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ABSTRACT
The Internet of Things (IoT) includes billions of different devices and various
applications that generate a huge amount of data. Due to inherent resource limitations,
reliable and robust data transmission for a huge number of heterogenous devices is
one of the most critical issues for IoT. Therefore, cluster-based data transmission is
appropriate for IoT applications as it promotes network lifetime and scalability. On
the other hand, Software Defined Network (SDN) architecture improves flexibility
and makes the IoT respond appropriately to the heterogeneity. This article proposes an
SDN-based efficient clustering scheme for IoT using the Improved Sailfish optimization
(ISFO) algorithm. In the proposed model, clustering of IoT devices is performed using
the ISFOmodel and the model is installed on the SDN controller to manage the Cluster
Head (CH) nodes of IoT devices. The performance evaluation of the proposed model
was performed based on two scenarios with 150 and 300 nodes. The results show that
for 150 nodes ISFO model in comparison with LEACH, LEACH-E reduced energy
consumption by about 21.42% and 17.28%. For 300 ISFO nodes compared to LEACH,
LEACH-E reduced energy consumption by about 37.84% and 27.23%.

Subjects Artificial Intelligence, Computer Networks and Communications, Internet of Things
Keywords SDN, Clustering, Sailfish optimization algorithm

INTRODUCTION
The Internet of Things (IoT) contains billions of various devices that are connected to the
Internet and enable machine-to-machine (M2M) communication via data gathering
and management (Hosseinzadeh, Hemmati & Rahmani, 2022). The IoT uses various
technologies and devices, such as radio frequency identification (RFID), tiny sensors,
and various wireless communications (Azari & Ghaffari, 2015; Jazebi & Ghaffari, 2020;
Nikokheslat & Ghaffari, 2017). The IoT comprises three layers: the perception layer, the
network layer for communication, and the application layer. The perceptual layer consists
of devices that collect environmental data using sensors and actuators that cause physical
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changes in the environment. Between the perception layer and the application layer, the
communication network layer is in charge of the network services. Application layers make
smart decisions based on low-layer data. IoT sensors are deployed across awide geographical
area to sense, collect, and transmit data. The complexity of sensor nodes is increasing, and
it is impossible to manually control and maintain such dense nodes in real-time mode
(Balaji, Nathani & Santhakumar, 2019). The design of IoT applications should consider
the capabilities of various resources, including various devices that form part of the IoT
environment. Scalability is a crucial issues in the IoT, as providing a communication model
for billions of heterogenous devices is a critical mission (Chowdhary & Rao, 2021).

Limited-power IoT devices are connected to various things such as smart cameras,
intelligent vehicle, and intelligent homes (Almutairi & Aldossary, 2021). Also, the daily
growth of various IoT services, along with the increase in traffic produced by IoT devices,
makes issues about increased energy consumption, distribution, and placement of smart
objects. Wireless communications and computing resources are usually very limited and
low energy. Therefore, it is difficult to prepare the rising request of IoT services and
the heterogeneous needs of smart objects (Bajaj, Sharma & Singh, 2021). One possible
solution for the IoT is to use SDN. Smart network control by SDN ensures consistent
and fair operation. SDN technology facilitates IoT network by separating the control
level from the data surface, easier programming, and centralized network architecture
(Shirmarz & Ghaffari, 2022). The SDN controller is able to manage the network with
software commands.

In SDN, date plane is separated from control plane for easing network management
(Jafarian et al., 2021). The task of the control plane is to handle network functions such
as input stream management, network analysis, and synchronization. The control plane
operates as the monitoring center of the network with intelligent programming (Jazaeri
et al., 2021). SDN controllers with intelligent programming provide a better chance of
defining different decisions according to network conditions.

SDN architecture with intelligent programming and intelligent network management is
a key factor in the dynamic and complex nature of the IoT (Ahmadian & Ahmadi, 2022).
The SDN-IoT architecture includes three main layers: The first layer is the device layer,
which at the lowest level of the SDN-IoT architecture consists of IoT devices (Tang et al.,
2018;Wu et al., 2021). They sense and collect great amounts of data that may be in different
formats, and take the collected data to higher levels for further analysis and processing.
The control plane decides what to do with the collected data and sends the relevant
instructions and submission rules through the Southern APIs to the routers and gateways
of the network. These routers and gateways operate according to the OpenFlow protocol
and send data according to instructions received from the control level. The second layer is
the control/middleware plane, and SDN controllers are the basic components of this layer,
simplifying the complexity of network management (Ren et al., 2019). In general, the task
of the control plane is organizing various services in the IoT, managing network topology
and routing, and managing network traffic. The third layer is the application layer and
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Figure 1 An overview of the SDN-IoT architecture.
Full-size DOI: 10.7717/peerjcs.1424/fig-1

includes various services and applications to serve users. Figure 1 shows an overview of the
SDN-IoT architecture.

A variety of SDN-based clustering protocols have been proposed (Al-Janabi & Al-
Raweshidy, 2017; Ouhab et al., 2020). In these models, the SDN controller is used to divide
the network into different regions to balance the number of CH nodes in each area. An
important challenge in clustering is choosing the optimal CH node that directly affects the
performance of the IoT network. Due to data aggregation and transmission, CH nodes
consume more energy than cluster members. Hence, the CH nodes must be periodically
changed by an intelligent algorithm and selected effectively to balance the overall network
energy.

In this article, SDN-based architecture and meta-heuristic algorithm for optimal
clustering are used to intelligently manage IoT. The Sailfish algorithm (Shadravan, Naji &
Bardsiri, 2019), is an efficient meta-heuristic algorithm for solving different optimization
problems (Geetha, Nanda & Yadav, 2022; Reza Naji et al., 2022). The SDN controller uses
optimization algorithms to make optimal decision-making capabilities and helps to collect
data and reduce energy consumption by creating an optimal clustering technique. This
article uses ISFO and presents a clustering scheme for IoT sensor nodes in SDN-IoT
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environment to reduce power consumption. The SDN controller uses an improved
Sailfish algorithm to select CH nodes. In the SDN-IoT architecture, the sensor nodes are
programmatically controlled by the SDN controller and reconfigure their performance
based on the actual measurement of the environment. The main contributions of this
article are as follows:
• Use SDN to manage IoT nodes called SDN-IoT
• Clustering method using ISFO algorithm
• Reduce power consumption and increase the life of IoT nodes using SDN
• CH selection process based on various criteria such as residual energy, distance within
the cluster and distance from the CH to base station (BS)

The rest of the article is organized as follows: Section 2, explains related works and SFO
algorithm. Section 3, describes the proposed method in details. Section 4, indicates the
performance evaluation of the proposed method. Finally, Section 5, concludes the article
and offers future works.

LITERATURE REVIEW
In this section, we will study the related works and SFO algorithm.

RELATED WORKS
In Sellami et al. (2022), the authors investigated the problem of job scheduling based on
energy awareness and low latency in an SDN-Fog-IoT network. First, the task of assigning
and scheduling tasks online is formulated as an energy-limitedQ-Learning process. Second,
the goal is to minimize the average end-to-end delay. The task achievement process is then
defined by the Deep Reinforcement Learning (DRL) approach for scheduling and assigning
dynamic tasks in the Fog network with SDN. The SDN agent collects environment state
information during runtime and relays it to the controller. By attempting various activities,
the agent learns to maximize the environment’s reward. The controller may choose to
accept the present policy as the optimal choice for placing tasks on the selected fog-enabled
nodes, or it may continue learning from the available dispersed nodes to identify a more
suitable option for placing the current task requests. All agents are motivated by the same
objective, which is to maximize the anticipated discounted return. Extensive simulation
results showed that the new solution performed better than other algorithms. In addition,
the energy awareness feature in the new model has been improved, as up to 87% energy
savings have been achieved compared to other approaches. The scheduling scheme has
been able to perform more tasks with less time delay. The computational time of the
algorithm is high and leads to an increase in energy.

In Shi, Zhu & Wei (2022), a conscious path selection algorithm called SARSA-aware
Delay-Aware (SDRS) using SDN is proposed to simplify IoT network configuration and
management. SDRS selects optimal path based on network status information. In addition,
SDRS creates a Q-table to control the data transmission path. The SDRS model is used
to learn the optimal route selection strategy, which reduces latency and reliability. The
results showed that the SDRS model had better performance in terms of transmission delay
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and reliability compared to the shortest path selection algorithm (SRS) and random path
selection algorithm (RRS). Because SDRS is able to learn the route selection strategy by
analyzing the feedback delay performance, it is able to adjust the path, switch the channel
type, and fast converge to the best route selection possible.

Edge Computing (EC) is an ecosystem for overcoming barriers to cloud technology to
support real-time IoT systems. However, the EC faces issues such as allocating resource for
various applications at the edge of the network consisting of resource-constrained nodes. In
Maia et al. (2021), a multi-objective genetic algorithm with an initial population based on
stochastic and heuristic solutions to obtain near-optimal solutions has been proposed. The
evaluation results showed that the new model was superior to other algorithms in terms
of operating costs and availability of services. The proposed approach does not take into
account the reaction time deadline requirement, which is especially vital for applications
that are sensitive to latency.

A new energy efficient dual-purpose discharge strategy based on the Firefly Algorithm
(FA) has been proposed (Adhikari & Gianey, 2019). The main goal of the new algorithm
is to find an appropriate computing device for each IoT application using the two criteria
of time complexity and consuming energy. A fitness function is designed based on dual-
purpose optimization parameters including computational time of implementing devices.
An improved attractiveness function is defined to estimate the attractiveness of agents
instead of distance-based attractiveness, which aims determine the optimal position of a
computing device. The new strategy finds a suitable computational server based on FA for
each task and assigns the task to that server.

Reducing the response time is one of the critical issues for SDNs to balance the load on
the controllers. In this regard, switch migration is an efficient way to solve this problem.
Selecting an improper target controller and a large number of switch migrations between
controllers reduce throughput by increasing the average network response time. In Kabiri,
Barekatain & Avokh (2022), using the intelligent combination of GA and PSO, the best
controller with suitable capacity for migration is selected. The genetic algorithm generates
a number of vectors that represent the controllers, which are estimated based on the
controller loads. After that, the best vector that represents the controller and the keys
connected to it for migrating the switch with the appropriate capacity is found using the
cost function evaluation. Therefore, the best solution is found to transfer the switches
to the optimal controllers. The results showed that the floodlight controller decreased in
operational capacity including 24.72% improvement and the number of migrations by
13.96%. The most important limitation of this method is that it is not suitable for large
environments.

In Sixu, Muqing & Min (2022), the PSO and ABC algorithms are designed for mobile-
based SDWSN clustering. SDWSN turns the network into a control page and a data
page. There are sensor nodes on the data page that only need to transmit their data to
the controller. The controller processes the routing estimation. Sensor nodes can easily
receive routing to the sink from the controller. The PSO-based clustering algorithm is
used to select the CH nodes. The ABC-based navigation algorithm is used to design the
routing of packets to the sink. The new protocol includes benefits such as reduced power
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consumption, increased grid life and reduced overhead. This methodology decreases the
amount of energy that is consumed by the sensor nodes and increases the lifetime of the
network. Sensor nodes have a lower energy requirement for the initial configuration of
the routing, and the controller is in charge of planning the routing for the entire network.
During the period of setting up the routing, this method cuts down on both the control
overhead and the computation overhead. The suggested protocol additionally makes use
of an on-demand clustering, which, when taken into consideration as a whole, takes into
account the standard deviation of the residual energy as well as the threshold value of the
round.

A hierarchical routing scheme based on SDN technology for WSN based on Lion
Optimization Algorithm (LOA) was presented (Srinivasa Ragavan & Ramasamy, 2020).
The main purpose of this work is to minimize energy consumption and thus increase
the network lifetime. So, the algorithm is divided into three stages, which are cluster
creation, path creation and data transfer. LOA algorithm is used for clustering process.
This idea saves energy and reduces routing overhead. Through the implementation of the
suggested approach’s SDN-based routing optimization, the Quality of Services (QoS) of the
network is improved. The hierarchical routing strategy that has been suggested provides
for increased control as well as scalability across the network.

The ESRA algorithm is an energy-efficient routing algorithm for IoT applications in
SDN based WSNS, especially for the monitoring environment. ESRA algorithm effectively
selects network headers to solve the controller placement problemwith the aim of achieving
network reliability and increasing network lifetime (Samarji & Salamah, 2021). The choice
of controller among the CH is formulated as an NP-hard problem by considering the
remaining energy of the CH nodes, their distance to the sink, and their load. The clustering
scheme GA has been adopted to improve network lifetime, end-to-end delay, and PDR.

An optimal CH node selection scheme based on the combination of gray wolf and
crow search algorithm (HGWCSOA-OCHS) has been proposed to increase the network
lifetime by focusing on minimizing latency, reducing the distance between nodes and
residual energy (Subramanian et al., 2020). The GWO algorithm is combined with the CSA
algorithm to solve the problem of early convergence to explore the search space efficiently.
The newmodel uses the GWO and CSA algorithms in the CH selection process, the balance
between exploitation rate and exploration in the search space. The HGWCSOA-OCHS
scheme has been compared with Firefly Optimization (FFO) schemes, Artificial Bee Clone
Optimization (ABCO), Gray Wolf Optimization (GWO), Gray Wolf-Firefly optimization
schemes. The HGWCSOA-OCHS scheme for reducing energy consumption has confirmed
the improvement of grid life by balancing the percentage of alive and dead sensor nodes in
the grid. A PSO-based Tabu Search (TS) algorithm has been proposed to optimize routing
and CH selection (Vijayalakshmi & Anandan, 2019). The TS-PSO model finds the optimal
path and increases the network lifetime. The most important limitation of the model is the
increase in computing time.

In Liu et al. (2021), a clustering-based flow control approach has been proposed by SDN.
This approach divides the network into clusters with a minimum number of boundary
nodes. Instead of managing the separate streams of each node, the SDN controller manages
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only the traffic streams of the clusters through the boundary nodes. Routing algorithm
manages the data streams within each cluster. The results of simulation show that the
SDN approach is efficient and reduces control messages and managed nodes. This scheme
reduces cost of communication for configuring an SDN-WSN by a minimum of 27%
and a maximum of 88%, respectively, without reducing packet latency and delivery rates.
The SDN controller generates scalable communication overhead, which can be tailored by
adjusting cluster size.

Sailfish algorithm
The SFO algorithm has advantages such as a balance between exploitation and exploration
and the avoidance of local optimization. In the SFO, the sailfish represent the candidate
solutions. This algorithm has two kinds of search agents called sailfish and sardine. The
initial population in the solution space is generated randomly. In a next d search space, the
ith member in the kth round contains the current position SFi,k ∈R(i = 1 ,2,...,m). The
SF matrix is designed to maintain the position of all the sailfish.

SFposition=


SF1,1 SF1,2 ··· SF1,d
SF2,1 SF2,2 ··· SF2,d
...

...
...

...

SFm,1 SFm,2 ··· SFm,d

 (1)

In Eq. (1), m, d and SFi,j represent the number of sailfish, variables, and the next j value
of the i sail. Equation (2) represents the fitness function of each sail as follows:

Fitness value of sailfish= f (sailfish)= f (SF1,SF2,...,SFm) (2)

To evaluate each sailfish, a matrix is defined for the suitability of all solutions as follows:

SFfitness=


f (SF1,1,SF1,2,...,SF1,d)
f (SF2,1,SF2,2,...,SF2,d)

...
...
...
...

f (SFm,1,SFm,2,...,SFm,d)

=

FSF1
FSF2
...

FSFm

 (3)

In Eq. (3),m saves the number of sailfish, SFi,j after jth of the sail ith, f stores the fitness
function and SFfitness stores the fitness value of each factor based on the target function.
The first row of the SFposition matrix is passed to the fitness function, and the output shows
the fitness value of each factor in the SFfitness.

The sardine consensus is another important component of the SFO algorithm and
sardines also swim in the search space. Therefore, the location and suitability value of each
sardine are defined according to Eq. (4).

Sposition=


S1,1 S1,2 ··· S1,d
S2,1 S2,2 ··· S2,d
...

...
...

...

Sn,1 Sn,2 ··· Sn,d

 (4)
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where n, and Si,j and Sposition are the number of sardines, the jth dimension of sardine i,
the position of all sardines in the matrix, respectively. The fitness value of each sardine is
defined according to Eq. (5).

Sfitness=


f (S1,1,S1,2,...,S1,d)
f (S2,1,S2,2,...,S2,d)

...
...
...
...

f (Sn,1,Sn,2,...,Sn,d)

=

FS1
FS2
...

FSm

 (5)

where Si,j represents the jth dimension, f is the target function, and Sfitness stores the fitness
value of each sardine. In the SFO, the new position of the sailfish ( X i

newSF
) is updated

according to Eq. (6). In this phase, search agents provide the exploration phase, which
involves searching a large part of the search space for promising solutions that have not yet
been updated. Sailfish does not attack only from top to bottom or from right to left and
vice versa. They can attack in all directions and in a shrinking circle. As a result, the sailfish
updates its position in a circle around the best solution.

X i
newSF
=X i

eliteSF −λi×

(
rand (1,0)×

(
X i
eliteSF −X

i
injuredS

2

)
−X i

oldSF

)
(6)

In Eq. (6), X i
eliteSF elite sailfish position, X i

injuredS best sardine position, X
i
oldSF sail current

position, rand(1,0) is a random number, and λi is a factor in the ith iteration that is
produced by Eq. (7).

λi= 2× rand (0,1)×PD−PD (7)

Fluctuation of λ and the update position of the sailfish can lead to the divergence of
the sailfish and their convergence around the prey. This method leads to discovery and
search for solutions at the global level. PD indicates the number of baits per repetition. The
adaptive formula for the PD parameter is defined according to Eq. (8). Since the number
of prey is reduced during group hunting by sailfish, the PD parameter is an important
parameter to update the position of the sailfish around the prey.

PD= 1−
(

NSF

NSF+NS

)
(8)

where NSF and NS are the number of Sailfish and sardines per phase of the algorithm,
respectively. In the SFO algorithm, the new position of sardine X i

newS is defined according
to Eq. (9).

X i
newS
= r×

(
X i
eliteSF −X

i
oldS+AP

)
(9)

where X i
eliteSF is the best position for an elite sail, X i

oldS is the current position for sardines,
r is a random number, and Attack Power (AP) is the rate of attack of a sail’s fish per
Represents the iteration defined by Eq. (10). The sardines update rule depends on the AP
of the sail.

AP =A× (1−(2× Itr×ε)) (10)
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where A and ε are coefficients to reduce the AP value linearly from A to 0. Using the AP,
the number of sardines updating α and β are defined as follows:

α =Ns×AP (11)

β = di×AP (12)

where di and NS are the number of variables and the number of sardines, respectively.
In the SFO, bait hunting is assumed to occur when sardines become more suitable than
sailfish. In this case, the position of the sailfish replaces the last location of the sardine being
hunted to increase the chances of catching new prey (Eq. 13):

X i
SF =X i

s iff (Si)< f (SFi) (13)

where X i
s indicates the current location of the sardine in the i iteration and X i

SF indicates
the current location of the sailfish in the i iteration.

Proposed model
This article proposes an SDN-IoT-based framework for ISFO clustering of IoT sensor
nodes. In the ISFO model, a set of sensor nodes SN = s1,s2,...,sn are located in an area
of size L×L, where L is the size of the area. The purpose of sensor nodes is to collect
IoT devices data. In the proposed model, the role of the SDN network is as a designer.
SDN collects various network information and automatically sets up the network. The
proposedmodel is installed inside the SDN controller and the network clustering operation
is performed by SDN. The SDN controller is responsible for programming the sink, and
the sink sends the appropriate message to the IoT nodes. The SDN controller creates the
network topology. The clustering operations on an IoT sensor node set are done by the
proposed model, which is based on the ISFO model. In this article, the residual energy of
the node, the center of the neighbor and the distance between the node and the sink are
considered in which the set of CHs selected as CH =CH1,CH2,...,CHs are defined. By
selecting CH, the process of sending packets is possible with confidence. This is because the
sensors communicate directly with CH instead of directly with base station, resulting in a
reduction in energy when the packets are transmitted by CH to BS. Figure 2 indicates the
flowchart of the proposed scheme. Algorithm 1 indicates the pseudocode of the Improved
Sailfish Optimization (ISFO). In the pseudocode, the steps of the ISFO model are shown.
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Algorithm 1. Pseudocode of the improved Sailfsh Optmiiatoi (ISFO)

Parameters initaaiiattn (A=4, ε= 0.001). 
Caacuaate the ftness  uncttn t  saiafsh and sardines.
While the sttp ctndittns are ntt satsfed 
     For each saiafsh

          Estmate λ i using Eq. (7).

          Update the atcattn t  saiafsh using Eq. (15). 
     End For 
Caacuaate AttackPower using Eq. (10).
      If AttackPower < 0.5
          Estmate α and β using Eq. (11) and Eq. (12). 
          Chttse a set t  sardine base tn the vaaue t  α and β
          Update the atcattn t  seaected sardine by Eq. (18). 
       Else
          Update the ptsittn t  aaa sardine by the Eq. (18).
       End If 
        Ctmpute aaa sardine’s ftness 
       If there is a beter stauttn 
           Change a saiafsh with injured Sardine using Eq. (13). 
           Deaete the hunted sardine 
           Update the best saiafsh and best sardine 
        End If 
End While 
Return best saiafsh

//Function Clusterin� ()

Ntde Depatyment
Ntde Initaaiiattn

While (Rtund<MaxRounds)

Caustering prtcess using ISFO aagtrithm
Evaauattn Fitness Functtn
Ident y the best CH ntdes with minimum ftness  uncttn
Keep the best stauttns (CH)
Causter member ntdes transmit packet tt the CH
CH ntdes send packet tt base stattn
Rtund terminattn ctndittn
Return best vecttr with minimum ftness  uncttn
End While

//Function SDN Controller ()

Start
SDN Ctntrtaaer: Paanned Caustering Impaementattn
BS: Send Request Massage  rtm SDN Ctntrtaaer
SN: Revive Request Massage  rtm BS
SN: Send In trmattn (Such as ptsittn, Energy, and etc.)
BS: Receive In trmattn (Such as ptsittn, Energy, and etc.)
CH: Caustering Operattns
Ctmmand: Update In trmattn
End

Improved SFO
The SFO algorithm uses two factors to search, so it can effectively improve population
diversity and prevent population diversity shortcomings. Sailing populations of fish and
sardines are randomly initialized. smin and dmin represent the minimum number of fish
and sardine sails, respectively. The value of both is equal to the minimum number of sensor
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Figure 2 The flowchart of the proposed scheme.
Full-size DOI: 10.7717/peerjcs.1424/fig-2

nodes. Similarly, smax and dmax represent the maximum values of sail and sardines, both of
which are equal to the maximum sensor nodes.

si,j = smin
+ rand× (smax

− smin)

di,j = dmin
+ rand× (dmax

−dmin) (14)

The best solutions are regarded as vectors that CHs have a high residual energy. The
dynamic weight coefficient (w) is continuously entered in the formula for updating the
position of the sailfish, which in the early stages is greater than the value of w and leads to
global exploration. Finally, the value of w decreases comparatively, which is more useful for
local search. Therefore, by Eq. (15) in iteration i, the new position of the sailfish ( X i

newSF
) is

updated.Weighting strategies are common inmost swarm intelligence algorithms (Ouyang,
Qiu & Zhu, 2021; Wu et al., 2022). In general, meta-heuristic algorithms partially reduce
getting stuck in local optima by adaptively shifting between maximum and minimum
values. Weighting in the initial stage weakens the effect of randomness and balances the
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searchmechanism in the problem space. Adaptive weighting improves the quality of agents’
positions. It enables agents to converge to optimal positions faster and overall accelerates
the rate of convergence.

X i
newSF
=ω×X i

eliteSF −λi×

(
rand (1,0)×

(
X i
eliteSF −X

i
injuredS

2

)
−X i

oldSF

)
(15)

where X i
eliteSF position of elite sail, X i

injuredS best position of damaged sardine, X i
oldSF current

position of sail, and λi is a coefficient in the ith iteration that is generated according to Eq.
(16).

λi= 2× rand (0,1)×PD−PD (16)

PD indicates the number of baits per repetition. Since the number of baits decreases
during group hunting by the sailfish, the PD parameter is an important parameter to
improve the location of the sailfish around the bait. The formula of PD metric is defined
according to Eq. (17).

PD= 1−
(

NSF

NSF+NS

)
(17)

In the SFO algorithm, the new location of sardine X i
newS is defined according to Eq.

(18). By the parameter w, the search balance is created in the environment and the optimal
solution is reached in the shortest possible time.

X i
newS
= r×

(
ω×X i

eliteSF −X
i
oldS+AP

)
(18)

The value of ω is defined by Eq. (19). In the Eq. (19) imax represents the maximum
iteration.

ω=
e2×(1−i/imax)−e−2(1−i/imax)

e2×(1−i/imax)+e−2(1−i/imax)
(19)

Figure 3 shows the impact of w on the other factors. The weight factor (w) changed the
position of Xinjured and Xelite . That is, the new position of the agents in the problem space
is closer to the optimal solution. Like other population-based optimization algorithms, the
SFO must strike a balance between exploration and exploitation. Fundamental SFO tends
toward exploration, since the position-updated equation ignores the target point’s location
information and only utilizes it to determine the distance to the next searching zone at
random. Additionally, the SFO’s results for multi-modal issues show that its exploitation
capability is lacking (Zhang & Mo, 2022).

The ISFO model uses elite sailfish in the current group to complete learning. The ISFO
model has a different approach to updating sail and sardine that directly affects agent
learning.

Problem coding
In the ISFO, agents are considered as sensor nodes while their position indicates their
performance. Agents can change the information about the multidimensional search space
by their position. In ISFO with factor N, the position of the nth sensor in the iteration t for
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Figure 3 The impact of w on the other factors.
Full-size DOI: 10.7717/peerjcs.1424/fig-3

i= 1,2,...,N is defined according to Eq. (20), where Xd
i (t ) indicates the position of the i

factor in the repetition of t in the dimension d and m refers to the dimension of the search
space.

Xi(t )=
(
X 1
i (t ),...,X

d
i (t ),...,X

m
i (t )

)
;i= 1,2,...,N (20)

The sail of the fish moves in the search space to find its best local solution, and the
quality of the solution produced by the sail is evaluated using the fit function. A change
in the search behavior of sailfish leads to a change in the location of other sardines in
the search space. To achieve the optimal answer, the sails of the fish in the search space
change their position. The movement of each sailfish is influenced by the best sardines.
As a result, the sailfish are guided to the best possible position (global solution). In the
proposed model, each node has a chance to participate in the CH selection process, and
the role of CH among all network nodes is to balance the consumption of energy. Selecting
the thread in rotation mode among all nodes leads to uniform mode.

For example, if 100 sensor nodes are located in the IoT network, they are marked
with node IDs from 1 to 100. Therefore, the value of each sailfish Xi,d is determined as
1≤ Xi,d ≤ 100. The proposed model starts with the process of validating the energy of
the nodes, in which the nodes are considered as a set of factors. Figure 4 shows that in a
10-member vector, nodes 15, 23, 5, 58, 92, 71, 35, 11, 87, and 46 were selected as CH nodes.
The selected CHs are the position of the sailfish. The position of the sailfish changes when
it reaches the sardine. Every change is creating an optimal solution.

Fitness function
The fitness function is considered as the main factor for selecting the CH nodes in the
proposed model. Since the solutions of the agents depend on the fit function, the fitness
function of the proposed model is defined based on the residual energy parameters, the
distance between the clusters and the distance between the sensors and the sink. The rate of
weights (ω1, ω2, ω3) is determined based on different tests. If the weights are not adjusted,
the value of the fitness function moves towards the maximum.
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Figure 4 In a 10-member vector, nodes 15, 23, 5, 58, 92, 71, 35, 11, 87, and 46 were selected as CH
nodes.

Full-size DOI: 10.7717/peerjcs.1424/fig-4

minimize=ω1× f1+ω2× f2+ω3× f3
where ω1+ω2+ω3= 1and0<ω1,ω2,ω3< 1. (21)

Residual energy (f1): The remaining energy prevents dead nodes from being selected as
CH. CH involves collecting data from non-CH nodes and transferring the data to the sink
after aggregation. The best headwaters are selected based on the residual energy and the
distance to the neighboring nodes to determine the optimal paths to the sink node. Hence,
the sensor node with maximum remaining energy (f1) is considered as CH. In Eq. (22),
ECHi represents the residual energy of CHi, and m determines the number of threads.

f1=
m∑
i=1

1
ECHi

(22)

Intra-cluster distance (f2): Indicates the Euclidean distance between the members of the
cluster and the CH nodes. If this distance is minimal, then the energy required to process
the data is also reduced. Therefore, the goal of f2 is to achieve the minimum distance based
on the distance within the cluster. Imj Specifies the nodes within a cluster of j cluster.

f2=
m∑
j=1

 Imj∑
i=1

d(si,CHj)/Imj

 (23)

The distance between the sensor nodes and CH is determined using the distance matrix
D (L ×M) according to Eq. (24). The Euclidean distance between CH and a normal node
is described as CHc , and the sensor nodes are defined as s1,s2,...,sn. Two nodes, like a
normal node, are denoted by i and a thread by j, and their positions are denoted by u and
v. Eq. (25) is used to calculate the Euclidean distance between the sensor node and the CH
node.

D(L∗M)=


CHc1,s1 CHc1,s2 ··· CHc1,sn
CHc2,s1 CHc2,s2 ··· CHc2,sn
...

...
...

...

CHck ,s1 CHck ,s2 ··· CHck ,sk

 (24)
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di,j =
√
(ju− iu)2+ (jv− iv)2 (25)

In data transferring phase, a time slot is provided for each node. The main purpose of
each node is to collect data and send it to the header. Once data has been collected from
all nodes within the cluster, the header node transmits the associated data to the BS.

Distance between CH and sink (f3): Indicates Euclidean distance between CH and sink.
The sensor node with more residual energy, less distance with neighboring nodes and
the sink node is selected as the CH node using ISFO. Consequently, the strategy of the
proposed model for selecting CH is the average distance between nodes to send packets to
BS. As a result, the shortest distance to the sink is considered. SN indicates the sink node.

f3=
m∑
i=1

d(CHj,SN ) (26)

Terms of completion
The iterative phase is continued until the halting requirements are met or the algorithm
has completed the maximum number of cycles. The population of sailfish is updated
during this operation. The location of the entire sardine must be updated, or the attack
power determines the position of the selected sardines. When there are no other assailants
present, the sailfish alter their position against the victim. Other parameter values have been
analyzed, and the ISFO algorithm determines the attack alteration method throughout
hunting. The fitness value of all sardines is evaluated and sardine in solution is replaced.
Finally, the best sailfish and sardine have been upgraded. The entire process is repeated till
the maximum number of iterations is reached.

Computational complexity
The increase in computational complexity in meta-heuristic algorithms is dependent on
the number of iterations, changes in the initial population, and changes in updating the
agents’ positions. The increase in the number of repetitions and population diversity in the
proposed model is insignificant. In the SFO algorithm, due to the proper balance between
exploration and exploitation, the increase in computational complexity is low. Compared
with the standard SFO, the proposed model increases the complexity of executing the new
position of the sailfish and computing individual position. Other operators do not add
complexity.

Model of consuming energy
The energy consumption model is evaluated by the radio energy dissipation model
according to the distance between the receiver and the transmitter. The effectiveness of
clustering models is frequently assessed using the metric of energy usage. The entire
of energy required by sensor nodes during network operation is known as energy
consumption. The distance between the source and the destination, the retransmission
rate, and the control messages all have an impact on this measure. This ratio should be
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Table 1 Shows the important simulation parameters.

Parameter Value

Number of sensors 150, 300
Area 200 m×200 m
E 0.5 J
Eelec 50nJ/bit
Emp 0.001310pJ/bit/m4

Efs 10pJ/bit/m2

Data packet size/B 2048
Number of rounds 1700
Type of nodes Static
Population size 30
Maximum iterations for ISFO 150
A 4
ε 0.001

kept to a minimum to reflect efficient energy use. The energy allocated to send an L-bit
packet at distance d is defined according to Eq. (27).

ETX (L,D)=

{
L.Eelec+L.Efs×d2 (d < d0)
L.Eelec+L.Emp×d2 (d ≥ d0)

(27)

ERX (l)= l×Eelec (28)

d0=
√
Efs/Emp (29)

When a sensor node receives l-bit packet, its energy consumption is calculated according
to Eq. (28). where Eelec , Emp and Efs are constant parameters. ETX (L,d), ERX (l) and
d representing the energy consumed to send and receive a 1-bit data packet and, the
distance between the transmitter and receiver respectively. d0 is the threshold value. The Efs
parameter expresses the energy consumption of the transmission amplifier for free routing
and cooperation between nodes. The Emp parameter expresses the power consumption of
the transmission amplifier for multi-route routing.

EVALUATION AND RESULTS
This article has been evaluated in Python and IoT libraries. The evaluation of the ISFO
model is based on 150 and 300 nodes that are distributed in an area of 200m× 200m based
on random. Table 1 shows the important simulation parameters. All results are reported
based on the average of 20 runs. The ISFO model is compared with the main clustering
models, namely LEACH, LEACH-E (Xu et al., 2012). The SFO is also used for comparison
to show the ISFO model performance. The number of iterations and the initial population
in the algorithms are equal. Table 1 shows the simulation parameters.

Number of alive nodes
Figure 5 shows the number of alive nodes for the 150 and 300 nodes. The number of alive
nodes for the ISFO model in 500 and 1,000 rounds with 150 nodes included 138 and 94
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Figure 5 The number of alive nodes for the 150 and 300 nodes.
Full-size DOI: 10.7717/peerjcs.1424/fig-5

nodes. For 300 sensor nodes, the number of alive nodes for ISFO and SFO per 1,000 rounds
is 179 and 167, respectively. For 300 sensor nodes, the number of alive nodes for ISFO and
SFO per 1,000 rounds is 179 and 167, respectively. In the ISFO model, the alive nodes are
still stable after the simulation round is completed because the ISFOmodel has achieved the
best degree of convergence by improving the solutions, and the agents in the environment
have chosen the best cluster. From the results of the diagrams, it is noteworthy that the
ISFO model has a good performance compared to the LEACH and LEACH-E in term of
network lifetime.
In Fig. 6 the results are shown for 2,500 rounds. The chart results show that the ISFO

model has more live nodes compared to other models. The purpose of 2,500 rounds are
to show the convergence chart of the models. The convergence graph of the number of
live nodes with 1,700 rounds is not clear. But the comparison between 1,700 rounds and
2,500 rounds shows that the convergence of dead nodes in the ISFO model is done in a
smoother form. The number of live nodes after 2,500 rounds for 150 and 300 nodes mode
by ISFO model is two nodes and five nodes, respectively. The number of live nodes after
2,500 rounds for 150 and 300 nodes mode by SFO model is equal to 0.

Table 2 shows the number of clusters for each model based on different runs. The
proposed model decreases the number of cluster when compared to LEACH, LEACH-E,
SFO, and ISFO. According to the Table 2, it is clear that the number of clusters is different
in each run. Therefore, the results will be different based on the number of clusters. If the
number of clusters is less, then the energy consumption between the cluster heads will
be less. Therefore, the lifetime of the network increases. A large number of clusters leads
to network interference and lost packets. In the ISFO model, the number of clusters is
optimal.

Number of delivered packets
Figure 7 shows the number of packets delivered to the sink for the ISFO model and the
LEACH, LEACH-E and SFOmodels. The number of received packets in 1,000 rounds with
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Figure 6 The number of alive nodes for 2,500 rounds.
Full-size DOI: 10.7717/peerjcs.1424/fig-6

Table 2 Number of clusters for each model based on different executions.

Runs Nodes LEACH LEACH-E SFO ISFO

150 22 20 18 15
1

300 25 22 20 18
150 23 21 19 14

2
300 25 22 20 19
150 22 20 18 13

3
300 23 22 23 17
150 22 20 18 16

4
300 25 24 20 18
150 21 20 21 15

5
300 24 23 21 16
150 22 20 18 14

6
300 26 26 20 18
150 24 20 18 13

7
300 25 22 20 17
150 22 21 17 15

8
300 25 25 23 18
150 23 20 18 16

9
300 25 22 20 17
150 25 22 20 14

10
300 27 24 21 18

150 nodes by ISFO and SFO models is equal to 2,856 and 3,523, respectively. The number
of received packets in 1,500 rounds with 150 nodes by ISFO and SFO models is 5,326 and
4,156, respectively. The number of received packets in 500 rounds with 300 nodes by ISFO
and SFO models is equal to 2,059 and 1,847, respectively. The number of received packets
in 1,200 rounds with 300 nodes in ISFO and LEACH-E models is equal to 5,287 and 3,055,
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Figure 7 The number of packets delivered to the sink for the ISFOmodel and the LEACH, LEACH-E
and SFOmodels.

Full-size DOI: 10.7717/peerjcs.1424/fig-7

respectively. The number of received packets in 1,200 rounds with 150 nodes in LEACH
and LEACH-E models is equal to 1,502 and 1,594, respectively. Comparisons show that
the ISFO model has been able to increase the number of packages due to the selection of
optimal clusters.

Packet delivery rate
Figure 8 shows a comparison of package delivery rates for the ISFOmodel and the LEACH,
LEACH-E and SFO models. Package delivery rates are defined according to Eq. (30)
(Guleria et al., 2021).

PDR=
Number of Packets Received

Number of Packets Transmitted
×100 (30)

If PDR is too low, these models will not be able to send the packets to the sink completely.
In Fig. 8, the X-Axis indicates the simulation rounds and the Y axis indicates the packet
delivery rate (%). Figure 8 shows that the PDR of the proposed model is higher than other
models.

Table 3 shows the number of nodes with respect to PDR. The ISFO increases the PDR
when compared to LEACH, LEACH-E, and SFO. It is observed that the PDR increases as
the number of nodes increases. It is mainly due to consideration of ISFO. For 150 nodes,
the PDR of the ISFO model is 89.44%. PDR of the ISFO model is 94.47% on 300 nodes.
PDR of the SFO is 87.40% on 300 nodes.

Throughput
Transmitting the volume of data packets throughout the simulation period is considered
as throughput. Operating power is defined according to Eq. (31).

Throughput =
number of data packets sent (bits)

Time period (seconds)
. (31)
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Figure 8 A comparison of package delivery rates for the ISFOmodel and the LEACH, LEACH-E and
SFOmodels.

Full-size DOI: 10.7717/peerjcs.1424/fig-8

Table 3 Number of nodes vs. PDR.

Number
of Nodes

PDR (%)

LEACH LEACH-E SFO ISFO

150 32.16 46.23 83.41 89.44
200 33.87 47.64 84.85 91.53
250 35.49 49.25 85.93 92.48
300 36.18 53.26 87.40 94.47

In Fig. 9, the X and Y axes represent the number of rounds and throughput in bits per
second, respectively. The ISFO model provides 3.5 × 10 4 bit/s throughput compared to
other models up to the end of 1700 rounds with 150 nodes. LEACH, LEACH-E models
achieved 2.2 × 104, 2.4 × 104 bps in the last simulation round with 150 nodes. LEACH,
LEACH-E models achieved 2.1× 104, 2.3× 104 bps in the last simulation round with 300
nodes, respectively. According to the results, the ISFO model has more throughput than
the LEACH, LEACH-E models.

Remaining energy
Figure 10 shows the average residual energy for the 150 and 300 sensor nodes. It can be
seen that at 1,700 rounds with 150 and 300 nodes, the residual energy of the ISFO scheme
is higher than other schemes. LEACH, LEACH-E models are weaker than ISFO and SFO.
Because traditional models do not benefit from the function of fit and selection of optimal
solutions. The average residual energy in 900 rounds with 150 nodes by ISFO and SFO
models is 51 and 47 joules, respectively. The average residual energy in 900 rounds with
150 nodes by ISFO and LEACH models is 51 and 23 joules, respectively. The average
residual energy at 1,300 rounds with 150 nodes by LEACH-E and SFO is 19 and 31 joules,
respectively. The average residual energy at 1,700 rounds with 300 nodes by the ISFO and
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Figure 9 The X and Y axes represent the number of rounds and throughput in bits per second, respec-
tively.

Full-size DOI: 10.7717/peerjcs.1424/fig-9

Figure 10 The average residual energy for the 150 and 300 sensor nodes.
Full-size DOI: 10.7717/peerjcs.1424/fig-10

SFO models is 42 and 37 joules, respectively. The average residual energy in 500 rounds
with 300 nodes by ISFO and LEACH-E is 147 and 119 joules, respectively.

The statistical analysis of the proposed model and other models based on residual energy
is shown in Table 4. This may prove the efficiency of the ISFOmodel over the other models
in terms of remaining energy. The metrics of minimum value, mean, maximum value and
standard deviation (SD) are specified and computed for the models based on the results of
the remaining energy of number of nodes. It was found that the LEACH, LEACH-E, and
SFO models all performed significantly worse than the ISFO.

In Table 5, the statistical significance of the residual energy for one round is shown
using the paired t test. In all cases, P < 0.05, so the null hypothesis is rejected at the 5%
significance level and the alternative hypothesis is accepted at the 95% confidence level.
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Table 4 Statistical analysis of the proposed model and other models based on residual energy.

Number
of Nodes

Metrics LEACH LEACH-E SFO ISFO

Minimum 2 6 18 23
Mean 31.40 35.20 44.80 50150

SD 28.29 26.64 22.79 20.21
Minimum 10 15 36 42
Mean 66.40 77.80 100.60 111.40300

SD 58.17 56.03 48.89 44.24

Table 5 Results of t -test of residual energy for a single round.

ISFO t -Test Significance of the
null hypothesis

Confidence Interval 95%

Lower Upper

LEACH 3.26 <5% 3.21 3.52
LEACH-E 4.35 <5% 4.28 4.68
SFO 7.64 <5% 7.61 8.21

CH selection in the proposed model reduces energy consumption based on the distance
between clusters.

In addition, the significance of the proposed model’s performance was evaluated using
statistical tests, and it was found to be significant with a confidence level of 95%. During
this procedure of testing, the samples connected to the amount of leftover energy were
chosen for each algorithm that was being investigated. This was done in order to ensure
accurate results. Figures 11 and 12 highlights the descriptive investigation of the proposed
model and benchmarked algorithms with respect to residual energy. It can be seen that the
ISFO showed the best performance for 150 sensors, with median value of 50. Also, it can
be seen that the ISFO showed the best performance for 300 sensors, with median value of
124.

CONCLUSION AND FUTURE WORKS
The goal of the IoT is to simplify operations and processes for intelligent tasks with
minimum human intervention using various processing systems. IoT applications run
based on a set of policies, algorithms, and principles that are programmed into the IoT
framework. In this article, a clustering protocol called ISFO is proposed to achieve energy
efficient use in SDN-IoT network. The purpose of the SDN was to program the IoT
environment using the ISFO model. In the ISFO model, suitable CHs were selected based
on the energy threshold and the distance between CHs and member nodes. Comparison
between the proposed method and other models showed that the proposed model had a
longer network life than LEACH, LEACH-E. The ISFO model was used to improve the
solution vectors and select the best cluster. The ISFO model was tested with two scenarios
including 150 and 300 sensor nodes based on different factors. The results showed that
the ISFO model obtained more live nodes compared to other models and SFO. Also, the
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Figure 11 Box plot for residual energy (150 sensors). The descriptive investigation of the proposed
model and benchmarked algorithms with respect to residual energy.

Full-size DOI: 10.7717/peerjcs.1424/fig-11

Figure 12 Box plot for residual energy (300 sensors). The descriptive investigation of the proposed
model and benchmarked algorithms with respect to residual energy.

Full-size DOI: 10.7717/peerjcs.1424/fig-12

delivery rate of packages in ISFO model was higher compared to LEACH and LEACH-E.
In general, the results of ISFO model compared to other models on the average residual
energy factor with 150 and 300 nodes have improved by 23.41% and 28.79%, respectively.
For future work, the SDN-IoT performance will be tested using optimization algorithms
and a combination of fuzzy logic methods to find the optimal CH nodes.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Mohammadi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1424 23/27

https://peerj.com
https://doi.org/10.7717/peerjcs.1424/fig-11
https://doi.org/10.7717/peerjcs.1424/fig-12
http://dx.doi.org/10.7717/peerj-cs.1424


Competing Interests
Sedat Akleylek is an Academic Editor and a Section Editor of Cryptography, Security and
Privacy for PeerJ.

Author Contributions
• Ramin Mohammadi conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the article, and approved the final draft.
• Sedat Akleylek conceived and designed the experiments, analyzed the data, performed
the computation work, authored or reviewed drafts of the article, and approved the final
draft.
• Ali Ghaffari conceived and designed the experiments, performed the experiments,
performed the computation work, prepared figures and/or tables, authored or reviewed
drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.1424#supplemental-information.

REFERENCES
Adhikari M, Gianey H. 2019. Energy efficient offloading strategy in fog-cloud environ-

ment for IoT applications. Internet of Things 6:100053
DOI 10.1016/j.iot.2019.100053.

Ahmadian A, Ahmadi M. 2022. DC-CAMP: dynamic controller creation, allocation and
management protocol in SDN.Wireless Personal Communications 125:531–558
DOI 10.1007/s11277-022-09563-8.

Al-Janabi TA, Al-Raweshidy HS. 2017. Efficient whale optimisation algorithm-based
SDN clustering for IoT focused on node density. In: 2017 16th Annual Mediterranean
Ad Hoc Networking Workshop (Med-Hoc-Net).

Almutairi J, Aldossary M. 2021. A novel approach for IoT tasks offloading in edge-cloud
environments. Journal of Cloud Computing 10(1):28
DOI 10.1186/s13677-021-00243-9.

Azari L, Ghaffari A. 2015. Proposing a novel method based on network-coding for
optimizing error recovery in wireless sensor networks. Indian Journal of Science and
Technology 8(9):859–867 DOI 10.17485/ijst/2015/v8i9/54915.

Bajaj K, Sharma B, Singh R. 2022. Implementation analysis of IoT-based offloading
frameworks on cloud/edge computing for sensor generated big data. Complex &
Intelligent Systems 8(5):3641–3658 DOI 10.1007/s40747-021-00434-6.

Mohammadi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1424 24/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.1424#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1424#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.1424#supplemental-information
http://dx.doi.org/10.1016/j.iot.2019.100053
http://dx.doi.org/10.1007/s11277-022-09563-8
http://dx.doi.org/10.1186/s13677-021-00243-9
http://dx.doi.org/10.17485/ijst/2015/v8i9/54915
http://dx.doi.org/10.1007/s40747-021-00434-6
http://dx.doi.org/10.7717/peerj-cs.1424


Balaji S, Nathani K, Santhakumar R. 2019. IoT technology, applications and chal-
lenges: a contemporary survey.Wireless Personal Communications 108(1):363–388
DOI 10.1007/s11277-019-06407-w.

Chowdhary SK, Rao ALN. 2021. QoS enhancement in cloud-IoT framework
for educational institution with task allocation and scheduling with task-
VMmatching approach.Wireless Personal Communications 121(1):267–286
DOI 10.1007/s11277-021-08634-6.

Geetha P, Nanda SJ, Yadav RP. 2022. A parallel chaotic sailfish optimization algorithm
for estimation of DOA in wireless sensor array. Physical Communication 51:101536
DOI 10.1016/j.phycom.2021.101536.

Guleria K, Verma AK, Goyal N, Sharma AK, Benslimane A, Singh A. 2021. An enhanced
energy proficient clustering (EEPC) algorithm for relay selection in heterogeneous
WSNs. Ad Hoc Networks 116:102473 DOI 10.1016/j.adhoc.2021.102473.

HosseinzadehM, Hemmati A, Rahmani AM. 2022. Clustering for smart cities in the
internet of things: a review. Cluster Computing 25(6):4097–4127
DOI 10.1007/s10586-022-03646-8.

Jafarian T, Masdari M, Ghaffari A, Majidzadeh K. 2021. A survey and classification of
the security anomaly detection mechanisms in software defined networks. Cluster
Computing 24(2):1235–1253 DOI 10.1007/s10586-020-03184-1.

Jazaeri SS, Jabbehdari S, Asghari P, Haj Seyyed Javadi H. 2021. Edge computing in
SDN-IoT networks: a systematic review of issues, challenges and solutions. Cluster
Computing 24(4):3187–3228 DOI 10.1007/s10586-021-03311-6.

Jazebi SJ, Ghaffari A. 2020. RISA: routing scheme for Internet of Things using shuffled
frog leaping optimization algorithm. Journal of Ambient Intelligence and Humanized
Computing 11(10):4273–4283 DOI 10.1007/s12652-020-01708-6.

Kabiri Z, Barekatain B, Avokh A. 2022. GOP-SDN: an enhanced load balancing method
based on genetic and optimized particle swarm optimization algorithm in distributed
SDNs.Wireless Networks 28:2533–2552 DOI 10.1007/s11276-022-02990-2.

Liu Q, Cheng L, Alves R, Ozcelebi T, Kuipers F, Xu G, Lukkien J, Chen S. 2021. Cluster-
based flow control in hybrid software-defined wireless sensor networks. Computer
Networks 187:107788 DOI 10.1016/j.comnet.2020.107788.

Maia AM, Ghamri-Doudane Y, Vieira D, Franklin de CastroM. 2021. An improved
multi-objective genetic algorithm with heuristic initialization for service place-
ment and load distribution in edge computing. Computer Networks 194:108146
DOI 10.1016/j.comnet.2021.108146.

Nikokheslat HD, Ghaffari A. 2017. Protocol for controlling congestion in wire-
less sensor networks.Wireless Personal Communications 95(3):3233–3251
DOI 10.1007/s11277-017-3992-y.

Ouhab A, Abreu T, Slimani H, Mellouk A. 2020. Energy-efficient clustering and routing
algorithm for large-scale SDN-based IoT monitoring. In: ICC 2020—2020 IEEE
International Conference on Communications (ICC).

Ouyang C, Qiu Y, Zhu D. 2021. Adaptive spiral flying sparrow search algorithm.
Scientific Programming 2021:6505253.

Mohammadi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1424 25/27

https://peerj.com
http://dx.doi.org/10.1007/s11277-019-06407-w
http://dx.doi.org/10.1007/s11277-021-08634-6
http://dx.doi.org/10.1016/j.phycom.2021.101536
http://dx.doi.org/10.1016/j.adhoc.2021.102473
http://dx.doi.org/10.1007/s10586-022-03646-8
http://dx.doi.org/10.1007/s10586-020-03184-1
http://dx.doi.org/10.1007/s10586-021-03311-6
http://dx.doi.org/10.1007/s12652-020-01708-6
http://dx.doi.org/10.1007/s11276-022-02990-2
http://dx.doi.org/10.1016/j.comnet.2020.107788
http://dx.doi.org/10.1016/j.comnet.2021.108146
http://dx.doi.org/10.1007/s11277-017-3992-y
http://dx.doi.org/10.7717/peerj-cs.1424


RenW, Sun Y, Luo H, Guizani M. 2019. A novel control plane optimization strat-
egy for important nodes in SDN-IoT networks. IEEE Internet of Things Journal
6(2):3558–3571 DOI 10.1109/JIOT.2018.2888504.

Reza Naji H, Shadravan S, Jafarabadi HMousa, Momeni H. 2022. Accelerating sailfish
optimization applied to unconstrained optimization problems on graphical pro-
cessing unit. Engineering Science and Technology, an International Journal 32:101077
DOI 10.1016/j.jestch.2021.11.003.

Samarji N, SalamahM. 2021. ESRA: energy soaring-based routing algorithm for IoT
applications in software-defined wireless sensor networks. Egyptian Informatics
Journal 23(2):215–224.

Sellami B, Hakiri A, Yahia SB, Berthou P. 2022. Energy-aware task scheduling and
offloading using deep reinforcement learning in SDN-enabled IoT network.
Computer Networks 210:108957 DOI 10.1016/j.comnet.2022.108957.

Shadravan S, Naji HR, Bardsiri VK. 2019. The Sailfish Optimizer: a novel nature-
inspired metaheuristic algorithm for solving constrained engineering opti-
mization problems. Engineering Applications of Artificial Intelligence 80:20–34
DOI 10.1016/j.engappai.2019.01.001.

Shi Z, Zhu J, Wei H. 2022. SARSA-based delay-aware route selection for SDN-
enabled wireless-PLC power distribution IoT. Alexandria Engineering Journal
61(8):5795–5803 DOI 10.1016/j.aej.2021.11.029.

Shirmarz A, Ghaffari A. 2022. Network traffic discrimination improvement in software
defined network (SDN) with deep autoencoder and ensemble method. Journal of
Ambient Intelligence and Humanized Computing 14(5):1–17.

Sixu L, MuqingW,Min Z. 2022. Particle swarm optimization and artificial bee colony
algorithm for clustering and mobile based software-defined wireless sensor networks.
Wireless Networks 28(4):1671–1688 DOI 10.1007/s11276-022-02925-x.

Srinivasa Ragavan P, Ramasamy K. 2020. Software defined networking approach based
efficient routing in multihop and relay surveillance using Lion Optimization algo-
rithm. Computer Communications 150:764–770 DOI 10.1016/j.comcom.2019.11.033.

Subramanian P, Sahayaraj JM, Senthilkumar S, Alex DS. 2020. A hybrid grey wolf and
crow search optimization algorithm-based optimal cluster head selection scheme
for wireless sensor networks.Wireless Personal Communications 113(2):905–925
DOI 10.1007/s11277-020-07259-5.

Tang F, Fadlullah ZM,Mao B, Kato N. 2018. An intelligent traffic load prediction-based
adaptive channel assignment algorithm in SDN-IoT: a deep learning approach. IEEE
Internet of Things Journal 5(6):5141–5154 DOI 10.1109/JIOT.2018.2838574.

Vijayalakshmi K, Anandan P. 2019. A multi objective Tabu particle swarm optimization
for effective cluster head selection in WSN. Cluster Computing 22(5):12275–12282
DOI 10.1007/s10586-017-1608-7.

WuH, Zhang A, Han Y, Nan J, Li K. 2022. Fast stochastic configuration network based
on an improved sparrow search algorithm for fire flame recognition. Knowledge-
Based Systems 245:108626 DOI 10.1016/j.knosys.2022.108626.

Mohammadi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1424 26/27

https://peerj.com
http://dx.doi.org/10.1109/JIOT.2018.2888504
http://dx.doi.org/10.1016/j.jestch.2021.11.003
http://dx.doi.org/10.1016/j.comnet.2022.108957
http://dx.doi.org/10.1016/j.engappai.2019.01.001
http://dx.doi.org/10.1016/j.aej.2021.11.029
http://dx.doi.org/10.1007/s11276-022-02925-x
http://dx.doi.org/10.1016/j.comcom.2019.11.033
http://dx.doi.org/10.1007/s11277-020-07259-5
http://dx.doi.org/10.1109/JIOT.2018.2838574
http://dx.doi.org/10.1007/s10586-017-1608-7
http://dx.doi.org/10.1016/j.knosys.2022.108626
http://dx.doi.org/10.7717/peerj-cs.1424


WuT, Zhou P,Wang B, Li A, Tang X, Xu Z, Chen K, Ding X. 2021. Joint traffic control
and multi-channel reassignment for core backbone network in SDN-IoT: a multi-
agent deep reinforcement learning approach. IEEE Transactions on Network Science
and Engineering 8(1):231–245 DOI 10.1109/TNSE.2020.3036456.

Xu J, Jin N, Lou X, Peng T, Zhou Q, Chen Y. 2012. Improvement of LEACH protocol
for WSN. In: 2012 9th International Conference on Fuzzy Systems and Knowledge
Discovery.

Zhang Y, Mo Y. 2022. Chaotic adaptive sailfish optimizer with genetic characteristics
for global optimization. The Journal of Supercomputing 78(8):10950–10996
DOI 10.1007/s11227-021-04255-9.

Mohammadi et al. (2023), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.1424 27/27

https://peerj.com
http://dx.doi.org/10.1109/TNSE.2020.3036456
http://dx.doi.org/10.1007/s11227-021-04255-9
http://dx.doi.org/10.7717/peerj-cs.1424

