered out. Since there is no overlap
in the decomposition of I' 4, this results in a unique nearest neighbor mapping. For the read-consistent
mapping, when communicating the values on I'g from B to A, each value is simply sent to every du-
plicated vertex of I'g at A. Conversely, for the write-conservative mapping, when communicating the
values on I'g from A to B, the values of the duplicated vertices are summed up. Thus, once the mesh-
repartitioning is done, the mapping operates fully locally. The parallelization of the nearest neighbor
mapping is somehow trivial then. The nearest projection mapping works similarly. Vertices can simply
be filtered out if they do not belong to any nearest element. If two mappings of this valid group are
combined, only vertices can be filtered out if they do not influence either of the two mappings.

Let us consider the invalid variants read-conservative and write-consistent, depicted on the right of

85

Figure 67. After the bounding box filtering, there are duplicated vertices of I'g, which now look for
nearest neighbors in different local partitions of I' 4. Each duplication finds a different nearest neighbor:
the nearest neighbor mapping is not unique. This problem could be resolved by comparing the actual
distance of every candidate. Further communication is necessary, which can be costly if not ng < n4.
An alternative would be to generate an artificial overlap for the partitions of I' 4. An exact and efficient
solution seems tedious, though.

A ' B A B
|

communicate communicate
r B + » I B I’ B < r B
A | ! -
consist. éconserv. : consist. : consist.é
v | v | |

| communicate
['4 ; I's . » 1[4

Figure 68: Valid mapping combinations. preCICE only allows consistent mappings from a re-partitioned
mesh to a local mesh, i.e. in read direction, and conservative mappings in the reverse, write direction
(left sketch). Changing such a conservative mapping to a consistent one requires the computation of
the mapping on the other participant (right sketch). Now, both meshes need to be re-partitioned.
Re-partitioned meshes are marked in blue.

I conclude to only support the first, valid mapping variants. For most applications, having these two
variants is also fully sufficient. Typically, one of the two mappings between the solvers is required to
be consistent whereas the other one has to be conservative. This is the case for many FSI simulations.
Sometimes, this can be problematic as conservative mappings tend to induce spurious oscillations.
[31, 220]. Then, consistent mapping in both directions is desirable. This can still be realized with only
the two valid mapping variants, as a write mapping is transformed into a read mapping if it is moved to
the other participant. This idea is depicted in Figure 68. The drawback is the necessary communication
of data on both meshes. For very asymmetric cases, ng < na or ng > na, the communication of only
the smaller mesh would be favorable. Still, requiring both mappings to be consistent and having such
asymmetric meshes at the same time is a rare case. Section 4.3.2 shows that the restriction to the first,
valid mapping variants is also very useful for the RBF mappings.

As this section already discusses the algorithmic concepts and the parallelization of projection-based
mappings, the next section solely focuses on the RBF mapping.

4.3.2 Radial Basis Function Mapping

I start with a brief mathematical description and focus afterwards on the parallelization. For a more
detailed introduction to RBFs, the reader may refer, for example, to [31, 99]. As mentioned in the last
section, it is sufficient to only consider the consistent variant from I'g to I' 4. The general idea of the
RBF mapping is to build up a global interpolation on I'g, which is then evaluated on I'4. This global
interpolant is build up by radially symmetric basis functions centered at the vertices x; of I'g,

¢:R =R, [|lzll2 = ¢(l|z]l2), x € R

In literature, various such basis functions are considered, either with local or global support, compare,
e.g., [185]. Table 23 lists those that are supported in preCICE.

To ensure exact interpolation of constant and linear functions, the interpolant is further enriched by a

86

Basis Function ¢ ‘ Support

Gaussian exp (— (aHng)Q) global
Multiquadrics m global
Inverse Multiquadrics 1/ m global
Thin Plate Splines |lz||3 1og (||z||2) global
Volume Splines I |l2 global
Compact Thin Plate Splines C2 | 1 — 30£2 — 10€3 + 45¢* — 6£° — 60£3 log & local
Compact Polynomial CO (1-¢)? local
Compact Polynomial C6 (1—€)%(32¢3 + 252 + 8¢ + 1) local

Table 23: Radial basis functions implemented in preCICE. a denotes a shape parameter. Local basis
functions posses a support radius of 7, i.e. ¢(||z||2) =0 for ||z||2 > r. £ denotes normalized coordinates
& = ||z|l2/r. A similar table is used in [42, 43, 99].

global first order polynomial. The interpolant s : R3 — R then reads

np
s(@) =Y - o(le—afl2) + g(x)
i=1
with the global linear function g(z) = By + f121 + P22 + B3xs. The goal is to find v; e R,i=1...np
and 8; € R;i=0...3 that fulfill the interpolation condition
s(xP)=vP Vi=1...np.

This underdetermined system is regularized by the polynomial condition
np
Z’yi p(sz) =0,
i=1

for every polynomial p : R? — R of degree less or equal than ¢, hence for every constant and linear
function, compare, e.g., [185]. In matrix notation, these conditions read

0| P Jé] 0
= ; (6)
Pp | Mpg vy Vi
=:C

where Mpp €R"? "5 (Mpp); ;=0 (|zf — 27 ||2) and the ith row of Pp € R"#** looks like (127, 7, z
Here, :cfl, xf}, xfg refer to the components of zP. Furthermore, v = (y1,...,705)7 € R™® and

B=(Bo,...,B3)" €R™

Afterwards, the interpolant can be evaluated at the vertices of ' 4,
np
A A A A .
v = S(xj) = Z%‘WH%‘ - 35?”2) + q(xj) Vi=1...na,
i=1

or again in matrix notation

Va | =1 Pa| Mas ; (7)

with Map € R"4X"5 (Map);; = ¢ (||a8 — szg) and the ith row of P4 € R"4*4 like (1 xf}l fo 93;43)

87

For the consistent mapping now simply first solve (6) and then evaluate (7). As I assume that the mesh
I'p does never change, neither does C. To map different values, we only need to adjust the right-hand-
side of (6). Thus, a pre-computation of an LR-decomposition of C' would pay off. The serial version
of preCICE uses such a strategy. This, however, is not advisable for the realization on distributed
data. Furthermore, if local basis functions are used, C' becomes sparse and an LR-decomposition is
overly expensive then. Still, a constant, possibly expensive, pre-conditioner should also take advantage
of the constant C. Before I continue with the parallelization, let us have a brief look on the induced
conservative variant. In compact form, the consistent mapping I'p — ' 4 reads

VA:HBAVBZDC_l (0) .
Ve

Thus, the conservative variant is

Va

Hence, the input values are first multiplied with D and then, again, a C' system is solved.

Vi = HapgVa = HL V4 = D7 < 0) .

Parallelization Similar to the last section, for parallelization, I restrict to the read-consistent variant
I'p — I' 4 with, as usual, I'g being the re-partition mesh and I' 4 the local mesh. I only consider RBFs
with local support. RBF with global support do not allow to efficiently distribute data. Both matrices,
C and D, are decomposed row-wise. For D, this comes naturally with the local, non-overlapping,
partitions of I'4. For C, this is more involved. It is easy to see that the re-partitioning of I' g must result
in overlapping partitions to be able to fill all entries of D. Therefore, we must decide upon one owner
rank for duplicated vertices of I'g that actually holds the respective row of the matrix. Additionally,
the master rank of participant A also holds the first four rows of C, which are the polynomial rows.
For many single physics solvers this is a decent load balancing choice as the master rank itself holds no
vertices. As C is a symmetric matrix, it is sufficient to only fill up the lower triangle. Thus, the master
does not need to hold the complete mesh I'g to fill up the polynomial rows.

The mapping-specific filtering takes care of the correct decomposition as well as the assingment of ranks.
Please recall the mesh-repartitiong, Section 4.1.1, Figure 55, step IV. For an RBF mapping, this step
is slightly more involved than for projection-based mapping schemes. Figure 69 sketches the necessary
three sub-steps. First, a bounding box around the local partition ' is computed. This bounding box
is extended in every direction by the support radius of the underlying RBF. Every vertex of I'g that
lies within this bounding box is tagged as a possible candidate to be owned by the current rank (step I).
All tagged vertices need to be part of the final local re-partition f‘fg to ensure the correct construction
of matrix D. Next, the master rank of B assigns an owner rank to every vertex. If multiple candidates
for a single vertex are available, a first round of assignments tries to balance the load equally among
all ranks, while a second round then assigns the remaining vertices in a greedy way (step II). Finally,
a further bounding box is constructed around all owned vertices of I'g, again extended by the support
radius. All vertices of I'g that lie outside this bounding and that were not tagged before, are now
filtered out (step III). This second bounding box ensures the correct construction of matrix C.

The linear algebra library PETSc [6] is used to manage the decomposed matrices and to solve system (6).
PETSc offers a very broad range of parallel linear solvers. For the sake of concision, I skip a description
of PETSc here. Please refer to the PETSc webpage?®. preCICE uses a sparse matrix format to store
both matrices, though the polynomial rows of C are always dense. The RBF system (6) is solved via
a GMRES solver [173], which is known to be very robust. PETSc uses a block-Jacobi preconditioner
as default. This choice is problematic if the master rank holds no vertices, but solely the polynomial
rows. A standard Jacobi preconditioner is the better choice then. As matrix C' does not change during
the simulation, the preconditioner needs only to be computed once. PETSc automatically takes care of
this. preCICE starts each GMRES iteration from a zero vector. Restarting from a previous solution
might be beneficial. After solving (6), PETSc is also used for the matrix multiplication (7). As stated
above, for the write-conservative mapping, the matrix multiplication precedes the system solution.

A final brief remark on the excluded cases: a read-conservative (or a write-consistent) mapping would
need an overlap region of the local mesh. All in all, this is very similar to the already discussed projection-
based mappings. A realization of these variants, is not unfeasible, but far more tedious and of limited

https://www.mcs.anl . gov/petsc/

88

—
os}
—
oS}
-
s}

O0OO0OO0O00O0O O0OO0O0O0O0O0O0 O0OO0OO0O0O0O0O0 I's

0 0.0.0.0.0..9.0 0 0.0.0.0.0.0.0 oci00o 00000 oo 00 00
00000000 OO0 O0OO00O0O0O 00O ® ®@® 0.0 0 o0 00 00
i o o o ‘ PR
AcgoooooolI ococoo0o0000Il coeeee®@o00Ill] eeoeeee

L e o L S

00 0% Poo 00000000 0O0Oee®ee®O0 o0 o0 0000
0O 0 OO® WO O 00000000 00000000 (XX XXX)
0OGCO0O00O0O00 0000000 O0 0O00O000O0O0 o000 o
O0OO0OO0O0O0O0O O0O0OO0D00O0O O0000O0O0O0

Figure 69: Schematic view on the RBF-based filtering. Step I: all vertices of I'p that lie within a
bounding box around the local partition I'; plus the support radius r are tagged (dark blue, empty
circles). This ensures the correct construction of matrix D. Step II: via a global procedure, a sub-group
of the tagged vertices becomes owned vertices of rank 4 (dark blue, filled circles). Step III: I'p is filtered
to the local re-partition fiB via a bounding box around all owned vertices plus the support radius r.
This further ensures the correct construction of matrix C'. Previously tagged vertices are, however, not
filtered out to not destroy the correct construction of Matrix D.

practical relevance. Furthermore, to also allow for RBF with global support, the re-partitioned I'g can
simply not be filtered. Every rank needs to hold the complete mesh to be able to fill up his rows of C.
This renders a local communication between both participants impossible.

4.3.3 Scaling Results

In this section, I solely focus on the performance of the RBF mapping. The projection-based mappings
show a negligible compute effort, since, once the filtering is applied, their initialization has a complexity
of O(n?/p?). In [43], for example, the ASTE testcase with n = 5122, p = 1024 on the thin nodes
partition of SuperMUC phase 1 results in a compute time for the nearest-neighbor mapping below 1ms.

ASTE is a very challenging testcase for the RBF mapping, since the line-wise domain decomposition
leads to very large overlap regions. Please recall the introduction of ASTE at the beginning of this
chapter. For all experiments, I use compact thin plate splines as RBF with a support radius of r =
2.5/4/n. Thus, two neighboring nodes in every direction are covered. In practice, this is a reasonable,
yet minimal, choice. ASTE writes random data, uniformly distributed in [0, 1], to the coupling meshes.
I let PETSc iterate up to a relative convergence criterion of 10~°. Furthermore, I only list results for the
consistent mapping. The results for the conservative mapping do not show any significant difference.
This comes at no surprise: as data values are assigned randomly, both variants are, in theory, nearly
identical concerning the computational costs.

Figure 70 visualizes three strong scaling series for n = 1122, n = 2242, and n = 4482. The number of
cores doubles three times from p = 28 to p = 224. The initialization of the RBF mapping appears rather
costly. It increases sub-linearly with p. Only from one node, p = 28, to two nodes p = 56, a speed-up is
visible. Far more serious, though, is the increase in runtime with n. The increase appears super-linear,
and quickly passes a tolerable amount. For example, for n = 4482 and p = 224, the initialization takes
already more than 4 minutes. The overall cost is not caused by the filling of the matrices, though.
The time for filling both matrices C' and D, shows a speed-up with p as expected. The costly part is
the actual assembling of the matrices in PETSc — allocation of memory and construction of the sparse
matrix format. To some extent, this is understandable as the assembling of the polynomials rows needs
global communication. The work per timestep now looks much better. I only list the timings for solving
(6), since all other building blocks, such as copying values back and forth between the preCICE data
structures and the ones of PETSc, or the matrix multiplication in (7), are negligible. In Figure 70, I
distinguish between the first mapping of data and all following as the first one includes the computation
of the pre-conditioner. Both show a difference up to a factor of 10. The dependence on p is only minor.
In particular, no speed-up is visible. This is probably due to the global polynomial rows. Positive
is the only moderate dependence on n, which appears sub-linear, contrary to the initialization. For

89

[
o
[

10° I I p-28 |
[p=56 | 3

Cp=112 |]

10 = C__1p=224 |
o~]
E10° - = _ .
() 3
£]
© 102 3

I

Init FillMatr. Map1l Map>1 Init FillMatr. Map1l Map>1 Init FillMatr. Map1l Map>1

n = 1122 n = 2242 n = 4482

Figure 70: Scalability results for ASTE using a consistent RBF mapping. The first mapping is listed
separately from all following, since the pre-conditioner is only computed once.

n = 4482, for example, a single mapping is always below 0.1s. Please note that, due to the random
data, fluctuations are natural.

Conclusions Contrary to the projection-based mappings, which show a negligible computational cost,
RBF mappings have to be applied with caution. They feature a significant initialization time, which
increases super-linearly with the number of vertices. Here, a more detailed look into PETSc to find a
better assembling strategy should be worth the trouble. The actual solving benefits highly from the
constant system matrix C'. More expensive pre-conditioners might still pay off and result in a further
speed-up. In principle, the global polynomial makes the classical RBF mapping not very well suited
for massively parallel applications. Section 2.2 gives a literature review on current work that tries to
overcome this drawback. Finally, please note again that ASTE features a rather artificial and non-
optimal domain decomposition. Section 4.5.2 gives performance results for a real physical application
including RBF mappings.

4.4 Coupling Schemes on Distributed Data

After discussing the parallelization of the communication in Section 4.2 and the parallelization of the
interpolation methods in Section 4.3, the last missing block that needs to be ported to distributed data
is the coupling schemes block. I explain in Chapter 3 that a coupling scheme is simply a combination
of a fixed-point equation and a convergence acceleration method. In this section, I discuss how the
acceleration methods can be realized on distributed data. Therefore, I first repeat the general setting
from Chapter 3: given H : R™ — R" we seek for & € R™ with H(&) = & by an iterative procedure

o 28 = H(2%) - 2P

Here, the second mapping is the acceleration. A simple acceleration scheme is the Aitken underrelax-
ation:
gF = Wk gh 4 (1 — W)k
E—1\T (pk k—1
W= k71(R) (R - R)
IR* — RE=1|13

where RF := #* — 2¥ is the current residual. = € R™ lives on the vertices of the coupling mesh. Thus,
a decomposition of x is induced naturally. z might consists of several coupling variables, i.e., several
sub-vectors, but those are again already decomposed. Please note the slightly different role of n in this
notation. It is still related to the number of vertices, but can be a multiple of it, depending on the

90

dimensions of the coupling variables and the concrete fixed-point equation. If the mesh re-partitioning
results in overlaps in the mesh, the duplicated vertices are simply accounted twice in the fixed-point
equation. This, of course, can slightly influence the convergence speed. In the classical setting, however,
the acceleration scheme is computed on the smaller, communicated mesh on the local side — in the
standard setting on I'p on participant B, the side where no mapping is computed. Thus, the mesh is
locally defined and has no overlaps.

The parallelization of simple schemes such as the Aitken underrelaxation is trivial: the inner products
simply result in all-reduce steps. Similarly, the parallelization of the convergence measures is trivial.
More complex is the parallelization of the multi-secant methods, Anderson acceleration and generalized
Broyden, which is the topic of the remainder of this section. Therefore, in Section 4.4.1, I revisit these
two multi-secant methods along with a more compute-oriented discussion of their numerical kernels.
The main kernel is a QR-~decomposition, which uses Given’s rotations as an update rule in contrast to
the pure Gram-Schmidt orthogonalization of the original implementation in preCICE [99]. Afterwards,
Section 4.4.2 describes step-by-step how these kernels are realized on distributed data and analyzes their
complexity. Finally, Section 4.4.3 gives scaling results for both multi-secant methods.

4.4.1 Numerical Kernels of Multi-Secant Methods

I start with a brief repetition of the basic concepts of Chapter 3. Anderson acceleration and generalized
Broyden both approximate the inverse Jacobian J~! of the residual operator by collecting input and
output information from previous iterations. Input information is decoded by differences &% — #~!
and is collected column-wise in W € R™ ™. Qutput information relates to the differences R* — Ri~!
stored columns-wise in V' € R™*". Here, m refers to the amount of columns. This notation suppresses
details which timestep either column stems from or if certain columns are filtered out. Important for
the computational cost is that, in general, m < n. The approximate inverse Jacobian should satisfy
the multi-secant equation
JTWV=w.

The two multi-secant methods differ in their second condition, which is needed to get a unique approx-
imation. Anderson acceleration minimizes the Jacobian itself

|JY|F — min,

which leads to a simple least-squares problem. The generalized Broyden method tries to implicitly
incorporate information from previous timesteps by

||J_1 — J_l’(N)HF — min ,

where the superscript (V) refers to the previous timestep. This results in an update formula for the
inverse Jacobian.

For an overview on both methods, please recall Algorithm 1 in Section 3.2. The main building block of
both methods is a QR-~-decomposition of V. To use a QR~decomposition is more stable and allows for a
more efficient implementation than the alternative direct computation of the pseudo-inverse (VITv)—tyT
[78, 217]. The QR-decomposition reads V = O - U with the orthonormal matrix Q) € R™ ", meaning
QTQ = I, and the upper triangular matrix U e Rvm, meaning Uw =0 for i < j. T use U instead of R
to denote the upper triangular matrix to avoid any confusion with the residual operator. As U features a
lower zero block, we can restrict the QR-decomposition to its so-called economical variant by only taking
the first m rows of U. Then, we also only need to keep the first m columns of Q and get V = Q- U with
the restricted matrices U € R™*™ and @ € R"*™. From iteration to iteration, V only differs by single
columns, which are either added on the left or deleted from the right. Therefore, an updating scheme
of the QR-decomposition is more efficient than a full re-computation in every iteration as originally
implemented in preCICE [99]. Furthermore, as I explain in the next section, such an update scheme is
fairly easy to parallelize. Algorithm 3 lists both basic operations, add column and delete column. While
the deletion of the right-most column leads to a trivial restriction of @ and U, adding a column on the
left needs some further computational effort to re-establish a valid QR-decomposition. First, the new
column v is orthogonalized against) via a modified Gram-Schmidt procedure. Afterwards, a series
of Given’s rotations are used to eliminate the newly created sub-diagonal entries in U and update @

91

accordingly. The standard Given’s rotation matrix reads

1 <« 0 -+ 0 --- 0
0 c -5 0 J
Gli,j.0) = | : Do 3
0 s c 0)
0O - 0 -~ 0 - 1

with s = sin(f) and ¢ = cos(f). As the rotation G(i,7,0) is an orthogonal transformation, it does
not interfere with the orthogonality of Q. 6 is adjusted such that a;; rotates to zero for G(3,j,0)A,
A € R™™. A simple calculation shows that cos(0) = a;;/+/ (a2, + a3;) and sin(f) = —ai;/\/(aZ + ay;).
Thereby, rows 7 and j are possibly polluted meaning that non-zero entries are newly introduced. Thus,
to bring U back to an upper triangular structure, first, the second till last entries of the first column
are eliminated. Afterwards, the whole procedure is repeated for the submatrix R(2: n,2: n). In total,
we get (m/2) - (m — 1) rotations. For details, in particular on a robust implementation, I want to refer
the reader to [55]. In the following, I refer to a single add column step as (QR). A final remark: if a
general column is filtered out, compare Section 3.6.2 for the filtering algortihms of columns, also delete
column requires a re-structuring of U. As this works fully analogue to the just described add column, 1
skip further details here.

Algorithm 3 Updating the QR~decomposition of V. In contrast to [133], new columns are added on
the left whereas only the rightmost column can be deleted. Sub-matrices are denoted in a MATLAB-like
notation. A similar description is already used in [43].

Add Column Delete Column
Input: @ € R™*™ U € R™*™ vy € R" Input: @ € R™*™ U € R™*™
Output: Q € R™*(m+1) 7 ¢ Rim+1)x(m+1) Output: Q € R**(m=1 7 ¢ Rim—1)x(m-1)

U U
Vi=|@ VE= @

r — Q(m+1)x1 U=Ul:m—-1,1:m-1)
for j=1...m—1do Q=Q(1:m-1)
r(j) = Q. 4)" v
0= v—1(7) Q)

end for
QG,m+1) =v/|jv]
U= [r, OU

compute Givens rotations s.t.
U=G1,2G23...Gmmt1U is upper triangle
Q = QGm,m—H cee G1,2

Once the QR-decomposition of V' is updated, both multi-secant methods differ in their next steps. The
Anderson acceleration solves a backward substitution Ua = —QT R¥ for the coefficients o € R™ (BS),
followed by a linear combination of the input values Az = Wa (WA). The generalized Broyden method,
on the other hand, first solves m different backward substitutions UZ = QT for Z € R™*" (MBS).
Afterwards the inverse Jacobian is updated J—' = J~5W) 4 (W — J=L(MV) Z, split in three steps: first
W = (W — J2MV) (JV), second AJ~L = WZ (WZ), and third J=! = J=L®) 4+ AJ=1. Finally,
the update Az = —J~!R* (JR) is computed. In the end, both multi-secant methods apply the update
oF =gk 1 Azk

92

4.4.2 Porting the Numerical Kernels to Distributed Data

After the introduction of all numerical kernels in the last section, this section now describes their
realization on distributed data. I discuss them one by one with a detailed view on their complexity.
The latter means the dependence of their computational cost on n, m, and p. I assume an ideal load
balancing, where each rank holds n/p vertices. Please note that for real applications this is normally
not the case as the domain decomposition of a single-physics solver is optimized towards its domain
and not towards its coupling surface. Section 4.5.2 shows the load balancing of an actual physical FSI
example.

QR Decomposition on Distributed Data (QR) The decomposition of the coupling meshes and
hence z* naturally induces a row-wise decomposition of the input/output matrices V' and W and the
matrix @, as depicted in Figure 71. As U is of the limited size m xm, a copy of the matrix is held at every
rank. As Algorithm 3 shows, the first step of add column consists of a Gram-Schmidt orthogonalization
of the new column v to all columns of Q. As this step simplifies to dot products, the parallelization
simply uses all-reduce operations. A total of m dot-products of local length n/p are necessary. If
we assume a logarithmic cost for the allreduce step, the complexity becomes O(mn/p) + O(mlogp).
Afterwards, the Given’s rotations operate fully locally. Since every rank holds the same U, the same
rotation is computed everywhere and is simply applied to the local part of (). As mentioned in the last
section, m/2 - (m — 1) Given’s rotations are applied, each one adds two columns of @ of length n/p
and two rows of U of length m. Thus, a complexity of O(m?n/p) + O(m?) results. For the sake of
completeness: delete column has an obvious constant complexity O(1).

V., W, Q U Z

Figure 71: Decomposition of various matrices on distributed data. V, W and @ are composed row-wise
and Z column-wise, while each processor holds a copy of U.

Backward Substitution on Distributed Data (BS / MBS) Anderson acceleration uses a back-
ward substitution to resolve Ua = —QTR* for @ € R™. Therefore, the right-hand side —Q” R* first
needs to be computed. As @ is decomposed row-wise, every rank computes its contribution locally
at a cost of O(mn/p). Afterwards, in an all-reduce step, the contributions are summed up, resulting
in O(mlogp). Next, each rank solves the identical triangular system, O(m?). In total, this results in
O(mn/p) + O(mlogp) + O(m?). The generalized Broyden method performs this backward substitution
n times — for every unit vector e;, i = 1...n instead of R¥ — to resolve UZ = Q. However, each rank
can do its n/p part individually. This corresponds to a column-wise decomposition of Z, compare also
Figure 71. Here, no communication is necessary. The total cost is O(nm?/p)

Compute Update AZ = Wa on Distributed Data (WA) The update step of Anderson accelera-
tion is rather trivial. Each rank simply computes its n/p entries of Wa. No communication is necessary.
The cost is O(nm/p).

Dense Multiplication J~ (). on Distributed Data (JV) For generalized Broyden, the numer-
ical kernels are more involved than for Anderson acceleration, since the Jacobian is computed explicitly.

93

The update formula is based on two dense matrix multiplications, the first being J “LV) . V. T do not
consider the trivial subtraction in W = W — J- LNV Both, the current and the previous Jacobian
are distributed column-wise. V' features a row-wise decomposition, as stated above. For this first dense
matrix multiplication, each rank computes a local contribution of the full size of W. All contributions
are then summed up in an allreduce step. Afterwards, the result needs to be scattered again such that
each rank holds its rows of W. Figure 72 visualizes this operation. The realization in preCICE applies
this scheme per entry of W: instead of computing full size local matrices W, preCICE computes a
distributed dot product for every entry of W. This alternative has a higher communication overhead
since smaller messages are communicated, but needs far less memory. Only the local part of W needs
to be stored at every rank. The computational cost is O(n?m/p) for the local matrix multiplication and
O(nmlogp) for the reductions.

J1N) * Vv = W — W

Figure 72: Schematic view on the first matrix multiplication W = J=1L(M) . |/ (JV) of the inverse
Jacobian update on distributed data. A similar figure is also used in [43].

Dense Multiplication W - Z on Distributed Data (WZ) The second dense matrix multiplication
of the generalized Broyden update is more complex than the first one as it results in a matrix of Jacobian-
type, more concretely the Jacobian update AJ~1 € R"*™, which is distributed column-wise. To compute
this Jacobian update matrix, every rank needs every block from every rank. Figure 73 makes this last
sentence easy to understand. To realize this, preCICE uses a memory efficient scheme, which computes
the single contributions step-by-step in p so-called cycles. Therefore, additional communication channels
let every rank communicate with its left and right neighbor, so to speak with p — 1 and p + 1. The
basic master-slave communication does not allow for such communication, two further communications
are established if generalized Broyden is used as acceleration method. Please recall Figure 62 in Section
4.2.2 for an overview on the communication architecture in preCICE.

m

Figure 73: Schematic view on the second matrix multiplication AJ~! = W - Z (WZ) of the inverse
Jacobian update on distributed data. A similar figure is already used in [43].

The cyclic procedure now works as follows: each rank starts by multiplying its local W with its local Z.
Afterwards, it sends W to its right neighbor and receives accordingly a new W from its left neighbor.
Multiplying this new W with the local Z gives the next contribution. After p cycles, every rank computed
all contributions. In particular, all necessary contributions are already available locally. No additional
re-distribution is necessary. Visualizing this procedure simplifies the understanding drastically: Figure

94

74 gives an example with p = 3, where each cycle is marked in a different color. This procedure allows
for an elegant overlay of computation and communication: in each cycle, each rank first opens a receive
buffer for the new W, then sends asynchronously the old W and computes the multiplication with the old
% just afterwards. Each local matrix multiplication has a complexity of O(m-n/p-n/p), which results
in total computation effort of O(n?m/p). In theory, neglecting latencies, the communication needs
O(n/p-m -p) = O(nm), hence independent of p. For small messages, however, a linear dependence
on p is more realistic. Due to the overlay of computation and communication, the total cost reads

max(O(n?m/p), O(nm)).

proc. A B C A B C

cycle
1 WCA WA Z4 @‘ % Zp @‘ V\VcZC WC WaZa [e &
2 WB ”(Z<‘ WC Hv"\Zn WA 1‘7F»’Z(’__\WB WBZB ‘[/;Z(«
o \ s ﬁ?'(Z ‘ WC ZC

Figure 74: Cyclic scheme for the dense matrix multiplication A.J 1 -W-Z (WZ). The figure shows an
example with three processors A, B, C. The sub-matrices such as WAZ B are colored by their respective
cycle, not by their processor. Arrows indicate communication. The left sketch shows the computation

and communication order whereas the right sketch shows the storage location. A similar figure is used
in [43].

Compute Update A7 = —J 'R on Distributed Data (JR) The last kernel for the generalized
Broyden method is the computation of the update Az = —J 'R*. J~! is decomposed column-wise
whereas the residual R* is decomposed row-wise. Hence, each rank computes a local contribution,
followed by an all-reduce step and a final scattering of the resulting update vector. This operation
simply corresponds to step (JV) if V has only a width of one column, compare Figure 72. The local
block has a cost of O(n?/p), resulting in a total cost of O(n?/p) + O(nlogp)

Kernel | Operation | Anderson Acceleration | Generalized Broyden
QR | update V=QU | O(™2%) + O(m?) + O(mlogp) | O(™2) + O(m?) + O(m logp)
BS | solve Ua = —QTR* | O(™2) + O(m?) + O(mlogp) | —
MBS | solve UZ = QT | — | o™
WA | Wa | o(zm) | —
W | W=w-—J ™y | — | O(=) + O(nmlogp)
Wz | AJ =WZ | — | max(0(™1),0(nm))
JR | JOIRF | — | o % + O(nlog p)
Total | — | oz O(m?) + O(mlogp) | O(™=2) + O(m?) + O(nm log p)

Table 24: Parallel runtime complexities of the numerical kernels for both multi-secant methods, An-
derson acceleration and generalized Broyden. A similar table is used in [43].

Conclusions Table 24 gives an overview of the complexity of all kernel operations. Summing up all
costs gives the immediate conclusion that Anderson acceleration is significantly cheaper than generalized
Broyden. The overall cost of Anderson acceleration only grows linearly with n. Furthermore, this factor
always scales down with p. The most expensive part of Anderson acceleration is the QR~decomposition.

95

On the other hand, the generalized Broyden method scales quadratically with n and features a further
linear term in n that does not scale down, but even grows logarithmically with p. Normally, both
dense matrix multiplication with O(n?m/p) should dominate the total cost. To conclude, Anderson
acceleration appears well-suited for massively parallel simulations as all parts that scale with mesh size n
show an ideal speed-up with p. Generalized Broyden is problematic for huge meshes, but might be a valid
alternative for smaller meshes and cases where Anderson needs far more columns m than generalized
Broyden. Compare such comparisons in Section 3.7.4, for example. Still, generalized Broyden needs
to be applied carefully. The next section gives concrete performance results. Concerning the memory
requirements, generalized Broyden currently needs to store the complete Jacobian, O(n?/p) entries
per rank, whereas Anderson acceleration needs no more than O(nm/p) entries. Also, several parts of
generalized Broyden leave room for improvement. For example, in each iteration JV and WZ would
only need to compute a single column of the update. Only at the end of each timestep the full update
needs be computed. As an outlook, I want to mention the possibility to exploit the low rank nature
of the Jacobian to drastically reduce the memory requirement of generalized Broyden, to nearly similar
level as Anderson acceleration. This then also reduces the compute complexity significantly and would
make the method much better suited for massively parallel applications. Current work about this topic
is documented in [177].

4.4.3 Scaling Results

For the performance measurements, I study AA(10) — Anderson acceleration with reused columns from
10 previous timesteps — and GB(0) — generalized Broyden with only the iterations from the current
timesteps. These two configurations are consistent with the recommendations from Chapter 3. Both
multi-secant methods are applied on the sequential (GS) system, compare Section 3.1, for a scalar data
field. In this case, the size of the fixed-point equation n equals the number of vertices n, hence no
inconsistency in the notation.

T T T T T T T T T T T T
102 £ | I p=112 E
- | I p=224 1
r | [p=448 1
| | C——Ip=896]
[1p=1792
10t F i
) E E
é o M]
© i]
E i]
E
100 3 “ ‘ 3
I I I
OR BS WA OR BS WA OR BS WA OR BS WA
n = 4482 n = 8962 n = 17922 n = 35842

Figure 75: Scalability study for the numerical kernel of Anderson acceleration and four different meshes.
For the abbreviations, compare Section 4.4.1. Suppressed bars indicate runtimes below the measurement
error.

Anderson Acceleration The last section already indicates that Anderson acceleration features rather
cheap operations. I, therefore, perform four strong scaling series for relatively large meshes n = 4482,
n = 8962, n = 17922, and n = 35842. Figure 75 lists the runtimes, split up into the three numerical
kernels (QR),(BS), and (WA), as discussed in the last two sections. As expected, (QR) dominates
for all setups. For smaller n, the measured runtimes are close to the measurement error, which leads to
visible fluctuations. Here, no speed-up with p is visible as the communication part O(m logp) dominates.
Where Figure 75 shows no bars at all, the runtime is below the measurement resolution of 1ms. For
larger n, on the other hand, the compute part O(nm?/p) dominates, which leads to a clean speed-up
with p. All numerical kernels grow linearly with n. For p = 112, a memory hierarchy effect is visible

96

when increasing the mesh size from n = 17922 to n = 35842. For p = 224, this effect already vanishes.
In total, all operations are cheap, roughly at the same size as the communication, compare Section 4.2.3,
Figure 65. For n = 35842 and p = 1792, for example, the sum of all Anderson acceleration kernels is
still below 10ms.

103 | | I p=112 4 M
I p=224 —
[p=448 - M
102k [CIp=896 | M
. [Jp=1792
£
o) 1L J
210
E
100F E
o I M I
QR MBS NV wz JR QR MBS IV wz JR QRMBSJV WZ JR

n = 224 x 448 n = 448 x 448 n = 448 x 896

Figure 76: Scalability study for the numerical kernel of generalized Broyden and three different meshes.
For the abbreviations, compare Section 4.4.1. The missing bars indicate too high memory requirements.
The cyclic communication uses the MPIPortsCommunication.

Generalized Broyden The theoretical considerations for the generalized Broyden method, as dis-
cussed in the last section, hold in practice. Due to the higher compute and memory requirements, I
use smaller meshes than for Anderson acceleration: three strong series for n = 224 x 448, n = 4482,
and n = 448 x 896. Still, the memory is not sufficient for n = 4482 and p = 112 or p = 224. For
n = 448 x 896, only p = 1792 works. Figure 76 lists the numerical kernels of the remaining setups.
(QR) and (MBS) appear negligible compared to the three matrix multiplications, (JV), (JR), and
(WZ). All three increase in cost with n? and decrease linearly with p as expected. In general, (JV)
marks the most expensive operation. For theses results, I use MPIPortsCommunication as implemen-
tation of the cyclic communication (please compare Section 4.2.2). The initialization of the communi-
cation, meaning the creation of directories, publishing the connection information and establishing the
connections, shows very similar results to the ones of Section 4.2.3, including similar fluctuations. If
SocketCommunication is used as cyclic communication, however, the results differ significantly. Then,
(WZ) cannot overlay computation and communication and the cost does, thus, increase linearly with
p. For n = 448 x 896 and p = 1792, for example, (WZ) needs 5.3s, which is 7.5 times more than with
the MPTPortsCommunication.

Conclusion Anderson acceleration appears to be very well suited for massively parallel simulations.
For large meshes the compute effort shows an ideal speed-up with p. This does not hold for the current
version of generalized Broyden, which suffers from the dense consideration of the Jacobian. Generalized
Broyden tends to be 100 to 1000 times more expensive than Anderson acceleration, despite the higher
number of columns of the latter. A low rank approximation of the Jacobian for generalized Broyden
seems to be a promising remedy [177]. Then, all issues, such as the cyclic communication, the high
memory requirements and the O(n?/p) compute effort should disappear.

4.5 Overall Scaling Experiments

In this section, I recapitulate the two basic applications that I mention in the introduction to this thesis,
Chapter 1: the Ateles Cube testcase and the turbulent FSI benchmark PfS-la. In the introduction,
I argue that classical server-based coupling concepts cannot handle either of the two applications due
to the vast amount of small messages (Ateles Cube) or the tremendous asymmetry (Pfs-1a). With the

97

parallelization concepts of this chapter, however, preCICE can successfully run both coupled scenarios
on massively parallel systems. This means that preCICE does not degenerate the single physics solver’s
scalability.

The performance measurements of this section complement the ASTE tests described throughout the
last sections. With ASTE, I test preCICE on a unit test level, meaning each feature group individually.
With the two scenarios of this section, I discuss how the overall application of preCICE influences the
solver’s performance. This means, I compare the time spent in preCICE to the time spent in the single
physics solvers in a realistic setting. Furthermore, I compare the interplay of all feature groups of
preCICE with each other, to detect bottlenecks. This section shows, however, no physical results. The
focus is still only on the performance. Therefore, only the first couple of timesteps of each scenario are
analyzed. Chapter 5 shows physical results for various coupled applications. As the last sections already
carefully compare various options for every feature group, I restrict the analysis here to the relevant
options for every application. For example, the mesh repartitioning always uses the broadcast/filter
approach, since Section 4.1.3 concludes on the superiority of this approach.

Section 4.5.1 shows performance results for the Ateles Cube. In the introduction to this thesis, Section
1.3.2 briefly introduces this testcase, showing that the old server-based parallelization concept of pre-
CICE results in a huge overhead and in scalability limitations. For this scenario, a single Euler domain
is cut into two halves at an artificial coupling interface. The coupled setup can, thus, be easily compared
to the monolithic simulation. The coupling interface features matching meshes and even a matching
decompositions. I, therefore, apply a simple nearest-neighbor mapping. As Ateles itself uses an explicit
time integration, a parallel explicit coupling scheme is further applied. This means, in particular, the
new communication concept is tested whereas the mapping and the coupling scheme are rather simple.
All in all, the scenario is a perfect testcase for preCICE as a clean and easy interpretation of the results
is possible.

Section 4.5.2 discusses the second testcase, the turbulent FSI benchmark PfS-1a [58]. The most im-
portant characteristic of this case is the immense asymmetry: while the fluid field has to use a very
fine mesh at the coupling interface to carefully resolve the turbulent boundary layer, the structure can
use a rather coarse mesh. In the introduction to this thesis, Section 1.1.2 uses this testcase exemplar-
ily to show that coupling software that is based on a central server-like instance cannot handle such
setups already on only moderately parallel systems. In contrast to the Ateles Cube, PfS-1a uses more
sophisticated features of preCICE: interpolation between the non-matching grids is done with radial
basis functions and an Anderson acceleration is used for the implicit coupling. This brings the case
close to real applications, but makes it also harder to interpret the results. I, therefore, mainly focus on
comparing the overall preCICE performance with the runtime spent in the fluid solver.

4.5.1 Ateles Cube

Scenario Description A cubical domain is cut into two equal-sized halves, orthogonal to the x-axis.
preCICE is used at the artificial coupling interface, compare Figure 77. In both domains, compressible
flow is simulated, governed by the Euler equations. A Gaussian density pulse is initialized in the left
half and travels with constant speed towards the right half. Figure 78 shows the smooth transition
over the interface. I use a high number of unknowns for Ateles, for which we know that Ateles shows
a perfect strong scaling [239]. Hence, we can clearly study whether preCICE degenerates this scaling
or not. Ateles uses a Cartesian tree-based mesh. For mesh level [, the complete cube holds 23(—1
elements. This results in 2201 elements at the coupling interface per side. In each element, a 12th
order discontinuous Galerkin schemes is used. Thus, each element holds 123 Gauss points, while each
Gauss point has five degrees of freedom — three for the velocity and one for the pressure and the density.
At the coupling interface, this gives 122 vertices per element — the closest Gauss points are simply
projected on the interface. The results presented in the introduction use a mesh level [= 5. I revisit
those results just below. The further tests of this section use a mesh level [= 6 to allow scaling to an even
higher number of cores. In principle, Ateles scales down to a single element per core if the discontinuous
Galerkin order is sufficiently high [239]. Ateles uses a domain decomposition, which divides the cube,
one by one, in either x, y or z direction when doubling the number of cores. This means every third
time, when the domain is decomposed in z-direction, the number of cores at the interface does not
change. Table 25 lists concrete numbers. Furthermore, Table 25 clearly illustrates the ratio between the

98

number of cores at the interface to the total cores as well as the number of vertices at the interface to
the total vertices. Please recall that all ASTE tests only considered vertices and cores at the coupling
interface, whereas the Ateles Cube is an actual 3D scenario with a 2D interface.

A

Figure 77: Ateles Cube: a cubic domain is cut Figure 78: Ateles Cube: smooth transition of
into two halfes and coupled via preCICE at the the density pulse through the coupling inter-
artificial interface. This figure is already used face from left to right. This figure is already
in [41]. used in [41].
Cores ‘ 16 32 64 128 256 512 1024 2048 4096 8192
Cores at Int. 8 8 16 32 32 64 128 128 256 512

GP. p. Core |3.54e6 1.77¢6 8.84eb 4.42e5 2.21eb 1.11e5 5.52e4 2.76ed 1.38e4 6.91e3
IV. p. Core | 9216 9216 4608 2304 2304 1152 576 576 288 144

Table 25: Ateles Cube: number of cores at the coupling interface, total Gauss points (GP) per core
and interface vertices (IV) per core for an increasing number of total cores and mesh level [= 6. All
listed numbers are per participant.

Experiment Settings For all performance results, I compute 10 timesteps, but, contrary to ASTE,
no coupling iterations. I use MPI as underlying implementation for the master-slave communication
as well as for the M:N communication, compare section 4.2. A nearest-neighbor mapping is used as
interpolation method. All Ateles Cube tests were run on the thin nodes partition of SuperMUC phase 1,
since the 16 cores per node fit very well to the octree data structure of Ateles. Next, I first recapitulate
the results from the introduction, on mesh level [= 5, and afterwards I discuss the initialization and
work per timestep for mesh level [= 6 in depth.

Recapitulation of the Introductory Experiment In the introduction, Section 1.3.2 compares
the runtime of the monolithic Ateles Cube with the coupled variant that uses the old server-based
parallelization concept of preCICE, compare Figure 7. This server-based concept has several deficiencies,
which the introduction discusses in detail. I reuse this figure now, complemented by the runtimes for the
new fully parallel concept of this chapter, see Figure 79. Almost no overhead is visible compared to the
monolithic run. In particular, preCICE shows no influence on the scalability of Ateles. Furthermore,
also the initialization time improves significantly. In the old server-based concept, the initialization
is dominated by the compute effort of the nearest-neighbor mapping. This step is now computed on
distributed data and hence negligible. The initialization time improves roughly by a factor of 10 resulting
in approximately 5s for the new concept, depending on the number of cores. The problem, which I pose
in the introduction, is solved. Even the needed resources are smaller, since no separate nodes for the
servers need to be reserved. The next paragraphs analyze the performance in detail.

Initialization for Mesh Level [= 6 Figure 80 lists the initialization timings for a strong scaling
study. The mesh level [is 6 and the number of cores per participant p is doubled nine times from 16
to 8192. p = 16384 showed problems when establishing the master-slave connection via MPI_COM_SPLIT.

99

T T T T T T T T
102 F —E&— Monolithic Simulation 4
= X = New Fully-Parallel Concept]
Old Server-Based Concept

10" 3
“
()
E
'_

10© E 3

-~
10t E .
F 1 1 1 1 1 1 1 1 1

4 8 16 32 64 128 256 512
Total Number of Solver Cores

Figure 79: Work per timestep for the Ateles Cube, strong scaling for mesh level [= 5. A monolithic
simulation is compared to the old server-based parallelization concept of preCICE and to the new fully-
parallel concept. The same figure, but without the new concept is already used in the introduction
to this thesis, Figure 7. For the old server-based concept, the resources for both server processes are
neglected.

This is no consistent problem, compare the successful runs in [181]. All timings are measured at the
participant who re-partitions the communicated mesh. Without loss of generality, this is Ateles Right.
In the following, I analyze each building block of the initialization step by step. First, Figure 80 lists
the initialization time of Ateles itself. These timings include the time spent in the Ateles-preCICE
adapter as well. For a lower p, a logarithmic increase with p is visible, overlaid by several outliers.
For a higher p, the increase with p becomes significant. The main purpose of showing theses timings
here is to compare them to the overall preCICE initialization, which is just the next block in Figure
80. For the preCICE initialization, I sum up the time spent in initialize and initializeData. The
initialization time decreases till p = 128, and increases afterwards. Starting with p = 2048 and a timing
of roughly one minute, the initialization becomes significant. Therefore, I have a careful look which
building block causes this increase. Establishing the master-slave connection is insignificant for a small
amount of MPI ranks. For a higher amount, the runtime appears, however, to grow exponentially with
p and quickly becomes a severe bottleneck. Creating the geometries, including the re-partitioning of
the communicated mesh, is discussed in detail in Section 4.1.3. For the Ateles Cube, it scales very
well for small p, where the compute effort dominates. For a higher p, the feedback step dominates,
which lets the runtime increase with p. For p = 8192, the runtime is still below 10s, which makes
it tolerable. Initializing the mapping is a pure compute effort for the nearest-neighbor mapping only
using local mesh decompositions. This step scales, thus, quadratically with p, while the earlier discussed
domain decomposition steps, compare Table 25, are clearly visible. Thus, for a small p the effort for
initializing the mapping can be significant, while it is negligible for larger p. Build VD/CM summarizes
the three steps that prepare the connection data for the M:N communication: communicate the vertex
distributions, broadcast the vertex distributions, and compute the communication maps from the vertex
distribution, compare Section 4.2.1. For smaller p, again the compute effort dominates leading to good
scalability, while for larger p, the communication effort lets the runtime increase. However, this step is
always below 1s. Before the actual M:N connections are established, sub-directories are created to speed
up the I/O access to the file system. As already discussed in Section 4.2.3, this step grows super-linearly
with p. Establishing the M:N communication itself grows linearly with p. Section 4.2.3 analyzes that
the effort is mainly due to the internal MPI effort, not the file system access. An M:N communication
built on the TCP/IP sockets implementation would significantly speed up this step.

I conclude that the MPI operations for the master-slave communicator as well as for the M:N com-
municators show a weak performance. The creation of the directories and the file system access show

100

the expected behavior. All these steps are fully tolerable for medium sized parallel setups, but get
significantly expensive for a really high number of cores. Alternatives for this range are necessary. All
other building blocks, such as the mesh-repartitioning, the initialization of the mapping, or the building
of the communication maps are all fully tolerable, especially because they are faster than the Ateles
initialization.

L I I I I I I | T i
i I I p-16 _
108 [p-=32 E
i i I =64 5
- . [p=128]
- - [p=256 il
10° [p=512 - E
F 1 n . [p=1024 113
- I [C—1p=2048 . 1
I [1p=4096 1
0 E _ . p=s192 illE
s c]
S C i]
(]
E10°F n E
FOE]
10% £ E
10t E E
0 0

Ateles Init. preCICE Init. M-S Com. Create Geos Init Map. Build VD/CM Create Dir. Establ. M2N

Figure 80: Ateles Cube: strong scaling for the initialization timings, mesh level | = 6.

Work per Timestep for Mesh Level [= 6 After the preliminary results for mesh level [= 5 further
above, I now have a look at the work per timestep for mesh level [= 6. Typically, the work per timestep
is of higher importance than the initialization as a huge amount of timesteps is needed compared to
the single effort in the initialization. This is particularly true for Ateles, as the explicit timestepping
implies a small timestep size. Figure 81 lists the strong scaling results for mesh level [= 6. I compare
the overall simulation time per timestep to the time spent in every advance call. It is clearly visible
that the preCICE effort is negligible. The Ateles scaling shows the expected perfect linear behavior.
Only from p = 4096 to p = 8196 a small drop is visible. The time spent in advance is mainly used to
synchronize the solver ranks to make up for a non-ideal load-balancing, possibly due to the time spent in
the Ateles-preCICE adapter. This is obvious, when looking at the actual communication and mapping
effort that preCICE needs. The main goal of the new parallelization concept of preCICE is achieved:
the scalability of Ateles is not degenerated by preCICE.

4.5.2 PfS-la Benchmark

After the Ateles Cube scenario in the last section, which still marks a rather artificial testcase, this
section discusses a more complex application. De Nayer et al. propose a turbulent FSI benchmark in
[58], named PfS-1a*S. For this testcase, I apply sophisticated coupling methods such RBF mappings
for the non-matching meshes and quasi-Newton post-processing for the strongly-coupled FSI problem.
This brings the testcase closer to real applications, but makes the performance results also harder to
analyze. All in all, this section perfectly complements the results from the last section.

A flexible rubber plate is attached to a rigid cylinder and excited under turbulent flow at a Reynolds
number of 30,400. The geometry is very similar to the classical FSI benchmarks from Turek et al.

46http://qnet-ercoftac.cfms.org.uk/w/index.php/UFR_2-13

101

T T T T T T T T T
104 3 ——E-— Complete Simulation E
E —O— preCICE Advance 3
Communication and Mapping
3L i
10 E
B
S.52L i
o 10 5
=
'_
10tk 3
100 £ 4
1 1 1 1 1 o 1 1 1 1

16 32 64 128 256 512 1024 2048 4096 8192
Number of Cores per Participant

Figure 81: Ateles Cube: strong scaling for the work per timestep, mesh level [= 6.

3O
vr N
o]

3

A

/
f,(
- . »\ ‘F“’-‘/

Figure 82: Screenshot of the Pfs-1a benchmark: structural deformation and iso-surfaces of the vorticity.
Please note, that the structure is not fixed in the span-wise direction such that the deformation is over-
predicted compared to [58].

[199] (see also Section 3.7.1), but the turbulence changes the picture quite significantly: the simulation
is inherently 3D, the fluid mesh needs a much finer resolution, and also the FSI coupling behaviour
changes. The scenario further increases in cost as statistical data needs to be collected over a wide
range of timesteps in order to compare to experimental data. To get a physical impression, Figure 82
shows a screenshot of the flow field around the excited structure. The physical results are, however,
only preliminary. The variance in the deformation in span-wise direction is over-estimated, probably
due to different boundary conditions compared to [58]. Just as for the Ateles Cube, I do not consider
physical results here. The purpose of this section is solely to evaluate the performance of preCICE.
Section 5.4 gives physical results for a turbulent FSI case. To test the performance, I re-use exactly the
same fluid mesh as in the original work [58] — therein refered to as subsetcase mesh. The fluid mesh
consists of roughly 13 million hexahedral elements. As physical solvers, I use the Alya modules Nastin
and Solidz, compare Section 2.4. As the normalized fluid mesh width in wall direction yT is always
below 0.8, I resign to use any additional LES model besides the subgrid scale finite element method in
Nastin [114]. The structural mesh only counts 18,792 hexahedral elements. This asymmetry influences
the computational resource for every domain drastically. Whereas many resources can be applied in the
fluid domain, the structure domain only needs a few cores. Figure 83 shows the domain decomposition at
the coupling interface for 6,267 fluid partitions and 3 structure partitions. Next, I recapitulate the basic
reasoning about the PfS-1a benchmark from the introduction. Afterwards, I analyze the performance
for the initialization as well as per timestep.

102

)

Figure 83: PfS-1a benchmark: decompositions of the coupling surface for both single physics solvers,
Nastin(left) and Solidz(right) for 6,268 and 4 cores, respectively. 321 decompositions of Nastin and all
three decompositions of Solidz, besides the empty master rank, touch the coupling surface.

Recapitulation of the Introduction In the introduction to this thesis, in Section 1.1.2, T discuss
why cases with a very high cost asymmetry suffer in particular from coupling concepts that use a central
server-like instance. In [57], the scalability for the PfS-2a benchmark, with the same mesh that I use in
this section, was restricted to less then 100 fluid cores. This is unsatisfactory as the fluid solver should
surely scale beyond this threshold. Figure 84 shows scaling results for a pure fluid simulation of the
PfS-1a benchmark with Alya. The work per timestep shows still a speed-up at 6,272 cores and gets
close to the costs of the structure solver at 4 cores. The goal of the parallelization of preCICE in this
chapter is to not destroy this fluid scalability when coupled to a structure solver.

—©— Nastin Initialization
= © = Nastin Advance
~—6&—Solidz Advance

7
-~ ~ -
E NG -~ -~
[} ~ -
E ~ -~ -~
(S (C IR
2 | i AT 4
10y © -
o oD o e
(c, ©
7 7 ~
10 1 Il Il Il Il Il
392 784 1568 3136 6272

Number of Nastin Cores

Figure 84: PfS-1a benchmark: strong scaling results for a single-physics fluid simulation, split into the
initialization and the work per timestep (advance). Furthermore, for comparison, the work per timestep
for the pure structural problem on 4 cores is plotted.

The overall mesh asymmetry also induces an asymmetry at the coupling interface. The coupling mesh of
the fluid solver counts 63,321 vertices while the structure solver only counts 4,960 vertices. This is still a
moderate discrepancy. A membrane structure solver with more sophisticated structural elements could
use even much less interface vertices. Coupling approaches with a central instance typically have to
communicate both meshes to the central instance to compute the mapping there. This communication
overhead limits the fluid scalability. With the fully parallel concept of this chapter, we can freely choose
at runtime which mesh to communicate. Thus, we choose to only communicate the small structure
mesh from the structure solver to the fluid solver and compute the interpolation at the fluid solver,
distributed over all interface ranks. Furthermore, we can choose the structure solver as the acceptor
of the M:N communication, compare Section 4.2.1. Thus, preCICE only needs to publish connection
information for every structure rank.

Table 26 collects statistics on the asymmetry. It becomes obvious that the decomposition of the fluid
solver is not optimized towards the coupling interfaces, but towards its domain. At the interface, the

103

number of vertices per rank varies between 9 and 402. Furthermore, Table 26 also shows statistics on
the communication layout, where it compares the applied radial basis function (RBF) mapping to a
nearest neighbor mapping. The overlap regions for the RBF mapping are significantly higher than for

the nearest neighbor mappings. The communicated data increases by a factor of 10.

Nastin Solidz
min max avg min max avg
Interface Vertices ‘ 9 402 197.26 | 1652 1654 1653.3
Com. Partner (NN) 1 2 1.396 135 172 149.3
LCM >, |UP(q)| (NN) 3 111 31.016 | 3252 3406 3318.7
Com. Partner (RBF) 1 3 1.508 136 188 161.3
LCM 3, |UP(q)| (RBF) | 112 728 340.38 | 38061 35236 36420.7

Table 26: Pfs-1a benchmark: coupling surface statistics for 6,268 fluid cores and 4 structure cores
(leading to 321 and 3 cores at the interfaces). The coupling surfaces count 63,321 and 4,960 for the fluid
and structure solver, respectively. This table shows the structure mesh decomposition for two different
mappings: nearest neighbor (NN) and radial basis function (RBF). The local communication map
(LCM) WP list the vertices of rank p that it has to communicate to every rank of the other participant,
compare also Section 4.2.1.

Experiment Settings For the performance measurements, the number of fluid cores is increased
step-wise pr = 780, 1564, 3132, 6268, while the number of structure cores is fixed at pg = 4. All
measurements are done on the SuperMUC Haswell partition, compare the introduction to this chapter.
The fluid solver starts from a pre-computed fluid simulation of 10 timesteps. Afterwards, I only measure
the first coupled timestep while allowing 8 FSI coupling iterations. As the fluid solver is not yet
in a stable convergent state, neither is the FSI coupling. This is unfortunate, but does, however,
not significantly influence the performance measurements. Furthermore, as mentioned already above,
Section 5.4 discusses physical results of another, yet very similar turbulent FSI application. Contrary to
all other results of this chapter, I do not perform five, but only one single run per setting as fluctuations
only play a minor role here. The RBF mapping uses compact thin plate splines as basis function with
a support radius of » = 0.005, covering two elements in both orientations for the flow and span-wise
direction and 20 elements in both orientations for the wall direction. The RBF system is solved up to
relative tolerance of 107°. I apply the parallel Anderson acceleration J-AA as quasi Newton method
using columns of all 8 iterations, a QR1 filter with ¢ = 107% and the residual-sum preconditioner.
Since 1 only measure the first timestep, the amount of columns of the Anderson acceleration under-
estimates a realistic setting to some extent. As the cost of Anderson acceleration grows linearly with
the number of columns, a more realistic cost can, however, be easily extrapolated. Furthermore, the
quasi Newton costs are rather insignificant for this application as I discuss further down. Both, the fluid
and structure solver, use a non-linear convergence criterion of 10~® with 10 and 5 maximum iteration,
respectively, accordingly tuned linear solver settings, and a timestep size of At = 5 x 10~*s. This leads
to a computational time of slightly over a minute per fluid timestep for 6,268 cores, compare Figure 84.

Computational Costs of the Initialization Figure 85, left, shows the computational cost of the
initialization. The overall preCICE initialization time increases with the number of fluid cores, but
is always below 10s and therefore insignificant compared to the fluid solver’s initialization of over 20
minutes for 6,268 cores, compare Figure 84. Establishing the master-slave communication increases,
as expected, with the number of cores, similar to the mesh creation on the fluid side. The latter is
dominated by the global feedback step. To setup the M:N communication is a very cheap operation for
this scenario as only three communications, one per structure rank, need to be set up. Again, the fully
parallel layout of preCICE can take advantage of the scenario’s asymmetry. Initializing the coupling
scheme has insignificant costs, especially for pr = 3132 and p = 6268, where a memory hierarchy effect
lets the runtime drop below the measurement error. The cost to setup the RBF mapping remains below
1s for all four fluid core counts.

104

M " [80 ‘ T — t T \
- [1564 4 [1564
103k 8132 _ 10 - _ 8132
6268 6268
10°
w5 o
E0%F i E
[[
E £ 107
[[
10tk E
) | IL
10° N - . — 100 |_| -d_"_l
M-S Com Create Geos Init M2N Init Cpl Init Map M.1 cst M.lcsv M.>1lcst M.>1csv Cpl Rcv Nsi Rev Sid

Figure 85: Pfs-la benchmark: initialization (left) and work-per-timestep (right). The setup of the
master-slave communication (M-S com) and the geometry creation are measured for Nastin. The setup
of the M2N communication for Solidz. M.1 cst: first consistent mapping, M.>1 csv: average of all
conservative mappings after the first one. Rcv Nsi: receive at Nastin, Rcv Sld: receive at Solidz.

Computational Costs per Timestep Figure 85, right, shows the computational cost per timestep.
The overall preCICE cost is fully dominated by the RBF mapping, but still below the cost for the fluid
timestep. Please note that per timestep, six RBF mappings need be applied, one for each dimension for
the forces and the displacements. Similar to RBF measurements of ASTE, Section 4.3.3, I distinguish
between the first mapping computation and all others, since only the first one includes the computation
of the preconditioner. Both differ roughly by a factor of two to five. I further distinguish between
the consistent mapping and the conservative mapping. The latter shows an only slightly higher cost.
In general, the cost per mapping increases significantly with the number of cores. This is not due to
a higher number of iterations, which, for example, is approximately 2,550 for pr = 780 and 2,320 for
pr = 6268, averaged over the first 12 mappings. The increase is caused by the significant communication
overhead of the polynomial rows. Still, the amount of iterations leaves plenty of room for improvement.

The computational cost of the coupling schemes shows an ideal speed-up. Please note that the applied
residual-sum preconditioner requires a full new QR decomposition per iteration, compare Section 3.6.3.
Still, even if we account for the limited amount of used columns by multiplying the runtimes by a factor
of, let us say, 20, the effort still remains negligible. The reason is that the coupling scheme can take
full advantage of the asymmetry as it only needs to be computed on the coarse coupling mesh of the
structure solver. A brief remark: for prp = 3132, the fluid solver crashes after 4 iterations, causing
a lower average number of columns and thus, causing the lower runtime for the coupling scheme. To
discuss the communication time, Figure 85 shows the receive time for both participants. The receive
time at the fluid solver is very small as every fluid rank only needs to receive relatively small messages,
compare Table 26 for average values on approximately 340 vertices for pg = 6269. Furthermore, the
receive time increases linearly with pp, as the amount of asynchronous send operations per structure
rank increases. The receive time for the structure solver, on the hand, is substantially higher as each
structure rank needs to receive values on approximately 36,421 vertices in average. This size does not
change with pp, hence neither does the runtime. Only for pp = 780, a smaller receive time is measured,
probably due to the lower amount of messages.

Conclusions The fully parallel concept of preCICE allows to take advantage of the immense asymme-
try of the PfS-1a benchmark. We can restrict the communication and the quasi-Newton computations to
the coarser structural mesh. Therefore, both steps have almost no influence on the overall performance.
Also, the initialization effort can take advantage of the asymmetry: it is sufficient to only re-partition
the coarse mesh and the M:N communication only needs to establish one communication per structure
rank. The RBF mapping, on the other hand, results still in significant work. The runtime increases
with the number of fluid cores, as the polynomial rows lead to global communication. Even if restarting
from previous iterations or more sophisticated preconditioners ameliorated the number of iterations
significantly, an RBF method without a global polynomial is needed. Still, the goal of this chapter is
reached: even for 6,268 fluid cores, the time spent in preCICE is smaller than the time spent in the
fluid solver. Hence, a scaling to 60 times more cores than for a server-based coupling software such as
in [58] is possible.

105

-

Summary of Chapter 4

The mesh re-partitioning is based on a gather-scatter procedure through the master
rank, which remains tolerable since only necessary during initialization. Two variants
are supported: the broadcast/filter variant, which is more efficient for most setups, and
the pre-filter/post-filter variant, which is an alternative for memory critical setups.

The parallel communication reuses the existing 1:N communication as kernel to build
up a general M:N communication, avoiding deadlocks at initialization. An asyn-
chronous kernel communication further avoids deadlocks during the actual commu-
nication. The implementation clearly separates the kernel implementation from the
logical M:N layer.

Initialization of the communication remains tolerable up to 1,000 interface cores. Af-
terwards, the MPI routines as well as the publication strategy, currently based on files,
become bottlenecks. In general, the MPT initialization routines (MPI_Comm_accept,
MPI_Comm_connect, etc.) are not robust and do not fully support the MPI standard
for the INTEL and the IBM implementation.

MPI and TCP/IP are both very efficient for the actual M:N communication, although
MPI outperforms TCP/IP by an approximate factor of seven.

The four data mapping variants read/write - consistent /conservative are restricted to
the two cases read-consistent and write-conservative to allow for an easier paralleliza-
tion without much practical limitation.

The parallelization of projected-based mappings, then, reduces to a simple sorting at
initialization without any communication during each mapping step. The costs are
negligible.

The parallelization of the RBF mapping is based on PETSc and shows performance
limitations due to the non-optimal polynomial rows.

For the multi-secant methods, the QR-decomposition is changed to an update scheme,
which is more efficient and allows for an easier parallelization.

Therewith, the Anderson acceleration is well-suited for massively parallel execution,
since the compute effort scales well with the interfaces cores. The generalized Broyden
method, however, suffers from the dense consideration of the Jacobian, which limits
the method’s applicability. A low-rank approximation should solve this problem.

All parallelization concepts are tested with two overall scaling experiments. The
Ateles Cube scenario uses an explicit coupling scheme and a projection-based mapping.
The initialization remains tolerable for medium-sized parallel setups, but becomes
problematic for highly-parallel setups. Per timestep, the coupling hides completely
behind the solver’s costs, not deteriorating the overall scalability.

The PfS-1a scenario features a very asymmetric setup and uses the Anderson ac-
celeration besides RBF mapping schemes. Since communication and the Anderson
acceleration are both performed on the coarse structure coupling mesh, they are neg-
ligible. The RBF mapping is significant in cost, but the coupling remains cheaper
than the solvers’ costs till 6,268 fluid cores.

106

5 Show Cases

In Chapter 3, I introduce an inter-solver parallel layer into FSI simulations by means of parallel coupling
schemes. Tests with standard FSI benchmarks show that the convergence speed compared to sequential
coupling schemes is not degenerated. In Chapter 4, I further introduce parallelism on an intra-solver
level by porting preCICE to a fully parallel peer-to-peer layout. Performance tests on a package level
and for simple coupled simulations show that legacy codes can now be coupled without decreasing their
scalability. Thus, both parallel layers do work. But do we really need them? I answer this question by
applying both parallel layers in realistic scientific applications in this fifth chapter. My focus thereby
is not on the individual application, but on the performance and applicability of the parallelization
concepts. Furthermore, the very heterogeneous range of applications and coupled solvers shows the
inherent flexibility of the partitioned approach, but also of the software concepts in preCICE. Just next,
in Section 5.1, I give a brief overview on all showcases of this chapter. Sections 5.2 to 5.6 then detail all
five showcases one by one and can be read in any order.

5.1 Overview on Show Cases

Table 27 collects all showcases, the applied solvers, and the applied methods. In following, I briefly
summarize the main motivation for each case.

Section ‘ Case ‘ Physics ‘ Solvers ‘ Cpl. Scheme ‘ Mapping
5.2 Aorta FSI - Hemodynamics Nastin, Solidz Various Matching
5.3.2 Jet Flow & Acoustics Ateles J-EX/J-EX | Matching
5.3.3 Bending Tower FSI & Acoustics OpenFOAM, Ateles | J-EX/J-AA NN
5.4 Hemisphere FSI — Aeroelasticity Nastin, Carat+-+ J-AA NN
5.5 Multi-Cylinder | FSI — Aeroelasticity SU2, Solidz M-AA Matching
5.6 UFSI3 FSI & UQ Nastin, Solidz J-AA Matching

Table 27: Overview on all showcase of Chapter 5.

Aortic Blood Flow — Section 5.2 The Aorta showcase gives an example for blood flow through
a realistic aortic geometry. The use of surrogate boundary conditions does not allow to draw physical
conclusions, but does not interfere with the numerical relevance. The purpose of this showcase is
twofold. First, I want to show that a partitioned approach with quasi-Newton coupling can deal with
such a challenging setup in an efficient way while Aitken underrelaxation fails to do so. Second, I
compare the runtime of serial and parallel coupling schemes to show that the inter-parallel layer leads
indeed to a lower total simulation time while also using less resources. The Aorta showcase is joint
work with Juan Carlos Cajas et al. from the Barcelona Supercomputing Center. The geometric setup
is provided by Jordi Martorell et al.

Fluid-Structure-Acoustics Interaction — Section 5.3 Fluid-structure-acoustics interaction (FSAI)
enriches classical FSI by resolving acoustic effects, which results in a challenging three-field coupling.
This section consists of two scenarios: a three-field flow coupling for a 2D subsonic jet and a full FSAI
for a 3D bending tower in cross flow. I use both scenarios, in particular, to show that preCICE is able to
technically handle such complex three-field couplings in an efficient way. Here, the Jet scenario uses two
explicit coupling schemes whereas the Bending Tower scenario composes an implicit coupling between
fluid and structure with an explicit coupling between fluid and acoustics. All combinations lead to an
inter-solver parallelism, generalizing the ideas from Chapter 3. I study the load balancing between three
solvers exemplarily for the Jet scenario. This showcase is joint work with David Blom, Delft University
of Technology and Verena Krupp, University of Siegen, besides all other collaboration partners in the
ExaFSA project. For the Bending Tower scenario, we already published results in [25].

Turbulent Flow around an Elastic Hemisphere — Section 5.4 As the name of the section
says, this showcase simulates a turbulent flow around an elastic hemisphere, which is mounted on a

107

no-slip bottom. Similar to the PfS-1a testcase, which I used in Section 4.5.2 for scalability tests, the
Hemisphere showcase also features a very high cost asymmetry: the fluid solver uses a very fine mesh
at the coupling interface to carefully resolve the turbulent boundary layer, while the structure solver
is very cheap and can even be computed in serial. Compared to the PfS-1a testcase, the fluid domain
even holds three times more degrees of freedom. Preliminary results for the Hemisphere showcase show
the successful application of the intra-parallel layer developed in this thesis as well as the quasi-Newton
coupling schemes — despite the turbulent flow. The showcase is joint work with Aditya Ghantasala et
al. from the Chair of Structural Analysis, TUM, and Juan-Carlos Cajas, Herbert Owen, et al. from the
Barcelona Supercomputing Center. I borrow the setup of the fluid solver from [227], where benchmark
results for a pure fluid simulation are compared to experimental data. Guillaume de Nayer provided us
with the fluid mesh from the original setup.

Simulation of a Brush Seal — Section 5.5 The Multi-Cylinder showcase studies flow around
multiple thin and elastic cylinders — a simplified model of a brush seal. Each cylinder is simulated by
a separate structure solver. The purpose of the simplified model is to study how the amount and the
arrangement of the cylinders influence their vibrations. The main focus of the showcase is to show the
applicability of the multi-coupling methodology developed in Section 3.8 for such a real application.
This showcase is joint work with Alexander Rusch in collaboration with Alexander Fuchs et al. from
the Chair of Turbomachinery and Flight Propulsion, TUM. First results are already reported in the
bachelor thesis of Alexander Rusch [172].

Uncertainty Quantification of the FSI3 Benchmark — Section 5.6 The UFSI3 showcase takes
the plain FSI3 benchmark from Turek et al. [199] and studies how uncertainty in the physical input
parameters propagates through the model. A sparse grid collocation methodology leads to a set of
independent deterministic simulations. These simulations can be computed in parallel resulting in
an additional third parallel layer. The main purpose of this showcase is neither original research in
uncertainty quantification, nor the concrete scenario, but to show how the three parallel layers interplay.
I show that the flexible software environment provided by preCICE can deal with such complex setups
in a rather simple way. The showcase is joint work with Ionut Farcas. Preliminary results are already
reported in his master thesis [79]. The complete results of this showcase with a focus on the UQ
methodology is further prepared for publication in [80].

Remark: On several occasions throughout this chapter, my style of writing switches from a single-author
perspective to a group perspective to emphasize joint work. In such a case, we encompasses the just
mentioned respective collaborators besides myself.

108

5.2 Aortic Blood Flow

In Chapter 3, I develop parallel FSI coupling schemes, whose performance I compare to serial coupling
schemes by simply looking at the number of iteration needed until convergence. The underlying assump-
tion is that if serial and parallel coupling schemes both need the same amount of iterations, parallel
coupling schemes result in a speed-up, since both solvers can be executed simultaneously. For a perfect
load balancing between the fluid and the structure solver, a theoretical speed-up of two is possible. In
this section, I use a realistic application — blood flow through an aortic geometry — to compare serial
and parallel coupling schemes by means of their runtime and their needed resources. Several factors
come now into play that I neglect in Chapter 3:

1. Is a perfect load balancing between the fluid and the structure solver possible? If yes, does it
remain constant throughout the simulation?

2. The coupling iterations within one timestep do not show a constant runtime. For an implicit
solver, typically, the first few need by far longer than the last iterations. How does this interfere
with the comparison of coupling schemes solely by their iteration numbers?

3. The fixed-point acceleration scheme itself also includes a compute effort that differs between serial
and parallel coupling schemes. The parallel system usually features twice the number of rows
and often also twice the number of columns of the serial system. Even more important: if the
residual-sum weighting is applied, the parallel system needs a re-computation of the complete
QR-~decomposition in every iteration. Are all theses differences really negligible compared to the
solvers’ costs?

These open questions are not always easy to measure and compare. I, therefore, choose to directly
compare the overall performance of the coupled simulations, which also is most important from the
application perspective. To achieve the best overall runtime for any coupling scheme, I choose the
resources for both solvers such that they run at their scalability limit.

As a nice side-effect of this showcase, I can show that real-world blood flow applications can be efficiently
carried out by the (black-box) partitioned approach. There is still a misbelief in the FSI community that
this is not possible. This misbelief, however, builds up on experiences that were made with simple Aitken
underrelaxation, a decade ago. Quasi-Newton coupling schemes change the pictures tremendously as I
also show further below in this section.

outflow

o
:
0

PE

X
i

)
&

N T

00
Vi)

i
KEES

£

<

s
I

=

RS,
Ea
YAVavy

or

e

o

s e

T T

outflow

outflow outflow

Figure 86: Aortic geometry and fluid mesh, different perspectives. The structural mesh is a simple
extrusion of the outer boundary of the fluid mesh.

109

fluid density | pr | 1.06 x 103 kg/m?
dynamic viscosity | p# | 3.5 x 1073 kg/(ms)
reference velocity | ug | 1.0m/s

structure density | ps | 1.2 x 103kg/m3
Young’s modulus | E | 4.5 x 10 N/m?
Poisson ratio | v | 0.45

timestep size | At | 1x1073s

Table 28: Physical and numerical parameters for the Aorta showcase.

Testcase Description The testcase is provided by Martorell et al. In [138], they carry out a com-
parative study between a healthy patient and one with an ascending aorta aneurysm. The showcase
of this section only considers the healthy patient. The geometry of the aortic arch is reconstructed
from four-dimensional magnetic resonance imaging. Figure 86 depicts the geometry and the fluid mesh
from different perspectives. One inflow and four outflows are described. All other boundaries belong
to the coupling interface. The diameter of the inflow measures approximately 2.6 x 102 m. I consider
surrogate boundary conditions as the actual boundary conditions from [138] are not provided by the
authors. The focus of this section is not to study physical results, but to check the numerical behavior
of the coupled simulation. I use a periodic inflow condition,

t
Uin = UQ * (1 - COS(27TT)) s

with the period T = 2.0 x 1072 s and simple vanishing Neumann boundary conditions for the velocity
at the outflow. The period T is chosen an order of magnitude smaller than in a realistic setting to
require less simulation time for an actual moving geometry with several periods. The initial flow field is
at rest. Table 28 lists the physical parameters of the testcase. The maximum inflow velocity ug slightly
underestimates a realistic value. For a higher value, however, preliminary tests show that also realistic
outflow conditions are necessary to not overestimate the resulting deformation. The outflow conditions
have seven layers of 10 times higher viscosity to prevent reverse flow, compare [138]. The density ratio
being close to one and the high elasticity of the structure leads to a significant added-mass effect.
Together with the complex geometry, the showcase represents a very challenging case for the coupling
schemes. The fluid mesh consists of 219,770 elements. The structural mesh is simply an extrusion of the
boundary fluid mesh in normal direction with three layers of elements, except for the smaller branches
where only two layers are used. This results in 76,883 structural elements. The extrusion leads, in
particular, to a matching interface mesh with 8.183 vertices at each side. I, thus, apply a simple nearest
neighbor mapping. Figure 87 shows physical results during one period after the initial phase.

Figure 87: Aorta showcase: structural deformation and velocity glyphs for four instances during one
inflow period. For visibility, the deformation is scaled by a factor of five.

110

Load Balancing To get a preliminary impression of the performance, I first study the strong scala-
bility of both solvers independently in single-physics setups. To achieve a non-trivial structural setup,
an (arbitrary) external volume force of 10.0 N is applied — in the negative normal direction to the inflow
surface. Both solvers use a relative convergence criterion of 107> for their internal non-linear iterations
and a corresponding criterion for the inner linear solvers. All tests were performed on the Haswell
partition of SuperMUC, phase two, please compare the hardware description in the introduction to
Chapter 4. Figure 88 depicts the strong scaling for the first 20 timesteps, neglecting the initialization.
It is clearly visible that a perfect loadbalancing between both solvers is only possible if the structure
solver is not run at the scalability limit. For example, 440 fluid cores and 28 structure cores looks like
a balanced setup, and therefore well-suited for parallel coupling schemes. For serial coupling schemes,
on the other hand, scaling the structure solver further should still result in an overall speed-up. For the
coupled tests below, I use various setups of resources to study this effect.

T T 25 —& T T
—O— Fluid Solver —6—GS-AA(L0
—E— Structure Solver _e_J,AA(Z(O))
20 1
2
_ 10t} 1 S15 ¢ 1
. ®
o [}
E -
= 2} 1
=
>
8
5F 4
100 L s s s s L 0 N " L L
28 56 112 224 448 896 0 5 10 15 20
Number of Cores per Module Timestep
Figure 88: Aorta showcase: strong scalabil- Figure 89: Aorta showcase: evolution of the

ity of the single-physics setups and the first 20
timesteps, neglecting the initialization.

coupling iterations over the first 20 timesteps
for 420 fluid cores and 140 structural cores.

Performance of Various Coupling Schemes To study the performance differences between serial
and parallel coupling, I apply Anderson’s acceleration for both, namely GS-AA and J-AA. For com-
parison, I also test a constant underrelaxation of w = 0.01 and a dynamic Aitken underrelaxation. An
underrelaxation with w = 0.02 already diverges. For the sake of brevity, I do not test the generalized
Broyden schemes. I argue in Chapter 3 that they show a similar performance as the Anderson accel-
eration schemes and the focus of this section is on the comparison of serial and parallel coupling. For
the reuse of columns from previous timesteps, I use the suggestions from Chapter 3: 10 timesteps for
GS-AA and 20 timesteps for J-AA. A QRI filter with € = 107 is applied. The J-AA scheme uses the
residual-sum weighting as preconditioner. As coupling convergence criterion, I use a relative criterion of
1072 for both, displacements and forces. Finally, I use TCP/IP sockets for the communication between
both solvers. For all coupling schemes, the performance after 20 timesteps is measured.

Table 29 lists the runtime and the total number of coupling iterations for the various coupling schemes
and different numbers of structure cores. Aitken and constant underrelaxation, I only compare at the
best sequential setup — both solvers at the scalability limit, meaning 420/140 fluid /structure cores. An
immediate conclusion is the superiority of the quasi-Newton schemes compared to the underrelaxation
schemes. J-AA outperforms the Aitken underrelexation in runtime by a factor of more than six, and
the constant underrelexation by a factor of more than 25, for 420/140 fluid/structure cores. Both
quasi-Newton schemes need roughly a similar amount of coupling iterations, which is consistent with
the results of Chapter 3. GS-AA shows, however, a 17% slower runtime than J-AA for 420/140 cores
Furthermore, J-AA can use less resources for the structure solver without interfering with the runtime,
since the fluid solver is apparently still the slower part. Only for 420/28 cores, the structure solver
becomes the bottleneck. The superiority of J-AA holds despite the fact that the quasi-Newton system
itself becomes significantly more expensive to solve — roughly by a factor of 12. For completeness, Figure
89 shows the evolution of the number of coupling iterations during the first 20 timesteps. Similar to
the results of Chapter 3, J-AA shows a worse starting behavior than GS-AA, until a significant column
space is constructed.

111

To summarize, the parallel coupling scheme J-AA results in a significant speed-up compared to the
serial coupling scheme GS-AA, while using less resources. Please note that, in principle, GS-AA would
allow to reuse resources for both solvers, which would lead to a reduction of the total resource to 420
cores. A realization is, however, technically cumbersome as memory would have to be shared among
both solvers and the communication between both solvers would have to be realized in a way that does
not block resources. Finally, GS-AA would then still show a worse overall simulation time as J-AA.

| F/S cores | GS-AA(10) J-AA(20) | GS-Aitken GS-const.(0.01)

Total Iterations 420/28 189 189 - -
Iterations per Timestep 420/28 9.45 9.45 - -
Total Runtime [s] 420/28 244.5 168.9 - -
QN Runtime [s] 420/28 0.67 10.11 - -
Total Iterations 420/56 187 188 - -
Iterations per Timestep 420/56 9.35 9.4 - -
Total Runtime [s] 420/56 185.1 137.0 - -
QN Runtime [s] 420/56 0.67 11.29 - -
Total Iterations 420/140 194 189 1194 8803
Tterations per Timestep | 420/140 9.7 9.45 59.7 440.15
Total Runtime [3] 420,140 160.5 137.7 902.0 3477.0
QN Runtime [s] 420/140 0.81 10.21 - -

Table 29: Aorta showcase: total runtime and number of iterations for the first 20 timesteps and for
various coupling schemes and compute resources. Runtimes are averaged values over five simulations,
neglecting the fastest and the slowest experiment. Aitken and constant underrelaxation is only tested
for 420 fluid and 140 structure cores.

112

5.3 Fluid-Structure-Acoustics Interaction

The ExaFSA project?”, part of the German priority program SPPEXA“®, exemplarily studies fluid-
structure-acoustics interaction (FSAI)[130, 166, 175] as a challenging three-field coupled problem and
its efficient realization on modern compute hardware. FSAI plays an important role for noise-reducing
design of technical devices such as aircrafts, fans, or wind turbines. FSAI is, in particular, challenging
as it features multi-scale properties besides the multi-physics nature. The showcases of this section
present the intermediate results of the ExaFSA project after its first of two phases. I focus, however,
solely on a technical point of view and not on physical results, meaning the technical realization of
the three-field coupling, the inter-solver parallelism and inter-solver load balancing. In a way, this
section can be regarded as a generalization of the two-field inter-solver parallelism of Chapter 3. I
start the showcase with a brief introduction to the coupled problem of FSAT in Section 5.3.1. As FSI
is already widely discussed in this thesis, I focus on fluid-acoustics interaction (FAI). If the flow field
can be decomposed into a near-field with fully resolved flow and an acoustic far-field, FAI becomes a
surface-coupled two-field problem. It is obvious that FAI is an important milestone towards full FSAIL
Afterwards, in Section 5.3.2, I study the FAI of a 2D subsonic jet. For this scenario, the near-field is
further decomposed into an inner viscid and an outer inviscid domain. Thus, for this application, FAI
already becomes a three-field coupled problem. I exemplarily study the load-balancing between all three
solvers for this scenario. Finally, Section 5.3.3 studies the full FSAI of the flow around a bending tower.
As 1, therefore, mainly summarize our work in [25], I keep this last section short.

5.3.1 Fluid-Acoustic Interaction

When looking at the noise emission of a wind turbine, the multi-scale nature of FSAI becomes obvious:
noise is generated in the boundary layer of the wind turbine at a length scale of centimeters, the whole
turbine has a length scale of meters, and important noise immission zones might be in a distance of
hundreds of meters. Thus, resolving all scales of such a scenario with a direct monolithic simulation
is computationally unfeasible. On the other hand, acoustics is nothing else than travelling pressure
waves in fluids. Close to the wind turbine, theses waves superpose pure flow phenomena (cf. e.g. [238]).
Further away from the turbine, however, fluid phenomena can be neglected. Thus, splitting of the fluid
domain into near-field and far-field is possible. The near-field marks the domain where acoustic waves
are generated, possibly as part of an FSI. Here, a full compressible flow simulation is necessary. In the
far-field, only acoustic waves need to be resolved, whereas the flow itself can be neglected. Linearized
equations around a fixed background state can be applied. Contrary to FSI, the location of the splitting
is, however, not obvious. Figure 90 depicts the three-field setup of FSAI and a suitable coupling strategy.
On the left, the three zones, structure, fluid, and acoustics, are depicted. Between fluid and structure,
typically, a bi-directional coupling is necessary. Forces and displacements need to be exchanged, for
example, as explained in Section 3.1. The coupling at the FAI interface is different: If we assume
that the far field contains no obstacles that might reflect acoustic waves back into the near field, the
coupling can be modeled as uni-directional. Furthermore, the complete state, velocity, pressure, and
density, needs to be communicated. These two different kinds of interaction also influence the coupling
strategy as depicted on the right side of Figure 90. As the interaction between fluid and structure
might be strong, an implicit coupling is necessary. For the FAI coupling, however, an explicit coupling
is sufficient due to the uni-directional dependence. At the same time, acoustic phenomena occur also
on a different time-scale than flow phenomena. A sub-cycling of the acoustic solver might be desirable.

The partitioning into near-field and far-field has the additional advantage that tailored numerical
schemes and resolutions can be applied in every sub-domain. In the near field, a fine mesh resolu-
tion is necessary to capture the geometry movement of the FSI. Thus, a low order scheme is sufficient.
Typically, a finite volume discretization is a good choice for the near-field. In the far-field, however, a
coarse resolution is sufficient as geometries do not have to be resolved carefully. Thus, a higher-order
scheme can be applied. As the far-field is a purely linear problem, a higher-order scheme does also not
become overly expensive. Furthermore, the lower numerical dissipation fits well to the wave phenom-
ena. Thus, discontinuous Galerkin schemes, which became popular during the last decade, are a very
well-suited choice for the far-field.

4Thttps://ipvs.informatik.uni-stuttgart.de/SGS/EXAFSA/
Bnttp://www. sppexa.de/

113

A

F AAAAAAAAAA
/' F F F /1
>§>§>§>§>§>§>§

tN tN+1

Figure 90: Schematic view on fluid-structure-acoustic interaction, domain decomposition (left) and
coupling scheme (right). d: displacements, f: forces, p: pressure, p: density, v: velocity. Arrows mark
data exchange. Doted lines mark timesteps. tV,tN+! denote global timesteps.

With this motivation, I end the brief introduction into FAI and FSAI. For a more detailed description,
the reader may refer to our work in [25].

5.3.2 Three-Field Flow Coupling around a 2D Subsonic Free Jet

As an important milestone towards full FSAI, this section discusses the coupling strategy and the
performance results of a three-field flow coupling around a 2D subsonic free jet. Directly around the
development of the jet, the compressible Navier-Stokes equations are used to fully resolve the flow
field. Further away — in the mid-field — viscous forces can be neglected, such that the computationally
cheaper Euler equations can be used. In the far-field, only acoustic waves are resolved by means of
Euler equations that are linearized around a fixed background state. At both coupling interfaces, the
complete state variables — density, velocity, and pressure — are exchanged bi-directionally. From the
Euler domain to the Navier-Stokes domain, also the gradients of the state variables are exchanged. To
allow for a faster reading, I abbreviate the three coupled solvers as NS, E, and LE in the following.

Testcase Description Figure 91 depicts the geometrical layout of the Jet scenario and Table 30 lists
the physical parameters of the testcase. Initially, the flow is at rest, identical to the background state.

background fluid density | p" | 1.4kg/m?
background fluid velocity | «° | (0.0,0.0) m/s
background fluid pressure | p° | 1.0N/m?
specific gas constant | R | 2.8 x 102m?/(s?K)
thermal conductivity | A | 1.4 x 107*kgm/(s* K)
dynamic viscosity | u | 1.0 x 107" kg/(ms)
isentropic coefficient | ~ | 1.4
speed of sound | ¢ | 1.0m/s
jet radius | 7o | 1.0 x 107'm
momentum thickness | d | 5.0 x 1073 m
timestep size | At | 5 x 10755

Table 30: Physical parameters of the Jet scenario.

In the NS domain, the velocity in z-direction at the inflow is described as

- 70 — |y — Yo
z=1Uy-05-(1+tanh | ————7— ,
U, Uy - 0.5 (+ tan (50 >)

with 4, = Ma - ¢ and the Mach number Ma = 0.4. The tanh function is used to smooth the pulse in
y-direction. The jet’s center is slightly moved in y-direction by yo = 1 x 10™*m to induce asymmetry
and, thus, foster the development of vortices in the flow. The velocity in y-direction is set to zero. To
diminish the initial shock of the jet streaming into a fluid at rest, the inflow velocity is ramped up to the
full amplitude by means of sinusoidal factor during the first 10s. Since no actual jet nozzle is resolved

114

Linearized Euler
. 10m
Equations

Euler
Equations

] §
5m
] '

Navier-Stokes % ESponge ‘%
. = : = 10m
Equations = \ Zone | =
:)
)
Euler -
Equations bm
: Y
€ > 4
I 35m
Linearized Euler 10m
Equations

15m

Figure 91: Geometrical layout of the Jet testcase. In the Navier-Stokes domain, a free subsonic jet is
described as inflow condition. Further away from the jet, first, viscous forces can be neglected (Euler
domain), and afterwards, complete flow phenomena (linearized Euler domain). A bi-directional coupling
is used at all coupling interfaces.

explicitly, the density at the inflow is adapted to the velocity by means of the Crocco-Busemann relation

(cf. [17), »
pﬁ~(1+0.5-('yl)~Ma2-1fz'<1ELHC)) ,

Ug

with § = 2.0kg/m?. The pressure at the inflow follows a Neumann-zero condition. The inflow boundary
outside the jet radius in the NS and the E domain is fixed to the background state.

At the outflow, in the NS and in the E domain, the pressure is fixed to the background state while
the velocity and the density follow a Neumann-zero condition. Furthermore, a sponge zone is used to
artificially damp the flow to the background state and, thus, to allow flow features to leave the domain
without reflections. Finally, all outer boundaries in the LE domain fix the acoustic pertubations to zero.

Numerical Settings All three domains use the discontinuous Galerkin solver Ateles, compare Section
2.4. The spatial order is set to 16 and the grid resolution to 0.25 m. Thus, both the NS domain and the
E domain include 2,400, and the LE domain 4,800 elements. Please note that such an identical spatial
order in every domain is not optimal, but merely chosen for the sake of simplicity. A better choice would
be a finer mesh with a lower order in the NS domain, a coarser mesh with a higher order in the LE
domain, and the E domain somewhere in between. In particular, with the current setup, all coupling
interfaces feature matching meshes. Still, preCICE exchanges both meshes to also allow for consistent
mappings in both direction in case of non-matching meshes at a later point in time — please recall
the discussion in Section 4.3.1. All domains use a second order explicit Runge-Kutta scheme for the
time integration. Due to different stability restrictions, however, each domain would require a different
maximum timestep size. For the current setting, in the NS domain, the timestep size would have to be

115

an order of magnitude smaller than in the E and in the LE domain. This is, indeed, another important
advantage of the splitting in NS and E. For the sake of simplicity, however, the overall timestep size is
fixed to the smallest restriction — here the NS criterion, leaving room for improvement (compare the
discussion in Section 6.2). For the coupling, two parallel-explicit coupling schemes are composed, please
recall Section 3.8.2. Here, the coupling between NS and E precedes the coupling between E and LE.
Still, all three solvers are executed in parallel to each other, as visualized in Figure 92.

Navier-Stokes Euler Linearized Euler
Ateles Ateles Ateles
- u,p, p - -
B B E2LE B
NS Adv | preCICE grmmmmmmmmmsa e =
‘ preCICE preCICE LE Adv
. vu’ p’vp’ u,p, p
u’ p7 E
Vp |i EoNs . i
Ateles i
— u’ p7 p
Ateles
Ateles

Figure 92: Jet testcase, flow chart of the three-field coupling. Temporal flow is from top to bottom.
The combination of two explicit-parallel coupling schemes allows the simultaneous execution of all three
solvers. The Euler solver first exchanges data with the Navier-Stokes solver and afterwards, with the
linearized Euler solver. The time events are: NS Adv — the advance call of the Navier-Stokes solver,
LE Adv — the advance call of the linearied Euler solver, E2NS — the coupling between the Euler and the
Navier-Stokes solver, and E2LE — the coupling between the Euler and the linearized Euler solver. The
sum of the latter two gives the time spent in the advance call of the Euler solver — E Adv. Please note
that E2NS already ends after the asychronous send from the Euler solver.

Figure 93 shows the pressure in all three domains at various points in time during the development of the
jet. A smooth transition over all interfaces is achieved, confirming the correct coupling and justifying
the position of the interfaces. The superposition of flow phenomena and acoustic waves is clearly visible.
Eventually, the simulation crashes at ¢ = 133 s, when the first vortex is about pass from the E to the
LE domain, contradicting the linearization.

Performance and Load Balancing I use the Jet showcase to exemplarily study the performance
and load balancing of a three-field coupled problem. As the initialization cost for coupled scenarios
with Ateles are already thoroughly discussed for the Ateles Cube in Section 4.5.1, I focus solely on the
cost per timestep. The load balancing of a three-field coupling is non-trivial to analyze. NS is expected
to be slightly more expensive than E, since the equations involve more terms. LE, on the other hand,
should again be much cheaper than E, since the latter requires Fourier transformations back and forth
between the modal and the nodal space per timestep. Measurements showed that this lets the cost of E
scale quadratically with the spatial order, while the cost for LE only scales linearly. The LE domain is,
furthermore, double the size than each one of the other two. The basic idea to analyze the three-field
load balancing is to run either NS or LE with a very high amount of resources. Then, the remaining two
solvers can be balanced out. The balance itself can be implicitely studied by considering the time spent
in the preCICE function advance, as it also contains a possible synchronization time between the various
solvers. Furthermore, I split up the time spent in the advance call of E into both coupling schemes. In
total, I consider the five events NS Adv, E Adv, LE Adv, E2NS, and E2LE, as also depicted in Figure 92.
For the analysis of the events, two effects have to be taken special care of. First, the time needed for
the load balancing always overlays with the actual communication, which also scales with the number
of cores. The mapping and any other computations in preCICE, on the other hand, are negligible for
this showcase. Second, the end of the event E2NS is already triggered once the asynchronous sending

116

Figure 93: Acoustic pressure waves through all three domains of the Jet testcase. From left to right and
from top to bottom, at t = 10.0s,t = 20.0s,...,¢ = 120.0s. The color scale ranges from 0.974 N/m? to
1.027 N/m?

operations from E to NS are finished. The communication itself is, however, not yet completed and,
thus, contributes artificially to the time spent in E2LE. This phenomenon is also indicated in Figure 92.

I run all tests on the thin nodes partition of SuperMUC, phase one, please recall the hardware description
in the introduction to Chapter 4. As usual, I perform five runs for each test, discarding the minimum and
the maximum, and averaging the remaining three runtimes. For the M2N communication, I use TCP /TP
sockets, which show an approximately seven times worse performance than MPI Ports in Section 4.2.3.
Still, the MPI Ports show ever consisting robustness issues on SuperMUC, such that tests after the
SuperMUC software update of spring 2016 did no longer work, compare the discussion in Section 4.2.3.
I measure the time after the first 1,000 timesteps.

For the first series of experiments, the NS domain uses 40 nodes, the LE domain one node and the E
domain varies between 4 and 18 nodes. For this setup, NS should always be the fastest solver such that
the other two can be balanced out. Figure 94 shows the timings of all events over the varying E domain
size. For lower E resources, LE always has to wait for E as visible in the high timing values of LE Adv.
For more E resources, E becomes faster than LE resulting in low LE Adv values. E2LE first decreases
due to faster and faster parallel communication of E. Afterwards, after 10 Euler nodes, E2LE increases
due to the increasing waiting time of E. Please note that this increase in waiting time looks, at first,
smaller than the decrease of waiting in Adv LE, but both changes have to be compared in a relative
manner. Next, E2NS is relatively small, since, before the receive of E; NS has always already sent its
data. Furthermore, the sending of data from E to NS is not measurable in E2NS as explained in Figure
92. Adv NS decreases as long as E becomes faster. Afterwards, LE is the bottleneck, which remains
constant. I conclude that the optimal load balancing between LE and E is approximately 1 to 10 for
the complete scenario, meaning 1 to 20 per element.

For the second series of experiments, E is fixed at 10 nodes, LE at 5 nodes, and NS varies between 10
and 24 nodes. The results above indicate that LE should now always be the fastest solver, which allows
to balance out NS and E. Figure 95 visualizes the results. The situation is slightly more complicated to
interpret. Jumps from 16 to 18, and from 22 to 24 NS nodes are noticeable. They are assumably due to
the higher amount of nodes of NS that lie at the coupling interface. They let the communication time

117

-
[es]
o

[
D
o

[
N
o

[
N
o

[N
o
o

Time per Timestep [ms]
@
o

Time per Timestep [ms]

e 2 0 L L L L L L
4 6 8 10 12 14 16 18 10 12 14 16 18 20 22 24
Number of Euler Nodes Number of Navier-Stokes Nodes

Figure 94: Load balancing study for the Jet test- Figure 95: Load balancing study for the Jet test-
case. The Navier-Stokes solver uses 40 nodes and case. The Euler solver uses 40 nodes and the lin-
the linearized Euler solver one node, while the re- earized Euler solver five node, while the resources
sources for the Euler solver are varied. for the Navier-Stokes solver are varied.

for NS decrease due to higher parallelism, but increase the communication time for E, since messages
to more receivers have to be sent. If we subtract this superposed effect, the waiting time for NS is
constant from 10 to 12 nodes and increases afterwards. Consistently, E2NS increases from 10 to 12
nodes and decreases afterwards. Thus, I conclude that the optimal load balancing between NS and E is
approximately 12 or 14 to 10. For the sake of completeness: E2LE needs a constant time for the actual
communication, but is superposed by the sending from E to NS, and Adv LE shows the expected high
waiting time including the effects of the slower one of either E or NS. Please note, that the fastest overall
setting, judging by Adv LE at 24 nodes for NS, is not the best load balancing. If the overall amount of
resources is not conserved, best load balancing does, of course, not imply fastest overall setup.

Finally, I test how the load balancing and the general performance changes when the approximately
ideal balance 14 to 10 to 1 is scaled up. I start with 14 nodes for NS, 10 nodes for E, and one node
for LE, and double the amount of nodes three times. Figure 96 shows the timing of all events, but also
the time solely spent in Ateles, exemplarily for E. The load balancing changes when scaling up: LE is,
at first, the overall bottleneck, but becomes faster than the other two solvers for more than two nodes.
The balance between NS and E slightly moves towards a relatively faster NS for a higher amount of
resources. In general, preCICE cannot keep up with the scaling of Ateles, since the interface sizes do
not scale perfectly. Table 31 shows that number of cores at the interfaces does not double when the
overall number of cores doubles. One should also not expect this: for a perfectly uniform refinement in
2D, the cores at the coupling interface should increase by a factor of v/2 when the overall number of
cores is doubled. This is worse than in 3D*° and explains the discrepancy to the Ateles Cube results
of Section 4.5.1 to some extent. Table 31 further lists the maximum amount of interface vertices per
core (IVpC), which further illustrates this phenomenon. Furthermore, the non-scaling communication
overhead has to be taken into account. The mediocre performance lets preCICE easily become more
expensive than Ateles. If MPI communication could be used instead of TCP/IP, the communication
is, however, expected to drop by a factor of seven, as already mentioned further above, which would
change the overall picture drastically.

49If the domain decomposition in 3D refines along one axis per doubling of the resources, three such refinement steps
lets the amount of cores at an axis-aligned plain double twice. This gives a factor of ¥/4 ~ 1.59 > 1.41 ~ /2.

118

102

Cores NS | 224 448 896 1972
Cores E | 160 320 640 1280
CoresLE | 16 32 64 128 e o]
Int. Cores NS | 43 55 77 91
Int. Cores E2NS | 36 43 72 72
Int. Cores E2LE | 32 57 61 62 2z
Int. Cores LE | 6 10 14 22 5 ’
Max. IVpC. NS | 80 64 32 32 gott -
Max. IVpC. E2NS | 80 64 48 32] o FloNe
Max. IVpC. E2LE | 80 64 48 32 e —E—E Ateles
Max. IVpC. LE | 496 368 208 160 =
Table 31: Changing interface resources for the
strong scalability test of the Jet testcase. The 100°

overall number of cores in each domain is com-
pared to the number of cores at the coupling
interfaces. Furthermore the maximum number
of interface vertices per core (IVpC) is listed to

1 2 4 8
Number of Linearized-Euler Nodes

Figure 96: Strong scalability test for the Jet test-
case. The nodes of the Navier-Stokes, the Euler, and

the linearized Euler solver use a fixed ratio of 14 to
10 to 1, and are doubled three times.

judge upon the load balancing within each in-
terface.

5.3.3 Fluid-Structure Acoustic Coupling for a 3D Bending Tower

As final example of this showcase section, I give intermediate results for a full FSAI example, a 3D
bending tower in cross flow [25, 26]. The scenario is rather simple, but includes three-dimensional
effects. Figure 97 depicts the geometry of the scenario. The fluid domain uses compressible Navier-
Stokes equations and OpenFOAM as solver. The structural domain also uses OpenFOAM. Similar
to the Jet scenario, the acoustics domain again uses linearized FEuler equations and Ateles as solver.
Between fluid and structure, a quasi-Newton implicit coupling scheme is used while the fluid-acoustic
coupling is explicit and uni-directional, similar as depicted in Figure 90.

— T

Acoustics

Fluid
g Structure

Figure 97: FSAI showcase, 3D Bend-
ing Tower: geometry setup. The figure
is adapted from [25].

Figure 98: FSAI showcase, 3D Bending Tower:
acoustic pressure waves and structural displace-
ment. The figure is adapted from [25].

The flexible structure is fixed at the no-slip bottom. At the left and the right boundary, periodic
conditions are prescribed. In span-wise direction, symmetric boundary conditions are used. The acoustic
solver sets the acoustic pertubation to zero at the top boundary, Dirichlet coupling conditions at the
bottom, and periodic conditions at all other boundaries. Table 32 lists all parameters of the scenario.

119

Initially, the flow is set to the non-zero background state. The structure uses 4,500 and the fluid
approximately 300,000 control volumes. The acoustics domain includes 6,144 elements with a spatial
discretization order of seven. Figure 98 shows acoustic pressure waves — results borrowed from our work
in [25]. The transition through the coupling interface features a visible jump, which we assume to be
due to the outflow condition that the fluid solver uses at the top boundary or the different boundary
conditions in span-wise direction. Still, the results proof that preCICE is able to technically handle the
implicit-explicit three-field coupling.

background fluid density | p% | 1.0kg/m?
background fluid velocity | u® | (2.3,0.0,0.0) m/s
background fluid pressure | p® | 1.0 x 102 N/m?

kinematic viscosity | v# | 1.0 x 1072 m?/s
speed of sound | ¢ | 11.8m/s

structure density | ps | 1 x 103 kg/m?
Young’s modulus | E | 1.4 x 105 N/m?
Poisson ratio | v | 0.4

timestep size | At | 1x107°s

Table 32: Physical parameters of the Bending Tower scenario.

120

5.4 Turbulent Flow around an Elastic Hemisphere

In [227], the turbulent flow around a rigid hemisphere is studied both experimentally and via simulation.
Air inflated hemispheres play a role in modern civil engineering, for example, as buildings for temporary
housing in disaster areas. To study the stability of such constructions, a full FSI simulation is, however,
mandatory, as also mentioned in [227].

To realize an FSI simulation, the immense cost asymmetry of the scenario needs to be taken care of. On
the one hand, the fluid simulation needs a careful resolution of the complete boundary layer, especially
due to the spherical shape, leading to an expensive setup with a very fine resolution of the coupling
interface. The structure simulation, on the other hand, might only feature a few hundreds of degrees of
freedom as a sphere can be efficiently modeled by shell elements. I already discuss the consequences of
this asymmetry in Section 1.1.2: the FSI approach needs to take advantage of the asymmetry, meaning
that only the small mesh should be communicated. In Section 4.5.2, I show a performance study for the
asymmetric Pfs-1a benchmark. The even more expensive hemisphere setup takes this effect to extremes:
an server-based FSI approach appears unfeasible. Therefore, the case marks a perfect showcase for the
intra-solver parallelism of preCICE.

inflow outflow

10.0m —
0.5m

Figure 99: Geometrical layout of the Hemisphere scenario, cut through the y = 0 plain. The elastic
inner structure is depicted in orange. The sketch is not true to scale.

For the FSI simulation, I use Alya Nastin as fluid solver and reuse the same setup as in [227], including
the mesh, which the authors provided. The mesh consists of approximately 31 million nodes, of which
128,000 lie at the coupling interface. As structure solver, I use Carat++. The hemisphere is modelled
with only 228 nodes. Figure 99 shows the geometry of the scenario. The complete fluid domain is also
a hemisphere with a 20 times larger diameter than the elastic hemisphere, which is placed in the center
of the domain. The outer boundary is split into an inflow boundary and an outflow boundary. The
bottom as well as the structure use a no-slip description. The inflow condition uses a turbulent wall
profile of the height of the elastic hemisphere and a constant profile above. As the Alya configuration
currently does not support a min function to concatenate both profiles, I approximate the profiles via

2
arctan(10z) - = - 0.862351 - ug .
7r

Table 33 lists all parameters of the scenario.

Results A technical MPI issue on SuperMUC, which appeared after the system update of Spring
2016, could not be resolved in time for this thesis. Therefore, unfortunately, I have to fall back to a
single feasibility run that I ran before the system update. A thorough study and a joint publication with
all involved researchers is, however, planned for the near future. The single run uses 1.764 cores for the
fluid problem and a single core for the structure problem, both on the Haswell partition of SuperMUC.
The FSI simulation uses a stabilized fluid run as initial condition. For the coupling, I apply a parallel
Anderson acceleration with reused columns from 20 timesteps, J-AA(20), together with the residual-
sum weighting. The coupling iteration uses a relative convergence criterion for both displacements and
forces of 1073. Both solvers use a relative criterion of 10=° for their internal non-linear solver. The

121

fluid density | pr | 1.225kg/m?
dynamic viscosity | u | 1.826475 x 10~°kg/(ms)
reference velocity | ug | 1.0m/s

structure density | ps | 1.7 x 10% kg/m3

Young’s modulus | E | 1 x 10° N/m?
Poisson ratio | v | 0.3

internal pressure | py | 1.0N/m?

timestep size | At | 1x107?s

Table 33: Physical and numerical parameters for the Hemisphere showcase.

first 58 timesteps result in an average of 3.26 coupling iterations per timestep, which shows that the
Anderson acceleration results in a very efficient coupling. In particular, the turbulent fluctuations have
no negative influence on the stability of the coupling scheme. Assumably, this is due to the fact that
the acceleration is computed on the coarse structure mesh, not on the fine fluid mesh. Furthermore,
the fully-parallel concept of preCICE can take full advantage of asymmetry such the coupling cost is
almost negligible. The initialization in preCICE, for example, only takes 0.2s. To summarize, both
the coupling schemes as well as the intra-solver parallelism in preCICE seem very well suited for the
Hemisphere scenario, although a detailed study should follow.

122

5.5 Simulation of a Brush Seal — Feasability Study

Colleagues at the chair of Turbomachinery and Flight Propulsion, TUM, in a cooperation with MTU
Aero Engines, study the behavior and design of brush seals. To approach realistic simulations of these
components, simplified FSI setups are tested, both experimentally and via simulation. To this end,
the vibrations of wall-mounted thin steel cylinders are studied. In [70, 172], the vibration of a single
cylinder is already exemplarily simulated. The showcase of this section considers a setup with multiple
cylinders, which interact with each other. I refer to this setup as Multi-Cylinder testcase. The testcase
is well suited to demonstrate the outcome of this thesis. First, the inherent flexibility of the partitioned
approach is obligatory, as sophisticated and well-validated fluid and structure solvers should be reused
in the cooperation. Second, the multi-coupling scheme, developed in Section 3.8, can be used to couple
various cylinders with one fluid solver. Third and last, turbulent flow together with the FSI leads to a
computational expensive simulation for which the parallelization concepts of this thesis can be applied.
Next, I briefly introduce the reader to brush seals, following the description from [172], and to the
applied simplifications. Afterwards, I detail the simulation setup and discuss the results.

front housing

back support ring

wires

TOtOr —=77777777/7777 /77777777

Figure 100: Sealing element of a brush seal (left) and schematic cross section of a sealing element with
its housing (right). Both figures are taken from [70] and are already used in [172].

Brush Seals Brush seals are used in a variety of applications, such as flight propulsion systems, gas
turbines and steam turbines. These applications have in common that an efficient sealing between static
(stator) and dynamic (rotor) elements of a machine is necessary to separate gases from gases, but also
gases from liquids. Here, brush seals show a significantly lower leakage than alternative, conventional
technologies (cf. [70]). Figure 100 depicts such a sealing element. Obviously, the name of these seals
originates from their characteristic structure: many slender and elastic wires are clamped together to
form a brush. In the initial configuration, these wires are spatially quite loose. They are in contact with
the rotor, but permit both axial and radial relative motion between stator and rotor. As soon as the
rotor starts moving, the brush wires are pushed against the back support ring. Now, the wires align
and the brush becomes a leak-tight barrier. To better understand this behavior, especially the influence
of FSI, a stepwise approximation with both simulation and experimental study is carried out.

Simplified Fluid-Structure Interaction For simplification, we ignore the housing and any contact
mechanics, but simply study the interaction of the wires with the flow. As already mentioned above,
[70, 172] already study a single wire. As the mutual influence of several wires is assumably of importance
to understand the exact behavior of a complete brush seal, we extend the study in this showcase to
nine wires. To this end, we use a separate structure solver for each individual wire. In [59], a, from FSI
perspective, similar setup is studied — multiple identical cylinders in turbulent flow — despite a different
underlying application. Here, the authors use a single overall structure solver and connect the tips of
the cylinders by thin artificial beams for stabilization. The usage of multiple structure solvers, as in our
approach, allows the reuse of the complete setup including the mesh of one single wire. Furthermore,
it is not clear if a general structure solver can numerically deal with such non-connected cylinders
and how this influences its performance. For this showcase, we use SU2 as fluid solver and one Alya
Solidz instance for each cylinder. SU2 simulates compressible flow, though the setup is in a nearly
incompressible regime. Furthermore, as turbulence model, the Spalart-Allmaras model [188] is applied.

123

a) 0.5m

z
Py
0.05m |
i . i
0.005m
b)
36 g
z 0%
T 1050g®9
2 @7
y 4,5

Figure 101: Schematic view of the Multi Cylinder testcase. a) cut through the plain y = 0, b) cut
through the plain z = 0. The sketches are not true to scale. The exact positions of the cylinders are
listed in Table 34. Similar figures are also used in [172].

I T
C; | 0.086 0.0 0.0
Csy | 0.093 | 0.007 | 0.0
Cs | 0.093 | -0.007 | 0.0
Cy| 01 0.0014 | 0.0
Cs | 01 0.0 0.0
Cs | 0.1 | -0.0014 | 0.0
Cr | 0.107 | 0.007 | 0.0
Cg | 0.107 | -0.007 | 0.0
Cy | 0.114 0.0 0.0

Table 34: Multi-Cylinder testcase: coordinates of the top center points of all cylinders.

Scenario Description Figure 101 sketches the geometry of the Multi-Cylinder testcase. Additionally,
Table 34 lists the coordinates of the top center points of all cylinders. The inlet uses a constant inlet
profile, the outlet uses a standard Neumann-zero outflow condition and the bottom as well as the
cylinders use a no-slip description. The top of the domain is a free stream boundary, while symmetric
conditions are used in span-wise direction. A pre-computed fluid simulation is used as initial condition.
To further stabilize the start of the simulation, the forces on the cylinders are linearly ramped up over
the first 0.01s. Table 35 lists all parameters of the testcase.

Numerical and Computational Setup Figure 102 visualizes the fluid mesh, which contains 417,155
control volumes. The structure solvers use between 3,883 and 3,925 elements. At all coupling interfaces,
the surface meshes match. The coupling sub-iteration uses a relative convergence criterion of 1072 for
forces and displacements at all interfaces. SU2 uses an internal relative criterion of 10~7, while all Solidz

124

fluid density | pr | 1.185kg/m?
dynamic viscosity | u | 1.831 x 1075 kg/(ms)
specific gas constant | R | 2.87058 x 102 J/(kg K)
specific heat ratio K 1.4
Reynolds number | Re | 1.0 x 103
Reynolds length | Iy | 5.0 x 1073 m
Mach number | Ma | 0.1
free stream temperature | T | 2.9815 x 102K
structure density | ps | 1.0 x 10*kg/m?
Young’s modulus | E | 5.6 x 109 N/m?
Poisson ratio v 0.3

timestep size ‘ At ‘ 1.0 x 107 °s

Table 35: Multi-Cylinder testcase: physical parameters.

solvers use a relative criterion of 107°. A multi coupling scheme based on the Anderson acceleration
with reused columns from ten timesteps, M-AA(10), together with a QRI filter with ¢ = 107° is used.
The simulation is carried out on the bdz partition of the CoolMAC cluster®®. A total of six nodes & 64
cores are used — five nodes for the fluid solver and one node for all structure solvers — which results is
an overall simulation time of approximately 125 hours for 0.08 s real time.

Figure 102: Fluid mesh for the Multi Cylinder testcase with nine cylinders. Wireframe (left) and
close-up of the adaptive refinement (right).

il |

Figure 103: Multi Cylinder testcase, Mach number for different cuts through the referential (un-
deformed) fluid domain at ¢ = 0.06s. From left to right at the plains: z =0, y = 0, and = 0.1.

Results Most important for this thesis is probably the performance of the multi-coupling scheme. The
number of sub-iterations drops from 25 to 2 over the first 13 timesteps. After timestep 168, the iterations
even drop to one. The multi-coupling allows, thus, for a stable, but also for a very efficient coupling.
Besides this main conclusion, I also want to briefly discuss the physical results. Figure 103 gives a first
impression on the physical results. The displacements of the top center points of all cylinders over time

50http://www.mac.tum.de/wiki/index.php/MAC_Cluster

125

give more insight, as depicted in Figure 104. One can clearly see that the oscillations of the cylinders
differ in magnitude and are also phase-shifted, showing the mutual influence of the cylinders. The
leftmost cylinder, C'1, shows the smallest magnitude, while the outmost cylinders of the configuration,
C4 and C6, show the highest overall deformation and an oscillation around a clearly deformed state.
In general, a phase-shift is visible from left to right in the cylinder configuration, meaning that the
cylinders more on the right follow those on the left. For a clean study, the setup should be simulated
over a longer period of time. In general, I can state, however, that the current numerical and software
setup is able to simulate and compare various cylinder configurations.

0.2

0.15

0.1

Displacement x [mm]

0.05

0.06

0.07 0.08

0.05

1 1 1 1 1 1 1 1 1
0.02 0.03 0.04
Time [s]

Figure 104: Multi Cylinder testcase, oscillation of the all cylinder tips. For the geometric configuration,
compare Figure 101.

126

5.6 Uncertainty Quantification of the FSI3 Benchmark

Research in uncertainty quantification (UQ), or more concisely in the branch of forward propagation,
studies how uncertainty in input parameters propagates through a physical model and influences certain
key values of the output, so-called quantities of interest. Physical input parameters are often measured
quantities. Their uncertainty is, therefore, a natural assumption. If we were able to determine distribu-
tion functions of quantities of interest, confidence intervals could easily be computed in a post-processing
step. To make it simple, this could concern the question about the probability that the wing of an air-
plane does or does not break. Research in UQ has gained a lot of attention in recent years, not only to
due to its necessity, but also to the growing computational possibilities.

In this showcase, I exemplarily study UQ for the FSI3 benchmark. In contrast to the classical, de-
terministic setting discussed in Section 3.7.1, the physical input parameters now become distributions
instead of fixed deterministic values. These input parameters are the fluid and structural density, pp
and pg, the dynamic viscosity u, the E-module F, and the Poisson ration v. As quantity of interest,
I consider the displacement in x-direction of the backside of the cantilever — point A, please compare
Figure 37 on page 55. Furthermore, stochastic moments, such as the expectation value or the variance,
of the flow velocity are a natural output of an uncertain FSI simulation. I refer to the uncertain FSI3
benchmark as UFSI3.

The purpose of this showcase is not to present original UQ research, but to study how the two parallel
layers developed in this thesis interplay with an additional third sampling layer, such as UQ. The
showcase should, therefore, be regarded as a prototype, used to study the question on how far we can
get with such an approach. Section 5.6.1, therefore, collects the challenges that we have to deal with
in such a complex setting. The discussion comes along with a brief literature review on UQ in FSI
simulations. Afterwards, Section 5.6.2 gives a compact description of the applied mathematical setup.
Finally, Section 5.6.3 shows the simulation results and discusses their performance. I do not repeat a
description of the FSI3 benchmark itself as it is already covered in Section 3.7.1.

5.6.1 The Multi-Challenge

In 2010, the Institute for Advanced Study of the Technical University of Munich, initiated the focus
group High Performance Computing, which dedicated itself to tackle the multi-challenge®®. The goal of
the group’s research is to tackle complex problems that necessitate expertise in several multi commu-
nities. The UFSI3 showcase falls into this category of problems. The underlying multi-physics problem
and its challenges are already elaborated broadly in this thesis, recall, for example, Section 1.1. The
UQ setup further introduces a multi-dimensional challenge. The five-dimensional stochastic parameter
space renders brute force algorithms too costly due to the so-called curse of dimensionality — the expo-
nential growth of the computational cost with the dimension. Sophisticated state-of-the-art solutions
are necessary. Finally, the high computational load leads to a multi-core challenge, meaning the efficient
use of modern parallel architectures. The non-intrusive stochastic collocation approach, which we apply
for this showcase, allows to reuse deterministic simulations, which form an additional embarrassingly
parallel layer, neglecting the pre- and post-processing. This setup is in line with the forthcoming gener-
ation of supercomputers: a vast parallel amount of simple compute nodes. To run efficiently on such an
architecture, communication over nodes should be minimal, whereas the strong scalability within one
node is of growing importance. Therefore, I apply the two parallel layers of this thesis — inter-solver
and intra-solver parallelism — within one node, for which Section 4.5 shows good strong scalability. For
the third layer — the UQ layer, the independent deterministic samples are distributed over individual
nodes. Figure 105 visualizes this concept.

UQ for FSI Simulations The UFSI3 showcase is not the first UQ for FSI simulations. Most examples
of the literature consider, however, simplified FSI models due to immense computational costs. Let me
mention several examples: [214] studies panel flutter with the E-module of the structure modeled as a
random field. The authors discretize the random field by means of a Karhunen-Loéve expansion and
solve the forward propagation with a pertubation method. Next, a preliminary study for uncertain
cardiovascular system simulations is presented in [52]. Challenges and open research questions are

5nttp://www. tum—ias.de/focus-groups/current-focus-groups/high-performance-computing-hpc.html

127

NODE 1 = SAMPLE 1 NODE 2 = SAMPLE 2 NODE 3 = SAMPLE 3 NODE N = SAMPLE N

N N N N
A A A A
S S S S

T T T T
| I | |

N N N oeee N
S S S S
(0] (0] (0] (0]
L L L L
I I I I

D D D D
7 Z 7 7

Figure 105: The three parallel layers of the UFSI3 showcase. The two parallel layers developed
in this thesis — the inter-solver parallelism and the intra-solver parallelism — are applied on a single
node. Furthermore, independent samples are computed in parallel on several nodes. The node layout
corresponds to the Haswell architecture with 28 cores per node. This figure is also used in [80].

collected. In [233], the y-coordinate of a cylinder, immersed in flow, is modelled by a damped oscillator,
whose two parameters are uncertain. The resulting UQ-FSI problem is solved by means of a generalized
polynomial chaos expansion. [224] also uses a generalized polynomial chaos expansion, based on a
Gram-Schmidt orthogonalization process, to analyze uncertainties in a single degree of freedom stall
flutter model. The same authors study the uncertainty of a linear piston problem by employing a two-
step chaos collocation approach [132]. Finally, [104] uses a Monte Carlo approach to study the stress
distribution of a combustor liner. For a more general UQ overview in plain CFD simulations, I can
recommend [151]. For general UQ collocation approaches, I give a brief literature review along with the
mathematical setup in the next section.

5.6.2 Mathematical Setup

Since I do not intend to give an overview on the mathematical theory, I try to keep the mathematical
setup as brief as possible. I assume that the reader has a basic understanding of probability theory. If
not, you may refer to, e.g., [186]. The description closely follows our publication [80]. The notation is
standard to allow for a smooth reading. Conflicts with other part of this thesis are not always avoidable.
I first establish the stochastic setup and afterwards the sparse grid setup. Finally, both are combined
to the sparse grid collocation technique.

Stochastic Collocation Stochastic collocation is based on the theory of homogeneous chaos by
Wiener in 1938 [222]. In 1947, Cameron and Martin proved the convergence of the Hermite chaos
expansion in terms of Gaussian random variables. This result was extended in 2002 by Xiu and Karni-
adakis from classical polynomial chaos to generalized polynomial chaos [232], including all polynomials
of the Askey scheme. I restrict the UFSI3 showcase to Gaussian random variables, however. Thus, the
associated polynomial chaos basis consists of Hermite polynomials.

Let (Q, F,P) be a standard probability space — € the sample space, F the o-algebra defined on Q, and
‘P the probability measure. Furthermore, let

0:(91,...,9d):Q—)Rd

denote a d-variate random vector with independent components. With bold symbols, I always refer to
vectors of length d, whereas its components are in normal font and not always explicitly introduced.

128

For simplification, I also use @ to directly refer to an element in R%, i.e., to 8(w). Each component of @
has a probability distribution function p; : R — Ra' . Due to the independence of the components, the
joint probability density function reads (see e.g. [186])

p:R Ry, p(0) =] pil0)

We consider the problem
f(z,0),f :DxQ—S§,

where f is the solution of the complete FSI PDE. D C R* is the space of the deterministic variables in
space and time and x the corresponding deterministic variable. S denotes the output space — velocity,
pressure, and displacement values. 6 denotes the uncertain physical parameters. I mention further
above that the dimension of the parameter space d is five. @ being a random variable, f itself becomes
one as well.

The polynomial chaos expansion approximates random variables by projecting them into a probabilistic
space spanned by orthonormal polynomials ®;. A set of polynomials ®; is called orthonormal if

E[®,;®;] / ®,(w)dw = /Rd ®,(0)2,(0)p(0)d0 = ;5 ,

where §;; is Kronecker’s delta function. Since the UFSI3 showcase is restricted to Gaussian input
distributions, the associated polynomials are the probabilists’ Hermite polynomials. The first few read

Do(0) =1, &1(0) =0, D2(0) = 6% — 1, B3(0) = 6° — 30,

A simple scaling allows for normalization (see e.g. [186]). From theses univariate polynomials ®, d-
variate polynomials ® are constructed via the tensor product

B,(0) = Dy, (01) ... By, (04) .

The finite-dimensional polynomial space reads
d
0% = {®n(0): Y ni <P},
i=1

with dimension (d‘;P) =: N (][231]). For simplicity, I drop the multi-index, but use scalar index p =
0,...,N — 1 instead. The projection of f(z,8) onto O% gives the polynomial chaos expansion

N-1

f(z,0) = fp(z,0) = Z

split into the stochastic contribution in the polynomials and the deterministic coefficients

cola) = Ef(2,0)2,(0)] = | [(x,0)@,(0)p(0)d0, p=0,... N 1. (8)

The moments of fp(z,0) can directly be computed from the coefficients (e.g. [186]),

N-1
E[fp(x,0)] = co(z) and Var[fp(x,0)] Z c,
p=1

Since f is unknown, the coefficients’ integrals cannot be computed directly. An approximation via a
quadrature rule, however, leads to a series of simple deterministic evaluations of f(z,8(w)), for fixed
w € Q. The remaining problem is the construction of such a high-dimensional quadrature rule. A
simple tensor construction building on one-dimensional quadrature rules lets the amount of deterministic
evaluations grow exponentially with d, yielding an unfeasible computational cost. The sparse grid
construction of the next paragraph, however, mitigates this curse of dimensionality and makes the
computational cost feasible.

129

Sparse Grid Interpolation For the UFSI3 showcase, we do not use a direct sparse grid quadrature,
but substitute f in (8) by a sparse grid interpolant, which can then be integrated analytically. [80] also
discusses approaches based on a direct sparse grid quadrature and compares them to the interpolation
approach. Furthermore, another alternative is to not use the polynomial chaos expansion at all, but
directly construct f as a sparse grid interpolant [96]. In the following, we construct the sparse grid
interpolant on the unit cube [0;1]?. To transform f from R? to the unit cube, we use the component-
wise cumulative distribution function

0;
0

The transformed problem then reads
f(xvu) = f(xv) o F_l(u))
where u € [0;1]? denotes the transformed parameters in the unit cube.

For the moment, let us assume that f vanishes on the boundary of the unit cube. The hierarchical
construction of the sparse grid spaces starts with the one-dimensional hat functions

ori(u) = ¢ (u _hkhl> with h; = 27" and é(u) = max(1 — |u/,0), u € [0;1].
1

Yet again, the d-variate version is defined as the tensor product

d
ouk(w) = T [n () -
1=1

Furthermore, we use the index set
Ty ={(,k)eN? x N k;odd A1<k; <2 —1,Vi=1...d}
to define the hierarchical increment spaces
Wy = span({pik, (I, k) € I}) .

The regular sparse grid space of level L € N now only considers those subspaces that contribute most
to the overall solution [40],
i= Q) Wi

[t <L+d-1

The number of points in V7, is O (2% (log(2%))4~'), which is much smaller than the size of the associated
full grid @, ;, <, Wi, O(25?) [40]. The exponential growth with the dimension, in particular, is shifted
to a logaritﬁm_ic term. To better understand this concept, Figure 106 visualizes the regular sparse grid
for level L = 5 and dimensions two and three.

The sparse grid interpolant of f (x,w) is denoted by fz(xz,u) € Vg, and reads
frzu) = Y ak@)oik(u) . 9)

11 <L+d-1
(Lk)ET

ay k(t) are the so-called hierarchical surpluses and can be explicitly computed from the interpolation
conditions via point-wise evaluations of f (z,-). Further above, I mention that the sparse grid space only
includes those hierarchical increment spaces that contribute most. Mathematically, this means that the
sparse grid subset is optimal in the L? sense [40, 237,

1 (2, u) = fz(z, u)||L2 € O (b7 (log(hp ")) .
An only logarithmic degeneration from the full grid convergence rate O (h%) is achieved.

Since f (x,-) does not actually vanish on the boundary, additional measures need to be taken. Including
additional degrees of freedom on the boundary becomes increasingly expensive with increasing dimen-
sionality and is, therefore, no solution. Instead, we use modified basis functions, which correspond to a

130

y
.
.
.
.
.
.
.
e o s o o sis s sie s s s o e
.
.

.
cececescccccssssesssesescsscnce
.

.
s - T
.

.

0.0
0.0 0.2 0.4 0.6 0.8 1.0

x

1.0 00

Figure 106: Regular sparse grid construction for level L = 5 and dimensions two (left) and three (right).
Each marked point corresponds to the tip of a hat function. This figure is also used in [80]

linear extrapolation at the boundary and are discussed in [161]. For the sake of brevity, details of the
construction are not shown. The reader may refer to [80].

The hierarchical structure of the sparse grid space allows for a natural adaptivity in the stochastic space.
The hierarchical surplus can be used as a metric for the local interpolation error. The surplus, however,
still depends on z, the deterministic variable. To reduce the surplus to a simple real value, an integration
over the complete deterministic domain would be one solution, but can be cumbersome. A better and
simpler strategy is to directly use a quantity of interest. For the UFSI3 showcase, this is a simple point
value, the z-displacement of the backside of the cantilever at a certain point in time, as mentioned
further above. All hierarchical errors estimators are now sorted by their absolute value. Afterwards,
hierarchical descendants of the highest 10% are added. If not all hierarchical parents already exist in

the refined grid, they are added as well. For details, please refer to [161]. Finally, f(z,-) is evaluated at
the newly created points. The complete procedure is repeated several times.

Combining Both Worlds To combine the sparse grid and the collocation concepts, the interpolant
(9) is inserted into the coeflicients’ formula (8). The transformation factors from the substitution and
from the change of probability measure cancel each other out, please compare [231] or Lemma 1 in [96].
We get®?

ep() = / £t F~ (w) @, (F~ () du
[0,1]4

N /[0,1]d 2 al’k(x)%k(uo @, (F~ ' (u))du

|l|1§n+d—1
(l,k)EIL
d
= Y]] / By (F; () o1, (1)
1 <n+d—1 i=1 (0,1]

(I,k)ET

The resulting one-dimensional integrals can be computed analytically and a-priori. As already mentioned
above, everything else can be computed from theses coefficients: statistical moments, the distribution
of the quantity of interest, confidence intervals, and so forth.

52For the sake of simplicity, the formula does not consider the stochastic adaptivity.

131

5.6.3 Results

All sample runs were performed on the Haswell partition of SuperMUC, second phase. Each node
consists of 28 cores. Please recall the hardware description I give at the beginning of Chapter 4. The
pre- and postprocessing is run on a simple workstation and does not contribute significantly to the
the overall computational load (see also [79]). The numerical setting is identical to the deterministic
simulation in Section 3.7.1 using the fine mesh configuration. We use J-AA-20 as coupling scheme,
meaning a parallel Anderson acceleration with reused columns from 20 previous timesteps. The single-
physics solvers are Alya Nastin and Solidz. All five input parameters follow a normal distribution
around their deterministic values with a relative standard deviation of 15% of the mean. The mean
values are: fluid density pr = 1.0 x 103kg/m3, structural density ps = 1.0 x 103kg/m3, dynamic
viscosity 4 = 1.0kg/(ms), Young’s modulus E = 5.6 x 10° N/m?, and the Poisson ratio v = 0.4.

Computational Load I first compare the runtime of several deterministic runs to find the optimal
load balancing between fluid and structure solver within one node. I, therefore, consider the runtime
after 50 timesteps. Table 36 lists the respective numbers. A distribution of 20 fluid cores and 8
structure cores appears to be optimal. The stochastic simulation uses 3.000 timesteps with a timestep
size of 1.0 x 10~3s. The polynomial chaos expansion is cut after five terms, P = 4, which corresponds
to N = 126. For the sparse grid computations, the software SG+-+°3 is used. For the adaptivity,
the x-displacement of the cantilever is measured at the last timestep. The adaptive procedure starts
with level L = 2, comprising 11 samples and refines three times for additional 10, 36, and 84 samples,
summing up to a total of 141 samples. Figure 107 shows a histogram of the runtimes of all independent
samples. Since all samples feature slightly different added-mass effects, they are also expected to differ
in runtime. All samples lie, however, between 10.1h and 12.3h, which indicates a satisfactory load
balancing over all nodes. As an outlook to UQ simulations of more complex FSI scenarios, I want to
stress two key numbers. First, the total compute load of the UFSI3 showcase, which is approximately
11 - 28 - 141 = 43000 compute hours if the average sample takes 11h to compute. Thus, a good
strong scalability of a single FSI simulation within one node is mandatory. Here, the two parallel
layers of this thesis can be applied successfully. Also, the applied UQ approach should carefully decide
upon each additional sampling point due to the computational load of each single point. Second, the
four adaptivity cycles of simulations, which need to be computed after each other, lead already to an
approximate overall runtime of 44 h, neglecting the non-perfect load balancing. A UQ approach without
an additional parallel layer would, thus, lead to a tremendous overall runtime. To summarize, only the
combination and efficient usage of all three parallel layers lead to an acceptable overall runtime for UQ
of FSI simulations.

Cores ¥ Cores S | Timels] 20F T
24 4 1163.95 515l
23 5 1073.49 g
22 6 1087.84 £ 10
21 7 1010.30 =
20 8 1007.44 < st
19 9 1026.28
o i B |
10 10.5 11 115 12 12,5
Time [h]
Table 36: Load balancing within one node: Figure 107: Load distribution among all nodes: his-
runtimes of a determinstic simulation of 50 togram of the runtime (3.000 timesteps) of all inde-
timesteps for various core distributions. The pendent samples. For comparison: the runtime of
fluid solver Nastin uses 69.460 elements and the deterministic FSI3 scenario is 10.81 h.

the structure solver 15.850 elements.

Stochastic Results Although not being the main focus of this showcase, I also want to briefly mention
the stochastic results of the UFSI3 showcase. Figure 108, top, compares the time evolution of the x-
displacement of the cantilever tip of the deterministic simulation with the expectation value of the UQ

53http://sgpp.sparsegrids.org

132

#10 S

T T T T T
0 &\ -
—-2
E
I
[
£-4r —
[}
Q
IS
2
aer 7
<
Deterministic Result
-8 - Expectation Value -
]]]]]
0 0.5 1 15 2 2.5 3
Time [s]
#10°
T T T T T
—4
E
E
£3r
Q
IS
[
g2+ -
a
2
a
x 1 .
0 1 I V| 1 |
0 0.5 1 1.5 2 25 3
Time [s]

Figure 108: Time evolution of the x-displacement of the cantilever’s tip. Stochastic results are compared
to the associated deterministic simulation. Top: Expectation value, bottom: variance. This figure is
also used in [80].

‘ Mean Amplitude Frequency

Deterministic Result 0.0023 -0.0025 10.823
Expectation 0.0024 -0.0026 10.829
Variance | 1.5808e-07 1.8166e-07 0.0655

Table 37: Mean, amplitude and frequency of the UFSI3 oscillation. All values are computed after the
initial phase, from 2.4s on.

simulation. The expectation values show a significantly smaller amplitude. This is assumably due to
the super-position of various oscillations, which inhibit each other. An important conclusion from this
observation is that UQ results of oscillations should not be regarded in this time evolution fashion. More
meaningful is to directly look at the mean, amplitude and frequency of the oscillation, as listed in Table
37. The expectation values are close to the deterministic values. Please note that they do not have to
match, in general, as the overall FSI problem is a non-linear problem. An interesting observation is the
higher variance of the frequency, also if normalized by the expectation value, compared to the mean and
amplitude of the oscillation. Figure 108, bottom, also shows the time evolution of the variance. Again,
several oscillation are super-posed. Still, the variance increases over time, as expected. Finally, Figure
109 shows the expectation value and variance of the velocity magnitude in the complete fluid domain
at the last timestep. The super-posed oscillations are clearly visible. Furthermore, as expected, the
highest variance is visible in the wake of the cantilever. To properly analyze the influence of each input
parameter, a variance based global sensitivity analysis can be conducted. For the sake of brevity, I do
not show the analysis here, but refer the reader to our work in [80].

133

Figure 109:

v

Var
15;
»12

timestep, t = 3.0s of the UFSI3 showcase. This figure is also used in [80].

Summary of Chapter 5

The applicability and importance of the two newly-developed parallel layers is exem-
plarily shown by means of several showcases.

The Aorta showcase simulates blood flow through an aortic geometry. Parallel cou-
pling schemes allow for an overall speed-up compared to sequential ones while requiring
less resources.

The Jet scenario and the Bending Tower scenario both show a technically successful
three-field coupling — the Jet scenario a flow coupling between different models and the
Bending Tower an actual fluid-structure-acoustics interaction. With the combination
of explicit and implicit coupling schemes, it is possible to arrive at an overall inter-
solver parallelism, also with three solvers. A static load-balancing is exemplarily
studied for the Jet scenario.

The Hemisphere showcase shows preliminary results for a highly-asymmetric turbulent
FSI. The fully peer-to-peer concept of preCICE allows for an efficient coupling. The
Anderson acceleration is able to couple turbulent FSI successfully.

The Multi-Cylinder showcase simulates the flow around multiple thin cylinders as a
simplified model of brush seals. The fully-implicit multi-coupling concept leads to a
very efficient coupling between mutliple solvers.

The UFSI3 showcase shows the successful combination of the two newly-developed
layers with a third uncertainty quantification layer.

The overall range of various physics and applied solvers clearly shows the flexibility
and the applicability of the partitioned approach and the software and parallelization
concepts of preCICE.

134

Expectation value (top) and variance (bottom) of the velocity magnitude at the last

6 Conclusions

To conclude this thesis, I recapitulate its main contributions and discuss future challenges. First, I revisit
the main findings of this thesis in Section 6.1. Here, I focus on the two newly introduced parallel layers
and their impact. Afterwards, Section 6.2 gives an outlook on two particular future topics: interpolation
in time and exascale computing.

6.1 Summary of the Thesis

To advance research in the most challenging multi-physics problems, more and more physical effects are
included into simulations. At the same time, the reuse of sophisticated legacy codes is a natural desire.
To allow for both, an inherently flexible and scalable simulation environment is indispensable.

This thesis studies fluid-structure interaction (FSI) as a prototype of a challenging multi-physics prob-
lem, but tries to deduce general techniques. As the starting point of my thesis, I consider the coupling
library preCICE, which already offers great flexibility by means of its partitioned black-box approach and
its high-level application interface. The library offers methods for interpolation between non-matching
coupling interfaces, fixed-point acceleration schemes and means for communication between indepen-
dent executables. Chapter 2 gives an introduction to preCICE. I overcome the scalability limitations of
the original version [99] by introducing parallelism on two levels: inter-solver parallelism requiring novel
numerical schemes in Chapter 3 and intra-solver parallelism requiring new computer science approaches
in Chapter 4. Please recall Figure 3 on page 6 for a visualization of both layers. Both new parallel
layers do not require any changes to the application programming interface of preCICE and do, thus,
not degenerate the existing flexibility.

Inter-Solver Parallelism Classical implicit black-box coupling algorithms are based on a staggered
execution of the fluid and the structure solver, one after the other. If both solvers use their own
computational resources, this can — on average over the total runtime — lead to idling of up to half of the
processors. Sharing resources among both solvers is, in general, no solution, as the high asymmetry of
FSI problems leads to different scalability constraints of both solvers. The only clean solution are parallel
coupling schemes, which allow for the simultaneous execution of both solvers. Such a parallelization of a
coupling scheme should, however, not degenerate its convergence speed. One of the main contributions
of this thesis is the development of parallel coupling schemes in Chapter 3. Their construction is based
on the observation that classical staggered coupling schemes, such as the IQN-ILS scheme [60], can be
decomposed into a staggered block-Gauss-Seidel fixed-point equation and a fixed-point equation solver,
such as the Anderson acceleration [1]. Substituting the staggered fixed-point equation by a parallel
block-Jacobi one results in a parallel coupling scheme. To this end, a weighting of the outputs of both
solvers is necessary. In Section 3.6, I show that a scaling with the sum of the squares of previous values is
an efficient, yet robust choice. Another contribution of Chapter 3 is the usage of a generalized Broyden
scheme [78] instead of the Anderson acceleration. This gives a scheme that renders the tuning of reused
past values unnecessary, but requires an explicit storage of the Jacobian instead.

By means of several benchmarks, I show in Section 3.7 that parallel coupling schemes result in the same
convergence speed as their associated sequential counterparts. In Section 5.2, I use the Aorta showcase
to exemplarily show that parallel coupling schemes lead indeed to an overall speed-up while needing less
resources.

Finally, in Chapter 3, I also study the generalization of parallel coupling schemes to fully-implicit
coupling of more than two solvers. A simple combination of classical coupling schemes between two
solvers does not allow for such a robust coupling. I show this by means of several simple scenarios in
Section 3.8. The Multi-Cylinder showcase in Section 5.5, finally, shows the applicability of the multi-
coupling scheme for a complex application.

Intra-Solver Parallelism Many coupling software approaches use a centralized entity, often called
a server, which stores the coupling data, computes the interpolation between coupling meshes, and
applies fixed-point acceleration schemes. Such an overall software layout becomes a bottleneck for
larger scenarios due to several reasons: reading and writing data requires a 1:N communication and

135

the data mapping and fixed-point acceleration are executed as a serial computation. Furthermore, all
coupling meshes need to be communicated, which is, in particular, annoying for highly asymmetric
cases. The original version of preCICE already features a peer-to-peer layout [99], but based on a server
for each solver. In this thesis, I port preCICE to a fully parallel peer-to-peer layout, without any central
entity. To this end, I develop a mesh re-partitioning strategy (Section 4.1) and execute all three feature
groups of preCICE — communication, interpolation, and fixed-point acceleration — on distributed data
(Sections 4.2 to 4.4). 1 follow the general guideline to make the coupling effort per timestep as small as
possible, while keeping the initialization time tolerable. This guideline is justifiable for a large amount
of timesteps, compared to a single initialization. The showcases of Chapter 5 show that this holds true
for a variety of applications. In Chapter 4, I study the performance of each feature group of preCICE
separately and afterwards the applicability of the concepts on two physical scenarios: a travelling pulse
in an Euler domain for up to 16,000 cores and the highly asymmetric FSI benchmark PfS-1a for up to
6,272 cores. The coupling effort always remains negligible and does, therefore, not interfere with the
overall scalability. The intra-solver parallelism is of importance for all showcases of Chapter 5.

Together, all five showcases of Chapter 5 make two things clear. First, the flexibility of the partitioned
approach and its realization in preCICE can be applied successfully. The showcases cover various
physical setups and different solvers. Even more than two solvers are applied successfully in Sections
5.3 and 5.5. Second, both parallel layers developed in this thesis can be applied successfully. Thus, the
coupling of single-physics codes is possible without degenerating their scalability. With the developments
of this thesis, massively parallel simulations of various multi-physics problems are possible.

6.2 Future Challenges of Partitioned Multi-Physics

Although, with the achievements of this thesis, the applicability of preCICE can be increased from
moderately to massively parallel setups and, therefore, to a whole new range of applications, certain
scenarios require extensions. In this section, I discuss two of them: interpolation in time to better
resolve multi-scale phenomena and technical challenges on the way to exascale computing.

Interpolation in Time Both scenarios of Section 5.3 reveal the limitation of the current time treat-
ment in preCICE. The Jet scenario in Section 5.3.2 encompasses three flow domains whose timestep
restrictions differ up to one order of magnitude. preCICE is technically able to handle subcycling,
meaning that one solver A performs smaller local timesteps till another solver B finishes one bigger
global timestep. In this case, Solver A uses, however, the value from solver B as constant boundary
condition throughout all local timesteps, thus a order-zero extrapolation for parallel coupling schemes.
For the Jet scenario, this leads to instabilities. We, thus, have to use identical timestep sizes in all three
flow domains, which artificially increases the computational cost. The 3D Bending Tower scenario in
Section 5.3.3 shows a similar problem. The compressible flow solver of OpenFOAM uses a second order,
implicit time integration scheme. The acoustic solver of Ateles is second or forth order and explicit in
time. With the current coupling approach, the overall time integration order, however, degenerates to
one. Two would be desirable. Furthermore, the explicit-implicit combination would again allow us to
use different timestep sizes.

The solution to both problems could be based on boundary representations of both solver that are
continuous in time during one global timestep ¢ty ~ tni1. Let fa, fB : [tn,tn+1] — R™ be such
continuous boundary representations (CBRs). Spectral deferred correction [76] allows, for example, to
construct such a CBR in an iterative manner, meaning that a zero-order initial solution is improved
by one order in each iteration. [30] already discusses the closely related integral deferred correction
for FSI. The combination of f4 and fp with implicit coupling could solve both issues from above. To
illustrate this, let us the consider the following example. Let us assume that solver A uses a forth-order
Runge-Kutta scheme with local timesteps 74 = ty,74,...,74 = tny41 and B subcycles with a constant
ten-times smaller local timestep size, 79 = tn,75,..., T = tn+1. Both solvers hold a CBR, which is
iteratively improved, f ~ f,“ and f ~ E,H, respectively. During coupling iteration k, solver A
now uses fp to evaluate boundary conditions at its necessary local timesteps 74, and the other way
around. Algorithm 4 depicts this procedure. If we assume that f indeed improves by order in every
iteration, both solvers can reach their necessary order and the subcycling is based on a meaningful
extrapolation.

136

Algorithm 4 Coupled time integration of arbitrary order via continuous boundary representations
(CBRs) and implicit coupling. fa, f5 : [tn,tn+1] — R™ denote the CBRs, which are iteratively im-
proved k ~» k 4+ 1. The substeps of both solvers can be computed in parallel to each other. A and B
exemplarily use four and ten time local timesteps 74 and 75, respectively.

0 _ 0
— 7113 start with constant approximations,
A2 /% = faltn) and f% = fa(ty)
A — T3 fork=1...do

-2 — B compute substeps of A with BC

L TR, f5(sY), . ()

5 B compute substeps of B with BC
i PP, Fh(eB), - Fhif)

improve f% ~ A+1 and fp ~~ fg+
_ 10 -poi i

tnpr = TH fixed-point acceleration

v end for

The technical problem how to publish the CBR to the opposite solver remains. Two general solutions
are possible. First, each solver computes its CBR by itself. Then, extensions to the API of preCICE are
necessary to publish the local timesteps 74 and 75 and to retrieve the associated interface values. The
second solution would require preCICE to compute the CBRs. Then, no changes to the API would be
necessary, but boundary conditions could simply be retrieved the usual way. The method to compute
the CBR, however, would have to be a black-box technique, meaning that it needs to work independently
from the solvers’ time discretization techniques. Which one of the two solutions is preferable probably
depends on how well such a black-box CBR could be computed. This is an open research question.

Roadmap to Exa-Scale For the FSAI showcase in Section 5.3, I already mention the ExaFSA
project. It is part of the German priority program on exascale computing SPPEXA, which was initiated
to prepare, among other tasks, simulation software to cope with the challenges of the upcoming exascale
era (as, e.g., summarized in [71]). Many concepts of this thesis can scale up to approximately 10,000
cores, but not further. In particular, this concerns the initialization phase. If a large amount of timesteps
is required compared to a single initialization phase, as it is the case for all showcases in Chapter 5,
the initialization effort is negligible. The picture changes, however, if multiple re-initialization phases
become necessary to cope with changing coupling interfaces. An purely Eulerian fluid solver (with
moving boundaries), solvers with dynamic adaptivity or a dynamic load-balancing between all solvers,
all entail such changing interfaces.

The main building block for a faster initialization would be a hierarchical mesh re-partitioning concept.
The current implementation uses a gather-scatter concept, which entails not only a runtime bottleneck,
but also a strict memory restriction. A hierarchical concept should first match only bounding boxes of
the interface partitions of both solvers, such as applied in, for example, [73, 163, 184]. A preliminary
M2N communication would be necessary. Only in a second step, actual vertices are compared, now in
a completely local fashion. Afterwards the M2N could be reduced to the remaining overlaps.

Furthermore, there are several smaller work packages to speed up the initialization. The point-to-point
communication could be constructed directly from local information without an additional broadcast of
the vertex distributions. The nearest-neighbor search could be reduced to linear complexity by sorting
all vertices into a coarse mesh structure. Publishing connection information for the kernel 1:N communi-
cation channels currently uses the file system — a fact that becomes problematic beyond approximately
1,000 connections. Directly using MPI routines such as MPI_Publish name and MPI_Lookup_name should
be a remedy. The MPI routine for creating the communicators, on the other hand, currently shows
performance and robustness issues. For the intra-solver communicator, reusing the solver’s own com-
municator would be a straight-forward alternative, but has to be carefully implemented not to interfere
with the flexibility of preCICE — an MPI-free usage of preCICE should still be possible. For the creation
of inter-solver communicators, the linear increase in runtime (in the number of cores per participant)
has to be studied thoroughly, in particular since the TCP/IP communication does not show a similar

137

overhead.

Besides the initialization, also two specific building blocks per timestep show scalability limitations.
First, the radial basis function mapping suffers from the global polynomial rows, which require global
communication. Mapping without these rows is, however, possible and has to be carefully studied.
Alternatives that also discuss fully local RBF schemes are, for example, [67, 195]. Second, the gener-
alized Broyden scheme features quadratic complexity, both in computation and memory. A low-rank
approximation can, however, solve both [177]. All other building that are executed per timesteps are
ready for exascale, including projection-based mappings, the M2N communication, and the Anderson
acceleration.

Let me summarize this last chapter again. This thesis significantly increases parallelism for partitioned
multi-physics simulation on two levels without degenerating the inherent flexibility of the partitioned
approach. The flexibility allows for easy extensions of further building blocks — further physical effects,
further numerical approaches, and further HPC optimizations. Thus, an important milestones towards
the most complex multi-physics applications is achieved.

138

Acknowledgements

I want to take the opportunity to briefly thank those who had an important impact on this thesis. I
was in the lucky position to have two thesis supervisors and I highly benefited from both. Thank you,
Miriam, for all the honest and direct advice throughout these four years, for always having time and
always having the right words for me. Thank you, Hans, for the unconditional support for whatever I
suggested and for the open-minded work environment at our chair. I mentioned on several occasions
throughout this thesis that preCICE is a joint software project. I want to thank my colleagues for
the fruitful collaboration and for always pursuing a shared aim. Thank you, Bernhard, Florian and
Klaudius. The ExaFSA project had an important influence on this work. Thank you, Verena and
David, and everybody else. Also, many students contributed to this work, among even some who later
joint our group as colleagues. Thank you, Alexander S., Alexander R., Ionut and Klaudius again.

My thesis further highly benefited from two research stays abroad. First, I had the chance to continue
the collaboration with the CASE department of the Barcelona Supercomputing Center, which already
started with my Diploma Thesis. Thank you for the warm welcome again and the support at all time,
Daniel, Guillaume, Herbert, Juan-Carlos, Mariano, Miguel, and everybody else. Second, I spent two
months at the Lawrence Livermore National Laboratory. Thank you, Carol, for making this possible
and for all the highly interesting discussions. Thank you, John and Matthieu, and everybody else in
Livermore. Other collaborations also contributed to this thesis — thank you, Alexander F. from LFA,
Aditya and collegues from STATIK, and Robby Haelterman. Furthermore, thank you for proof-reading,
Alex, Berni, Bri, JCC, and Verena.

Finally, I thankfully acknowledge the financial support of the priority program 1648 — Software for
Exascale Computing of the German Research Foundation and of the Institute for Advanced Study of
the Technical University of Munich as well as the provided computing time on the SuperMUC and the
CoolMAC at the Leibniz Supercomputing Centre.

139

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

D. Anderson. Iterative procedures for nonlinear integral equations. Journal of the ACM, 12(4):547—
560, 1965. (Cited on pages 8, 19, 29, 34, 37, and 135.)

D. Anderson. Comments on Anderson acceleration, mixing and extrapolation. ICERM Workshop:
Numerical Methods for Large-Scale Nonlinear Problems and Their Applications, 2015. (Cited on
page 35.)

A. Atanasov. Software Idioms for Component-based and Topology-aware Simulation Assembly and
Data Exchange in High Performance Computing and Visualisation Environments. PhD thesis,
Institut fiir Informatik, Technische Universitdt Miinchen, 2014. (Cited on page 24.)

S. Badia, F. Nobile, and C. Vergara. Fluid-structure partitioned procedures based on Robin
transmission conditions. Journal of Computational Physics, 227(14):7027-7051, 2008. (Cited on

page 5.)

S. Badia, A. Quaini, and A. Quarteroni. Splitting methods based on algebraic factorization for
fluid-structure interaction. SIAM Journal on Scientific Computing, 30(4):1778-1805, 2008. (Cited
on page 5.)

S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune, K. Buschelman, L. Dalcin, V. Eijkhout,
W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, S. Zampini, and
H. Zhang. PETSc users manual. Technical Report ANL-95/11 — Revision 3.6, Argonne National
Laboratory, 2015. (Cited on pages 18 and 88.)

D. Balzani, S. Deparis, S. Fausten, D. Forti, A. Heinlein, A. Klawonn, A. Quarteroni, O. Rhein-
bach, and J. Schréder. Numerical modeling of fluid-structure interaction in arteries with
anisotropic polyconvex hyperelastic and anisotropic viscoelastic material models at finite strains.

International Journal for Numerical Methods in Biomedical Engineering, 2015. (Cited on pages 2
and 5.)

J. W. Banks, W. D. Henshaw, and D. W. Schwendeman. An analysis of a new stable partitioned al-
gorithm for FSI problems. part i: Incompressible flow and elastic solids. Journal of Computational
Physics, 269:108-137, 2014. (Cited on page 5.)

A. T. Barker and X.-C. Cai. Scalable parallel methods for monolithic coupling in fluid-structure in-
teraction with application to blood flow modeling. Journal of Computational Physics, 229(3):642—
659, 2010. (Cited on pages 3 and 5.)

P. Bastian, G. Buse, and O. Sander. Infrastructure for the coupling of dune grids, 2010. (Cited
on page 22.)

K. Bathe, C. Nitikitpaiboon, and X. Wang. A mixed displacement-based finite element formulation
for acoustic fluid-structure interaction. Computers & Structures, 56(2):225-237, 1995. (Cited on
page 1.)

Y. Bazilevs, M.-C. Hsu, J. Kiendl, R. Wiichner, and K.-U. Bletzinger. 3D simulation of wind
turbine rotors at full scale. Part II: Fluid-structure interaction modeling with composite blades.
International Journal for Numerical Methods in Fluids, (65):236-253, 2010. (Cited on pages 1
and 5.)

Y. Bazilevs, M.-C. Hsu, and M. Scott. Isogeometric fluid-structure interaction analysis with
emphasis on non-matching discretizations, and with application to wind turbines. Computer
Methods in Applied Mechanics and Engineering, 249:28-41, 2012. (Cited on page 18.)

Y. Bazilevs, K. Takizawa, and T. E. Tezduyar. Computational Fluid-Structure Interaction: Meth-
ods and Applications. John Wiley & Sons, 2012. (Cited on pages 5 and 11.)

A. Beckert and H. Wendland. Multivariate interpolation for fluid-structure-interaction problems
using radial basis functions. Aerospace Science and Technology, 5(2):125-134, 2001. (Cited on
page 18.)

140

[16]

[17]

[18]

[19]

[21]

[22]

23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

J. Benk. Immersed Boundary Methods within a PDE Toolbox on Distributed Memory Systems.
PhD thesis, Technische Universitdt Miinchen, 2012. (Cited on page 6.)

J. Berland, C. Bogey, and C. Bailly. Numerical study of screech generation in a planar supersonic
jet. Physics of Fluids, 19(7), 2007. (Cited on page 115.)

C. Bernardi, Y. Maday, and A. T. Patera. Domain decomposition by the mortar element method.
Asymptotic and Numerical Methods for Partial Differential Equations with Critical Parameters,
pages 269286, 1993. (Cited on page 18.)

A. P. S. Bhalla, R. Bale, B. E. Griffith, and N. A. Patankar. A unified mathematical framework
and an adaptive numerical method for fluid-structure interaction with rigid, deforming, and elastic
bodies. Journal of Computational Physics, 250:446-476, 2013. (Cited on page 2.)

P. Birken. Termination criteria for inexact fixed-point schemes. Numerical Linear Algebra with
Applications, 22(4):702-716, 2015. (Cited on page 31.)

P. Birken, T. Gleim, D. Kuhl, and A. Meister. Fast solvers for thermal fluid structure interaction.
In ECCOMAS Marine V, Hamburg, 2013. (Cited on page 2.)

P. Birken, K. J. Quint, S. Hartmann, and A. Meister. A time-adaptive fluid-structure interaction
method for thermal coupling. Computing and Visualization in Science, 13(2010):331-340, 2010.
(Cited on pages 5 and 6.)

P. Bjorstad and W. Gropp. Domain Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press, 2004. (Cited on page 4.)

K.-U. Bletzinger, R. Wiichner, and A. Kupzok. Algorithmic treatment of shells and free form-
membranes in FSI. In H.-J. Bungartz and M. Schéfer, editors, Fluid-Structure Interaction: Mod-
elling, Simulation, Optimisation, pages 336-355. Springer, 2006. (Cited on page 27.)

D. Blom, T. Ertl, O. Fernandes, S. Frey, H. Klimach, V. Krupp, M. Mehl, S. Roller, D. C. Sternel,
B. Uekermann, T. Winter, and A. van Zuijlen. Partitioned fluid-structure-acoustics interaction
on distributed data — numerical results and visualization. In H.-J. Bungartz, P. Neumann, and
E. W. Nagel, editors, Software for FEza-scale Computing — SPPEXA 2013-2015. Springer, 2016.
(Cited on pages 107, 113, 114, 119, and 120.)

D. Blom, V. Krupp, A. van Zuijlen, H. Klimach, S. Roller, and H. Bijl. On parallel scalability as-
pects of strongly coupled partitioned fluid-structure-acoustics interaction. In ECCOMAS Coupled
Problems, Venice, 2015. (Cited on page 119.)

D. Blom, F. Lindner, M. Mehl, K. Scheufele, B. Uekermann, and A. van Zuijlen. A review on
fast quasi-newton and accelerated fixed point iterations for partitioned fluid-structure interaction
simulation. In Y. Bazilevs and K. Takizava, editors, Advances in Computational Fluid-Structure
Interaction. Springer, 2016. (Cited on page 29.)

D. Blom, B. Uekermann, M. Mehl, A. van Zuijlen, and H. Bijl. Multi-level acceleration of
parallel coupled partitioned fluid-structure interaction with manifold mapping. In M. Mehl,
M. Bischoff, and M. Schéfer, editors, International Workshop on Computational Engineering CE
2014. Springer, 2015. (Cited on pages 5 and 37.)

D. Blom, A. van Zuijlen, and H. Bijl. Acceleration of strongly coupled fluid-structure interaction
with manifold mapping. In WCCM XI, Barcelona, 2014. (Cited on pages 5 and 37.)

D. Blom, A. V. Zuijlen, and H. Bijl. Arbitrarily high order time integration for partitioned fluid-
structure interaction simulations using integral deferred corrections. Computational Physics, 2016.
Under Review. (Cited on page 136.)

A. D. Boer, A. van Zuijlen, and H. Bijl. Comparison of conservative and consistent approaches for
the coupling of non-matching meshes. Computer Methods in Applied Mechanics and Engineering,
197(49):4284-4297, 2008. (Cited on pages 18, 84, and 86.)

141

[32]

[33]

[42]

[43]

A. Bogaers, S. Kok, B. Reddy, and T. Franz. Extending the robustness and efficiency of arti-
ficial compressibility for partitioned fluid-structure interactions. Computer Methods in Applied
Mechanics and Engineering, 283:1278-1295, 2014. (Cited on page 5.)

A. Bogaers, S. Kok, B. Reddy, and T. Franz. Quasi-Newton methods for implicit black-box FSI
coupling. Computer Methods in Applied Mechanics and Engineering, 279:113-132, 2014. (Cited
on pages 5, 37, and 38.)

M. Brenk. Algorithmische Aspekte der Fluid-Struktur-Wechselwirkung auf kartesischen Gittern.
PhD thesis, Universitit Stuttgart, 2007. (Cited on pages 8, 13, and 18.)

C. G. Broyden. A class of methods for solving nonlinear simultaneous equations. Mathematics of
Computation, pages 577-593, 1965. (Cited on page 43.)

M. Buhmann. Radial basis functions. Acta Numerica, 9(January 2000):1-38, 2000. (Cited on
page 18.)

M. Bukac, I. Yotov, and P. Zunino. An operator splitting approach for the interaction between a
fluid and a multilayered poroelastic structure. Numerical Methods for Partial Differential Equa-
tions, 31(4):1054-1100, 2015. (Cited on page 2.)

M. Bukaé, S. Cani¢, and B. Muha. A partitioned scheme for fluid-composite structure interaction
problems. Journal of Computational Physics, 281:493-517, 2015. (Cited on page 5.)

H. Bungartz, J. Benk, B. Gatzhammer, M. Mehl, and T. Neckel. Partitioned simulation of fluid-
structure interaction on Cartesian grids. In H.-J. Bungartz, M. Mehl, and M. Schéfer, editors,
Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer, 2010. (Cited on
page 13.)

H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147-269, 2004. (Cited on
page 130.)

H.-J. Bungartz, H. Klimach, V. Krupp, F. Lindner, M. Mehl, S. Roller, and B. Uekermann. Fluid-
acoustics interaction on massively parallel systems. In M. Mehl, M. Bischoff, and M. Schéfer,
editors, International Workshop on Computational Engineering CE 2014. Springer, 2015. (Cited
on pages 27, 70, and 99.)

H.-J. Bungartz, F. Lindner, B. Gatzhammer, M. Mehl, K. Scheufele, A. Shukaev, and B. Ueker-
mann. preCICE — a fully parallel library for multi-physics surface coupling. Computers & Fluids,
2016. Accepted for publication. (Cited on pages 13, 14, and 87.)

H.-J. Bungartz, F. Lindner, M. Mehl, K. Scheufele, A. Shukaev, and B. Uekermann. Partitioned
fluid-structure-acoustics interaction on distributed data — coupling via preCICE. In H.-J. Bun-
gartz, P. Neumann, and E. W. Nagel, editors, Software for Exa-scale Computing — SPPEXA
2013-2015. Springer, 2016. (Cited on pages 70, 71, 78, 84, 87, 89, 92, 94, and 95.)

H.-J. Bungartz, F. Lindner, M. Mehl, and B. Uekermann. A plug-and-play coupling approach
for parallel multi-field simulations. Computational Mechanics, 55(6):1119-1129, 2015. (Cited on
pages 20, 29, 62, and 64.)

H. J. Bungartz, M. Mehl, T. Neckel, and T. Weinzierl. The PDE framework Peano applied to fluid
dynamics: An efficient implementation of a parallel multiscale fluid dynamics solver on octree-like
adaptive Cartesian grids. Computational Mechanics, 46:103-114, 2010. (Cited on page 28.)

H.-J. Bungartz, M. Mehl, and M. Schéfer. Fluid Structure Interaction II: Modelling, Simulation,
Optimization. Springer, 2010. (Cited on page 5.)

E. Burman and M. A. Ferndndez. Stabilization of explicit coupling in fluid-structure interaction
involving fluid incompressibility. Computer Methods in Applied Mechanics and Engineering, 198(5-
8):766-784, 2009. (Cited on page 5.)

P. Cardiff, A. Karac, and A. Ivankovi¢. A large strain finite volume method for orthotropic bodies
with general material orientations. Computer Methods in Applied Mechanics and Engineering,
268:318-335, 2014. (Cited on page 27.)

142

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

E. Casoni, G. Houzeaux, and M. Vazquez. Parallel aspects of fluid-structure interaction. Procedia
Engineering, 61:117-121, 2013. (Cited on page 7.)

P. Causin, J. Gerbeau, and F. Nobile. Added-mass effect in the design of partitioned algorithms
for fluid-structure problems. Rapport de recherche, INRIA, 2005. (Cited on page 5.)

J. R. Cebral and R. Loehner. Conservative load projection and tracking for fluid-structure prob-
lems. ATAA Journal, 35(4):687-692, 1997. (Cited on pages 1 and 18.)

P. Chen. Uncertainty quantification in multiphysical and multiscale modelling of cardiovascular
system. 2013. (Cited on page 127.)

J.-F. Cori, S. Etienne, A. Garon, and D. Pelletier. High-order implicit Runge-Kutta time integra-
tors for fluid-structure interactions. International Journal for Numerical Methods in Fluids, 2015.
(Cited on page 6.)

P. Crosetto, S. Deparis, G. Fourestey, and A. Quarteroni. Parallel algorithms for fluid-structure
interaction problems in haemodynamics. STAM Journal on Scientific Computing, 33(4):1598-1622,
2011. (Cited on pages 3 and 5.)

J. W. Daniel, W. B. Gragg, L. Kaufman, and G. Stewart. Reorthogonalization and stable
algorithms for updating the Gram-Schmidt QR factorization. Mathematics of Computation,
30(136):772-795, 1976. (Cited on page 92.)

A. de Boer, M. S. van der Schoot, and H. Bijl. Mesh deformation based on radial basis function
interpolation. Computers €& Structures, 85:784-795, 2007. (Cited on page 19.)

G. de Nayer and M. Breuer. Fluid-structure interaction of thin structures in turbulent flows.
In S. Wagner, A. Bode, H. Satzger, and M. Brehm, editors, High Performance Computing in
Science and Engineering, Garching/Munich, pages 116-117. Springer, 2014. (Cited on pages 2, 3,
and 103.)

G. De Nayer, A. Kalmbach, M. Breuer, S. Sicklinger, and R. Wiichner. Flow past a cylinder with
a flexible splitter plate: A complementary experimental-numerical investigation and a new FSI
test case (FSI-PfS-1a). Computers & Fluids, 99:18-43, 2014. (Cited on pages 2, 3, 11, 70, 98, 101,
102, and 105.)

J. De Ridder, J. Degroote, K. Van Tichelen, P. Schuurmans, and J. Vierendeels. Predicting
turbulence-induced vibration in axial annular flow by means of large-eddy simulations. Journal
of Fluids and Structures, 61:115-131, 2016. (Cited on page 123.)

J. Degroote, K.-J. Bathe, and J. Vierendeels. Performance of a new partitioned procedure versus
a monolithic procedure in fluid-structure interaction. Computers € Structures, 87(11-12):793-801,
2009. (Cited on pages 5, 6, 8, 19, 32, 34, 37, 38, and 135.)

J. Degroote, J. Bols, and L. Taelman. Comparison between two different decompositions for the
solution of fluid-structure interaction problems. In ECCOMAS Coupled Problems V, Ibiza, 2013.
(Cited on page 5.)

J. Degroote, P. Bruggeman, R. Haelterman, and J. Vierendeels. Stability of a coupling technique
for partitioned solvers in FSI applications. Computers €& Structures, 86(23-24):2224-2234, 2008.
(Cited on pages 38 and 39.)

J. Degroote, R. Haelterman, S. Annerel, P. Bruggeman, and J. Vierendeels. Performance of
partitioned procedures in fluid-structure interaction. Computers €& Structures, 88(7-8):446-457,
2010. (Cited on pages 36, 37, and 39.)

J. Degroote, A. Swillens, P. Bruggeman, R. Haelterman, P. Segers, and J. Vierendeels. Simulation
of fluid-structure interaction with the interface artificial compressibility method. International
Journal for Numerical Methods in Biomedical Engineering, 26(3-4):276-289, 2010. (Cited on

page 5.)

143

[65]

[66]

[67]

[68]

73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

J. Degroote and J. Vierendeels. Multi-solver algorithms for the partitioned simulation of fluid-
structure interaction. Computer Methods in Applied Mechanics and Engineering, 200:2195-2210,
2011. (Cited on pages 5 and 37.)

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. Fluid-structure algorithms based on
Steklov-Poincaré operators. Computer Methods in Applied Mechanics and Engineering, 195:5797—
5812, 2006. (Cited on pages 5, 8, 30, and 37.)

S. Deparis, D. Forti, and A. Quarteroni. A Rescaled Localized Radial Basis Function Inter-
polation on Non-Cartesian and Nonconforming Grids. SIAM Journal on Scientific Computing,
36(6):A2745-A2762, 2014. (Cited on pages 19 and 138.)

W. Dettmer and D. Peri¢. A computational framework for fluid-structure interaction: Finite
element formulation and applications. Computer Methods in Applied Mechanics and Engineering,
195:5754-5779, 2006. (Cited on page 5.)

W. Dettmer and D. Peri¢. A new staggered scheme for fluid-structure interaction. International
Journal for Numerical Methods in Engineering, 93(1):1-22, 2013. (Cited on page 5.)

Y. Diekmann. Moglichkeiten der Kopplung von Fluid- und Struktursimulationen. Semesterarbeit,
Technische Universitdt Miinchen, 2015. (Cited on page 123.)

J. Dongarra, J. Hittinger, J. Bell, L. Chacén, R. Falgout, M. Heroux, P. Hovland, E. Ng, C. Web-
ster, and S. Wild. Applied mathematics research for exascale computing. Technical report,
Lawrence Livermore National Laboratory (LLNL), Livermore, CA, 2014. (Cited on page 137.)

M. Dorfel and B. Simeon. Fluid-structure interaction: Acceleration of strong coupling by pre-
conditioning of the fixed-point iteration. In A. Angiani, R. L. Davidchack, E. Georgoulis, A. N.
Gorban, J. Levesley, and M. V. Tretyakov, editors, Numerical Mathematics and Advanced Appli-
cations 2011, pages 741-749. Springer Berlin Heidelberg, 2011. (Cited on page 5.)

F. Duchaine, S. Jauré, D. Poitou, E. Quémerais, G. Staffelbach, T. Morel, and L. Gicquel. Analysis
of high performance conjugate heat transfer with the OpenPALM coupler. Parallel Computing,
2013. (Cited on pages 25 and 137.)

T. Dunne and R. Rannacher. Adaptive finite element approximation of fluid-structure interaction
based on an Eulerian variational formulation. In H.-J. Bungartz and M. Schéfer, editors, Fluid
Structure Interaction I: Modelling, Simulation, Optimization. Springer, 2006. (Cited on page 6.)

T. Dunne, R. Rannacher, and T. Richter. Numerical simulation of fluid-structure interaction
based on monolithic variational formulations. Fundamental Trends in Fluid-Structure Interaction,
1:1-75, 2010. (Cited on page 6.)

A. Dutt, L. Greengard, and V. Rokhlin. Spectral deferred correction methods for ordinary differ-
ential equations. BIT Numerical Mathematics, 40(2):241-266, 2000. (Cited on page 136.)

S. C. Eisenstat and H. F. Walker. Choosing the forcing terms in an inexact newton method. STAM
Journal on Scientific Computing, 17(1):16-32, 1996. (Cited on page 31.)

H. R. Fang and Y. Saad. Two classes of multisecant methods for nonlinear acceleration. Numerical
Linear Algebra with Applications, 16:197-221, 2009. (Cited on pages 19, 32, 34, 35, 37, 48, 91,
and 135.)

I.-G. Farcas. High Dimensional Uncertainty Quantification of Fluid-Structure Interaction. Mas-
ter’s thesis, Technische Universitdt Miinchen, 2015. (Cited on pages 108 and 132.)

I.-G. Farcas, B. Uekermann, T. Neckel, and H.-J. Bungartz. Non-intrusive uncertainty analysis of
fluid-structure interaction with adaptive sparse grid collocation and polynomial chaos expansion.
SIAM Journal on Scientific Computing, 2016. In preparation. (Cited on pages 108, 128, 130, 131,
133, and 134.)

C. Farhat, P. Geuzaine, and G. Brown. Application of a three-field nonlinear fluid-structure
formulation to the prediction of the aeroelastic parameters of an F-16 fighter. Computers &
Fluids, 32:3-29, 2003. (Cited on page 1.)

144

[82]

[83]

[84]

[85]

[36]

[87]

[83]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

C. Farhat and V. K. Lakshminarayan. An ALE formulation of embedded boundary methods for
tracking boundary layers in turbulent fluid-structure interaction problems. Journal of Computa-
tional Physics, 263:53-70, 2014. (Cited on page 6.)

C. Farhat and M. Lesoinne. Two efficient staggered algorithms for the serial and parallel solu-
tion of three-dimensional nonlinear transient aeroelastic problems. Computer Methods in Applied
Mechanics and Engineering, 182:499-515, 2000. (Cited on pages 4, 5, 8, and 19.)

C. Farhat, M. Lesoinnea, and P. Letallec. Load and motion transfer algorithms for fluid-structure
interaction problems with non-matching discrete interfaces: Momentum and energy conservation,
optimal discretization and application to aeroelasticity. Computer Methods in Applied Mechanics
and Engineering, 7825(97):95-114, 1998. (Cited on page 18.)

C. Farhat, K. G. van der Zee, and P. Geuzaine. Provably second-order time-accurate loosely-
coupled solution algorithms for transient nonlinear computational aeroelasticity. Computer Meth-
ods in Applied Mechanics and Engineering, 195:1973-2001, 2006. (Cited on page 5.)

C. Felippa, K. Park, and C. Farhat. Partitioned analysis of coupled mechanical systems. FEngi-
neering Computations, (5):123-133, 2001. (Cited on pages 5 and 8.)

C. A. Felippa and T. L. Geers. Partitioned analysis for coupled mechanical systems. Engineering
Computations, 5(2):123-133, 1988. (Cited on page 4.)

C. A. Felippa, K. C. Park, and M. R. Ross. A classification of interface treatments for FSI.
In H.-J. Bungartz, M. Mehl, and M. Schéfer, editors, Fluid Structure Interaction II: Modelling,
Simulation, Optimization, pages 27-51. Springer, 2010. (Cited on page 18.)

M. A. Fernindez, J.-F. Gerbeau, and C. Grandmont. A projection semi-implicit scheme for the
coupling of an elastic structure with an incompressible fluid. International Journal for Numerical
Methods in Engineering, 69(4):794-821, 2007. (Cited on page 5.)

M. A. Ferndndez, M. Landajuela, J. Mullaert, and M. Vidrascu. Robin-Neumann schemes for
incompressible fluid-structure interaction. In Domain Decomposition Methods in Science and
Engineering XXII, Lugano, 2016. (Cited on page 5.)

M. A. Fernandez and M. Moubachir. A Newton method using exact Jacobians for solving fluid-
structure coupling. Computers & Structures, 83:127-142, 2005. (Cited on pages 5 and 56.)

M. Fischer, M. Firl, H. Masching, and K. Bletzinger. Optimization of non-linear structures based
on object-oriented parallel programming. In ECT 7, Stirlingshire, UK, 2010. (Cited on page 27.)

L. Formaggia, J.-F. Gerbeau, F. Nobile, and A. Quarteroni. On the coupling of 3D and 1D Navier—
Stokes equations for flow problems in compliant vessels. Computer Methods in Applied Mechanics
and Engineering, 191(6):561-582, 2001. (Cited on page 56.)

C. Forster, W. A. Wall, and E. Ramm. Artificial added mass instabilities in sequential staggered
coupling of nonlinear structures and incompressible viscous flows. Computer Methods in Applied
Mechanics and Engineering, 196(7):1278-1293, 2007. (Cited on page 5.)

D. Forti. Parallel Algorithms for the Solution of Large-Scale Fluid-Structure Interaction Problems
in Hemodynamics. PhD thesis, Ecole Polytechnique Fédérale de Lausanne, 2016. (Cited on

page 3.)

F. Franzelin, P. Diehl, and D. Pfliiger. Non-intrusive uncertainty quantification with sparse grids
for multivariate peridynamic simulations. In Meshfree Methods for Partial Differential Equations
VII, pages 115-143. Springer, 2015. (Cited on pages 130 and 131.)

V. Ganine, N. Hills, and B. Lapworth. Nonlinear acceleration of coupled fluid-structure transient
thermal problems by Anderson mixing. International Journal for Numerical Methods in Fluids,
2012. (Cited on page 34.)

D. Gardner, C. Woodward, D. Reynolds, G. Hommes, S. Aubry, and A. Arsenlis. Implicit inte-
gration methods for dislocation dynamics. Modelling and Simulation in Materials Science and
Engineering, 23(2):025006, 2015. (Cited on page 34.)

145

[99]

[100]

[101]

[102]

103]

[104]

[105]

[106]

[107]

[108]

109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

B. Gatzhammer. Efficient and Flexible Partitioned Simulation of Fluid-Structure Interactions.
PhD thesis, Technische Universitdt Miinchen, 2015. (Cited on pages 8, 9, 10, 11, 13, 18, 20, 22,
23, 24, 28, 36, 38, 44, 45, 48, 55, 63, 72, 74, 78, 80, 82, 83, 85, 86, 87, 91, 135, and 136.)

M. Gee, U. Kiittler, and W. Wall. Truly monolithic algebraic multigrid for fluid-structure inter-
action. International Journal for Numerical Methods in Engineering, 2011. (Cited on page 5.)

J.-F. Gerbeau and M. Vidrascu. A quasi-Newton algorithm based on a reduced model for fluid-
structure interaction problems in blood flows. ESAIM: Mathematical Modelling and Numerical
Analysis, 37(4):631-647, 2003. (Cited on page 5.)

M. Gliick, M. Breuer, F. Durst, A. Halfmann, and E. Rank. Computation of fluid-structure
interaction on lightweight structures. Journal of Wind Engineering and Industrial Aerodynamics,
89:1351-1368, 2001. (Cited on pages 1 and 5.)

G. H. Golub and C. F. Van Loan. Matriz Computations, volume 3. JHU Press, 2012. (Cited on
page 35.)

R. S. Gorla, S. S. Pai, and J. J. Rusick. Probabilistic study of fluid-structure interaction. In
ASME Turbo Ezxpo, 2002. (Cited on page 128.)

M. Graczyk and T. Moan. A probabilistic assessment of design sloshing pressure time histories in
LNG tanks. Ocean Engineering, 35, 2008. (Cited on page 2.)

P. M. Gresho and R. L. Sani. Incompressible Flow and the Finite Element Method. Volume 1:
Advection-Diffusion and Isothermal Laminar Flow. John Wiley and Sons, Inc., 1998. (Cited on
page 11.)

D. Groen, S. Zasada, and P. Coveney. Survey of multiscale and multiphysics applications and
communities. Computing in Science Engineering, 16(2):34-43, 2014. (Cited on page 22.)

R. Haelterman. Analytical Study of the Least Squares Quasi-Newton Method for Interaction Prob-
lems. PhD thesis, Ghent University, 2009. (Cited on page 37.)

R. Haelterman, A. Bogaers, B. Uekermann, K. Scheufele, and M. Mehl. Improving the performance
of the partitioned QN-ILS procedure for fluid-structure interaction problems: filtering. Computers
& Structures, 171:9-17, 2016. (Cited on pages 29, 48, 49, and 58.)

R. Haelterman, J. Degroote, D. van Heule, and J. Vierendeels. The quasi-newton least squares
method: A new and fast secant method analyzed for linear systems. SIAM Journal on Numerical
Analysis, 47(3):2347-2368, 2009. (Cited on pages 35, 37, and 38.)

M. Heil, A. L. Hazel, and J. Boyle. Solvers for large-displacement fluid-structure interaction
problems: Segregated versus monolithic approaches. Computational Mechanics, 43:91-101, 2008.
(Cited on page 6.)

S. Herb. Development of a FEM Code for Fluid-Structure Coupling. Master’s thesis, University
of Stuttgart, 2015. (Cited on page 28.)

G. Houzeaux, R. Aubry, and M. Vazquez. Extension of fractional step techniques for incompress-
ible flows: The preconditioned Orthomin(1) for the pressure Schur complement. Computers &
Fluids, 44(1):297-313, 2011. (Cited on page 26.)

G. Houzeaux and J. Principe. A variational subgrid scale model for transient incompressible flows.
International Journal of Computational Fluid Dynamics, 22(3):135-152, 2008. (Cited on pages 26
and 102.)

G. Houzeaux, M. Vazquez, R. Aubry, and J. Cela. A massively parallel fractional step solver
for incompressible flows. Journal of Computational Physics, 228(17):6316-6332, 2009. (Cited on
page 26.)

T. J. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation,
subgrid scale models, bubbles and the origins of stabilized methods. Computer methods in applied
mechanics and engineering, 127(1):387-401, 1995. (Cited on page 26.)

146

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

S. R. Idelsohn, J. Marti, A. Limache, and E. Onate. Unified Lagrangian formulation for elastic
solids and incompressible fluids: Application to fluid-structure interaction problems via the PFEM.
Computer Methods in Applied Mechanics and Engineering, 197:1762-1776, 2008. (Cited on page 6.)

B. Irons and R. Tuck. A version of the Aitken accelerator for computer iteration. International
Journal for Numerical Methods in Engineering, 1:275-277, 1969. (Cited on page 32.)

W. Joppich and M. Kiirschner. MpCCI — A tool for the simulation of coupled applications.
Concurrency Computation Practice and Ezperience, 18:183-192, 2006. (Cited on page 25.)

D. Kamensky, M.-C. Hsu, D. Schillinger, J. A. Evans, A. Aggarwal, M. S. Sacks, and T. J. R.
Hughes. A variational immersed boundary framework for fluid-structure interaction : Isogeometric
implementation and application to bioprosthetic heart valves. Computer Methods in Applied
Mechanics and Engineering, 2014. In review. (Cited on page 2.)

S. Kataoka, S. Minami, H. Kawai, T. Yamada, and S. Yoshimura. A parallel iterative partitioned
coupling analysis system for large-scale acoustic fluid-structure interactions. Computational Me-
chanics, 2014. (Cited on pages 3, 8, and 24.)

. Keyes, L. C. Mclnnes, C. S. Woodward, W. Gropp, E. Myra, M. Pernice, J. Bell, J. Brown,
Clo, J. Connors, E. Constantinescu, D. Estep, K. Evans, C. Farhat, A. Hakim, G. Hammond,
. Hansen, J. Hill, T. Isaac, X. Jiao, K. Jordan, D. Kaushik, E. Kaxiras, A. Koniges, K. Lee,
Lott, Q. Lu, J. Magerlein, R. Maxwell, M. McCourt, M. Mehl, R. Pawloski, A. Randles,
. Reynolds, B. Riviere, U. Riide, T. Scheibe, J. Shadid, B. Sheehan, M. Shephard, A. Siegel,
. Smith, X. Tang, C. Wilson, and B. Wohlmuth. Multiphysics simulations: Challenges and
opportunities. High Performance Computing Applications, 27(1):4-83, 2012. (Cited on pages 1
and 31.)

WO QU

H. Klimach, K. Jain, and S. Roller. End-to-end parallel simulations with APES. In PARCO,
Munich, 2013. (Cited on page 27.)

T. Kloppel, A. Popp, U. Kiittler, and W. A. Wall. Fluid-structure interaction for non-conforming
interfaces based on a dual mortar formulation. Computer Methods in Applied Mechanics and
Engineering, 200(45):3111-3126, 2011. (Cited on page 18.)

F. Kong and X.-C. Cai. Scalability study of an implicit solver for coupled fluid-structure interaction
problems on unstructured meshes in 3D. International Journal of High Performance Computing
Applications, pages 1-13, 2016. (Cited on pages 3 and 5.)

M. Kornhaas, M. Schéfer, and D. C. Sternel. Efficient numerical simulation of aeroacoustics for
low mach number flows interacting with structures. Computational Mechanics, 55(6):1143-1154,
2015. (Cited on page 28.)

P. Kuberry and H. Lee. A decoupling algorithm for fluid-structure interaction problems based on
optimization. Computer Methods in Applied Mechanics and Engineering, 267(October):594-605,
2013. (Cited on pages 5 and 37.)

U. Kiittler and W. A. Wall. Fixed-point fluid-structure interaction solvers with dynamic relaxation.
Computational Mechanics, 43(1):61-72, 2008. (Cited on pages 5, 19, and 32.)

F. Lindner, M. Mehl, K. Scheufele, and B. Uekermann. A comparison of various quasi-Newton
schemes for partitioned fluid-structure interaction. In ECCOMAS Coupled Problems, Venice, 2015.
(Cited on pages 5, 19, 29, and 37.)

G. Link, M. Kaltenbacher, M. Breuer, and M. Déllinger. A 2D finite-element scheme for fluid-
solid-acoustic interactions and its application to human phonation. Computer Methods in Applied
Mechanics and Engineering, 198(41-44):3321-3334, 2009. (Cited on pages 2 and 113.)

L. Liu and D. E. Keyes. Field-split preconditioned inexact Newton algorithms. SIAM Journal on
Scientific Computing, 37(3):1388-1409, 2015. (Cited on page 8.)

A. Loeven, J. Witteveen, and H. Bijl. Efficient uncertainty quantification using a two-step ap-
proach with chaos collocation. In ECCOMAS CFD 2006, Egmond aan Zee, The Netherlands,
2006. (Cited on page 128.)

147

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

J. Loffeld and C. Woodward. Considerations and the implementation and use of Anderson accel-
eration on parallel computers. In Advances in the Mathematical Sciences: Research from the 2015
Association for Women in Mathematics Symposium, 2016. To appear. (Cited on page 92.)

C. Lothode, M. Durand, A. Leroyer, M. Visonneau, Y. Roux, and L. Dorez. Fluid-structure
interaction analysis of an hydrofoil. In ECCOMAS Marine V, Hamburg, 2013. (Cited on page 2.)

P. A. Lott, H. F. Walker, C. S. Woodward, and U. M. Yang. An accelerated Picard method for
nonlinear systems related to variably saturated flow. Advances in Water Resources, 38:92-101,
2012. (Cited on pages 34, 36, and 37.)

N. Maman and C. Farhat. Matching fluid and structure meshes for aeroelastic computations: A
parallel approach. Computers € Structures, 54(4):779-785, 1995. (Cited on pages 1 and 18.)

L. Marks and D. Luke. Robust mixing for ab initio quantum mechanical calculations. Physical
Review B, 78(7), 2008. (Cited on pages 35, 48, and 51.)

J. Martorell, R. Pons, L. Dux-Santoy, J. F. Rodriguez-Palorames, J. J. Molins, and A. Evange-
lista. 4D-MRI coupled to fluid dynamics simulations to improve patient management. Tecnicas
Endovasculares, 18:25-30, 2015. (Cited on page 110.)

H. G. Matthies, R. Niekamp, and J. Steindorf. Algorithms for strong coupling procedures.
Computer Methods in Applied Mechanics and Engineering, 195(17):2028-2049, 2006. (Cited on
page 22.)

H. G. Matthies and J. Steindorf. Partitioned strong coupling algorithms for fluid-structure inter-
action. Computers & Structures, 81(8-11):805-812, 2003. (Cited on page 5.)

M. Mayr, T. Kloppel, W. A. Wall, and M. W. Gee. A temporal consistent monolithic approach to
fluid-structure interaction enabling single field predictors. SIAM Journal on Scientific Computing,
37(1):B30-B59, 2015. (Cited on page 6.)

M. Mehl, B. Uekermann, H. Bijl, D. Blom, B. Gatzhammer, and A. van Zuijlen. Parallel coupling
numerics for partitioned fluid-structure interaction simulations. Computers and Mathematics with
Applications, (4):869-891, 2016. (Cited on pages 5, 28, 29, 37, 38, 40, 54, 55, 56, and 58.)

Q. Meng and M. Berzins. Scalable large-scale fluid—structure interaction solvers in the Uintah
framework via hybrid task-based parallelism algorithms. Concurrency and Computation: Practice
and Ezperience, 26(7):1388-1407, 2014. (Cited on page 22.)

C. Michler. An interface Newton-Krylov solver for fluid-structure interaction. International Jour-
nal for Numerical Methods in Fluids, 47(10-11):1189-1195, 2004. (Cited on pages 5 and 36.)

C. Michler, S. J. Hulshoff, E. H. van Brummelen, and R. de Borst. A monolithic approach to
fluid-structure interaction. Computers & Fluids, 33:839-848, 2004. (Cited on page 6.)

C. Michler, E. H. van Brummelen, and R. de Borst. An investigation of Interface-GMRES(R)
for fluid-structure interaction problems with flutter and divergence. Computational Mechanics,
47:17-29, 2011. (Cited on pages 5 and 36.)

V. Mikerov. A Fixed-Grid Flow Solver for Fluid-Structure Interaction with the Coupling Library
preCICE. Master’s thesis, Technische Universitdt Miinchen, 2015. (Cited on page 28.)

S. Minami and S. Yoshimura. Performance evaluation of nonlinear algorithms with line-search for
partitioned coupling techniques for fluid-structure interactions. International Journal for Numer-
ical Methods in Fluids, 2010. (Cited on pages 5 and 37.)

D. Mira, M. Zavala-Ake, M. Avila, H. Owen, J. C. Cajas, M. Vazquez, and G. Houzeaux. Heat
transfer effects on a fully premixed methane impinging flame. Flow, Turbulence and Combustion,

97(1):339-361, 2016. (Cited on page 2.)

R. Mittal and G. Iaccarino. Immersed boundary methods. Annual Review of Fluid Mechanics,
37:239-261, 2005. (Cited on page 6.)

148

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

163]

[164]

[165]

[166]

167]

[168]

169]

H. N. Najm. Uncertainty quantification and polynomial chaos techniques in computational fluid
dynamics. Annual Review of Fluid Mechanics, 41(1):35-52, 2009. (Cited on page 128.)

T. Neckel. The PDE Framework Peano: An Environment for Efficient Flow Simulations. PhD
thesis, Technische Universitdt Miinchen, 2009. (Cited on page 28.)

V.-T. Nguyen and B. Gatzhammer. A fluid structure interactions partitioned approach for simula-
tions of explosive impacts on deformable structures. International Journal of Impact Engineering,
2015. (Cited on page 28.)

P. Ni. Anderson Acceleration of Fixed-Point Iteration with Applications to Electronic Structure
Computations. PhD thesis, Worcester Polytechnic Institute, 2009. (Cited on page 34.)

J. Nitsche. Uber ein Variationsprinzip zur Losung von Dirichlet-Problemen bei Verwendung von
Teilrdumen, die keinen Randbedingungen unterworfen sind. In Abhandlungen aus dem mathe-
matischen Seminar der Universitat Hamburg, volume 36, pages 9-15. Springer, 1971. (Cited on

page 6.)

F. Nobile, M. Pozzoli, and C. Vergara. Inexact accurate partitioned algorithms for fluid-structure
interaction problems with finite elasticity in haemodynamics. Journal of Computational Physics,
273:598-617, 2014. (Cited on page 5.)

F. Nobile and C. Vergara. An effective fluid-structure interaction formulation for vascular dynamics
by generalized Robin conditions. SIAM Journal on Scientific Computing, 30(2):731-763, 2008.
(Cited on page 5.)

F. Palacios, J. Alonso, K. Duraisamy, M. Colonno, J. Hicken, A. Aranake, et al. An open-source
integrated 3 computational environment for multi-physics simulation and design. In 51st ATAA
Aerospace Scientific Meeting, 2013. (Cited on page 28.)

N. Parolini and M. Lombardi. Unsteady FSI simulation of downwind sails. In ECCOMAS Marine
V, Hamburg, 2013. (Cited on page 2.)

C. Peskin. Flow patterns around heart valves: a numerical method. Journal of Computational
Physics, 271:252-271, 1972. (Cited on page 6.)

D. Pfliiger. Spatially Adaptive Sparse Grids for High-Dimensional Problems. PhD thesis, Tech-
nische Universitdt Miinchen, 2010. (Cited on page 131.)

S. Piperno, C. Farhat, and B. Larrouturou. Partitioned procedures for the transient solution
of coupled aroelastic problems part i: Model problem, theory and two-dimensional application.
Computer Methods in Applied Mechanics and Engineering, 124(1):79-112, 1995. (Cited on page 1.)

S. J. Plimpton, B. Hendrickson, and J. R. Stewart. A parallel rendezvous algorithm for interpola-
tion between multiple grids. Journal of Parallel and Distributed Computing, 64(2):266-276, 2004.
(Cited on page 137.)

S. B. Pope. Turbulent Flows. IOP Publishing, 2001. (Cited on page 11.)

P. Pulay. Convergence acceleration of iterative sequences. the case of SCF iteration. Chemical
Physics Letters, 73(2):393-398, 1980. (Cited on page 34.)

A. Purohit, A. K. Darpe, and S. Singh. A study on aerodynamic sound from an externally excited
flexible structure in flow. Computers & Fluids, 103:100-115, 2014. (Cited on page 113.)

A. Quarteroni. Modeling the Heart and the Circulatory System, volume 14. Springer, 2015. (Cited
on page 2.)

T. Richter. Goal-oriented error estimation for fluid-structure interaction problems. Computer
Methods in Applied Mechanics and Engineering, 223-224:28-42, 2012. (Cited on page 5.)

T. Rohwedder and R. Schneider. An analysis for the diis acceleration method used in quantum
chemistry calculations. Journal of Mathematical Chemistry, 49(9):1889-1914, 2011. (Cited on
pages 34, 35, and 37.)

149

[170] M. R. Ross, C. A. Felippa, K. Park, and M. a. Sprague. Treatment of acoustic fluid-structure inter-
action by localized Lagrange multipliers: Formulation. Computer Methods in Applied Mechanics
and Engineering, 197(33-40):3057-3079, 2008. (Cited on pages 5 and 8.)

[171] M. R. Ross, M. A. Sprague, C. A. Felippa, and K. Park. Treatment of acoustic fluid-structure
interaction by localized Lagrange multipliers and comparison to alternative interface-coupling
methods. Computer Methods in Applied Mechanics and Engineering, 198(9-12):986-1005, 2009.
(Cited on page 5.)

[172] A. Rusch. Extending SU2 to Fluid-Structure Interaction via preCICE. Bachelor’s thesis, Technis-
che Universitat Miinchen, 2016. (Cited on pages 28, 108, 123, and 124.)

[173] Y. Saad and M. H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-
symmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856-869,
1986. (Cited on page 88.)

[174] S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti, M. Senga, K. Stein, and T. Tezdu-
yar. Fluid-structure interaction modeling of complex parachute designs with the space-time finite
element techniques. Computers € Fluids, 36(1):127-135, 2007. (Cited on pages 1 and 5.)

[175] F. Schéfer, S. Miiller, T. Uffinger, S. Becker, J. Grabinger, and M. Kaltenbacher. Fluid-structure-
acoustic interaction of the flow past a thin flexible structure. ATAA Journal, 48(4):738-748, 2010.
(Cited on pages 2, 5, and 113.)

[176] K. Scheufele. Robust Quasi-Newton Methods for Partitioned Fluid-Structure Simulations. Mas-
ter’s thesis, University of Stuttgart, 2015. (Cited on pages 29, 34, 36, 37, 38, 39, 58, and 61.)

[177] K. Scheufele and M. Mehl. Multi-secant quasi-Newton variants for parallel fluid-structure simu-
lations — and other multi-physics applications. SIAM Journal on Scientific Computing, Special
Issue Copper Mountain, 2016. In preparation. (Cited on pages 96, 97, and 138.)

[178] T. Scholcz, A. van Zuijlen, and H. Bijl. Space-mapping in fluid-structure interaction problems.
Computer Methods in Applied Mechanics and Engineering, 281:162-183, 2014. (Cited on pages 5
and 37.)

[179] S. Schulte. Modulare und hierarchische Simulation gekoppelter Probleme. PhD thesis, Technische
Universitdt Miinchen, 1998. (Cited on page 1.)

[180] J. P. Sheldon, S. T. Miller, and J. S. Pitt. Methodology for comparing coupling algorithms for
fluid-structure interaction problems. World Journal of Mechanics, 4(02):54, 2014. (Cited on
pages 6 and 61.)

[181] A. K. Shukaev. A Fully Parallel Process-to-Process Intercommunication Technique for preCICE.
Master’s thesis, Technische Universitat Miinchen, 2015. (Cited on pages 10, 24, 70, 78, 82,
and 100.)

[182] S. Sicklinger. Stabilized Co-Simulation of Coupled Problems Including Fields and Signals. PhD
thesis, Technischer Universitdt Miinchen, 2014. (Cited on pages 2, 25, and 29.)

[183] S. Sicklinger, V. Belsky, B. Engelmann, H. Elmqvist, H. Olsson, R. Wiichner, and K.-U. Blet-
zinger. Interface Jacobian-based co-simulation. International Journal for Numerical Methods in
Engineering, 98(6):418-444, 2014. (Cited on page 5.)

[184] S. Slattery, P. Wilson, and R. Pawlowski. The data transfer kit: A geometric rendezvous-based
tool for multiphysics data transfer. In M & C, Sun Valley, Idaho, 2013. (Cited on pages 24
and 137.)

[185] M. J. Smith, C. E. S. Cesnik, and D. H. Hodges. Evaluation of algorithms suitable for data
transfer between noncontiguous meshes. ASCE Journal of Aerospace Engineering, 13(2):52-58,
2000. (Cited on pages 18, 86, and 87.)

. C. Smith. Uncertainty Quantification: Theory, Implementation, and Applications. , .
186] R. C. Smith. Uncertainty Quantificati Th Impl tati d Applicati SIAM, 2013
(Cited on pages 128 and 129.)

150

[187]

188

[189]

[190]

[191]

[192]

193]

[194]

195]

[196]

[197]

[198]

199]

200]

201]

[202]

M. D. Song, E. Lefrancois, and M. Rachik. A partitioned coupling scheme extended to structures
interacting with high-density fluid flows. Computers & Fluids, 84:190-202, 2013. (Cited on page 5.)

P. Spalart and S. Allmaras. A one-equation turbulence model for aerodynamic flows. AIAA
Journal, 94, 1992. (Cited on page 123.)

K. R. Stein, R. J. Benney, V. Kalro, A. A. Johnson, and T. E. Tezduyar. Parallel computation
of parachute fluid-structure interactions. UMSI Research Report, University of Minnesota, 97:54,
1997. (Cited on page 1.)

K. R. Stein, T. E. Tezduyar, S. Sathe, and M. Senga. Simulation of parachute descent and
maneuvers. In Conference on Computation of Shell and Spatial Structures, 2005. (Cited on

page 1.)

J. R. Stewart and H. C. Edwards. The SIERRA framework for developing advanced parallel
mechanics applications. In Large-Scale PDE-Constrained Optimization, pages 301-315. Springer,
2003. (Cited on page 22.)

T. Tezduyar, S. Sathe, T. Cragin, B. Nanna, B. S. Conklin, J. Pauseweg, and M. Schwaab. Mod-
elling of fluid-structure interactions with the space-time finite elements: Arterial fluid mechanics.
International Journal for Numerical Methods in Fluids, 54(6-8):901-922, 2007. (Cited on page 2.)

T. E. Tezduyar, K. Takizawa, C. Moorman, S. Wright, and J. Christopher. Space-time finite
element computation of complex fluid-structure interactions. International Journal for Numerical
Methods in Fluids, 2010. (Cited on page 5.)

F.-B. Tian, H. Dai, H. Luo, J. F. Doyle, and B. Rousseau. Fluid-structure interaction involving
large deformations: 3D simulations and applications to biological systems. Journal of Computa-
tional Physics, 258:451-469, 2014. (Cited on pages 2 and 5.)

C. E. Torres and L. A. Barba. Fast radial basis function interpolation with Gaussians by lo-
calization and iteration. Journal of Computational Physics, 228(14):4976-4999, 2009. (Cited on
pages 19 and 138.)

A. Toth and C. Kelley. Convergence analysis for Anderson acceleration. SIAM Journal on Nu-
merical Analysis, pages 1-15, 2015. (Cited on pages 34 and 35.)

A. Toth, C. Kelley, and R. Pawlowski. Anderson acceleration for Tiamat. In CASL Summer
Student Workshop poster, 2015. (Cited on page 29.)

A. Toth, C. Kelley, S. Slattery, S. Hamilton, K. Clarno, and R. Pawlowski. Analysis of Anderson
acceleration on a simplified neutronics/thermal hydraulics system. In Joint International Confer-

ence on Mathematics and Computation (MEC), Supercomputing in Nuclear Applications (SNA),
and the Monte Carlo (MC) Method, 2015. (Cited on page 34.)

S. Turek and J. Hron. Proposal for numerical benchmarking of fluid-structure interaction between
an elastic object and laminar incompressible flow. In H.-J. Bungartz, M. Mehl, and M. Schéfer, ed-
itors, Fluid Structure Interaction II: Modelling, Simulation, Optimization. Springer, 2006. (Cited
on pages 54, 55, 56, 102, and 108.)

S. Turek, J. Hron, M. Madlik, M. Razzaq, H. Wobker, and J. Acker. Numerical simulation
and benchmarking of a monolithic multigrid solver for fluid-structure interaction problems with
application to hemodynamics. In H.-J. Bungartz, M. Mehl, and M. Schéfer, editors, Fluid Structure
Interaction II: Modelling, Simulation, Optimization, page 432. Springer Berlin Heidelberg, 2010.
(Cited on page 5.)

B. Uekermann. Detached-eddy simulation for the parallel finite element framework alya. Diploma
thesis, Technische Universitidt Miinchen, 2012. (Cited on page 26.)

B. Uekermann, H.-J. Bungartz, B. Gatzhammer, and M. Mehl. A parallel, black-box coupling
algorithm for fluid-structure interaction. In ECCOMAS Coupled Problems, Ibiza, 2013. (Cited on
pages 5, 29, 37, 38, and 40.)

151

203]

[204]

205

206]

[207]

208

209]

[210]

[211]

[212]

[213]

[214]

[215]

[216]

[217]

[218]

[219]

B. Uekermann, J. C. Cajas, B. Gatzhammer, G. Houzeaux, M. Mehl, and M. Vazquez. Towards
fluid-structure interaction on massively parallel systems. In WCCM XI, Barcelona, 2014. (Cited
on page 26.)

B. Uekermann, B. Gatzhammer, and M. Mehl. Coupling algorithms for partitioned multi-physics
simulations. In 44. Jahrestagung der Gesellschaft fiir Informatik, Stuttgart, 2014. (Cited on
pages 29 and 62.)

S. Valcke, T. Craig, and L. Coquart. OASIS3-MCT user guide OASIS3-MCT 2.0. Technical
Report 1875, CERFACS/CNRS SUC URA, 2013. (Cited on page 25.)

E. van Brummelen. Partitioned iterative solution methods for fluid—structure interaction. Inter-
national Journal for Numerical Methods in Fluids, 65(1-3):3-27, 2011. (Cited on page 37.)

E. van Brummelen, C. Michler, and R. de Borst. Interface-gmres (r) acceleration of subiteration
for fluid-structure-interaction problems. Technical report, Delft Aerospace Computational Science,
2005. (Cited on pages 36 and 37.)

E. H. van Brummelen. Added mass effects of compressible and incompressible flows in fluid-
structure interaction. Journal of Applied Mechanics, 76(2):1-7, 2009. (Cited on page 5.)

E. H. van Brummelen, K. G. van der Zee, and R. de Borst. Space/time multigrid for a fluid-
structure-interaction problem. Applied Numerical Mathematics, 58(May):1951-1971, 2008. (Cited
on pages 5 and 37.)

T. van Opstal, E. van Brummelen, and G. van Zwieten. A finite-element/boundary-element
method for three-dimensional, large-displacement fluid-structure-interaction. Computer Methods
in Applied Mechanics and Engineering, 284:637-663, 2015. (Cited on page 1.)

A. van Zuijlen, A. de Boer, and H. Bijl. Higher-order time integration through smooth mesh
deformation for 3D fluid-structure interaction simulations. Journal of Computational Physics,

224(1):414-430, 2007. (Cited on page 6.)

M. Viazquez, R. Aris, J. Aguado-Sierra, G. Houzeaux, A. Santiago, M. Lépez, P. Cérdoba,
M. Rivero, and J. Cajas. Alya Red CCM: HPC-based cardiac computational modelling. In
Selected Topics of Computational and Ezperimental Fluid Mechanics, pages 189—207. Springer,
2015. (Cited on page 2.)

M. Vazquez, G. Houzeaux, S. Koric, A. Artigues, J. Aguado-Sierra, R. Aris, D. Mira, H. Calmet,
F. Cucchietti, H. Owen, et al. Alya: Multiphysics engineering simulation toward exascale. Journal
of Computational Science, 2016. (Cited on pages 4 and 26.)

C. V. Verhoosel, T. P. Scholcz, S. J. Hulshoff, and M. A. Gutiérrez. Uncertainty and reliability
analysis of fluid-structure stability boundaries. AIAA Journal, 47(1):91-104, 2009. (Cited on
page 127.)

J. Vierendeels, J. Degroote, S. Annerel, and R. Haelterman. Stability issues in partitioned FSI
calculations. In H.-J. Bungartz, M. Mehl, and M. Schéfer, editors, Fluid Structure Interaction II:
Modelling, Simulation, Optimization, pages 83-102. Springer, 2010. (Cited on page 37.)

J. Vierendeels, L. Lanoye, J. Degroote, and P. Verdonck. Implicit coupling of partitioned fluid-
structure interaction problems with reduced order models. Computers & Structures, 85(11-
14):970-976, 2007. (Cited on pages 5, 30, 36, 37, and 38.)

H. F. Walker and P. Ni. Anderson acceleration for fixed-point iterations. SIAM Journal on
Numerical Analysis, 49(1965):1715-1735, 2011. (Cited on pages 34, 35, 36, 37, 49, and 91.)

W. A. Wall. Fluid-Struktur-Interaktion mit stabilisierten Finiten Elementen. PhD thesis, Univer-
sitiat Stuttgart, 1999. (Cited on pages 1, 32, and 57.)

T. Wang, S. Sicklinger, R. Wuechner, and K.-U. Bletzinger. Concept and realization of the
coupling software EMPIRE in multiphysics co-simulation. In ECCOMAS MARINE V, Hamburg,
2013. (Cited on page 25.)

152

[220] T. Wang, R. Wiichner, S. Sicklinger, and K.-U. Bletzinger. Assessment and improvement of map-
ping algorithms for non-matching meshes and geometries in computational FSI. Computational
Mechanics, pages 1-24, 2016. (Cited on pages 18 and 86.)

[221] T. Wick. Fully Eulerian fluid-structure interaction for time-dependent problems. Computer Meth-
ods in Applied Mechanics and Engineering, 255:14-26, 2013. (Cited on page 6.)

[222] N. Wiener. The homogenous chaos. American Journal of Mathematics, 60:897-936, 1938. (Cited
on page 128.)

[223] D. C. Wilcox. Turbulence Modeling for CFD, volume 2. DCW Industries La Canada, 1998. (Cited
on page 11.)

[224] J. A. Witteveen, S. Sarkar, and H. Bijl. Modeling physical uncertainties in dynamic stall induced
fluid—structure interaction of turbine blades using arbitrary polynomial chaos. Computers &
Structures, 85(11):866-878, 2007. (Cited on page 128.)

[225] B. I. Wohlmuth. A mortar finite element method using dual spaces for the Lagrange multiplier.
SIAM Journal on Numerical Analysis, 38(3):989-1012, 2000. (Cited on page 18.)

[226] K. Wolf and E. Brakkee. Coupling fluids and structures codes on MPI. In MPI Developer’s
Conference, 1996. (Cited on page 1.)

[227] J. N. Wood, G. De Nayer, S. Schmidt, and M. Breuer. Experimental investigation and large-
eddy simulation of the turbulent flow past a smooth and rigid hemisphere. Flow, Turbulence and
Combustion, pages 1-41, 2016. (Cited on pages 3, 108, and 121.)

[228] P. Wriggers. Nonlinear Finite Element Methods. Springer Science & Business Media, 2008. (Cited
on page 11.)

[229] Y. Wu and X.-C. Cai. A fully implicit domain decomposition based ALE framework for three-
dimensional fluid-structure interaction with application in blood flow computation. Journal of
Computational Physics, 258:524-537, 2014. (Cited on pages 3 and 5.)

[230] R. Wiichner. Computational Mechanics of Form Finding and Fluid-Structure Interaction of Mem-
brane Structures. PhD thesis, Technischer Universit/”at M/”unchen, 2006. (Cited on page 1.)

[231] D. Xiu. Numerical Methods for Stochastic Computations: A Spectral Method Approach. N.J.
Princeton University Press, 2010. (Cited on pages 129 and 131.)

[232] D. Xiu and G. E. Karniadakis. The Wiener-Askey polynomial chaos for stochastic differential
equations. SIAM Journal of Scientific Computing, 24:619-644, 2002. (Cited on page 128.)

[233] D. Xiu, D. Lucor, C.-H. Su, and G. E. Karniadakis. Stochastic modeling of flow-structure inter-
actions using generalized polynomial chaos. Journal of Fluids Engineering, 124(1):51-59, 2002.
(Cited on page 128.)

[234] R. Yokota, L. A. Barba, and M. G. Knepley. PetRBF — A parallel O(N) algorithm for radial basis
function interpolation with Gaussians. Computer Methods in Applied Mechanics and Engineering,
199(25-28):1793-1804, 2010. (Cited on page 19.)

[235] Y. Yu, H. Baek, and G. E. Karniadakis. Generalized fictitious methods for fluid-structure inter-
actions: Analysis and simulations. Journal of Computational Physics, 2013. (Cited on page 5.)

[236] C. Yvin, A. Leroyer, and M. Visonneau. Co-simulation in fluid-structure interaction problem with
rigid bodies. In 16th Numerical Towing Tank Symposium, 2013. (Cited on page 4.)

[237] C. Zenger. Sparse grids. In W. Hackbusch, editor, Parallel Algorithms for Partial Differential
Equations, Proceedings of the Sizth GAMM-Seminar, volume 31 of Notes on Numerical Fluid
Mechanics, pages 241-251. Vieweg Verlag, 1991. (Cited on page 130.)

[238] J. Zudrop. Efficient Numerical Methods for Fluid- and Electrodynamics on Massively Parallel
Systems. PhD thesis, RWTH Aachen, 2015. (Cited on pages 26 and 113.)

153

[239] J. Zudrop, H. Klimach, M. Hasert, K. Masilamani, and S. Roller. A fully distributed CFD
framework for massively parallel systems. Cray User Group, 2012. (Cited on pages 4, 26, and 98.)

[240] A. H. V. Zuijlen and H. Bijl. Multi-level accelerated sub-iterations for fluid-structure interaction.
In H. Bungartz, M. Mehl, and M. Schéfer, editors, Fluid Structure Interaction II: Modelling,
Simulation, Optimization, pages 1-25. Springer, 2010. (Cited on pages 5 and 37.)

154

