
Mech. Sci., 12, 259–267, 2021
https://doi.org/10.5194/ms-12-259-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

A novel algorithm by combining nonlinear workspace
partition with neural networks for solving the inverse

kinematics problem of redundant manipulators

Hui Dong1,2, Chen Li1, Wentao Wu1, Ligang Yao1,2, and Hao Sun1,2

1School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, China
2Fujian Provincial Collaborative Innovation Center of

High-End Equipment Manufacturing, Fuzhou, 350001, China

Correspondence: Hui Dong (dh@hit.edu.cn) and Hao Sun (sh@fzu.edu.cn)

Received: 21 September 2020 – Revised: 23 December 2020 – Accepted: 14 January 2021 – Published: 3 March 2021

Abstract. Redundant manipulators (RMs) have been gaining more attention thanks to their excellent merits of
operating flexibility and precision. Inverse kinematics (IK) study is critical to the design, trajectory planning,
and control of RMs, while it is usually more complicated to solve IK problems which may inherently have
innumerable solutions. In this work, a novel approach for solving the IK problems for RMs while retaining
the redundancy characteristics has been proposed. By employing a constraint function, the method delicately
reduces the infinite IK solutions of a RM to a finite set. Furthermore, the workspace of RMs is divided into
nonlinear partitions through diverse joint angle intervals, which have further simplified the mapping correlations
between the desired point and manipulators’ joint angles. For each partition, a pre-trained neural network (NN)
model is established to acquire its IK solutions with high efficiency and precision. After combing all nonlinear
partitions, multiple reasonable IK solutions are available. The presented method offers a possible selection of
the most appropriate solution for trajectory planning and energy consumption and therefore has the potential for
facilitating novel robot development.

1 Introduction

Redundant manipulators (RMs) have been widely used in
many fields, such as industrial and agricultural production,
equipment manufacturing, and surgical operation. RMs can
move freely in joint space without affecting the position and
pose of the end effector. Once the pose of an end effector
is defined, the secondary target can be satisfied by changing
joints’ positions. Thus, dynamic performance of the whole
robot can be significantly improved. In general, control of
a manipulator requires computationally efficient solutions of
the inverse kinematics (IK) problem, while for a desired posi-
tion and orientation, combinations of joint variables of a RM
may be infinite. This issue is caused by two things: (a) de-
ficient definition for joint angles; (b) symmetry of trigono-
metric functions. Correspondingly, the IK issues of RMs are
often too complicated to be solved, especially for the com-
plex systems meeting real time and high precision.

In the past years, IK problems of RMs have been stud-
ied widely. Closed-form and numerical methods have been
mainly employed. The closed-form method can be further di-
vided into two categories: the geometric and algebraic. The
algebraic method, which is able to obtain analytical solu-
tions, has been dominantly utilized rather than the geomet-
ric one in engineering typically. Of these, by simplifying a
RM into a non-redundant manipulator, IK issues were solved
(Zaplana and Basanez, 2018). Similarly, analytical solutions
for RMs (Ananthanarayanan and Ordóñez, 2015) and RMs
with joint limits (Shimizu and Kakuya, 2008) and wrist offset
were obtained. Also, by dividing a manipulator into several
parts, analytical solutions of IK problems were solved (Mu
et al., 2018; Kofinas et al., 2015). The main limitations of
the closed-form method are that the solution can be merely
acquired when the number of variables of the joint’s DOF
(degree-of-freedom) and forward kinematics equations are
equal. The numerical iteration method of the Jacobian ma-
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trix is a standard method for finding the inverse solution. For
instance, algorithms for obtaining IK solutions of serial ma-
nipulators have been presented (Dulęba et al., 2013; Shi et
al., 2006). Also, a weighted minimum norm method (Wan
et al., 2018) for obtaining IK solutions of serial manipulators
has also been proven to be effective. In particular, for the ma-
nipulator with specific connection types, many valid numer-
ical approaches were available (Parikh et al., 2005; Tanev et
al., 2000). For the inverse kinematics of a novel parallel plat-
form with offset, RR (rotating–rotating) joints were mathe-
matically modeled and numerical iterative computation was
performed (Han et al., 2019). Although the utility of this con-
ventional method has been confirmed, it cannot be used for
all mechanisms. There is still a need to develop algorithms
for solving IK issues of RMs.

With the development of computer science, numerical
methods are becoming more popular. Workspace density re-
sulting from Fourier transforms and convolution theorems
was used to solve the IK problem of planar serial revo-
lute manipulators (Dong et al., 2013). Similarly, an approach
for calculating collision-free paths in complex environments
with multiple obstacles has been successfully used for planar
RMs (Dong and Du, 2015). Meanwhile, a workspace density
function was also used to select the optimal geometric pa-
rameters for the manipulator for optimizing design (Du and
Dong, 2015). Approaches based on recursive (Baerlocher
and Boulic, 2004), bionic (Artemiadis et al., 2010), adaptive
critical (Patchaikani et al., 2011), and path sampling (Rolf
et al., 2010) algorithms have been leveraged for solving the
IK issues. Of these, the bionic method has an advanced cal-
culating efficiency. Derived from the bionic method, many
algorithms have been proposed to solve IK problems, such
as particle swarm optimization and the natural-CCD (cyclic-
coordinate-descent) algorithm (Lin et al., 2016; Martin et al.,
2018). Two different methods combined with a genetic al-
gorithm were applied to solve the IK problem of a spatial
binary hyper-redundant manipulator (Bayram et al., 2013).
Also, the genetic algorithm was successfully used for search-
ing the optimal solutions of path planning (Carbone et al.,
2008). In addition, a neural network algorithm (Kóker et al.,
2014) combined with a genetic algorithm (Kóker, 2013a) or
a simulated annealing algorithm (Kóker, 2013b) was verified
to be capable of solving the IK problem of a planar three-
link manipulator. Also, composite neural network algorithms
were utilized to obtain an IK solution of non-redundant ma-
nipulators (Duka, 2014; Kóker et al., 2004). A reinforcement
learning algorithm (Duguleana et al., 2012), a quantum parti-
cle swarm optimization algorithm (Ayyılldılz and Çetinkaya,
2016), a radial basis neural network (RBF) algorithm, a neu-
ral network (NN) algorithm (Sari, 2014; Toshani and Far-
rokhi, 2014), and a recursive neural network algorithm (Xiao
and Zhang, 2014) were proven to be effective in solving IK
problems. In particular, for an IK study of series-parallel ma-
nipulators and a soft manipulator IK study, a wavelet neu-
ral network algorithm (Rahmani et al., 2015) and supervised

learning methods (Giorelli et al., 2015) were verified to be ef-
ficient, respectively. In practice, the neural network method
relies on the acquisition of training data, and thus it is es-
sential to build IK mapping formats between the end effector
and the joint space for RMs.

In this work, we proposed a new approach based on mul-
tiple neural network models to solve IK issues of RMs. In
particular, a constraint function was used to transform RM to
a non-redundant manipulator. Also, the number of IK solu-
tions of the manipulator is decreased by reducing the range
motion of each joint, and therefore the quantity of the IK
solution can be limited. Then, the nonlinear workspace of a
RM was divided into several parts which were correspond-
ingly fitted by a neural network model. Finally, by combin-
ing all of the workspace with mapping formats, the com-
plete workspace of the RM was acquired, and the global
optimal solutions for specific working conditions can be di-
rectly obtained as well. In particular, the approach merely
requires Denavit and Hartenberg (D–H) parameters for the
model establishment. Therefore, the implementation of this
work can be potentially extended to solve IK problems in
the scenario of hyper-redundant robots. We used Robai Cy-
ton Gamma 300, a 7-DOF robot arm installed in the Interna-
tional Space Station, as the test manipulator. In the Ubuntu
system, a GTX1060 graphics card and an i7-CPU processor
were employed for calculation. The programming language
was Python, and simulations were carried out using the MAT-
LAB software. Results showed that the method was accurate
and effective while retaining redundancy characteristics of
the RM. Multiple feasible solutions are available for users
according to various working conditions. Thanks to the pre-
trained NN models, the method is suitable for real-time re-
dundant manipulator control and has the potential to prompt
RM development.

2 Method

The method we proposed is combined from a constraint func-
tion and neural networks: the constraint function is used to
eliminate the redundancy, while neural networks are applied
to calculate IK solutions for part workspaces. Finally, the
global optimal IK solutions could be acquired by combining
all results of all neural networks.

2.1 Constraint function

For a 3-DOF manipulator, the workspace is two-dimensional,
and thus the redundancy equals 1 and the IK solution for the
end effector in position C (Fig. 1) should not be unique.


x = L1 · cos(θ1)+L2 · cos(θ1+ θ2)
+L3 · cos(θ1+ θ2+ θ3),

y = L1 · sin(θ1)+L2 · sin(θ1+ θ2)
+L3 · sin(θ1+ θ2+ θ3)

(1)
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Figure 1. Schematic of a 3-DOF manipulator.

Here, L1, L2, and L3 are the lengths of each arm in Fig. 1;
θ1, θ2, and θ3 are the joint rotation angles; x and y are the
position coordinates of the end effector. The existence of an
undefined angle may lead to infinite solutions of the entire
workspace. We propose a constraint function as shown in
Eq. (2) which is constructed by using the projection method
and scaling method. The constraint function should be con-
tinuous in order to avoid a sudden change in the constrained
angular motion.

θi =
(θup− θdown)× arctan(y,x)+ 180× (θup+ θdown)

360
(2)

Here, θi is one of the angles of the joints; x and y are the
known position; θup/θdown is the upper/lower limit of the an-
gle’s restricted range. The range of the first angle is set be-
tween −180 and 180◦ and substituted into Eq. (2). Then, the
solutions of Eq. (1) can be obtained as presented in Eqs. (3)
and (4). Although θ1 can be fixed, θ2 and θ3 are not unique
due to the symmetry of the trigonometric functions.
x = L1 · cos(θ1)+L2 · cos(θ1+ θ2)
+L3 · cos(θ1+ θ2+ θ3)

y = L1 · sin(θ1)+L2 · sin(θ1+ θ2)
+L3 · sin(θ1+ θ2+ θ3)

θi = arctan(y,x)

(3)



θ1 = arctan(y,x)

θ2 = arcsin (x−L1·cosθ1)2
+(y−L1·sinθ1)2

+L2
2−L

2
3

2L2
√

(x−L1·cosθ1)2+(y−L1·sinθ1)2

−arcsin x−L1·cosθ1√
(x−L1·cosθ1)2+(y−L1·sinθ1)2

− θ1

θ3 = arccos x−L1·cosθ1−L2·cos(θ1+θ2)
L3

− θ1− θ2

(4)

To solve the above issues, a novel IK algorithm by dividing a
nonlinear workspace by constraint functions was presented.
For each divided workspace, the data were fitted using a neu-
ral network. After the trained models of each workspace were
acquired, a whole workspace can be obtained. However, the
relationship of the constraint function with IK solutions of
the manipulator is not monotonous. By limiting the range of

Figure 2. Structure of the neural network.

the angles, mapping relationships can be effectively simpli-
fied, and the noise that occurs in the data training for neural
networks will be reduced.

Furthermore, we find that different joint angle combina-
tions may result in various IK solutions. If P denotes the
number of constraint functions that are used to constrain vari-
ables andm is the group number of divided joint angles of the
manipulator, the total number of mapping relations should be
Pm. For multiple solutions, users can choose the most appro-
priate one according to the working conditions.

2.2 Neural network

We divided the whole nonlinear workspace into several par-
titions by a specific range of joints, and a specially designed
neural network was employed for calculation of the IK for
each partition.

2.2.1 Frame of the neural network

The overall structure of the neural network (Fig. 2), including
six layers determined by multiple simulation tests: in detail,
six neurons and seven neurons were contained in the input
and output layers, respectively. For the middle-hidden layer,
60, 50, 40, and 30 neurons were utilized. The six neurons of
the input layer represent the position (x, y, z) and posture (α,
β, γ ); the seven neurons of the output layer are the inverse
kinematics solutions (θ1, θ2. . . θ7).

2.2.2 Data acquisition

Neural networks require data for training, validation, and
test; therefore, data acquisition is an important process. Here,
data are randomly generated and substituted into the forward
kinematics, and we just retain the results satisfying the con-
straint function within an error of ±0.01 mm. Those data are
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Figure 3. Process of data acquisition.

Table 1. D–H parameters.

i αi−1 ai−1 di−1 θi−1 Joint range (◦)
(◦) (mm) (mm) (rad)

1 0 0 120 θ1 −150, 150
2 −90 0 0 θ2 −110, 110
3 90 0 140.8 θ3 −200, 200
4 90 0 0 θ4 −110, 110
5 90 71.8 0 θ5 −150, 150
6 −90 71.8 0 θ6 −15, −195
7 90 0 129.6 θ7 −150, −150

finally used to train neural networks and test. The whole pro-
cess of data acquisition is illustrated as Fig. 3.

3 Configuration of simulation

Robai Cyton Gamma 300 with 7 DOFs shown in Fig. 4 was
used as a typical model for a simulation study. The manipu-
lator has a maximum payload of 300.0 g with a total length
of 53.4 cm and a weight of 1.2 kg. D–H parameters of the
manipulator have been shown in Table 1.
ai−1 is the distance moved from zi−1 to zi along the xi−1

axis, di is marked as the distance moved from xi−1 to xi
along the zi axis, and the angle revolving from angle zi−1
to zi around the xi−1 axis is αi−1. The Cartesian coordinate
system set by the D–H method is shown in Fig. 4a, and the
rotational direction of the joint’s axes is described in Fig. 4b.

Figure 4. (a) Cartesian coordinate system of Cyton Gamma 300.
(b) Joint rotation direction of Cyton Gamma 300.

3.1 Forward kinematics

0
1T , the transformation matrix of 0

1T∼
6
7T , was calculated by

Eq. (5); here, cθi and sθi mean cosθi and sinθi , respectively.

i−1
i T =

 cθi −sθi 0 αi−1
sθicαi−1 cθicαi−1 −sαi−1 −sαi−1di
sθisαi−1 cθisαi−1 cαi−1 cαi−1di

0 0 0 1

 (5)

Then, the forward kinematics matrix of a 7-DOF manipulator
can be obtained, as shown in Eq. (6):

0
7T=

0
1T

1
2T

2
3T

3
4T

4
5T

5
6T

6
7T =

 r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44


=

(
n o a p
0 0 0 1

)
. (6)

(r11, r12, r13)T , (r21, r22, r23)T , and (r31, r32, r33)T were de-
noted by n, o, and a for, respectively, the posture of the end
effector to simplify the calculation. We used α, β, and γ as
shown in Eq. (7) to describe the posture; (r14, r24, r34)T indi-
cates the position information in which r14, r24, and r34 were
the position directions of the x, y, and z coordinate axes.

β = arctan
(√

(r2
31)+ (r2

32, r33)
)

α = arctan
(
r23

sβ
,
r13

sβ

)
γ = arctan

(
r32

sβ
,
r31

sβ

)
(7)

r31, r32, r33, r23, and r13 are the parameters of matrix T , and
sβ stands for sin(β).

3.2 Inverse kinematics

3.2.1 Constrain function and joint angle division

A constraint function is introduced to eliminate the redun-
dancy of the equations. We set the first joint angle within a
range of [−150, 150◦], and the constraint function can be
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constructed as Eq. (8) according to Eq. (2):

θ1 =
5
6

arctan(y,x). (8)

Provided that we alternated the values of θup and θdown, the
constraint function and the mapping relationships should be
modified as described by Eq. (9):

θ ′1 =−
5
6

arctan(y,x). (9)

In order to eliminate the noise in the training data caused
by the symmetry of the joint angles, we set the range of joint
angles in a range of 0 to 45◦ which were divided into several
intervals according to different step values.

3.2.2 Setup of the neural network

We employed the neural network (NN) algorithm for data
fitting. The overall structure of the NN (Fig. 2): the whole
workspace was divided into seven parts corresponding to the
joint angles which were defined in Table 2; 200 000 groups
of data were used, among which 199 000 groups of data were
used as training data and 900 sets of data were used for val-
idation, and the remaining 100 sets of data were used for
tests. Those data were randomly generated and substituted
into the forward kinematics. The results satisfying the con-
straint function within an error of 0.01 mm (radian system)
were retained. Finally, trained neural networks would be able
to calculate the IK solutions of target points.

4 Results and discussion

4.1 Effect of joint angle range on calculation
performance

In order to study the effect of joint rotation range on the per-
formance of NN models, the interval of the joint angle of
each model is defined as parameter δ from 15 to 45◦, which
is shown in Table 2. The position and pose error, namely derr
and ϕerr, can be calculated following Eqs. (10) and (11):

derr =

√
xerr2+ yerr2+ zerr2, (10)

ϕerr =
|αerr| + |βerr| + |γerr|

3
, (11)

xerr = |x
′
− x|, (12)

αerr = |α
′
−α|. (13)

Here, xerr of Eq. (12) represents the variation between the
target value x′ and the predicted value x of the x-axis posi-
tion; yerr and zerr are expressed following a similar way. αerr
of Eq. (13) represents the variation between the target value
α′ and the predicted value α of the α-axis position; βerr and
γerr are expressed following a similar way.

We performed the experiment using diverse intervals and
obtained the results as plotted in Fig. 5 (position and posture

Figure 5. Position and posture errors vs. interval values.

error) and Fig. 6 (convergence). It can be concluded that the
position and posture error were apparently improved when
the interval of the joint angles decreased. The position and
posture errors were close to 8.5 and 13.2 times for the inter-
vals of 5 and 45◦. In parallel, as shown in Fig. 6, although all
curves have a descending trend, the static convergence value
of the smaller joint angle interval was lower. For the random
update of network calculation weights, when the new weights
are not suitable or better than the formal weights, the errors
would be diverse to the old ones; therefore, there would be
some fluctuation in curves. However, in a general trend, the
errors tend to be convergent to a minimal value. In general,
it can be found that the joint angle division has a significant
influence on the precision of the IK problem.

We recorded the running time cost using different mod-
els with various ranges of joint angles. A convergence plot
describing the trend of the position (posture) error against
the number of iterations is shown in Fig. 6a (Fig. 6b). Obvi-
ously, the errors of position and posture were both decreased
with a smaller angle interval, which was consistent with the
above discussion. Furthermore, for these two plots, it can be
found that the variation of iteration steps or time cost of con-
vergence was almost undetectable with different joint angles
(from 15 to 45◦).

4.2 Study of multiple solutions

4.2.1 Test of the constraint function

For an identical joint angle range, the correlation of different
constraint functions and IK solution quantities was studied.
The range of the joint angles was set following Table 2. When
the angle δ was defined as 15◦ and for a random position
and posture of the end effector (192.833 mm, 18.945 mm,
384.467 mm, 0.138◦, 0.436◦, 0.0593◦), joint angles of a re-
ductant arm can be obtained as in Table 3 following Eq. (7)
(function no. 1) and Eq. (8) (function no. 2). From these data,
we can find that the solutions for different constraint func-
tions were various for the same position, posture, and joint
angle range.
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Table 2. Joint angle intervals of the model.

i θ1 (◦) θ2 (◦) θ3 (◦) θ4 (◦) θ5 (◦) θ6 (◦) θ7 (◦)

Range −150 to 150 0 to δ 0 to δ −δ to 0 0 to δ 0 to δ 0 to δ

Figure 6. (a) Convergence plots of the position error. (b) Convergence plots of the posture error.

Table 3. Simulation result using the models with different con-
straint functions.

Angle/ Model no. 1 Model no. 2 Angle
model difference

θ1 (◦) 4.67 −4.67 9.34
θ2 (◦) 12.48 13.23 0.75
θ3 (◦) 4.48 8.50 4.02
θ4 (◦) −11.90 −12.64 0.74
θ5 (◦) −3.67 9.96 13.72
θ6 (◦) 8.16 8.26 0.10
θ7 (◦) 18.95 8.87 10.08
derr (mm) 9.99× 10−1 0.29
ϕerr (rad) 9.30× 10−3 2.50× 10−3

4.2.2 Test of joint angle range

Similarly, we also investigated the effect of joint angle range
on multiple IK solutions caused by the symmetry of the joint
angles by performing a comparison between two models.
The models can be distinguished by the interval of θ4, while
the position, posture, and constraint function were consistent.
Joint angle intervals of models are summarized as shown in
Table 4. For a random position and posture of end effec-
tor (183.678 mm, 115.800 mm, 371.048 mm, 0.804◦, 1.561◦,
0.610◦), we acquired the corresponding solutions of the two
different models as shown in Table 5. It can be observed that
the position and pose errors were acceptable for an IK solu-
tion.

From the above simulation tests, we can conclude that
more than one group of joint angles were available, while the
position and posture of the end effector and constraint func-
tion were consistent. In particular, the angle groups were all

Table 4. Joint angle interval of the third and fourth models.

Angle/ Model no. 3 Model no. 4
models

θ1 (◦) −150, 150 −150, 150
θ2 (◦) 0, 15 0, 15
θ3 (◦) 15, 30 15, 30
θ4 (◦) −45, 30 −15, 0
θ5 (◦) 45, 60 45, 60
θ6 (◦) 45, 60 45, 60
θ7 (◦) 30, 45 30, 45

Table 5. Simulation result using the models with different intervals.

Angle/ Model no. 3 Model no. 4 Angle
models difference

θ1 (◦) −26.91 −27.18 0.27
θ2 (◦) 0.42 15.40 14.98
θ3 (◦) 17.50 14.92 2.58
θ4 (◦) −14.48 −31.66 17.18
θ5 (◦) 51.76 67.63 15.97
θ6 (◦) 58.68 59.86 1.18
θ7 (◦) 35.58 40.24 4.66
derr (mm) 2.00× 10−3 1.01
ϕerr (rad) 1.30× 10−6 1.10× 10−2

reasonable for controlling the joint motion, indicating that
the IK problem was solved effectively.

4.3 Simulation test of predefined trajectory

A standard trajectory was used to further evaluate the motion
accuracy of a 7-DOF manipulator obtained by the algorithm.
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Figure 7. (a) Position information of points A, B, and C and values of alpha, beta, and gamma describing the posture of the end effector.
(b) Projected trajectory of a defined curve. (c) Simulation configuration using MATLAB.

Table 6. Calculation time of different data amounts using diverse processors.

Processors/data number 1 10 100 1000 10 000 100 000 1 000 000

CPU (10−4 s) 4.33 6.17 6.92 17.85 132.22 1695.82 17 343.32
GPU (10−4 s) 6.12 5.12 4.97 5.55 4.67 5.00 5.11

The trajectory can be seen as a triangular curve with three
vertex points A, B, and C (spatial information in Fig. 7a).
According to the interpolation process of trajectory planning,
each side of the curve was partitioned by 100 points. By
substituting the position data of each point into the model,
multiple solutions of joint angles were obtained. The num-
ber of solutions was affected by the quantity of models. On
the other hand, the pre-trained neural network models can
output multiple sets of feasible solutions during the solution-
searching process for a planned trajectory. Criteria for choos-
ing the global optimal solution are often determined accord-
ing to practical requirements. For this case, the actual trajec-
tory of the manipulator projected onto the standard planes
was continuous (Fig. 7b). The whole trajectory of the end
effector of the redundant manipulator was shown in Fig. 7c.
All the simulation results verified that the algorithm based on
neural network models by this work performed well.

4.4 Calculation efficiency

Similarly, data (x, y, z, α, β, γ ) including the information
of position and posture were randomly generated. Using a
GTX1060 graphics card and the i7-CPU processor, different
amounts of the data were input into the pre-trained model for
analysis of test time cost. Detailed information of time con-
sumptions is listed in Table 6. From this information, we can

Table 7. Comparative study of the proposed method and similar
procedures.

Ref Method DOF Positioning Computational
error (mm) costs (s)

This work RNN 7 2.32× 10−1 4.30× 10−4

Song UKF 7 4.00× 10−3 1.61
Kumar GD 7 3.60× 10−4 /
Toshan NN 7 4.00× 10−3 1.60
Gao BP 6 1.00× 10−2 1.64
Kóker NNCM 6 0.39–0.74 8.89× 10−4

Ayyılldılz QPSO 4 6.95× 10−6 1.65
Ayyılldılz GA 4 7.32× 10−6 16.9

observe that the data amount can affect time cost of calcu-
lation using a CPU. There was a monotone increasing trend
of time cost with data amount climbing. In this case, time
for calculating one group and 1.00 million groups cost about
4.33× 10−4 and 1.70 s, respectively, while for a GPU which
was capable of parallel calculation, it took 6.12× 10−4 and
5.11×10−4 s for one group and 1.00 million groups, respec-
tively. The time costs of two separated calculations were on
the same scale. Therefore, the presented method has a good
ability of parallel calculation and provides a practical tool for
dealing with a large-amount data set.

https://doi.org/10.5194/ms-12-259-2021 Mech. Sci., 12, 259–267, 2021



266 H. Dong et al.: A novel IK algorithm by combining nonlinear workspace partition with neural networks

4.5 Comparative study

We also performed a comparative study focused on perfor-
mance using various methods; the results are illustrated in
Table 7.

Of these, for 7-DOF manipulators, the numerical sequence
processing method combing with a closed-loop framework
was utilized to solve IK problem (Song et al., 2020). Gradient
descent (Kumar et al., 2010) and radial basis function (RBF)
neural networks (Toshani and Farrokhi, 2014) were also em-
ployed. For the manipulators with fewer DOFs, 1.65 s and
16.9 s were consumed using QPSO and GA methods with
an error of 10−6 (Ayyılldılz and Çetinkaya, 2016). In addi-
tion, BP (Gao, 2020) and NNCM (Ayyılldılz and Çetinkaya,
2016) were utilized to obtain IK solutions. From the differ-
ent results by these methods (Table 7) and previously re-
ported literature (Hassan et al., 2020), we can find that the
computational costs by the approach are best. More specifi-
cally, we employed a parameter evaluating the effects of po-
sition error and computational time costs together, namely
Pec= position error× computational costs. Then, for a 7-
DOF issue, Pec reaches the minimum value (9.59×10−4) by
our approach which is 2 orders of magnitude less than rel-
ative methods. Therefore, it further indicates the presented
approach is well suitable to study IK issues for redundant
manipulators.

5 Conclusions

In this work, we proposed a novel approach which utilizes
multiple neural network models to delicately solve IK issues
of RMs. A constraint function was used to transform RMs
to non-RMs. The number of IK solutions of the manipulator
was decreased by reducing the range motion of each joint.
The number of IK solutions was reduced to finite. Then,
the nonlinear workspace of a RM was divided into several
parts, followed by a fitting process via a neural network. By
combining all of the workspace with mapping formats, the
complete workspace of the RM was acquired, and the global
optimal solutions were readily obtained. The approach pro-
vided less time computation and custom-defined calculat-
ing precision: the calculation time of a single point is only
4.33× 10−4 s, and for 1.00 million points the time is 1.70 s.
Further, calculation error was only 0.23 mm. A 7-DOF robot
arm was employed for simulation test. Results of simulation
showed that the method was accurate and effective while re-
taining redundancy characteristics of the RM. Finally, mul-
tiple feasible solutions were available for users according to
specific working conditions. The strategy and algorithm by
this work can be universally utilized to solve IK problems
of hyper-redundant robots and thus have the potential to im-
prove the research and development of RMs.
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