
1740f02presentations22

A Survey on Software
Architecture Analysis Methods

Liliana Bobrica and Eila Niemela
IEEE TOSE July 02

2740f02presentations22

Group 1 and 6

3740f02presentations22

Software Architecture
Analysis Methods

Presented By
1. Vikranth Vaddi
2. Hong Zhang
3. Sudarshan Kodwani
4. Travis Stude
5. Sandeep Pujar
6. Abhinav Pradhan
7. Srinivas Kolluri
8. Kiran Devaram
9. Saravana Kumar

CIS 740

Instructor: Dr. David A. GustafsonDr. David A. Gustafson

4740f02presentations22

Why focus on Architecture…..!
purpose & goals

Software Architecture definition:
“A high level configuration of system components and the connections that coordinate

component activities”

Architecture is often the first artifact that represents decisions on how requirements
of all types are to be achieved.As the manifestation of early design decisions that are
hardest to change.
SAAM’s goals is to verify basic architectural assumptions and principles against the
documents describing the desired properties of any application.
SAAM (software) permits the comparison of architectures within the context of any
organization’s particular needs.
The purpose of SAAM is not to criticize or commend particular architectures, but to
provide a method for determining which architecture supports an organization's
needs.
A good understanding of system design at the architectural level makes it easier to
detect design errors early on and easier to modify the system later.

5740f02presentations22

Background
SAAM appeared in 1993, corresponding with the trend for a better
understanding of general architectural concepts, as a foundation for
proof that a software system meets more than just functional requirements.
Establish a method for describing and analyzing software architectures.
SAAM was initially developed for application early in design, it is validated
in an analysis of several existing industrial systems.

Fig. 1. SAAM inputs and activities.

6740f02presentations22

Evaluating Architectures based on
Software Quality

Evaluating Architectures is difficult
Motivation : Software Quality factors

Maintainability
Portability
Modularity
Reusability

Perspective :
Functionality
Structure – Lexicon describing structure
Allocation

7740f02presentations22

Main Activities
Characterize a canonical functional partitioning
for the domain
Map the functional partitioning onto the
architecture’s structural decomposition
Choose a set of quality attributes with which to
assess the architecture
Choose a set of concrete tasks which test the
desired quality attributes
Evaluate the degree to which each architecture
provides support for each task.

8740f02presentations22

Perspectives

Functionality: What the system does

Structure: How a system is constructed from smaller pieces

• Components - represent computational entities

• Connections – connections between components

Allocation:
- how intended functionality is achieved by the developed
system.

- differentiates architectures within a given domain

9740f02presentations22

Lexicon for describing structure

10740f02presentations22

Canonical functional partitioning
The Arch/Slinky metamodel

Five basic functions of user interface software

• Functional Core (FC)
• Functional Core Adapter (FCA)
• Dialogue (D)
• Logical Interaction (LI) component
• Physical Interaction (PI) component

11740f02presentations22

Serpent

12740f02presentations22

Analyzing Architectural Qualities

Evaluate User Interface Architecture with
respect to modifiability

Example Modifications
• Adaptation to new operating environments
• Extension of capabilities

13740f02presentations22

Analysis of Candidate system

Changing the toolkit
• Modification to the dialogue manager
• No architectural support

Adding a menu option
• Easier to isolate because view controllers

subdivide Dialogue Manager
• Therefore Architectural support Provided

14740f02presentations22

Scenario-Based Analysis Of Architecture

Why Scenarios..?

•

15740f02presentations22

Scenarios Because……!
• Scenarios offer a way to review the vague quality attributes (modifiability
security, safety or portability) in more specific circumstances by capturing
system use contexts.
• Developers can analyze the architecture with respect to how well or how
easily it satisfies the constraints imposed by each scenario.
• Scenarios help visualize the candidate architecture with various
perspectives

System operator
System designer and modifier
System administrator

• Scenarios force designers to consider the future uses of, and changes
to the system.
• Designers would have to think on the lines of how the architecture
will accommodate a particular change in the system and not what
degree a system can be modified.

16740f02presentations22

Scenario Based - SAAM Methodology

•Describe the candidate architecture

•Develop Scenarios

•Evaluate each scenario

•Reveal scenario interaction

•Weight scenarios & Scenario interaction

17740f02presentations22

Scenario Based - SAAM Methodology

•Describe the candidate architecture:

• Develop Scenarios:

• Evaluate each scenario: Each scenario should be classified into
direct or indirect scenario.

Direct Scenario: no architectural changes required.

Indirect Scenario: architectural changes required.

•Reveal scenario interaction: Weight scenarios & Scenario
interaction:

18740f02presentations22

Architecture -WRCS

19740f02presentations22

Steps in Analysis

Describe the candidate architecture:
Figure 3 shows the architecture

Develop Scenarios:
For the user role, scenario included

– Compare binary file representations
– Configure the toolbar
– Manage multiple projects

• For the Maintainer role, scenarios include
– Port to another OS
– Modify the user interface in minor ways

• For the administrator role, scenarios included
– Change access permissions for a project
– Integrate WRCS functionality with a new development environment
– Port to a different network-management system

20740f02presentations22

Scenario Evaluation
Scenario Direct/Indirect Required Changes

Modify the user interface
in minor ways

Indirect Modify one or more
components that call the
win31 API, specifically
main, diff, and ctrls.

Change access
permissions from a
project

Direct

Integrate with a new
development environment

Indirect Modify hook and add a
module along the lines of
bcext, mcext, and vbext

Port to a different
network-management
system

Indirect Modify wrcs

Table 1 B

21740f02presentations22

Interaction By Module

1 eachreport, diff, bindiff, pvcs2rcs,
sccs2rcs, nwcalls, nwspxipx,
nwnlm

2ctris
3visdiff
4book
4main
7wrcs
Number of ChangesModule

Table 2

22740f02presentations22

Fish-Eye Representation

23740f02presentations22

Advantages

Enhanced Communication
Improvement of Traditional Metrics
Proper Description Level
Efficient Scenario Generation
Deepened Understanding of the System
Ability to make high-level comparisons of
competing designs and to document those
comparisons
Ability to consider and document effects of sets
of proposed system changes

24740f02presentations22

References

SAAM: A Method for Analyzing the
Properties of Software Architecture
Scenario-Based Analysis of Software
Architecture

25740f02presentations22

Thank You

26740f02presentations22

How to apply ATAM

(Group 2 and 7)
Billy Alexander (Example), Padmaja Havaldar

Fengyou Jia, Cem Oguzhan (Intro),
Hulda Adongo , Yang Zheng

Manmohan Uttarwar, Gautham Kalwala (Conclusion)

Based upon paper (#29):
“The Architecture Tradeoff Analysis Method (ATAM)”,
authored by Kazman et al. (1998)

27740f02presentations22

Key features of ATAM
1. Tradeoff Analysis among multiple

quality attributes (performance,
availability, security, etc.), Looking
optimal tradeoff points, rather than
optimal individual attributes

2. Iterations of the ATAM (spiral model of
design)

3. Trend analysis only (not detailed
values)

28740f02presentations22

Steps of the method:

29740f02presentations22

Iterations of ATAM

1. Following Tradeoff points
found (elements that affect
multiple attributes)

2. Then we either:
1) refine the models and reevaluate

2) or refine the architectures (change
the models to reflect these
refinements and reevaluate

3) or change some requirements

30740f02presentations22

How to apply ATAM

31740f02presentations22

An Example (ATAM) Analysis:

System Description:
Remote temperature sensor (RTS)

1. measuring the temperature of a set of furnaces
through a hardware device (ADC)

2. reporting those temperatures to operators

3. Sending periodic temperature update to hosts

4. Hosts sending control requests to RTS (changing
the frequency of updating)

32740f02presentations22

5. Scenarios collection

(1) For performance analysis

(2) For availability analysis

33740f02presentations22

6. Collect Requirements/
Constraints/ Environment
(1) Performance requirements

(2) Availability requirements

34740f02presentations22

6. Collect Requirements/
Constraints/ Environment

In addition to these requirements, we will
assume that the behavior patterns and
execution environment are as follows:

• Relatively infrequent control requests
• Requests are not dropped.
• No message priorities
• Server latency = de-queuing time (Cdq = 10
ms) + furnace task computation (Cfnc = 160 ms)

• Network latency between client and server (Cnet
= 1200 ms)

35740f02presentations22

7. Describe Architectural Views

7.1 Architectural Option 1 (Client-Server)

36740f02presentations22

7.2 Architectural Option 2 (Client-Server-Server)

37740f02presentations22

7.3 Architectural Option 3 (Client-Intelligent Cache-Server)

38740f02presentations22

8. Realize Scenarios/Performance
Analyses
8.1 Performance Analysis of Option 1

8.2 Performance Analysis of Option 2

8.3 Performance Analysis of Option 3

Detailed calculations
about WCCL, ACPL,
and Jitter can be
found in reference
paper: Babacci et al.
1997.

Notes:

39740f02presentations22

9. Realize Scenarios/Availability
Analyses
9.1 Availability Analysis of Option 1

1. Major failures:

e. g., a burned-out
power supply,
taking 12 hrs to fix.

2. Minor failures:

e. g., SW bugs,
taking 10 minutes to
repair.

9.2 Availability Analysis of Option 2

9.3 Availability Analysis of Option 3
Solving the Markov
model and getting the
results in three tables.

40740f02presentations22

10. Critique on the Options
• Option 1 has poor performance and
availability. It is also the least expensive option
(in terms of hardware costs; the detailed cost
analyses can be found in [1]).
• Option 2 has excellent availability, but at the
cost of extra hardware. It also has excellent
performance (when both servers are functioning),
and the characteristics of option 1 when a single
server is down.
• Option 3 has slightly better availability than option
1, better performance than option 1 (in that the
worst-case jitter can be bounded), slightly greater
cost than Option 1, and lower cost than Option 2.

41740f02presentations22

11. Sensitivity Analyses

Attributes are sensitive to
the number of servers
(performance increases
linearly as the number of
servers increases).

42740f02presentations22

12. Security Analyses

Security requirement:

Security Scenarios:

43740f02presentations22

So, to calculate the probability of a successful attack
within an acceptable window of opportunity for an intruder,
we define initial values that are reasonable for the functions
provided in the RTS architectures. These values are shown
in Table 7:

44740f02presentations22

Three possible ways to succeed
for spoof-server attack:

Critiques:

Table 8 showed that the possible intrusion rates were
much higher than expected (requirements), Thus, to
refine architecture options is required (need another
iteration).

45740f02presentations22

12.1 Refined Architectural options
Adding
E/D

Note: E/D (Encryption/Decryption)

(A most common security “bolt-on” solution,
unreasonable change range generated by an
intruder will be deemed (recognized) due to the
addition of E/D)

46740f02presentations22

(Before adding E/D)

47740f02presentations22

13. Sensitivities and Tradeoffs

At this point, we have discovered an
architectural tradeoff point in the number of
servers. Performance and availability are
correlated positively, while security and
presumably cost are correlated negatively with
the number of servers. We cannot maximize
cost, performance, availability, and security
simultaneously.

48740f02presentations22

Conclusions

RTS Case Study

Vague requirements & architectural options.

Useful characteristics.

Costs & benefits.

Trade-offs.

Develop informed action plans.

Evaluations & iterations.

49740f02presentations22

CONCLUSION : ATAM

Motivated by rational choices among the competing architectures.

Concentrates on identification of trade off points.

Early clarification of requirements.

Enhanced understanding and confidence in systems ability to
meet the requirements.

This method (ATAM) is still under development in SW
engineering.

50740f02presentations22

Key references

1. Babacci et al. (1997). CMU/SEI-97-TR-29.
Pittsburgh, PA: Software Engineering Institute.

1. Dobrica et al. (2002). IEEE Transactions on
Software Engineering, Vol. 28 NO. 7, July.

2. Kazman et al. (1999). Proc. Int’l Conf.
Software Eng. (ICSE ’99), pp. 54-63, May.

3. Kazman et al. (1998). Proc. Fourth Int’l Conf.
Eng. Of Complex Computer Systems (ICECCS
’98), Aug.

51740f02presentations22

S/W Architecture Re-
engineering

Zhigang Xie Ryan Young Ravi Athipatla

Jinhua Wang Shufeng Li

Vishal Solipuram Feng Chen Krishan Narasimhan

52740f02presentations22

What is SBAR?

Abbreviation for Scenario-based Architecture Re-
engineering

“SBAR estimates the potential of the designed
architecture to reach the software quality
requirements.”
• L. Dobrica: A Survey on Software Architecture

Analysis Methods

53740f02presentations22

Importance of SBAR

A system is never a pure real-time system, or a
fault-tolerant system, or a re-usable system.

Single non-functional requirement (NFR) is not a
satisfactory measurement, since NFRs often
conflict.

In a realistic system a balance of NFRs is needed
for an accurate assessment of a software
architecture.

54740f02presentations22

Assessing Quality
Attributes

1. Scenarios

2. Simulation

3. Mathematical Modeling

4. Experience-based Reasoning

55740f02presentations22

An Example…..
Beer Can Inspection System:
• To illustrate the architecture reengineering method, a

beer can inspection system is used.
• The inspection system is placed at the beginning of

beer can filling process and its goal is to remove dirty
beer cans from the input stream. Clean cans should
pass the system without any further action.

• The system consists of a triggering sensor, a camera
and an actuator that can remove cans from conveyer
belt.

56740f02presentations22

57740f02presentations22

Functions
When a can is detected, the system receives a trigger from a
hardware trigger.

After a predefined amount of time, the camera samples an
image of the can. This sampling is repeated a few times and
subsequently the measured images are compared to ideal
images and a decision about removing or not removing the
can is made.

If the can should be removed, actuator is invoked at a point
in time relative to the point in time when the trigger event
took place.

58740f02presentations22

Object Model

59740f02presentations22

Author’s Experience

Generally we handle S/W quality requirements by an
informal process.
If found short-comings, then re-design iteratively over
system development, but this proves very costly.
S/W quality requirements often conflict
• Real-time Vs Reusability
• Flexibility Vs Efficiency
• Reliability Vs Flexibility

Conventional design methods focus on a single quality
attribute and treat all others as having secondary
importance.

60740f02presentations22

Architecture Re-
engineering Method

S/W engineers need to balance the various quality
attributes for any realistic system.

The authors propose an architectural re-engineering
method that provides an objective approach.

Architecture Re-Engineering Approach

Inputs

Updated Requirements
Specification

&

Outputs

Improved Architectural
Design

Existing Software
Architecture

61740f02presentations22

Method Outlined……
1. Incorporate new functional

requirements in the architecture

2. Software quality assessment

3. Architecture transformation

4. Software quality assessment

62740f02presentations22

Assessment
Assessing Software Quality Requirements

1. Scenario-based evaluation: Develop a set of scenarios that concretize
the actual meaning of the attribute. Useful for development related
S/W qualities like reusability and maintainability

2. Simulation: Complements scenario-based evaluation. Is useful for
evaluating operational software qualities like performance or fault-
tolerance.

3. Mathematical Modeling: Allows for static evaluation of architectural
design models.

4. Experience-based reasoning: Evaluation process is less explicit and
more based on subjective factors as intuition and experience.

63740f02presentations22

Architecture
Transformation

Iterative Steps :-
Complete architecture design.
Compare with the requirements.
Then update architecture.

Note :-
The transformations made are minor.
The functionality does not change, only the quality attributes
change.
It is not feasible to start bottom-up during design and
reengineering.

64740f02presentations22

Different Approaches

Impose architectural style. e.g.. layered
architectural style
Impose architectural pattern.
Apply design pattern.
Convert quality requirements to functionality.
Distribute requirements.

65740f02presentations22

S/W Quality
Requirements

Functional requirements generally can be evaluated
relatively easy by tracing the requirements in the design.
On the other hand, S/W quality requirements are much
harder to assess.
Few such quality requirements are:
• Reusability
• Maintainability
• Real-time
• Robustness

As mentioned previously, development related S/W
qualities are easiest assessed using scenarios.

66740f02presentations22

Reusability
This quality attribute should provide a balance between
generality and specifics.
The architecture and its components should be general since
they should be applied in other similar situations.
The architecture should provide concrete functionality that
provides considerable benefit when it is reused.
Five scenarios that are tested in this article:
• R1: Product packaging quality control
• R2: Surface finish quality control
• R3: Quality testing of micro-processors
• R4: Product sorting and labeling
• R5: Intelligent quality assurance system

67740f02presentations22

Maintainability
The goal here is that the most likely changes in requirements
are incorporated in the software system against minimal effort.
Five scenarios that are tested in this article are:
• M1: The types of input or output devices used in the system is excluded

from the suppliers assortment and need to be changed, by the S/W.
• M2: The S/W needs to be modified to implement new calculation

algorithms.
• M3: The method of calibration is modified.
• M4: The external systems interface for data exchange change.
• M5: The hardware platform is updated, with new processor and I/O

interface.

68740f02presentations22

Applying SBAR
Iterative process until quality requirements are
met:

•Evaluate software quality attributes of the
application architecture

•Identify the most prominent deficiency

•Transform the architecture to remove the
deficiency

69740f02presentations22

Evaluation
How much re-use is possible?

How much will I be able to reuse the software

Ratio of Re-used components ‘as-is’ to the total
number of components

As close to 1 as possible

Presence of high coupling limits the possibility
of re-use

70740f02presentations22

Evaluation
Effort needed to maintain

How easy is it to fix

Ratio of Affected components to Total components

As close to 0 as possible

Changes usually require many components to be
modified

71740f02presentations22

Transformations
Component-level

Problem:
New item type requires the source code of most
components to be changed

Transformation:
specific type generic type

Result:
Improves reusability and maintainability

72740f02presentations22

Transformations
Abstraction

Problem:
Type dependence at component creation

Transformation:
Use Abstract Factory pattern

Results:
Improves maintainability

73740f02presentations22

Transformations
Choose Strategy

Problem:
Changes have to be made in every component performing
similar task

Transformation:
Apply the Strategy pattern

Results:
Gained maintainability outweighs loss in reusability

74740f02presentations22

Transformations
Decrease Dependence on Global
State

Problem:
Calibration of the measurement system

Transformation:
Introduce calibration strategy

Results:
Improves maintainability

75740f02presentations22

Reduce Coupling between
calibration & measurement

Problem:
Coupling between calibration strategy and the measurement
item.

Transformation:
Apply Prototype design pattern.

Results:
Improves maintainability and reusability.

76740f02presentations22

77740f02presentations22

78740f02presentations22

Evaluation
Overall, the result from the transformations is satisfying
and the analysis of the scenarios shows substantial
improvement (author’s conclusion).

Each iteration seems to solve a problem concerning some
attribute. The drawback may be that, we do not have a
prior idea of how many iterations it is going to take.

Identifying all possible problems that may lead to
difficulties in re-use and maintainability is a challenging
task in itself.

79740f02presentations22

References

• A Survey on Software Architecture Analysis
Methods, L. Dobrica

• Scenario-based Software Architecture Re-
engineering, PerOlof Bengtsson & Jan Bosch

	A Survey on Software Architecture Analysis Methods
	Group 1 and 6
	Software ArchitectureAnalysis Methods
	Why focus on Architecture…..! purpose & goals
	Background
	Evaluating Architectures based on Software Quality
	Main Activities
	Perspectives
	Lexicon for describing structure
	Canonical functional partitioningThe Arch/Slinky metamodel
	Serpent
	Analyzing Architectural Qualities
	Analysis of Candidate system
	Scenario-Based Analysis Of Architecture
	Scenarios Because……!
	Scenario Based - SAAM Methodology
	Scenario Based - SAAM Methodology
	Architecture -WRCS
	Steps in Analysis
	Scenario Evaluation
	Interaction By Module
	Fish-Eye Representation
	Advantages
	References
	Thank You
	Analysis of Scenario based S/W Architecture Re-engineering
	What is SBAR?
	Importance of SBAR
	Four Techniques For Assessing Quality Attributes
	An Example…..
	
	Functions
	Object Model
	Author’s Experience
	Architecture Re-engineering Method
	Method Outlined……
	Assessment
	Architecture Transformation
	Architecture Transformation Different Approaches
	S/W Quality Requirements
	Reusability
	Maintainability
	Applying SBAR
	EvaluationHow much re-use is possible?
	EvaluationEffort needed to maintain
	TransformationsComponent-level
	TransformationsAbstraction
	TransformationsChoose Strategy
	TransformationsDecrease Dependence on Global State
	TransformationsReduce Coupling between calibration & measurement
	Evaluation
	References

