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Abstract
Autosomal dominant polycystic kidney disease (ADPKD), caused by mutations in PKD1 or PKD2 genes, is the most common
hereditary renal disease. Renal manifestations of ADPKD are gradual cyst development and kidney enlargement ultimately
leading to end-stage renal disease. ADPKD also causes extrarenal manifestations, including endothelial dysfunction and hyper-
tension. Both of these complications are linked with reduced nitric oxide levels related to excessive oxidative stress (OS). OS,
defined as disturbances in the prooxidant/antioxidant balance, is harmful to cells due to the excessive generation of highly
reactive oxygen and nitrogen free radicals. Next to endothelial dysfunction and hypertension, there is cumulative evidence that
OS occurs in the early stages of ADPKD. In the current review, we aim to summarize the cardiovascular complications and the
relevance of OS in ADPKD and, more specifically, in the early stages of the disease. First, we will briefly introduce the link
between ADPKD and the early cardiovascular complications including hypertension. Secondly, we will describe the potential
role of OS in the early stages of ADPKD and its possible importance beyond the chronic kidney disease (CKD) effect. Finally, we
will discuss some pharmacological agents capable of reducing reactive oxygen species and OS, which might represent potential
treatment targets for ADPKD.
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ROS Reactive oxygen species
SOD Superoxide dismutase

Introduction

Autosomal dominant polycystic kidney disease (ADPKD)
is the most common hereditary renal disease with a prev-
alence between 1:400 and 1:1000 live births [1]. This
disease is caused by mutations in either the polycystic
kidney disease 1 gene (PKD1) (located at 16p13.3; in
approximately 78% of the families) or the PKD2 gene
(located at 4p21; in approximately 15% of the families)
[2], which encode for polycystin-1 (PC1) and polycystin-
2 (PC2), respectively [3, 4]. Recently, a third gene has
been identified to cause ADPKD, namely GANAB,
encoding glucosidase II subunit α (located at 11q12.3;
in approximately 0.3% of the families) [2, 5]. ADPKD
is characterized by the continuous formation and growth
of innumerable cysts in both kidneys leading to their en-
largement and to a loss of their normal architecture, which
ultimately results in chronic kidney disease (CKD) [6, 7].
Although cyst development appears in childhood, the de-
cline in the glomerular filtration rate (GFR) starts in most
patients between the third and sixth decade of life [8, 9],
leading to end-stage renal disease (ESRD) in approxi-
mately half of the ADPKD patients by the age of 60–
70 years [9–11]. Besides the deterioration of the renal
function, several cardiovascular complications including
hypertension, left ventricular hypertrophy (LVH), athero-
sclerosis, and arterial stiffness have been reported in
ADPKD [6, 12].

Hypertension occurs even before the first observed re-
duction in the GFR [13] and is related to impaired
endothelial-dependent relaxation, LVH, and nitric oxide
(NO) deficiency [7, 14]. Impaired endothelial-dependent
relaxation, also known as endothelial dysfunction, is an
early predictor of vascular injury and atherosclerosis. NO,
on the other hand, plays a key role in the maintenance of
the cardiovascular homeostasis and has both vasodilatory
and beneficial hemodynamic effects in the human body.
Endothelial dysfunction and decreased endothelial NO
synthase activity are observed in patients with ADPKD
[15]. Moreover, it has been reported that there is a link
between endothelial dysfunction, NO deficiency, and ox-
idative stress (OS) [12, 16].

Oxidative stress is a state of imbalance between exces-
sive oxidant formation (such as free radical production)
and the degradation of those radicals by antioxidants as an
in-house defense mechanism. Oxidant compounds such as
reactive oxygen species (ROS) and reactive nitrogen spe-
cies (RNS) are formed under physiological conditions in
the human body. These compounds are called reactive

because they are unstable by nature and because of their
interactions with surrounding molecules [17, 18].
However, reactive species are not necessarily harmful to
the cells. At moderate concentrations, ROS/RNS function
as second messengers and regulate the intracellular signal
transduction pathways. In case of a lack of antioxidative
defense, there is a local accumulation of ROS/RNS in the
cell, which creates an imbalance in the prooxidant/
antioxidant equilibrium. This imbalance results in oxida-
tion products of lipids, DNA, and proteins [18].
Especially, the oxidation end-products of lipids are used
to assess the redox state in human samples: oxidized-low
density lipoproteins (oxidized-LDL), malondialdehyde
(MDA), and F2-isoprostanes like 8-epi-prostaglandin F2α
[19, 20].

In the current review, we aim to summarize the car-
diovascular manifestations as well as the relevance of OS
in ADPKD and more specifically in the early stages of
the disease. First, we will briefly introduce the link be-
tween ADPKD and the early cardiovascular complica-
tions including hypertension. Next, we will describe the
potential role of OS in the early stages of ADPKD and its
possible importance beyond the CKD effect. Finally,
some pharmacological agents that are capable of reducing
reactive oxygen species and OS, which might represent
potential treatment targets for ADPKD, will be
highlighted.

Link between autosomal dominant polycystic
kidney disease and endothelial dysfunction

The underlying proteins in ADPKD, PC1 and PC2, are
both membrane-bound glycoproteins and a subfamily of
transient receptor potential (TRP) channels. Both proteins
are present in the plasma membranes of the primary cilia
of endothelial cells of all major vessels, where they form
a heterodimeric molecular complex via their C-terminal
chains [21, 22]. PC1 can also be found in the plasma
membranes at focal adhesion, desmosomes, and adherens
junction sites, whereas PC2 is also located in the endo-
plasmic reticulum [23]. The interaction between both
proteins is important for both the translocation to the
plasma membrane of the primary cilia and for the matu-
ration of PC1 [24]. The PC1/PC2 complex is necessary
for normal vascular development, since it is required for
endothelial cilia to sense fluid shear stress through com-
plex biochemical cascades involving many factors, in-
cluding NO [25].

Deficiency of either PC1 or PC2 causes reduced NO
levels [16]. Impaired endothelial response to shear stress
with attenuation in vascular relaxation, also called im-
paired endothelial-dependent relaxation or endothelial
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dysfunction, is caused by the defect in NO release corre-
lating with a reduction in Ca2+-dependent endothelial NO
synthesis activity [21]. Interaction between PC1 and PC2
has a central role in regulating the intracellular Ca2+ ho-
meostasis. Mutations of PKD1 or PKD2 can lead to lower
cytoplasmic Ca2+ concentrations, which in turn causes an
increase in adenylyl cyclase-6 activity and a decreased
phosphodiesterase activity, leading to an increased
cAMP abundance [21]. Alterations in the Ca2+ homeosta-
sis seem to have a role in the cardiovascular pathogenesis
of ADPKD, since these alterations display changes in
Ca2+ signaling with reduced total intracellular and sarco-
plasmic reticulum Ca2+ levels [22].

Endothelial dysfunction is present in many cardiovascular
and metabolic disorders such as hypertension, dyslipidemia,
and type 1 and 2 diabetes. It also appears to precede the clin-
ical manifestations of many of these disorders. Therefore, en-
dothelial dysfunction is one of the earliest hallmarks of vas-
cular abnormality [26]. In ADPKD, endothelial dysfunction
has been shown in hypertensive, borderline hypertensive, and
normotensive patients with well-preserved renal function [7,
12, 14, 15, 27–32].

About 20 years ago, Wang et al. demonstrated that impaired
endothelium-dependent relaxation was present in the resistance
vessels from heterozygous PKD rats and even to a lesser extent
in the healthy Han:SPRD rats. Back then, they concluded that
these abnormalitiesmay lead to the development of hypertension
and vascular disease later in life, perhaps when the renal disease
develops [27]. Only a few years later, the same researchers found
that acetylcholine-induced endothelium-dependent relaxation
was indeed harmed in the resistance vessels from ADPKD pa-
tients. Additionally, this impairment was also present in ADPKD
patients in the early normotensive phase with a good renal func-
tion [15]. Furthermore, this impairment seemed exaggerated in
hypertensive ADPKD patients [14]. Therefore, endothelial dys-
function in ADPKD seems to appear as a primary defect in
ADPKD patients, while hypertension leads to a further defect
in endothelial function [14, 28]. This was associated with a de-
fective NO release from the endothelium [15].

Considering these findings, endothelial dysfunction has an
important role in the pathogenesis of vascular disease.
Kocaman et al. showed that hypertensive ADPKD patients
with preserved renal function had a significantly greater left
ventricular mass index (LVMI) compared with normotensive
ADPKD patients in the early stages of the disease [28].
Moreover, the LVMI was, although not significant, also great-
er in normotensive ADPKD patients compared to healthy con-
trols. Additionally, it was reported that the carotid intima-
media thickness was significantly increased in the same group
of hypertensive ADPKD patients compared with the same
normotensive patients [28]. On the other hand, both hyperten-
sive and normotensive ADPKD patients showed a significant
biventricular diastolic dysfunction, which suggests that

cardiac involvement starts early in ADPKD [29]. It was also
found that hypertensive ADPKD patients have significantly
less decline in nocturnal blood pressure compared to patients
with essential hypertension [30]. This decline is even attenu-
ated in normotensive ADPKD patients compared to healthy
controls. Moreover, it has also been found that the endothelial-
dependent dilatation was significantly less in nondipper
ADPKD patients compared to dipper ADPKD patients. In
addition, a lack of nocturnal blood pressure fall (nondipping)
is a good predictor of cardiovascular prognosis [30]. All the
findings above about an early-onset endothelial dysfunction
were proved by a study that reported a decrease in coronary
flow velocity reserve in both hypertensive and normotensive
patients [31]. Along with this study, Borresen et al. found that
the pulse-wave reflection was amplified in ADPKD patients,
even in young patients who have normal blood pressure and
renal function [32]. Recently, Nowak et al. demonstrated that
even children and young adults with ADPKD had impaired
endothelial-dependent dilatation and increased arterial stiff-
ness [12]. All of this together shows that the pathological
changes in the arterial system of ADPDK occur in the early
stages of the disease [13].

Most of the cardiovascular disorders are associated with
overproduction of ROS or increased OS. Both an overproduc-
tion of ROS and increased OS reduce vascular NO bioavail-
ability and promote cellular damage. Hence, increased OS is
considered to be a major mechanism involved in the patho-
genesis of endothelial dysfunction [26, 33]. Since endothelial
dysfunction is important for the development of several car-
diovascular disorders, like hypertension, and since it is asso-
ciated with OS, endothelial dysfunction will be mentioned a
number of times throughout this review.

Link between autosomal dominant polycystic
kidney disease, endothelial dysfunction,
and hypertension

Hypertension is associated with progression of renal disease
and with an increased risk for development of cardiovascular
disease and mortality [13, 34, 35]. Moreover, cardiovascular
abnormalities are described from a young age onwards, and
hypertension is the most frequent complication among
ADPKD patients. With an average age at diagnosis of
30 years, hypertension affects 60–75% of young adults and
5–44% of children diagnosed with ADPKD [36–38] before
any substantial reduction of GFR is detected [13, 39].

Both endothelial dysfunction and the activation of the
renin-angiotensin-aldosterone system (RAAS) play a major
role in the pathogenesis of hypertension in ADPKD patients
[13, 39, 40]. The decrease of NO bioavailability in ADPKD
patients will cause the activation of the RAAS [13, 35, 41]. On
the other hand, the enlargement of renal cysts will cause
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compression of the renal vasculature, which, in turn, favors
local renal ischemia, renal structural changes, and again the
stimulation of the RAAS [13, 42]. Furthermore, there is a re-
lationship between a significantly greater renal volume and
hypertension, both in adults [43] and in children [44]. Also,
hypertension is related to vascular remodeling and NO defi-
ciency and is preceded by endothelial dysfunction [14]. The
balance between vasoconstrictor and vasodilatation factors is
disrupted since there are elevated levels of vasoconstrictor fac-
tors, like endothelin-1, in ADPKD patients [42]. In addition,
the renal tissue NO synthase activity is also reduced, which
may activate local OS pathways contributing to renal damage
[14]. Besides the many processes involved in the pathophysi-
ology of hypertension, OS strengthens the development of
hypertension due to the excess production of vascular ROS,
as discussed in the accompanying review by Daenen et al. in
this issue [45]. In particular, the activation of reduced nicotin-
amide adenine dinucleotide phosphate (NADPH) oxidase is
strongly associated with hypertension. The excess of vascular
ROS causes a decreased NO bioavailability and a decreased
antioxidant capacity [46, 47].

Besides the logical fact that the systolic as well as the diastol-
ic blood pressure is elevated in early hypertensive and borderline
hypertensive ADPKD patients compared to early normotensive
ADPKD patients [48, 49], it is shown that the blood pressure is
also elevated between early normotensive ADPKD patients and
healthy controls (Tables 1 and 2) [28, 32, 35, 54–56].
Interestingly, between the ages of 20 and 40 years, there is a
clear difference in the occurrence of hypertension between male
and female patients. The number of male ADPKD patients suf-
fering from hypertension is significantly greater between those
age classes than the number of female ADPKD patients suffer-
ing from hypertension [57]. Furthermore, the likelihood of hy-
pertension in both male and female ADPKD offspring is signif-
icantly higher with hypertensive ADPKD parents compared to
ADPKD offspring of normotensive ADPKD parents [58]. To
support a relationship between OS and hypertension, a recent
study showed that myeloperoxidase (an oxidative stress bio-
marker) is positively and independently associated with blood
pressure [59]. Additionally, it is known that a decrease in blood
pressure due to antihypertensive drugs also has a beneficial ef-
fect on the endothelial function and is associated with a reduc-
tion in OS [60]. Based on these findings, a decreased blood
pressure may also have beneficial effects, since hypertension is
associated with the increased cardiovascular morbidity and mor-
tality in ADPKD patients [61].

Additionally, both in young adults and children, the extent
of hypertension is correlated with the increase in volume and
growth rate of renal cysts, the increase in total kidney volume,
the development of LVH, and a more rapid progression to
ESRD. Therefore, both hypertension and LVH are important
risk factors for premature cardiovascular disease, which is the
most common cause of death in patients with ADPKD [13,

36, 43, 48, 49]. Moreover in childhood, not only a significant
difference between the day- and nighttime systolic and dia-
stolic blood pressure is seen but also a significant correlation
between these blood pressure values and renal structural ab-
normalities is found [62, 63].

It has been suggested that blood pressure target values with
drug treatment should aim at values of < 130/80 mmHg in
adults [64]. The HALT-PKD study confirms this and suggests
that aggressive blood pressure control (< 120/80 mmHg) is
better to delay progression of the disease in patients with pre-
served GFR compared to standard blood pressure control (<
135/80 mmHg) [61]. The HALT-PKD study examined this
effect with the administration of lisinopril alone or in combi-
nation with telmisartan. Patients with lower blood pressure
had a significant reduction in kidney volume growth and a
significant reduction of the left ventricular mass index
(LVMI). However, there was no significant difference in
GFR loss [61]. Interestingly, the improvement of blood pres-
sure control by using angiotensin-converting enzyme inhibi-
tors (ACEi) results in a later onset of ESRD both in males and
females with ADPKD [57]. Although the cohort in the HALT-
PKD study represented early stages of ADPKD, this is not
applicable to children with ADPKD. A 5-year randomized
clinical study to assess the effect of blood pressure control
on the disease progression of 85 children and young adults
with ADPKD using ACEi failed to demonstrate a significant
effect on renal growth [65]. In the total cohort, the hyperten-
sive children were at risk for increases in renal volume and
LVMI and for a decreased renal function. In this particular
group, ACEi treatment was associated with stable renal func-
tion and LVMI. In the same study, an intervention with ACEi
would benefit the ADPKD children with borderline hyperten-
sion (75th–95th percentile) to ameliorate cardiovascular dis-
ease progression and loss of renal function over time. An
ACEi treatment with the aim to achieve a blood pressure of
≤ 50th percentile has been shown to prevent the increase in
LVMI and decline in renal function [65]. KDIGO, on the other
hand, states that treatment of hypertension in pediatric
ADPKD patients should follow prevailing pediatric guide-
lines. This means that the goal is blood pressure below the
90th percentile for age, sex, and height, with the only excep-
tion that RAAS blockade is preferred as first-line treatment
[66]. Given these findings, it was suggested recently to use
ACEi in adolescents and children with borderline hyperten-
sion or hypertension, to achieve a goal blood pressure below
the 50th percentile. When ACEi is not tolerated well by the
patients, angiotensin receptor blockers can be used instead
[37].

Although the data supporting disease-specific blood pres-
sure targets are limited in ADPKD, the recommendations of
the KDIGO Clinical Practice Guideline as well as the HALT-
PKD study suggested a blood pressure target ≤ 140/90 mmHg
in adults [61, 66]. It is also very important to highlight that in
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the KDIGO consensus it recommends having children with a
family history of ADPKD tested and treated for hypertension
[66]. Additionally, early treatment of hypertension contributes
to improve the morbidity and mortality [13, 39]. The recently
revised American College of Cardiology/American Heart
Association (ACC/AHA) high blood pressure guidelines are
also worth mentioning [67]. With these guidelines, lower
thresholds (≥ 130/80 mmHg) will be specified to define
hypertension.

Cardiovascular complications in adults
and children with ADPKD and preserved
kidney function

In the later stages of ADPKD, cardiovascular disease consists
of (i) arterial stiffness and atherosclerosis, ultimately resulting
in LVH, and (ii) endothelial dysfunction (which further pre-
disposes to atherosclerosis). Generally, the accelerated athero-
sclerosis process as seen in patients with CKD is not so fre-
quently observed in ADPKD, especially not in early ADPKD.
The only evidence of subclinical atherosclerosis in young
adult ADPKD patients is the significantly greater carotid
intima-media thickness in hypertensive ADPKD patients
compared to normotensive ADPKD patients and in normoten-
sive ADPKD patients in comparison with healthy controls
[28, 31, 68]. Therefore, in this review, in addition to hyperten-
sion and endothelial dysfunction, we focus on the remaining
important cardiovascular complications in ADPKD, in partic-
ular arterial stiffness and LVH.

Arterial stiffness

Because of the decreased NO availability, adult patients with
ADPKD not only suffer from endothelial dysfunction but also
from increased arterial stiffness, both of which are important
predictors for cardiovascular events and mortality [12]. The
gold standard to measure arterial stiffness is the determination
of the carotid-femoral pulse wave velocity (PWV) [69]. In
young adults, despite a normal blood pressure, the PWV is
increased when ADPKD patients are compared with healthy
controls (Table 2) [32, 54, ]. In addition, the same trend is seen
in children with ADPKD, where the PWV was 14% higher
compared with healthy controls (Table 1) [12].

Left ventricular hypertrophy

It has been reported that there is a greater prevalence of LVH
in hypertensive ADPKD patients than in the general popula-
tion [56]. The HALT-PKD study was set up to look at the
effect of angiotensin blockade on the progression of total
kidney volume and LVH. A recent study investigated this
effect on LVH and found, with prior use of ACEi, a low

prevalence of LVH in hypertensive ADPKD patients (<
50 years) [70]. An aggressive blood pressure control ap-
proach, as suggested by the HALT study, seems beneficial
for the young adult patients, since it more effectively reverses
LVH in comparison with standard blood pressure control [57,
61]. The HALT study thus suggested a reduced prevalence of
LVH in ADPKD, possibly as a result of earlier blood pressure
control. Recently, a greater prevalence of LVH in ADPKD
patients with preserved kidney function has been reported in
comparison with healthy controls (13 vs 2%) []. When hyper-
tensive ADPKD patients are compared with patients with es-
sential hypertension, male ADPKD patients showed a high
LVMI but, in contrast, female patients with essential hyper-
tension showed a higher LVMI in comparison with female
ADPKD patients []. Moreover, hypertensive young adult
ADPKD patients have a significantly greater LVMI compared
to normotensive young adult ADPKD patients, patients with
essential hypertension, and healthy controls (Table 2) [28]. In
addition, both hypertensive ADPKD and borderline hyperten-
sive ADPKD children had a significantly higher LVMI than
normotensive ADPKD children, with no significant difference
between the hypertensive and borderline hypertensive groups
(Table 1) [49].

Link between endothelial dysfunction,
hypertension, cardiovascular disease,
and oxidative stress

The endothelium, an active metabolic organ, plays a cru-
cial role in the maintenance of vascular homeostasis. This
maintenance is done by the release of vasoactive factors
which regulate and balance the vasoconstriction and va-
sodilatation to provide adequate perfusion to target or-
gans. One of these vasoactive factors is NO, which is
synthesized from the amino acid L-arginine by one of
the NO synthases (neuronal, inducible, or endothelial
NOS) with NADPH and oxygen serving as co-substrates.
Not only NO but also ROS species play an important role
in the vascular system by controlling the endothelial func-
tion and vascular tone under normal physiological condi-
tions. Endothelial NOS (eNOS) is responsible for the NO
production in the cardiovascular system and in endothelial
cells [71]. Under pathological conditions, eNOS can pro-
duce ROS by itself, which is called ‘eNOS uncoupling’
[45]. In addition, excessive generation of ROS can also
cause eNOS uncoupling, mainly due to NADPH oxidase-
mediated superoxide generation.

Both the decline in NO bioavailability and OS itself repre-
sent major risk factors for the development of endothelial
dysfunction [72, 73]. Moreover, OS and endothelial dysfunc-
tion were proposed to have a pivotal role in the pathogenesis
of cardiovascular disease, like atherosclerosis, hypertension,
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and heart failure [33, 71, 74, 75]. Furthermore, it has become
evident that changes in the bioavailability of NO are crucial in
determining whether atherosclerosis will develop or not [71].
Eventually, a dysfunctional endothelium leads to cardiovascu-
lar disease due to the fact that an imbalance in NO production
and consumption creates ideal conditions for the activation of
platelets, leukocytes, and cytokines, leading to reduced anti-
oxidant, anti-inflammatory, and antithrombotic properties.
This results in structural damage of the arterial wall with
smooth muscle cell proliferation and atherosclerotic plaque
formation [33, 71, 76].

Relevance of oxidative stress in early
autosomal dominant polycystic kidney
disease

Since cardiovascular disease is the major cause of death in
patients with ADPKD and since OS is a key player in the
progression and development of cardiovascular events, one
may speculate that OS may play a role in ADPKD pathophys-
iology. As also discussed in the accompanying review by
Daenen et al. in this issue, there are many regulators of OS
involved in the early stages of CKD [45]. When those are
compared to the key regulators of OS in the early stages of
ADPKD, there are a number of similarities, as well as partic-
ular pathways highlighted in CKD but not yet explored in the
context of ADPKD.

Established biomarkers of OS in ADPKD

Similar to CKD, patients with ADPKD, also in the early
stages with preserved GFR, present significantly increased
asymmetric dimethylarginine (ADMA) concentrations, 8-
epi-prostaglandin F2α and MDA levels as well as oxidized-
LDL levels in their plasma, in comparison to controls [7, 16,
77, 78]. The plasma superoxide dismutase (SOD) concentra-
tions seem to also be decreased in ADPKD patients [77].
Table 3 summarizes the different OS end-products used in
the evaluation of OS in early ADPKD, as well as the evidence
for a decrease in antioxidant defense mechanisms. Additional
disturbances have been described in the CKD population, like
decreased glutathione levels, or increased NADPH oxidase
activity [45]. Whether this also accounts for ADPKD is not
elucidated.

Theoretical mechanisms of OS in ADPDK

eNOS uncoupling and endothelial dysfunction

As mentioned supra, a possible deficiency in NO synthesis
and onset of endothelial dysfunction can be identified by a
change in plasma and urinary ADMA concentrations.

Indeed, several studies on early ADPKD patients showed in-
creased plasma and urinary ADMA concentrations, together
with a reduction in plasma NO levels (Table 3) [7, 16, 78]. The
elevated plasma and urinary ADMA levels in early ADPKD
may contribute to defective vascular relaxation by inhibiting
eNOS [6]. Raptis et al. suggested that the elevation of ADMA
is positively associated with both 15-F2t-isoprostane and
oxidized-LDL levels [78]. Altogether, it can be suggested that
both endothelial dysfunction and OS may be involved in the
development and progression of kidney injury in patients with
ADPKD [78]. Several studies, conducted on ADPKD rat
models (Han:SRPD:PKD strain), support this hypothesis.
Particularly, a defect in eNOS function and impaired
endothelium-dependent relaxation were observed in the mes-
enteric resistance arteries of rats [27] and later in patients [14,
15] with ADPKD. Later, the same group reported on a re-
duced expression of NO synthase in macula densa cells of
Han:SRPD:PKD rats, as well as in cystic epithelium [79].
Interestingly, the 3-hydroxy-3-methylglutaryl (HMG)-CoA
reductase inhibitors (statins) are known to restore the endothe-
lial function by increasing the NO bioavailability [80]. In cul-
tured human endothelial cells, it has been demonstrated that
statins increase eNOS activity via post-translational activation
of the PI3K/Akt pathway [81, 82].

eNOS uncoupling and hyperuricemia

Not only is the elevation of ADMA levels associated with
endothelial dysfunction, but also hyperuricemia. The latter is
common in ADPKD, even in patients with preserved kidney
function, and represents a risk factor for cardiovascular events
(Table 3). It has been shown that endothelial dysfunction in
early ADPKD is related to an increase in both serum uric acid
levels and plasma ADMA levels [84]. In addition, elevated
serum uric acid levels are associated with early onset of hy-
pertension in ADPKD and with an increased risk of early
development of ESRD. Also, uric acid may be a novel marker
for reduced renal blood flow, since higher serum uric acid is
correlated with a larger total kidney volume and renal uric acid
excretion is dependent on the GFR, tubular reabsorption, and
secretion. Renal blood flow appears to rapidly fall in early
ADPKD, even prior to a decline in the GFR, which can affect
the excretion of uric acid [84].

Mitochondrial dysfunction in ADPKD

In addition to the eNOS mechanism, mitochondrial dysfunc-
tion has been recently investigated in ADPKD rodent models
and human cyst-derived cells as a source of OS [85]. Kidney
cyst-lining cells from a mouse model of rapidly progressing
ADPKD and from a rat model of slowly progressing ADPKD
showed tubular cell morphological abnormalities such as
swollen mitochondria with indistinct and damaged cristae.
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Moreover, expression of peroxisome proliferator-activated re-
ceptor-ɣ coactivator-1α (PGC-1α), a regulator of mitochon-
drial biogenesis, was decreased. Reduced levels of this regu-
lator correlate with the onset of OS [86]. The OS biomarker, 8-
hydroxy-2′-deoxyguanosine, indeed showed a significant in-
crease in the disease models [85]. Furthermore, human
ADPKD immortalized cyst-derived cells established from a
single cyst obtained from distal cortical tubules of an
ADPKD patient with a homozygous PKD1 mutation and im-
mortalized cyst-derived cells established from a single cyst
obtained from proximal cortical tubules collected from an
ADPKD patient with a heterozygous PKD1 mutation were
examined. Consistent with the findings in rodents, these cells
showed morphological and functional abnormalities, includ-
ing increased mitochondrial superoxide and a reduction in
PGC-1α levels [85]. Interestingly, resveratrol, a natural poly-
phenolic compound mainly found in the skin of grapes and
well known for its antioxidant properties, seems to activate
those PGC-1α levels. By doing this, it prevents diseases com-
monly associated with mitochondrial dysfunction [87].
Additionally, resveratrol activates the AMP-activated protein
kinase (AMPK) signaling pathway, which again is related to
the activation of PGC-1α levels and the beneficial effects of
resveratrol on mitochondrial function [88, 89]. Furthermore,
in a recent study, treatment with resveratrol showed promising
results for the delay in PKD progression in Han:SRPD:PKD
rats by inhibiting inflammation [90]. These preliminary obser-
vations will prompt further research in ADPKD patients [85].

Completed and ongoing clinical trials
in ADPKD, with a focus on oxidative stress
pathways

Thanks to the current knowledge on cellular mechanisms and
different dysregulated signaling pathways in ADPKD, several
potential targets and candidate drugs have been proposed for
the management of the disease [91].

Completed clinical trials with effect on OS

Pravastatin in young ADPKD patients—NCT00456365

A 3-year randomized double-blind placebo-controlled phase
III clinical trial of pravastatin treatment in 110 children and
young adults (age 8–22 years, GFR > 80 mL/min/1.73 m2)
was conducted. The participants were randomly divided in
two groups: one group received a placebo and the other group
received 20 mg daily (8–12 years) or 40 mg daily (13–
22 years). All patients were also treated with the ACEi
lisinopril, with an initial dose of 2.5 mg/day in normotensive
patients (blood pressure < 95th percentile for height, age, and
sex). The primary outcome variable was if a participant had a

≥ 20% increase in total kidney volume corrected for height
(HtTKV), LVMI, or urinary albumin excretion over the 3-
year interval [92]. A significant difference was noted for the
primary endpoint; 69% of the statin group demonstrated a ≥
20% increase in HtTKV, LVMI, or urinary albumin excretion
compared to 88% in the placebo group. This finding was
primarily related to the increase in HtTKV (46% of the statin
group vs 68% of the placebo group). There were no significant
differences in the percentage of participants demonstrating ≥
20% increase in the LVMI (25 vs 38%) or urinary albumin
excretion (47 vs 39%). Furthermore, a significant decrease in
the pravastatin group was found in the percentage change of
HtTKVadjusted for age, sex, and hypertension status (23 ± 3
vs 31 ± 3%) [93].

Additionally, mass spectrometry-based analysis of bio-
markers of endothelial dysfunction, inflammation, and OS
was performed. Significant changes in the plasma concentra-
tions of proinflammatory and OS markers were shown be-
tween the two groups. The pravastatin group exhibited a sig-
nificantly lower biomarker increase compared to the placebo
group. The inflammatory and OS biomarkers used were 9-
hydroxyoctadecadienoic acid (9-HODE), 13-HODE, and 15-
hydroxyeicosatetraenoic acid (15-HETE). Furthermore, the
urinary 8-HETE, 9-HETE, and 11-HETE were positively as-
sociated with the change in HtTKV in the pravastatin group
[94].

Recently, because no large trials were available to test the
effect of statins in adults, a post hoc analysis on the adults in
the HALT-PKD trials, with 438 participants in group A (age
15–49 years, GFR > 60mL/min/1.73 m2) and 352 participants
in group B (age 18–64 years, GFR 25–60 mL/min/1.73 m2),
was performed. Interestingly, no differences were found in
any outcome between the two groups, which implies no po-
tential benefit for the statin therapy in those populations [95].

Ongoing clinical trials on ADPKD patients
with a possible effect on OS

Pravastatin in adults—NCT03273413 (phase 4)

As mentioned supra, no large trials were available to test the
effect of statins in adults with ADPKD. In the meantime,
beginning on August 31, 2017, there is an ongoing clinical
trial called ‘Statin therapy in patients with early stage
ADPKD’ to determine the efficacy and benefits of pravastatin
on kidney volume, renal blood flow, and kidney function.
Patients between 25 and 50 years old, diagnosed with
ADPKD, with an estimated GFR above 60 mL/min/1.73 m2,
an HtTKV of more than 500 mL/m, and a blood pressure
below 140/80 mmHg can participate in this trial. Participants
will receive either 40 mg tablets of pravastatin or placebo
every day for 6 weeks. When this dose is well tolerated, they
have to take it every day for 2 years.
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Curcumin in children and young adults—NCT02494141
(phase 4)

Curcumin, a polyphenol diferuloylmethane, is a yellow spice
with antioxidant, anti-inflammatory, and antiproliferative
properties. Curcumin has beneficial effects on the mammalian
target of rapamycin (mTOR) signaling pathway [96] and on
the signal transducer and activator of transcription 3 (STAT3)
[97], which are both relevant to ADPKD [98]. Indeed, several
studies have demonstrated that curcumin significantly inhibits
cyst formation in cell cyst models as well as in a Pkd1-deletion
mouse model [98, 99]. Furthermore, recent studies have
shown that curcumin ameliorates kidney function and OS in
rats with adenine-induced CKD and in a rat model of type 2
diabetic nephropathy, mainly via upregulation of nuclear fac-
tor erythroid 2-related factor 2 [100, 101].

The currently ongoing clinical trial called ‘Curcumin ther-
apy to treat vascular dysfunction in children and young adults
with ADPKD’ is recruiting 6- to 25-year-old ADPKD patients
with an estimated GFR above 80 mL/min/1.73 m2.
Participants will receive either 25 mg/kg/day curcumin for
1 year or an equivalent placebo. This research will on the
one hand determine the effectiveness of curcumin on the
health and function of arteries in children and young adults
with ADPKD and, on the other hand, will explore whether
curcumin can slow kidney growth.

Metformin in adults—NCT02656017 (phase 2)
and NCT02903511 (phase 2)

It has been shown that metformin attenuates diabetic nephrop-
athy in rats through an increased expression of glutathione S-
transferase-α mRNA and NADPH quinone oxidoreductase 1
mRNA and through the decrease of ROS levels and the in-
crease of antioxidant levels [102, 103]. Moreover, metformin
is the best known clinical activator of the AMPK signaling
pathway. This pathway inhibits the mTOR pathway, thereby
inhibiting cyst growth and expansion in both in vitro [104]
and ex vivo ADPKD models [105]. In addition, administra-
tion of metformin significantly slows down cystogenesis in
ADPKD mouse models [105] and in PC2-deficient zebrafish
[106]. Despite the fact that no papers have been published
about the effect of metformin on OS in ADPKD patients, the
effects in diabetic nephropathy are promising. Therefore, dif-
ferent studies about metformin administration in ADPKD pa-
tients are ongoing.

According to a study of 111,781 veterans with diabetes
and CKD (age 64.1 ± 10.3 years), the initiation of metfor-
min significantly reduced the risk of mortality, even
among individuals with moderately to severely reduced
estimated GFR (30–44 mL/min/1.73 m2). This finding
suggests that metformin initiation may be beneficial
among persons with even more severe CKD [107]. In line

with this, ‘Metformin as a novel therapy for ADPKD
(NCT02656017)’ is the title of the currently ongoing clin-
ical trial to test if metformin is safe in adult ADPKD
patients. Meanwhile, the effect on the progression of the
disease, especially in the early stages, as well as kidney
size and function will be investigated. Patients between 18
and 60 years old, with an estimated GFR above 50 mL/
min/1.73 m2, can participate in this trial. One group will
start with a dose of 500 mg per day, which will be in-
creased after 2, 4, and 6 weeks. Eventually, the dose given
from the sixth week on will be constant until the end of
the trial (26 months). The placebo group follows the same
scheme.

In the meantime, another ongoing clinical trial
(NCT02903511), which is called ‘Feasibility study of
metformin therapy in autosomal dominant polycystic kid-
ney disease’, is recruiting 30- to 60-year-old ADPKD pa-
tients to test whether metformin is safe and well tolerated
by ADPKD individuals who are not diabetic and who
have a slightly decreased kidney function. In addition,
this study will also evaluate the effects of metformin on
kidney growth and kidney function. Therefore, an eGFR
of 50–80 mL/min/1.73 m2 was one of the inclusion
criteria. Patients in the experimental arm will start with
one tablet of 500 mg metformin twice a day, while the
placebo group will start with one tablet of 500 mg placebo
twice a day. This dose will be increased by 500 mg every
2 weeks up to 1000 mg by mouth twice a day, as tolerat-
ed, for 12 months.

Pioglitazone in adults—NCT02697617 (phase 2)

Peroxisome proliferator-activated receptor-ɣ (PPAR-ɣ), a
member of the ligand-dependent nuclear receptor family,
is expressed in many tissues, including the kidney and
liver. Pioglitazone is a PPAR-ɣ agonist, which is known
to suppress the AKT/mTOR/S6 signaling pathway [108].
Supplementation of pioglitazone seems to ameliorate car-
diac effects and limit cystogenesis in the embryos of
Pkd1−/− mice models. In addition, treatment with pioglit-
azone increases the production of NO in adult Pkd1±

mouse models, improving the endothelial function [109],
and benefits renal failure through increasing antioxidants
and reducing NADPH oxidases in a 5/6 nephrectomized
rat model, which mimics CKD [110].

‘Use of Low Dose Pioglitazone to Treat Autosomal
Dominant Polycystic Kidney Disease (PIOPKD)’ is a 2-year
trial to test whether pioglitazone slows down cyst develop-
ment in humans. ADPKD adults between 18 and 55 years,
of whom the estimated GFR is greater than 50 mL/min/
1.73 m2, can participate in this trial. Patients will be random-
ized to placebo or 15 mg pioglitazone for 1 year, and then be
crossed over to the other arm.
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Conclusion

The PC1/PC2 complex is necessary for normal vascular de-
velopment and is required for endothelial cilia to sense fluid
shear stress through complex biochemical cascades involving
many factors, including NO. Therefore, deficiency of either of
these proteins causes a reduction in NO bioavailability, which,
in turn, causes endothelial dysfunction. In addition, the pres-
ence of OS in early ADPKD, with reduced NO levels, may per
se aggravate endothelial dysfunction. Eventually, endothelial
dysfunction leads to cardiovascular events, including hyper-
tension. Both OS and the cardiovascular events contribute to
ADPKD progression. Several studies have already suggested
that there is an increase in OS biomarker levels from the be-
ginning of ADPKD, with further increases at advanced stages.
To date, several clinical trials in ADPKD have been reported
to either slow down the disease progression and/or to reduce
OS. A few drugs have already been tested on humans and
have shown promising results. Additional clinical trials are
currently ongoing.

Key summary points

- The PC1/PC2 complex is necessary for normal vascular
development.
- Hypertension is associated with the progression of renal
disease and with an increased risk for development of cardio-
vascular disease and mortality in ADPKD patients.
- OS, endothelial dysfunction, and hypertension are already
present in the early stages of ADPKD.
- The ongoing clinical trials of curcumin, metformin, and pi-
oglitazone can have both a beneficial effect on disease pro-
gression and cyst development and a possible reduction in OS.

Questions (answers are provided following
the reference list)

1. Did researchers find a significant difference in the occur-
rence of hypertension between male and female ADPKD
patients?

a) No, no differences were found
b) Yes, there are differences between them in childhood
c) Yes, between the ages of 20 and 40 years
d) Yes, after they reach ESRD

2. With an average age of diagnosis of 30 years, hyperten-
sion affects

a) 5–44% of the young ADPKD adults
b) 90–95% of the young ADPKD adults

c) 0–20% of the young ADPKD adults
d) 60–75% of the young ADPKD adults

3. Which of the following statements about early ADPKD is
correct?

a) Plasma and urinary levels of ADMA are increased
b) Plasma levels of ADMA are increased, but urinary

levels are decreased
c) Plasma levels of ADMA are decreased, but urinary

levels are increased
d) Plasma and urinary levels of ADMA are decreased

4. Which of the following markers of OS that are disturbed
in CKD has not been elucidated yet in ADPKD?

a) Increased ADMA levels
b) Decreased SOD levels
c) Increased MDA levels
d) Increased NADPH oxidase activity

5. Which of the following is associated with an increased
serum uric acid in ADPKD patients?

a) Less risk of hypertension but an accelerated progres-
sion to ESRD

b) More risk of hypertension and an accelerated progres-
sion to ESRD

c) More risk of hypertension but a delayed progression
to ESRD

d) Less risk of hypertension and a delayed progression
to ESRD
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