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ABSTRACT
Managed Security Services (MSS) have become an essential asset for companies
to have in order to protect their infrastructure from hacking attempts such as
unauthorized behaviour, denial of service (DoS), malware propagation, and
anomalies. A proliferation of attacks has determined the need for installing more
network probes and collecting more security-related events in order to assure the best
coverage, necessary for generating incident responses. The increase in volume of data
to analyse has created a demand for specific tools that automatically correlate events
and gather them in pre-defined scenarios of attacks. Motivated by Above Security,
a specialized company in the sector, and by National Research Council Canada
(NRC), we propose a new data mining system that employs text mining techniques
to dynamically relate security-related events in order to reduce analysis time, increase
the quality of the reports, and automatically build correlated scenarios.

Subjects Computer Networks and Communications, Data Mining and Machine Learning,
Security and Privacy
Keywords Security, Data mining, Text-mining, Correlation, Semantic, Log events,
Security operation center, Managed security services

INTRODUCTION
Security Operations Centers (SOC) represent a cornerstone of contemporary security

services and are at the core of Managed Security Services (MSS). MSS are generally based

on a set of distributed sensors that are deployed on clients’ networks. Each sensor contains

various security tools such as Intrusion Detection Systems (IDS), asset detection tools,

flow analysis tools, etc. The said sensor tools analyze network traffic and send events

to a central database (DB) repository for storage or further analysis. Security analysts

can display information about security or network events (alerts or logs) and access

their details through a Graphical User Interface (GUI) of the SOC. In order to improve

overall attack coverage and satisfy the demand for more advanced service features, the

volume of data that is collected in the sensor sensibly increases, and it becomes difficult for

security analysts to maintain monitoring and analyzing increasingly large quantities of data

without incurring Service Level Agreement (SLA) violations.

Many companies have tried to solve this issue by introducing pre-defined correlation

rules in order to identify known network issues and to address client requests. This
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methodology represents a valid solution to maintain a high service quality, but it does

not easily support the integration of new data sources. This method requires considerable

maintenance and tends to exclude all collected events that are not part of any correlation

rules. In fact, security analysts tend to dedicate most of their time analyzing pre-defined

scenarios and writing reports without being able to leverage the unmapped data in order to

identify traces of threats.

An alternative to tackle the problem is the introduction of data mining techniques.

In fact the process which studies how to mine implicit and unknown information

from very large volume of data, by using knowledge discover techniques, is known in

literature as Data Mining. In the last decade few works have already applied data mining

to cyber security in order to detect abnormal patterns in intrusion detection processes

(Thuraisingham, 2008; Chandola et al., 2006). These papers were mostly deriving patterns

by analyzing information derived by OSI model layer 3, OSI model layer 4, timestamps or,

in general, structured protocol-related data stored in databases.

The objective of this paper is to develop an application that enables security analysts to

efficiently analyze large amounts of security information by automatically mapping the

message contained in the security-related events to Common Attack Pattern Enumeration

and Classification (CAPEC) (The MITRE Corporation, 2015), which is a publicly available

comprehensive dictionary and classification taxonomy of known attack patterns that

can be used by analysts, developers, testers, and educators to advance community

understanding and enhance defenses. Instead of identifying sequences of events or relating

them only through common protocol-related information (i.e., common IP, port, etc.),

the proposed system aims to gather events by relating them to known attack patterns,

link their phases by analyzing the terms used to describe specific security issues, and

applying text mining, which is the process of deriving knowledge (patterns and trends)

from unstructured data. The application is developed in Python.

An attack pattern gathers the steps, the challenges, and the techniques that need to be

executed in order to exploit a vulnerable system. CAPEC (The MITRE Corporation, 2015)

represents an attack pattern as an entity represented by a global description of the attack; a

detailed list of macro-steps, subdivided in actions that the attacker could follow; possible

consequences of the attack; and methodologies for mitigating it.

In this paper, the semantic relatedness between sensor event messages and attack pattern

fields description has been calculated in order to identify in real time which captured event

is useful to fully describe the current attack. Thus, the goal of the present work is to identify

the top-K similar security events which can represent a specific attack step, defined in

CAPEC. The set of events is presented to the analysts in the form of a recommendation.

The analysts can then review it and automatically build a report, which is going to be stored

for future analysis and recommendations.

Contribution. The major challenge is that there is no direct mapping between CAPEC

attack patterns and security event logs. It is a non-trivial task to dynamically link a

collection of unrelated security events to the attack pattern(s) in CAPEC because both

entities are described in unstructured text. In this paper, we present a data mining system
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that employs text mining techniques to dynamically relate the information between the

security events and CAPEC attack patterns. To the best of our knowledge, this is the first

work to automatically and semantically build attack scenarios by referring to a publicly

available collection of attack patterns, resulting in the following capabilities:

• With an automatic system gathering collected events, analysts do not need to dig into a

high volume of data in order to look for specific information. This significantly reduces

the analysis time, referred as the time the analyst spends to look for stored events which

could provide strong evidence of the attack under investigation. Thanks to the system

here presented, the analyst can receive a list of automatically recommended events that

are relevant to the attack under investigation.

• The system considerably increases the number of correlated and analyzed events

included in an attack report prepared by security analysts for the clients. Furthermore,

the quality and accuracy of the reports have been greatly improved. The mapped CAPEC

attack patterns not only associate to security events as concrete evidence, but also make

recommendations for how to address the security in the “Solutions and Mitigations”

section of the associated CAPEC attack patterns.

• Extensive experimental results over different types of real-life security events illustrate

the effectiveness of our proposed data mining system. We also demonstrate that our

method can successfully build correlated scenarios.

The rest of the paper is organized as follows. ‘Background’ reviews background knowledge

about the context in question. ‘Related Work’ reports related work. ‘Problem Description’

formally defines the research problem. ‘Proposed Solution’ describes the proposed

solution. ‘Discussion’ discusses the possible limitation of the proposed method and

future improvements. Comprehensive experimental results are presented in ‘Experimental

Evaluation’. Finally, ‘Conclusions’ concludes the paper.

BACKGROUND
This section first introduces the monitoring analysis process which is executed in Security

Operation Centers (SOCs). The section continues by articulating the motivation that

brought the authors to develop such work. At the end, an example clarifies the usage of this

application.

SOC Workflow. Figure 1 depicts the workflow in a SOC.

The process consists of four different phases, described as follows:

• Collection Layer. The collection layer captures the security-related events that are

triggered by specific software. Typical events include (1) network logs, which have

been sent by different hosts, and servers to aggregate them in a single location, and (2)

alerts, which have been triggered by specific software that employ various real-time

traffic monitoring algorithms. Those software can be signature based (e.g., Intrusion

Detection Systems (IDS), Asset Detection, etc.) or anomaly based (e.g., Network

Behaviour Analysis (NBA), Flow-based Classifier, etc.).
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Figure 1 Workflow in a security operation center (SOC).

• Intelligence Layer. The intelligence layer syntactically normalizes and stores the events

for further analysis. The events are then compared to existing described scenarios that

have been previously stored in the knowledge base (KB) and processed by statistical

models, geared at recognizing anomalies. In case of positive matching, correlated events

are sent to the analysis layer.

• Analysis Layer. Security analysts can observe the filtered data through the analysis

layer. The analysts generally have tools for grouping data by specific network-protocol

variables (e.g., IP, port, etc.) and they seek specific information in order to demonstrate

the existence of an attack.

• Response Layer. In the response layer, the analysts contact the clients by writing reports

or sending emails if they are able to present evidence of an attack, or to ask for further

information.

• Knowledge base (KB). The knowledge base stores the pre-defined attack patterns. The

intelligence layer checks the real-time data against the pre-defined attack scenarios in

the KB in order to provide meta-events to security analysts.

Motivation. Network security monitoring has become an exceedingly essential service,

and companies rely on the expertise of reputable Managed Security Service Providers

(MSSPs) for guidance and best-practice recommendations in order to detect and prevent

malicious activities. Monitoring is conducted by a team of security analysts who evaluate

each problem almost manually, while basing their work on their expertise and previous

knowledge about IT security requirements. Whether clients request more events be

collected or whether they need to install more services to improve attack coverage, this

approach will not scale well because the volume of data to be analyzed increases excessively.

Hence, network security companies would like to overcome this problem by building

pre-defined correlation rules, more or less complex, in order to identify a finite number of

malicious or anomalous situations.

Although this approach scales well in the analysis layer, it has shown multiple limitations

for maintenance and attack coverage supervision. Given the highly dynamic security

context, this approach needs continuous improvement of existing correlation patterns

by tuning parameters that should follow the evolution of the system. Moreover, new

correlation patterns need to be introduced in order to discover new threats. Even
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when using highly advanced correlation patterns, many collected events result in being

discarded by these positive filters and never appear on the analysts’ screens for review. This

methodology is not necessarily wrong at first glance, since many events cannot be fully

analyzed if they are not placed in the right context. However, discarding them cannot be the

best solution either. Indeed, without rapidly creating new correlated patterns, even critical

events that were collected after being triggered by the latest installed advanced security

applicative might be discarded because they are not part of any correlation pattern. The

idea of this paper is to automatically map all collected events by using a published structure

existing in literature that collects all attack patterns (The MITRE Corporation, 2015).

Example. Suppose a security analyst needs to investigate the following IDS alert:

• IDS alert tcp $EXTERNAL NET any -> 192.168.20.13:443

(msg:"FILE-OTHER XML exponential entity expansion

attack attempt"; ... sid:29800; rev:1;)

Using our presented methodology, the IDS alert results in a link to the following CAPEC

attack pattern, which in turn is linked with other events that might have been collected in

the sensor [2]:

CAPEC-197: XML Entity Expansion

Description: An attacker submits an XML document to a target

application where the XML document uses nested entity expansion to

produce an excessively large output XML. XML allows the definition

of macro-like structures that can be used to simplify the creation

of complex structures. However, this capability can be abused to

create excessive demands on a processor’s CPU and memory. A small

number of nested expansions can result in an exponential growth in

demands on memory.

Outcomes: The attacker causes the target application denial of

service.

This attack pattern, defined by CAPEC, can be related to the following event instances:

a. End Point Solution Alert - High Usage of CPU on Host:$HOME NET

b. Network Behaviour Analysis Alert - Possible Denial of Service

in the Network $NET NAME

c. IDS alert tcp $EXTERNAL NET any -> $HOME NET 80 (msg:"SERVER

APACHE Apache mod cache denial of service attempt"; ...;

sid:12591; rev:7;)

Thus, through the use of our proposed methodology, the security analyst will know that

the IDS alert, identifiable by the sid = 29,800, can be associated to the aforementioned

event instances, which are suggested to be checked by the analyst. This means that the

concurrent arrival of those events, mapped to a known attack pattern, can provide strong

evidence of the attack under investigation. ■
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RELATED WORK
This section first discusses the state-of-the-art techniques in the area of security-related

events correlation, followed by a discussion on some related works that concern applying

text mining methods in the context of network security and use of recommender system.

Event correlation technique in network security

Rule-Based Reasoning (RBR). A common approach to the problem of event correlation is

to represent knowledge and expertise in a rule-based reasoning system (Lewis, 1999). RBR

systems are often used in artificial intelligence applications such as the expert system, pro-

duction system, or blackboard system. The system basically makes the inference between

the collected data and the Knowledge Level, by a control layer that verifies a list of rules or

a rule repository representing domain-specific expert knowledge. The knowledge in a RBR

system can be updated without changing the program code of the inference engine, but it

has several associated weaknesses. First, it is time consuming to manually enter the knowl-

edge into the knowledge base. Second, the rule repository requires constant maintenance,

which actually undermines the original purpose of a correlation engine to reduce the work-

load of administrators. The method proposed in this paper does not need human interven-

tion to create new rules that represent attack patterns. The system will automatically map

events to existing description of single phases of the attack. Moreover, the mapping will be

automatically updated when a new event is collected or a new attack pattern is created.

Case-Based Reasoning (CBR). The general idea of this approach is to solve new problems

based on the solutions of similar past problems. CBR is a well-known research field in

artificial intelligence that involves the investigation of theoretical foundations, system

development, and practical application in the building of experience-based problem

solving (Bergmann, 2003; Hüllermeier, 2007). CBR allows users to reuse knowledge

from past cases in order to reduce acquisition efforts, which in turn increases the user’s

confidence in the system. However, manual knowledge engineering is required for

adapting rules, the process is difficult to automate. Thus, it is still a time-consuming

task. In contrast, the method proposed in this paper does not need human intervention

to update existing attack patterns because the system will constantly update the mapping

when a new event/attack pattern is created or modified. Moreover, by referring to external

publicly available sources, the presented methodology can also map events to scenarios

that have never been recorded in the monitored network.

Graph-Based Approach (GBA). Gruschke (1998) presented a working principle for event

correlation with a dependency graph, a directed graph that models dependencies between

the managed objects. Its nodes (objects) reflect the managed objects of the system. Its

edges reflect the functional dependencies between managed objects. Although it can

manage a complex system and handle dynamic dependencies, the GBA is only capable of

handling one problem at a time, i.e., GBA can identify only one root-cause. Identification

of all root-causes may not be possible if multiple problems occur within the time period.

Moreover, management requires a high level of expertise from the analysts. Due to these

limitations, GBA is hardly useable in practical contexts.
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Text mining in security-related application

Text mining has been applied to network security, but its research problems differ from the

ones presented in this paper. By using text categorisation it is possible to distinguish and

learn the characteristics of normal and malicious behaviour in regards to the words used in

specific contexts. In Garćıa Adevaa & Pikatza Atxab (2007), for example, the methodology

is applied to log entries generated by web application servers in order to detect abnormal

behaviour or fraud (Hand & Weston, 2008). In De Vel, Anderson & Corney (2001), an

investigation into e-mail content was performed for the purpose of forensic investigation.

With such methodology, it is not only possible to recognize the topic discussed in the

e-mail, but also abnormal conversation that might be related to targeted keywords. Similar

goals have been studied in order to recognize maliciousness in social networks involving a

large-scale data stream (Keim, Krstaji & Bak, 2010). In Thompson (2005), through text min-

ing it was possible to link entities across documents in order to recognize when different

name strings are potential references to the same entity. In Gegick, Rotella & Xie (2010), a

system was implemented with an approach that applied text mining on natural-language

descriptions of bug reports (BRs) in order to train a statistical model on already manually-

labeled BRs to identify security bug reports (SBRs) that were manually mislabelled as

not-security bug reports (NSBRs). In contrast, the research problem studied in this paper

is to dynamically link a collection of unrelated security events to abstraction identifiable in

the attack pattern(s) by using text mining techniques that can deal with unstructured text.

Recommender system in security-related application

Recommender systems have been an important research field in connection with

information retrieval and information filtering systems for two decades. These systems

are commonly applied in the industry of electronic commerce to facilitate customers in

making decision on online purchases. Recommender systems are also widely applied to

non-commercial applications for predicting and recommending items or actions based on

user preferences and rating. There are few examples in literature which use recommender

systems to help IT-professionals to deal with security and performance issues. For example,

Sampaio (2014) developed a recommender system to solve performance issues occurring to

network applications. The process proceeds with the identification of performance-related

problems in networks and the characterization of user-profiles. Based on specific attributes

which are used to characterize the sample cases, the work introduces the calculus of

distance between a new case and stored ones. Another example is given by Lyons (2014)

which elaborated a hybrid recommender system to generate list of cyber defense actions

to mitigate cyber-security attacks. Lyons (2014) has a similar goal of this paper but it is

specifically designed for defender counteractions and it takes into the consideration of

only one attack-scenario. The recommended actions are based on historical data and are

elaborated by a collaborative filtering approach.

PROBLEM DESCRIPTION
In this section we first formally define the notions of security event and attack pattern

followed by a description of the research problem. A security event contains a set of
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attributes and a text description. For example, an attribute can be an IP source, an IP

destination, or a port source, etc. (Yurttas). A text description can be “MS-SQL raise error

possible buffer overflow”.

Definition 1. (security event): Let E(A1,...,Am,D) be a collection of security events, where

Ai is an security event attribute and D is set of distinct words in all text descriptions in E. A

security event e ∈ E contains {a1,...,am,d, where ai ∈ Ai and d ⊆ D. While d represents the

description of the event, the other ai refers to protocol-related attributes.

An attack pattern in CAPEC, the publicly available comprehensive dictionary and

classification taxonomy of known attack patterns, contains a set of attack steps, where

each step is a text description that describes the details of the attack step, consequence,

attack prerequisites, etc.

Definition 2. (attack pattern): Let P be the set of attack patterns. Each attack pattern p ∈ P

contains a set of attack steps, denoted by p = {s1,...,su, where each attack step sj contains a

set of words.

To provide a concise description, in the rest of the paper, we assume that the text

description of the security events in E and the text description of the attack steps in

P share the same set of vocabularies D. Alternatively, the method may define a map to

translate between the two sets of vocabularies. The following distance function measures

the distance between an attack event and an attack step.

Definition 3. (distance function): Let dist(e.s) be a distance function that measures the

distance between an attack event e and an attack step s.

The attack event e and the attack step s are represented as two sets of words. The distance

function, which will be further instantiated in ‘Documents similarity function”, calculates

the distance between two sets of words.

The research problem is to identify the topmost similar security events for each attack

step in the attack patterns defined in CAPEC. The similarity is defined as the inverse of the

distance function, sim(e.s) = 1/dist(e.s). In short, if two sets of words have more words

in common, the smaller the distance. If the sets do not share words, the distance is the

maximum. Definition 4 provides a formal description of the research problem.

Definition 4. (attack patterns and security events matching problem): Given a collection

of security events E and a set of attack patterns P, the research problem is to identify the

top-K similar security events


ê1,...,êK


⊆ E for each attack step s of each attack pattern

p ∈ P, such that for ∀êx ∈


ê1,...,êK

∀ey ∉


ê1,...,êK


, dist(êx,p.s) 6 dist(ey,p.s), where K

is a user-defined positive integer threshold.

An attack step is an abstract description in CAPEC. The top-K events


ê1,...,êK


provide a more concrete description of the security information in the context of a security

event. By observing the top-K security events of each attack step in a given attack pattern, a
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Figure 2 Pipeline diagram illustrating the overall process of the proposed data mining system.

security analyst can identify and describe the evolution of an attack through the evidence of

collected events.

PROPOSED SOLUTION
Figure 2 depicts an overview of the proposed solution, followed by a detailed description of

each component.

As shown in Fig. 2, through an off-line process the set that includes all the description

d ∈ E goes through pre-processing steps that sanitize sensitive data before it is stemmed.

The stemming process is achieved by using optionally the Porter stemming algorithm

(Porter, 1980), the Lancaster stemming algorithm (Paice, 1990), or the Regex-driven

algorithm (Yu et al., 2015), as described in detail later on. From the stemmed data, specific

lists of stop words are filtered out so it can go through the tokenization process.

Once tokenized, from the description field a vector v is extracted that maps the

content of d in a dictionary D. To enforce the mapping and give more relevance to

specific security-related expressions, the maximal frequent sequences are also extracted,

in accordance with Ahonen-Myka (1999), and considered as a single term of the dictionary.

As representation of the vector v, the framework allows the user to choose among a binary,

TF, or TFIDF representation.

Each of these can be set up in the configurable framework. As seen from Fig. 2, each sj

characterizing p = {s1,...,su ∈ P goes through the same process, which transforms sj in a

specified vector w. Once the vectors are built it is necessary to set up the distance function

(e,s) , which can be either the Asymmetric Distance (Wikipedia Contributors) or the Cosine

Similarity function (Salton & McGil, 1986).

Both functions interpret valuable alternatives to represent the dist(v,w) that is going

to be used in the ‘Document Mapping Step’ to find the top-K similar security events that

satisfy the problem statement demarcated in Definition 4. The algorithm that has been

chosen to achieve this result is the k-nearest-neighbour classification (Cover & Hart, 1967).
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Preprocessing
The following preprocessing procedures are applied on the document d ⊆ D.

General sanitizing
In each document, the terms, containing symbols or number, are removed. This step, for

example, removes terms that represent byte signatures, such as ‘50 4B 03 04’, or binary flag,

such as 0x0014.

Stemming
In each document, words that have morphological forms are normalized to their canonical

form. Three algorithms were analyzed and can be set up in the code:

• The Porter stemming algorithm, which removes the commoner morphological and

inflexional endings from words in English for this purpose (Porter, 1980).

• The Lancaster stemming algorithm (Paice, 1990), an aggressive stemming algorithm that

reduces English words to their roots. For example, the word ‘maximal’ becomes ‘maxim’,

and the word ‘cement’ becomes ‘cem’.

• A Regex-driven stemming algorithm (Yu et al., 2015) that uses regular expressions to

identify morphological affixes. Any substrings that match the regular expressions will be

removed.

Stopwords removal
Common English words, such as “a” and “the”, are removed. We compiled an additional

static list of stopwords that are common in the security contexts, e.g., “security”, “attacker”,

to better index the documents.

Duplicates stripper
Identical documents are removed. This can happen because different revisions of the same

event might exist in the system.

Tokenization
Given a sequence of terms in a document, the tokenization process separates the terms

into tokens by using white spaces and punctuation marks as separators. This operation

transforms the sequence of terms d in vector of terms d⃗.

Mining maximal frequent sequences
In the documents, it is possible to find interesting sequences, e.g., ‘denial servic’, ‘stack

overflow attempt’, login attempt’, ‘download attempt’, which represent well the threats

described in the event. In order to give more weight to these terms in the indexing

phase, a maximal frequent sequence mining algorithm has been implemented. The

algorithm chosen for this purpose has been coded following the Apriori-like method

described in Ahonen-Myka (1999), and the set of sequences MFS = {q1,...,q|MFS| has

been determined. In the implementation, we employed an Apriori-like method. However,

the main contribution of this paper is to propose a methodology to tackle the problem

described in the paper. The one may replace specific algorithms, e.g., the maximal frequent
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sequence mining method, by other more efficient algorithms based on their preferences

and needs. The result will be the same.

Document representation
After the preprocessing, the set of distinct and ordered terms in a given document set is

denoted by Dict = {w1,...,wNd . Next, all documents are indexed by their terms. Three

representations have been implemented and they are described in the next sections.

Binary representation
For each vector d⃗, we build a binary vector of |Dict| elements denominated b⃗ =

[v1,...,v|Dict|] where

vj =


1 if wj ∈ d

0 otherwise

TF representation
For each vector d⃗, we build a numerical vector of |Dict| elements denominated

t⃗ = [v1,...,v|Dict|] (1)

such as

vj = count(wj,d)

where count(x,y) is a function that counts the occurrences of the term x in the set y. A dual

representation related to TF is called Inverse Document Frequency and is calculated as

follows:

vj = count(wj,d)/|Dict|.

Generally this representation is preferred when it is important to diminish the weight of

terms that occur very frequently in the document set and increases the weight of terms that

occur rarely (Luhn, 1960).

TF-IDF representation
For each vector d⃗, we build a numerical vector of |Dict| elements denominated

g⃗ = [v1,...,v|Dict|] (2)

such as

vJ =
count(wj,d)

|Dict|
· log


|D|

count(wj,D)


where count(wj,D) counts the number of elements of D that contain the term wj. This

representation, proposed in Spärck Jones (1972), gives a higher weight to a high term

frequency (in the given document) and a lower weight to document frequency of the term

Scarabeo et al. (2015), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.25 11/21

https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.25


in the whole collection of documents; the weights hence tend to filter out common terms

(Wikipedia Contributors).

The representation chosen for the first experimental results is the binary representation,

but all of them have been coded and can be set up by the user.

After implementing such models, it was noticed that it was necessary to enforce the

representations of the documents by also taking into consideration the terms that often

come in sequences. Thus, in order to give more weight to those cases, the representation,

aforementioned, has been improved by counting the maximal frequent sequences as

additional single terms of the dictionary. By doing so, the vector b⃗ = [v1,...,v|Dict|] will

have extra |MFS| number of elements, resulting in:

b⃗∗
=


v1,...,v|Dict|,v|Dict|+1,...,v|Dict|+|MFS|


(3)

and consequently, if binary representation is used,

vj =

1 if


j ≤ |Dict| and wj ∈ d

j > |Dict| and qj−|Dict| ∈ d

0 otherwise

where MFS = {q1,...,q|MFS|} represents the ordered set of maximal frequent sequences.

TF-IDF representation
For each vector d⃗, we build a numerical vector of |Dict| elements denominated g⃗ =

[v1,...,v|Dict|] (2) and b⃗∗
=


v1,...,v|Dict|,v|Dict|+1,...,v|Dict|+|MFS|


(3).

Documents similarity function
Having determined the way to represent terms and documents, we utilized the asymmetric

distance and cosine similarity measure to measure the similarity between the vectors.

Asymmetric distance
The simultaneous absence of many terms in the vectors suggests the most relevant results

to be the discovery of having something in common, rather than sharing the lack of specific

terms: the agreement of two 1’s (a present–present match or a positive match) is more

significant than the agreement of two 0’s (an absent–absent match or a negative match).

The asymmetric distance has been calculated in according to Wikipedia Contributors and

its value spans between 0 and 1.

Cosine similarity measure
The present distance has been preferred to other known distances because the cosine

similarity measure abstracts the length of the documents and focuses on the correlation

between their vectors. Since all axis coordinates are positive, the cosine similarity value

between any two term vectors is always between zero and 1:

0 ≤ ϑ(g⃗i,g⃗j) ≤ π/2 → cosϑ ∈ [0,1]

where ϑ is the angle between g⃗i and g⃗j (Salton & McGil, 1986).
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Since the binary representation was chosen for the experimental results, as a conse-

quence the asymmetric distance was selected. However, both have been coded and can be

set up by the user, and, in case of a different representation, the cosine similarity distance is

automatically selected.

Semantic relatedness
After choosing the representation model and the documents similarity function, we

employed a machine learning algorithm, K-nearest-neighbour (Cover & Hart, 1967), to

determine the closest events of a specific attack step. The algorithm is usually used for

determining the class of a specific unclassified element by evaluating the classes of the

nearest elements. In our case, this is not necessary, and the method is just used to pick the

top-K related events {ê1,...,êK} of a specific attack step si. However, in such a system it can

be verified that some attack steps do not share enough terms with any of the events being

captured in the sensor. This can happen if there is no tool in the sensor that can trigger an

event that describes an action defined in a specific attack field. The result of that would be

in classifying as neighbours some events that are the closest compared to others, but in fact

very far (dist(e.s) ≈ 1). For this reason, a maximal tolerated distance is fixed, and all the

neighbours above this threshold are discarded.

DISCUSSION
As mentioned above, the proposed methodology automatically maps security-related

events to pre-defined attack patterns. This means that security analysts have a much

better understanding of the events being collected from a specific network because of their

classification and the possibility to directly relate a raw event to a sequence of attack steps.

The use of CAPEC is useful to help analysts in examining data and generating responses

without obligating them to remember too many notions and saving time they would spend

on the Internet to look for confirmation and recommendations.

Moreover, through this methodology the analyst can clearly see the attack steps that are

not mapped to any collected events and the mapped events that were not received in the

sensor. The first case can suggest to the analysts which specific technology the company

is missing in order to detect that specific attack steps; the second case instead suggests the

attack steps that were missed by the tool installed in the sensor.

Given the vastness and the diversity of the collected events, we can argue that the

mapping process might take too much time. This is actually not relevant since the mapping

process can be executed off-line because the instances of the whole set of events are

available. In real-time only the occurrences of the mapped events are checked and shown to

security analysts in conjunction with the attack pattern associated with them. The system

does not require specific maintenance either because the discovery of new attack patterns

and the creation of new collectable events have a slow evolution, which could be dealt with

by running the algorithm once a day on the new data only.

By relating events to the closest attack step, it is possible that a specific event is not

mapped to any attack step. In that case we suggest the following:
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• Evaluate the criticality of the event, and its worthiness to be collected;

• Evaluate the usage of synonyms to describe the content of the event; and

• Evaluate the possibility of creating a new attack pattern in which the event could be

inserted.

The last suggestion reveals that the presented methodology does not need to be applied

on CAPEC documents only, but it can be extended to any kind of document that aims to

describe a Security related topic.

EXPERIMENTAL EVALUATION
The objective of the experiments is to illustrate the precision of the algorithm, the

capability of generating new correlation patterns in an automatic fashion, and the

diversification of the attacks being reconstructed through alerts. All experiments were

conducted on a PC running Windows 7 on an Intel(R) Core (TM) i3 CPU with 4 GB RAM.

Data description
For the following experiments, the events are represented by Snort Alerts; in particular, we

have selected the top 1,000 most frequently analyzed alert instances in a MSS, extracted

from Sourcefire (2015). To represent attack patterns, we have used the CAPEC List Version

2.6 (http://capec.mitre.org/data/#downloads), including 450 different attack patterns with

2,917 fields (n) that describe the attack steps and related information.

Following the framework depicted in Fig. 2 we employed the regex-driven algorithm as

the stemming algorithm, binary vectors as data representations, and asymmetric distance

as the similarity function.

Precision
The system takes two user-specified thresholds k and distMAX as inputs, where k is the

number of neighbours to be defined in the K-NN algorithm, and distMAX is the maximum

tolerated distance between events and attack steps.

Figure 3 depicts the total number of neighbours being found (a.k.a. close relationships

between Snort Alerts and attack steps) by the K-NN algorithm with respect to distMAX,

having fixed k = 10. We set distMAX to a range of values between 0.55 and 0.8. We observe

that the number of neighbours spans from 3 to 1,465 when the Maximum Tolerated

Distance (distMAX) increases from 0.55 to 0.80. However, comparing that assignment to

the ground truth, the precision of the algorithm decreases with the increasing of distMAX.

In fact, Fig. 4 shows that the percentage of error (e) spans from 0% to 27%. We can argue

that the best result consists of having a high number of neighbours with very limited

number of errors, in order to not mislead the analysts by associating security-related

events to wrong attack steps. Having analyzed Fig. 4, we can assume that the best results

are observed when distMAX = 0.70. The local minimum of the Error function, for

distMAX = 0.70, is determined by the fact that, within the range distMAX ∈ [0.55–0.70],

the number of wrong relationships is caused by few misleading words and it is much lower

than the number of total relationships established by the algorithm. By increasing the
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Figure 3 Number of Neighbours (N) to Maximum Tolerated Distance (distMAX), and difference be-
tween correct and wrong relationships.

Figure 4 Percentage of wrong relationships to Maximum Tolerated Distance (distMAX).

distMAX, the number of total neighbours increases sensibly, although limited on the upper

part by n ∗ k, but the error function assumes values that outdo the undesirable threshold

of 25%; so we can assume that distMAX = 0.70 represents the best setting in order to have

good precision and a high number of neighbours.
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Figure 5 Number of different alerts being related to single attack patterns, represented by the CAPEC ID.

Diversification of neighbours
Having fixed distMAX = 0.70, which is the value that assures the best results according to

Fig. 4, Fig. 5 depicts the total number of events being related to every single attack pattern,

represented by a CAPEC ID. The result suggests that the proposed method dynamically

defines multiple correlation patterns, each containing a certain number of alerts. As shown

in Fig. 5, 53 attack patterns have been related to a number of different Snort alerts, which

span from 1 to 27 attributions, based on the similarity between attack step fields and the

events. Figure 6 depicts the distribution of the attack patterns according to the number of

events related to them. We can argue that the relationship between an attack pattern and

a single Snort alert (first bar of the graph shows in Fig. 6, in correspondence of N = 1) is

not relevant because security analysts are only interested in relating events being triggered

by the sensors. However, those relationships help analysts in retrieving useful information

about the totality of the attack, e.g., missing steps or related information about the attack as

prerequisite, mitigations, etc.
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Figure 6 Attack pattern occurrences to events being related to the attack.

Figure 7 Computational Time calculated by varying the number of Snort Alerts Messages to be
mapped to the whole set of Capec Fields.

Computational time
The computational time was analyzed by taking in consideration, incrementally, the whole

set of distinct messages included in Snort Alerts (Sourcefire, 2015). For the analysis of the

computational time, the four different phases of the framework have been clocked by

varying the number of distinct Snort alert messages considered.

As shown in Fig. 7, the time necessary to map the whole set of distinct messages,

extractable from Snort alerts, to the whole set of CAPEC fields, is quantifiable in about

two hours and twenty minutes. By considering that the system needs to be updated when

the CAPEC structure is modified (every three months, The MITRE Corporation, 2015) or
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Figure 8 Computational Time calculated by varying the number of Snort Alerts Messages to be
mapped to the whole set of Capec Fields.

when new Snort rules are published (every couple of day), the computational time can be

considered very low, because it is below that margin. It is important to note that the whole

process is executed off-line: when an analyst is called to interpret a specific alert in-line, the

system will map it to pre-defined attack patterns by using previously stored results. Thus,

the analyst can avoid manually mapping the alerts and efficiently obtaining the results.

Figure 8 shows that the extraction of the top-K alerts, described in ‘Semantic relatedness’,

it is the one which mostly contributes to the total computational time, and it must be

improved in a new re-factoring of the system.

CONCLUSIONS
In this paper, we have proposed and developed a data mining frameworks that employs

text mining techniques to dynamically relate the information between the security-related

events and CAPEC attack patterns, both described in unstructured text. Moreover, we

introduced an automatic system to gather events that can significantly reduce the analysis

time and increase the number of correlated and analyzed events included in an attack

report prepared by security analysts for the clients, improving the quality and accuracy of

the reports. For future work, it would be interesting to investigate the impact of including

other standards in addition to CAPEC, e.g., Extensible Configuration Checklist Description

Format (XCCDF) (National Institute of Standards and Technology). Also, it would be

interesting to study the clusters of words that characterize the events that are not currently

classified in order to understand the missing attack patterns or attack steps in CAPEC.
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