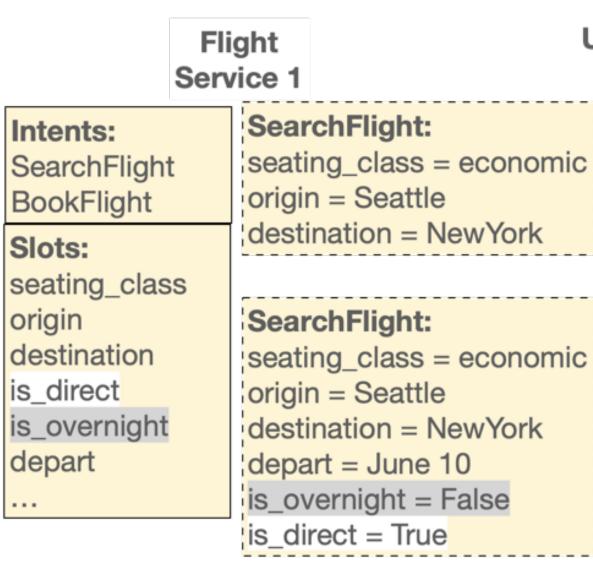
A Comparative Study on Schema-Guided Dialogue State Tracking

Jie Cao[†], Yi Zhang[‡]

[†]School of Computing, University of Utah

[‡]AWS AI, Amazon



Introduction

Flight Service 1 and 2 shares overlapping functionalities while using different intent/slot tags.

Without retraining, can a dialog model trained on Flight Service 1 also support Flight Service 2?

Find me an economic flight from
Seattle to NewYork.

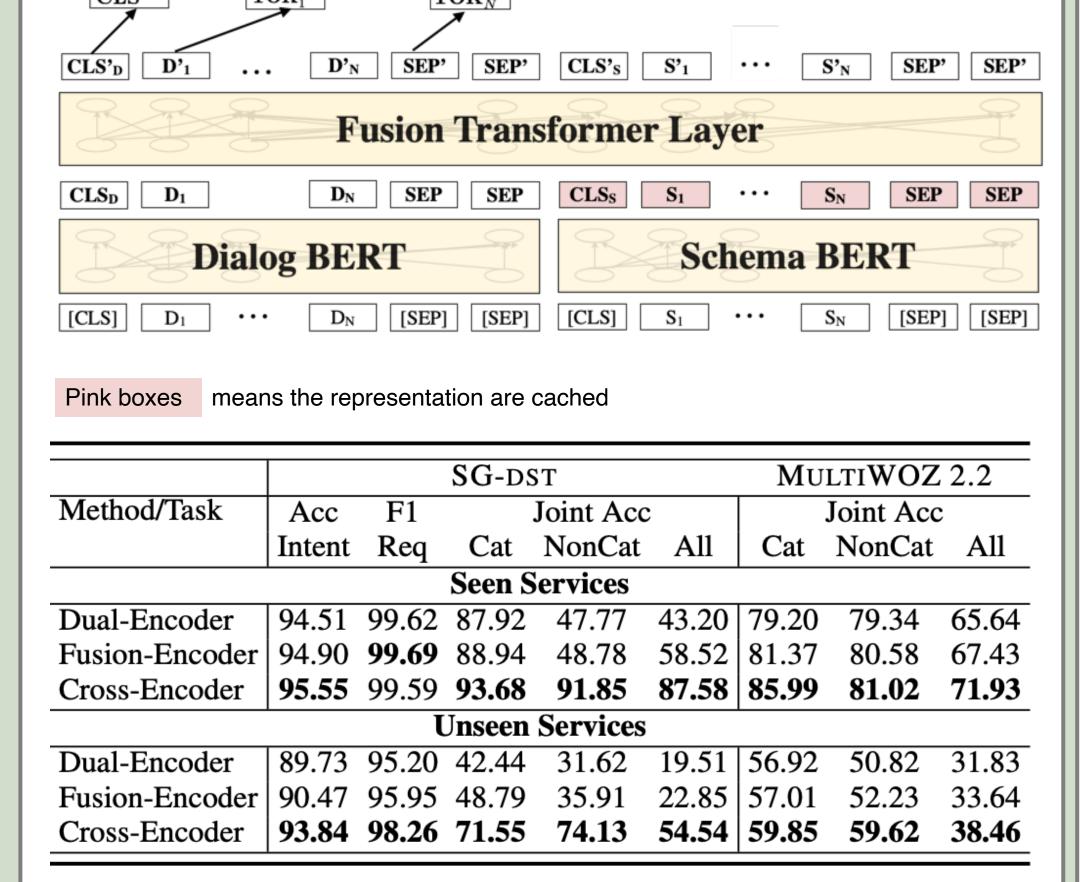
Fin
flig
orig
des

Leaving at June 10, no overnight or
layovers please.

OK. What about Delta Airlines from

10:00 am June 10?

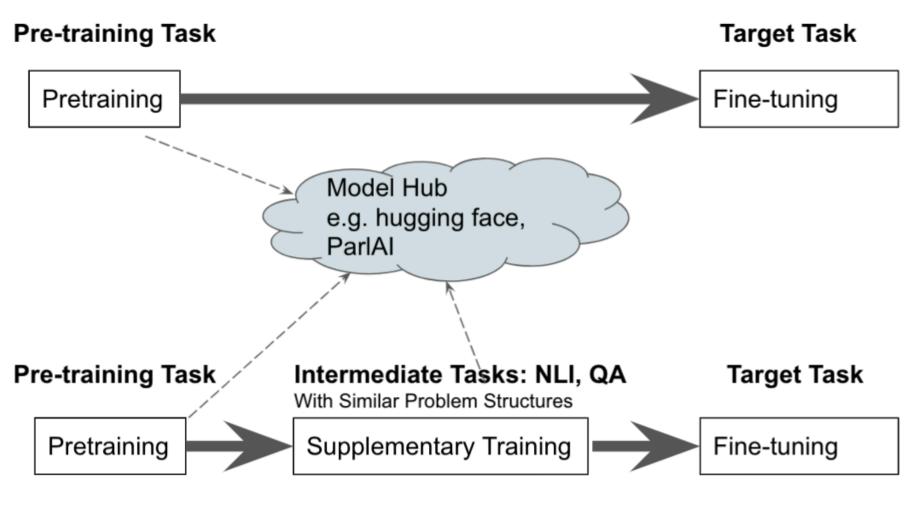
Seattle to NewYork departing at


Flight Service 2 FindFlight: Intents: flight_class = economic FindFlight origin_city = Seattle ReserveFlight dest_city = NewYork Slots: flight_class origin_city FindFlight: dest_city flight_class = economic num_stops origin_city = Seattle is_redeye dest_city = NewYork depart_date depart_date = June 10 is_redeye = False num_stops = 0

Schema-guided Dialog uses natural language description to explain each intent and slot, thus it may share knowledges across multiple services in multiple domains.

We study the following three research problems (Q1, Q2, Q3) on four subtasks:

- Intent
- Requested Slot
- Categorical Slot
- Non-Categorical slot


Q1: Dialog & Schema Description Encoding

Partial-attention balance between speed and accuracy?

By caching the token embedding instead of the single CLS embedding, a simple partial-attention *Fusion-Encoder* can achieve much better performance than *Dual-Encoder*, while still infers two times faster than *Cross-Encoder*

Q2. Supplementary Training

	SG-DST							
	In	tent	R	leq	Cat		NonCat	
	seen	unseen	seen	unseen	seen	unseen	seen	unseen
$\Delta_{ extsf{SNLI}}$	+0.02	+0.68	+0.38	-0.38	-2.87	-1.23	-0.1	-6.25
$\Delta_{ ext{SQuAD}}$	-0.17	-1.32	-0.01	-0.33	-3.02	-5.17	-1.79	+3.25

How supplementary training helps?

- **SNLI only** helps for Intent (emphasizing the whole sentence entailment), although Req and Cat are also sentence-pair classification tasks.
- **SQuAD** consistently helps for non-categorical slot identification tasks, due to span-based retrieving
- Supplementary training helps more on unseen services.

Q3. Impact of Description Styles

style	Intent Description	Slot Description
Identifer	intent_1	slot_4
NameOnly	CheckBalance	account_type
Q-Name	Is the user intending to CheckBalance?	What is the value of acctount_type?
Orig	Check the amount of money in a user's bank account	The account type of the user
Q-Orig	Does the user want to check the amount of money in the bank account?	What is the account type of the user?
Name-Para	CheckAccountBalance	user_account_type
Orig-Para	Check the balance of the user's bank account	Type of the user account

Homogeneous Evaluation

	Style\Teels		SG	MULTIWOZ 2.2			
Style\Task		Intent	Req	Cat	NonCat	Cat	NonCat
	iaentiier	01.10	91.48	62.47	30.19	34.23	52.28
	NameOnly	94.24	98.84	74.01	75.63	53.72	56.18
	Q-Name	93.31	98.86	74.36	74.86	54.19	56.17
	Orig	93.01	98.55	74.51	75.76	52.19	57.20
	Q-Orig	93.42	98.51	76.64	76.60	53.61	57.80

Style/Dataset	SG	-DST	MULTIWOZ 2.2		
Style/Dataset	seen	unseen	seen	unseen	
Orig	-1.79	+3.25	-2.21	+4.27	
Q-Orig	-2.01	+8.84	-1.28	+3.06	
NameOnly	-1.49	-0.11	+0.58	+1.77	
Q-Name	-2.98	+1.04	-0.32	+1.25	

Is named-based description enough?

- Most name are meaningful, and perform not bad, especially on Intent/Req subtasks
- Rich description outperforms the name-based on **NonCat**, but inconsistent on other tasks.

Is question format helpful?

- It generally helps on Cat/NonCat
- Adding it to rich description will benefit more from SQuAD2 supplementary training on unseen. However, not on MultiWOZ.

Heterogeneous Evaluation

	SG-DST								
Style\Task	k Intent(Acc)		Req(F1)		Cat(Joint Acc)		NonCat(Joint Acc)		
	mean	Δ	mean	Δ	mean	Δ	mean	Δ	
NameOnly	82.47	-11.47	96.92	-1.64	61.37	-5.54	56.53	-14.68	
Q-Name	93.27	+0.58	97.88	-0.76	68.55	+2.63	62.92	-6.30	
Orig	79.47	-12.70	97.42	-0.74	68.58	-0.3	66.72	-3.11	
Q-Orig	84.57	-8.24	96.70	-1.45	68.40	-2.89	56.17	-15.00	
	para	Δ	para	Δ	para	Δ	para	Δ	
NameOnly	92.22	-1.74	97.69	-0.87	67.39	-0.7	67.17	-4.04	
Orig	91.54	-0.63	98.42	+0.26	71.74	+2.86	67.68	-2.16	

What if unseen service in different description styles?

- For unseen styles, all tasks surfer from inconsistencies, though to varying degrees
- For paraphrased styles, richer description are relatively more robust than named-based descriptions.