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Abstract

Sustainable animal disease management requires to design
and implement control policies at the regional scale. How-
ever, for diseases which are not regulated, individual farmers
are responsible for the adoption and successful application
of control policies at the farm scale. Organizations (groups
of farmers, health institutions...) may try to influence farm-
ers’ control actions through financial incentives, in order to
ensure sustainable (from the health and economical point of
views) disease management policies. Economics / Operations
Research frameworks have been proposed for modeling the
effect of incentives on agents. The Leader-Follower Markov
Decision Processes framework is one such framework, that
combines Markov Decision Processes (MDP) and stochastic
games frameworks. However, since finding equilibrium poli-
cies in stochastic games is hard when the number of players
is large, LF-MDP problems are intractable.
Our contribution, in this article, is to propose a tractable
model of the animal disease management problem. The
tractable model is obtained through a few simple modeling
approximations which are acceptable when the problem is
viewed from the organization side. As a result, we design a
polynomial-time algorithm for animal disease management,
which we evaluate on a case study inspired from the prob-
lem of controlling the spread of the Porcine Reproductive and
Respiratory Syndrome (PRRS).
Content Area : Animal infectious disease management.

Introduction
The decision to control an endemic but not regulated an-
imal disease is taken at the farmers’ initiative. Each year,
farmers choose to apply control actions in their own farm
(biosecurity, culling, vaccination). Farmers usually decide
their control action individually, without considering other
farmers’ decisions. However, for a disease that can be trans-
mitted by animal purchases or direct contact, regulation de-
cisions taken in a single or in a limited number of farms are
rarely sufficient to control the disease propagation within an
area, since the pathogen can spread between neighbor farms.
Disease spread to one farm is not only affected by the local
action applied, but also by the global infection level in the
region (for example, the total number of infected herds).
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The yearly revenue of a farmer is assumed to be a function
of the farm status (infected or not), and of the local control
action (culling and replacement costs). Farmers are then as-
sumed to maximize their long-term profit by deciding when
to apply control actions. In general, individual control ac-
tions’ costs are comparable to individual costs of infection
and infection is not very likely unless a significant number
of farms are already infected. This is why farmers’ max-
imization behavior often leads to not applying control ac-
tions. This, in turn, may result in new infections and money
losses for the collectivity. Therefore, farmers organizations
try to enforce coordination of individual decisions by using
financial (for example) incentives for control actions. Reg-
ulation can then be obtained when farmers, assumed to be
rationally trying to maximize their profit, balance the cost of
control actions, the financial incentive and the likelihood of
contamination from other “infected” farms. Despite its cost,
using financial incentives is an efficient way to decrease the
frequency of infections and, overall, to increase the financial
and epidemiological sustainability of farm management.

The problem of endemic disease control can then be seen
as a form of sequential multi-agent decision problem, in
which all agents maximize their individual long-term ob-
jective. Farmers try to maximize their long-term profit by
deciding when to apply control actions, while a specific dis-
tinguished agent (the Organization) has for objective to min-
imize the disease extension, by giving incentives to farmers.
This problem can be modeled as a Competitive Markov De-
cision Process also called Stochastic Game (Filar and Vrieze
1996). However, our problem is more specific, due to the ex-
istence of the Organization agent, whose actions are inter-
leaved with the farmers’ actions (themselves acting in par-
allel) and do not influence directly the dynamics of the dis-
ease, but only the reward functions of the farmers. In turn,
the farmers’ actions and states do influence the Organiza-
tion rewards. This specific problem is often called Leader-
Follower Markov Decision Process (LF-MDP) (Tharakun-
nel and Bhattacharyya 2009) or Dynamic Principal-Agent
Problem (Plambeck and Zenios 2000).

We propose a Leader-Follower model of the sequential
decision problem of disease control. We consider that the
number, n, of farms, can be large, but each one can be in
only few states (typically, (S)usceptible or (I)nfected). Fur-
thermore, farmers have only few control actions available
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(typically control or do nothing). We will focus on the finite-
horizon case, but the results presented in the paper can be
easily extended to stationary infinite-horizon problems with
discounted rewards.

When trying to solve disease control problems modeled
as Leader-Follower MDPs, we face several computational
problems. Dynamic programming algorithms can be ap-
plied: backwards induction in the finite-horizon case, or
value-iteration (for example) in the infinite-horizon case.
However, these iterative algorithms imply solving many n-
player non-zero-sum games at each iteration in order to build
the policies of the followers (farmers). And solving games
is hard, even in the simple non-zero-sum two players case.
Therefore, most approaches that solve Leader-Follower
games, as well as competitive Markov decision pro-
cesses, rely on simulation-based Reinforcement-Learning
approaches (Tharakunnel and Bhattacharyya 2007; 2009;
Hu and Wellman 2003; Chalkiadakis and Boutillier 2003).

In this paper, our approach is different. We propose a dy-
namic programming approach to solve LF-MDPs in the case
where the number n of followers can be large but, (i) the
number of states of each follower is bounded by a small con-
stant and (ii) the size of the joint state space of the leader is
polynomial in n. These assumptions hold naturally in dis-
ease management problems, as well as in many other prob-
lems of collective sustainable management, in agriculture or
ecology.

Furthermore, as our study is mainly directed towards
building the Organization’s incentive policy for sustainable
management of animal disease, we make an additional sim-
plifying assumption about the behavior of followers, that
will help building polynomial-time solution algorithms. We
will assume that followers are indistinguishable from the
point of view of the leader, apart from their infection state.
This means that we will assume that any two followers apply
the same policy, deciding the same (possibly mixed) game
policy, when their states are identical. We will evaluate the
proposed policies, from the point of view of the followers’
and leader’s rewards, on a disease management case study
which we will describe next.

An animal disease management case study
As an illustration, we consider a simplified version of the
problem of coordination of individual decisions to limit the
spread of the Porcine Reproductive and Respiratory Syn-
drome (PRRS) within a group of farms. PRRS is an endemic
disease which impacts farm production (Nodelijk 2002). As
it is a transmissible disease, choosing independently control
actions within each farm may not be sufficient to limit its
spread within an area. The producers Organization (leader)
proposes incentives each year in order to incite followers to
take control actions, thus limiting the PRRS spread within
their group of farms. As nearly all animals are infected
shortly after the virus introduction in a farm, we consider
only two epidemiological states: S (susceptible) and I (In-
fected). For S farms, control actions consist of biosecurity
actions reducing the probability of transmission. For I farms,
depopulation can be used to change state back to S, but this
action is costly. The Organization aims at limiting the total

cost of the disease within the group of farms by giving in-
centives to producers to implement control actions, which
reduces the cost of control actions for the farmer.

A Leader-Follower MDP model for the animal
disease management problem

General LF-MDP model
A single leader/multiple followers finite-horizon MDP
model (Tharakunnel and Bhattacharyya 2007) is a multi-
ple time-step decision process involving several agents : one
leader and n followers. At each time period t ∈ {1, . . . H},
the following steps occur:

• The leader makes an incentive decision aL ∈ AL, where
AL = {1, . . . ,m} is a finite number of possible incen-
tives.

• Each follower i ∈ {1, . . . n} chooses its own decision
aFi ∈ AF = {1, . . . , p} independently, after having ob-
served the leader’s decision.

• The global state of the system, σ ∈ Σ, changes stochasti-
cally under the effect of the followers’ actions, with tran-
sition probability T (σ′|σ, aF1 , . . . , aFn ).

• The leader and the followers receive individual rewards,
rL(σ, aL, aF1 , . . . , a

F
n ) and rFi (σ, aL, aFi ), i = 1, . . . , n.

The global state of the system, σ ∈ Σ, represents the joint
state of the leader and all the followers. In the most general
case, Σ = SL × SF1 × . . .× SFn is a factored state space.

As usual in sequential decision problems, we assume
that agents choose their actions according to policies,
δLt , {δFt,i}i=1...n, at each time step t. In the most general
case, theses policies can be non-Markovian and stochastic.
However, in this paper we will focus on Markovian policies,
where:

• δLt (aLt |σt) is the probability that aLt ∈ AL is chosen by
the leader at time t in the current state, given current state.

• δFt,i(aFt,i|σt, aLt ) is the probability that aFt,i ∈ AF is chosen
by follower i at time t in the current state and after having
observed the current action of the leader.

Strategies are deterministic, when the probabilities take
value in {0, 1}.

Considering fixed policies
{
δLt , {δFt,i}i=1...n

}
t=1...H

,
their valuesQL

δL,{δFi }
andQF,i

δL,{δFi }
to the leader and the fol-

lowers are defined as follows, in every joint state and time
step:

QLδL,{δFi }i=1...n
(σ, t) = E

[
H∑
t′=t

rLt′ δ
L, {δFi }, σ

]
, (1)

QF,i
δL,{δFi }i=1...n

(σ, t) = E

[
H∑
t′=t

rFt′,i δ
L, {δFi }, σ

]
.(2)

Solving a LF-MDP consists in finding equilibrium poli-
cies, δL∗, {δF∗i }i=1...n, for the leader and the followers.
Equilibrium policies are policies from which no one has in-
terest to deviate.
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Definition 1 (LF-MDP equilibrium policies). Strategies
δL∗, {δF∗i }i=1...n are equilibrium policies if and only if they
verify, ∀δL, {δFi }, σ, t:

QLδL∗,{δF∗i }
(σ, t) ≥ QLδL,{δF∗i }

(σ, t), (3)

QF,i
δL∗,{δF∗i }

(σ, t) ≥ QF,i
δL∗,δF∗j ,{δFi }i6=j

(σ, t),∀j. (4)

It has been shown (see e.g. (Filar and Vrieze 1996),
(Tharakunnel and Bhattacharyya 2007)), that there exist
equilibrium policies for the leader and the followers, which
are Markovian. Furthermore, a deterministic equilibrium
policy exists for the leader, while equilibrium policies are
stochastic, in general, for the followers. Such equilibrium
policies can be computed by a backwards induction type
algorithm (or value iteration, for example, in the infinite
horizon case), by interleaving Nash equilibrium computa-
tion steps for the followers, and classical backwards induc-
tion steps for the leader, at each time step.

However, note a few known facts about Nash equilibrium
computation:

• A Nash equilibrium in a game can be pure, i.e. each
agent chooses a fixed action, or stochastic, i.e. each agent
chooses a distribution over actions.

• In a n-player non-zero sum game, there may exist sev-
eral (pure and/or mixed) Nash equilibria, which cannot
always be completely ordered by a dominance relation.
This holds even in the simple case of a 2-player non-zero
sum game.

• Even in the case of a 2-player, non-zero sum game, there
exists no known polynomial time Nash equilibrium com-
putation algorithm.

• Furthermore, the state space size Σ is exponential in the
size of the description of the problem.

These facts demonstrate that the existence of an efficient
algorithm for computing equilibrium policies in LF-MDPs
is very unlikely.

In the following, we will propose a new restriction of
the LF-MDP model which can model disease management
problems and which will allow us, to the price of a few sim-
plifying assumptions, to design efficient equilibrium policies
computation algorithms, even for large n. This constitutes
the main technical contribution of this article.

A simplified LF-MDP model of the animal disease
management problem
In the animal disease management problem, the global state
of infection will be described by the infection states of all
farms, and we will assume a simple S-I-S model (Suscep-
tible/Infected/Susceptible) (Hethcote 2000). That is, Σ =
{S, I}n.

Our main simplifying assumption will be that all the fol-
lowers are considered “identical”. This means that:

(i) the reward functions rFi (σi, a
L, aFi ) (where σi = (si, c))

of the followers are identical and are “local” to each fol-
lower, apart from the global incentive aL and the total

number of infected followers1, c. For the leader, the re-
ward function rL(c, aL) is only a function the total num-
ber of infected followers, c and on the chosen incentive,
aL.

(ii) The joint transition probability has the following form:

T (σ′|σ, aF1 , . . . , aFn ) =
n∏
i=1

p(s′i|σi, aFi ). (5)

This form amounts to assuming that the infection state
transition probabilities of all followers are identical, and
only depend on their current state si, their own decision
aFi , and c, the total number of infected followers.

Equilibrium policies in the simplified LF-MDP
model
Under our simplifying assumption, we can prove the follow-
ing proposition about equilibrium policies.

Proposition 1 (Equilibrium policies).

(i) Equilibrium policies are identical for all followers.
(ii) Optimal policies for the leader are of the form :

δL∗t (aL|c).
(iii) Equilibrium policies for the followers are of the form :

δF∗t,i (aFi |σi, aL) = δF∗t,i (aFi |si, c, aL).

This proposition is important especially since its proof
will provide us with an efficient algorithm for computing
equilibrium policies. The rest of this section will be devoted
to this proof.

First, note that (i) holds obviously, for simple reasons
of symmetry. An important consequence of (i), and of the
known fact that equilibrium policies for LF-MDP in general
can be obtained through iterative Nash equilibrium compu-
tation and dynamic programming steps, is that a Nash equi-
librium policy at time t for the followers can be described
by a set of probability vectors {πs}s∈SF , where each πs is a
probability vector over AF . All followers which are in state
s ∈ SF choose their action according to the same probabil-
ity vector.

Furthermore, (ii) also holds for symmetry reasons, and
from the fact that the leader’s reward function rL(c, aL) only
depends on c and aL, and not on any si in particular.

Then, we can show by backwards induction that (iii) holds
for all t.

Final time step. At t = H , note that, by equation 2 ap-
plied to the simplified case,

QF,i
δL∗,{πs}(σ,H) =

∑
aFi ,a

L

πsi(aFi )δL∗H (aL|c)rF (σi, a
L, aFi ).

1In the experiments section, we will consider cases where
followers’ rewards are of the form rF (si, s

′
i, a

L, aFi ). How-
ever, by considering expected rewards r̄F (σi, a

L, aFi ) =∑
s′i
p(s′i|σi, a

F
i )rF (si, s

′
i, a

L, aFi ) instead of immediate rewards,
we do not change the global value functions, while getting back to
the reward form considered here.
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From the definition of equilibrium policies, we have for the
leader,

V L(c,H) = max
aL

rL(c, aL) and

δL∗H (aL|c) = 1 if aL = aL∗ = arg maxa r
L(c, a) and 0

else.
For the followers, we have to compute a Nash equilib-

rium, δL∗ being fixed:

V F,i(σi, H) = Nashiπ

∑
aFi

πsi(aFi )rF (σi, a
L∗, aFi )

 .

In this expression, Nashiπ denotes the value of a mixed
Nash equilibrium {πsi∗}si∈SF , to the player i correspond-
ing to state si, in the game defined by the set of reward func-
tions gi(aFi ) = rF (σi, a

L∗, aFi ). But note that followers’
rewards are completely independent from other follower’s
actions. Therefore, the computation of the Nashiπ equilib-
ria amounts to |SF | independent maximizations:

V F,i(σi, H) = max
aFi

rF (σi, a
L∗, aFi ),

where δF∗H,i(a
F
i |σi, aL) = 1 if aFi = aF∗i =

arg maxa r
F (σi, a

L∗, a) and 0 else.
Thus, the policies have the desired form at t = H and

furthermore are deterministic, both for the leader and the
followers.

Induction step. Now, note that mixed policies of follow-
ers are defined by sets of probability vectors {πs}s∈SF

which depend on the current state σ, at time t, as well as
the action aL taken by the leader as a function of c.

The value function of any follower i can be written (using
hypothesis at time t+ 1 for V F,it+1) :

V F,i(σ, aL, t) = Nashiπ

 ∑
{aFj }j

∏
j

πsj (aFj )×

[
rF (σi, a

L, aFi ) +
∑
σ′

T (σ′|σ, {aFj })

V F,i(σ′, δL∗t+1(c′), t+ 1)
])

By Bayes rule:

T (σ′|σ, {aFj }) = p(s′i|σi, aFi )p(c′|σi, s′i, {aFj }j 6=i). (6)

Where c′ is the number of infected followers at time
step t + 1, without considering follower i. The transi-
tion functions p(s′j |σj , aFj ) are inputs of the problem, and
p(c′|σi, s′i, {aFj }j 6=i) can be computed easily from these in-
puts, albeit tediously.

Now, by replacing T (σ′|σ, {aFj }) with the right hand side
expression of equation 6 and by assuming that (iii) holds, we
notice that the value function for follower i has form:

V F,i(σi, a
L, t) = Nashiπ

(
E{πsj }

[
gi(σi, a

L, t, {aFi })
])
,

where gi(σi, aL, t, {aFi }) = rF (σi, a
L, aFi )+

∑
σ′i

p(s′i|σi, aFi )p(c′|σi, s′i, {aFj }j 6=i)V F,i(σ′, δL∗t+1(c′), t+1)

and δF∗t,i (aFi |σi, aL) = πsi∗(aFi ), the corresponding proba-
bility in the Nash equilibrium mixed policy for sj has the
desired form (iii).

Note that the non-cooperative game between the follow-
ers may not have a unique (mixed or pure) equilibrium.
However, we do not dwell here on the problem of the choice
of the Nash equilibrium to return, which is an important but
difficult topic in game theory. In the following Section we
will come back to this point in the specific S-I-S case, in
which finding followers’ equilibrium policies amounts to
solving a bi-matrix game. We will see in the Experiments
Section that, in the S-I-S case we consider, the returned
equilibria are, most of the time, pure and unique.

However, let us go on with the induction step, by consider-
ing now the leader’s case. Considering equation 1, assuming
that ∀t′ > t equilibrium policies of the form of the induction
hypothesis are followed by the leader and followers, as well
as at time t for the followers, the Q-function for the leader
takes form, at time t:

QL(σ, aL, t) = rLt (c, aL)

+
∑
σ′

T (σ′|σ, aL, {δF∗t,i })V L∗(c′, t+ 1)

= rLt (c, aL)

+
∑
c′

T (c′|σ, aL, {δF∗t,i })V L∗(c′, t+ 1)

Once again, for reasons of symmetries, T (c′|σ, aL, {δF∗t,i })
can be rewritten in the form T (c′|c, aL, {δF∗t,i }), andQL only
depends on c, aL and t:

QL(c, aL, t) = rLt (c, aL)+
∑
c′

T (c′|c, aL, {δF∗t,i })V L∗(c′, t+1).

(7)
Thus, V L(c, t) = maxaL Q

L(c, aL, t) = QL(c, aL∗, t) and
δL∗t = arg maxaL Q

L(c, aL, t) has the desired form.

We now have all the necessary elements for designing a
backwards induction dynamic programming algorithm for
solving LF-MDP problems, by interleaving followers’ Nash
equilibrium computation steps and polynomial time leader
optimal strategies computation steps, in our simplified case.

However, before going to the experiments, let us add a
few words about the Nash equilibrium computation step, in
the S-I-S case.

Bi-matrix games and followers’ equilibrium
policies computation in the S-I-S case

In the S-I-S case, two functions, gS(si = S, c, aL, t, aFS , a
F
I )

and gI(si = I, c, aL, t, aFS , a
F
I ), which can be represented

by matrices GS(aFS , a
F
I ), GI(aFS , a

F
I ) for any (c, aL), rep-

resent the value to followers respectively in states S and I
of applying respectively actions aFS and aFI , when the global
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number of I followers is c and the leader’s incentive is aL,
at time t.

In this case, a pure equilibrium policy for the followers
is a pair of actions (āFS , ā

F
I ) which satisfies, for all pairs of

followers’ actions (aFS , a
F
I ) ∈ AF ×AF :

GS(āFS , ā
F
I ) ≥ GS(aFS , ā

F
I ) and GI(āFS , ā

F
I ) ≥ GI(āFS , aFI ).

This problem is called Bi-matrix Game (Lemke and How-
sion 1964). It does not always admit a pure policy, however,
if a pure policy (which may not be unique) exists, it can
be found in time polynomial in |AF |. When no pure poli-
cies exist, mixed policies (corresponding to stochastic poli-
cies δF∗t,i (·|si, c, aL)) can be found by classical algorithms.
However, in this case, mixed policies are more complex to
compute. (Chen, Deng, and Teng 2009) have shown that this
two-player problem is PPAD-complete, where PPAD is an
intermediate complexity class between P et NP (provided
that these classes be distinct). In the mean time, (Daskalakis,
Goldberg, and Papadimitriou 2009) have shown that the
problem is also PPAD-complete for a number of players
(hence of health status) greater than or equal to 3. Yet,
(Lipton, Markakis, and Mehta 2004) have shown that com-
puting ε-Nash optimal mixed policies was quasi polyno-
mial.Furthermore, the computed policies have at most k
non-zero probability actions.

Taking these considerations into account, we have im-
plemented an algorithm that searches exhaustively for pure
equilibria and then, if none or more than 1 equilibria are
found, mixed policies are looked for using a quadratic pro-
gramming modeling of a bi-matrix game (Mangasarian and
Stone 1964) and the SCILAB built-in solver QUAPRO.

Experiments on the case study
Scenarios We consider a group of n herds (followers). The
model is defined by:

• p(s′i = I|si = S, c, aF ) = β(aF )∗c
n + out(aF ) with c

the number of infected herds, aF the action applied, β the
disease transmission rate and out the external risk (both
β and out depend on aF , as shown in Table 1).

• p(s′i = S|si = I, aF ) = PI→S(aF ) only depends on the
action undertaken in the I herds (Table 1).

• The rewards of the followers are the negated sum of the
cost (incentive taken into account) of the control action
plus a cost associated to the herd’s resulting state.

rF (s′i, a
L, aF ) = −

(
(1− aL ∗ percent) ∗ control(aF )

+ cost(s′i)
)
.

• The reward of the leader is the negated sum of: (i) an in-
centive cost if aL = 1 : cincent, (ii) the expected control
cost of infected herds:
CI(c, a

L) = c ∗ δF,i∗(aFi = control|si = I, c, aL)

∗percent ∗ control(si = I),

(iii) the expected control cost of non-infected herds:

CNI(c, a
L) = c ∗ δF,i∗(aFi = control|si = S, c, aL)

∗percent ∗ control(si = S),

and (iv) penalties for infected herds: Cp(c) = c ∗ pen(I).

rL{δF,i∗}(c, a
L) = −

(
cincent+cI(c, a

L)+cNI(c, a
L)+Cp

)
.

Note that the rewards have a more complex form than the
ones we adopted earlier. However, the backwards induction
algorithm we have defined can still be applied with slight
modifications.

We computed the equilibrium policies for parameters in
Table 1 for an horizon of 50 time-steps, without discount.
We then simulated the dynamics under the equilibrium poli-
cies to evaluate the leader’s use of incentive, the associated
cost and the impact on the prevalence of the disease (I/n).
As our model is stochastic, we ran 10,000 replications with
an initial state of n− 2 infected herds.

Parameter Notations Value
Transmission rate (action) β {0.8, 0.4}

External risk (action) out {0.05, 0.025}
Transition I to S (action) PI→S {0.05, 1}

Individual cost {S, I} cost {0, 30}
Leader penalties {S, I} pen {0, 15}

Control cost {S, I} control {15, 150}
Incentive cost cincent {0, 1}

Proportional incentive cost percent 0.1|0.25|0.4

Table 1: Parameters values

Results First, note that followers policies were always de-
terministic with the parameters’ values we used in the ex-
periments. Figure 1 shows an apparently paradoxical fact.
The Organization proposes incentives more often when they
represent a larger percentage of the followers’ control action
costs. This is especially true when the proportion of infected
herds is high. It can be explained by looking at the followers’
policy (Figure 3). Followers in state S tend to control more
when incentives are increased, since control actions are less
expensive in this case. Still, note that in state S when we
consider an incentive of 40% of the control cost, followers
control even without incentive. Varying the number of herds
has no effect on the leader and followers’ policies nor on the
proportion of infected herds (results not shown). Figure 2
(left) shows that increased incentives lead to fewer infected
herds, which is rather natural. Figure 2 (right) even shows
that, for a sufficiently long horizon, considering an incen-
tive of 40% of control cost leads to less cumulated expected
cost for the leader, since the followers are more reactive to
incentives.

A remarkable point of the experiments (which could be
expected) is that equilibrium policies are more or less sta-
tionary, except for the last (and initial) few steps. This al-
lows a simple rule-based representation of policies, which
is particularly convenient for decision-makers in animal dis-
ease management. And, even though simple, these policies
improve on the ones currently used, in which incentives are
decided unconditionally, without considering the prevalence
of the disease.
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Figure 1: Deterministic policy for the leader (blue areas rep-
resent situations when the incentive is retained) and use of
the incentive, when incentives represent 10% (top), 25%
(middle) and 40% (bottom) of followers’ control costs.
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Figure 2: Evolution over time of the mean proportion of in-
fected herds (left) and of the mean total leader cost (right)
when incentives represent 0% (blue), 10% (green), 25%
(red) and 40% (light blue) of followers’ control costs.

Concluding remarks, further work
In this article we have proposed a LF-MDP model for ani-
mal disease management in the context of a set of herds and
a global organization. Our main technical contribution is an
adaptation of the LF-MDP model which allows to efficiently
deal with a large (realistic) number of herds, in the case of
S-I-S disease models. In the framework of sustainable dis-
ease management, our approach offers (i) a way to compute
adaptive (with respect to the number of infected herds) in-
centive policies, which is not usual in the domain and (ii) a
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Figure 3: Deterministic policy for followers in states S (left)
and I (right) when incentives represent 10% (top), 25%
(middle) and 40% (bottom) of control costs: “no action”
even when incentive (black), “action” only when incentive
(green) and “action” even when no incentive (light blue).

framework for analyzing leaders incentive policies and their
impact on follower’s policies. Our work also differs from ex-
isting work, such as (Tharakunnel and Bhattacharyya 2007;
2009), in that exact dynamic programming can be applied,
when the latter use a reinforcement learning approach.

Immediate extensions to our work would be to consider
more realistic disease propagation models, which are gen-
erally used in disease management (S-I-R, S-E-I-R models,
with potentially different levels of excretion). Our approach
would naturally extend to these problems, the main diffi-
culty being to have k-players equilibrium policies to com-
pute. Other natural extensions would be to consider (i) non-
homogeneous disease transmission rates (in this case, recent
graph-based MDP approaches could be applied (Sabbadin,
Peyrard, and Forsell 2012)) and (ii) partial state observabil-
ity. Considering the latter problem would require to consider
problems of the form LF-POMDP.
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