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Abstract

This paper describes the system submission
of our team Amazon to the shared task on
Cross Framework Meaning Representation
Parsing (MRP) at the 2019 Conference for
Computational Language Learning (CoNLL).
Via extensive analysis of implicit alignments
in AMR, we recategorize five meaning rep-
resentations (MRs) into two classes: Lexical-
Anchoring and Phrasal-Anchoring. Then we
propose a unified graph-based parsing frame-
work for the lexical-anchoring MRs, and a
phrase-structure parsing for one of the phrasal-
anchoring MRs, UCCA. Our system submis-
sion ranked 1st in the AMR subtask, and
later improvements shows promising results
on other frameworks as well.

1 Introduction

The design and implementation of broad-coverage
and linguistically motivated meaning representa-
tion frameworks for natural language is attracting
growing attention in recent years. With the ad-
vent of deep neural network-based machine learn-
ing techniques, we have made significant progress
to automatically parse sentences intro structured
meaning representation (Oepen et al., 2014, 2015;
May, 2016; Hershcovich et al., 2019). More-
over, the differences between various representa-
tion frameworks has a significant impact on the
design and performance of the parsing systems.

Due to the abstract nature of semantics, there
is a diverse set of meaning representation frame-
works in the literature (Abend and Rappoport,
2017). In some application scenario, tasks-specific
formal representations such as database queries
and arithmetic formula have also been proposed.
However, primarily the study in computational se-
mantics focuses on frameworks that are theoreti-
cally grounded on formal semantic theories, and
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sometimes also with assumptions on underlying
syntactic structures.

Anchoring is crucial in graph-based meaning
representation parsing. Training a statistical parser
typically starts with a conjectured alignment be-
tween tokens/spans and the semantic graph nodes
to help to factorize the supervision of graph struc-
ture into nodes and edges. In our paper, with
evidence from previous research on AMR align-
ments (Pourdamghani et al., 2014; Flanigan et al.,
2014; Wang and Xue, 2017; Chen and Palmer,
2017; Szubert et al., 2018; Lyu and Titov, 2018),
we propose a uniform handling of three meaning
representations from Flavor-0 (DM, PSD) and
Flavor-2 (AMR) into a new group referred to
as the lexical-anchoring MRs. It supports both
explicit and implicit anchoring of semantic con-
cepts to tokens. The other two meaning represen-
tations from Flavor-1 (EDS, UCCA) is referred
to the group of phrasal-anchoring MRs where the
semantic concepts are anchored to phrases as well.

To support the simplified taxonomy, we named
our parser as LAPA (Lexical-Anchoring and
Phrasal-Anchoring)1. We proposed a graph-based
parsing framework with a latent-alignment mech-
anism to support both explicit and implicit lexi-
con anchoring. According to official evaluation
results, our submission for this group ranked 1st
in the AMR subtask, 6th on PSD, and 7th on
DM respectively, among 16 participating teams.
For phrasal-anchoring, we proposed a CKY-based
constituent tree parsing algorithm to resolve the
anchor in UCCA, and our post-evaluation submis-
sion ranked 5th on UCCA subtask.

2 Anchoring in Meaning Representation

The 2019 Conference on Computational Lan-
guage Learning (CoNLL) hosted a shared task on

1The code is available online at https://github.com/
utahnlp/lapa-mrp

https://github.com/utahnlp/lapa-mrp
https://github.com/utahnlp/lapa-mrp
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Cross-Framework Meaning Representation Pars-
ing (MRP 2019, Oepen et al., 2019), which en-
courage participants in building a parser for five
different meaning representations in three dis-
tinct flavors. Flavor-0 includes the DELPH-
IN MRS Bi-lexical Dependencies (DM, Ivanova
et al., 2012) and Prague Semantic Dependen-
cies (PSD, Hajic et al., 2012; Miyao et al., 2014).
Both frameworks under this representation have a
syntactic backbone that is (either natively or by-
proxy) based on bi-lexical dependency structures.
As a result, the semantic concepts in these mean-
ing representations can be anchored to the individ-
ual lexical units of the sentence. Flavor-1 in-
cludes Elementary Dependency Structures (EDS,
Oepen and Lønning, 2006) and Universal Con-
ceptual Cognitive Annotation framework (UCCA,
Abend and Rappoport, 2013), which shows an ex-
plicit, many-to-many anchoring of semantic con-
cepts onto sub-strings of the underlying sentence.
Finally, Flavor-2 includes Abstract Meaning
Representation (AMR, Banarescu et al., 2013),
which is designed to abstract the meaning rep-
resentation away from its surface token. But it
leaves open the question of how these are de-
rived. Previous studies have shown that the nodes
in AMR graphs are predominantly aligned with
the surface lexical units, although explicit anchor-
ing is absent from the AMR representation. In this
section, we review the related work supporting the
claim of the implicit anchoring in AMR is actu-
ally lexical-anchoring, which can be merged into
Flavor-0 when we consider the parsing meth-
ods on it.

2.1 Implicit Anchoring in AMR

AMR tries to abstract the meaning representation
away from the surface token. The absense of ex-
plicit anchoring can present difficulties for pars-
ing. In this section, by extensive analysis on pre-
vious work AMR alignments, we show that AMR
nodes can be implicitly aligned to the leixical to-
kens in a sentence.

AMR-to-String Alignments A straightforward
solution to find the missing anchoring in an AMR
Graph is to align it with a sentence; We denote it
as AMR-to-String alignment.

ISI alignments (Pourdamghani et al., 2014)
first linearizes the AMR graph into a se-
quence, and then use IBM word alignment
model (Brown et al., 1993) to align the lin-

earized sequence of concepts and relations with
tokens in the sentence. According to the AMR
annotation guidelines and error analysis of ISI
aligner, some of the nodes or relations are
evoked by subwords, e.g., the whole graph frag-
ment (p/possible-01 :polarity -) is
evoked by word “impossible”, where the sub-
word "im-" actually evoked the relation polar-
ity and concept "-"; On the other side, some-
times concepts are evoked by multiple words, e.g.,
named entities, (c/city :name (n/name
:op1 "New":op2 "York")), which also
happens in explict anchoring of DM and PSD.
Hence, aligning and parsing with recategorized
graph fragments are a natural solution in aligners
and parsers. JAMR aligner (Flanigan et al., 2014)
uses a set of rules to greedily align single tokens,
special entities and a set of multiple word expres-
sion to AMR graph fragments, which is widely
used in previous AMR parsers (e.g. Flanigan et al.,
2014; Wang et al., 2015; Artzi et al., 2015; Pust
et al., 2015; Peng et al., 2015; Konstas et al., 2017;
Wang and Xue, 2017).

Other AMR-to-String Alignments exists, such
as the extended HMM-based aligner. To consider
more structure info in the linearized AMR con-
cepts, Wang and Xue (2017) proposed a Hidden
Markov Model (HMM)-based alignment method
with a novel graph distance. All of them re-
port over 90% F-score on their own hand-aligned
datasets, which shows that AMR-to-String align-
ments are almost token-level anchoring.

AMR-to-Dependency Alignments Chen and
Palmer (2017) first tries to align an AMR graph
with a syntactic dependency tree. Szubert et al.
(2018) conducted further analysis on dependency
tree and AMR interface. It showed 97% of AMR
edges can be evoked by words or the syntactic de-
pendency edges between words. Those nodes in
the dependency graph are anchored to each lexical
token in the original sentence. Hence, this obser-
vation indirectly shows that AMR nodes can be
aligned to the lexical tokens in the sentence.

Both AMR-to-String and AMR-to-dependency
alignments shows that AMR nodes, including re-
categorized AMR graph fragements, do have im-
plicit lexical anchoring. Based on this, Lyu and
Titov (2018) propose to treat token-node align-
ments as discrete and exclusive alignment matrix
and learn the latent alignment jointly with parsing.
Recently, attention-based seq2graph model also
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Figure 1: Phrasal-anchoring in EDS[wsj#0209013], for the sentence "A similar technique is almost
impossible to apply to other crops, such as cotton, soybeans and rice.". Bold
nodes are similar to the non-terminal nodes in UCCA, which are anchored multiple tokens, thus overlapping with
the anchors of other nodes.

achieved the state-of-the-art accuracy on AMR
parsing (Zhang et al., 2019). However, whether
the attention weights can be explained as AMR
alignments needs more investigation in future.

2.2 Taxonomy of Anchroing

Given the above analysis on implicit alignments in
AMR, in this section, we further discuss the taxon-
omy of anchoring of the five meaning representa-
tions in this shared task.

Lexical-Anchoring According to the bi-lexical
dependency structures of DM and PSD, and im-
plicit lexical token anchoring on AMR, the nodes/-
categorized graph fragments of DM, PSD, and
AMR are anchored to surface lexical units in an
explicit or implict way. Especially, those lexical
units do not overlap with each other, and most of
them are just single tokens, multiple word expres-
sion, or named entities. In other words, when pars-
ing a sentence into DM, PSD, AMR graphs, tokens
in the original sentence can be merged by look-
ing up a lexicon dict when preprocessing and then
may be considered as a single token for aligning
or parsing.

Phrasal-Anchoring However, different from
the lexical anchoring without overlapping, nodes

in EDS and UCCA may align to larger overlapped
word spans which involves syntactic or semantic
pharsal structure. Nodes in UCCA do not have
node labels or node properties, but all the nodes
are anchored to the spans of the underlying sen-
tence. Furthermore, the nodes in UCCA are linked
into a hierarchical structure, with edges going be-
tween parent and child nodes. With certain ex-
ceptions (e.g. remote edges), the majority of the
UCCA graphs are tree-like structures. Accord-
ing to the position as well as the anchoring style,
nodes in UCCA can be classified into the follow-
ing two types:

1. Terminal nodes are the leaf semantic con-
cepts anchored to individual lexical units in the
sentence

2. Non-terminal nodes are usually anchored
to a span with more than one lexical units, thus
usually overlapped with the anchoring of terminal
nodes.

The similar classification of anchoring nodes
also applies to the nodes in EDS, although they do
not regularly form a recursive tree like UCCA. As
the running example in Figure 1, most of the nodes
belongs to terminal nodes, which can be explicitly
anchored to a single token in the original sentence.
However, those bold non-teriminal nodes are an-
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chored to a large span of words. For example,
the node "undef q" with span <53:100> is
aligned to the whole substring starting from “other
crops” to the end; The abstract node with label
imp conj are corresponding to the whole coordi-
nate structure between soybeans and rice

In summary, by treating AMR as an implicitly
lexically anchored MR, we propose a simplified
taxonomy for parsing the five meaning representa-
tion in this shared task.

• Lexical-anchoring: DM, PSD, AMR

• Phrasal-anchoring: EDS, UCCA

3 Model

For the two groups of meaning representations de-
fined in Section 2, in this section, we propose two
parsing framework: a graph-based parsing frame-
work with latent alignment for lexically anchored
MRs, and a minimal span-based CKY parser for
one of the phrasally anchored MRs, UCCA.2

3.1 Graph-based Parsing Framework with
Latent Alignment

Before formulating the graph-based model into a
probabilistic model as Equation 1, we denote some
notations: C, R are sets of concepts (nodes) and
relations (edges) in the graph, and w is a sequence
of tokens. a ∈ Zm as the alignment matrix, each
ai is the index of aligned token where ith node
aligned to. When modeling the negative log like-
lihood loss (NLL), with independence assumption
between each node and edge, we decompose it into
node- and edge-identification pipelines.

NLL(P (C,R | w))
= − log(P (C,R | w))

= − log(
∑
a

P (a)P (C,R | w, a))

= − log

(∑
a

P (a)P (R | w, a, c)P (c | w, a)

)

= − log

(∑
a

P (a)

m∏
i

P (ci | hai)

·
m∏

i,j=1

P (rij | hai , ci, haj , cj)


(1)

2After the CKY parser gets the related phrasal spans,
graph-based parser can also be used to predict the relations
between nodes.

In DM, PSD, and AMR, every token will only
be aligned once. Hence, we train a joint model
to maximize the above probability for both node
identification P (ci | hai) and edge identification
P (rij | hai,ci,haj ,cj ), and we need to marginalize
out the discrete alignment variable a.

3.1.1 Alignment Model
The above model can support both explicit align-
ments for DM, PSD, and implicit alignments for
AMR.

Explicit Alignments For DM, PSD, with ex-
plicit alignments a∗, we can use P (a∗) = 1.0 and
other alignments P (a|a 6= a∗) = 0.0

Implicit Alignments For AMR, without gold
alignments, one requires to compute all the valid
alignments and then condition the node- and edge-
identification methods on the alignments.

log(P (C,R | w)) ≥
EQ[log(Pθ(c | w, a)PΦ(R | w, a, c))]
−DKL(QΨ(a | c,R,w) || P (a))

(2)

However, it is computationally intractable to enu-
merate all alignments. We estimate posterior
alignments model Q as Equation 3, please refer
to Lyu and Titov (2018) for more details.

• Applying variational inference to reduce it
into Evidence Lower Bound (ELBO, Kingma
and Welling, 2013)

• The denominator ZΨ in Q can be estimated
by Perturb-and-Max(MAP) (Papandreou and
Yuille, 2011)

QΨ(a | c,R,w) =
exp(

∑n
i=1 φ(gi, hai))

ZΨ(c, w)
(3)

Where φ(gi, hai) score each alignment link
between node i and the corresponding words,
gi is node encoding, and hai is encoding for
the aligned token.

• Discrete argmax of a permutation can be es-
timated by Gumbel-Softmax Sinkhorn Net-
works (Mena et al., 2018; Lyu and Titov,
2018)

3.1.2 Node Identification
Node Identification predicts a concept c given a
word. A concept can be either NULL (when there
is no semantic node anchoring to that word, e.g.,
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Figure 2: Architecture of graph-based model and inference, for running exmaple [wsj#0209013]

the word is dropped), or a node label (e.g., lemma,
sense, POS, name value in AMR, frame value in
PSD), or other node properties. One challenge in
node identification is the data sparsity issue. Many
of the labels are from open sets derived from the
input token, e.g., its lemma. Moreover, some la-
bels are constrained by a deterministic label set
given the word. Hence, we designed a copy mech-
anism (Luong et al., 2014) in our neural network
architecture to decide whether to copying deter-
ministic label given a word or estimate a classifi-
cation probability from a fixed label set.

3.1.3 Edge Identification
By assuming the independence of each edge,
we model the edges probabilites independently.
Given two nodes and their underlying tokens, we
predict the edge label as the semantic relation be-
tween the two concepts with a bi-affine classi-
fier (Dozat and Manning, 2016).

3.1.4 Inference
In our two-stage graph-based parsing, after nodes
are identified, edge identification only output a
probility distribution over all the relations between
identified nodes. However, we need to an infer-
ence algorithm to search for the maximum span-
ning connected graph from all the relations. We
use Flanigan et al. (MSCG, 2014) to greedily se-
lect the most valuable edges from the identified
nodes and their relations connecting them. As
shown in Figure 2, an input sentence goes through
preprocessing, node identification, edge identifica-
tion, root identification, and MCSG to generate a

final connected graph as structured output.

3.2 Minimal Span-based CKY Parsing
Framework

Let us now see our phrasal-anchoring parser for
UCCA. We introduce the transformation we used
to reduce UCCA parsing into a consituent parsing
task, and finally introduce the detailed CKY model
for the constituent parsing.

3.2.1 Graph-to-CT Transformation
We propose to transform a graph into a constituent
tree structure for parsing, which is also used in
recent work (Jiang et al., 2019). Figure 3 shows
an example of transforming a UCCA graph into
a constituent tree. The primary transformation as-
signs the original label of an edge to its child node.
Then to make it compatible with parsers for stan-
dard PennTree Bank format, we add some aux-
iliary nodes such as special non-terminal nodes,
TOP, HEAD, and special terminal nodes TOKEN
and MWE. We remove all the “remote” annotation
in UCCA since the constituent tree structure does
not support reentrance. A fully compatible trans-
formation should support both graph-to-tree and
tree-to-graph transformation.

In our case, due to time constraints, we remove
those remote edges and reentrance edges during
training. Besides that, we also noticed that for
multi-word expressions, the children of a parent
node might not be in a continuous span (i.e., dis-
continuous constituent), which is also not sup-
ported by our constituent tree parser. Hence, when
training the tree parser, by reattaching the dis-
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continuous tokens to its nearest continuous parent
nodes, we force every sub span are continuous in
the transformed trees. We leave the postprocessing
to recover those discontinuous as future work.

For inference, given an input sentence, we first
use the trained constituent tree parsing model to
parse it into a tree, and then we transform a tree
back into a directed graph by assigning the edge
label as its child’s node label, and deleting those
auxiliary labels, adding anchors to every remain-
ing node.

Figure 3: UCCA to Constituent Tree Transformation
for [wsj#0209013]

3.2.2 CKY Parsing and Span Encoding
After transforming the UCCA graph into a con-
stituent tree, we reduce the UCCA parsing into a
constituent tree parsing problem. Similar to the
previous work on UCCA constituent tree pars-
ing (Jiang et al., 2019), we use a minimal span-
based CKY parser for constituent tree parsing.
The intuition is to use dynamic programming to
recursively split the span of a sentence recursively,
as shown in Figure 3. The entire sentence can be
splitted from top to bottom until each span is a sin-
gle unsplittable tokens. For each node, we also
need to assign a label. Two simplified assumptions
are made when predicting the hole tree given a
sentence. However, different with previous work,

we use 8-layers with 8 heads transformer encoder,
which shows better performance than LSTM in
Kitaev and Klein (2018).

Tree Factorization In the graph-to-tree trans-
formation, we move the edge label to its child
node. By assuming the labels for each node are
independent, we factorize the tree structure predic-
tion as independent span-label prediction as Equa-
tion 4. However, this assumption does not hold for
UCCA. Please see more error analysis in §4.4

T ∗ = arg max
T

s(T )

s(T ) =
∑

(i,j,l)∈T

s(i, j, l)
(4)

CKY Parsing By assuming the label prediction
is independent of the splitting point, we can further
factorize the whole tree as the following dynamic
programming in Equation 5.

sbest(i, i+ 1) = max
l
s(i, i+ 1, l)

sbest(i, j) = max
l
s(i, j, l)

+ max
k

[sbest(i, k) + sbest(k, j)]

(5)

Span Encoding For each span (i, j), we repre-
sent the span encoding vector v(i,j) = [~yj − ~yi] ⊕
[ ~yj+1− ~yi+1]. ⊕ denotes vector concatenation. As-
suming a bidirectional sentence encoder, we use
the forward and backward encodings ~yi and ~yi
of ith word. Following the previous work, and
we also use the loss augmented inference training.
More details about the network architecture are in
the Section 4.2

3.3 Summary of Implementation
We summarize our implementation for five mean-
ing representations as Table 1. As we men-
tioned in the previous sections, we use latent-
alignment graph-based parsing for lexical an-
choring MRs (DM, PSD, AMR), and use CKY-
based constituent parsing phrasal anchoring in
MRs (UCCA, EDS). This section gives informa-
tion about various decision for our models.

Top The first row “Top” shows the numbers of
root nodes in the graph. We can see that for PSD,
11.56% of graphs with more than 1 top nodes. In
our system, we only predict one top node with a
N (N is size of identified nodes) way classifier, and
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Lexicon Anchoring Phrase Anchoring
DM PSD AMR EDS UCCA

Top 1 ≥ 1 (11.56%) 1 1 1
Node Label Lemma Lemma(*) Lemma(*) + NeType(143+) lemma(*) semi sense N/A

Node Properties POS POS constant values N/A
semi(160*) args(25) wordid sense(25) polarity, Named entity carg: constant value N/A

Edge Label (45) (91) (94+) (45) (15)
Edge Properties N/A N/A N/A N/A “remote”
Connectivity True True True True True
Training Data 35656 35656 57885 35656 6485
Test Data 3269 3269 1998 3269 1131

Table 1: Detailed classifiers in our model, round bracket means the number of ouput classes of our classify, *
means copy mechanism is used in our classifier. At the end of shared task, EDS are not fully supported to get an
official results, we leave it as our future work.

then fix this with a post-processing strategy. When
our model predicts one node as the top node, and if
we find additional coordination nodes with it, we
add the coordination node also as the top node.

Node Except for UCCA, all other four MRs
have labeled nodes, the row “Node Label” shows
the templates of a node label. For DM and PSD,
the node label is usually the lemma of its under-
lying token. But the lemma is neither the same as
one in the given companion data nor the predicted
by Stanford Lemma Annotators. One common
challenge for predicting the node labels is the open
label set problem. Usually, the lemma is one of the
morphology derivations of the original word. But
the derivation rule is not easy to create manually.
In our experiment, we found that handcrafted rules
for lemma prediction only works worse than clas-
sification with copy mechanism, except for DM.

For AMR and EDS, there are other components
in the node labels beyond the lemma. Especially,
the node label for AMR also contains more than
143 fine-grained named entity types; for EDS, it
uses the full SEM-I entry as its node label, which
requires extra classifiers for predicting the corre-
sponding sense. In addition to the node label, the
properties of the label also need to be predicted.
Among them, node properties of DM are from
the SEMI sense and arguments handler, while for
PSD, senses are constrained the senses in the pre-
defined the vallex lexicon.

Edge Edge predication is another challenge in
our task because of its large label set (from 45
to 94) as shown in row “Edge Label”, the round
bracket means the number of output classes of
our classifiers. For Lexical anchoring MRs, edges
are usually connected between two tokens, while

phrasal anchoring needs extra effort to figure out
the corresponding span with that node. For exam-
ple, in UCCA parsing, To predict edge labels, we
first predicted the node spans, and then node labels
based that span, and finally we transform back the
node label into edge label.

Connectivity Beside the local label classifica-
tion for nodes and edges, there are other global
structure constraints for all five MRs: All the
nodes and edges should eventually form a con-
nected graph. For lexical anchoring, we use
MSCG algorithm to find the maximum connected
graph greedily; For phrasal anchoring, we use dy-
namic programming to decoding the constituent
tree then deterministically transforming back to a
connected UCCA Graph 3

4 Experiments and Results

4.1 Dataset and Evaluation

For DM, PSD, EDS, we split the training set by
taking WSJ section (00-19) as training, and sec-
tion 20 as dev set. For other datasets, when devel-
oping and parameter tuning, we use splits with a
ratio of 25:1:1. In our submitted model, we did not
use multitask learning for training. Following the
unified MRP metrics in the shared tasks, we train
our model based on the development set and fi-
nally evaluate on the private test set. For more de-
tails of the metrics, please refer to the summariza-
tion of the MRP 2019 task (Oepen et al., 2019),

4.2 Model Setup

For lexical-anchoring model setup, our network
mainly consists of node and edge prediction

3Due to time constraint, we ignored all the discontinuous
span and remote edges in UCCA
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model. For AMR, DM, and PSD, they all use
one layer Bi-directional LSTM for input sentence
encoder, and two layers Bi-directional LSTM for
head or dependent node encoder in the bi-affine
classifier. For every sentence encoder, it takes a
sequence of word embedding as input (We use 300
dimension Glove here), and then their output will
pass a softmax layer to predicting output distri-
bution. For the latent AMR model, to model the
posterior alignment, we use another Bi-LSTM for
node sequence encoding. For phrasal-anchoring
model setup, we follow the original model set up
in Kitaev and Klein (2018), and we use 8-layers 8-
headers transformer with position encoding to en-
code the input sentence.

For all sentence encoders, we also use the
character-level CNN model as character-level em-
bedding without any pre-trained deep contextual-
ized embedding model. Equipping our model with
Bert or multi-task learning is promising to get fur-
ther improvement. We leave this as our future
work.

Our models are trained with Adam (Kingma and
Ba, 2014), using a batch size 64 for a graph-based
model, and 250 for CKY-based model. Hyper-
parameters were tuned on the development set,
based on labeled F1 between two graphs. We ex-
ploit early-stopping to avoid over-fitting.

4.3 Results
At the time of official evaluation, we submit-
ted three lexical anchoring parser, and then we
submitted another phrasal-anchoring model for
UCCA parsing during post-evaluation stage, and
we leave EDS parsing as future work. The fol-
lowing sections are the official results and er-
ror breakdowns for lexical-anchoring and phrasal-
anchoring respectively.

Official Results on Lexical Anchoring Table 2
shows the official results for our lexical-anchoring
models on AMR, DM, PSD. By using our latent
alignment based AMR parser, our system ranked
top 1 in the AMR subtask, and outperformed the
top 5 models in large margin. Our parser on PSD
ranked 6, but only 0.02% worse then the top 5
model. However, official results on DM and PSD
shows that there is still around 2.5 points per-
formance gap between our model and the top 1
model.

Official Results on Phrasal Anchoring Table 3
shows that our span-based CKY model for UCCA

MR Ours (P/R/F1) Top 1/3/5 (F1)
AMR(1) 75/71/73.38 73.38/71.97/71.72
PSD(6) 89/89/88.75 90.76/89.91/88.77
DM(7) 93/92/92.14 94.76/94.32/93.74

Table 2: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison

can achieve 74.00 F1 score on official test set, and
ranked 5th. When adding ELMo (Peters et al.,
2018) into our model, it can further improve al-
most 3 points on it.

MR Ours (P/R/F1) Top 1/3/5 (F1)
UCCA(5) 80.83/73.42/76.94 81.67/77.80/73.22
EDS N/A 94.47/90.75/89.10

Table 3: Official results overview on unified MRP met-
ric, we selected the performance from top 1/3/5 sys-
tem(s) for comparison. It shows our UCCA model for
post-evluation can rank 5th

4.4 Error Breakdown
Table 4, 5, 6 and 7 shows the detailed error break-
down of AMR, DM, PSD and UCCA respectively.
Each column in the table shows the F1 score of
each subcomponent in a graph: top nodes, node
lables, node properties, node anchors, edge la-
bels, and overall F1 score. No anchors for AMR,
and no node label and propertis for UCCA. We
show the results of MRP metric on two datasets.
“all” denotes all the examples for that specific
MR, while lpps are a set of 100 sentences from
The Little Prince, and annotated in all five
meaning representations. To better understand the
performance, we also reported the official results
from two baseline models TUPA (Hershcovich
and Arviv, 2019) and ERG (Oepen and Flickinger,
2019).

data tops labels prop edges all
TUPA
single

all 63.95 57.20 22.31 36.41 44.73
lpps 71.96 55.52 26.42 36.38 47.04

TUPA
multi

all 61.30 39.80 27.70 27.35 33.75
lpps 72.63 50.11 20.25 33.12 43.38

Ours(1) all 65.92 82.86 77.26 63.57 73.38
lpps 72.00 78.71 58.93 63.96 71.11

Top 2 all 78.15 82.51 71.33 63.21 72.94
lpps 83.00 76.24 51.79 60.43 69.03

Table 4: Our parser on AMR ranked 1st. This ta-
ble shows the error breakdown when comparing to the
baseline TUPA model and top 2 (Che et al., 2019) in
official results
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data tops labels prop anchors edges all

ERG all 91.83 98.22 95.25 98.82 90.76 95.65
lpps 95.00 97.32 97.75 99.46 92.71 97.03

Top 1 all 93.23 94.14 94.83 98.40 91.55 94.76
lpps 96.48 91.85 94.36 99.04 93.28 94.64

Ours(7) all 70.95 93.96 92.13 97.25 86.45 92.14
lpps 84.00 90.55 91.91 97.96 87.24 91.82

Table 5: Our parser on DM ranked 7th. This ta-
ble shows the error breakdown when comparing to the
model ranked Top 1 (Li et al., 2019) in official results

data tops labels prop anchors edges all

Top 1 all 93.45 94.68 91.78 98.35 77.79 90.76
lpps 93.33 91.73 84.37 98.40 77.63 88.34

Ours(6) all 82.01 94.18 91.28 96.94 72.40 88.75
lpps 85.85 90.48 82.63 95.97 73.60 85.83

Table 6: Our parser on PSD ranked 6th. This ta-
ble shows the error breakdown when comparing to the
model ranked top 1 (Donatelli et al., 2019) in official
results

4.4.1 Error Analysis on Lexical-Anchoring
As shown in Table 4, our AMR parser is good at
predicting node properties and consistently per-
form better than other models in all subcompo-
nent, except for top prediction. Node properties
in AMR are usually named entities, negation, and
some other quantity entities. In our system, we re-
categorize the graph fragements into a single node,
which helps for both alignments and structured in-
ference for those special graph fragments. We see
that all our 3 models perform almost as good as
the top 1 model of each subtask on node label pre-
diction, but they perform worse on top and edge
prediction. It indicates that our bi-affine relation
classifier are main bottleneck to improve. More-
over, we found the performance gap between node
labels and node anchors are almost consistent, it
indicates that improving our model on predicting
NULL nodes may further improve node label pre-
diction as well. Moreover, we believe that multi-
task learning and pre-trained deep models such as
BERT (Devlin et al., 2018) may also boost the per-
formance of our paser in future.

4.4.2 Error Analysis on Phrasal-Anchoring
According to Table 7, our model with ELMo
works slightly better than the top 1 model on an-
chors prediction. It means our model is good at
predicting the nodes in UCCA and we belive that
it is also helpful for prediction phrasal anchoring
nodes in EDS.

However, when predicting the edge and edge

data tops anchors edge attr all

TUPA single all 78.73 69.17 16.96 15.18 27.56
lpps 86.03 76.26 28.32 24.00 40.06

TUPA multi all 84.92 65.74 12.99 9.07 23.65
lpps 88.89 77.76 26.45 18.32 41.04

(Che et al., 2019) all 1.00 95.36 72.66 61.98 81.67
lpps 1.00 96.99 73.08 48.37 82.61

Ours(*5) all 98.85 94.92 60.17 0.00 74.00
lpps 96.00 96.75 60.20 0.00 75.17

Ours + ELMo all 99.38 95.70 64.88 0.00 76.94
lpps 98.00 96.84 66.63 0.00 78.77

Table 7: Our UCCA parser in post-evaluation ranked
5th according to the original official evaluation results.
This table shows the error breakdown when comparing
to the model ranked top 1 (Che et al., 2019) in official
results. * denotes the ranking of post-evaluation results

attributes, our model performs 7-8 points worse
than the top 1 model. In UCCA, an edge label
means the relation between a parent nodes and its
children. In our UCCA transformation, we as-
sign edge label as the node label of its child and
then predict with only child span encoding. Thus
it actually misses important information from the
parent node. Hence, in future, more improvement
can be done to use both child and parent span en-
coding for label prediction, or even using another
span-based bi-affine classifier for edge prediction,
or remote edge recovering.

5 Conclusion

In summary, by analyzing the AMR alignments,
we show that implicit AMR anchoring is actually
lexical-anchoring based. Thus we propose to re-
group five meaning representations as two groups:
lexical-anchoring and phrasal-anchoring. For lex-
ical anchoring, we suggest to parse DM, PSD, and
AMR in a unified latent-alignment based parsing
framework. Our submission ranked top 1 in AMR
sub-task, ranked 6th and 7th in PSD and DM tasks.
For phrasal anchoring, by reducing UCCA graph
into a constituent tree-like structure, and then use
the span-based CKY parsing to parse their tree
structure, our method would rank 5th in the origi-
nal official evaluation results.
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