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Abstract

Two-dimensional materials are of great interest in the field of solid state physics due to
the wide range of applications of these, including the developement of efficent batteries,
spintronics, electrocatalytic hydrogen evolution and solar cells. To be able to make use
of these exciting new materials, the properties must be well-understood. The electronic
and magnetic properties of three distinct two-dimensional materials have been inves-
tigated in this thesis. DFT calculations [1] suggests that the oxychloride compound
YbOCl exhibit ferromagnetic properties. This is investigated analytically consider-
ing the classical Heisenberg model. The transition metal dichalcogenide monolayer VS2

has been proposed to exhibit metallic behaviour with high conductivity by DFT [2], [3].
VS2 can be found in two dinstinct geometrical configurations 1T-VS2 and 2H-VS2. The
band structure of both structures is obtained, using the tight binding model combined
with the Hubbard model, from which a metallic groundstate is obtained. Both phases
are found to be ferromagnetic though a higher spin polarization is obtained for the 2H
structure. From experiments, the organic inorganic hybrid 2D material CrCl2(pyz)2

has shown to exhibit ferrimagnetic ordering with a Curie temperature of ' 55 K and
an insulating groundstate [4]. In this thesis the band structure of the compound is
obtained using the tight binding model. This also suggests an insulating groundstate,
though the density of states of the itinerant electrons on the pyrazine ligands is only
one quarter filled. A simple model is suggested to describe the behaviour of the relevant
spins in the system. This results in a ferrimagnetic ordering in agreement with the ex-
perimental data. The exchange interaction between neighbouring sites is investigated
and an expression of the indirect exchange coupling between neighbouring chromium
spins is obtained using the RKKY model.
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Chapter 1

Introduction

1.1 Motivation

The first two-dimensional (2D) material ever realized was graphene in 2004 [5]. The
importance of the result was emphasized in 2010, when the Nobel Prize in physics was
given to Andre Geim and Konstantin Novoselov for this discovery. Graphene has shown
to exhibit highly fascinating properties, including a resistance close to that of diamond,
high thermal and electrical conductivity and the ability to generate electricity when
exposed to sunlight [6]. Graphene has been studied broadly ever since the first realiza-
tion. Other 2D graphene-like materials have subsequently been synthesized. Transition
metal dichalcogenides (TMDs) can also be found in a two-dimensional form and is of
great interest due to the wide range of properties, be they electronic [7], optical [8], me-
chanical [9] and thermal [10]. Another member of the family of 2D materials is MOX
(M = Fe, Co, Mn, Cr, lanthanide, or actinide metals; O = oxygen, X = F, Cl, Br, I).
These have theoretically been predicted to exhibit interesting electronic and magnetic
properties [1]. An example of this is monolayer chromium oxyhalide (CrOX; X = Cl or
Br), which is suggested to exhibit ferromagnetic semiconducting properties with Curie
temperatures up to 160 and 129 K [11].

The versatile properties of 2D materials makes them usable in a wide range of appli-
cations. The present energy crisis demands fabrication of eficient batteries to restore
energy. For this purpose 2D materials with large interlayer spacing and weak interlayer
interactions together with high surface activity can be used [12]. Spintronics is one of
the next-generation nanoelectronic devices in the goal of reducing power consumption
and increasing memory and processing capabilities [13]. These devices, together with
e.g. magneto-electrics and multi-ferroics, make use of the spin degree of freedom in-
stead of or in addition to the charge degree of freedom of the transported electrons.
This require materials with non-zero magnetic moments.

For these applications to be realized using 2D materials, the fundamental properties of
these must be well investigated, both theoretically and experimentally. This motivates
the study of the electronic and magnetic properties of three distinct 2D materials,
namely YbOCl, VS2 and CrCl2(pyz)2.
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CHAPTER 1. INTRODUCTION 2

1.2 Thesis Outline

This thesis is structured in the following way. In chapter 2 an introduction to group
theory will be given, since this is exploited in the understanding of the energy sepctra
obtained in the thesis. This is followed by a brief introduction to both the properties
and fabrication of TMDs inChapter 3. In chapter 4 the compound YbOCl is studied.
The classical Heisenberg model is used to investigate the magnetic properties of this.
Chapter 5 deals with monolayer VS2. Using the tight binding model together with
the Hubbard model, the electronic and magnetic properties are considered. Following a
similar approach the compound CrCl2(pyz)2 is studied in chapter 6. Further, a simple
model is suggested to understand the behaviour of the relevant spins of the system. The
magnetic properties are further investigated using the RKKY model. Lastly, chapter
7 contains a summary of the study’s conclusions and suggestions for further research.



Chapter 2

Group Theory1

In quantum mechanics a great effort is spend on solving the Schrödinger equation to
obtain eigenenergies and -functions in the study of atoms, molecules and solids. In the
Hamiltonian, various effects can be included such as the Coulomb repulsion between
the electrons, spin-spin coupling and external-field couplings, for instance the Zeeman
effect. The eigenfunctions are functions of both the location and spin of all electrons in
the system. Thus, even for a small number of interacting electrons, the dimension of
the Hilbert space becomes too great for us to solve the Schrödinger equation. This is
where group theory comes into play, since this is a measure to simplify the system. In
the sort of problems explained above, symmetries of the Hamiltonian will be searched
for, to simplify the calculations. Further, symmetries of a molecule or a Hamiltonian
can be used to understand degeneracies and interactions in a system.

2.0.1 Abstract Group Theory

A group is given by a set of elements G = {A,B,C, ...}, for which a group multiplication
is defined as a binary operation that combines two elements to give a third element of
the group. This operation must satisfy the following four conditions:

1. The set of elements must be closed under group multiplication.

2. The associate law must hold, i.e., A(BC) = (AB)C.

3. Any group must contain a unit element E for which EA = AE = A for any
element A ∈ G.

4. To each element A ∈ G there exists an inverse A−1 in the group for which AA−1 =
A−1A = E.

If the group multiplication is commutative, i.e., if AB = BA, then the group is said to
be Abelian.

In the following we will focus on finite groups. The order of a group is given by the
number of elements in the group. A finite group thus has a finite order. An example
of a finite group of general order is the set of the so-called covering operations of
a symmetrical object. A covering operation is a reflection, rotation or inversion of a
given object that brings the object to a form which is indistinguishable from the original
object, i.e., the object is kept invariant under the transformation.

1This section is build on chapters 1-3 of [14].
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CHAPTER 2. GROUP THEORY 4

The elements of the groups are given by the symmetry of the object. In this case the
group multiplication AB means that operation B must be performed before operation
A. These operations can be written in matrix form in a chosen basis, and the group
multiplication is then matrix multiplication. The unit operation, E, corresponds to
doing nothing. In matrix form this is the identity matrix. The inverse of an operation
is given by physical considerations. The inverse of a rotation is a rotation with the same
angle around the same axis but in the opposite direction. A mirror is its own inverse.
An example of a set of covering operations is the Vierergruppe, which is the rotational
symmetry group of a rectangular crystal.

x

y

z

Fig. 2.1: The Vierergruppe consists of the
symmetry elements covering a rectangular
crystal. In addition to identity this group
consists of three elements, i.e., rotations of π
about the three axes; x, y and z.

E A B C
E E A B C
A A E C B
B B C E A
C C B A E

Table 2.1: Group-multiplication table of the
Vierergruppe with elements {E,A,B,C}.

Please move.
A group-multiplication table characterizes the group. The Vierergruppe consists of the
elements {E,A,B,C}, where A, B and C are rotations by π around three orthogonal
symmetry axes, see Fig. 2.1. It is therefore of order four. The multiplication table
of this group is illustrated in Table 2.1. Each entry in the table is the product of the
group element stated in the given row and column. All multiplication tables must obey
the rearrangement theorem, which states that each row and column only contains each
element once. This is a result of the fact that the group is closed and contains the
inverse of each element of the group. The length of a column or row is equal to the
number of elements, i.e., the order of the group. Thus, the group-multiplication table
shows the rules of group theory.

The period of an element A is defined as

A,A2, ..., An−1, An = E, (2.1)

where n is the order of A. This sequence forms a group and if it does not contain all
elements of the group, it forms a cyclic subgroup. Clearly, the elements of the subgroup
must commute, and thus all cyclic groups are abelian. For an abelian group the group-
multiplication table is symmetric around the diagonal. From Table 2.1 it is clearly
seen that the Vierergruppe is in fact an abelian group.
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Groups can be split up into classes. Two symmetry operations, A, B ∈ G, are said
to be conjugate to each other if there exists another symmetry element, X ∈ G, that
relates A and B by a similarity transformation, i.e.,

B = X−1AX. (2.2)

If A and B are both conjugate to another element C of the same group, they must be
each other’s conjugate as well:

C = X−1AX = Y −1BY

A = XCX−1 = XY −1BYX−1 = (Y X−1)−1BYX−1 (2.3)
A = Z−1BZ, where Z = Y X−1.

Here we have exploited the fact that groups are closed under group multiplication such
that Z ∈ G. Further, we have used that XY −1 = (Y X−1)−1. This means that a group
can be divided into classes, which are sets of mutually conjugate elements. The identity
element is always in a class for itself, since X−1EX = E for all elements X ∈ G. All
elements in an abelian group commute, such that

B = X−1AX = X−1XA = A. (2.4)

This cannot be true, since all elements in the group must be unique. Therefore, all
elements in abelian groups must be in their own class.

2.0.2 Representations

A representation of a group is a set of square matrices, where each matrix represents one
element of the group. For an abstract group G = {E,A,B,C, ...}, the representation
of the element A is denoted Γ(A). The matrix representations must fulfill the same
multiplication table as the elements, thus

Γ(A)Γ(B) = Γ(AB). (2.5)

If all the matrix representations are distinguishable, the order of this group is the same
as the order of the group they are representing. In this case the representation is said
to be faithful. The matrix representations of symmetry operations can often be reduced
to block matrices. The goal is to seek an irreducible representation, since there is
an infinite number of reducible representations but only a finite number of irreducible
representations. The number of irreducible representations is equal to the number of
classes of the symmetry point group. An irreducible representation is a representation
that cannot be expressed in terms of other representations of lower dimensionality, where
the dimensionality is given by the number of rows or columns of the representation.
Reducible representations can be written in block form in terms of the irreducible
representations. The advantage of block diagonal matrices is that the blocks are also
representations of the operation, since they obey the same multiplication laws.



CHAPTER 2. GROUP THEORY 6

The great orthogonality theorem is essential to find the irreducible representations. This
theorem states that for all nonequivalent, irreducible and unitary representations, it
must be true that ∑

R

Γ(i)(R)∗µνΓ
(j)(R)αβ =

h

li
δijδµαδνβ, (2.6)

where R runs over all the elements of the group, li is the dimensionality of the ith
representation Γ(i), δij is the Kronecker delta and h is the order of the group. Another
useful tool is the dimensionality theorem given by∑

i

l2i = h, (2.7)

where i runs over all distinct irreducible representations2. The character of a symmetry
operation is given by the trace of the irreducible matrix representation, tr[Γ(A)], i.e.,
the sum of the elements in the diagonal. Operations of the same class have the same
character. Thus, the classes of symmetry operations can be distinguished by their
character. If the group is not abelian and AB = C and BA = D, then C and D still
have the same character, χC = χD. This has to do with the general property of the
trace, that it is unchanged under cyclic permutation of the matrices of which the trace
is taken, i.e.,

tr[ABC] = tr[CAB] = tr[BCA]. (2.8)

Further, if C = A⊗B then χC = χAχB.

The characters of all irreducible representations of a given group can be viewed in a
so-called character table. The characters of each irreducible representation need also to
fulfill the multiplication table of the group.

Properties of character tables

1. The sum of the squares of the dimensionality of all irreducible representations are
equal to the order of the group. This is the dimensionality theorem, see Eq. (2.7).

2. The sum of the squares of the characters of any irreducible representation is equal
to the order of the group.

3. The sum of the products of the corresponding characters of any two distinct
irreducible representations must be zero. This originates from the orthogonality
theorem, see Eq. (2.6).

4. All operations of the same class have the same character. This is referred to as
similarity.

5. The number of irreducible representations is equal to the number of classes of the
group. This is referred to as completeness.

6. All groups have a completely symmetric irreducible representation.
2Both theorems are proven in [14] pp. 20-25.
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Representations of the Vierergruppe

A reducible representation of the Vierergruppe can be obtained from the elements of
the C2v group, since the Vierergruppe and the C2v group are isomorphic. C2v consists
of the elements; C2: a rotation of an angle of π around the z-axis, σv: a reflection in the
xy-plane, and σ′v: a reflection in the yz-plane, besides the unit transformation. This
can be written as three-dimensional matrices, using the cartesian coordinates depicted
in Fig. 2.1,

E =

1 0 0
0 1 0
0 0 1

, A = σv =

1 0 0
0 −1 0
0 0 1

 ,
B = σ′v =

−1 0 0
0 1 0
0 0 1

, C = C2 =

−1 0 0
0 −1 0
0 0 1

 .
(2.9)

Since it is an abelian group, it has four classes, i.e., {E}, {A}, {B} and {C}. We
will now seek the irreducible representations of this group. From the dimensionality
theorem, see Eq. (2.7), we know that

l21 + l22 + l23 + l24 = 4. (2.10)

The only solution to this is l1 = l2 = l3 = l4 = 1. Thus, there must be four one-
dimensional irreducible representations. This agrees with the fact that the number of
classes must be equal to the number of irreducible representations. From the second
property of character tables, we know that the sum of the squares of the characters in all
four irreducible representations must sum to four. Therefore, all characters must be ±1.
From the sixth property we must write one of the representations with all characters
equal to one. From the orthogonality theorem the rest is found. This is illustrated in
Table 2.2.

E C2 σv σ′v
Γ1 1 -1 1 -1
Γ2 1 -1 -1 1
Γ3 1 1 1 1
Γ4 1 1 -1 -1

Table 2.2: Character table of the Vierergruppe.
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Reducible representations of the four elements can now be written in terms of these
irreducible representations as

E =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

, A = σv =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,

B = σ′v =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

, C = C2 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 .
(2.11)

These representations consists of the previous representations with an addiational com-
ponent such that the dimensionality of the representations is the same as the order of
the group. Since these are not irreducible representations, the trace of the diagonals do
not agree with the characters of the character table, see Table 2.2.

2.0.3 Group Theory and Quantum Mechanics

In quantum mechanics, the relevant operators are symmetry operators that leave the
Hamiltonian of the given system invariant. These operators can be specified by a
real orthogonal transformation, R, which relates the new coordinates x′ with the old
coordinates x by

x′ = Rx. (2.12)

This transformation R can represent a rotation of the coordinates, a reflection, an
inversion or a combination of these. A new group, isomorphic to this group, can be
introduced in which the elements of the group are transformation operators that acts
on functions instead of coordinates. The operator that corresponds to R is denoted P̂R
and is defined through the following relation

P̂Rf(Rx) = f(x), (2.13)

P̂Rf(x) = f(R−1x). (2.14)

This means that P̂R transforms the functional form of f(x) such that it compensates
for the way R transforms the coordinates. To investigate if the group of operators P̂R
is in fact isomorphic to the group of coordinate transformations R, we must verify that

P̂SP̂R = P̂SR. (2.15)

To do this we define the new function g(x) as

P̂Rf(x) = f(R−1x) = g(x), (2.16)
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and using Eq. (2.14), we find that

P̂S[P̂Rf(x)] = P̂Sg(x) = g(S−1x),

= f [R−1(S−1x)] = f [(RS)−1x] = P̂SRf(x).
(2.17)

This proves the relation in Eq. (2.15), which says that the operation P̂SR is the product
of the operation P̂S and P̂R in the proper order. Now we will focus on a certain group
of operators P̂R that commute with the Hamiltonian Ĥ, i.e., [P̂R, Ĥ] = 0. The elements
in this group will consists of all transformations that leave Ĥ invariant. Such a set of
operators are said to form the group of the Schrödinger equation. Applying one of these
operators to the Hamiltonian results in

P̂RĤψn = P̂REnψn, (2.18)

ĤP̂Rψn = EnP̂Rψn, (2.19)

where ψn and En are the eigenvectors and eigenenergies of the Hamiltonian, respectively.
Thus, knowing one eigenfunction of the Hamiltonian, the degenerate eigenfuntions can
be found by applying symmetry operators that commutes with the Hamiltonian. If
this procedure results in all the degenerate eigenfunctions, the degeneracy is said to be
normal.

Basis Functions

Basis functions form a linearly independent set that span the space, such that every
function in the space can be uniquely represented by a linear combination of these. Let
φ

(j)
κ denote the basis function for the κth row of the jth irreducible representation. The

so-called partners of this basis function are the other basis functions φ(j)
λ required to

complete the basis for the representation. The result of operating any element of the
group on φ(j)

κ can be written in terms of the basis functions as

P̂Rφ
(j)
κ =

lj∑
λ=1

φ
(j)
λ Γ(j)(R)λκ. (2.20)

Multiplying through Γ(i)(R)∗λ′κ′ , summing over R on both sides, and applying the great
orthogonality theorem, see Eq. (2.6), we obtain∑

R

Γ(i)(R)∗λ′κ′P̂Rφ
(j)
κ =

h

lj
δijδκκ′φ

(j)
λ′ . (2.21)

The projection operator can now be defined as

P̂(j)
λκ =

lj
h

∑
R

Γ(j)(R)∗λκP̂R. (2.22)

It is evident from Eq. (2.21) that applying this operator on a basis function yields zero
unless this basis function belongs to the κth row of Γ(j).
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If this condition is satisfied, the operation results in the basis function φ(j)
λ . Knowing

just one basis function, this provides a method for obtaining the partners of that basis.
If λ = κ, then

P̂(j)
κκ φ

(j)
κ = φ(j)

κ . (2.23)

This shows that φ(j)
κ is an eigenfunction of P̂(j)

κκ with eigenvalue 1. This allow for a
unique identification of the labels of a given basis function. Due to the fact that the
projection operator is linear, any linear combination of basis functions from the κth
row of Γ(j), expressed in terms of other basis functions, will also be an eigenfunction of
P̂(j)

κκ . If Γ(1), Γ(2),..., Γ(n) are all the distinct irreducible representations of a group of
operators P̂R, then any function F , in the space operated by P̂R, can be decomposed
into a sum of the form

F =
n∑
j=1

lj∑
κ=1

f (j)
κ , (2.24)

where f (j)
κ belongs to the κth row of the irreducible representation3. Since we know

how the projection operator works on the right hand side, i.e.,

P̂(j)
κκ f

(j′)
κ′ = δjj′δκκ′f

(j)
κ , (2.25)

combined with Eq. (2.24), we conclude that

P̂(j)
κκF = f (j)

κ . (2.26)

This equation explains the name of the projection operator, since it projects out the
part of any function that belongs to the κth row of the jth representation. The pro-
jection operator can be used to obtain the basis functions. The procedure is as follows:
start with any function F , project into the κth row of the jth representation using P̂(j)

κκ

and finally find all partners using P̂(j)
λκ . This procedure is called the basis-function gen-

erating machine. Lastly, we want to rewrite the expression for the projection operator
in terms of the characters of the given representation. Setting λ = κ in Eq. (2.22) and
summing over κ leads to the expression

P̂(j) =
∑
κκ

P̂(j)
κκ =

lj
h

∑
R

χ(j)(R)∗P̂R, (2.27)

since
∑

κ Γ(j)(R)∗κκ = χ(j)(R)∗. Thus, knowing the character table of a given symmetry
group, any function can be projected into a representation using this expression. This
will be put into use in both chapter 5 and chapter 6.

3This is proven in [14] pp. 40-41.



Chapter 3

Introduction to TMDs

TMDs are materials of the type MX2 where M is a transition metal, i.e., elements in
group 3 to 12 of the periodic table, and X is a chalcogen atom, i.e., elements from group
16 of the periodic table. One layer of the M-atoms is sandwiched in between two layers
of X-atoms. To form bulk materials these layers are coupled through the weak Van
der Waals (VdW) force like in graphite. This enables the experimentalists to produce
transition metal dichalcogenide monolayers, which is a special type of 2D materials [15].

3.1 Properties of TMD Monolayers

Already in 1977 the photoelectrochemical properties of bulk TMDs were studied [16].
Both MoS2 and WS2 can experience a phototransition without photodecomposition,
and this is a great advantage for solar energy conversion to electrical energy. The
following years many other TMDs were found to be good candidates for solar cells, but
the interest in TMDs was mainly focused on the high stability they can exhibit. Today,
TMD monolayers of different kinds are stacked together or combined in nanohybrids
monolayer TMDs to enhance this stability [17]. Several TMDs e.g. MoS2, MoSe2,
WS2, WSe2 changes from having an indirect band gap to having a direct electronic and
optical band gap when reducing the thickness to monolayer [18]. The high stability
combined with the existence of a band gap and a good electron mobility make TMD
monolayers good candidates for transistors. The mobility of monolayer TMDs is usually
lower than for bulk, though this problem can be solved by coatings [19]. The existence
of a direct band gap further make TMD monolayers promising candidates to use in
optoelectronics. The majority of TMD monolayers are semiconducting though TMD
monolayers with metallic behaviour exists. This results in a higher conductivity, which
is relevant in the developement of efficient batteries as devices for energy storage [2].
Further, these monolayers can exhibit both magnetic [20], [21] and superconducting
[22], [23] behaviour. The former case is of great importance when producing devices
that explore the spin degree of freedom.

3.2 Fabrication of TMD Monolayers

TMD monolayers can be fabricated in several ways, of which two will be described
briefly here. The first method, named exfoliation, exploits the fact that the layers off
bulk compounds are coupled through the very weak VdW force. Adhesive tape is placed
on the bulk material. Removing this tape will pull of one (or more) layers of the TMD.
Thereafter, the adhesive tape is placed on a substrate on which it will deposit small

11
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flakes of monolayers or multilayers of the TMD material. This amazingly simple and
cheap method has been used widely ever since graphene was obtained experimentally
for the first time in 2004 using this method [5]. The disadvantage of this method is
that it is difficult to control the thickness of the sample placed on the substrate, such
that the reproducibilty of TMD monolayers is small. An alternative to this method
is chemical vapor deposition (CVD) [24]. This is a more complicated and expensive
method, though it is much easier to control. To form TMDs using the CVD method,
precursors of the material, i.e., a transition metal oxide and pure chalcogen, are placed
in a furnace together with the substrate. The furnace is heated to temperatures between
650 and 1000 °C with an inert gas flowing through the furnace, picking up the precursors
and depositing it on the substrate.



Chapter 4

YbOCl

4.1 Introduction to YbOCl

In 1993 four lanthanide1 oxychlorides, including ytterbium oxychloride (YbOCl), was
realized [25]. Magnetic susceptibility data was obtained, which showed YbOCl to be
paramagnetic. Song and Kauzlarich suggested that this was due to the unpaired elec-
trons on Y b3+ (f 13) ions. In 2018 a numerical study of 108,423 unique, experimentally
known 3d compounds were investigated [1]. A subset of promising exfoliable layered
compounds were identified. A small subset of 258 compounds were investigated more
thoroughly and the electronic and magnetic properties of these were investigated using
density-functional theory (DFT) calculations. In this study YbOCl was characterized
as a metal with ferromagnetic properties. This motivated Yao et al. [26] to realize
this material experimentally using the CVD method described above. The structure
was characterized using Raman scattering and YbOCl has never been realized this thin
before with a thickness of ' 6 nm.

Monolayer YbOCl is a 2D MOX material, and it consists of a layer of Cl-Yb-O-O-Yb-Cl
as seen in Fig. 4.1. In bulk YbOCl these layers are stacked through the VdW force.
The electron configuration for the relevant elements is Yb: [Xe]6s24f14, O: [He]2s22p4

and Cl: [Ne]3s23p5. Thus, the ytterbium atoms lose one electron to the chlorine atoms
and two electrons to the oxygen atoms which results in Y b3+-ions. In the following we
will investigate one layer of YbOCl using the classical Heisenberg model. This is done
both with and without an external magnetic field.

Fig. 4.1: Structure of YbOCl seen along the b crystalline axis (a) and the c crystalline axis
(b). In the upper right corner of (b), a single Yb4O tetrahedral unit is shown. Blue circle
represents Yb, red circle: O and green circle: Cl. The figure is taken from the paper by Yao
et al. [26].

1Lanthanides are elements with atomic numbers 57-71. The name stems from the fact that their
chemical properties are similar to lanthanum.

13
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4.2 Classical Heisenberg Model of Monolayer YbOCl

Monolayer YbOCl will now be studied theoretically using a classical approach. The
structure illustrated along the c crystalline direction is seen in Fig. 4.2. Only the
ytterbium atoms, located in two distinct sublayers denoted top (t) and bottom (b), are
viewed.

: Y b(t)

: Y b(b)

1t 2t

3t

Fig. 4.2: Schematic top view of the Yb atoms of the top (black) and bottom (white) sublayers
of YbOCl. One unit cell, indicated with the dashed hexagon, includes three Yb atoms of each
sublayer. The three Yb atoms of the top sublayer has been enumerated 1t, 2t and 3t. The
coupling lines between the Yb atoms in the top sublayer are illsutrated with solid lines.

Since the f-shell on each ytterbium atom is only missing a single electron to be filled,
these sites can be viewed as if they are occupied by a single hole with spin S = 1/2.
These couple through the oxygen atoms between them, but in this simplified model we
assume that the spins couple directly. The Hamiltonian for the exchange interaction is

Ht = J
∑
〈ij〉

Si · Sj, (4.1)

which is refered to as the Heisenberg model. J denotes the exchange coupling constant
and Si denotes the spin of the electron at site i. The latter is a vector since the
calculations are done in a classical picture. Only nearest neighbour contributions are
included, which is indicated by the 〈ij〉 in the sum. The sign of J determines the
configuration of the spins. When J is positive, Eq. (4.1) is minimized if Si and Sj
are antiparallel, which is an antiferromagnetic coupling. J < 0 yields a ferromagnetic
coupling since Eq. (4.1) is minimized for parallel spins. Focusing on the top sublayer
and knowing that the spins are configured in a triangular lattice, see Fig. 4.1, the
Hamiltonian can be written as

Ht = Jt [S1t · (S2t + S3t) + S2t · (S1t + S3t) + S3t · (S1t + S2t)]N, (4.2)

where Sit, i = 1, 2, 3, are the three spins in one unit cell, see Fig. 4.2. N is the number
of unit cells and Jt refers to the exchange integral for sublayer t. The latter is assumed
to be constant.
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This Hamiltonian can be expressed in terms of the length of the spin using

St = S1t + S2t + S3t, (4.3)
S2
t = S2

1t + S2
2t + S2

3t + 2 (S1t · S2t + S2t · S3t + S1t · S3t) . (4.4)

Exploiting the fact that one hole occupies each site such that S2
1t = S1t(S1t+1) = 3/4 =

S2
2t = S2

3t, the Hamiltonian for the top sublayer can be written as

Ht = Jt

(
S2
t −

9

4

)
N, (4.5)

and similarly for sublayer b. The Hamiltonian describing the interactions between the
spins of the two sublayers, still assuming only nearest neighbor coupling, is given by

Htb = Jtb (S1b + S2b + S3b) · (S1t + S2t + S3t)N = JtbSb · StN, (4.6)

which results in the total Hamiltonian

H = Ht +Hb +Htb = Jt

(
S2
t −

9

4

)
N + Jb

(
S2
b −

9

4

)
N + JtbSt · SbN. (4.7)

Assuming that the two coupling constants are identical in the two sublayers, i.e., Jt =
Jb = J , the total Hamiltonian becomes

H = J

(
S2
t + S2

b −
9

2

)
N + JtbSt · SbN. (4.8)

We can now introduce the angle φ between St and Sb, such that

H = J

(
S2
t + S2

b −
9

2

)
N + JtbNStSb cosφ. (4.9)

The constant shift will be neglected since it has no influence on the choice of groundstate.
Further, the length of the spins in the two sublayers are assumed to be identical, i.e.,
St = Sb = S, such that the Hamiltonian can be written as

H = S2N (2J + Jtb cosφ) . (4.10)

The total Hamiltonian is minimized to find the groundstate. The groundstate configu-
ration of the spins depends on the sign of both J and Jtb. If both J and Jtb are negative,
it is trivial to see that the Hamiltonian is minimized for φ = 0 and maximized spin.
This yields both an intralayer and interlayer ferromagnetic coupling. This groundstate
configuration is depicted in Fig. 4.3 (a).

If J < 0 but Jtb > 0, Eq. (4.10) is minimized for maximized spin and φ = π, since this
makes the second term negative. This results in a ferromagnetic coupling between the
spins in the sublayers, though the total spin of each sublayer couple antiferromagneti-
cally since φ = π. This groundstate configuration is depicted in Fig. 4.3 (b). When J
is positive the groundstate configuration depends on the relative size of J and Jtb.
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(a) (b)

Fig. 4.3: Illustration of a groundstate configuration exhibiting ferromagnetic interlayer cou-
pling (a) and antiferromagnetic interlayer coupling (b). Both spin configurations exhibit a
ferromagnetic intralayer coupling. The black and white circles represent the Yb sites in the
top and bottom sublayer, respectively.

If Jtb is below (above) the line Jtb = 2J (Jtb = −2J), Eq. (4.10) can never become
negative, and it is minimized for S = 0. This is a non-magnetic phase. Since the spins
are located in a triangular lattice, this means that they are oriented with an angle of
2π/3 between all spins in the sublayer. This is illustrated in Fig. 4.4.

Fig. 4.4: Groundstate configuration of the spins on the Yb sites of one sublayer with S = 0.

If Jtb is positive and above the line Jtb = 2J , the energy is minimized for φ = π. If Jtb
is below the line Jtb = −2J , it is minimized for φ = 0. Both cases are minimized for
S = Smax, where Smax denotes the maximal length of the total spin, namely Smax = 3/2.
The phasediagram of J and Jtb is illustrated in Fig. 4.5.
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−1.00−0.75−0.50−0.25 0.00 0.25 0.50 0.75 1.00
J

−2.0
−1.5
−1.0
−0.5

0.0
0.5
1.0
1.5
2.0

J tb

S = Smax, φ = π

S = Smax, φ = 0
S = 0

Fig. 4.5: Phase diagram of intra- and interlayer exchange coupling constants J and Jtb.

Including an External Magnetic Field

An external magnetic field, B, will now be introduced. Including only the top sublayer,
the Hamiltonian can be written as

HB
t = Jt

∑
〈ij〉

Si · Sj + gµB
∑
i

Si ·B, (4.11)

where g ' 2 is the Landé g-factor and µB is the Bohr magneton. Evaluating the sums
and introducing the length of the spins, as in the previous section, the Hamiltonian
becomes

HB
t = NJtS

2
t − const. +NgµBB · St ' NJtS

2
t +NgµBBSt cos θ. (4.12)

Again, the constant shift is neglected. Further, θ, the angle between the total spin and
the magnetic field, has been introduced. For Jt < 0 this Hamiltonian is minimized
for S = Smax and θ = π. The case where Jt > 0 is slightly more complicated. The
derivatives

∂HB
t

∂St
= 2NJtSt +NgµBB cos θ = 0, (4.13)

∂HB
t

∂θ
= −NgµBBS sin θ = 0, (4.14)

can be obtained. From Eq. (4.14), assuming that the magnetic field is non-zero, either
the length of the spin or sin θ must be zero. The condition sin θ = 0 requires that
θ = nπ, for even n. For the second term in the Hamiltonian to be minimized, see Eq.
(4.12), it is trivial to see that θ = π is the solution. Thus, the total spin is antiparallel
to the magnetic field. Inserting this in Eq. (4.13), the length of the spin is found to be

St =
gµBB

2Jt
. (4.15)

Remember that St = S1t + S2t + S3t. This means that the sum of the three spins in
the unit cell will sum up to give this number. For a small external magnetic field, the
total spin will be just above zero, and for increasing magnetic fields, the size of St will
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increase until it reaches maximal value, i.e., when all spins in the unit cell are parallel.
Inserting these results in the Hamiltonian we find the groundstate energy to be

EB
t = −Ng

2µ2
BB

2

4Jt
. (4.16)

This is a lower energy than for St = 0, so Eq. (4.16) is the groundstate energy for
Jt > 0. That the spin is antiparallel to the magnetic field means that the spin magnetic
moment is parallel to the magnetic field, due the negative sign in

µS = − e

2m
gS, (4.17)

where e and m is the charge and mass of the relevant particle, respectively. If the
magnetic moment is only present due to the presence of the external magnetic field, the
material is paramagnetic. Now we include both sublayers, and the coupling between
them, together with the magnetic field. In this case the Hamiltonian is given by

H = J

(
S2
t + S2

b −
9

2

)
N + JtbSt · SbN + gµBB · (St + Sb)N. (4.18)

As previously we assume that Jt = Jb = J . When both J and Jtb are negative,
a ferromagnetic coupling arise between the spins in the sublayers and between the
sublayers as illustrated in Fig. 4.3 (a). These spins will be antiparallel to the external
magnetic field. If both J > 0 and Jtb > 0, the second term is minimized if St and Sb are
antiparallel. Assuming this, and that the magnetic field is perpendicular to the spins,
the inner products can be parametrized using only one angle φ, i.e., the angle between
St and B, and Sb and B. Thus, the angle between St and Sb is 2φ. The Hamiltonian
can then be written as

H = JN
(
S2
t + S2

b

)
+ JtbNStSb cos 2φ+NgµBB(St + Sb) cosφ. (4.19)

The length of the two summed spins are assumed to be identical, i.e., St = Sb = S,
such that the Hamiltonian can be written as

H = NS2(2J + Jtb cos 2φ) + 2NgµBBS cosφ. (4.20)

This Hamiltonian can now be minimized with respect to φ and S for various magnitudes
of Jtb and B. A phase diagram for Jtb/J and B/µB can thus be found numerically. This
results in three different regimes, see Fig. 4.6.
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Fig. 4.6: Phase diagram between the two parameters, B
µB

and Jtb
J for small (a) and bigger

(b) external magnetic fields for Jtb > 0 and J > 0.

When Jtb/J is small the Hamiltonian is minimized for the maximal value of S, and
with φ = π. This is viewed as the green area in the phase diagram, see Fig. 4.6 (a).
Remember that φ is the angle between S and B such that the angle between the total
spins of the two sublayers are twice this angle. The condition S = Smax means that
the three spins in the unit cell of one layer are parallely oriented, whereas the condition
φ = π requires that the total spin of each layer is parallel to each other. The material
is thus ferromagnetic in this regime as illustrated in Fig. 4.3 (a), and the spins are
pointing antiparallel to the external magnetic field. In the pink regime the Hamiltonian
is minimized for S = 0 and this is a non-magnetic regime. This configuration is depicted
in Fig. 4.4. In the last regime, i.e., for bigger Jtb/J , the Hamiltonian is minimized
for S = Smax and φ = π

2
→ π for increasing magnetic fields. At which magnitude of

the field φ reaches φ depends on the magnitude of Jtb/J . The same phase diagram for
small magnetic fields is shown in Fig. 4.6 (b). Here, the non-magnetic regime is clearly
observed. Looking at the Hamiltonian, see Eq. (4.20), we can try to understand these
results analytically.

When Jtb is smaller than 2J , the first terms can never become negative regardless of
the value of φ. Thus, it is trivial to see that the Hamiltonian is minimized for S = 0 for
small magnetic fields and for greater magnetic fields when the latter term is negative,
i.e., when φ = π. When Jtb becomes greater than J , the first term can now become
negative. Thus, for a small magnetic field it is advantegous to maximize the length of
the spins and choose φ = π/2. In this case the term with the magnetic field becomes
zero. For increasing magetic fields the last term in Eq. (4.20) becomes more dominent
until the magnitude of this surpasses the other two and φ = π. The non-magnetic region
with S = 0 is much smaller in the presence of the external magnetic field. Thus, in a
specific part of the phase diagram between Jtb and J , the compound is paramagnetic
in agreement with experimental results [25].

For J > 0 and Jtb < 0 Eq. (4.20) is minimized for φ = π. For small magnetic fields the
spin is just above zero though it increases with increasing magnetic field until it reaches
the maximal value. The magnitude of the field at which the spin reaches the maximal
value depends on the relative size of Jtb compared to J , see Fig. 4.7 (a).
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Fig. 4.7: Phase diagram between B
µB

and Jtb
J for Jtb < 0 and J > 0 (a), and for Jtb > 0 and

J < 0 (b) .

When J < 0 and Jtb > 0 Eq. (4.20) is minimized for S = Smax everywhere, though φ
varies. For small magnetic fields φ = π/2 which set both the term including B to zero
and makes the term including Jtb negative. For increasing magnetic fields, φ→ π. The
magnitude of the field at which φ = π depends on the relative size of Jtb compared to
J , see Fig. 4.7 (b).

4.3 Conclusion

Monolayer YbOCl has been studied in this section. Focusing on the single hole oc-
cupying each Yb site in a triangular lattice, these spin 1

2
particles have been studied

through the Heisenberg model. The groundstate of monolayer YbOCl was found to
depend on the relative sizes of the exchange coupling constant between spins in the
same sublayer J and the exchange interaction coupling strength between spins located
in two different sublayers Jtb. Further, this depends on the sign of both J and Jtb. A
non-magnetic region with S = 0 was obtained. Outside this region the Hamiltonian, see
Eq. (4.10), was minimized for maximized total spin of one unit cell, though the size of
φ depended on the sign and sizes of Jtb and J . One region exhibited antiferromagnetic
interlayer coupling whereas the other exhibited ferromagnetic interlayer coupling be-
tween the spins. Both regions exhibited ferromagnetic intralayer couplings. All phases
are depicted in Fig. 4.5. Thereafter, an external magnetic field was introduced. Again,
the groundstate configuration was dependent on the relative size and signs of Jtb and
J . For Jtb < 0 and J < 0 both a ferromagnetic intra- and interlayer magnetic coupling
minimizes the Hamiltonian, see Eq. (4.20). These spins were oriented antiparallel to
the magnetic field. For Jtb > 0 and J > 0, Jtb > 0 and J < 0 and Jtb < 0 and J > 0 var-
ious phases was observed. The phase digram between B/µB and Jtb/J for these three
cases are depicted in Fig. 4.6 and Fig. 4.7. Except for a small region with S = 0, the
spins are oriented antiparallely to the external magnetic field. The non-magnetic region
with S = 0 was much smaller in the presence of the external magnetic field. Thus, in
a specific part of the phase diagram between Jtb and J , the compound is paramagnetic
in agreement with the experimental results [25].
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VS2

5.1 Introduction to VS2

Vanadium disulfide (VS2) is a TMD that corresponds to layers of S-V-S that, when
stacked, form bulk VS2. These layers couple through the VdW force. Two phases of
crystal structure is observed for VS2, i.e., the 2H and the 1T phases. The geometry
of these will be introduced further below. In 2016 VS2 was investigated by Wang
et al. using DFT calculations [2]. This study showed that for monolayer VS2 the
2H phase is more stable than the 1T phase, and oppositely for bulk VS2. The DFT
C2DB (computational 2D materials database) from DTU [3] agree with this. Both 2H
monolayer VS2 and 1T bulk VS2 have been shown to exhibit metallic behaviour. As
discussed previously many TMDs are semiconducting with low conductivity, including
the highly investigated MoS2, which is a disadvantage in several technologies, including
energy storage. Wang et al. conclude that VS2 exhibit a lower adsorption energy and
a higher ion diffusion rate compared to other 2D materials. This makes both bulk and
monolayer VS2 promising candidates to be the anode material in sodium and lithium
ion batteries. The disadvantage of VS2 is that it exhibits poor stability due to Peierls
distortion [27]. Lu li et al. reported that VS2 can become stable in a lithium-ion
battery by coating it with a ' 2.5 nm thick titanium disulfide layer, which is found
from DFT to be less susceptible to Peierls distortion. Further, VS2 has shown to exhibit
ferromagnetic behaviour which suggests it to be a good candidate for spintronic devices
[28].

In the following sections both the 1T and 2H phase of VS2 will be investigated sepa-
rately. To begin with, the model complex VS6 will be studied. First, the tight binding
model in the Slater Koster decomposition will be used to obtain the energy spectrum
of the single molecule. This will be further studied in the subspace of the d-orbitals
present on the vanadium atom. Using group theory the symmetries of the molecule
will be investigated to understand the obtained energy spectrum. A specific high-
symmetrical case of the 1T phase will be explored. Subsequently, monolayer VS2 is
considered. The band structures will be obtained using the tight binding model in the
Slater Koster decomposition together with the Hubbard model. These band structures
will be compared to DFT calculations.

21
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5.2 Model Complex VS6

Both the 1T and 2H structure of the hypothetical model complex VS6 will be studied in
the following to give an intuition of the compound prior the investigation of monolayer
VS2. A side view and a top view of these two phases are illustrated in Fig. 5.1 and
Fig. 5.2, respectively. The vanadium atom is stacked between two sublayers of sulfur
atoms, which will be denoted the top (t) and bottom (b) sublayers. For the calculations
in this section to be relevant, when considering monolayer VS2, the stoichiometry for
VS2 and not VS6 will be used here. One unit cell of VS2 only consists of two sulfur
atoms; this will be introduced further in the Chapter 5.3. Vanadium and sulfur have
the electron configurations [Ar]4s23d3 and [Ne]3s23p4, respectively. Both sulfur atoms
in the unit cell will acquire two electrons from the vanadium atom to fill their outermost
p-shells. Thus, a unit cell is made up of two S2−-ions and one V 4+-ion. This leaves a
single electron in an unfilled d-shell on the vanadium atom.

2t
3t

2b

3b
1b

1t

(a) 1T

θ

z 2t
3t

2b3b

1b

1t

(b) 2H

: S

: V

Fig. 5.1: The 1T (a) and 2H phase (b) of the molecule V S6 for θ = 37◦, where θ is the
angle between the z-axis and the sulfur atoms in the top sublayer of the molecule as indicated.
The white atoms illustrates the vanadium atom in the middle sublayer and the grey atoms
illustrates the sulfur atoms in the top (t) and bottom (b) sublayer.
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Fig. 5.2: Top view of the 1T (a) and 2H structure (b) of the molecule VS6. Furthermore, the
chosen coordinate system is depicted.

The energy spectrum can be obtained using the tight binding model, which in second
quantization can be written as

Ĥt = ξ
∑
i,σ

ĉ†i,σ ĉi,σ − t
∑
〈i,j〉

∑
σ

(
ĉ†i,σ ĉj,σ + h.c.

)
. (5.1)

Here ξ refer to the onsite energies, t is the hopping integral and h.c. refers to the
Hermitian conjugate terms. ĉ†i,σ and ĉi,σ are the creation and annihilation operators,
respectively, for an electron on site i with spin σ. Only nearest neighbour interactions
are included. For simplicity the spin-indices will be omitted in the following. In both
the 1T and the 2H phase there is six times three p-orbitals and one times five d-orbitals.
The Hamiltonian in Eq. (5.1) can now be written in matrix form in the basis of these
orbitals in the following order

|Ψ〉 = {|dxy〉, |dyz〉, |dzx〉, |dx2−y2〉, |dz2〉, |p1t
x 〉, |p1t

y 〉, |p1t
z 〉, |p2t

x 〉, |p2t
y 〉, |p2t

z 〉,
|p3b
x 〉, |p3b

y 〉, |p3b
z 〉, |p1b

x , p
1b
y 〉, |p1b

z 〉, |p2b
x 〉, |p2b

y 〉, |p2b
z 〉, |p3b

x 〉, |p3b
y 〉, |p3b

z 〉},
(5.2)

as

H =

[
Hd Vdp
Vpd Hp

]
. (5.3)

Hd is a diagonal 5x5 matrix with ξd on the diagonal whereas Hp is a 18x18 matrix with
ξp on the diagonal, where ξd and ξp are the onsite energies of the d- and p-orbitals,
respectively. Thus, the onsite energies of all p-orbitals are assumed to be degenerate
prior the interaction with the d-orbitals and similar for the d-orbitals. The two off-
diagonal blocks of the Hamiltonian Vdp and Vpd couple the d-orbitals to the p-orbitals
and vice versa.
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The elements of Vdp and Vpd can be written in terms of the interatomic matrix elements
Ei,j(rn,n′) = 〈n, i|Ĥt|n′, j〉 found by John Clarke Slater and George Fred Koster [29],

Ex,xy =
√

3l2mVpdσ +m(1− 2l2)Vpdπ, (5.4)

Ex,yz =
√

3lmnVpdσ − 2lmnVpdπ, (5.5)

Ex,zx =
√

3l2nVpdσ + n(1− 2l2)Vpdπ, (5.6)

Ex,x2−y2 =

√
3

2
l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ, (5.7)

Ey,x2−y2 =

√
3

2
m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ, (5.8)

Ez,x2−y2 =

√
3

2
n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ, (5.9)

Ex,3z2−r2 = l
[
n2 − (l2 +m2)/2

]
Vpdσ −

√
3ln2Vpdπ, (5.10)

Ey,3z2−r2 = m
[
n2 − (l2 +m2)/2

]
Vpdσ −

√
3mn2Vpdπ, (5.11)

Ez,3z2−r2 = n
[
n2 − (l2 +m2)/2

]
Vpdσ +

√
3n(l2 +m2)Vpdπ, (5.12)

where Ĥt is the tight binding Hamiltonian in Eq. (5.1). The matrix elements not
stated here can be found by cyclically permuting x, y and z. For simplicity, the 3r2−z2

d-orbital will be referred to as the z2 d-orbital. Vpdπ and Vpdσ are the bond integrals
for π and σ bonds, respectively. A method for obtaining an estimate of the numerical
values of these is given in Appendix A. Further, the interatomic matrix elements are
expressed in terms of the normalized vector between the vanadium atom and the sulfur
atoms r = (rx, ry, rz) = d(l,m, n), where we have chosen d = 1, and l, m and n is given
by

l = sin θ cosφ , m = sin θ sinφ , n = cos θ. (5.13)

To obtain the numerical values for l, m and n for the atoms in the molecule the coor-
dinate system depicted in Fig. 5.1 can be transformed into spherical coordinates, and
θ and φ for each atom can be obtained. The interatomic matrix elements can thus be
found for each sulfur atom.

5.2.1 1T Structure

First, the 1T structure will be considered. The eigenenergies of the 23x23 matrix, see
Eq. (5.3), is obtained numerically, setting ξd = 0, ξp = 1, Vpdσ

ξp
= 0.35, Vpdπ

ξp
= 0.1

and θ = 37◦. σ bonds are in generel stronger than π bonds, since this allows the
electrons to mainly be localized between the two nuclei; therefore, we choose Vpdσ >
Vpdπ. We are seeking the bonding orbitals of the d-electron, so we focus on the five
lowest eigenenergies. These should all be below zero since ξd = 0. In Fig. 5.3 these
eigenenergies are depicted together with the orbitals included in the eigenvector for
the given eigenenergy. It is evident that two of the three energy levels are two-fold
degenerate. This problem can be simplified by projecting into the d-subspace.
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Fig. 5.3: Illustration of the five lowest eigenenergy levels E, obtained numerically from the
23x23 matrix in Eq. (5.3) with ξd = 0, ξp = 1, Vpdσ

ξp
= 0.35, Vpdπ

ξp
= 0.1 and θ = 37◦ for

1T-VS6. The orbitals included in the eigenstates of each eigenenergy are illustrated.

Subspace of the d-orbitals

The Hamiltonian describing the system can be split up into a part that describes the
d-orbitals, a part that describes the p-orbitals and then a term that describes the
interaction between these orbitals,

Ĥ = Ĥp + Ĥd + V̂ . (5.14)

Since we are only investigating a single electron, the eigenstate can be expressed as a
sum of a p- and d-part of the state1 as

|ψ〉 = |ψp〉+ |ψd〉. (5.15)

The projection operators P̂d and P̂p for the d-subspace and the p-subspace, respec-
tively, can be applied to rewrite the Hamiltonian. These projection operators must
sum to identity, P̂p + P̂d = 1, and are defined to project the eigenstate of the full
Hamiltonian into the subspace of either the d- or the p-orbitals, as

P̂d|ψ〉 = E|ψd〉 , P̂p|ψ〉 = E|ψp〉. (5.16)

Using these two operators yields

Ĥd|ψd〉+ V̂dp|ψp〉 = E|ψd〉, (5.17)

Ĥp|ψp〉+ V̂pd|ψd〉 = E|ψp〉. (5.18)

Here Vdp and Vpd refer to the 5x18 and 18x5 off-diagonal blocks of Eq. (5.3), respectively,
as described in the previous section. Isolating |ψp〉 in Eq. (5.18) and inserting this in
Eq. (5.17) leads to the expression

Ĥd|ψd〉+ V̂dp
1

E − Ĥp

V̂pd|ψd〉 = E|ψd〉. (5.19)

1For a multi-electron system this would be a product not a sum.
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Using that |ψd〉 and |ψp〉 are eigenstates of Ĥd and Ĥp, respectively, and introducing
the eigenenergy of VdpVpd as ξ2, this can be written as

ξd|ψd〉+
ξ2

E − ξp
|ψd〉 = E|ψd〉. (5.20)

Setting ξd = 0, E is isolated as

E± =
ξp
2

1±
√

1 +

(
2ξ

ξp

)2
 . (5.21)

Since we are seeking the bonding orbitals and since ξp is chosen to be positive, the
plus solution is discarded. Numerically, all ξ’s are found to be positive both for the
1T and 2H structure and thus all E’s are found to be negative, as expected. Thus,
knowing the eigenenergies of the 5x5 Hamiltonian V †pdVpd in the d-subspace, the five
lowest eigenenergies of the full Hamiltonian can be found from

E =
ξp
2

1−
√

1 +

(
2ξ

ξp

)2
 . (5.22)

Therefore, in the d-subspace the same degeneracy is observed as in Fig. 5.3. Each
eigenstate is a superposition of d-orbitals, which can be found by investigating the nu-
merically obtained eigenvectors in the d-subspace. The orbitals included in the eigen-
vectors of each eigenvalue are indicated in Fig. 5.3. The eigenvector of one of the two
lowest eigenenergies of the 5x5 matrix is a linear combination of the xy d-orbital and
the yz d-orbital. The other is a linear combination of the zx d-orbital and the x2 − y2

d-orbital. Similar results were found for the two degenerate high energy levels. This
indicates that xy and yz only couples to each other and similarly for zx and x2 − y2.
Further, it indicates that they couple in exactly the same way such that the energy level
splitting results in degeneracy. The non-degenerate energy level in the middle is fully
expressed in terms the z2 d-orbital. This indicates that the z2 d-orbital does not couple
to any of the other d-orbitals. Now the question is why only some d-orbitals couple
to each other and further why xy and yz couple in the same way as zx and x2 − y2.
To be able to answer these questions, the symmetries of the 1T-VS6 must be explored.
This will be considered in section 5.2.1. First, the d-subspace will be investigated in
a more analytical manner. The matrix VdpVpd expressed in terms of Vpdπ, Vpdσ and θ in
the basis {xy, yz, zx, x2 − y2, z2} can be written analytically as

V †pdVpd =


M1,1 M1,2 0 0 0
M1,2 M2,2 0 0 0

0 0 M2,2 −M1,2 0
0 0 −M1,2 M1,1 0
0 0 0 0 M5,5

 , (5.23)
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with

M1,1 =
3

4
sin2 θ

(
4V 2

pdπ(1 + cos2 θ) + 3V 2
pdσ sin2 θ

)
, (5.24)

M1,2 =
3

2

(
4V 2

pdπ − 3V 2
pdσ

)
cos θ sin3 θ, (5.25)

M2,2 =
3

4

[
4V 2

pdπ

(
1

2
+ cos2 θ + cos 4θ

)
+ 3V 2

pdσ sin2 2θ

]
, (5.26)

M5,5 =
3

8

[
12V 2

pdπ sin2 2θ + V 2
pdσ(3 cos 2θ + 1)2

]
. (5.27)

It is clear from Eq. (5.23) that the reduced matrix is block diagonal. Further, the
eigenvalues of the two 2x2 blocks are identical and the z2-orbital is not coupling to any
of the other d-orbitals.

Symmetry of the 1T phase

By inspection of the symmetries of the compound, 1T-VS6 is found to belong to the
point group D3d for θ = 37° and can therefore be described by its character table
viewed in Table 5.1. As always one element of the group is identity. Looking at
Fig. 5.1 it is clear that the molecule is symmetric in rotations of ±2π/3 around the
z-axis. This gives the two elements 2C3 seen in the character table. Further, it is
symmetric in rotations of π around a vector pointing from the origin in a direction
parallel to the vector from p-orbital 1t to p-orbital 2t but with a zero z-component.
This transformation lets 3t → 1b, 1t → 3b and 2t → 2b. Similar rotations around
the vector between 2t and 3t and the vector between 1t and 3t exists. This is the
three C ′2 elements. Inversion, represented by the element i, lets x → −x, y → −y and
z → −z. Further, the Hamiltonian is invariant under a rotation of ±π/2 around the
z-axis followed by a reflection in the xy-plane. This transformation is represented by
the two S6 elements. Lastly, the molecule is symmetric under reflection in the planes
spanned by the coupling lines, referred to as σd. This results in a total number of twelve
symmetry elements. The dimensionality theorem, see Eq. (2.7), can only be obeyed by
four one-dimensional irreducible representations and two two-dimensional irreducible
representations, thus leading to a total number of six irreducible representations. The
characters of these can be read off in Table 5.1. Further, this table illustrates which
irreducible representations different quadratic functions belong to. This is very useful
when investigating d-orbitals that can be described by quadratic functions. What it
means that a quadratic function belong to a specific representation will become clear
below.
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D3d E 2C3 3C ′2 i 2S6 3σd Quadratic Functions
A1g 1 1 1 1 1 1 (x2 + y2, z2)
A2g 1 1 -1 1 1 -1 −
Eg 2 -1 0 2 -1 0 (x2 − y2, xy)(zx, yz)
A1u 1 1 1 -1 -1 -1 −
A2u 1 1 -1 -1 -1 1 −
Eu 2 1 1 1 1 1 −

Table 5.1: Character table of the D3d point group [30].

From the character table of D3d we see that all d-orbitals, except for dz2 , belongs to
the same representation, namely the Eg representation. These four d-orbitals in the
Eg representation are, however, still split into two "groups" marked by parentheses so,
what does this mean? We know from the numerical results that xy only couples to
x2 − y2 and that zx only couples to yz. To understand why, and answer the question
of why they couple identically, we need to explore the symmetries of the 1T phase of
the molecule further. First, a reducible representation of the symmetry operators will
be formulated, which is used to apply the projection operator in Eq. (2.22) to the
various d-orbitals. This motivates a formulation of an irreducible representation of the
symmetry operations. Using this the matrix elements of Eq. (5.23) can be investigated.

The relevant symmetry operators can be written in this three-dimensional reducible
representation using the coordinate system depicted in Fig. 5.2, as

Γ(E) =

1 0 0
0 1 0
0 0 1

 , Γ(i) =

−1 0 0
0 −1 0
0 0 −1

 ,
Γ(C3(2π/3)) =

cos
(

2π
3

)
− sin

(
2π
3

)
0

sin
(

2π
3

)
cos
(

2π
3

)
0

0 0 1

 ,
Γ(C3(−2π/3)) = Γ(C3)2,

Γ(S6(π/3)) =

1 0 0
0 1 0
0 0 −1

cos
(
π
3

)
− sin

(
π
3

)
0

sin
(
π
3

)
cos
(
π
3

)
0

0 0 1

 ,
Γ(−S6) = Γ(S6(−π/3)).

(5.28)

Here, 2C
′′
2 and 3σd have been excluded since the characters of these symmetry operations

are zero in the Eg representation. We can show that the xy-orbital is in fact in the Eg
representation by projecting the xy-orbital into this representation. Using Eq. (2.27)
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we get

P̂(Eg)xy =
lEg
h

∑
R

χEg(R)∗P̂R xy

=
2

12

[
2P̂E − P̂C3 − P̂C2

3
+ 2P̂i − P̂S6(π/3) − P̂S6(−π/3)

]
xy

=
1

6

[
2xy −

(
−xy

2
−
√

3

4
(x2 − y2)

)
−
(
−xy

2
+

√
3

4
(x2 − y2)

)
+ 2xy

−
(
−xy

2
+

√
3

4
(x2 − y2)

)
−
(
−xy

2
−
√

3

4
(x2 − y2)

)]
= xy. (5.29)

The x2 − y2 orbital is defined as −1
2
(x2 − y2) where the 1/2 is a normalization fac-

tor. Since this gives back xy it must indeed belong to this representation. That a
quadratic function belong to a particular representation therefore means that applying
the symmetry operators in the group multiplied with the characters in that represen-
tation leaves the quadratic function invariant. A similar calculation can be done for
x2 − y2, yz and zx which yields the same conclusion. Here it is also seen that the xy
orbital only mixes with the x2− y2 orbital when either one of the symmetry operations
are applied. Focusing on the S6 symmetry we see that

P̂S6 xy = −xy
2
−
√

3

2

(
−1

2

[
x2 − y2

])
, (5.30)

P̂S6 yz = −yz
2
−
√

3

2
zx, (5.31)

P̂S6

(
−1

2

[
x2 − y2

])
= −1

2

(
−1

2

[
x2 − y2

])
+

√
3

2
xy, (5.32)

P̂S6 zx = −zx
2

+

√
3

2
yz. (5.33)

From these four equations it is evident that xy and x2 − y2 only mix together when
P̂S6 is applied and similar for zx and yz. Further, we see that xy mixes with x2 − y2

in exactly the same way as yz mixes with zx. A similar pattern can be seen applying
any other symmetry operator on these four d-orbitals.
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These transformations can be used to write a two-dimensional irreducible representation
of the operators in the D3d point group according to the Eg representation in the basis
{xy, (x2 − y2)} as

Γ(E) = Γ(j)(i) =

[
1 0
0 1

]
, (5.34)

Γ(C3) = Γ(−S6) =

[
−1

2

√
3

2

−
√

3
2
−1

2

]
, (5.35)

Γ(S6) = Γ(C2
3) =

[
−1

2
−
√

3
2√

3
2
−1

2

]
, (5.36)

Γ(C
′′

2 (1a− 2a)) = Γ(σd(3a)) =

[
1
2

√
3

2√
3

2
−1

2

]
, (5.37)

Γ(C
′′

2 (3a− 1a)) = Γ(σd(2a)) =

[
1
2
−
√

3
2

−
√

3
2
−1

2

]
, (5.38)

Γ(C
′′

2 (3a− 2a)) = Γ(σa(1a)) =

[
−1 0
0 1

]
. (5.39)

Writing these irreducible representations in the basis {yz, zx} yields an identical result.
This indicates that xy and yz does in fact couple in the same way as (x2 − y2) and
zx. Note that the characters of the irreducible representations in Eq. (5.34)-(5.39)
agree with the characters listed in Table 5.1. The projection operator in Eq. (2.22)
that projects a basis function onto the κth row of the jth representation can now be
explored. First, yz is projected onto the first row of the irreducible representation

P̂11 yz =
1

3

[
Γ11(E)P̂E + Γ11(C3)P̂C3 + Γ11(C2

3)P̂C2
3

+ Γ11(σd(1a))P̂σd(1a)

+ Γ11(σd(2a))P̂σd(2a) + Γ11(σd(3a))P̂σd(3a)

]
yz

=
1

3

[
yz − 1

2

(
−1

2
yz +

√
3

2
zx

)
− 1

2

(
−1

2
yz −

√
3

2
zx

)
− (−yz)

+
1

2

(
1

2
yz −

√
3

2
zx

)
+

1

2

(
1

2
yz +

√
3

2
zx

)]
= yz. (5.40)

This verifies that yz belongs to the first row of the two-dimensional irreducible repre-
sentation. Applying P̂(j)

11 to xy yields the same conclusion. Similarly,

P̂(j)
22 (x2 − y2) = (x2 − y2), P̂(j)

22 zx = zx,

P̂(j)
22 yz = 0, P̂(j)

22 xy = 0, P̂(j)
11 zx = 0, P̂(j)

11 (x2 − y2) = 0.
(5.41)
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The overlap between xy and yz can now be obtained

〈xy|Ĥ|yz〉 = 〈xy|Û(S6)†Û(S6)ĤÛ(S6)†Û(S6)|yz〉 = 〈xy|Û(S6)†ĤÛ(S6)|y〉

=

(
−1

2
〈xy| −

√
3

2
〈x2 − y2|

)
Ĥ
(
−1

2
|yz〉 −

√
3

2
|zx〉

)

=
1

4
〈xy|Ĥ|yz〉+

√
3

4
〈xy|Ĥ|zx〉

+

√
3

4
〈x2 − y2|Ĥ|yz〉+

3

4
〈x2 − y2|Ĥ|zx〉

=
1

4
〈xy|Ĥ|yz〉+

3

4
〈x2 − y2|Ĥ|zx〉. (5.42)

A unitary operator must always obey Û(S6)†Û(S6) = 1, and the first equality sign is
obeyed. That this operator, as any other operator of the Eg representation, must leave
the Hamiltonian invariant, requires that Û(S6)ĤÛ(S6)† = Ĥ. Thereafter, Û †(S6) is
applied on 〈xy| and Û(S6) on |yz〉. This results in four terms of which the two are
zero due to the fact that the involved orbitals belong to different rows of the irreducible
representations, as shown above, and therefore do not couple. For the last equality sign
to be obeyed, it is required that

〈xy|Ĥ|yz〉 = 〈x2 − y2|Ĥ|zx〉. (5.43)

This proves that the orbitals must couple in the same way, which leads to the degeneracy
viewed in Fig. 5.3. The proof can be reproduced using any other symmetry of the Eg
representation.

High symmetrical case of the 1T phase

Plotting all eigenenergies as a function of θ, the spectrum viewed in Fig. 5.4 is obtained.
In general there are three curves, as expected, two two-fold degenerate energies and one
non-degenerate. The degeneracy increases at four points for θ ∈ [0, π], two of them
which are marked with red lines, i.e., θ = arctan(

√
2) and θ = π − arctan(

√
2). A

change in degeneracy indicates a change in the symmetry of the molecule, though
accidental degeneracies can occur.
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Fig. 5.4: The five eigenenergies of Eq. (5.23) as a function of θ with Vpdσ
ξp

= 0.35 and
Vpdπ
ξp

= 0.1. The two red lines marks θ = arctan(
√
2) and π − arctan(

√
2).

The symmetry of the 1T molecule increases when all coupling lines are perpendicular
to each other. Using the coordinate system depicted in Fig. 5.2, these three vectors
can be written as

v1t =

sin θ
0

cos θ

 , v2t =

cos
(

2π
3

)
sin θ

sin
(

2π
3

)
sin θ

cos θ

 , v3t =

cos
(
−2π

3

)
sin θ

sin
(
−2π

3

)
sin θ

cos θ

 . (5.44)

Demanding that v1t · v2t = 0 results in the following angles

θ =


− arctan

(√
2
)

+ 2πc1, c1 ∈ Z
π − arctan

(√
2
)

+ 2πc1, c1 ∈ Z
arctan

(√
2
)

+ 2πc1, c1 ∈ Z
−π − arctan

(√
2
)

+ 2πc1, c1 ∈ Z.

(5.45)

Looking at angles greater than zero, the first two angles, that increases the symmetry
of the molecule, is θ = arctan

(√
2
)
and θ = π− arctan

(√
2
)
. In Fig. 5.4 these angles

are marked with red lines. The shape of the molecule in this highly symmetrical case
is illustrated in Fig. 5.5.

The five lowest eigenenergies of the full Hamiltonian of 1T-VS6, see Eq. (5.3), is found
for θ = arctan(

√
2) and is depicted in Fig. 5.6. To obtain this spectrum the coordinate

system illustrated in Fig. 5.5 (b) is used.

Comparing this spectrum to Fig. 5.3, it is evident that the spectrum has changed.
Again, the included d-orbitals in the eigenvectors are viewed in the figure and in this
case each eigenvector is only made up of a single d-orbital. Since the symmetry of 1T-
VS6 is increased at this angle, the number of symmetry elements also increases. 1T-VS6

for θ = arctan(
√

2) is illustrated in a rotated view in Fig. 5.5 (b) and it is clear to see
that the symmetry has changed.
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Fig. 5.5: 1T octahedral structure with θ = arctan(
√
2), in the same direction view as in Fig.

5.1 (a) and in a rotated direction view (b) that emphasizes the higher symmetry.
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Fig. 5.6: Illustration of the five eigenenergy levels E obained numerically with ξd = 0, ξp = 1,
Vpdσ
ξp

= 0.35, Vpdπξp = 0.1 and θ = arctan(
√
2) for 1T-VS6.

The symmetry of the molecule is now described by the Oh point group with the total
number of 48 elements. The character table of this group is depicted in Table 5.2.
E and i is the unit transformation and inversion, respectively. C3 are rotations of
2π/3 around axes located at the center of three sulfur atoms. C2 denotes rotations of
π around the axis 1√

2
(x + y), see Fig. 5.5 (b), or similar rotations. C4 and C ′2 are

rotations of π/2 and π around the x-, y- and z-axis, respectively. σh represent the three
reflections in the xy-, yz- and zx-plane. σd are reflections in planes spanned by e.g. the
z-axis and the 1√

2
(x+ y). Lastly, S4 = C4 ⊕ σh and S6 = c6 ⊕ σh.
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Oh E 8C3 6C2 6C4 3C ′2 = C2
4 i 6S4 8S6 3σh 6σd Quadratic Functions

A1g 1 1 1 1 1 1 1 1 1 1 (x2 + y2 + z2)
A2g 1 1 -1 -1 1 1 -1 1 1 -1 −
Eg 2 -1 0 0 2 2 0 -1 2 0 (2z2−x2−y2, x2−y2)
T1g 3 0 -1 1 -1 3 1 0 -1 -1 −
T2g 3 0 1 -1 -1 3 -1 0 -1 1 (zx, yz, xy)
A1u 1 1 1 1 1 -1 -1 -1 -1 -1 −
A2u 1 1 -1 -1 1 -1 1 -1 -1 1 −
Eu 2 -1 0 0 2 -2 0 1 -2 0 −
T1u 3 0 -1 1 -1 -3 -1 0 1 1 −
T2u 3 0 1 -1 -1 -3 1 0 1 -1 −

Table 5.2: Character table of the Oh point group [31].

In this table we see that xy, yz and zx belongs to the same representation, i.e., the T2g

representation, and that z2 and x2 − y2 belongs to the same representation, Eg. This
explains the degeneracy observed in the spectrum in this high symmetrical case.

5.2.2 2H Structure

The 2H phase of VS6 will now be investigated using a similar approach as for the 1T
phase. Here the atoms in the lower sublayer are rotated by 60◦ compared to the 1T
phase, see Fig. 5.1 (a). This results in the five lowest eigenenergies depicted in Fig.
5.7. At first sight, this looks very similar to the spectrum for the 1T phase with two
two-fold degenerate energy levels and one non-degenerate. The difference between the
two cases appear from the eigenstates. As for the 1T phase, the eigenstate belonging
to the energy level with no degeneracy is solely made up of the z2 d-orbital. The
eigenfunctions for the two higher energies are both superpositions of the xy d-orbital
and the x2 − y2 d-orbital whereas the eigenfunctions for the two lower energies are
superpositions of the yz and the zx d-orbitals. The reason for this will be investigated
using group theory in the following subsection.

Comparing the two lowest energies in Fig. 5.7 with the two lowest energies in Fig. 5.3,
it is evident that the lowest energies in the 1T phase is slightly lower than the lowest
energies in the 2H phase. This indicates that the 1T phase of monolayer VS2 is more
stable than the 2H phase. This does not agree with DFT calculations [2]. This could be
explained by the choice of θ in these calculations. Later, when investigating monolayer
VS2, the relaxed structure is collected from C2DB [3]. These lattice parameters yield
an energyspectrum where the lowest energy level is the z2 level, and in that case the 2H
phase is more stable compared to the 1T phase in agreement with DFT calculations.
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Fig. 5.7: Illustration of the five lowest eigenenergy levels E obtained numerically with ξd = 0,
ξp = 1, Vpdσξp = 0.35, Vpdπξp = 0.1 and θ = 37◦ for the 2H phase.

V †pdVpd for the 2H phase can now be obtained analytically. In the basis {xy, yz, zx, x2−
y2, z2} in terms of θ, Vpdπ and Vpdσ this is

V †pdVpd =


M1,1 0 0 0 0

0 M2,2 0 0 0
0 0 M2,2 0 0
0 0 0 M1,1 0
0 0 0 0 M5,5

 , (5.46)

where

M1,1 =
3

8
sin2 θ

[
12V 2

pdπ(1 + cos 2θ) + V 2
pdσ(1− 3 cos 2θ)

]
, (5.47)

M2,2 =
3

8

[
2V 2

pdπ(2 + cos 2θ + cos 4θ + 3V 2
pdσ(1− cos 4θ)

]
, (5.48)

M5,5 =
9

4

[
V 2
pdπ(1− cos 4θ) + V 2

pdσ

(
11

12
+ cos 2θ +

3

4
cos 4θ

)]
. (5.49)

It is evident that this matrix is diagonal and that only three unique values enter in this
diagonal. This will be explained in the following subsection.

Symmetry of the 2H phase

The symmetry of 2H-VS6 will now be investigated. The 2H phase belongs to the D3h

point group with the same number of symmetry elements as D3d, i.e., twelve elements.
The character table of this group is depicted in Table 5.3. A part of the elements of
the D3d point group recur in D3h, namely E and the two C3 rotations. Additionally,
2H-VS6 is symmetric under a rotation of π about a vector with x- and y-components of
a vector pointing from the origin towards either of the three atoms in the top sublayer
but with a zero z-component.
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This gives the three C ′2 elements, one for each atom in the top sublayer. Contrary to the
1T phase, the 2H phase is symmetric under reflection in the xy-plane and this element
is denoted σh(xy). Further, 2H-VS6 is invariant under a rotation of ±2π/3 around the
z-axis followed by a reflection in the xy-plane. These transformations are denoted S3.
Lastly, the molecule is invariant under reflections in the planes spanned by the coupling
lines perpendicular to the xy-plane. This is the three σv elements which corresponds
to the three σd elements in D3d.

D3h E 2C3(z) 3C ′2 σh(xy) 2S3 3σv Quadratic Functions
A
′
1 1 1 1 1 1 1 (x2 + y2, z2)

A
′
2 1 1 -1 1 1 -1 −

E
′ 2 -1 0 2 -1 0 (x2 − y2, xy)

A
′′
1 1 1 1 -1 -1 -1 −

A
′′
2 1 1 -1 -1 -1 1 −

E
′′ 2 -1 0 -2 1 0 (zx, yz)

Table 5.3: Character table of the D3h point group [32].

In the character table for D3h, it is evident that xy and x2 − y2 belong to a different
representation than yz and zx in contrast to the former case. As for the 1T phase, z2

belongs to its own representation. The two-dimensional irreducible representations of
all elements in D3h according to the E ′′ representation in the basis {yz, zx} can now
be formulated, following the same procedure as in section 5.2.1,

Γ(E) =

[
1 0
0 1

]
, Γ(C3) =

[
−1

2
−
√

3
2√

3
2
−1

2

]
, Γ(C2

3) =

[
−1

2

√
3

2

−
√

3
2
−1

2

]
,

Γ(C
′

2(1a)) =

[
1 0
0 −1

]
, Γ(C

′

2(2a)) =

[
−1

2

√
3

2√
3

2
1
2

]
, Γ(C

′

2(3a)) =

[
−1

2
−
√

3
2

−
√

3
2

1
2

]
,

Γ(σh) =

[
−1 0
0 −1

]
, Γ(S3) =

[
1
2

√
3

2

−
√

3
2

1
2

]
, Γ(−S3) =

[
1
2
−
√

3
2√

3
2

1
2

]
,

Γ(σv(1a)) =

[
−1 0
0 1

]
, Γ(σv(2a)) =

[
1
2
−
√

3
2

−
√

3
2
−1

2

]
, Γ(σv(3a)) =

[
1
2

√
3

2√
3

2
−1

2

]
.

Again, note that the characters of these irreducible representations are equal to the
characters stated in Table 5.3. Using the projection operator, see Eq. (2.22), in terms
of these irreducible representations, we can show that yz belongs to the first row and
zx belongs to the second row, i.e.,

P̂11yz = yz, P̂22yz = 0, P̂22zx = zx, P̂11zx = 0. (5.50)

Likewise, a two-dimensional irreducible representation can be formulated for the ele-
ments of the E ′ representation in the basis {xy, x2−y2}, where it can be shown that xy
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belongs to the first row and x2 − y2 belongs to the second row. The diagonal element
〈yz|Ĥ|yz〉 can now be written as

〈yz|Ĥ|yz〉 = 〈yz|Û †(S3)Û(S3)ĤÛ †(S3)Û(S3)|yz〉 = 〈yz|Û †(S3)ĤÛ(S3)|yz〉

=

(
1

2
〈yz| −

√
3

2
〈zx|

)
Ĥ
(

1

2
|yz〉 −

√
3

2
|zx〉

)
=

1

4
〈yz|Ĥ|yz〉+

3

4
〈zx|Ĥ|zx〉. (5.51)

The cross terms proportional to 〈yz|Ĥ|zx〉 and 〈zx|Ĥ|yz〉 are zero as a result of the fact
that yz and zx belong to two different rows of the E ′′ representation. For the equality
sign in Eq. (5.51) to be obeyed, it requires that

〈yz|Ĥ|yz〉 = 〈zx|Ĥ|zx〉. (5.52)

This result is independent of the choice of symmetry operator. Using the same procedure
it can be shown that all off-diagonal elements are zero and that 〈xy|Ĥ|xy〉 = 〈x2 −
y2|Ĥ|x2 − y2〉, in agreement with Eq. (5.46).

The spectrum of 2H-VS6 thus looks very similar to the spectrum obtained in the 1T
phase, see Fig. 5.7 and Fig. 5.3, though the degeneracy here has nothing to do with
the direct coupling between the d-orbitals; rather, that the shift in the energies, due to
the presence of the p-orbitals, leads to a similar degeneracy.
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5.3 Tight Binding Model of Monolayer VS2

In this section the band structure of monolayer VS2 for both the 2H and 1T phase
will be obtained using the tight binding method. This is done with inspiration from
Ridolfi et al. [33]. Further, the Coulomb interaction will be included using the Hubbard
model. The results will then be compared to DFT results of the same structures taken
from C2DB [3]. The relaxed structures of the two phases of VS2 have been collected
from this database, such that the band structure obtained in the following is based on
exactly the same structure as for the band structure obtained with DFT.

5.3.1 2H Structure

In Fig. 5.8 a top view of the structure of monolayer 2H-VS2 is illustrated together with
the two lattice vectors a1 and a2. Seen from above the structure is strikingly similar to
graphene though VS2, in contrary to graphene, also extends spatially along the S-V-S
direction, see Fig. 5.1 (b). One unit cell contains one vanadium atom and two sulfur
atoms, one in the top (t) sublayer and one in the bottom (b) sublayer. We will thus be
working in this three-atom basis. The unit cell is marked with dashed lines. Note that
since the x and y coordinates of the two sulfur atoms coincide, both are not evident in
Fig. 5.8.

δ±

a1

a2

a

: V

: S

x

y

Fig. 5.8: Top view of monolayer 2H-VS2 in real space. The black dots illustrates the vanadium
atoms whereas the white dots illustrates the sulfur atoms. The unit cell is shown with dashed
lines and the lattice vectors a1 and a2 are indicated. Further, the two vectors δ± that connect
the vanadium atom with the two sulfur atoms in one unit cell, is shown. Lastly, the used
coordinate system is illustrated.



CHAPTER 5. VS2 39

Γ

K

K′

M

k2

k1

Fig. 5.9: Brillouin zone for the 2H phase of monolayer VS2. k1 and k2 are the reciprocal
lattice vectors and Γ, K, K′ and M are the high-symmetrical points.

Using the same coordinate system as depicted in Fig. 5.8, the two lattice vectors can
be written as

a1 = (0,−a, 0) , a2 =

(√
3

2
a,−a

2
, 0

)
. (5.53)

The distance a is found from DFT [3] to be a = 3.186 Å. The brillouin zone in reciprocal
space also forms a hexagon, see Fig. 5.9. The reciprocal lattice vectors is found from
a1 and a2 to be

k1 =
−2π√

3a

(
1,
√

3, 0
)

, k2 =
4π√
3a

(1, 0, 0) . (5.54)

The high-symmetrical points in k-space illustrated in Fig. 5.9 are given by

Γ = (0, 0, 0), M =

( −π√
3a
,
−π
a
, 0

)
,

K′ =

(
0,−

√
16

9

π

a
, 0

)
, K =

(−2π√
3a
,
−2π

3a
, 0

)
.

(5.55)

Let ri denote the location of the vanadium atom in unit cell i. Since there is five
d-orbitals on the vanadium atom, we define the states

|ri; d1〉 = |dxy〉, |ri; d2〉 = |dyz〉, |ri; d3〉 = |dzx〉,
|ri; d4〉 = |dx2−y2〉, |ri; d5〉 = |dz2〉.

(5.56)

Each sulfur atom in the unit cell have three p-orbitals, so we define the states

|ri + δ±; p1〉 = |pt/bx 〉, |ri + δ±; p2〉 = |pt/by 〉, |ri + δ±; p3〉 = |pt/bz 〉, (5.57)

where δ+ and δ− are the vectors pointing from the vanadium atom to the sulfur atoms
in the top and bottom sublayers, respectively, see Fig. 5.8.
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Using this basis the Hamiltonian can be written as

Ĥ =
∑
ri,µ

ξdµd̂
†
i,µd̂i,µ +

∑
ri,ν

ξpν

[(
p̂ti,ν
)†
p̂ti,ν +

(
p̂bi,ν
)†
p̂bi,ν

]
+
∑
ri

∑
µν

[
ttµν d̂

†
i,µp̂

t
i,ν + tbµν d̂

†
i,µp̂

b
i,ν + h.c.

]
+
∑
ri

∑
rj=ri+a1−a2

∑
µν

[
tr,tµν d̂

†
i,µp̂

t
j,ν + tr,bµν d̂

†
i,µp̂

b
j,ν + h.c.

]
+
∑
ri

∑
rj=ri−a2

∑
µν

[
tl,tµν d̂

†
i,µp̂

t
j,ν + tl,bµν d̂

†
i,µp̂

b
j,ν + h.c.

]
.

(5.58)

The operator d̂†i,µ (d̂i,µ) creates (annihilates) an electron in orbital µ on the vanadium
atom at ri in unit cell i. Similarly, the operators (p̂t,bj,ν)

† and p̂t,bj,ν creates and annihilates
an electron on the sulfur atom at site ri+δ± in orbital ν in the top or bottom sublayer,
respectively. The three first terms of the Hamiltonian state the onsite energies of the
d- and p-orbitals of the three atoms in the unit cell. Further, the Hamiltonian consists
of six terms where an electron can hop from a p-orbital to any nearest neighbor d-
orbital. The Hermitian conjugate of these terms includes hopping from a d-orbital to
any nearest neighbour p-orbital. For simplicity the spin indices are omitted for now.
The following onsite energies and hopping amplitudes have been defined as

ξdµ = 〈ri; dµ|Ĥt|ri; dµ〉, (5.59)

ξpν = 〈ri + δ±; pν |Ĥt|ri + δ±; pν〉, (5.60)

ttµν = 〈ri; dµ|Ĥt|ri + δ+; pν〉, (5.61)

tbµν = 〈ri; dµ|Ĥt|ri + δ−; pν〉, (5.62)

tr,tµν = 〈ri; dµ|Ĥt|ri + δ+ + a1 − a2; pν〉, (5.63)

tr,bµν = 〈ri; dµ|Ĥt|ri + δ− + a1 − a2; pν〉, (5.64)

tl,tµν = 〈ri; dµ|Ĥt|ri + δ+ − a2; pν〉, (5.65)

tl,bµν = 〈ri; dµ|Ĥt|ri + δ− − a2; pν〉, (5.66)

where Ĥt is the tight binding Hamiltonian, see Eq. (5.1). The numerical values for
these can be obtained using the Slater Koster decomposition introduced in section
5.2. As previously we assume that the onsite energies for the d-orbitals are degenerate,
i.e., ξdµ = ξd for all µ. Similarly, for the p-orbitals ξpν = ξp for all ν.
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In the Slater Koster decomposition the hopping matrices simplifies to

tt =


0 tt12 0
0 tt22 0
tt31 0 tt33

tt41 0 tt43

tt51 0 tt53

 , tb =


0 tt12 0
0 −tt22 0
−tt31 0 tt33

tt41 0 −tt43

tt51 0 −tt53

 ,

tl,t =


tl,t11 tl,t12 tl,t13

tl,t21 tl,t22 tl,t23

tl,t31 tl,t32 tl,t33

tl,t41 tl,t42 tl,t43

tl,t51 tl,t52 tl,t53

 , tl,b =


tl,t11 tl,t12 −tl,t13

−tl,t21 −tl,t22 tl,t23

−tl,t31 −tl,t32 tl,t33

tl,t41 tl,t42 −tl,t43

tl,t51 tl,t52 −tl,t53

 , (5.67)

tr,t =


−tl,t11 tl,t12 −tl,t13

−tl,t21 tl,t22 −tl,t23

tl,t31 −tl,t32 tl,t33

tl,t41 −tl,t42 tl,t43

tl,t51 −tl,t52 tl,t53

 , tr,b =


−tl,t11 tl,t12 tl,t13

tl,t21 −tl,t22 −tl,t23

−tl,t31 tl,t32 tl,t33

tl,t41 −tl,t42 −tl,t43

tl,t51 −tl,t52 −tl,t53

 .

The Hamiltonian is Fourier transformed, using

d̂†i,µ =
1√
N

∑
k

e−ik·rd̂†k,µ and d̂i,µ =
1√
N

∑
k

eik·rd̂k,µ, (5.68)

which results in the expression

Ĥ =
∑

k

[
ξd
∑
µ

d̂†k,µd̂k,µ + ξp
∑
ν

[
(p̂tk,ν)

†p̂tk,ν + (p̂bk,ν)
†p̂bk,ν

]
+
∑
µν

{
eik·δ+ttµν d̂

†
k,µp̂

t
k,ν + eik·δ−tbµν d̂

†
k,µp̂

b
k,ν + h.c.

+ eik·(δ++a1−a2)
(
tr,tµν d̂

†
k,µp̂

t
k,ν + tr,bµν d̂

†
k,µp̂

b
k,ν + h.c.

)
+ eik·(δ−a2)

(
tl,tµν d̂

†
k,µp̂

t
k,ν + tl,bµν d̂

†
k,µp̂

b
k,ν + h.c.

)}]
.

(5.69)

Defining

T t = δ1(ttµν + z1z
∗
2t
r,t
µν + z∗2t

l,t
µν), (5.70)

T b = δ2(tbµν + z1z
∗
2t
r,b
µν + z∗2t

l,b
µν), (5.71)

with
δ1 = eik·δ+ , δ2 = eik·δ− ,

z1 = eik·a1 = e−ikya, z2 = eik·a2 = e−ikya/2ei
√

3kxa/2,
(5.72)
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the Hamiltonian can be written in the simple form

Ĥ =
∑

k

[
ξd
∑
µ

d̂†k,µd̂k,µ + ξp
∑
ν

[
(p̂tk,ν)

†p̂tk,ν + (p̂bk,ν)
†p̂bk,ν

]
+
∑
µν

{
T td̂†k,µp̂

t
k,ν + (T t)†(p̂tk,ν)

†d̂k,µ + T bd̂†k,µp̂
b
k,ν + (T b)†(p̂bk,ν)

†d̂k,µ

}]
.

(5.73)

Both δ1 ' 1 and δ2 ' 1, so these are set to one. Projecting the vector Ĥ|k〉 onto the
three-atom basis, we can write Hd T t T b

(T t)† Hp 0
(T b)† 0 Hp

ατ
β

 = E

ατ
β

 . (5.74)

Here Hd is a 5x5 diagonal matrix with ξd on the diagonal, and Hp is a 3x3 diago-
nal matrix with ξp on the diagonal. α represents the d-orbitals on the vanadium site
and τ and β represent the top and bottom p-orbitals, respectively, on the sulfur sites
in the unit cell. This expression is sufficiently simple to diagonalize the Hamiltonian
numerically. As in section 5.2.1 the five energy bands of the d-orbitals can be ob-
tained. This can either be done by diagonalizing the full Hamiltonian or from the matrix
(T t, T b)(T t, T b)†. The Hamiltonian is solved as a function of k, where we investigate
the path k = Γ→M→ K→ Γ. In the previous sections we have set the onsite energy
of the p-orbitals to be greater than the onsite energy of the d-orbitals. From DFT
calculations of the energy bands [3], it is determined that ξp < ξd. This does not affect
any of the results and conclusions from previous sections, though we will set ξp < ξd in
the following.

To be able to investigate the full problem analytically, further simplifications must be
introduced. The basis, written in terms of the amplitudes of the eigenvector, can be
written as

ψT = (α1, α2, α3, α4, α5, τ1, τ2, τ3, β1, β2, β3). (5.75)

The α’s are thus the amplitudes corresponding to the d-orbitals in the order given
in Eq. (5.56), the τ ’s and the β’s correspond to p-orbitals in the top and bottom
sublayer, respecitvely, in the order presented in Eq. (5.57). To be able to diagonalize
the Hamiltonian, we introduce the symmetric and antisymmetric components

θkν =
1√
2

(τkν + βkν) and φkν =
1√
2

(τkν − βkν). (5.76)

Further, the new hopping matrices

TE =
1√
2

(T t + T b) and TO =
1√
2

(T t − T b), (5.77)
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are defined, such that the eigenproblem can be written as Hd TE TO

(TE)† Hp 0
(TO)† 0 Hp

αθ
φ

 = E

ατ
β

 . (5.78)

We can now rearrange the amplitudes of the eigenvector collecting all even components
and all odd components, leading to the basis

ψ̃T = (α5, α4, α1, θ1, θ2, φ3, α3, α2, φ1, φ2, θ3). (5.79)

The eigenproblem can now be written in the decoupled form[
HE 0
0 HO

]
ψ̃ = Eψ̃, (5.80)

where we have defined the even Hamiltonian

HE =

[
Hd,E TE,O

(TE,O)† Hp,E

]
with TE,O =

TE51 TE52 TO53

TE41 TE42 TO43

TE11 TE12 TO13

 , (5.81)

and the odd Hamiltonian given by

HO =

[
Hd,O TO,E

(TO,E)† Hp,O

]
with TO,E =

[
TO31 TO32 TE33

TO21 TO22 TE23

]
. (5.82)

Hd,E, Hd,O and Hp,E are 3x3 diagonal matrices with the diagonal elements ξd and ξp,
respectively, whereas Hd,O is a 2x2 diagonal matrix with diagnoal elements ξd.

Expansion around the Γ-point

At the Γ-point in reciprocal space, kx = ky = 0 and thus z1 = z2 = 1. This results in
the simplified expressions of the off-diagonal blocks of the Hamiltonian

TEOΓ =
√

2

tt51 + 2tl,t51 0 tt53 + 2tl,t53

tt41 + 2tl,t41 0 tt43 + 2tl,t43

0 tt12 + 2tl,t12 0

 , (5.83)

TOEΓ =
√

2

[
tt31 + 2tl,t31 0 tt33 + 2tl,t33

0 tt22 + 2tl,t22 0

]
. (5.84)

In the Slater Koster decomposition some matrix elements are zero, i.e.,

tt51 + 2tl,t51 = 0, tt43 + 2tl,t43 = 0, tt33 + 2tl,t33 = 0, (5.85)



CHAPTER 5. VS2 44

which leads to further simplification. Only five non-zero off-diagonal elements remain
and the Hamiltonian can be decoupled to five 2x2 matrices and one 1x1 matrix:

{α5, θ3} :

[
ξd

√
2(tt53 + 2tl,t53)√

2(tt53 + 2tl,t53) ξp

]
, (5.86)

{α4, θ1} :

[
ξd

√
2(tt41 + 2tl,t41)√

2(tt41 + 2tl,t41) ξp

]
, (5.87)

{α1, θ2} :

[
ξd

√
2(tt12 + 2tl,t12)√

2(tt12 + 2tl,t12) ξp

]
, (5.88)

{α3, φ1} :

[
ξd

√
2(tt31 + 2tl,t31)√

2(tt31 + 2tl,t31) ξp

]
, (5.89)

{α2, φ2} :

[
ξd

√
2(tt22 + 2tl,t22)√

2(tt22 + 2tl,t22) ξp

]
, (5.90)

{φ3} :
[
ξp
]
. (5.91)

These are trivial to diagonalize. For a given value of ξp, ξd, Vpdπ and Vpdσ, the numerical
values of these analytical expressions can be obtained and compared with the numer-
ical results from the d-subspace, previously obtained. These analytical expressions do
indeed agree with the numerical results in the Γ-point.

The lowest band of the d-bands is found to be

E(α5, θ3) =
ξd + ξp

2
−
√(

ξd − ξp
2

)2

+ 2
(
E1t
z,z2 + 2E2t

z,z2

)2

. (5.92)

Investigating the numerically obtained eigenvector of the lowest band when diagonal-
izing the full Hamiltonian in the Γ-point, it shows that it is purely made up of the z2

d-orbital. This agrees with the fact that the analytical expression for the lowest band
is expressed in terms of the Slater Koster matrix elements E1t

z,z2 and E2t
z,z2 .

That ξp < ξd means that the z2 d-orbital is the d-orbital that couples to the p-orbitals
the least. This could be explained by the fact that the dz2 orbital is more spatially
confined compared to the other d-orbitals, which results in a smaller overlap with the
p-orbitals. For k 6= Γ the eigenvector of the lowest d-band is a superposition of the five
d-orbitals but still with a greatest contribution from the z2 d-orbital.

Further, an expansion around the K-point has been performed, seeAppendix B. These
calculations also show an agreement between the analytical and numerical results.

Including nearest neighbour coupling between the p-orbitals

The nearest neighbour coupling between the p-orbitals will now be included. As with
the coupling between p- and d-orbitals, this will be expressed in terms of Slater Koster
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Fig. 5.10: Top view of the real space lattice of monolayer 2H-VS2. All nearest neighbour
couplings between p-orbitals and between p- and d-orbitals are indicated.

matrix elements, which for couplings between two p-orbitals are given by [29],

Ex,x = l2Vppσ + (1− l2)Vppπ, (5.93)
Ey,y = m2Vppσ + (1−m2)Vppπ, (5.94)
Ez,z = n2Vppσ + (1− n2)Vppπ, (5.95)
Ex,y = lmVppσ − lmVppπ, (5.96)
Ey,z = mnVppσ −mnVppπ, (5.97)
Ex,z = lnVppσ − lnVppπ. (5.98)

Vppσ and Vppπ denotes the bond integrals for a σ bond and a π bond between two
p-orbitals, respectively. To the Hamiltonian, see Eq. (5.73), we must add the terms

Ĥp,p =
∑

k

∑
νν′

t,b∑
i

[
uez1(p̂ikν)

†p̂ikν′ + uez∗1(p̂ikν′)
†p̂ikν

+ unez2(p̂ikν)
†p̂ikν′ + unez∗2(p̂ikν′)

†p̂ikν

+ unwz∗1z2(p̂ikν)
†p̂ikν′ + unwz1z

∗
2(p̂ikν′)

†p̂ikν

]
.

(5.99)

Defining

U = 2(c1u
e + c2u

ne + c12u
nw), (5.100)

with

c1 =
z1 + z∗1

2
, c2 =

z2 + z∗2
2

, c12 =
z1z
∗
2 + z2z

∗
1

2
, (5.101)

Eq. (5.99) can be written as

Ĥp,p =
∑

k

∑
νν′

U
[
(p̂tkν)

†p̂tkν′ + (p̂bkν)
†p̂bkν′

]
. (5.102)

Thus, Eq. (5.78) becomes Hd TE TO

(TE)† Hp + U 0
(TO)† 0 Hp + U

αθ
φ

 = E

ατ
β

 . (5.103)
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In the Slater Koster decomposition, the components of Eq. (5.100) are of the form

ue =

ue11 0 0
0 ue22 0
0 0 ue22

 , une =

une11 une12 0
une12 une22 0
0 0 ue22

 , unw =

 une11 −une12 0
−une12 une22 0

0 0 ue22

 . (5.104)

Remember that z1 = 1 and z2 = 1 in the Γ-point and thus c1 = 1, c2 = 1 and c12 = 1.
This leads to

UΓ = 2(ue + une + unw) =

ue11 + 2une11 0 0
0 ue22 + 2une22 0
0 0 3ue22

 . (5.105)

Following the same procedure as applied to Eq. (5.78) results in a slightly modified
expression for the energy of the lowest d-band in the Γ-point;

E(α5, θ3) =
ξd + ξp + UΓ

11

2
−
√(

ξd − ξp − UΓ
11

2

)2

+ 2
(
E1t
z,z2 + 2E2t

z,z2

)2

. (5.106)

Again, the analytical results are identical to the numerically obtained results.

Further, we want to add the Coulomb repulsion between the electrons in the d-orbitals.
In the following section the generalized Hubbard model will be derived and thereafter a
mean-field (MF) approximation is applied on the obtained expression. Lastly, this will
be included in the numerical calculations of the energy bands.

5.3.2 The Hubbard model

Derivation of the generalized Hubbard model

We begin from the Coulomb interaction term written in second quantization as

Ĥ =
1

2

∑
σσ′

∫
drdr′Ψ̂†σ(r)Ψ̂†σ′(r

′)Vee(r− r′)Ψ̂σ′(r
′)Ψ̂σ(r), (5.107)

where

Vee(r− r′) =
e2

4πξ0

1

|r− r′| , (5.108)

is the repulsive Coulomb potential. Ψ̂σ(r) is a fermionic field operator with spin σ at
location r. These field operators can be written in terms of ordinary first quantization
wavefunctions ψν and fermionic creation, or annihilation operators ĉ†νσ, ĉνσ using

Ψ̂†σ(r) =
∑
ν

ψ∗ν ĉ
†
νσ and Ψ̂σ(r) =

∑
ν

ψν ĉνσ. (5.109)
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Thus, the Hamiltonian can be rewritten as

Ĥ =
1

2

∑
σσ′

∑
ijkl

∑
αβµν

V αβµν
ijkl ĉ†iασ ĉ

†
jβσ′ ĉkµσ′ ĉlνσ, (5.110)

where we have defined

V ijkl
αβµν = 〈iα, jβ|Vee(r− r′)|kµ, lν〉

=

∫
drdr′ψ∗iα(r)ψ∗jβ(r′)Vee(r− r′)ψkµ(r′)ψlν(r). (5.111)

Due to the fact that this matrix product does not depend on spin, the Hamiltonian only
has two spin indices σ and σ′ and not four distinct spin indices. ĉ†iασ creates an electron
in orbital i with spin σ at site α of the lattice. We will focus on the Coulomb repulsion
between electrons in the d-orbitals, since both the p-d and p-p Coulomb repulsion is
smaller compared to this. This has to do with the larger spatial extend of the two latter
cases. Due to the very confined size of the d-orbitals, the Coulomb repulsion between
electrons in d-orbitals at neighbouring sites will be neglected. Thus, only Coulomb
repulsion between electrons in the same or different d-orbitals at the same site will
be included. Therefore, we omit the sum over sites in the lattice and focus on the
calculations of a single unit cell, i.e., with r = 0. Thus, the indices α, β, µ and ν
are neglected. The spin indices can each take two values ↑ and ↓, and the i, j, k and
l indices each sum over the five d-orbitals. Thus, the Hamiltonian consists of many
different terms, specifically 104 terms. Fortunately, many of these can be neglected.
Let us investigate the most prominent terms.
In the following we will simplify the expressions using the number operators n̂iσ, n̂i and
the spin operators Ŝi defined as

n̂iσ = ĉ†iσ ĉiσ , n̂i = n̂i↑ + n̂i↓ , Ŝi =
1

2

∑
αβ

ĉ†iαταβ ĉβi, (5.112)

where ταβ = ((τx)αβ, (τ
y)αβ, (τ

z)αβ) is a vector consisting of the Pauli matrices. Further,
we will define the matrix elements

U = Viiii , V = Vijji , J = −2Vijij , Y = Viijj , X = Viiij. (5.113)

Writing out the sum over spins for i = j = k = l results in four terms, of which two
terms cancel due to the Pauli principle

1

2

∑
i

U
[
ĉ†i↑ĉ

†
i↓ĉi↓ĉi↑ + ĉ†i↓ĉ

†
i↑ĉi↑ĉi↓ +������

ĉ†i↑ĉ
†
i↑ĉi↑ĉi↑ +������

ĉ†i↓ĉ
†
i↓ĉi↓ĉi↓

]
=
∑
i

Un̂i↑n̂i↓. (5.114)

The rewriting is done using the anti-commutator relations that fermionic creation and
annihilation operators must obey, i.e.,

{ĉ†i , ĉ†j} = 0 , {ĉi, ĉj} = 0 , {ĉ†i , ĉj} = δij. (5.115)
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When i = l, j = k and i 6= j the terms

1

2

∑
ij

V

[
ĉ†i↑ĉ

†
j↓ĉj↓ĉi↑ + ĉ†i↓ĉ

†
j↑ĉj↑ĉi↓ + ĉ†i↑ĉ

†
j↑ĉj↑ĉi↑ + ĉ†i↓ĉ

†
j↓ĉj↓ĉi↓

+ ĉ†j↑ĉ
†
i↓ĉi↓ĉj↑ + ĉ†j↓ĉ

†
i↑ĉi↑ĉj↓ + ĉ†j↑ĉ

†
i↑ĉi↑ĉj↑ + ĉ†j↓ĉ

†
i↓ĉi↓ĉj↓

]
=
∑
ij

V n̂in̂j, (5.116)

arise. Eq. (5.114) and (5.116) describe the classical Coulomb repulsion. In the latter
case the electrons are not occupying the same orbital.
If i = k and j = l and i 6= j, we get the terms

1

2

∑
ij

Vijij

[
ĉ†i↑ĉ

†
j↑ĉi↑ĉj↑ + ĉ†i↓ĉ

†
j↓ĉi↓ĉj↓ + ĉ†i↑ĉ

†
j↓ĉi↓ĉj↑ + ĉ†i↓ĉ

†
j↑ĉi↑ĉj↓

+ ĉ†j↑ĉ
†
i↑ĉj↑ĉi↑ + ĉ†j↓ĉ

†
i↓ĉj↓ĉi↓ + ĉ†j↑ĉ

†
i↓ĉj↓ĉi↑ + ĉ†j↓ĉ

†
i↑ĉj↑ĉi↓

]
= −

∑
ij

Vijij

[
n̂i↑n̂j↑ + n̂i↓n̂j↓ + ĉ†i↑ĉi↓ĉ

†
j↓ĉj↑ + ĉ†i↓ĉi↑ĉ

†
j↑ĉj↓

]
. (5.117)

The first two terms can be rewritten using

n̂i↑ =
1

2
(n̂i↑ + n̂j↓) +

1

2
(n̂i↑ − n̂j↓) =

1

2
n̂i + Ŝiz, (5.118)

and

n̂i↓ =
1

2
(n̂i↑ + n̂j↓)−

1

2
(n̂i↑ − n̂i↓) =

1

2
n̂i − Ŝiz. (5.119)

This leads to the expression

−
∑
ij

Vijij

[
1

2
n̂in̂j + 2ŜizŜjz + ĉ†i↑ĉi↓ĉ

†
j↓ĉj↑ + ĉ†i↓ĉi↑ĉ

†
j↑ĉj↓

]
=
∑
ij

JŜi · Ŝj +
1

4

∑
ij

Jn̂in̂j. (5.120)

The first term is the exchange coupling, and the second term is an extra Coulomb term.
Since J < 0, see Eq. (5.113), the exchange coupling term is minimized for parallel spin.
This is where Hund’s first rule stems from. This rule states that the energy of a multi-
electron atom is minimized for parallel spin.
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If i = j = k 6= l, we obtain the following

1

2

∑
ij

∑
σ

X

[
ĉ†iσ ĉ

†
iσ̄ ĉiσ̄ ĉjσ + ĉ†jσ ĉ

†
jσ̄ ĉjσ̄ ĉiσ + ĉ†iσ ĉ

†
jσ̄ ĉjσ̄ ĉjσ + ĉ†jσ ĉ

†
iσ̄ ĉiσ̄ ĉiσ

+ ĉ†iσ ĉ
†
jσ̄ ĉiσ̄ ĉiσ + ĉ†jσ ĉ

†
iσ̄ ĉjσ̄ ĉjσ + ĉ†iσ ĉ

†
iσ̄ ĉjσ̄ ĉiσ + ĉ†jσ ĉ

†
jσ̄ ĉiσ̄ ĉjσ

]
=
∑
ij

∑
σ

X
(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
(n̂iσ̄ + n̂jσ̄) . (5.121)

If i and j referred to different sites in the lattice, this term would be called the bond-
charge interaction. As is evident from the expression, this term describe an electron
hopping from one orbital to another, where the hopping amplitude depends on the
occupation of that orbital of an electron with opposite spin.

Lastly, i = j, k = l and i 6= k results in

1

2

∑
ij

Y
[
ĉ†i↑ĉ

†
i↓ĉj↓ĉj↑ + ĉ†i↓ĉ

†
i↑ĉj↑ĉj↓ +������

ĉ†i↑ĉ
†
i↑ĉj↑ĉj↑ +������

ĉ†i↓ĉ
†
i↓ĉj↓ĉj↓

]
=
∑
ij

Y ĉ†i↑ĉ
†
i↓ĉj↓ĉj↑, (5.122)

Two terms have been canceled due to the Pauli Principle. This term describes hopping
of two electrons with opposite spin from one orbital to another. The terms with three
different orbitals and four different orbitals are of even smaller magnitude than the
terms already presented since the overlap in Eq. (5.111) decreases. These will thus be
neglected. The Hamiltonian now reads

Ĥ =
∑
i

Un̂i↑n̂i↓ +
∑
ij

(
V +

1

4
J

)
n̂in̂j +

∑
ij

JŜi · Ŝj

+
∑
ij

Y ĉ†i↑ĉ
†
i↓ĉj↓ĉj↑ +

∑
ij

∑
σ

X
(
ĉ†iσ ĉjσ + ĉ†jσ ĉiσ

)
(n̂iσ̄ + n̂jσ̄) ,

(5.123)

which is sometimes referred to as the generalized Hubbard model.

Mean-field approximation

The MF approximation can be used to decrease the number of degrees of freedom
to make the Hamiltonian solvable. In practice the Hamiltonian is expanded around
the mean of the field in terms of the magnitude and the fluctuations of the field. A
number-operator can be written in terms of the mean field and the fluctuations as

n̂iσ = 〈n̂iσ〉+ ∆n̂iσ. (5.124)

Using this, the product of two number-operators can be written as

n̂iσn̂jσ′ = ∆n̂iσ〈n̂jσ′〉+ ∆n̂jσ′〈n̂iσ〉+ 〈n̂iσ〉〈n̂jσ′〉+������∆n̂iσ∆n̂jσ′ . (5.125)
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The fluctuations are assumed to be small and the second order term can be neglected.
Rewriting ∆n̂iσ = n̂iσ − 〈n̂iσ〉 and similarly for ∆n̂jσ′ , the expression becomes

n̂iσn̂jσ′ ' 〈n̂iσ〉n̂jσ′ + n̂iσ〈n̂jσ′〉 − 〈n̂iσ〉〈n̂jσ′〉. (5.126)

The MF approximation will now be applied to the Hamiltonian in Eq. (5.123). This
yields

ĤMF =
∑
i

U [〈n̂i↑〉n̂i↓ + n̂i↑〈n̂i↓〉 − 〈n̂i↑〉〈n̂i↓〉]

+
∑
ij

(
V +

1

4
J

)
[〈n̂i〉n̂j + n̂i〈n̂j〉 − 〈n̂i〉〈n̂j〉]

+
∑
ij

J
[
〈Ŝi〉 · Ŝj + Ŝi · 〈Ŝj〉 − 〈Ŝi〉 · 〈Ŝj〉

]
+
∑
ij

Y
[
〈ĉ†i↑ĉj↑〉ĉ†i↓ĉj↓ + ĉ†i↑ĉj↑〈ĉ†i↓ĉj↓〉 − 〈ĉ†i↑ĉj↑〉〈ĉ†i↓ĉj↓〉

]
+
∑
ij

∑
l 6=l′=i,j

∑
σ

X
[
〈ĉlσ ĉl′σ〉n̂lσ̄ + ĉlσ ĉl′σ〈n̂lσ̄〉 − 〈ĉlσ ĉl′σ〉〈n̂lσ̄〉

+ 〈ĉlσ ĉl′σ〉n̂l′σ̄ + ĉlσ ĉl′σ〈n̂l′σ̄〉 − 〈ĉlσ ĉl′σ〉〈n̂l′σ̄〉
]
.

(5.127)

Hubbard estimated the magnitudes of these terms to be U ' 20 eV, V ' 2 − 3 eV,
X ' 1 eV and J ' Y ' 0.025 eV [34]. In the following only the Hubbard terms will
be included, i.e., the two first lines of Eq. (5.127). A sum over unit cells is introduced,
indicated as a sum over r. Note that the mean-fields does not depend on the position.
Thus, we obtain

ĤMF = U0

∑
r

∑
i

[〈n̂i↑〉n̂ri↓ + n̂ri↑〈n̂i↓〉 − 〈n̂i↑〉〈n̂i↓〉]

+ U1

∑
r

∑
ij

[〈n̂i〉n̂rj + n̂ri〈n̂j〉 − 〈n̂i〉〈n̂j〉] ,
(5.128)

where we have defined U1 =
(
V + 1

4
J
)
. Further, we assume that both U0 and U1 have a

constant value independent of the orbital. This expression can be Fourier transformed
using Eq. (5.68). Thus, the MF Hubbard model for the full structure in the reciprocal
space is described by

ĤMF =
U0

N

∑
kk′∈BZ

∑
r

∑
i

e−i(k−k′)·r [〈n̂i↑〉n̂ki↓ + n̂k′i↑〈n̂i↓〉 − 〈n̂i↑〉〈n̂i↓〉]

+
U1

N

∑
kk′∈BZ

∑
r

∑
ij

e−i(k−k′)·r [〈n̂i〉n̂kj + n̂k′i〈n̂j〉 − 〈n̂i〉〈n̂j〉]

=
U0

N

∑
k∈BZ

∑
i

[∑
σ

〈n̂iσ〉n̂kiσ̄ − 〈n̂i↑〉〈n̂i↓〉
]

+
U1

N

∑
k∈BZ

∑
ij

[〈n̂i〉n̂kj + n̂ki〈n̂j〉 − 〈n̂i〉〈n̂j〉] . (5.129)
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Implementing the Hubbard model in the band structure

The number operators can be written in the basis of the eigenvectors of the Hamiltonian,
obtained numerically, using

ĉ†kiσ =
11∑
n=1

αniĉ
†
knσ, (5.130)

where n refer to the energy bands, and α is the amplitude of orbital i in the given band.
Remember that there are eleven bands, since there are five d-bands and two times three
p-bands. The expectation value of n̂iσ(r) then becomes

〈n̂iσ(r)〉 =
1

N

∑
n,m

∑
k∈BZ

αniα
∗
mi〈ĉ†knσ ĉkmσ〉, (5.131)

where we set n = m since this is an excitation otherwise. Thus, we end with the
expression

〈n̂iσ(r)〉 =
1

N

∑
n≤nF

∑
k∈BZ

|αni|2〈ĉ†knσ ĉknσ〉. (5.132)

The bands are filled with electrons up to the Fermi Surface, where nF refer to the
last band below the Fermi Energy. In the previous calculations of the energy bands,
there were five d-bands and six p-bands, where each of these bands could contain two
electrons, one of each spin. Since the Hubbard model affects electrons with spin ↑ and
spin ↓ differently, the bands will be spin-resolved when including the Hubbard terms.
Each spin band can contain one electron. Remember that after the vanadium atom has
given two electrons to each sulfur atom in the unit cell, each sulfur atom contain six
valence electrons whereas the vanadium atom only contains a single valence electron.
Since the unit cell contains two sulfur atoms and a single vanadium atom, there are
thirteen valence electrons in total. Since the twelve p-bands are lowest in energy, these
are all filled and a single d-band is filled. Thus, we set 〈ĉ†knσ ĉknσ〉 = 1 for n ≤ nF and
zero otherwise. Finding the energy bands, without the Hubbard interaction included, it
is evident from the eigenvector of the lowest d-band that this is mainly made up of the
dz2↑ orbital. Thus, for the first iteration including the Hubbard model, we approximate
〈n̂z2↑〉 = 1 and all other mean-fields are set to zero. In this case the MF-Hamiltonian
simplifies to

ĤMF '
∑

k

U0

N
n̂kz2↓ +

U1

N

∑
j 6=z2

(n̂kj↑ + n̂kj↓)

 , (5.133)

where a factor of two has been absorbed into U1. All constant terms drop out. From
this a new value for 〈n̂z2↑〉 from the eigenvectors of the numerically solved Hamiltonian
is found. This is repeated iteratively until self-consistency is reached. In these iterations
the occupation of the other d-orbitals are also included in the Hamiltonian. In each
iteration numerical integration over the first Brillouin zone is performed using a grid of
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evenly spaced points of the Brillouin zone. The resulting 〈n̂z2↑〉 depends on the different
parameters in the Hamiltonian. With Vpdσ = 2.2 eV, Vpdπ = −0.9 eV, Vppσ = 0.974 eV,
Vppπ = −0.19 eV, ξd = −0.774 eV, ξp = −1 eV, U0 = 1.426 eV and U1 = 2.17 eV
self-consistency is reached at 〈n̂z2↑〉 = 0.9769. Thus, we can conclude that it is a good
approximation that there is a single electron in the z2 d-orbital with spin ↑. This is in
agreement with the results from DFT. The projected density of states (PDOS) is the
relative contribution of a particular orbital to the total density of states. The PDOS
for the five d-orbitals on the vanadium atom in monolayer 2H-VS2 is shown in Fig.
5.11. Positive PDOS corresponds to ↑ states and negative PDOS corresponds to spin
↓ states. The zero-point on the x-axis corresponds to the Fermi Energy. It is clear that
just below the Fermi Energy, i.e., where the lowest d-band is located, the PDOS is only
non-zero for the z2 ↑ band.

Fig. 5.11: The PDOS for the five d-orbitals on the vanadium atom in the 2H phase of
monolayer VS2. The Fermi level is located at zero energy. Positive PDOS corresponds to
the PDOS for the spin ↑ d-orbitals and negative PDOS corresponds to spin ↓, (I. E. Castelli,
personal communication, March 2020).

The fact that we obtain self-consistency at 〈n̂z2↑〉 = 0.9769 allow us to approximate
this to one and all other mean-fields to zero. Thus, we can use the simple expression
for the Hubbard model in Eq. (5.133) when producing the band structures. Using the
stated parameters the band structure viewed in Fig. 5.12 is obtained. This is plotted
alongside with the energy bands obtained from DFT for the same structure [3]. The
energy bands obtained with the tight binding model and Hubbard model have been
shifted in energy to be comparable to the DFT-calculated band structures.
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Fig. 5.12: (a) The band structure for the 2H phase of monolayer VS2 obtained from tight
binding theory combined with the Hubbard model along the path Γ → M → K → Γ. (b)
Band structure of the same structure from DFT calculations from C2DB [3].

It is evident that the energy bands obtained from tight binding and the Hubbard model
deviates from the energy bands obtained with DFT, though they definitely contain
similar features. Most importantly, in both cases there is a gap between the lowest and
the second lowest d-band. The Fermi Energy is located just below the highest energy
of the lowest d-band. Thus, the density of states (DOS) is just above zero at the Fermi
Level. This can also be viewed from the PDOS in Fig. 5.11. The band structures
obtained from tight binding and the Hubbard model results in a metallic groundstate
for the 2H phase of VS2. The results from DFT [3] from which the relaxed structures
are collected, are contradicting. The PBE2 method results in a zero band gap though
HSE3 results in a band gap of 0.83 eV. Other DFT calculations [2] concludes a metallic
groundstate for monolayer 2H VS2.

Regardless of which is true, this means that the d-bands are fully (or almost fully) spin-
polarized. The self-consistency calculations of 〈n̂z2↑〉 yields a similar conclusion as from
the PDOS calculations from DFT, namely that the lowest d-band consists of a single
electron located in the dz2↑ orbital. Thus, the structure must be ferromagnetic. This
agrees with the magnetic investigation of VS2 by DFT [3] which find the 2H phase to be
ferromagnetic. It is evident from the band structures that the spin-splitting is dependent
on k. The spin-splitting in the bands, that are not dz2↑ and dz2↓, obtained from DFT
is more spin-split compared to the band structures obtained from tight binding and
the Hubbard model. This could be explained by the fact that the exchange term, see
Eq. (5.120), in the latter method is neglected. Within the MF-approximation, see
Eq. (5.127), 〈Ŝz2↑〉 can be viewed as an external magnetic field that affects the bands
differently depending on spin.

2Perdew–Burke-Ernzerhof
3Heyd–Scuseria–Ernzerhof
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5.3.3 1T Structure

Following the same procedure as in the previous section, the 1T phase of monolayer
VS2 will be studied. As for the 2H phase of the VS2 structure, there are three atoms in
a unit cell, see Fig. 5.13. Contrary to the 2H phase, the x- and y-coordinates of the
two sulfur sublayers do not coincide.

t

b

r, bl, b

r, tl, t

a1

a2

a

: V

: S

x

y

δt

δl,b

Fig. 5.13: Top view of the 1T phase of monolayer VS2 in real space. The black (white) dots
illustrates the vanadium (sulfur) atoms. The unit cell is shown with the dashed hexagon and
the lattice vectors a1 and a2 are indicated. Further, the naming of the sulfur atoms partly
present in the unit cell is indicated. The vectors δl,b and δt between the V and S atoms of the
unit cell is shown. Lastly, the used coordinate system is illustrated.

In this case the Hamiltonian, only including the onsite energies and hopping between
nearest neighbouring d- and p-sites, is

Ĥ =
∑
ri

5∑
µ=1

ξdd̂
†
i,µd̂i,µ +

∑
ri

3∑
ν=1

ξp

[
(p̂ti,ν)

†p̂ti,ν + (p̂l,bi,ν)
†p̂l,bi,ν

]
+
∑
ri

∑
µν

[
ttµν d̂

†
i,µp̂

t
j,ν + tl,bµν d̂

†
i,µp̂

l,b
j,ν + h.c.

]
+
∑
ri

∑
rj=ri+a1−a2

∑
µν

[
tr,tµν d̂

†
i,µp̂

t
j,ν + tbµν d̂

†
i,µp̂

l,b
j,ν + h.c.

]
+
∑
ri

∑
rj=ri+a1

∑
µν

[
tr,bµν d̂

†
i,µp̂

r,b
j,ν + h.c.

]
+
∑
ri

∑
rj=ri−a2

∑
µν

[
tl,tµν d̂

†
i,µp̂

t
j,ν + h.c.

]
.

(5.134)

We have defined the following matrix-elements

ttµν = 〈ri; dµ|Ĥt|ri + δt; pν〉, (5.135)

tl,bµν = 〈ri; dµ|Ĥt|ri + δl,b; pν〉, (5.136)

tr,tµν = 〈ri; dµ|Ĥt|ri + δt + a1 − a2; pν〉, (5.137)

tbµν = 〈ri; dµ|Ĥt|ri + δl,b + a1 − a2; pν〉, (5.138)

tr,bµν = 〈ri; dµ|Ĥt|ri + δl,b + a1; pν〉, (5.139)

tl,tµν = 〈ri; dµ|Ĥt|ri + δt − a2; pν〉, (5.140)
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where Ĥt is the tight binding Hamiltonian, see Eq. (5.1). The coupling lines are viewed
in Fig. 5.14. In the Slater Koster decomposition, these are of the form

tt =


0 tt12 tt13

0 tt22 tt23

tt31 0 0
tt41 0 0
0 tt52 tt53

 = −tb , tl,b =


tl,b11 tl,b12 tl,b13

tl,b21 tl,b22 tl,b23

tl,b31 tl,b32 tl,b33

tl,b41 tl,b42 tl,b43

tl,b51 tl,b52 tl,b53

 = −tr,t,

tr,b =


tr,b11 tr,b12 tr,b13

tr,b21 tr,b22 tr,b23

tr,b31 tr,b32 tr,b33

tr,b41 tr,b42 tr,b43

tr,b51 tr,b52 tr,b53

 = −tl,t.

(5.141)

The Hamiltonian can now be Fourier transformed and simplified following a similar
procedure as in section 5.3.1. This leads to the Hamiltonian

Ĥ =
∑

k

[
ξd
∑
µ

d̂†k,µd̂k,µ + ξp
∑
ν

[
(ptk,ν)

†ptk,ν + (pl,bk,ν)
†pl,bk,ν

]
+
∑
µν

(
T tµν d̂

†
k,µp̂

t
k,ν + T l,bd̂†k,µp̂

l,b
k,ν + h.c.

)]
,

(5.142)

where we have defined

T t = ct
(
tt + z∗2t

l,t + z1z
∗
2t
r,t
)
, T l,b = cb

(
tl,b + z1t

r,b + z1z
∗
2t
b
)

(5.143)

with

ct = eik·δ
t

, cb = eik·δ
l,b

. (5.144)

z1 and z2 are given in Eq. (5.72). We approximate ct ' 1 and cb ' 1 as in the last
section. The shape of the Brillouin zone of the 1T phase is identical to that of the
2H phase. Thus, the expressions for the high symmetry-points used for the 2H phase,
expressed in terms of the lattice constant, see Eq. (5.55), are the same here. The
distances between the atoms in the two structures are not completely identical. From
the DFT calculated relaxed structure, the lattice constant is found to be a = 3.195 Å
for the 1T phase compared to a = 3.186 Å for the 2H phase [3]. Due to the proximity
of these the lattice parameters of the 1T structure will be approximated to be the same
as for the 2H phase.

The coupling between neighbouring p-orbitals can now be added. Remember that only
couplings between p-orbitals at nearest neighbouring sulfur atoms in the same layer are
included. This is thus straightforward to include using the results from section 5.3.1.
These coupling lines are also illustrated in Fig. 5.14.
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Fig. 5.14: Top view of the 1T phase of monolayer VS2. All nearest neighbour couplings
between p-orbitals are indicated with dashed lines. Only the nomenclature for one sulfur
atom is indicated, since the nomenclature of the other is the same. Similarly, all nearest
neighbour couplings between p- and d-orbitals are indicated.

As in section 5.3.1 we can now find the five energy bands of the d-orbitals in the d-
subspace to obtain a preliminary view of the band structure before adding the Hubbard
model. From the numerically obtained eigenvectors, it is observed that the lowest
d-band is mainly occupied by an electron in the dz2-orbital, though this is not as
pronounced as in the 2H phase. The self-consistent calculation for 〈n̂z2↑〉 cannot be
performed here, at least not in the same simple way as in the previous section. This is
due to the fact that the calculation would not only include a single d-band as previously.
In the 1T phase there are two bands, namely the dz2↑ and the dz2↓, that are partially
occupied. For this reason the Hubbard model will be implemented in a slightly different
way compared to the previous section, where both of these two bands will be included
as

HMF '
∑

k

[
U0x

N
n̂kz2↓ +

U1x

N

∑
j 6=z2

(n̂kj↑ + n̂kj↓) +
U0(1− x)

N
n̂kz2↑

+
U1(1− x)

N

∑
j 6=z2

(n̂kj↓ + n̂kj↑)

]

=
∑

k

U0x

N
n̂kz2↓ +

U0(1− x)

N
n̂kz2↑ +

U1

N

∑
j 6=z2

(n̂kj↓ + n̂kj↑)

 . (5.145)

x is a unitless number between zero and one, that quantifies the occupation of the dz2↑
band and the dz2↓ band. Contrary to the case of the 2H phase, the constants do not
cancel, since both 〈n̂z2↑〉 6= 0 and 〈n̂z2↓〉 6= 0. These terms will still be neglected since
any constant shift does not affect the dynamics of the band structures. Just below the
Fermi energy, the main contribution to the PDOS comes from the dz2↑ orbital, see Fig.
5.15, though it is evident that both the xz and x2 − y2 d-orbitals are also present.
These are neglected in the calculations performed here.
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Fig. 5.15: The PDOS for the five d-orbitals in the 1T phase of monolayer VS2. The Fermi
Energy is located at zero energy. Positive PDOS corresponds to the PDOS for the spin ↑
d-orbitals and negative PDOS corresponds to spin ↓, (I. E. Castelli, personal communication,
March 2020).

The final band structure is depicted in Fig. 5.16 alongside with the band structure
from DFT [3]. The parameters used to obtain the former are Vpdσ = 2.2 eV, Vpdπ = −0.9
eV, Vppσ = 0.974 eV, Vppπ = −0.19 eV, ξd = −0.774 eV, ξp = −1 eV, U0 = 1.426 eV,
U1 = 2.17 eV and x = 0.732. Further, the bands have been shifted in energy to
be comparable to the band structures obtained with DFT. Also here, there are some
deviations in the two band structures, though the main points are evident from both
plots. Both band structures suggests a metallic groundstate for monolayer 1T-VS2. This
is also clearly observed from the PDOS in Fig. 5.15. Here, the dz2↑ and dz2↓ bands are
only partially spin-polarized. Thus, this structure is also ferromagnetic, though with a
lower magnetization compared to the 2H phase. This agrees with the results from DFT
calculations that find the magnetic moment to be 0.49 au for the 1T phase compared
to a magnetic moment of 0.95 au for the 2H phase.
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Fig. 5.16: (a) The band structure for the 1T phase of monolayer VS2 obtained from tight
binding theory combined with the Hubbard model along the path Γ → M → K → Γ. (b)
Band structure obtained from DFT calculations [3].

5.4 Conclusion

First, the hypothetical model complex VS6 was studied using the tight binding method
in the Slater Koster decomposition. Degeneracies in the energy sepctrum was observed
both for the 1T and 2H phase, see Fig. 5.3 and Fig. 5.7. These degeneracies were
explained by the different symmetries of the two molecules using a group theoretical
approach. A specific high-symmetrical case of the 1T phase was explored, for which
the degeneracy of the spectrum changed, see Fig. 5.6. Subsequently, monolayer VS2

was investigated using the tight binding method together with the Hubbard model. For
both phases the band structure was obtained, see Fig. 5.16 and Fig. 5.12. The 2H
structure was found to exhibit a metallic groundstate, though the highest non-empty
band was almost filled. Thus, the groundstate was found to be highly spin-polarized
and the compound exhibited a ferromagnetic ordering. This agrees with the DFT calcu-
lations from Wang et al. [2]. The DFT calculations from DTU [3] showed contradicting
results, though one method also suggested a metallic, ferromagnetic groundstate. Both
the PDOS of the d-orbitals and a self-consistent calculation of 〈n̂z2↑〉 also yielded a
ferromagnetic ordering. Similarly, the 1T phase was found to be metallic in agreement
with the DFT calculations. This was only partially spin polarized and thus had a
smaller magnetic moment. This result agrees with DFT calculations [3].



Chapter 6

CrCl2(pyz)2

6.1 Introduction to CrCl2(pyz)21

Chromium-chloride-pyrazine, CrCl2(pyz)2, was synthesized by an international group
at the chemistry department at DTU, lead by assistant professor Kasper Steen Pedersen
[4]. This is the first organic and inorganic hybrid 2D material ever produced. The fact
that it is both organic and inorganic, in contrast to graphene and all other previously
synthesized 2D materials, makes it highly tunable. This material is made in such a way
that parts of the material can be replaced, which allow for a more accurate design of
both the electrical and the magnetic properties of the material.

The structure of CrCl2(pyz)2 is viewed in Fig. 6.1. One layer of CrCl2(pyz)2 consists of
chromium atoms crystallized in a lattice exhibiting orthorhombic symmetry that couple
through pyrazine rings and are sandwiched in between two layers of chlorine atoms, see
Fig. 6.1 a and b. This will be introduced in greater detail below. In Fig. 6.1 b it is
evident that the 2D layers, when stacked, couples through the VdW interaction. The
fact that the interaction between the layers are so weak makes it possible to tune the
magnetic properties using a weak external magnetic field. Chromium-chloride-pyrazine
exhibits both long-range magnetic order together with high 2D electronic conductivity,
which not only makes the material of interest in regards to quantum computing but also
in future superconductors, catalysts, batteries, fuel cells and in electronics in general.

Fig. 6.1: A view of the structure of CrCl2(pyz)2. a The structure viewed along the Cl-Cr-Cl
axis. b Side view of the layered material. c Thermal ellipsoid2plot at 80% probability level.
The structure consists of carbon atoms (black), nitrogen atoms (blue), chromium atoms (dark
green) and chlorine atoms (light green) as indicated in c. For clarity, the hydrogen atoms
of the pyrazine rings has been omitted in a and b. This figure is taken from the paper by
Pedersen et al. [4].

1This introduction is based on [35] and [4].
2Thermal ellipsoids illustrates the magnitude and direction of the thermal vibrations.

59
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First, the experimental results obtained by Petersen et al. will be sketched, since
this gives valuable information about the compund that can be used in the following
calculations. Thereafter, the hypothetical model complex CrCl2(pyz)4 is studied and
the energy spectrum of this is obtained using the Slater Koster decomposition of the
tight binding model. Further, the symmetries of this molecule will be investigated using
group theory. Subsequently, monolayer CrCl2(pyz)2 is explored. Using the tight binding
model, the band structure will be obtained and compared to DFT calculations from
Pedersen et al. [4]. Lastly, the magnetic properties of the compound will be considered.
First, a simple model will be proposed to describe the behaviour of the relevant spins in
the compound. The exchange interaction between electrons on neighbouring chromium
and pyrazine sites is calculated, and an expression of the indirect exchange interaction
between neighbouring chromium sites is found using the RKKY model. Lastly, an
expression for this coupling constant in terms of the ordering temperature is obtained
using MF theory.

6.2 Experimental Results of CrCl2(pyz)2

This section portrays the experimental and numerical results by Pedersen et al. [4]. In
the following sections the electronic and magnetic properties of the compound is investi-
gated analytically and compared to these results. First, they solve the crystal structure
shown in Fig. 6.1 using synchrotron X-ray powder diffraction data. To examine the
oxidation of the Cr-ions in CrCl2(pyz)2, it is compared to two mononuclear model com-
plexes, namely trans3-[CrCl2(NCNH2)4] (Cr(II)) and trans-[CrCl2(pyridine)4](ClO4)·1/4
H2O (Cr(III)) with the established oxidations Cr+2 and Cr+3, respectively. The bond
lengths around the chromium atom in CrCl2(pyz)2 is comparable to the bond lengths
in Cr(III) which could indicate that the chromium atom in CrCl2(pyz)2 possess a +3
oxidation. This is further investigated by X-ray absorption spectroscopy (XAS), col-
lected at the Cr and Cl K-edge4 of CrCl2(pyz)2, Cr(II) and Cr(III), see Fig. 6.2. Both
the Cr and the Cl K-edge XAS spectra of CrCl2(pyz)2 show a great resemblance with
the same spectra obtained for Cr(III). Thus, it is concluded that the Cr in CrCl2(pyz)2

possess +3 oxidation, which means that an extra electron has been collected by the two
pyrazine rings. This is confirmed by DFT calculations.

In Fig. 6.2 c the conductivity as a function of temperature is depicted. The room-
temperature is measured to be σRT = 32mScm−1, which makes CrCl2(pyz)2 one of
the more conducting coordination solids reported so far [36], [37]5. The fact that the
conductivity increases for increasing temperature indicates an insulating groundstate.
Contrary to this, DFT calculations of the ferrimagnetic case suggests a metalic ground-
state. This will be elaborated below.

3Cis and trans refer to two different isomers of the same molecules. These prefixes stem from Latin
where Cis means "this side of" and trans means "the other side of". This refer to the placement of
the functional group with respect to the carbon chain.

4K-edge in XAS refer to a sudden increase in the absorption when the energy of the x-rays is just
above the binding energy of the innermost electron shell of the atoms interacting with the photons.

5Siemens (S) is the derived unit of electric conductance. In SI-units this is kg−1m−2s3A2.
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The measured conductivity clearly fits well with the 2D Mott law described by

σ(T ) = σ0exp

(
−
(
T0

T

) 1
d+1

)
, (6.1)

where d is the dimensionality of transport, in this case d = 2, and σ0 and T0 are
empirical constants.

Fig. 6.2: XAS spectra of CrCl2(pyz)2, Cr(II) and Cr(III) at T = 3 K for Cr K-edge a and Cl
K-edge b. c Temperature dependence of the conductivity of CrCl2(pyz)2. The solid line shows
the best fit to the Mott law, see Eq. (6.1), with σ0 = 1.2 · 1012mScm−1 and T0 = 4.2 · 106 K.
This figure is produced by Pedersen et al. [4].

Further, the magnetic properties of CrCl2(pyz)2 has been investigated. The mag-
netic susceptibility-temperature product, χT , is measured, see Fig. 6.3 a, to be
2.7 cm3Kmol−1, 3.3 cm3Kmol−1 and 4.7 cm3Kmol−1 at 400 K, 300 K and 200 K, re-
spectively. This thermal behaviour indicates strong magnetic interactions, and the
Curie-Weiss law does not describe this well. Though, for high temperatures it is a fine
approximation, and from this the spin on the Cr-ions are estimated to be either 3/2 or
2, see Appendix C. A sudden increase in χT is observed at ∼ 55 K, which indicates
that a phase transition to an ordered phase has occured. A hysteric behaviour is ob-
served in the magnetic field dependence of the magnetization, see Fig. 6.3 b, where
the remnant magnetization as a function of temperature is shown in the inset. Clearly,
only a remnant magnetization is present for temperatures below ∼ 55 K, which sup-
ports the suggestion of a phase transition. This ordering temperature is much higher
than previously reported ordering temperatures for pyrazine-networks. The satura-
tion magnetization at 7 T and 1.85 K is measured to be 1.8 µB. If the spin on the
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chromium atoms coupled ferromagnetically to the radical spins on the pyrazine rings
this would be expected to be ∼ 4µB. For an antiferromagnetically coupling this should
be around 2µB. Thus, this indicates an intralayer antiferromagnetic coupling with a
parallel alignment of the layer magnetic moments, such that a resulting magnetization
remains. DFT calculations show a significant spin density on the pyrazine rings and the

Fig. 6.3: a Susceptibility-temperature product as a function of temperature measured with
a d.c. magnetic field at µ0Hdc = 0.1 T applied. Inset: Temperature dependence of magnetic
susceptibility for various d.c. field strengths. b Magnetic field dependence of the magnetiza-
tion at selected temperatures measured with a sweep rate of 30 Oe min−1. Inset: Remnant
magnetization as a function of temperature. The solid line is a simulation of the tempera-

ture dependence of the remnant magnetization using Mrem ∝
(
1−

(
T
Tc

)α)β
with α = 2.0,

β = 0.33 and Tc = 52 K. This figure is collected from Pedersen et al. [4].

antiferromagnetic exchange coupling between the Cr3+-ions and the pyz radical spins is
estimated to be ∼ −2, 000 cm−1 ' −0.25 eV. The alignment of the magnetic moments
has also been investigated with DFT calculations. Two states have been compared,
the experimentally observed ferrimagnetic state and the antiferromagnetic state, i.e.,
where the layer magnetic moments couple antiferromagnetically. The DFT-optimized
structures have similar lattice constants, which do not deviate significantly from the
experimental results. In both cases the local magnetic moments on the pyz ligands are
found to be antiparallel to the local magnetic moments on the Cr-ions, and the local
magnetic moment on the Cr atoms is estimated from DFT calculations to be ∼ 2.54µB.
This is significantly smaller than the expected ∼ 3µB for S = 3/2. To be able to deter-
mine this experimentally, X-ray magnetic circular dichroism (XMCD) experiments have
been performed from which the Cr local magnetic moment is estimated to be 2.3µB, see
Fig. D.1 in Appendix D. From DFT the total magnetization of a unit cell is found
to be 1.98µB. This agrees with the measured value, 1.8µB. The band structures of
both states and the PDOS are viewed and compared to the band structures produced
in the following section. DFT calculations suggests a strong degree of π − d conjuga-
tion which could explain both the high magnetic ordering temperature and the high
electrical conductivity.
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6.3 Model complex CrCl2(pyz)4

To begin with the energy levels and symmetries of the model complex CrCl2(pyz)4 is
investigated. This molecule is viewed in Fig. 6.4. For the calculations in this section to
be applicable, when investigating monolayer CrCl2(pyz)2, the stoichiometry used in this
section will be that of CrCl2(pyz)2 and not CrCl2(pyz)4. One unit cell of CrCl2(pyz)2

consists of one Cr-ion, two Cl-ions and two pyrazine rings. The electron configuration
for Cr and Cl is [Ar]4s13d5 and [Ne]3s23p5, respectively. Thus, each chlorine atom
collects an electron from the chromium atom, which is then reduced by two electrons.
As argued from DFT caulcations in the previous section, the two pyrazine rings reduces
the Cr atom of an extra electron, such that three electrons remain in an unfilled d-shell
on the Cr-ion. If these spins occupy three distinct energy levels and align parallely to
each other, to obey Hund’s first rule, the spin on the Cr-atoms is S = 3/2.
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2, b

: Cr
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Fig. 6.4: Illustration of the model complex CrCl2(pyz)4. The nomenclature of the six relevant
atoms, the coordinate system in use and the orientation of the pyrazine rings is illustrated.

As seen from Fig. 6.1 two neighbouring chromium atoms couple through a pyrazine
ring. A pyrazine ring is much like a benzene ring except for the fact that two of the
carbon atoms have been replaced with nitrogen atoms. Nitrogen atoms possess one
extra electron compared to carbon atoms, which results in two less hydrogen atoms on
each ring. Instead there is a lone-pair electron on the nitrogen atoms. A benzene ring
has four energy levels of which two are two-fold degenerate. Replacing two carbon atoms
with nitrogen atoms lifts this degeneracy, due to the decrease in symmetry; a pyrazine
ring thus has 6 non-degenerate energy levels. The d-orbitals on the chromium atoms
mainly couple to the pz orbitals of the atoms of the pyrazine ring. For simplicity only
these orbitals will be included. The eigenstates of the six energy levels of the pyrazine
ring are then approximated as either even or odd linear combinations of pz-orbitals
with different amplitudes on each one of the six sites in the pyrazine ring. Since the
interaction between the chromium atom and the atoms in the pyrazine rings decreases
with increasing distance, the ring is approximated to be a single site. Therefore, only the
two linear combinations with the greatest amplitudes on the nitrogen atoms are included
and the rest is neglected. Thus, the pyrazine rings are approximated as a single "atom"
on which pz-orbitals with two different amplitudes, α2 and α4, are located, where the
latter is even and the former is odd. Lastly, the pyrazine rings are rotated compared to
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the Cl-Cr-Cl axis, see Fig. 6.1 c. Pedersen et al. measure these rotation angles to be
42.5° and 43.9° with respect to the crystallographic c direction for the pyrazine ring 1
and 2, respectively. This will be approximated as 45° in both cases. This means that the
pz′-orbitals of the pyrazine "atoms" are instead linear combinations of both px, py and
pz orbitals with respect to the global coordinate system, see Fig. 6.4. Thus, z′ refer
to the local coordinate system of the pyrazine sites, i.e., the direction perpendicular to
the rings.

As in previous sections the full Hamiltonian for a single molecule can be written in
terms of the Slater Koster elements. The full Hamiltonian is written in the basis

|Ψ〉 = {|dxy〉, |dyz〉, |dzx〉, |dx2−y2〉, |dz2〉, |ptx〉, |pty〉, |ptz〉, |pbx〉, |pby〉, |pbz〉,
|p1,r
z′ (α2)〉, |p1,r

z′ (α4)〉, |p2,t
z′ (α2)〉, |p2,t

z′ (α4)〉,
|p1,l
z′ (α2)〉, |p1,l

z′ (α4)〉, |p2,b
z′ (α2)〉, |p2,b

z′ (α4)〉},
(6.2)

where the first five elements refer to the d-orbitals of the chromium atom followed by the
three p-orbitals of both chlorine atoms (top and bottom), and lastly the pz′-orbitals for
the four pyrazine-"atoms". As in section 5.2.1 the full Hamiltonian can be projected
into the subspace of the d-orbitals and an analytical expression for the 5x5 matrix
V †pdVpd can be obtained. To make the matrix block diagonal, this is written in the basis
{dyz, dzx, dxy, dx2−y2 , dz2},

Hd =


M11 M12 0 0 0
M12 M22 0 0 0

0 0 M11 M34 M35

0 0 M34 M44 M45

0 0 M35 M45 M55

 , (6.3)

with

M11 =
1

2
|Vpdπ|2(4 + α), (6.4)

M12 = −
√

3

2
VpdσV

†
pdπα, (6.5)

M22 =
3

2
|Vpdσ|2α, (6.6)

M34 =
1

4
V †pdπα

(√
2Vpdπ −

√
3Vpdσ

)
, (6.7)

M35 = −1

4
V †pdπα

(√
6Vpdπ + Vpdσ

)
, (6.8)

M45 =
1

8

[
4
√

3|Vpdσ|2 − α
(

2
√

3Vpdπ +
√

2Vpdσ

)(
V †pdπ −

√
3

2
V †pdσ

)]
, (6.9)

M44 =
1

8

[
12
√

3|Vpdσ|2 + α
(

2Vpdπ −
√

6Vpdσ

)(
V †pdπ −

√
3

2
V †pdσ

)]
, (6.10)

M55 =
1

8

[
4|Vpdσ|2 + α

(
V †pdπ

(
6Vpdπ +

√
6Vpdσ

)
+ V †pdσ(Vpdσ +

√
6Vpdπ)

)]
, (6.11)
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where α = |α2|2 + |α4|2 has been defined. The two blocks in Eq. (6.3) are trivial to
diagonalize. It is evident from Eq. (6.3) that the dyz orbital only couples to the dzx
orbital, and further that dxy, dx2−y2 and dz2 only couple to each other. To understand
this, the symmetries of the molecule are investigated.

The fact that the pyrazine rings are rotated decreases the symmetry of the molecule.
As always the group describing the symmetry of CrCl2(pyz)4 includes identity. In ad-
dition to this only three more operations leave the molecule invariant, namely inversion
(i), a rotation of π around the z-axis (C2(z)), and a reflection in the plane spanned
by the x- and y-axis (σh), see Fig. 6.4. These four symmetry-operations form the
point group C2h. This group is abelian and thus both the order of the group and the
number of irreducible representations are equal to four. The character table can now
be constructed using the rules listed in the bottom of section 2.0.2, see Table 6.1.

C2h E C2(z) i σh Quadratic Functions
Ag 1 1 1 1 x2, y2, z2, xy
Bg 1 -1 1 -1 yz, zx
Au 1 1 -1 -1 −
Bu 1 -1 -1 1 −

Table 6.1: Character table of the C2h group [38].

From this character table it is observed that yz and zx belong to the same representation
and similarly for the rest of the d-orbitals. This explains the block diagonal form of
Eq. (6.3). Further, we see from this equation that 〈xy|Ĥ|xy〉 = 〈yz|Ĥ|yz〉, which has
to do with the symmetry of the object and the chosen coordinate system.

6.4 Monolayer CrCl2(pyz)2

6.4.1 Tight Binding Model

Monolayer chromium-chloride-pyrazine, see Fig. 6.5 (a), is now investigated. Using
the Rietveld refinement technique6, Pedersen et al. [4] have found the three lattice
constants to be a = 6.90351(4) Å, b = 6.97713(4) Å, and c = 10.82548(6) Å. The
proximity of a and b motives the lattice to be approximated as a square lattice in the
Cr-pyz plane. The relevant symmetry-points are thus approximated to be

Γ = (0, 0, 0), M =

(
0, 0,

1√
2

)
, X =

(
− 1

2
√

2
, 0,

1

2
√

2

)
. (6.12)

6Rietvild refinement is a technique used to characterize crystalline structures developed by Hugo
Rietveld. Neutron and x-ray diffraction of powder yields a pattern characterized by reflections at
specific positions. Using a non-linear least square method, the Rietveld method then fits theoretical
predictions to the experimental data to determine various charactistics of the structure [39].
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zx
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a2

: pyz

: Cr

(a)

Γ
X

M

(b)

Fig. 6.5: (a) Monolayer CrCl2(pyz)2 viewed along the Cl-Cr-Cl axis. The chromium and
pyrazine sites are illustrated with black and white cirles, respectively. Further, the unit cell is
marked with a dashed square and the relevant lattice vectors and the used coordinate system
is indicated. The last lattice vector, a3, not indicated, points from Cr to the top Cl. (b) The
symmetry-points used in the calculations of the band structure marked on an illustration of
the approximated square Brillouin zone.

These symmetry points are indicated on the Brillouin zone illustrated in Fig. 6.5 (b).

A unit cell includes one chromium atom, two chlorine atoms and two pyrazine rings,
which will be labeled 1 and 2. Assuming that the two pyrazine rings have the same onsite
energy, and similarly for the chlorine and chromium atoms, a tight binding Hamiltonian
for this system in real-space, including only nearest neighbour interactions between p-
and d-orbitals, can be written as

Ĥ =ξCr
∑
ri

5∑
µ=1

d̂†i,µd̂i,µ + ξCl
∑
ri

3∑
ν=1

[
(p̂ti,ν)

†p̂ti,ν + (p̂bi,ν)
†p̂bi,ν

]
+ ξpyz

∑
ri

[
(p̂1
i,z′)

†p̂1
i,z′ + (p̂2

i,z′)
†p̂2
i,z′

]
+

1

2

∑
ri

∑
rj±=ri±a1

5∑
µ=1

[
t1,rµ,z′ d̂

†
i,µp̂

1
j+,z′ + t1,lµ,z′ d̂

†
i,µp̂

1
j−,z′ + h.c.

]
(6.13)

+
1

2

∑
ri

∑
rj±=ri±a2

5∑
µ=1

[
t2,tµ,z′ d̂

†
i,µp̂

2
j+,z′ + t2,bµ,z′ d̂

†
i,µp̂

2
j−,z′ + h.c.

]

+
∑
ri

∑
rj±=ri±a3

5∑
µ=1

3∑
ν=1

[
ttµ,ν d̂

†
i,µp̂

t
j+,ν

+ tbµ,ν d̂
†
i,µp̂

b
j−,ν + h.c.

]
.

Here d̂†i,µ (d̂i,µ) creates (annihilates) an electron on the chromium site at ri in unit cell i
and orbital µ. Similarly, the operator (p̂t,bj,ν)

† and p̂t,bj,ν creates and annihilates an electron
in the orbital ν at the chlorine atom at site ri ± a3, respectively. Lastly, the operators
(p̂

1(2)
j,z′ )

† and p̂1(2)
j,z′ creates and annihilates an electron in a pz′ orbital on the pyrazine site

1 (2) at ri + a1 (ri + a2), respectively.
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The three first terms of the Hamiltonian states the onsite energies of the d- and p-
orbitals of the five atoms in the unit cell. Further, the Hamiltonian consists of six
terms where an electron can hop from a p-orbital to any nearest neighbor d-orbital. The
Hermitian conjugate of these terms includes hopping from a d-orbital to any nearest
neighbour p-orbital. The factor 1/2 is included on eight of these terms to prevent double
counting. For simplicity the spin indices are omitted. The following onsite energies and
hopping matrices have been defined

ξCr = 〈ri; dµ|Ĥt|ri; dµ〉, (6.14)

ξCl = 〈ri ± a3; pν |Ĥt|ri ± a3; pν〉, (6.15)

ξpyz = 〈ri ± a1; pz′ |Ĥt|ri ± a1; pz′〉 = 〈ri ± a2; pz′ |Ĥt|ri ± a2; pz′〉, (6.16)

ttµν = 〈ri; dµ|Ĥt|ri + a3; pν〉, (6.17)

tbµν = 〈ri; dµ|Ĥt|ri − a3; pν〉, (6.18)

t1,rµz′ = 〈ri; dµ|Ĥt|ri + a1; pz′〉, (6.19)

t1,lµz′ = 〈ri; dµ|Ĥt|ri − a1; pz′〉, (6.20)

t2,tµz′ = 〈ri; dµ|Ĥt|ri + a2; pz′〉, (6.21)

t2,bµz′ = 〈ri; dµ|Ĥt|ri − a2; pz′〉. (6.22)

Ĥt includes hopping between the two relevant orbitals, see Eq. (5.1). The numerical
values for these can be obtained using the Slater Koster decomposition. ttµν and tbµν
are 3x5 matrices that consists of the Slater Koster matrix elements stated in section
5.2. The hopping matrices for the pyrazine rings are 2x5 matrices that include both
the even and odd wavefunction for the pyrazine rings as described in the section 6.3.
These matrices thus have the form

t1,rµz′ =

[
α2Ez′,xy α2Ez′,yz α2Ez′,zx α2Ez′,x2−y2 α2Ez′,z2
α4Ez′,xy α4Ez′,yz α4Ez′,zx α4Ez′,x2−y2 α4Ez′,z2

]
, (6.23)

t1,lµz′ =

[
−α2Ez′,xy −α2Ez′,yz −α2Ez′,zx −α2Ez′,x2−y2 −α2Ez′,z2
α4Ez′,xy α4Ez′,yz α4Ez′,zx α4Ez′,x2−y2 α4Ez′,z2 .

]
(6.24)

These Slater Koster elements in the global coordinate system for d-orbital µ is given by

Ez′,µ =

[
1

4

(√
2− 2

)
Ex,µ + 2Ey,µ +

(
2 +
√

2
)
Ez,µ

]
. (6.25)

The bonding matrices t2,tµz′ and t
2,b
µz′ are of similar form.
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The Hamiltonian can now be Fourier transformed to give

Ĥ =
∑

k

{
ξCr

5∑
µ=1

d̂†k,µd̂k,µ + ξCl
3∑

ν=1

[
(p̂tk,ν)

†p̂tk,ν + (p̂bk,ν)
†p̂bk,ν

]
+ ξpyz

[
(p̂1

k,z′)
†p̂1

k,z′ + (p̂2
k,z′)

†p̂2
k,z′

]
+

5∑
µ=1

[
d̂†k,µp̂

1
k,z′

(
t1,rµ,z′e

ik·a1 + t1,lµ,z′e
−ik·a1

)
+ h.c.

]
(6.26)

+
5∑

µ=1

[
d̂†k,µp̂

2
k,z′

(
t2,tµ,z′e

ik·a2 + t2,bµ,z′e
−ik·a2

)
+ h.c.

]
+

5∑
µ=1

3∑
ν=1

[
ttµ,ν d̂

†
k,µp̂

t
k,νe

ik·a3 + tbµ,ν d̂
†
k,µp̂

b
k,νe

−ik·a3 + h.c.
]}

.

The eigenenergies of this Hamiltonian can be found numerically for the path M →
Γ → X in reciprocal space to obtain the band structure in Fig. 6.6. The following
values have been used to obtain these energy bands, ξCl = −7.048 eV, ξCr = −0.856
eV, ξpyz = −2.944 eV, Vpdσ = 4.8 eV, Vpdπ = −1.344 eV, α2 = 0.428, α4 = 0.932.
This is viewed alongside the band structure of CrCl2(pyz)2 both for a ferrimagnetic and
antiferromagnetic state obtained from DFT calculations performed by Pedersen et al.
[4]. The bands obtained here have been shifted in energy to be comparable with the
band structures collected from Pedersen et al. [4]. The Fermi Level is located at 0 eV.
Remember that these groundstates both exhibit antiferromagnetic interactions between
the chromium ions and the pyrazine ligands within the layers, but the orientation of
the CrCl2(pyz)2 layer magnetic moments are parallel or antiparallel, respectively. Note
that the DFT calculated band structures are thus for bulk CrCl2(pyz)2 whereas the
band structures obtained using tight binding are for monolayer CrCl2(pyz)2.

M Γ X

-6

-4

-2

0

2

4

k

E
[e
V
]

(a) (b)

Fig. 6.6: (a) Band structure of monolayer CrCl2(pyz)2 obtained from the tight binding
Hamiltonian viewed in Eq. (6.26) along the path M→ Γ→ X. (b) Band structure obtained
from DFT calculations [4] both for a ferromagnetic (c) and an antiferromagnetic (d) spin
configuration. Black (red) bands correspond to spin up (down).
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The d-bands are mainly located above 1.5 eV, which is clearly seen from the PDOS plot
obtained from DFT [4], see Fig. 6.7. This is consistent with the results from investigat-
ing the eigenvectors of the bands obtained in this section. These d-bands are quite flat,
which means that the d-electrons are localized at their sites. Pedersen et al. suggests
that this could indicate a strong π-d hybridization. Looking at the band structures ob-
tained from DFT, clearly the ferrimagnetic state has a metallic band structure whereas
the antiferromagnetic state is insulating. This can also be seen from the PDOS plots.
This contradicts the experimental results, which show that the observed ferrimagnetic
state exhibit an insulating behaviour, see Fig. 6.2 c. This discrepency is suggested by
Pedersen et al. to be due to the fact that DFT does not include the structural disorder
of the pyrazine ligands. The band structures obtained in this thesis agrees with the
experimental results of an insulating, ferrimagnetic groundstate, described in section
6.2.

Fig. 6.7: The PDOS obtained from DFT calculations by Pedersen et al. [4] for a ferrimagnetic
groundstate (a) and an antiferromagnetic groundstate (b).

6.4.2 Simple Model of Two Unit Cells of CrCl2(pyz)2

In the search of a better understanding of CrCl2(pyz)2 the simple model illustrated
in Fig. 6.8 is investigated. This is not identical to two unit cells of a single layer
of CrCl2(pyz)2 since it contains fewer pyrazine sites. Further, they are moved with
respect to the two chromium atoms. It does contain the battle between kinetic energy
and exchange energy. This toy model is developed in the pursuit of a simple model
to explain the behaviour of the relevant spins in CrCl2(pyz)2. In this model the two
chromium atoms are viewed as localized spins with length S = 3/2. Further, it includes
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2

4

3

1 BA

Fig. 6.8: Simple model containing two chromium sites (light circles) and four pyrazine sites
(dark circles). Each Chroimium spin only couples to three out of the four pyrazine sites.

two electrons that can delocalize over the four pyrazine sites. The chlorine sites are
neglected in this model, except for the fact that they have reduced the number of
electrons on the chromium sites. In this model the exchange coupling between the
chromium spins and the spin of the two electrons on the pyrazine sites is included.
Further, the electrons on the pyrazine sites are able to hop between the pyrazine sites,
indicated with dashed lines in Fig. 6.8. Lastly, a cost due to Coulomb repulsion, U ,
is included if these two electrons are located at the same site. The full Hamiltonian is
thus written as

Ĥ =− 2JŜA ·
(
Ŝ1 + Ŝ2 + Ŝ3

)
− 2JŜB ·

(
Ŝ2 + Ŝ3 + Ŝ4

)
− t

∑
σ=↑,↓

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ3σ + ĉ†1σ ĉ3σ + ĉ†2σ ĉ4σ + ĉ†3σ ĉ4σ + h.c.

)
+ U

4∑
i=1

∑
σ,σ′=↑,↓

ĉ†iσ′ ĉ
†
iσ ĉiσ ĉiσ′ ,

(6.27)

where ŜA and ŜB represent the spin of the two chromium atoms, and Ŝi with i = 1, 2, 3, 4
represent the spin of the four pyrazine sites. ĉ†i and ĉi is the creation and annihilation
operator of an electron on site i, respectively. J is the exchange integral, t the hopping
constant, and U is the strength of the Coulomb repulsion of two electrons occupying
the same site. The −2J convention is adopted here to comply with the methods in [4].

The spins of each chromium ion can take four Sz values, i.e., |−3/2〉, |−1/2〉, |1/2〉 and
|3/2〉. The basis for the two electrons on the pyrazine sites will be written in terms of
the singlet and triplet states. For this purpose a new notation is introduced. A singlet
state with Sz = 0 will be represented by a line as illustrated in the following examples:

| − 00〉 =
1√
2

(| ↑↓ 00〉 − | ↓↑ 00〉) , (6.28)

| 0 0〉 =
1√
2

(| ↑ 0 ↓ 0〉 − | ↓ 0 ↑ 0〉) , (6.29)

| − 000〉 =
1√
2

(| ↑↓ 000〉 − | ↓↑ 000〉) . (6.30)
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The first state is a singlet state between an electron on site 1 and an electron on site
2, the second between an electron on site 1 and one on site 3, and the last is a singlet
state of two electrons both occupying site 1. A triplet state with Sz = 0 is represented
by an arrow as

| → 00〉 =
1√
2

(| ↑↓ 00〉+ | ↓↑ 00〉) , (6.31)

| 0 0〉 =
1√
2

(| ↑ 0 ↓ 0〉+ | ↓ 0 ↑ 0〉) . (6.32)

Due to the Pauli principle, the state in Eq. (6.30) is not a possible triplet state. The
triplet states are represented by an arrow since the positive sign in the superposition
means that ĉ†1↑ĉ

†
2↓ + ĉ†1↓ĉ

†
2↑ = −

(
ĉ†2↑ĉ

†
1↓ + ĉ†2↓ĉ

†
1↑

)
contrary to the singlet states where

these two states would be identical. All triplet states are defined such that the creation
operator to the left creates an electron on a site denominated with a lower numerical
value compared to the creation operator to the right. Similarly, for the triplet states
with Sz = 1 and Sz = −1. The basis for the two electrons are thus

|ψ〉 =
{
| − 00〉, |0− 0〉, |00−〉, | 0 0〉, |0 0 〉, | 00 〉,
| − 000〉, |0− 00〉, |00− 0〉, |000−〉,
| ↓↓ 00〉, |0 ↓↓ 0〉, |00 ↓↓〉, | ↓ 0 ↓ 0〉, |0 ↓ 0 ↓〉, | ↓ 00 ↓〉, (6.33)

| → 00〉, |0→ 0〉, |00→〉, | 0 0〉, |0 0 〉, | 00 〉,
| ↑↑ 00〉, |0 ↑↑ 0〉, |00 ↑↑〉, | ↑ 0 ↑ 0〉, |0 ↑ 0 ↑〉, | ↑ 00 ↑〉

}
.

The full state is then given by |msA〉 ⊗ |msB〉 ⊗ |ψ〉, where |msA〉 and |msB〉 is the
z-component of the A and B chromium spins, respectively. The Hilbert space is thus
448 dimensional. For this reason the Hamiltonian is diagonalized numerically. To
be able to accomplish this, the Hamiltonian is first rewritten, using that Ŝ1 · Ŝ2 =
Ŝz1 Ŝ

z
2 + 1

2

(
S+

1 S
−
2 + S−1 S

+
2

)
, such that

Ĥ =− 2JŜzA

(
Ŝz1 + Ŝz2 + Ŝz3

)
− JŜ+

A

(
Ŝ−1 + Ŝ−2 + Ŝ−3

)
− JŜ−A

(
Ŝ+

1 + Ŝ+
2 + Ŝ+

3

)
− 2JŜzB

(
Ŝz2 + Ŝz3 + Ŝz4

)
− JŜ+

B

(
Ŝ−2 + Ŝ−3 + Ŝ−4

)
− JŜ−B

(
Ŝ+

2 + Ŝ+
3 + Ŝ+

4

)
− t

∑
σ=↑,↓

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ3σ + ĉ†1σ ĉ3σ + ĉ†2σ ĉ4σ + ĉ†3σ ĉ4σ + h.c.

)
+ U

4∑
i=1

∑
σ,σ′=↑,↓

ĉ†iσ′ ĉ
†
iσ ĉiσ ĉiσ′ .

(6.34)
To begin with, we focus on the first three exchange terms including ŜzA. The chromium
part of this is trivial to write in matrix form, in the basis {|−3/2〉, |−1/2〉, |1/2〉, |3/2〉},
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as

SzCr =


−3

2
0 0 0

0 −1
2

0 0
0 0 1

2
0

0 0 0 3
2

 . (6.35)

Now, let us see how this affects the basis states for the electrons on the pyrazine sites.
Applying this operator on basis states where neither of the two electrons are located
on site 4 results in the expected Sz = 0 for a singlet state, e.g.,(

Ŝz1 + Ŝz2 + Ŝz3

)
| − 00〉 =

1√
2

(
1

2
| ↑↓ 00〉 − 1

2
| ↑↓ 00〉 − 1

2
| ↓↑ 00〉+

1

2
| ↓↑ 00〉

)
= 0.

(6.36)

Similarly, for triplet states with Sz = 0 with no electrons occupying site 4 and for singlet
states where both electrons occupy the same site. On the other hand, when one of the
electrons is occupying site 4, singlet and triplet states are coupling, as in the following
example(

Ŝz1 + Ŝz2 + Ŝz3

)
|00−〉 =

1√
2

[
1

2
|00 ↑↓〉 −

(
−1

2
|00 ↓↑〉

)]
=

1

2
|00→〉. (6.37)

The triplet states with Sz = 1 or Sz = −1 are eigenstates to this operator, though the
eigenvalue depends on whether one of the electrons is occupying site 4 or not, as seen
in the following examples:(

Ŝz1 + Ŝz2 + Ŝz3

)
|0 ↓↓ 0〉 = −|0 ↓↓ 0〉, (6.38)(

Ŝz1 + Ŝz2 + Ŝz3

)
|00 ↓↓〉 = −1

2
|00 ↓↓〉, (6.39)(

Ŝz1 + Ŝz2 + Ŝz3

)
|0 ↑↑ 0〉 = |0 ↑↑ 0〉, (6.40)(

Ŝz1 + Ŝz2 + Ŝz3

)
|00 ↑↑〉 =

1

2
|00 ↑↑〉. (6.41)

This procedure is similar for the SzB part of the Hamiltonian, though in this case, singlet
and triplet states with Sz = 0 are coupled when one of the electrons occupy site 1.

Now, let us look at the last two parts of the first line of Eq. (6.34). The raising and
lowering operators for the chromium spins can be written as

S+
Cr =


0 0 0 0√
3 0 0 0

0 2 0 0

0 0
√

3 0

 and S−Cr =


0
√

3 0 0
0 0 2 0

0 0 0
√

3
0 0 0 0

 . (6.42)

For the electrons on the pyrazine sites it is not as simple. As before, the outcome
depends on whether one of the electrons is occupying site 4 or not.
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Focusing on the electron part including raising operators for the pyrazine electrons, a
few cases will be shown to illustrate how the basis states are affected by these operators,(

Ŝ+
1 + Ŝ+

2 + Ŝ+
3

)
| − 00〉 = 0, (6.43)(

Ŝ+
1 + Ŝ+

2 + Ŝ+
3

)
|00−〉 = − 1√

2
|00 ↑↑〉, (6.44)(

Ŝ+
1 + Ŝ+

2 + Ŝ+
3

)
| → 00〉 =

√
2| ↑↑ 00〉, (6.45)(

Ŝ+
1 + Ŝ+

2 + Ŝ+
3

)
|00→〉 =

1√
2
|00 ↑↑〉, (6.46)(

Ŝ+
1 + Ŝ+

2 + Ŝ+
3

)
|00 ↓↓〉 = |00 ↑↓〉

=
1

2
(|00 ↑↓〉+ |00 ↓↑〉) +

1

2
(|00 ↑↓〉 − |00 ↓↑〉)

=
1√
2
|00→〉+

1√
2
|00−〉. (6.47)

The final example is quite interesting since this results in a superposition between a
triplet state and a singlet state. A similar pattern can be observed when applying
the operator

(
Ŝ−1 + Ŝ−2 + Ŝ−3

)
. These results can be generalized to the B-part of the

Hamiltonian though in this case, the occupation of site 1 determines the outcome. The
full matrices used in the numerical calculations are shown in Appendix E.

The tight binding part of the Hamiltonian will now be investigated. Since the spin
is unchanged here, the singlet and the triplet states will not be coupled. One example
is sufficient to illustrate what happens to all ten singlet states,

Ĥt| − 00〉 = −t
(√

2| − 000〉+
√

2|0− 00〉+ | 0 0〉+ |0− 0〉+ | 00 〉
)
. (6.48)

Note that a factor of
√

2 arises when two single occupied state becomes a double occu-
pied state, since∑

σ

ĉ†1σ ĉ2σ| − 00〉 =
∑
σ

ĉ†1σ ĉ2σ
1√
2

(
ĉ†1↑ĉ

†
2↓ − ĉ†1↓ĉ†2↑

)
|0〉

=
1√
2

(
ĉ†1↑ĉ

†
1↓ − ĉ†1↓ĉ†1↑

)
|0〉 =

√
2| − 000〉. (6.49)

|0〉 represents the vacuum state. Due to the antisymmetry of a singlet state, the order
of the fermionic operators is irrelevant. To see how the triplet states are affected by
this, one example is again suffecient:

Ĥt| ↑↑ 00〉 =
∑
σ

(
ĉ†3σ ĉ1σ + ĉ†3σ ĉ2σ + ĉ†4σ ĉ2σ

)
| ↑↑ 00〉

=
(
ĉ†3↑ĉ1↑ĉ

†
1↑ĉ
†
2↑ + ĉ†3↑ĉ2↑ĉ

†
1↑ĉ
†
2↑ + ĉ†4↑ĉ2↑ĉ

†
1↑ĉ
†
2↑

)
|0〉

=
(
−ĉ†2↑ĉ†3↑ + ĉ†1↑ĉ

†
3↑ + ĉ†1↑ĉ

†
4↑

)
|0〉

= −|0 ↑↑ 0〉+ | ↑ 0 ↑ 0〉+ | ↑ 00 ↑〉. (6.50)
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The last term in Eq. (6.34) that includes the Coulomb repulsion between electrons oc-
cupying the same site is trivial to include for the four relevant double-occupied singlet
states.

Now, the 448x448 Hamiltonian can be diagonalized numerically. To invoke an ani-
tiferromagnetic coupling between the spin of the pyrazine electrons and the chromium
spins, J must be negative. When all three variables, J , t and U , are comparable in
size, the groundstate energy is two-fold degenerate. The eigenstates of these consists
of superpositions, including many different states, though one basis state in each are
highly dominant, i.e.,

| − 3/2,−3/2〉 ⊗ |0 ↑↑ 0〉 and |3/2, 3/2〉 ⊗ |0 ↓↓ 0〉. (6.51)

The contribution from the exchange interaction in the Hamiltonian is minimized for
maximal spin of both the pyrazine electrons and the chromium spins. The Cr spins
are antiparallel to the pyz spins due to the sign of J . Electrons located at site 2 and 3
couple to both chromium spins, in contrast to electrons located at site 1 and 4. Thus,
the exchange interaction is further minimized by the electrons being located at site 2
and 3. For t = 0 this effect is even more dominant, and the amplitudes of the states
shown in Eq. (6.51) increases. Though, when t 6= 0 the electrons can gain energy by
delocalizing, and the amplitudes on the triplet states with Sz = 0 and the singlet states
increases.

(a) (b)

Fig. 6.9: The two different configurations of the spins on the pyrazine sites. The electron
can delocalize over two sites with different exchange energy, in this way both minimizing the
exchange coupling term and the tight binding term in Eq. (6.27).

Focusing on the dominant part of the eigenstates, i.e., going to the limit where J � t,
a simple model is suggested to understand how the groundstate energy changes when
increasing the hopping parameter t. For t = 0 the two electrons will be on site 2 and 3
with their spins antiparallel to the chromium spins. When t increases the two electrons
can delocalize over two sites each and still avoid each other. This they can do in two
different configurations. One electron can hop between site 1 and 2 while the other
hops between 3 and 4, see Fig. 6.9 (a), or one electron can hop between site 1 and 3
while the other hops between 2 and 4, see Fig. 6.9 (b).
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The two sites, over which a single electron delocalizes, do not exhibit the same energy,
due to the fact that the electron can couple to both Cr spins at one site and not the
other. The gap between these two levels is ∆ = 3J

4
. This yields the Hamiltonian

Ĥ =

[
3J
4

t
t −3J

4

]
, (6.52)

with eigenvalues

E = ±
√(

3J

4

)2

+ t2. (6.53)

It is trivial to conclude that the negative solution is the groundstate. Now, this function
can be plotted together with the exact eigenvalues as a function of t with J = −0.2529
eV and U = 0.2529 eV, see Fig. 6.10. The value chosen for J is taken from Pedersen
et al. [4] as described in section 6.2. U is chosen to be of the same size as J . Note
that Eq. (6.53) has been shifted to fit with the exact eigenvalues. Clearly, the exact
groundstate energies follow this simple model quite closely. The exact solution is a bit
lower in energy compared to Eq. (6.53). This can be explained by the fact that it can
make the other configuration depicted in Fig. 6.9 (b). This only lowers the energy
slightly since the change must be coordinated such that the electrons still avoid each
other. The solutions do not change when setting U = 0 since the states where the two
electrons occupy the same site is not favourable in this model, even without U present
in the model.

Egs

-2  3
4
2 J2 + t2 -1.64
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Fig. 6.10: The five lowest, degenerate eigenenergies plotted as a function of t with J =
−0.2529 eV and U = 0.2529 eV alongside with the function in Eq. (6.53), though it has been
shifted.

When t = 0 the groundstate energy becomes five-fold degenerate. Setting t 6= 0 this
energy split in three, of which two is two-fold degenerate. That it is five-fold degenerate
in the limit J � t indicates that the system behaves as a spin 2 particle.



CHAPTER 6. CRCL2(PYZ)2 76

This can be understood from

Ŝztot|3/2〉 ⊗ |3/2〉 ⊗ |0 ↓↓ 0〉 =
(
ŜzA + ŜzB + Ŝz2 + Ŝz3

)
|3/2〉 ⊗ |3/2〉 ⊗ |0 ↓↓ 0〉

=

(
3

2
+

3

2
− 1

2
− 1

2

)
|3/2〉 ⊗ |3/2〉 ⊗ |0 ↓↓ 0〉

= 2|3/2〉 ⊗ |3/2〉 ⊗ |0 ↓↓ 0〉.

(6.54)

Clearly, this yield a ferrimagnetic ordering. All these five lowest states are plotted in
Fig. 6.10 both for t = 0 and t 6= 0. To see how these states are affected by an external
magnetic field, the following term is added,

ĤB = gµBB · Ŝtot = gµBB
zŜztot. (6.55)

The magnetic field is chosen to point in the z-direction. As seen in Fig. 6.11 (a)
the five-fold degeneracy of the groundstate for t = 0 is lifted when a magnetic field is
applied. Furthermore, we see that for t 6= 0, see Fig. 6.11 (b), the energy split in
three, of which two is two-fold degenerate. The two double degenerate states act as
a doublet, and the non-degenerate states behaves as a singlet for increasing magnetic
fields.
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Fig. 6.11: The five lowest eigenenergies of Eq. (6.27) + Eq. (6.55) depicted as a function of
B/µb with J = −0.2529 eV, U = 0.2529 eV and t = 0 eV (a) or t = 0.2529 eV (b). Clearly,
the degeneracy is lifted for B 6= 0.

From the introduced magnetic field, the expectation value of the total spin can be
obtained using

〈Stot〉 =
∂E

∂B
. (6.56)

Both for t = 0 and t 6= 0, this is found numerically to yield S = 2, which agrees with
previous conclusions.

We will now follow the same procedure as above, this time on a model that have a
closer resemblance to the structure of CrCl2(pyz)2. In this case all four pyrazine sites
exhibit the same exchange coupling to both chromium spins, see Fig. 6.12.
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4

3

1

2
BA

Fig. 6.12: Illustration of the model investigated in this section. It includes two Cr-ions (light
grey) and four pyrazine sites (dark grey), on which two electrons in total can be located.

The same three interactions as in the previous section are included here. Due to the
different shape of the model, the Hamiltonian is not completely identical to the previous.
In this case the Hamiltonian reads

Ĥ =− 2J
(
ŜA + ŜB

)
·
(
Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4

)
− t

∑
σ=↑↓

(
ĉ†1σ ĉ2σ + ĉ†2σ ĉ4σ + ĉ†1σ ĉ3σ + ĉ†3σ ĉ4σ + h.c.

)
+ U

4∑
i=1

∑
σσ′=↑↓

ĉ†iσ′ ĉ
†
iσ ĉiσ ĉiσ′ .

(6.57)

To diagonalize this Hamiltonian numerically, the basis used above is employed. Since
all sites now couple to both chromium spins, singlet and triplet states do no longer
couple. Thus, the exchange part of the Hamiltonian simply consists of operators acting
on the total spin of the state. For the tight binding part of the Hamiltonian, a factor of√

2 is still introduced when two single occupied states become a double occupied state
and vice versa. Further, the ordering of the creation and annihilation operators still
results in sign changes for the triplet states.
Solving Eq. (6.57) numerically, we find that for t = 0 eV the groundstate energy is
thirty-fold degenerate whereas when t 6= 0 the groundstate energy is ten times degener-
ate. This higher degeneracy is due to the increased symmetry of this model compared
to the former. Two of these groundstates are dominated by the following basis states

| − 3/2〉 ⊗ | − 3/2〉 ⊗ |00 ↑↑〉 and | − 3/2〉 ⊗ | − 3/2〉 ⊗ | ↑↑ 00〉. (6.58)

The other eigenstates include many more states where none dominates as clearly as
these two states. Now we can simplify this model to only include the two states in Eq.
(6.58) where the hopping allows them to delocalize in two different configurations as
shown in Fig. 6.13. In this case the site over which the electron delocalizes exhibit
the same energy, so the eigenenergies is expected to decrease with a slope of −2t. This
is exactly what is observed from the eigenvalues, see Fig. 6.14.
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(a) (b)

Fig. 6.13: The two configurations of the spins on the pyrazine sites in this model. The
electrons can delocalize over two sites, in this way both minimizing the tight binding part and
exchange part of the Hamiltonian. For simplicity the chromium atoms have been omitted.
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Fig. 6.14: The ten lowest, degenerate eigenenergies plotted as a function of t with J =
−0.2529 eV and U = 0.2529 eV together with the function −2t− J .

Adding a magnetic field using Eq. (6.55), the expectation value of the total spin of
this toy model is also found to be S = 2. Since this model contains the same number
of pyrazine rings and chromium atoms as two unit cells of CrCl2(pyz)2, this would
correspond to one unit cell having S = 1. This yields a magnetic moment of 2µB,
which agrees with previous results obtained above. Further, it agrees with both the
experimental and numerical results from Pedersen et al. [4]. Generalizing these results
to monolayer CrCl2(pyz)2, a possible configuration is depicted in Fig. 6.15. The spin
of the electrons on the pyrazine sites couple ferromagnetically, and each delocalize over
two neighbouring pyrazine sites. Further, the electrons on the pyrazine sites couple
antiferromagnetically with the spins of the chromium sites. Due to the uneven length
of the spins on the chromium sites and the spins on the pyrazine sites, this results in a
ferrimagnetic coupling. Obviously, the delocalization of the electrons can be configured
in several ways, but one configuration is chosen since it will be very energetically costly
to change configuration. The electrons on the pyrazine sites are drawn randomly on
either of the two sites it can occupy.
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Fig. 6.15: A sketch of one of the configurations the spins on the pyrazine ligands can choose.

This model provides an approximate and intuitive description of CrCl2(pyz)2, though
it is most likely too simple to grasp the physical aspects of the material. Due to the big
size of the pyrazine rings, the Coulomb repulsion on these sites are quite low. Thus,
the electrons on the pyrazine sites can most likely gain a lot of energy by delocalizing
in a greater extend than this model allow for. Instead, the valence electrons on the
chromium sites can be viewed as localized ions, and the electrons on the pyrazine ligands
as a free electron gas. Thus, this interaction can be investigated using the RKKY
(Ruderman-Kittel-Kasuya-Yosida) model to describe the indirect exchange coupling
between neighbouring chromium spins. First, the direct exchange interaction between
the chromium spins and the pyrazine spins is investigated.

6.4.3 Exchange Interaction between Cr and Pyz

To understand why CrCl2(pyz)2 exhibit ferrimagnetic properties, the direct exchange
interaction between the spins on the chromium sites and the neighbouring pyrazine sites
can be investigated. Here, two electrons exchange location with one intermediate step.
In this proces the spin of the included electrons remain unchanged. In the crystallized
environment five relevant energy levels are present on the chromium site of which three
of these are singly occupied. Let |ψ〉 represent the relevant eigenstate of the highest
occupied energy level on the chromium site. This is a superpostion of d-orbitals, and the
explicit expression is obtained from the numerical calculations of the band structures
obtained in section 6.4.1. Both pyrazine sites in the unit cell will be included. Let
|φ〉 represent the relevant eigenstate of the highest occupied state on the pyrazine sites.
This can be written as

|φ〉 =
1√
2

(|φ1〉+ |φ2〉) , (6.59)

where |φ1〉 and |φ2〉 denotes the eigenstates of the highest occupied energy level on the
two pyrazine sites in the unit cell, also obtained from the band structure.
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Seven electrons are present in this collective pyrazine site. The electron on the highest
occupied state on the chromium site should now exchange location with the electron
on the highest occupied state on the collective pyrazine site. This exchange can be
achieved in many ways, though two are by far the most dominant. Both are illustrated
in Fig. 6.16.

t t

−∆ + U

1.

∆

t t

∆

2.

Fig. 6.16: Schematic view of the two ways that an electron on the pyrazine sites can exchange
location with an electron on the chromium site of one unit cell. Left column illustrates the
energy levels of the five d-orbitals. Right column illustrates the six energy levels of two included
pyrazine sites.

An expression for the change in energy, that arises from the interaction, is obtained
through second order perturbation theory,

∆E(2) = −|〈ψ|Ĥt|φ〉|2
−∆ + U

− |〈ψ|Ĥt|φ〉|2
∆

= −|〈ψ|Ĥt|φ〉|2
(

1

(1−∆/U)∆

)
= J. (6.60)

Ĥt denotes the tight binding Hamiltonian given in Eq. (5.1). ∆ denotes the difference
in energy of the two relevant energy levels, and U is the strength of the Coulomb
repulsion of two electrons occupying the same energy level on the chromium site, see
Fig. 6.16. The Coulomb repulsion for two electrons occupying the same energy level
on the two pyrazine sites is neglected due to the much larger spatial extend compared
to the chromium site. For the coupling between the Cr sites and the pyrazine sites to
be antiferromagnetic, it requires that ∆ > U .
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6.4.4 RKKY Interaction

In this section the chromium spins are viewed as localized spins whereas the electrons
occupying the pyrazine sites are viewed as a free electron gas. The indirect exchange in-
teraction between neighbouring chromium spins is then mediated by these free pyrazine
electrons. We will focus on two specific neighbouring Cr-ions, i.e., S1 and S2. The ex-
change interaction in real space between the spin of the Cr-ions and the spin of the
electron, ŝ, on the two pyrazine sites, can be written as

Ĥ1 = −2J
∑
δ

Ŝ1 · ŝδ, (6.61)

Ĥ2 = −2J
∑
δ′

Ŝ2 · ŝδ′ . (6.62)

δ and δ′ sums over the vectors pointing to the four neighbouring pyrazine sites of S1

and S2, respectively. The spin of the valence electrons can be written as

ŝδ =
1

2

∑
σσ′

ĉ†δστσσ′ ĉδσ′ =
1

2N

∑
σσ′

∑
kk′

ĉ†kστσσ′ ĉk′σ′ . (6.63)

In the last step the term is Fourier transformed using Eq. (5.68). τ = (τ x, τ y, τ z) is a
vector consisting of the Pauli matrices. Thus, the two interaction Hamiltonians can be
written in reciprocal space as

Ĥ1 = − J
N

∑
δ

∑
σσ′

∑
kk′

ĉ†kσ ĉk′σ′
∑
l=x,y,z

τ lσσ′S
l
1, (6.64)

Ĥ2 = − J
N

∑
δ

∑
σ′′σ′′′

∑
k′′k′′′

ĉ†k′′σ′′ ĉk′′′σ′′′
∑

m=x,y,z

τmσ′′σ′′′S
m
2 . (6.65)

Perturbation theory can now be applied to these interactions. The lowest order term
that include both interactions [40] is

Z(2)

Z0

=

∫ β

0

dτ1

∫ β

0

dτ2

〈
T̂τ

(
ĤI

1(τ1)ĤI
2(τ2)

)〉
0
. (6.66)

Z denotes the partition function, β is inverse temperature and 〈·〉0 means that the
expectation value should be taken with respect to the unperturbed groundstate. T̂τ
denotes the time ordering operator, where τ1 and τ2 are imaginary time parameters. The
superscript I states that the Hamiltonians should be given in the interaction picture7.

In the most commen version of the RKKY model, the itinerant electrons are viewed
as a completely free electron gas. In this case these electrons are viewed as delocal-
ized electrons though they are anchored at the four neighbouring sites of the given
chromium sites. For the spin-operators in each correlation function, we must sum over
all bonds to the relevant chromium spin. The dominant term will thus be the term
where the neighbouring chromium atoms couple through an electron anchored to the
site in between them.

7This is described in chapter 11 of [40].
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Thus, we end with

JCr−Cr =
2J2

N2
S1 · S2 χ, (6.67)

where χ is the Lindhard function given by

χ = =
∑
kk′

nF (ξk)− nF (ξk)

ξk − ξk′
. (6.68)

The factor of two in Eq. (6.67) stems from the fact that

〈ψkσ|τατ β|ψkσ〉 = Tr[τατ β] = 2δαβ. (6.69)

Here, |ψkσ〉 are Bloch waves describing the free pyz electrons. At T = 0 the fermi
functions in Eq. (6.68) is either equal to one or zero. The Lindhard function can then
be written as

χ = 2
∑

k>kF

∑
k′<kF

1

ξk − ξk′
= 2

∫
ξF

dξ

ξF∫
dξ′

D(ξ)D(ξ′)

ξ − ξ′ , (6.70)

where D(ξ) is the DOS. The DOS for a square lattice with spectrum ξ = 2t(cos kx +
cosky) is given by

D(ξ) =
N2

2(πt)2
K

(
1−

(
ξ

4t

)2
)
. (6.71)

Here K gives the complete elliptic integral of the first kind which can be defined as the
power series

K(k) =
π

2

∞∑
n=0

(
(2n)!

22n(n!)2

)2

k2n. (6.72)

The DOS is plotted as a function of energy in Fig. 6.17. In the subspace of the
pyrazine sites, there is 1/2 electron in each unit cell, and thus the DOS will be a 1/4
filled due to spin. The DOS is normalized such that

4t∫
−4t

dξD(ξ) = 1. (6.73)

Thus, the Fermi energy can be found by requiring that
ξF∫
−4t

dξD(ξ) =
1

4
. (6.74)

The Fermi energy is obtained numerically, and the Lindhard function is found to have
a numerical value of 0.15 for t = 1, such that

JCr−Cr = 0.3
J2

t
. (6.75)

This gives an idea of the order of magnitude of JCr−Cr in terms of J and t.
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Fig. 6.17: The DOS for a square lattice with spectrum ξ = 2t(cos kx + cosky).

6.4.5 Estimate of Curie temperature from mean-field theory

From mean-field theory an expression of the exchange coupling constant between neigh-
bouring chromium spins Si can be obtained. The Hamiltonian of this exchange inter-
action can be written as

Ĥ = −2JCr−Cr
∑
〈i,j〉

Si · Sj. (6.76)

Using mean-field theory and neglecting the constant shift, see Eq. (5.126), the interac-
tion of the ith spin is

Ĥi = −2JCr−Crz〈S〉 · Si, (6.77)

where z denotes the number of neighbouring spins, i.e., z = 4 for a square lattice.
Defining

H = −2zJCr−Cr
gµB

〈S〉, (6.78)

the Hamiltonian for the ith spin can be written as

Ĥi = gµBSi ·H. (6.79)

Thus, H can be viewed as an exchange field affecting the ith spin, that arise from the
polarization of the spins on the neighbouring chromium sites. The magnetization from
this exchange field is given by

M = −gµBN〈S〉, (6.80)

where N is the number of magnetic chromium atoms in the sample. The exchange field
can be written as

H = AM, with A =
2zJCr−Cr
g2µ2

BN
. (6.81)
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Including an external magnetic field B the total magnetization can be written as

M =
C

T
(B + AM) , (6.82)

where C is the Curie constant which, for L = 0, is given by

C =
µ0µ

2
B

3kB
Ng2S(S + 1). (6.83)

The magnetization can now be isolated

M =
C

T − ACB. (6.84)

Knowing the Curie-Weiss law given by

χ =
C

T − Tc
, (6.85)

we can conclude that AC = TC , where TC is the Curie temperature, from which we
obtain the expression

JCr−Cr =
3kBTC

2µ0zS(S + 1)
. (6.86)

Remember that S = 3/2, TC ' 55 K and z = 4. This gives an idea of the order of
magnitude of JCr−Cr. Combining this equation with Eq. (6.75), an estimate of the
order of magnetude of J can be obtained.

6.5 Conclusion

To begin with, an analytical expression of the energy spectrum of CrCl2(pyz)4 was
obtained, see Eq. (6.3), and the symmetry of this was explored using group theory.
Thereafter, monolayer CrCl2(pyz)2 was studied. From the band structure, see Fig.
6.6, the compound was found to exhibit an insulating groundstate in agreement with
the experimental results. Furthermore, the d-bands were observed to be quite flat, which
suggested that these are localized. To investigate the magnetic properties of monolayer
CrCl2(pyz)2 a simple model was proposed. Here, the electrons on the chromium sites
were viewed as localized spins, whereas the electrons on the pyrazine sites could delocal-
ize over a few sites. This suggested a specific configuration of the spin, see Fig. 6.15,
which resulted in a magnetic moment of one unit cell to be 2µB. This corresponds to
an antiferromagnetic interaction between the chromium spins and the pyrazine spins.
Considering the exchange interaction between these two using second order perturba-
tion theory, this was exactly what was observed, see Eq. (6.60). An antiferromagnetic
coupling between the pyrazine spins and the chromium spins resulted in a ferromag-
netic coupling between neighbouring chromium spins. Due to the uneven lengths of
the chromium spin and the pyrazine spin, this yielded in a ferrimagnetic ordering. The
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itinerant electrons on the pyrazine sites could be viewed as an electron gas such that
the indirect exchange between neighbouring chromium sites is mediated by the RKKY
interaction. From this an expression for the Cr-Cr indirect exchange coupling constant,
JCr−Cr, expressed in terms of the Cr-pyz direct exchange constant was obtained, see
Eq. (6.75). Furthermore, from mean-field theory an expression of JCr−Cr in terms of
the ordering temperature was found, see Eq. (6.86).



Chapter 7

Conclusion and Further Research

In this thesis three distinct two-dimensional compounds have been investigated theo-
retically. To begin with, monolayer YbOCl was studied using the classical Heisenberg
model. Focusing on the single hole occupying each ytterbium site in a triangular lattice,
these spin 1/2 particles was studied. The groundstate of monolayer YbOCl was found
to be dependent on the relative size of the exchange coupling constant between spins
in the same sublayer J , and the exchange interaction coupling strength between spins
located in two different sublayers Jtb. Further, this depended on the sign of both J and
Jtb. A non-magnetic region with S = 0 was obtained. Outside this region the Hamilto-
nian, see Eq. (4.10), was minimized when the total spin was maximal, though the size of
φ depended on the sign and sizes of Jtb and J . Both regions exhibited ferromagnetic in-
tralayer couplings. One region exhibited antiferromagnetic interlayer coupling whereas
the other exhibited ferromagnetic interlayer coupling between the spins. All phases are
depicted in Fig. 4.5. Thereafter, an external magnetic field was introduced. Again,
the groundstate configuration was dependent on the relative size and signs of Jtb and
J . For Jtb < 0 and J < 0, both a ferromagnetic inter- and intralayer magnetic coupling
minimized the Hamiltonian, see Eq. (4.20). These spins were oriented antiparallel to
the magnetic field. For Jtb > 0 and J > 0, Jtb > 0 and J < 0 and Jtb < 0 and J > 0
various phases were observed. The phase digram between B/µB and Jtb/J for these
three cases are depicted in Fig. 4.6 and Fig. 4.7. Except for a small region with
S = 0, the spins are oriented antiparallely to the external magnetic field. The non-
magnetic region with S = 0 was much smaller in the presence of the external magnetic
field. Thus, in a specific part of the phase diagram between Jtb and J , the compound is
paramagnetic in agreement with the experimental measurements [25]. For further re-
search the spin waves could be investigated using the Holstein Primakoff transformation.

Further, the TMD VS2 has been considered. First, the energy spectrum of the hy-
pothetical model complex VS6 was obtained using the tight binding model and the
degeneracies observed, see Fig. 5.3 and Fig. 5.7, was explained using group theory.
The band structure of both the 1T and the 2H phase of monolayer VS2 was obtained
using the tight binding method combined with the Hubbard model, see Fig. 5.16
and Fig. 5.12. The 2H structure was found to exhibit a metallic groundstate, even
though the highest non-empty band was almost filled. Thus, the groundstate was highly
spin-polarized and the compound was ferromagnetic. This agrees with the DFT calcu-
lations from Wang et al. [2]. The DFT calculations from DTU [3] showed contradicting
results, though one method also agreed with a metallic ferromagnetic groundstate. 1T-
VS2 was also found to exhibit metallic behaviour, though the highest occupied energy
band was only partially spin polarized and thus exhibited a smaller magnetic moment
compared to 2H-VS2. This result agrees with DFT calculations. Due to the stagnation

86
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of the experimental investigation of VS2 in Beijing, this project was concluded here. An
experimental study of the magnetic and electronic properties of VS2 should motivate
further theoretical investigation of this.

Lastly, the 2D material CrCl2(pyz)2 has been studied using a similar approach as
for VS2. First, an analytical expression of the energy spectrum of CrCl2(pyz)4 was
obtained, see Eq. (6.3), and the symmetry of this was explored using group theory.
Thereafter, the band structure was obtained using the tight binding model, see Fig.
6.6, from which the compound was found to exhibit an insulating groundstate. This
agrees with the experimental results of the electronic conductivity [4]. From the band
structure, the spins on the chromium sites are found to be localized in contrary to the
electrons on the pyraine ligands. To investigate the magnetic properties of monolayer
CrCl2(pyz)2 a simple model was proposed. This suggested a specific configuration of
the spin, see Fig. 6.15, which resulted in a magnetic moment of one unit cell to be
2µB. This corresponded to an antiferromagnetic coupling between the chromium spins
and the pyrazine spins. Considering the exchange interaction between the Cr spins and
the neighbouring pyz spins using second order perturbation theory, this is exactly what
was observed, see Eq. (6.60). An antiferromagnetic coupling between the pyrazine
electrons and the chromium electrons invokes a ferromagnetic coupling between neigh-
bouring chromium spins. Due to the uneven lengths of the spins on the chromium sites
and the spins on the pyrazine sites, this results in a ferrimagnetic ordering in agreement
with Pedersen et al. [4]. The itinerant electrons on the pyrazine sites could be viewed
as a free electron gas such that the indirect exchange coupling between neighbouring
chromium sites is mediated by the RKKY interaction. From this an expression for the
indirect Cr-Cr exchange coupling constant, JCr−Cr, expressed in terms of the Cr-pyz
exchange constant, J , was obtained, see Eq. (6.75). Furthermore, from mean-field
theory an expression of JCr−Cr in terms of the ordering temperature was found, see
Eq. (6.86). Neutron scattering data of the compound has been realized recently (N.
B. Christensen and X. Chen, personal communication, December 2020). This mea-
sures both the ordering temperature and the spin waves. Motivated by this, further
research could adress this theoretically. Ferromagnetic spin waves for a square lattice
including nearest neighbour coupling JCr−Cr could be calculated. In this thesis only
monolayer CrCl2(pyz)2 has been studied, though the compound on which the neutron
scattering mesaurements are performed is bulk CrCl2(pyz)2. The interlayer exchange
coupling constant J ′Cr−Cr has a smaller magnitude compared to JCr−Cr. Thus, a mean-
field ordering temperature could be obtained in terms of JCr−Cr and J ′Cr−Cr. Lastly, a
collaboration with experts on DFT calculations could be established in the pursuit of
more accurate parameters entering the tight binding calculations.
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Appendix A

Estimate of Bond Integrals

The bond integrals between two neighbouring orbitals can be estimated following the
example given below. We will focus on a px orbital located at x = −d/2 and a dx2−y2
orbital located at x = d/2. Thus, the distance between the center of the two orbitals
is denoted d, see Fig. A.1. In this example only the σ-bond will be calculated. The
wavefunctions for the relevant orbitals, if they were located at the origin, are given by

ψ3dx2−y2
= R3d

√
15

4

(x2 − y2)

r2

1√
4π
, (A.1)

ψ3px = R3p

√
3x

r

1

4π
, (A.2)

with

R3d =
1

9
√

30
ρ2Z3/2e−ρ/2, (A.3)

R3p =
1

9
√

16
ρ(4− ρ)Z3/2e−ρ/2. (A.4)

Here, we have defined ρ = 2Zr
n
, where Z is the effective nuclear charge for the orbital in

interest located in the atom, r is the radius, and n is the principal quantum number.
To simplify the following calculations, the coordinate transformation, that let x → z,
x → −z and let y remain unchanged, is performed. Further, the wavefunctions are
shifted to place the d- and p-orbitals at x equal to d/2 and −d/2, respectively. Thus,

Fig. A.1: Spin densities of the px orbital (left) and the dx2−y2 orbital (right).
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the wavefunctions become

ψ3dx2−y2
=
R3d

4

√
15

π

(
z − d

2

)2 − y2

r2
d

, (A.5)

ψ3px = R3p

√
3

4π

z + d
2

rp
, (A.6)

where we have defined

rd =

√
x2 + y2 +

(
z − d

2

)2

, (A.7)

rp =

√
x2 + y2 +

(
z +

d

2

)2

. (A.8)

Note that the ρ’s in the radial parts of the wavefunctions are now a function of rd and rp
for the d-orbital and the p-orbital, respectively. The overlap between the two orbitals
can now be obtained,

〈ψ3px|ψ3dx2−y2
〉 =

Z
5/2
p Z

7/2
d

4374
√
π

∫
dr

(
4− 2Zprp

3

)(
z +

d

2

)
e−

Zprp
3

[(
z − d

2

)2

− y2

]
e−

Zdrd
3

(A.9)

These integrals can be evaluated in spherical coordinates, so the transformation

z = r cos θ, y = r sin θ sinφ (A.10)

rp =

√
r2 +

(
d

2

)2

+
d

2
r cos θ (A.11)

rd =

√
r2 +

(
d

2

)2

− d

2
r cos θ, (A.12)

is performed. Thus, the overlap can be written as

〈ψ3px|ψ3dx2−y2
〉 = A

∫
drdθdφ r2 sin θ

(
4− 2Zprp

3

)(
r cos θ +

d

2

)
(A.13)

e−
Zprp

3

[(
r cos θ − d

2

)2

− r2 sin θ2 sinφ2

]
e−

Zdrd
3 . (A.14)

This integral can not be solved trivially, though this can be split into a sum of eight
integrals. These can be solved numerically individually using the substitution µ = cos θ
such that

π∫
0

dθ sin θ =

1∫
−1

dµ. (A.15)

A similar approach can be used to obtain the remaining bond integrals.



Appendix B

Expansion Around the K-point

The expansion around the K-point is not as trivial as the Γ-point, and it has proved to
be convenient to change coordinate system to be able to diagonalize the Hamiltonian
in this point. Thus, in this section we let x → y and y → −x compared to the
coordinate-system described in section 5.3.1.

In addition to changing coordinate system, it is convenient to use another basis, namely
{dz2 , dx2−y2 , dxy, dzx, dyz, ptx, pty, ptz, pbx, pby, pbz}. The eigenvector can now be written in
terms of the amplitudes as

ΨT = (α5, α4, α1, α3, α2, τ1, τ2, τ3, β1, β2, β3). (B.1)

In this basis and coordinate system the hopping matrices become

tt =


0 tt12 tt13

0 tt22 tt23

tt31 0 0
tt41 0 0
0 tt52 tt53

 , tb =


0 tt12 −tt13

0 tt22 −tt23

tt31 0 0
−tt41 0 0

0 −tt52 tt53

 ,

tl,t =


tl,t11 tl,t12 tl,t13

tl,t21 tl,t22 tl,t23

tl,t31 tl,t32 tl,t33

tl,t41 tl,t42 tl,t43

tl,t51 tl,t52 tl,t53

 , tl,b =


tl,t11 tl,t12 −tl,t13

tl,t21 tl,t22 −tl,t23

tl,t31 tl,t32 −tl,t33

−tl,t41 −tl,t42 tl,t43

−tl,t51 −tl,t52 tl,t53

 , (B.2)

tr,t =


−tl,t11 tl,t12 tl,t13

−tl,t21 tl,t22 tl,t23

tl,t31 −tl,t32 −tl,t33

tl,t41 −tl,t42 −tl,t43

−tl,t51 tl,t52 tl,t53

 , tr,b =


−tl,t11 tl,t12 −tl,t13

−tl,t21 tl,t22 −tl,t23

tl,t31 −tl,t32 tl,t33

−tl,t41 tl,t42 −tl,t43

tl,t51 −tl,t52 tl,t53

 .

In this basis the K-point has the componenets kx = 2π
3a

and ky = −2π√
3a
, which means

that z1 = −eiπ/3 and c1 = c2 = c12 = −1
2
. Thus, in this case, the components of the

Hamiltonian is

T t = tt − e−iπ/3tl,t − eiπ/3tr,t , T b = tb − e−iπ/3tl,b − eiπ/3tr,b. (B.3)

Following the same procedure as in section 5.3.1 we can split the Hamiltonian in an
even part and a odd part. Making use of the two identities

−e−iπ/3 + eiπ/3 = i
√

3 and − e−iπ/3 + eiπ/3 = 1, (B.4)
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we get that TE,O and TO,E, in the K-point, simplifies to

TE,OK =
√

2

 i
√

3tl,t11 tt12 − tl,t12 0

i
√

3tl,t21 tt22 − tl,t22 tt23 − tl,t23

tt31 − tl,t31 i
√

3tl,t32 i
√

3tl,t33

 (B.5)

and

TO,EK =
√

2

[
tt41 − tl,t41 i

√
3tl,t42 i

√
3tl,t43

i
√

3tl,t51 tt52 − tl,t52 tt53 − tl,t53

]
. (B.6)

Now the Hamiltonian can be diagonalized by the chiral transformation

αM2 =
α2 − iα3√

2
, αP2 =

α2 + iα3√
2

, αM1 =
α4 − iα5√

2
, αP1 =

α4 + iα5√
2

, (B.7)

θM =
θ1 − iθ2√

2
, θP =

θ1 + iθ2√
2

, φM =
φ1 − iφ2√

2
, φP =

φ1 + iφ2√
2

. (B.8)

α1, θ3 and φ3 remain unchanged. Thus, we now have the eigenvector

ψT = (α1, αM2 , αP2 , θP , θM , φ3, αM1 , αP1 , φP , φR, θ3). (B.9)

Using the Slater Koster decomposition, many elements reduce to zero, and as in the
expansion around the Γ-point, the problem reduces to five 2x2 matrices and one 1x1
matrix, given by

{α1, θM} :

[
ξd i(K11 −K12)

−i(K11 −K12) ξp

]
,

{αM2 , θP} :

[
ξd i(K21 −K31 +K22 +K32)/

√
2

−i(K21 −K31 +K22 +K32)/
√

2 ξp

]
,

{αP2 , φ3} :

[
ξd K23 −K33

K23 −K33 ξp

]
,

{αP1 , φP} :

[
ξd (K41 −K51 +K42 −K52)/

√
2

(K41 −K51 +K42 −K52)/
√

2 ξp

]
,

{αM1 , θ3} :

[
ξd i(K43 −K53)

−i(K43 −K53) ξp

]
,

{φM} :
[
ξp
]
.

Here, we have defined the following identities

K11 =
√

3tl,t11, K12 = tt12 − tl,t12, (B.10)

K21 =
√

3tl,t21, K22 = tt22 − tl,t22, K23 = tt23 − tl,t23, (B.11)

K31 = tt31 − tl,t31, K32 =
√

3tl,t32, K33 =
√

3tl,t33, (B.12)

K41 = tt41 − tl,t41, K42 =
√

3tl,t42, K43 =
√

3tl,t43, (B.13)

K51 =
√

3tl,t51, K52 = tt52 − tl,t52, K53 = tt53 − tl,t53. (B.14)

These are trivial to diagonalize. The analytical expressions yield identical results to the
numerical solutions for the K-point obtained previously.



Appendix C

CrCl2(pyz)2 Described by the Curie-Weiss Law

In this appendix a brief investigation of the magnetic properties of CrCl2(pyz)2 is per-
formed. The Curie-Weiss law is given by

χ =
C

T − Tc
, (C.1)

with the Curie constant

C =
µ0µ

2
B

3kb
ng2J(J + 1) (C.2)

in SI units. µB denotes the Bohr magneton, µ0 is vacuum permeability, n the number
of magnetic atoms per unit volume, kB the Boltzmann constant, and J = L+ S is the
angular momentum quantum number. In this case L = 0. Note, that to get Eq. (C.2)
in cgs units, to be able to compare with the results in [4]), this must be multiplied with
106NA

4π
, where NA is Avogrado’s constant. Setting Tc = 0, χT (J) at T = 400 K can be

obtained for three distinct J ’s,

χT (1) = 1.00cm3Kmol−1, χT (3/2) = 1.88cm3Kmol−1, χT (2) = 3.01cm3Kmol−1.

This is in accordance with numbers presented in [4]. The measured value at 400 K
is 2.7cm3Kmol−1, and for this reason could indicate that J = S = 2, though the
theoretical prediction is greater than the measured value. As shown in section 6.2, an
ordering temperature at ∼ 55 K is observed. Thus, setting Tc = 55 K χT (J) at 400 K
is found to be

χT (1) = 1.16cm3Kmol−1, χT (3/2) = 2.18cm3Kmol−1, χT (2) = 3.49cm3Kmol−1.

This could suggest that S = 3/2 is also a possible spin configuration for the Cr-ions.
Due to the strong magnetic interactions and strong π − d conjugation, this method is
not suitable to describe the magnetic susceptibility-temperature product.

Fitting the Curie-Weiss law to the χT data, Pedersen et al. have obtained, for dat-
apoints above the ordering temperature confirms that this is not describing the data
well. Fig. C.1 (a) depict the magnetic susceptibility temperature product data along
with a fit of the Curie-Weiss law multiplied with the temperature. The data is collected
from Pedersen et al. [4] and the fit is performed using the χ2 method. The fit yields a
Curie constant of C = 10.32± 1.6 and a Curie temperature of TC = 52.1± 0.58 K. Fig.
C.1 (b) shows a log-log plot of the same data excluding the first five points. Here, it is
clearly observed that the Curie-Weiss model does not fit the data well.
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Fig. C.1: (a) χT data collected from Pedersen et al. [4] together with a fit of the Curie-Weiss
law in Eq. (C.1). (b) Log-log plot of χT data together with fit. The ten first datapoints has
been excluded.



Appendix D

Supplementary Figures from Pedersen et al.
[4]

Fig. D.1: a Normalized XAS spectra of CrCl2(pyz)2 and Cr(III). b XMCD spectra shown
as the percentage of the peak at the edge. The data was obtained at a temperature at 3 K
with a magnetic field of 17 T. † illustrates the pre-dge, ‡ the edge and § marks multi-electron
excitations.
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Appendix E

Spin-Matrices used in Numerical Calculations

The following matrices are given in the basis in Eq. (6.33).

Sz1 + Sz2 + Sz3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1
2

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2


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Sz2 + Sz3 + Sz4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 −1

2
0 0 0 0 0 0 0 0 0 0 0 0

1
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
2

0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

2



S+
1 + S+

2 + S+
3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√

2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0
0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0
0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0

0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0


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S+
2 + S+

3 + S+
4 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
− 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0
0 0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0
0 0 0 0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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S−1 + S−2 + S−3 =



0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0
0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0
0 0 0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0

0 0 0 0 0 − 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0
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S−2 + S−3 + S−4 =



0 0 0 0 0 0 0 0 0 0 − 1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 − 1√

2
0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0

1√
2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√
2

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0 0 0
0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
√

2 0 0 0 0 0 0 0
0 0 0 0 0 1√

2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1√

2
0 0 0 0 0 0
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