SUPPLEMENTARY MATERIAL

Fig. S1. The expression of Notch targets is suppressed in endocycling follicle cells where E(y)1 function is compromised. (A,A') Induction of an independent e(y)1-RNAi transgene suppressed *hnt* expression in the e(y)1-RNAi follicle cells of a stage-7 egg chamber, marked by the expression of RFP (red, A). (B,B') Expression of *brE-lacZ* was abolished in mid-stage follicle cells with e(y)1 depleted [expressing GFP (red, B)].

Fig. S2. The M/E switch is disrupted in the e(y)I-RNAi follicle cells. (A,A') The nuclei of e(y)Idepeleted follicle cells (expressing RFP) in a stage-8 egg chamber are much smaller and more crowded than those of their neighboring wild-type cells (lacking RFP). (B,B') In an egg chamber at stage 8, PH3 was detected in the e(y)I-knockdown follicle cells (expressing RFP), but not in wild-type cells (lacking RFP). (C,C') After stage 7, CycB, which is normally suppressed in wild-type endocycling follicle cells (lacking RFP), was randomly expressed in the e(y)I-RNAi follicle cell clones (expressing RFP). Cell nuclei were co-stained with DAPI (green in A' and blue in B,C).

Fig. S3. Poor viability of e(y)I mutant cells in the wing disc and Lateral inhibition defects in e(y)Idepeleted tissues. (A-A'') Wild-type *FRT19A* mock clones in a wing disc. (B-B'') The sizes of e(y)Imutant clones generated in a *Minute*^{+/-} [$M(1)^{osp/+}$] background, marked by the absence of GFP, are extremely small, compared with those of control clones in (A-A''). Mosaic clones were induced by heatshocking early second instar larvae at 37°C for 1 hour, and wing discs were dissected after 72 hours at 25°C. Cell nuclei were labeled with DAPI in red (A'', B''). (C) An adult scutellum bearing *FRT19A* mock clones had four well-organized bristles (white arrows). (D) A fly with e(y)I mutant clones carried an extra bristle in scutellum (yellow arrow, in 8 out of 50 adult flies observed). (E) Portion of an adult wing with *FRT19A* mock clones. (F) Extra vein-like structures (black arrows) observed in an adult wing carrying e(y)I mutant clones. (G) Portion of a *C96-Gal4* control wing. (H) Dense wing margin bristles (black arrows) in *C96-Gal4>e(y)I*-RNAi flies .

Fig. S4. Notch gain-of-function phenotypes in Su(H)-VP16-expressing tissues. (A-B') *en-Gal4*, UAS-*RFP/+; tub-Gal80ts/+* control discs showed normal expression patterns of Notch targets, Cut (A') and Wg (B'). (C-D') Ectopic expression of Su(H)-VP16 by *en-Gal4* caused wing disc overgrowth and Notch signaling activation, as monitored by expression of Cut (C') and Wg (D') in the posterior compartment of wing discs. (E-H) Although the *C96-Gal4*>*Su(H)*-VP16 adult wing did not show obvious overgrowth (F), when compared with the *C96-Gal4* control (E), it displayed partial loss of wing margin bristles (H, red arrows), a typical Notch gain-of-function phenotype.

Fig. S2

FIG. 53

Journal of Cell Science | Supplementary Material

en-G4, UAS-RFP/+; tub-G80ts/+

en-G4, UAS-RFP/UAS-Su(H)-VP16; tub-G80ts/+

Figure name	Genotype
Fig. 1A-B'	$hsFLP/+;; act>CD2>Gal4, UAS-RFP/UAS-e(y)1^{RNAi-BL32345}$ (> = FRT in this and all following figures)
Fig. 1C,C'	$hsFLP/+;E(spl)m\beta-CD2/+; act>y^+>Gal4, UAS-lacZ/UAS-e(y)I^{RNAi-BL32345}$
Fig. 1D,D'	$hsFLP/+; act>y^+>Gal4, UAS-GFP/+; E(spl)m7-lacZ/UAS-e(y)1^{RNAi-BL32345}$
Fig. 2B-C''	ubi-mRFPnls, w, $hsFLP^{122}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A
Fig. 2D	w, ubi -GFP, $M(1)^{osp}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A;; +/TM6B
Fig. 2E	w, ubi - GFP , $M(1)^{osp}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A;; $Dp(1;3)DC335/+$
Fig. 3A	w ¹¹¹⁸
Fig. 3B	$C96-Gal4/UAS-e(y)1^{RNAi-BL32345}$
Fig. 3C	$N^{264-39}/+$
Fig. 3D	$N^{264-39}/+;;$ C96-Gal4/UAS-e(y)1 ^{RNAi-BL32345}
Fig. 3E	$N^{264-39}/P\{GT1\}e(y)I^{BG00948}$
Fig. 3F	$N^{264-39}/e(y)I^{190}$
Fig. 3G	N^{I} /+
Fig. 3H	$N^{1}/e(y)I^{190}$
Fig. 3I,J	en-Gal4, UAS-GFP/+; tub-Gal80ts/+
Fig. 3K,L	en-Gal4, UAS-GFP/+; tub-Gal80ts/UAS-e(y)1 ^{RNAi-BL32345}
Fig. 4A,A'	$hsFLP/+;; act>CD2>Gal4, UAS-RFP/UAS-e(y)1^{RNAi-BL32345}$
Fig. 4B,B'	$hsFLP/+; UAS-N^{EXT}/+; act>CD2>Gal4, UAS-RFP/UAS-e(y)1^{RNAi-BL32345}$
Fig. 4C,C'	$hsFLP/+; UAS-N^{ICD}/+; act>CD2>Gal4, UAS-RFP/UAS-e(y)1^{RNAi-BL32345}$
Fig. 4D,D'	hsFLP/+; UAS-Su(H)-VP16/+; act>CD2>Gal4, UAS-RFP/UAS-e(y)1 ^{RNAi-BL32345}
Fig. 4E	C96-Gal4/+
Fig. 4F	$C96-Gal4/UAS-e(y)I^{RNAi-BL32345}$
Fig. 4G	$UAS-N^{ICD}/+$; C96-Gal4/UAS-e(y) $I^{RNAi-BL32345}$
Fig. 4H	$UAS-Su(H)-VP16/+; C96-Gal4/UAS-e(y)I^{RNAi-BL32345}$
Fig. 6A	en-Gal4, UAS-GFP/+; tub-Gal80ts/UAS-TAF12 ^{RNAi-BL34852}
Fig. 6B	en-Gal4, UAS-GFP/+; tub-Gal80ts/UAS-TAF1 ^{RNAi-BL32421}
Fig. 6C	en-Gal4, UAS-GFP/UAS-e(y)2 ^{RNAi-BL42524} ; tub-Gal80ts/+
Fig. 6D	C96-Gal4/UAS-TAF12 ^{RNAi-BL34852}
Fig. 6E	C96-Gal4/UAS- UAS-TAF1 ^{RNAi-BL32421}
Fig. 6F	$UAS-e(y)2^{RNAi-BL42524}/+; C96-Gal4/+$
Fig. S1A,A'	hsFLP/+; UAS-e(y)1 ^{NIG-6474R-1} /+; act>CD2>Gal4, UAS-RFP/UAS-dcr2

Table S1: Genotypes related to figures

Fig. S1B,B'	$hsFLP/+; act>y^+>Gal4, UAS-GFP/+; br-lacZ/UAS-e(y)I^{RNAi-BL32345}$
Fig. S2A-C'	$hsFLP/+;; act>CD2>Gal4, UAS-RFP/UAS-e(y)1^{RNAi-BL32345}$
Fig. S3A-A''	w, ubi-GFP,M(1) ^{osp} FRT19A/w, hsFLP ¹²² FRT19A
Fig. S3 B-B''	w, ubi -GFP, $M(1)^{osp}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A
Fig. S3C	ubi-mRFPnls, w, hsFLP ¹²² FRT19A/w, hsFLP ¹²² FRT19A
Fig. S3D	$ubi-mRFPnls$, w, $hsFLP^{122}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A
Fig. S3E	w, ubi-GFP,M(1) ^{osp} FRT19A/w, hsFLP ¹²² FRT19A
Fig. S3F	w, ubi -GFP, $M(1)^{osp}$ FRT19A/w, $hsFLP^{122} e(y)1^{190}$ FRT19A
Fig. S3G	C96-Gal4/+
Fig. S3H	$C96-Gal4/UAS-e(y)I^{RNAI-BL32345}$
Fig. S4A-B'	en-Gal4, UAS-RFP/+; tub-Gal80ts/+
Fig. S4C-D'	en-Gal4, UAS-RFP/UAS-Su(H)-VP16; tub-Gal80ts/+
Fig. S4E,G	C96-Gal4/+
Fig. S4F,H	UAS-Su(H)-VP16/+; C96-Gal4/+