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Driver Drowsiness Classif cation Using Fuzzy
Wavelet Packet Based Feature Extraction Algorithm

Rami N. Khushaba, Sarath Kodagoda, Sara Lal, and Gamini Dissanayake

Abstract—Driver drowsiness and loss of vigilance are a major
cause of road accidents. Monitoring physiological signals while
driving provides the possibility of detecting and warning of
drowsiness and fatigue. The aim of this paper is to maximize the
amount of drowsiness-related information extracted from a set
of Electroencephalogram (EEG), Electrooculogram (EOG), and
Electrocardiogram (ECG) signals during a simulation driving
test. Specifically, we develop an efficient fuzzy mutual information
based wavelet packet transform (FMIWPT) feature extraction
method for classifying the driver drowsiness state into one of
predefined drowsiness levels. The proposed method estimates the
required mutual information using a novel approach based on
fuzzy memberships providing an accurate information content
estimation measure. The quality of the extracted features was
assessed on datasets collected from thirty-one drivers on a
simulation test. The experimental results proved the significance
of FMIWPT in extracting features that highly correlate with the
different drowsiness levels achieving a classification accuracy of
95%-97% on average across all subjects.

Index Terms—Biosignal Processing, Driver Drowsiness, Fea-
ture Extraction.

I. INTRODUCTION

DROWSINESS is an intermediate state between wake-
fulness and sleep that has been def ned as a state of

progressive impaired awareness associated with a desire or
inclination to sleep [1]. In certain tasks, such as driving,
drowsiness is considered as a signif cant risk factor that sub-
stantially contributes to the increasing number of motor vehicle
accidents each year [2]. Critical aspects of driving impairments
associated with drowsiness are slow reaction times, reduced
vigilance, and def cits in information processing that all lead
to an abnormal driving behavior [3], [4]. Driver drowsiness
is usually used interchangeably with the term driver fatigue;
however, each of these terms has its own meaning. Fatigue is
considered as one of the factors that can lead to drowsiness and
is a consequence of physical labor or a prolonged experience
and is def ned as a disinclination to continue the task at hand
[5]. Driver fatigue is believed to account for 35%-45% of
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all vehicle accidents [6]. Some authors distinguish fatigue
from drowsiness as the former does not f uctuate rapidly, over
periods of a few seconds, as drowsiness. Usually, rest and
inactivity relieves fatigue, however, it makes drowsiness worse
[7].
Different studies have been reported on driver drowsiness

detection including methods identifying physiological associa-
tions between driver drowsiness/fatigue and the corresponding
patterns of the Electroencephalogram (EEG) (brain activity),
Electroocculogram (EOG) (eye movement), and Electrocar-
diogram (ECG) (heart rate) signals [8], [9], [10], [11], [12].
Most of these studies reported that the physiological approach
to drowsiness detection can provide very accurate results
as strong correlation between these signals and the driver’s
cognitive state was found in many studies [9], [13]. Specif -
cally, many of these studies suggested that the change in the
cognitive state can be associated with signif cant changes in
the EEG frequency bands such as delta (δ: 0-4Hz), theta (θ: 4-
8Hz), alpha (α: 8-13Hz), and beta (β: 13-20Hz) [14], [15] or
their combinations [16], [17], and with changes in the eyelid
parameters extracted from the EOG [18]. Additionally, heart
rate variability was found to be applicable for the detection of
drowsiness and fatigue using the ECG power spectrum [19].
The crucial step in most of the above reported studies

includes the extraction of a set of features that correlate with
drowsiness. As an example, Fu et al. [20] utilized probabilistic
principal components analysis to extract features from 62 EEG
channels to distinguish awake, drowsy and sleep in a driving
simulation study. A signif cant drop in classif cation accuracy
from 97% to 89% was reported when classifying the extracted
features into three classes rather than two binary classes (either
awake and sleep) due to the f uctuations of the drowsy state. It
was also reported that features extracted from high frequency
bands are more stable than features extracted from the low
frequency bands [20]. A smaller number of channels was
reported in other studies, for example Lin et al. [21] utilized 32
EEG/EOG channels and 2 ECG channels and employed power
spectrum and independent component analysis with fuzzy
neural networks for alertness estimation. A maximum testing
accuracy of 91.3% on average across several subjects was
reported. On the other hand, Yeo et al. [22] employed support
vector machines for classifying different frequency spectrum
based features reporting very high classif cation results of 99%
accuracy with 19 EEG channels and an EOG recording. The
authors also reported that the achieved classif cation accuracy
would be compromised, if less EEG channels were used [22].
Despite the above results, there are a number of limitations

associated with many of these previous studies. These include,



most previous studies have attempted to use the same estima-
tors for all subjects. However, the relatively large individual
variability in EEG dynamics accompanying loss of alertness
means that, for many drivers, group statistics cannot be used
to accurately predict changes in alertness and performance
as denoted by Jung et al. [23]. Another limitation in studies
relating drowsiness/fatigue to EEG/EOG/ECG spectrum is the
use of a small number of spectral bands def ned a priori,
rather than exploring the benef ts of using the full spectrum
[14], [15], [16], [17]. It is also noticed that conventional
techniques like the Fast Fourier Transform (FFT) were mostly
employed for detecting changes in the spectral components of
the corresponding signals [17], [23]. However, it is generally
known that the FFT is not very suitable to extract features
localized simultaneously in the time and frequency domains.
The features extracted by FFT are of global nature either in
time or frequency domains so that the interpretation of the re-
sults may not be straightforward. Additionally, the FFT is more
suitable for analyzing stationary signals, while physiological
signals like the EEG, tend to be nonstationary ones. This might
in turn limit the accuracy of the drowsiness detection system
that is based on the above estimators and methods.
On the other hand, it is generally known that methods like

the wavelet transform and the wavelet packet transform (WPT)
are more suitable than FFT when dealing with nonstationary
signals. Thus, an attempt for drowsiness detection with WPT
based feature extraction method was utilized by Zhang et al.
[24] on 13 EEG channels, 1 EOG, and 1 ECG channels.
However, Shannon entropy was applied on the WPT to select
the representative features, but it is generally known that
Shannon entropy is not suitable for classif cation problems but
for compression problems [25]. Thus, kernel feature projection
techniques were necessary to provide an average accuracy of
91% as the original features were not powerful representatives
of the underlying problem.
The aim of this paper is to develop an automated method

of distinguishing different levels of drowsiness based on the
EEG/EOG/ECG signals collected while performing simulated
driving. Specif cally, we propose to employ the wavelet packet
transform to construct features that highly correlate with
alertness and the different levels of drowsiness. The WPT is
chosen due to its ability to deal with stationary, nonstation-
ary, or transitory characteristics of different signals including
abrupt changes, spikes, drifts, and trends [26]. In order to
automatically select the frequency components that are most
suitable for constructing the drowsiness/alert features, a novel
mutual information estimation measure is developed based
on a generalization of the concept of fuzzy entropy. The
justif cation for the need of such a measure is that it reduces
the computational cost associated with estimating the mutual
information (when comparing with other methods such as
parzen density estimators and kernel density estimators for
mutual information calculation) while providing an accurate
estimation of the information contents of the different fea-
tures. Thus, different features are extracted for each subject
using the proposed method that automatically optimizes the
full frequency spectrum of the above signals for the best
representation for detecting drowsiness. Additionally, unlike

most attempts in the literature necessitating large number of
channels, only 3 EEG, 1 EOG and 1 ECG channels are utilized
in this paper to provide a more practical approach.
The structure of the subsequent sections of the paper is

as follows: Section II review the available WPT based fea-
ture extraction methods and justif es the need for the new
method. Section III presents the proposed fuzzy entropy based
mutual information measure. The data collection procedure
is described in section IV. Section V describes f rst the
data collection procedure and then presents the experimental
results. Finally, a conclusion is provided in Section VI.

II. BACKGROUND
A. The Wavelet Packet Transform

Biomedical signals usually consist of brief high-frequency
components closely spaced in time, accompanied by long-
lasting, low-frequency components closely spaced in fre-
quency. Wavelets are considered appropriate for analyzing
such signals as they exhibit good frequency resolution along
with f nite time resolution, the f rst to localize the low-
frequency components and the second to resolve the high-
frequency components [27]. The wavelet packets transform,
referred to as WPT subsequently, was introduced by Coifman
et al. [28] by generalizing the link between multiresolution
approximations and wavelets. The WPT may be thought of as
a tree of subspaces, with Ω0,0 representing the original signal
space, i.e., the root node of the tree. In a general notation,
the node Ωj,k, with j denoting the scale and k denoting the
subband index within the scale, is decomposed into two or-
thogonal subspaces: an approximation space Ωj,k → Ωj+1,2k

plus a detail space Ωj,k → Ωj+1,2k+1 [29]. This is done by
dividing the orthogonal basis

{

φj(t− 2jk)
}

k∈Z
of Ωj,k into

two new orthogonal bases
{

φj+1(t− 2j+1k)
}

k∈Z
of Ωj+1,2k

and
{

ψj+1(t− 2j+1k)
}

k∈Z
of Ωj+1,2k+1 [30], where φj,k(t)

and ψj,k(t) are the scaling and wavelet functions respectively
that are given in [30] as
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Where the dilation factor 2j , also known as the scaling
parameter, measures the degree of compression or scaling.
On the other hand, the location parameter 2jk, also known
as translation parameter, determines the time location of the
wavelet.
The difference to the wavelet transform is that, for the sub-

sequent decomposition levels, the WPT not only decomposes
the approximation coeff cients but also the detail coeff cients.
This process is repeated J times, where J ≤ log2N , with N
being the number of samples in the original signal. This in
turn results in J × N coeff cients. Thus, at resolution level
j where j = 1, 2, ..., J , the tree has N coeff cients divided
into 2j coeff cient blocks or crystals. This iterative process
generates a binary wavelet packet tree like structure, where the
nodes of the tree represent subspaces with different frequency



Fig. 1. An example of the wavelet packet decompositions of Ω0,0 into
tree-structured subspaces

localization characteristics. This is shown schematically in
Fig.1 with three levels of decomposition [29].

B. Wavelet Packet based Feature Extraction Methods

The problem of WPT-based feature extraction can be de-
composed into two main tasks: feature construction and bases
selection. In the feature construction step, the goal is to utilize
the WPT coeff cients generated at each of the WPT tree
subspaces (shown in Fig.1) to construct variables or properties
that can best represent the classes of the signals at hand. On
the other hand, the bases selection problem is related to the
identif cation of the best-bases (given an ensemble of bases)
from which the constructed features can highly discriminate
between the signals belonging to different problem classes.
Early contributions to this f eld included the work presented
by Coifman and Wickerhauser [31] in which they proposed the
Joint Best Basis (JBB) method utilizing Shannon entropy as a
cost function for bases selection. A limitation of JBB method
is that it is most suitable for compression tasks rather than
classif cation tasks. The justif cation is that classif cation prob-
lems need a measure to evaluate the power of discrimination of
each subspace in the tree-structured subspaces rather than the
eff ciency in representation. To overcome such a limitation, the
Local Discriminant Basis (LDB) algorithm was proposed by
Saito [25] employing the symmetric relative entropy. Both JBB
and LDB are concerned with the energy levels of signals and
were reported by Li et al. [26] to exhibit some drawbacks when
it comes to accentuating the discriminatory power essential in
classif cation tasks. A fuzzy set-based criterion was proposed
by Li et al. [26] in their Fuzzy Wavelet Packet method
(or simply the FWP) to aid in the selection of the best
basis showing better performance than JBB and LDB when
classifying biomedical signals. On the other hand, the Optimal
Wavelet Packet (OWP) method proposed by Wang et al. [32]
using Davies-Bouldin criterion managed to outperform the
FWP when classifying biomedical signals. The justif cation
for such a performance is that the feature representation in
OWP attempts to overcome the lack of the shift-invariance
property observed in the feature representation of FWP, JBB,
and LDB as stated by Wang et al. [32]. However, the distances

between the classes or clusters’ centers across each feature
(or dimension) are used to judge on the features suitability
for classif cation in both OWP and FWP (in the preprocessing
step). It is generally known that considering distance measures
alone may not be very useful to judge the corresponding fea-
tures ability in separating different classes [33]. A justif cation
is that class means alone cannot be considered to estimate the
classif cation error, since the error also depends on the overlap
between the class likelihoods. Thus, a more powerful measure
is required to identify the information content of the different
features.

C. Mutual Information Based Information Estimation

One of the most suitable approaches for estimating the
arbitrary dependency between random variables is based on
the concept of Mutual Information (MI). The concept of
MI is tightly interconnected with the concept of uncertainty,
where the mutual information between two random variables
is viewed as the capacity to reduce the uncertainty about
those variables [37], [38]. The entropy, being a measure of
uncertainty, is usually used to represent the mutual information
between each feature or variable (denoted as f ) and the class
label (denoted as C) according to the following equation

I(f ;C) = H(f) +H(C)−H(f, C)

= H(f)−H(f |C) (3)

where H(f) and H(C) are the marginal entropies of f
and C respectively, H(f, C) and H(f |C) are the joint and
conditional entropies of f and C respectively. According to
Fano [34], maximizing the MI between different features
and the desired target can achieve the lowest probability of
error. However, in order to estimate the probability distri-
bution function associated with a random variable, a certain
density estimation method needs to be employed for which
many variants exist in the literature. Examples include the
histograms, k-nearest neighbors, parzen and kernel density
estimators [35]. The simplest and most widely used is the
histogram approach in which one simply constructs the bins
of the histogram by counting the number of occurrences of
the values. Unfortunately, this method requires a huge number
of samples to capture the density accurately. However, this
will in turn lead to higher computational complexities. As an
alternative to the above approaches in MI computation, we
propose to employ fuzzy memberships for the calculation of
MI, or the associated entropies required for MI computation
(depending on the approach utilized). The justif cation behind
the proposed approach is that fuzzy entropy and mutual
information measures are able to ref ect the actual distribution
of the classif cation patterns and this will in turn reduce the
generated decision regions for classif cation [36] and will also
provide more accurate estimation of the information content.

III. MUTUAL INFORMATION BASED WAVELET PACKET
FEATURE EXTRACTION

There are two classical theories of uncertainty within which
we can def ne the entropy, the f rst and the most well known is



based on the notion of probability, while the second is based
on the notion of possibility [38]. In the probabilistic approach,
Shannon entropy is a well known measure of uncertainty and is
extensively covered in the literature. An extension to Shannon
entropy is the concept of fuzzy entropy, in which fuzzy sets
are used to aid the estimation of the entropies. It should
be highlighted that the measuring of the fuzzy entropy is
quite different from the classical Shannon entropy since fuzzy
entropy contains fuzziness uncertainties (possibilistic) while
Shannon entropy contains randomness uncertainties (proba-
bilistic). However, a well def ned fuzzy entropy must satisfy
the four Luca-Termini axioms [39] as given below. The f rst
task was to estimate the required memberships of the samples
along each dimension (or feature) in all of the problem classes.
Several methods were reported in the literature for estimating
the membership functions including the kNN approach [40],
the well known Fuzzy c-means method (employed within the
FWP) [41], and many other variants [33], [42]. Given the high
computation cost associated with the kNN approach and the
singularity problem of the Fuzzy c-means, we propose to use
the following approach for estimating the membership values.
Given a universal set with elements xk distributed in a

pattern space as X = {x1, x2, ..., xl}, where k = 1, 2, ..., l with
l being the total number of patterns. For simplicity, It will be
useful to describe the membership value that the k’th vector
has in the i’th class with the following notation

µik = µi(xk) ∈ [0, 1] (4)

Denote the mean of the data sample that belong to class i
as xi and the radius of the data as r

r = max ‖xi − xk‖σ (5)

Then the fuzzy membership µik can be calculated as follows

µik =

(

‖xi − xk‖σ
r + ǫ

)
−2

m−1

(6)

where m is the fuzzif cation parameter, and ǫ > 0 is
a small value to avoid singularity, and σ is the standard
deviation involved in the distance computation. Finally, the
membership of each of the samples in all of the problem
classes is normalized according to

∑c

i=1
µik =1.

A. Fuzzy Entropy and Mutual Information

Let X = {x1, x2, ...., xn} be a discrete random variable with
a f nite alphabet set containing n symbols, and let µA(xi) be
the membership degree of the element xi to fuzzy set A, and
F be a set-to-point mapping F : G(2X) → [0,1]. Hence F is
a fuzzy set def ned on fuzzy sets. F is an entropy measure if
it satisf es the following Luca-Termini axioms [39], [43], [36]:
1) F (A) = 0 iff A ∈ 2X , where A is a nonfuzzy set and

2X indicates the power set of set A.
2) F (A) = 1 iff µA(xi) = 0.5 for all i,
3) F (A) ≤ F (B) if A is less fuzzy than B, i.e., if

µA(xi) ≤ µB(xi) when µB(xi) ≤ 0.5 and µA(xi) ≥
µB(xi) when µB(xi) ≥ 0.5,

4) F (A) = F (Ac),

where Ac = (1−µA(x1), ..., 1−µA(xn)). Shannon entropy
satisf es the above four De Luca-Termini axioms, where for a
discrete random variable X with a probability mass function
p(xi), Shannon entropy is def ned by:

H(X) = −
∑

i

p(xi) log2 p(xi) (7)

Using the proposed membership function in Eq.6 we con-
struct c-fuzzy sets along each specif c feature f , each of these
will in turn ref ect the membership degrees of the samples in
each of the c problem classes. The fuzzy equivalent to the
joint probability of the training patterns that belong to class i
is given here as

P (f, ci) =

∑

k∈Ai
µik

NP
(8)

where P (f, ci) can be interpreted as the degree by which the
samples that are predef ned to belong to class i does actually
contribute to that specif c class. Ai is the set of indices of
the training patterns belonging to class i, and NP is the total
number of patterns. The joint fuzzy entropy of the elements
of class i, denoted as H(f, ci), is then equal to:

H(f, ci) = −Pf,ci logPf,ci (9)

In order to account for the entropy along all c-classes, the
above entropy has to be summed along the universal set to
generate the complete fuzzy entropy H(f, C).

H(f, C) =
c
∑

i=1

H(f, ci) (10)

The above entropy satisf es the four De Luca-Termini ax-
ioms and is termed as the joint fuzzy entropy. The above
equations can be applied on the samples along each feature,
thus computing the entropies associated with each feature.
In order to f nd the marginal entropy H(f) of each feature

we add the estimated membership values of the samples along
each of the c-fuzzy sets Si as below

P (fSi
) =

∑

k µik

NP
(11)

Then the marginal entropy is found by

H(f) = −PfSi
logPfSi

(12)

Similarly, in order to construct the class marginal entropy
HC , we f rst f nd the fuzzy equivalent to the class probability
P (ci). This is found by adding the estimated membership
values along all of the generated fuzzy sets as shown below

P (ci) =

∑

k∈Ai,∀S
µik

NP
(13)

Then the marginal class entropy is found by

H(C) = −Pci logPci (14)

The required mutual information between each feature and
the class label is then measured using Eq.3 for each of the
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features. Finally, to compute the mutual information between
each two variables (to measure the dependency between the
two variables), one can multiply the corresponding member-
ship vales from each feature along each fuzzy set and then
employ Eq.11 and Eq.12 again to f nd I(f1; f2) by using Eq.3.

B. The Proposed Feature Extraction Method

Given a dataset of collected signal records, the WPT
transform is applied on each record of the data acquired
from each channel to generate a complete tree up to a level
J decomposition. Considering each of the subspaces Ωj,k

of the WPT decomposition tree as a feature space, then
features were simply constructed by using the normalized
f lter bank energy. This is simply formed for each subspace
by accumulating the squares of the transform coeff cients for
that subspace divided by the number of coeff cients in that
subspace. Additionally, the logarithmic operator was applied
to normalize the distribution of the generated features as given
below

EΩj,k
= log

(

∑

n(w
T
j,k,nx)2

N/2j

)

(15)

where EΩj,k
is the normalized logarithmic energy of

the wavelet packet coeff cients extracted from the subspace
Ωj,k.wj,kx is the wavelet packet transformed signal (or simply
the coeff cients) evaluated at subspace Ωj,k, and N/2j is the
number of the coeff cients in that specif c subspace.
For a dataset of n features fi where i = 1, 2, ..., n, one can

either utilize the estimated fuzzy mutual information measure
or its normalized variant as shown below

Fi =
I(C; fi)

H(fi)
i = 1, 2, ..., n (16)

Using the above equation, calculate the fuzzy set based
criterion on all the features to evaluate their classif cation
ability. Finally rank the features according to the above mea-
sure, then remove their ascending and descending nodes or
features, and choose the remaining features for classif cation.
The algorithm is then summarized, in a similar manner to that
of the OWP and FWP algorithms but with different feature
representation and information measure than those utilized by
these algorithms, as follows:

Algorithm: The Fuzzy Mutual Information based
Wavelet Packet Algorithm - FMIWPT)

Given a training dataset consisting of labeled original signals,
• Step 0: For each labeled original signal, perform a full
WPT decomposition to the maximum level J . For all j
= 0, 1, ..., J and k = 0, 1, 2, ..., 2j − 1, construct features
according to Eq.15.

• Step 1: Construct the associated fuzzy sets and com-
pute the fuzzy entropies and mutual information. Then
calculate F (Ωj,k) according to Eq.16, where Ωj,k is the
subspace representing each of the features.

• Step 2:Determine the optimal WPT decomposition X
∗,

being the one that corresponds to the maximum value of
F .

• Step 3: In descending order, sort the subspaces by F ,
Ω = {Ω(1),Ω(2), ...,Ω(l)}. Let X∗ = ∅

• Step 4:Move f rst element in Ω to X
∗.

• Step 5: ∀Ω(k) ∈ Ω, if Ω(k) is an ascendant (father) or
descendant (child) (direct or indirect) of Ω(j1), remove
Ω(k) from Ω

• Step 6: if Ω = ∅, stop. Otherwise go to (3) and continue.
• Step 7:The set X is the f nal FMIWPT based decompo-
sition.

The above algorithm is applied to optimize the WPT tree
of each data channel. That is, the above algorithm is utilized
to extract features from each channel and then these features
are all concatenated to form one large feature vector that will
be used for classif cation.

IV. DATA COLLECTION PROCEDURE

Thirty-one subjects (volunteer drivers, all males) aged be-
tween 20-69 years were recruited to perform a driving simu-
lation task. All participants provided informed consent prior
to participating in the study. Lifestyle appraisal questionnaire
was used as a selection criteria, which required participants to
have no medical contraindications such as severe concomi-
tant disease, alcoholism, drug abuse, and psychological or
intellectual problems likely to limit compliance [44]. Most
of the studies were conducted between 9:00AM to 1:00PM
with the total study time involving 2-3 hours per subject.
This included completing questionnaires, physiological sensor
attachment and performing the driving simulator task. The
required ethical approval was obtained from the University
Human Ethics Committee. Participants were asked to refrain
from consuming caffeine, tea or food as well as smoking
approximately 4 h and alcohol 24 h before the study, and
reported compliance with these instructions.
STISIM driver, from Systems Technology, Inc. (STI), USA,

was utilized as driving simulator. The video display showed
other cars, the driving environment, the current speed, pedes-
trians, and other road stimuli. The driving simulator equipment
consisted of a large display unit with in-built steering wheel,
brakes, and accelerator as shown in Fig.2. All subjects were
given instructions on the operation of the simulator prior to
the study. Two driving sessions were completed by each of
the drivers. The initial driving session was approximately 25
min of alert driving, with a track involving many cars and
stimuli on the road to serve as the baseline measure. The alert
driving session was followed by monotonous driving session,
in which participants were required to drive continuously
for approximately 1 h. This session involved the participants
driving with very few road stimuli in a track resembling
country-side driving.
Simultaneous physiological measurements were recorded

during the driving sessions. FlexComp Inf niti encoder, from
Thought Technology Inc., was utilized as the physiological
data acquisition device (encoder channel bandwidth ranges
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Fig. 2. An example of the experimental set-up

from DC-to-512 Hz with 2048 samples/sec). The 10-20 in-
ternational standard of electrode placement was applied [45],
with EEG electrodes placed at Fz (frontal), T8 (temporal), and
Oz (occipital) sites. The Fz and Oz channels are commonly
used in the drowsiness/fatigue studies, while the T8 channel is
a well established region for detecting changes in the drowsi-
ness/fatigue state [46], [17]. All electrodes were referenced to
linked earlobes. Vertical EOG was recorded from the left eye,
and later used to identify drowsiness by observing the blink
rate of each subject. A surface electrode measuring the ECG
signal was utilized with the reference electrode placed on the
shoulder and the active electrodes placed on the right and the
left chest. Blood pressure and heart rate were collected before
and after the driving task. The whole data was pref ltered to
remove the effect of the line noise (50 Hz noise).
A camera, which was synchronized with the physiolog-

ical data, was utilized to capture the video image of the
vehicle operator’s face from which the level of drowsiness
was estimated based on the Wierewille and Ellsworth criteria
[47]. Specif cally, the extracted information from the face data
included the facial tone, slow eyelid closure, and mannerisms
(rubbing, yawning, nodding, etc.). A continuous drowsiness
scale containing f ve descriptors was utilized. These descrip-
tors are given as: Alert-or Not Drowsy (class-1), Slightly
Drowsy (class-2), Moderately Drowsy (class-3), Signif cantly
Drowsy (class-4), and Extremely Drowsy (class-5) [47]. Two
f nal year engineering students volunteered to participate in
scoring this study in addition to a Postdoctoral Fellow, all
from the University of Technology, Sydney (UTS). The three
observers were trained on the scoring criterion by a panel
made of a Neuroscientist, a Senior Mechatronics Engineer,
and a Postdoctoral Fellow who has got experience in Human
Factors and Engineering. The three observers rated the video
segments of one minute duration and assigned a corresponding
drowsiness descriptor according to the aforementioned scale.
In order to form the f nal class label for each subject’s data
segments a majority voting process was utilized. In such a
process, each segment is assigned the label that most of the
observers agreed on. The f nal label of the scored segments
was then utilized as the class label for the stages of drowsiness
required to train any classif cation system.

V. EXPERIMENTS AND RESULTS

One of the main advantages of utilizing the proposed
FMIWPT method is that it can easily overcome the individual
variability that usually affects the choice of the optimum power
spectrum components required to identify drowsiness/fatigue.
This is justif ed as the FMIWPT algorithm selects the required
components for each subject by estimating the fuzzy mutual
information between these components and the class label
that is provided by observer rating of the video frames. In
comparison to the FMIWPT algorithm, many methods were
proposed in the literature, most of which utilized the well
known α, β, θ, δ bands or their combinations, e.g., (θ+ α)/β
and β/α [48], and θ/β and (θ+α)/(α+β) [17], as measures
for detecting the current state of the driver. However, the use
of the proposed FMIWPT can provide more insight about
the required frequency components to detect drowsiness, as
it inspects the full spectrum to identify the best frequency
components for each specif c problem.
In the f rst phase of the experiments, the performance of the

proposed FMIWPT method is tested against other WPT based
feature extraction methods from the literature, which include:

• The WPT based feature extraction method utilized by
Zhang et al. [24] for drowsiness detection. This method
utilizes the relative energies of the WPT subspaces with
Shannon Entropy as a measure for feature suitability for
detecting drowsiness. We refer to this method as HWPT .

• The optimal wavelet packet feature extraction method
proposed by Wang et al. [32] for classifying biomedical
signal classif cation, that we refer to as OWP. This
method was already shown to highly outperform the FWP
proposed by Li et al. [26]. Thus, no comparison with the
FWP was necessary.

• In order to test the signif cance of the proposed fuzzy
mutual information measure with respect to its statistical
variant, we implement our proposed FMIWPT with mu-
tual information estimated using the histogram approach
and refer to this method as MIWPT .

The physiological data collected from the f ve channels
(including 3 EEG, 1 EOG, and 1 ECG) were all utilized in
this phase of the experiment as the goal here is test the sig-
nif cance of the proposed method rather than the signif cance
of data collected from each of the channels. A windowing
approach was then utilized on each of the datasets in which
a sliding window of 10 sec length incremented each time
by 2 sec was employed. All of the above methods were
applied on the windowed records of the data to extract the
corresponding features. A Symmlet family of wavelets of order
5 was chosen. Given that f ve channels of data were utilized
in the experiments, there was a need for a dimensionality
reduction method to produce a small feature set to the classif er
to reduce the computational cost. For this specif c reason,
the recently proposed spectral regression (SR) based linear
discriminant analysis [49] and its kernel based version (KSR)
[50] were utilized in this paper as two possible variations
of dimensionality reduction. These were mainly chosen due
to their computational eff ciency and powerful performance.
However, given that the EEG, ECG, and EOG have very differ-
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ent signal characteristics, e.g., amplitudes and spectral ranges
then two normalization measures were utilized to correct the
signal ranges. The f rst was the application of the logarithmic
operator in Eq.15 while the second was to map the resultant
data range between a minimum of 0 and a maximum of 1
before attempting to use the dimensionality reduction methods.
In such a case, the features generated from one signal type will
not dominate upon those generated from the other signals. Four
different classif ers were then utilized to test the classif cation
error rates, these included: the Linear Discriminant Analysis
(LDA) classif er, Linear Support Vector Machine classif er (the
LIBLINEAR implementation), k-Nearest Neighbor classif er
(KNN), and the Kernel Support Vector Machine classif er
(the LIBSVM implementation). The testing scheme utilized
in this paper was the two-way data split, i.e., the order of the
samples in each dataset was randomized and then half of the
samples were utilized for training and the other half, which is
unseen during training, was used for testing. This process was
repeated 50 times across each of the 31 dataset.
Given that different drivers exhibited different levels of

drowsiness then the classif cation error rates were f rst given
for each group of drivers sharing the same number of drowsi-
ness levels as shown in Fig.3 with SR dimensionality reduction
and bars denoting the standard errors. In this way, one can
judge on the effectiveness of the proposed method when deal-
ing with different number of drowsiness levels. The average
classif cation error rates across thirty-one subjects using differ-
ent WPT based feature extraction methods are also shown in
Fig.4 with both SR and KSR dimensionality reduction while
using different classif ers. This in turn represents the average
of the results given in Fig.3.
These results clearly indicate that the proposed FMIWPT

was able to outperform the rest of the methods on the same
datasets with different classif ers. The results also indicate that
when using KSR for dimensionality reduction the performance
of all of the methods was enhanced upon that offered by
employing SR for dimensionality reduction. This is justif ed
by the nonlinear mapping of the features within KSR using
the kernel trick. It is also shown that the HWPT and OWP
were not able to compete with both of the FMIWPT and its
statistical version MIWPT when using either SR or KSR. On
the other hand, the MIWPT was only capable of competing
with the proposed FMIWPT when using kernel dimensionality
reduction technique. However, when using a linear dimension-
ality reduction method the MIWPT was clearly outperformed
by FMIWPT.
A plot of the classif cation sequence for two subjects is

also shown in Fig.5 using the proposed method with SR
dimensionality reduction and LDA classif er. One can see that
the proposed combination is quite successful at classifying the
features extracted from the EEG+EOG+ECG data. Many of
the errors that are present occur during the transitional periods
from one drowsiness level to another, which are expected as
the system is in an undetermined state between transitions.
The rest of the errors occur due to the overlapping stages of
drowsiness (mostly removed when using KSR).
In order to test the statistical signif cance of the achieved

results by the proposed FMIWPT in Fig.4, the following

measures are utilized here:
• Geometric mean error ratio (GMER): For each two
feature extraction methods with associated classif cation
errors A1, A2, ..., An and B1, B2, ..., Bn, respectively
(where n represents the number of observations), the
geometric error ratio is:

exp
∑n

i=1
log(Ai/Bi)

n
(17)

This measure ref ects the relative performance of one
method with respect to another. If the outcome is less than
1, then it is an indication that the f rst method outperforms
the second method in terms of error reduction.

• Win-tie-loss (WTL ): The measure presents three output
values, these are the number of datasets (or subjects) on
which the f rst feature extraction method presented better,
equal, or worse performance than the second feature
extraction method.

• Two-way analysis of variance test(ANOVA): In order
to further test the statistical signif cance, the two-way
analysis of variance test (ANOVA with signif cance level
set to 0.05) was again implemented between the testing
results achieved by FMIWPT and each of the other four
methods across four different classif ers.

Given the different feature extraction methods, we apply
the statistical signif cance tests on the results achieved by the
features projected with SR rather than that with KSR. The
justif cation for this is that all methods perform well with
KSR. However, such performance is not related to how good
the different features are, but its more related to the ability
of KSR in nonlinearly separating the feature along different
classes, which is out of context in this paper. Thus, using dif-
ferent feature extraction methods with the same dimensionality
reduction and classif cation methods we test the signif cance of
the achieved classif cation error rates. The results for running
the geometric mean error ratio, win-tie-loss, and ANOVA tests
are all reported in Table.I.
Since the achieved geometric mean error rates were all

reported to be less than 1 (and in many cases noticeably
less than 1), it can be concluded that the proposed FMIWPT
was able to outperform all other methods across different
classif ers on which the above results were computed. These
results also indicated that the performance of the FMIWPT
was statistically more signif cant, by means of ANOVA, than
all other methods while using the LDA, LIBLINEAR, KNN,
and LIBSVM classif ers. Specif cally, FMIWPT outperformed
each of the MIWPT, OWP, and HWPT by 1.5737% (ρ =
0.333×10−6), 5.7289% (ρ = 0), 8.2572% (ρ = 0) respectively
when using the LDA classif er, and by 1.7237% (ρ = 0.211−5),
5.7839% (ρ = 0.0002× 10−3), 8.1048% (ρ = 0) respectively
when using the LIBLINEAR classif er and so on for the rest
of the classif ers. This in turn clearly indicates the signif cance
of the proposed method in comparison to other methods.
In the second phase of the experiments, we investigated the

effect of employing different combinations of the collected
EEG, EOG and ECG signals for detecting drowsiness. In
order to evaluate the signif cance of using different channel
combinations, two sets of experiments were conducted. In the
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(a) Average across 3 subjects exhibiting 2 drowsiness levels
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(b) Average across 12 subjects exhibiting 3 drowsiness levels
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(c) Average across 10 subjects exhibiting 4 drowsiness levels
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(d) Average across 6 subjects exhibiting 5 drowsiness levels

Fig. 3. Classif cation error rates across each group of subjects with different drowsiness levels using different variants of WPT based feature extraction
methods with SR projection and different classif ers
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(a) Using SR for dimensionality reduction
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(b) Using Kernel-SR for dimensionality reduction

Fig. 4. Average classif cation error rates across 31 subjects using different variants of WPT based feature extraction methods and classif ers
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(a) Subject-1 results
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(b) Subject-2 results

Fig. 5. Classif cation time plot showing the actual class and the estimated class label by the combination of FMIWPT with SR for dimensionality reduction
and LDA classif er

TABLE I
STATISTICAL SIGNIFICANCE TEST RESULTS OF FMIWPT1 AGAINST ALL OTHER METHODS USING DIFFERENT CLASSIFIERS

FMIWPT1 vs. → OWP MIWPT HWPT
LDA classif er GMER = 0.4956 GMER = 0.7711 GMER = 0.4199

WTL = 30-0-1 WTL = 28-0-3 WTL = 30-0-1
ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001)

LIBLINEAR GMER= 0.5320 GMER = 0.7810 GMER = 0.4584
WTL = 30-0-1 WTL = 27-0-4 WTL = 30-0-1

ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001)
KNN GMER= 0.5317 GMER = 0.7774 GMER = 0.4482

WTL = 30-0-1 WTL = 27-0-4 WTL = 31-0-0
ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001)

LIBSVM GMER= 0.5283 GMER = 0.7696 GMER = 0.4614
WTL = 30-0-1 WTL = 27-0-4 WTL = 31-0-0

ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001) ANOVA(ρ ≤ 0.001)

f rst, the FMIWPT was utilized with SR for dimensionality
reduction and LDA classif er on the EEG channels only.
Specif cally, we evaluate the signif cance of using the Fz
channel alone, Oz channel alone, T8 channel alone, then Fz
plus Oz (denoted as Fz+Oz), Fz plus T8 (denoted as Fz+T8),
Oz plus T8 (denoted as Oz+T8) and Fz plus Oz plus T8
(denoted as Fz+Oz+T8) as shown in Fig.6.a denoting average
classif cation error rates across all subjects with bars denoting
the standard errors. These results indicate two important points
including f rstly that each of the Fz, Oz, and T8 electrodes
sites is signif cant to the drowsiness detection problem. This
in turn agrees upon with the results shown by Jap et al.
[17] in which the authors proved that signif cant changes in
the α, β, θ, δ activities existed in the frontal, temporal, and
occipital regions. Secondly, despite the effectiveness of each
of the utilized channel combination including Fz+Oz, Fz+T8,
and Oz+T8, however, practical results indicated signif cant
differences between the results achieved by using all of
Fz+Oz+T8 together upon that of the rest of the combinations.
Specif cally, Fz+Oz+T8 was more signif cant than Fz+Oz by
2.2625% (ρ ≤ 1×10−5), Fz+T8 by 2.8607% (ρ ≤ 1×10−5),
and Oz+T8 by 2.0819% (ρ ≤ 1× 10−5). This in turn justif es
the need to use all of the three EEG channels together.

The focus of the experiments was then shifted toward the
use of FMIWPT to estimate the classif cation accuracies when

utilizing each of the following channels: EEG (3 channels),
ECG (1 channel), EOG (1 channel), EEG (3 channels) plus
ECG (1 channel), and EEG (3 channels) plus EOG (1 channel),
ECG (1 channel) plus EOG (1 channel) all in comparison
to that when using all of the f ve channels together. In all
cases, the classif cation error rates were calculated using the
LDA classif er with SR and KSR as dimensionality reduction
techniques as using other classif ers provided almost the same
results. Fig.6.b shows the average across all subjects with
error bars denoting the standard errors. These results indicate
many important points including: Firstly, the EEG channels
alone were capable of achieving very promising results as
shown previously. These results were further enhanced by
adding either EOG or ECG channels resulting in a decrease
in the system’s error rates, as these channels provided more
insight about the actual physiological state of the driver.
Secondly, it can be noticed that, by considering EEG with
ECG signal only, the achieved error rates were slightly lower
than that achieved by EEG with EOG only across all subjects
when using different classif ers classif er with SR or KSR
for dimensionality reduction. This in turn further suggests
that the information extracted from the ECG signal are more
representative than that provided by the EOG signal due to
the role of the heart rate variability in detecting drowsiness.
Additionally, one can notice that when using the ECG signal



10

alone the classif cation error rates , being 19.6377% with
SR and 12.4505% with KSR, were actual lower than that
achieved by the EOG signal only, being 24.5856% with SR
and 14.5758% with KSR. This in turn further proves the
effectiveness of the heart rate signal in detecting drowsiness.
However, ECG or EOG alone cannot provide very powerful
results as that provided by EEG+ECG or EEG+EOG, due to
the role of EEG in detecting drowsiness. Finally, a combination
of all channels together was shown vital to achieve the best
classif cation error rates when using linear dimensionality
reduction methods achieving an average of 5.5812% with LDA
classif er, 6.4770% with LIBLINEAR, 6.3246 % with KNN
classif er, and 6.5727% with LIBSVM classif er. On the other
hand, when using the KSR for dimensionality reduction it was
noticed that the EEG signals alone were enough to achieve
accurate results. Adding EOG or ECG signals to EEG while
considering KSR for dimensionality reduction presented no
greater statistical signif cance than using EEG alone. Thus, one
can further reduce the number of input channels by considering
nonlinear feature projection techniques. However, using KSR
is computationally more expensive than SR, due to the use of
the kernel trick.
In the f nal part of the experiments, the time required by

each method to select the best WPT bases for classif cation
was calculated as the average time (per second) required
across the different channels. Specif cally, the required average
best bases selection time for each method was found to be
FMIWPT=1.2273 sec, MIWPT=1.6643 sec, OWP =1.1882
sec, and HWPT = 0.9950 sec on a computer with i7 processor
(1.6 GHz) and 4 GB of RAM. These results indicate that the
HWPT required the minimum amount of time followed by
OWP, FMIWPT, and MIWPT respectively. However, given
that the performance of the HWPT and OWP was not as
accurate as that of the FMIWPT and MIWPT then this in turn
justif es the extra time required by both of these methods, with
the proposed FMIWPT requiring less time than the MIWPT
with the histogram based approach. Thus, the computational
cost of the proposed FMIWPT seems reasonable enough in
comparison to that of the other available methods given the
enhancements in the classif cation results achieved by the
FMIWPT.

VI. CONCLUSION

In this paper a new feature extraction algorithm was de-
veloped to extract the most relevant features required to
identify the driver drowsiness/fatigue states. This was achieved
by analyzing the corresponding physiological signals from
the brain, eye and heart. Three observers rated the video
segments and the f nal labeling for the different drowsiness
levels was obtained by using majority voting on the observers’
scores. A new fuzzy mutual information estimation scheme
was developed and applied to identify the wavelet packet best
bases which were utilized to extract features. These features
were then reduced in dimensionality using two methods, SR
and KSR, and tested on four different classif ers. The achieved
results outperformed the accuracy of state of the art WPT
based feature extraction methods. The high signif cance of
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Fig. 6. Average classif cation error rates across thirty-one subjects using
different channels combinations

the statistical analysis supported the accuracy of the results in
terms of the classif cation accuracy rates achieving nearly 95%
with SR or nearly 97% with KSR across different classif ers.
Finally, a combination of all channels was shown vital to
achieve very high classif cation accuracies when using linear
feature projection methods. On the other hand, using EEG
channels alone or a combination of EEG+ECG or EEG+EOG
were shown to achieve highly accurate classif cation results
when using nonlinear feature projection methods like KSR.
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