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Abstract

A key challenge in smooth games is that there
is no general guarantee for gradient meth-
ods to converge to an equilibrium. Recently,
Chavdarova et al. (2021) reported a promising
empirical observation that Lookahead (Zhang
et al., 2019) significantly improves GAN train-
ing. While promising, few theoretical guaran-
tees has been studied for Lookahead in smooth
games. In this work, we establish the first con-
vergence guarantees of Lookahead for smooth
games. We present a spectral analysis and pro-
vide a geometric explanation of how and when
it actually improves the convergence around
a stationary point. Based on the analysis, we
derive sufficient conditions for Lookahead to
stabilize or accelerate the local convergence in
smooth games. Our study reveals that Looka-
head provides a general mechanism for stabi-
lization and acceleration in smooth games.

1 INTRODUCTION

In the last few years, a plethora of learning problems
have been formulated as a game between multiple play-
ers (Goodfellow et al., 2014; Brock et al., 2019; Karras
et al., 2019; Goodfellow et al., 2015; Silver et al., 2018;
Vinyals et al., 2019). However, optimization of inter-
dependent objectives is a non-trivial problem both in
terms of complexity (Daskalakis et al., 2006, 2020) and
convergence (Mertikopoulos et al., 2018). In particular,
gradient-based methods often fail to converge and os-
cillate around an equilibrium even in a simple setting
(Mescheder et al., 2018; Mertikopoulos et al., 2018). To
tackle such non-convergence, a great effort has been
devoted to developing efficient methods with provable
convergence guarantees (Heusel et al., 2017; Mescheder
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et al., 2017, 2018; Balduzzi et al., 2018; Yadav et al.,
2018; Mertikopoulos et al., 2019; Daskalakis et al., 2018;
Letcher et al., 2019; Gidel et al., 2019b,a; Chavdarova
et al., 2019; Adolphs et al., 2019; Mazumdar et al., 2019;
Schäfer and Anandkumar, 2019; Peng et al., 2020; Lin
et al., 2020; Mishchenko et al., 2020; Jelassi et al., 2020;
Antonakopoulos et al., 2021).

Recently, Chavdarova et al. (2021) reported a promising
empirical observation that Lookahead (Zhang et al.,
2019) greatly improves the dynamics of bilinear games
and GANs. In particular, they empirically report that
Lookahead converges in bilinear games where gradient
descent fails to, and GANs trained by Lookahead can
outperform BigGANs (Brock et al., 2019) even with
1/30 parameters and small computation overhead.

Despite its great promise, the study of Chavdarova et al.
(2021) was limited to empirical observations; hence,
Lookahead optimizer still lacks theoretical investiga-
tion in smooth games. Specifically, crucial questions,
such as convergence guarantees and effects of its hy-
perparameters on convergence, remain unexplained. In
this work, we answer such questions for the first time.
Our contributions are summarized as follows:

• We present a spectral analysis of Lookahead, and
provide a geometric explanation of how and when
it actually improves the local convergence. We
interpret Lookahead as a geometric transformation
of the eigenvalues, which improves the convergence
around a stationary point.

• Based on the analysis, we derive sufficient condi-
tions for Lookahead to stabilize or accelerate the
local convergence in general smooth games, and
global convergence in bilinear games. Our study
reveals that Lookahead provides a general mecha-
nism for stabilization and acceleration in smooth
games. We summarize our findings in Table 1.

Our notation follows Goodfellow et al. (2016) and is
summarized in Table A.1 of Appendix A. We defer the
proofs of all theorems in this work to Appendix C and
the results of additional experiments to Appendix E.
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Table 1: Summarized new results of this work. The convergence rate ρ is defined by the spectral radius each
method. We define stabilization as reduction of a radius from ρ≥ 1 to ρ< 1, and acceleration as further reduction
from ρ< 1. Yellow checkmarks require extra assumptions on eigenvalues. See Section 2.1 for each method.

Method Game Converges Stabilization / Acceleration Conditions
LA-A, A unstable General 3 Local stabilization ρLA-A < 1 Theorem 4
LA-A, A stable General 3 Local acceleration ρLA-A < ρA Theorem 5
LA-GDAlt Bilinear 3 Stabilization ρLA-GDAlt < 1 Corollary 6
LA-GDSim Bilinear 3 Stabilization ρLA-GDSim < 1 Corollary 7
LA-EGSim Bilinear 3 Acceleration ρLA-EGSim < ρEGSim Corollary 8
LA-PPSim Bilinear 3 Acceleration ρLA-PPSim < ρPPSim Corollary C

2 PRELIMINARIES

2.1 Smooth Game Optimization

Game (Neumann and Morgenstern, 1944) is a model
of interactions between multiple players; following Bal-
duzzi et al. (2018), we define smooth games as follows.
Definition 1 (Smooth game). A set of smooth scalar
functions {fi}ni=1 with fi : Rd → R such that d =∑n
i=1 di is called a smooth game between players i =

1, . . . , n with strategy spaces {Rdi}ni=1.

Intuitively, each fi represents the cost of player i’s
strategy xi ∈ Rdi with respect to the other players’
strategies x−i. The holy grail of game optimization is
finding a Nash equilibrium (Nash, 1951), which is a
strategy profile where no player has unilateral incentive
to change its own strategy.
Definition 2 (Nash equilibrium). For a smooth game
{fi}ni=1 with strategy spaces {Rdi}ni=1 such that d =∑n
i=1 di, x∗ ∈ Rd is a Nash equilibrium if fi(x∗) ≤

fi(xi,x∗−i),∀xi ∈ Rdi for each i.

A strategy profile that merely exhibits zero gradient
with respect to each player is called a stationary point of
the game. A straightforward computational approach
to find an equilibrium is to design a strategy update
rule for each player. Such update rules define iterative
plays between the players, and is often referred to as
a dynamics of the game. However, it is known that
gradient-based dynamics often fail to converge and
oscillate around an equilibrium (Mertikopoulos et al.,
2018; Gidel et al., 2019b). Such non-convergence is
mainly due to (non-cooperative) interactions between
multiple players, and is considered as a key challenge
in smooth game optimization (Mescheder et al., 2017,
2018; Balduzzi et al., 2018; Schäfer and Anandkumar,
2019; Gidel et al., 2019b,a; Berard et al., 2020).

Below, we introduce a few first-order game dynam-
ics. For notational simplicity, we use the derivative
∇xf(·) to denote the concatenated partial derivatives
(∇x1f1(·), . . . ,∇xnfn(·)) of a smooth game {fi}ni=1,
where each ∇xi

fi(·) denotes a derivative of a player i’s

cost function with respect to its own strategy.

Gradient Descent (GD) minimizes the cost function
of each player with gradient descent. Its simultaneous
dynamics FGDSim with a learning rate η > 0 is

x(t+1) = FGDSim(x(t)) def= x(t) − η∇xf(x(t)). (1)

Meanwhile, its alternating variant FGDAlt follows

FGDAlt(x(t)) def= F1 ◦ . . . ◦ Fn(x(t)), where (2)
Fi(x) def= (. . . ,xi−1,xi − η∇xi

fi(x),xi+1, . . .). (3)

Proximal Point (PP) (Martinet, 1970) method com-
putes an update by solving a proximal subproblem at
each iteration. Its simultaneous dynamics FPPSim with
a learning rate η > 0 is

x(t+1) = FPPSim(x(t)) def= x(t) − η∇xf(x(t+1)). (4)

Extragradient (EG) (Korpelevich, 1976) computes
an update with an extrapolated gradient. Its simulta-
neous dynamics FEGSim with a learning rate η > 0 is

x(t+1) = FEGSim(x(t)) def= x(t) − η∇xf(x̂(t)), where
(5)

x̂(t) def= x(t) − η∇xf(x(t)). (6)

Lookahead (LA) (Zhang et al., 2019) is an opti-
mizer that wraps around a base optimizer and takes a
backward step for each k forward steps. Given a base
dynamics FA induced by an optimization method A,
its Lookahead dynamics GLA-A with a period k ∈ N
and a rate α ∈ (0, 1) is

x(t+1) = GLA-A(x(t)) def= (1− α)x(t) + αF kA(x(t)). (7)

2.2 Related Work

The convergence analysis of smooth games dates several
decades back and has been established in the saddle-
point (Korpelevich, 1976; Benzi et al., 2005) and varia-
tional inequality problems (Rockafellar, 1976; Tseng,
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1995), where each can be reformulated as n-player
games under certain assumptions (Scutari et al., 2010).
Specifically, Rockafellar (1976) proved the linear conver-
gence of PP in bilinear and strongly monotone games,
and Tseng (1995); Facchinei and Pang (2003) did the
same for EG. Similarly, Nemirovski (2004) proved the
linear convergence of EG in monotone games, and Ju-
ditsky et al. (2011) did the same in stochastic settings.

As a variety of learning problems are formulated as a
game between multiple players (Goodfellow et al., 2014;
Madry et al., 2018; Vinyals et al., 2019), game optimiza-
tion has regained considerable attentions. For instance,
(Daskalakis et al., 2018) rediscovered optimistic gradi-
ent (OG) Popov (1980) for GAN training, and Gidel
et al. (2019a) proved its linear convergence for strongly
monotone games. Chavdarova et al. (2019); Jelassi
et al. (2020); Mishchenko et al. (2020); Antonakopou-
los et al. (2021) proposed variants of EG, and Mokhtari
et al. (2020) established an unifying theory for PP, EG
and OG in strongly-convex strongly-concave games.

Meanwhile, recent studies have shown that a careful
manipulation of a game dynamics can improve its con-
vergence. For example, Gidel et al. (2019b) proved that
adding a negative momentum can make non-convergent
GDAlt to converge in bilinear games, and Azizian et al.
(2020) showed that a momentum can accelerate EG in
smooth games. Yoon and Ryu (2021) proposed an an-
choring method for EG in convex-concave games, and
established an acceleration in gradient norms. Regular-
izers that induce better convergence guarantees have
been extensively studied as well (Mescheder et al., 2017;
Balduzzi et al., 2018; Schäfer and Anandkumar, 2019;
Letcher et al., 2019; Adolphs et al., 2019; Mazumdar
et al., 2019; Wang et al., 2020; Hemmat et al., 2020).

Lastly, the recent study of Chavdarova et al. (2021)
has shown that augmenting a game dynamics with
Lookahead (Zhang et al., 2019), i.e., taking a backward
step for each k forward steps, significantly improves
GAN training. In this work, we establish the first local
convergence guarantees of Lookahead in smooth games,
and show that it provides a general mechanism for local
stabilization and acceleration in smooth games.

3 THE SPECTRAL CONTRACTION

In this section, we interpret Lookahead as a geometric
transformation of the eigenvalues which improves the
convergence of smooth games by reducing the spectral
radius of a game dynamics. We demonstrate such spec-
tral contraction effect by analyzing a simple exemplar
bilinear game that has a unique Nash equilibrium (0, 0):

min
x1∈R

max
x2∈R

x1 · x2. (8)

This game has been studied as a representative toy
example in game optimization due to its oscillating dy-
namics (Gidel et al., 2019b,a). Notably, simultaneous
gradient descent GDSim diverges from the Nash equilib-
rium of Equation 8, and even an advanced method such
as negative momentum (Gidel et al., 2019b) fails to
stabilize such an instability (Zhang and Yu, 2020). The
following result shows Lookahead can stabilize GDSim.
Example 1 (Stabilization). Lookahead dynamics
GLA-GDSim with η > 0, k ∈ N, α ∈ (0, 1) converges
to the Nash equilibrium of Equation 8 if k satisfies
<((1 + iη)k) < 1 and α is small enough.
A precise threshold for α and a similar result for GDAlt
can be found in Appendix D. For a small η > 0, there
exists k ∈ N that makes the real part of the complex
number (1+iη)k negative, i.e., <((1+iη)k) < 0. Hence,
Example 3 implies that Lookahead can stabilize GDSim.

However, such stabilization effect raises a natural ques-
tion: would there be an advantage for using Lookahead
when its base dynamics is already stable? The next
example studies Lookahead dynamics of PPSim, which
is known to be convergent in Equation 8 (Gidel et al.,
2019a), and provides an affirmative answer.
Example 2 (Acceleration). Lookahead dynamics
GLA-PPSim with η ∈ (0, 1), k ∈ N, α ∈ (0, 1) converges
to the Nash equilibrium of Equation 8. The rate of
convergence improves upon its base dynamics FPPSim

if k satisfies <((1 + iη)k) < 1 and α is large enough.
The threshold for α and a similar result for EGSim can
be found in Appendix D. Figure 1 illustrates a geomet-
ric interpretation of Lookahead. In short, Lookahead
improves the convergence by rotating and pulling the
eigenvalues of its base dynamics. Specifically, k forward
steps of each Lookahead iteration rotates the eigenval-
ues, and a backward step pulls them into a circle with
a radius smaller than their maximal modulus. This
results in a reduction of the spectral radius, which de-
termines the local convergence rate around a stationary
point (Azizian et al., 2020). The following proposition
captures such spectral contraction effect of Lookahead;
we denote the spectral radius by ρ(·), and the sets of
modulus-filtered eigenvalues by λ≥1(·) and λmax(·).
Proposition 1 (Spectral contraction). Let X ∈ Rm×m
be the Jacobian of a dynamics at a stationary point.
Denote its spectral radius by ρ0

def=ρ(X) and the radius of
its Lookahead dynamics with k∈N, α∈(0, 1) by ρk(α)def=
ρ((1 − α)I + αXk). Then, we get either stabilization
(ρk(α)<1) or acceleration (ρk(α)<ρk0) depending on
the spectral radius ρ0 of its base dynamics as follows:

• For ρ0 > 1, ρk(α) < 1 ⇐⇒ τk|≥1 < 1, α < c1,

• For ρ0 = 1, ρk(α) < 1 ⇐⇒ τk|max < 1,

• For ρ0 < 1, ρk(α) < ρk0 ⇐⇒ τk|max < ρ2k
0 , α > c2,
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(a) ρ0 > 1, stabilization. (b) ρ0 < 1, acceleration.

(c) ρ0 > 1, k not satisfied. (d) ρ0 < 1, k not satisfied.

Figure 1: Illustration of the spectral contraction
effect in Proposition 1. The dots represent the
eigenvalues of a base dynamics (black), their rotated
values (blue), and the eigenvalues of a Lookahead dy-
namics (red). We denote the spectral radius of each
base dynamics by ρ0. Top: k forward steps of each
Lookahead iteration rotate the eigenvalues λ to λk, and
a backward step pulls them into a circle with a smaller
radius. This results in a reduction of the spectral ra-
dius, which improves the stability and convergence to
a stationary point. Bottom: However, when there
exists an eigenvalue that is not rotated left enough, i.e.,
τk|≥1 ≥ 1 or τk|max ≥ ρ2k

0 , no α can reduce the radius.

where τk|≥1
def= max
λi∈λ≥1(X)

<(λki ) and τk|max
def= max
λi∈λmax(X)

<(λki )

are the right-most real parts of the rotated eigenvalues,
and c1, c2 ∈ R are some constants that depend on k.

The Jacobian of a Lookahead dynamics at a stationary
point can be written as (1− α)I + αXk. Hence, each
statement provides an exact condition for Lookahead to
reduce the spectral radius ρ0 of its base dynamics. For
an unstable base dynamics, i.e., ρ0 > 1, the first case
implies that a small α can reduce the spectral radius
ρk(α) to smaller than 1 when k rotates the eigenvalues
λ≥1(X) left enough, i.e., τk|≥1 < 1. For a stable base
dynamics, i.e., ρ0 < 1, the last case implies that a large
α can further reduce the radius ρ0 to ρk(α) if k rotates
the eigenvalues λmax(X) left enough, i.e., τk|max < ρ2k

0 .

While the theorem shows that Lookahead can reduce
the spectral radius, it does not predict the amount of
reduction that could be made for a given k and α. To
fill this gap, we derive precise bounds on the optimal
contraction for a fixed k in terms of spectral quantities.
Proposition 2 (Contraction bounds). Let X ∈ Rm×m
be the Jacobian of a dynamics at an equilibrium, and
denote its spectral radius by ρ0

def= ρ(X) and the opti-
mal radius of its Lookahead dynamics with k ∈N by

ρ∗k
def= inf
α∈(0,1)

ρk(α). Then, for τk
def= max
λi∈λ(X)

<(λki ), the

following statements hold:

• For ρ0 ≥ 1, ρ∗k
2 ≤ 1− (1−τk)2

1+ρ2k
0 −2τk

< 1 if τk < 1,

• For ρ0 < 1, ρ∗k
2 ≤ 1− (1−τk)2

1+ρ2k
0 −2τk

< ρ2k
0 if τk < ρ2k

0 ,

• A lower bound ρ∗k ≥ max
λi∈D

|λi|k holds for the eigen-

values inside the disk D def= {λi∈λ(X) : |λki−1
2 |<

1
2}.

The upper bounds are monotonically increasing with
respect to the right-most real part of the rotated eigen-
values, i.e., τk. Hence, the upper bounds show that τk is
the key quantity that determines the amount of contrac-
tion. For instance, if we could choose k such that τk < 0,
i.e., rotates all the eigenvalues to the left half-plane,
we may expect a spectral contraction ρ∗

k

ρk
0
< 1√

1+ρ2k
0
.

On the other hand, the lower bound highlights the
possible failure case of the contraction. For instance,
when there exists a large eigenvalue that resists to be
rotated and remains inside the disk

∣∣z − 1
2
∣∣ < 1

2 , e.g., a
real eigenvalue λi < 1 such that λi ≈ 1, the contraction
ends up with a restrictive lower bound ρ∗k ≥ |λi|k ≈ 1.

So far, we have seen that a proper choice of k is crucial
for spectral contraction. For example, Theorem 1 shows
the contraction takes place if and only if τk|≥1 < 1 and
τk|max < ρ

2k
0 . At this point, a natural question arises:

how do we choose such k? We answer this question
with Lemma 3, sufficient conditions for k to rotate the
eigenvalues left enough, i.e., τk|≥1< 1 and τk|max<ρ

2k
0 .

Lemma 3 (Sufficient conditions for left-rotating k).
Let X ∈Rm×m be a Jacobian that can be written as
X = I − ηJ for some J ∈ Rm×m and η > 0. Assume
that a subset of the eigenvalues S ⊆ λ(X) contains non-
reals only, and every element of S has its conjugate pair
in S. Then, for ρ0

def= ρ(X), τk
def= max

λi∈S
<(λki ), θmin

def=

min
λi∈S

|Arg(λi)|, θmax
def= max

λi∈S
|Arg(λi)|, the following

statements hold:

• When ρ0 > 1, the eigenvalues S are left-rotated
so that τk < 1 if k ∈ (β1, β2), where β1, β2 > 0
are such that β1θmin = arccos ρ−β1

0 and β2θmax =
2π − arccos ρ−β2

0 .

• When ρ0 < 1, the eigenvalues S are left-rotated
so that τk < ρ2k

0 if k ∈ (β1, β2), where β1, β2 > 0
are such that β1θmin = arccos ρβ1

0 and β2θmax =
2π − arccos ρβ2

0 .

The existence of a feasible k ∈ (β1, β2) is guaranteed for
a small enough η > 0 when the imaginary conditioning

max
λi,λj∈S

|=(λi)/=(λj)| of S is smaller than 3.
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(a) Left-rotated λ≥1(X). (b) Left-rotated λmax(X).

Figure 2: Illustration of the eigenvalues rotated
by Lemma 3. Each blue region contains a subset
S ⊆ λ(X) of the eigenvalues rotated by k ∈ (β1, β2),
i.e., {λki |λi ∈ S}, where β1, β2 > 0 are defined as in
Lemma 3. Each red region contributes to the non-
necessity. (a) The first case where the base dynamics
is unstable, i.e., ρ0 > 1 and S = λ≥1(X). The lower
bound k > β1 rotates the eigenvalues S left enough,
i.e., τk|≥1 < 1, and the upper bound k < β2 prevents S
from being over-rotated. (b) The second case where the
base dynamics is stable, i.e., ρ0 < 1 and S = λmax(X).
Similarly, the lower bound k > β1 rotates S and the
upper bound k < β2 prevents S from being over-rotated.

Note that τk is defined over a subset of the eigenvalues,
and η can be seen as a learning rate of the dynamics.
Hence, Lemma 3 can be interpreted as sufficient condi-
tions for k to left-rotate the eigenvalues S, and suggests
that such k exists for a small learning rate when the
imaginary conditioning of S is smaller than 3. For an
unstable dynamics, i.e., ρ0 > 1 and S = λ≥1(X), the
first case gives a condition for k to rotate the eigenval-
ues so that τk|≥1 < 1. On the other hand, for a stable
dynamics, i.e., ρ0 < 1 and S = λmax(X), the second
case gives a condition for k to rotate the eigenvalues so
that τk|max <ρ

2k
0 . For such k’s, Theorem 1 promises a

spectral contraction. This combination of Proposition 1
and Lemma 3 establishes stabilization and acceleration
guarantees of Lookahead in smooth games. Below, we
denote the Jacobian of a dynamics F by ∇xF (·), and
the largest and smallest absolute principal values of a
set of complex numbers by θmax(·) and θmin(·).
Theorem 4 (Local stabilization). Let x∗∈Rn be a sta-
tionary point of a dynamics F with spectral radius ρ0≥
1. Assume each element of S=λ≥1(∇xF (x∗)) is non-
real. Then, its Lookahead dynamics with k ∈ N, α ∈
(0, 1) locally converges to x∗ if k ∈ (β1, β2) and α is
small enough, where β1, β2 > 0 satisfy β1θmin(S) =
arccos ρ−β1

0 , β2θmax(S) = 2π − arccos ρ−β2
0 .

Theorem 4 implies that, under certain assumptions on
the eigenvalues, carefully chosen Lookahead hyperapa-
rameters can stabilize unstable equilibria. Specifically,
by Lemma 3, the existence of a feasible k ∈ (β1, β2)

is guaranteed when the eigenvalues S = λ≥1(X) has
imaginary conditioning less than 3. Therefore, any
unstable points with such eigenvalues can be stabilized
by Lookahead. In Appendix E, we verify this can be
realistic even for a practical non-linear game like GANs.

The next theorem shows that Lookahead can further
accelerate the local convergence of its base dynamics.
Theorem 5 (Local acceleration). Let x∗ ∈ Rn be a
stationary point of a dynamics F with spectral radius
ρ0 < 1. Assume each element of S=λmax(∇xF (x∗)) is
non-real. Then, the local convergence rate to x∗ in its
Lookahead dynamics with k ∈ N, α ∈ (0, 1) improves
upon F if k ∈ (β1, β2) and α is large enough, where
β1, β2 > 0 satisfy β1θmin(S) = arccos ρβ1

0 , β2θmax(S) =
2π − arccos ρβ2

0 .

The precise threshold for α can be found in Appendix
D. In contrast to Theorem 4, the acceleration requires
a large α. Such a difference suggests that there exists
a trade-off between the stabilization and acceleration
that can be adjusted by α. For instance, one could
trade-off the acceleration for stability by choosing a
relatively small α; however, a prohibitively small α will
introduce undesirable stable points. We discuss such a
spurious stabilization effect in Section 5.

An example. We emphasize that our main results,
i.e., Theorem 4–5, applies to an arbitrary base dynam-
ics; hence, Lookahead provides a general mechanism
for stabilization and acceleration in smooth games. To
demonstrate our theoretic results, we exemplify a non-
linear game with a local Nash equilibrium at (0, 0):

min
x1∈R

max
x2∈R

− log(2 + exp(−x1 · x2)) + ε · φ(x2). (9)

where φ(x) def= −x2/2+x4/4. The first term is a variant
of Dirac-GAN example proposed by Mescheder et al.
(2018), and introduces a strong rotational force around
the equilibrium. The second term induces divergent
trajectories along the x2-axis. For ε = 0.001 and a base
learning rate η = 0.1, the equilibrium becomes unstable
for simultaneous gradient descent GDSim, and asymp-
totically stable for extragradient EGSim. To verify the
stabilization and acceleration guarantees, we compute
the constants β1, β2 and the thresholds on α of The-
orem 4–5, and choose k and α that stabilize GDSim
and accelerate EGSim. Figure 3 (a) shows that GDSim
diverges from the equilibrium, and even negative mo-
mentum GDNM

Sim fails to stabilize GDSim. However, k
and α predicted by Theorem 4 successfully stabilize
both GDSim and GDNM

Sim. This suggests a stronger stabi-
lization effect of Lookahead upon negative momentum.
Meanwhile, Figure 3 (b) demonstrates the acceleration
of EGSim, and shows that Lookahead can accelerate
negative momentum GDNM

Alt as well. These results sub-
stantiate Theorem 4–5 and suggest that Lookahead
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(a) Local convergence of the stabilized dynamics.

(b) Local convergence of the accelerated dynamics.

Figure 3: Illustration of the stabilization and ac-
celeration effect in Equation 9. (Top) Simultaneous
gradient descent GDSim diverges from the local Nash
equilibrium (0, 0), and negative momentum GDNM

Sim fails
to stabilize the equilibrium. However, the Lookahead
hyperparameters predicted by Theorem 4, denoted
by LA-GDSim and LA-GDNM

Sim, successfully converges
to the equilibrium. (Bottom) Negative momentum
GDNM

Alt and extragradient EGSim slowly converges to
the equilibrium due to the strong oscillation around the
equilibrium; however, the Lookahead hyperaprameters
predicted by Theorem 5 accelerate the convergence.

provides a general mechanism for stabilization and ac-
celeration in smooth games. We refer the readers to
Appendix D for further experimental details.

4 GENERAL BILINEAR GAMES

Even though Theorem 4–5 provide local guarantees for
general smooth games, we can derive global stabiliza-
tion and acceleration guarantees for bilinear games:

min
x1∈Rm

max
x2∈Rn

xT1 Ax2 − xT1 b1 − xT2 b2, (10)

where A ∈ Rm×n,b1 ∈ Rm,b2 ∈ Rn admits x∗1 ∈
Rm,x∗2 ∈ Rn such that ATx∗1 = b2,Ax∗2 = b1. This
game has been extensively studied as an archetype of
game optimization in the recent few years (Daskalakis
et al., 2018; Gidel et al., 2019b,a; Zhang and Yu, 2020)

The first corollary shows that Lookahead can stabilize
alternating GDAlt, which is non-convergent and oscilla-
tory around the Nash equilibria (Gidel et al., 2019b,a).
We denote the singular values of the matrix A by σi,
and their largest and smallest values by σmax and σmin.
Corollary 6 (Stabilization of GDAlt). Lookahead dy-
namics GLA-GDAlt with η ∈ (0, 2σ−1

max), k ∈ N, α ∈ (0, 1)

converges to a Nash equilibrium of Equation 14 if
k arccos(1− η2σ2

i /2) mod 2π 6= 0,∀σi.

The modulo condition breaks when there exists a sin-
gular value σi such that k arccos(1− η2σ2

i /2) exactly
matches a multiple of 2π. Hence, Corollary 6 implies
Lookahead LA-GDAlt converges to a Nash equilibrium
for almost any k ∈ N, α ∈ (0, 1). This is in contrast to
negative momentum (Gidel et al., 2019b) which works
only for carefully chosen coefficients. The next result
shows Lookahead can even stabilize divergent GDSim.
Corollary 7 (Stabilization of GDSim). Lookahead
dynamics GLA-GDSim with η > 0, k ∈ N, α ∈ (0, 1)
converges to a Nash equilibrium of Equation 14 if
k ∈ (β1, β2), α < c, where β1, β2 > 0 satisfies

β1 arctan ησmin = arccos ρ−β1
0 ,

β2 arctan ησmax = 2π − arccos ρ−β2
0

with ρ0
def=
√

1 + η2σ2
max, and c ∈ R is a constant de-

pendent on k such that c > 0,∀k ∈ (β1, β2).

The precise threshold c can be found in Appendix C.
Even though β1, β2 are defined implicitly, they are eas-
ily computable as each term in the first two equations is
monotone with respect to β1, β2. Since Lemma 3 guar-
antees the existence of a feasible k ∈ (β1, β2) for a small
conditioning σmax

σmin
< 3, the corollary implies that Looka-

head can stabilize GDSim for well-conditioned bilinear
games. This result qualitatively seperates Lookahead
from negative momentum (Gidel et al., 2019b), which
fails to stabilize GDSim for all hyperparameters (Zhang
and Yu, 2020). This qualitative difference suggests that
Lookahead has a stronger stabilization capability.
Corollary 8 (Acceleration of EGSim). Lookahead dy-
namics GLA-EGSim with η ∈ (0, σ−1

max), k ∈ N, α ∈ (0, 1)
converges to a Nash equilibrium of Equation 14. The
rate of convergence is improved upon its base dynamics
FEGSim if η ∈ (0, σ−1

max/2), k ∈ (β1, β2), α > c, where
β1, β2 > 0 are such that

β1 arctan ησmin(1− ησmin)−1 = arccos ρβ1
0 ,

β2 arctan ησmin(1− ησmin)−1 = 2π − arccos ρβ2
0

with ρ0
def=
√

1− 2ησmin + 2η2σ2
min, c∈R is a constant

dependent on k such that c< 1,∀k ∈ (β1, β2).

β1, β2 are computable and the threshold c can be found
in Appendix C. In contrast to Theorem 7, there always
exists a feasible k ∈ (β1, β2) for any game conditioning
σmax
σmin

; the inequality arccos(·) < 2π − arccos(·) yields
β1 < β2, implying the existence of a feasible k for a
small η > 0. Hence, Theorem 8 implies Lookahead can
always accelerate EGSim, whose existing rates (Gidel
et al., 2019a; Zhang and Yu, 2020) are known to be
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Figure 4: Spurious stabilization effect in Equa-
tion 11 with ε = 0.5. Gradient descent GDSim and neg-
ative momentum GDNM

Sim avoids the undesirable local
maximin (0, 0) due to its inherent instability. However,
Lookahead dynamics LA-GDSim and LA-GDNM

Sim blindly
stabilize the local maximin, and introduces a spurious
convergence to the undesirable stationary point.

first-order suboptimal in bilinear games (Azizian et al.,
2020). This acceleration can be derived for any conver-
gent dynamics, and we derive a similar result for PPSim
in Appendix C. However, as the corollary provides no
explicit rate, it remains open whether it can achieve
the first-order optimal rate (Azizian et al., 2020).

5 THE STABILIZATION EFFECT

Spurious stabilization. Recent studies (Mazumdar
et al., 2019; Hsieh et al., 2020) point out that most
game dynamics suffer from spurious convergence, i.e.,
convergence to an undesirable stationary point. In this
section, we show that the stabilization of Lookahead
can induce an additional spurious convergence, and
the benefits of the stabilization heavily depend on the
game structure. Then, we show that GANs do not
suffer from the spurious stabilization both in theory
and practice. First, we consider the following nonlinear
game proposed by Hsieh et al. (2020):

min
x1∈R

max
x2∈R

x1 · x2 + ε · (x2
2/2− x4

2/4), (11)

This game can be considered as a bilinear game with
a small nonlinear perturbation. In contrast to bilin-
ear games, the origin (0, 0) becomes an undesirable
local maximin for ε > 0, and a stable (local) Nash
equilibrium for ε ≤ 0. As Theorem 4–5 both hold for
an arbitrary stationary point, Lookahead can either
stabilize or accelerate the local convergence around the
origin (0, 0) in both cases. Hence, while Lookahead
can improve the convergence towards the (local) Nash
equilibrium for ε ≤ 0, it can also create an undesir-
able stability for ε > 0. Figure 4 illustrates the latter
case, i.e., the spurious stabilization phenomenon. In
Figure 4, gradient descent and negative momentum
successfully avoids the undesirable local maximin (0, 0);
however, Lookahead blindly stabilizes (0, 0) and creates
a spurious convergence. This clearly shows that the
stabilization of Lookahead is a double-edged sword,

Figure 5: Stabilization of Lookahead in GANs
trained with CIFAR-10. The solid lines and shades
represent the mean and standard deviation of each met-
ric over 8 runs, respectively. Lookahead LA-AdamAlt
with k = 5000, α = 0.5 achieves much lower FID scores
than AdamAlt. However, as Lookahead iteration stops
after 300k steps, Adam†Alt quickly diverges from the
region that contains Lookahead trajectories, and suffers
from a severe performance degradation. This suggests
that Lookahead stabilizes a small region that contains
highly-performant, yet unstable generators of GANs.

and its benefits heavily depend on the game structure.

GANs. Nevertheless, Chavdarova et al. (2021) report
that Lookahead significantly improves GAN training.
Such an empirical success suggests that GANs might
exhibit a special structure that could be exploited by
Lookahead. Notably, No et al. (2021) gives a positive
answer to this hypothesis for 2-layer random-feature
WGANs. Under certain assumptions on discriminator
and random features, they prove that 2-layer random-
feature WGANs with wide generator have no spurious
stationary points, i.e., each stationary point is a Nash
equilibrium (No et al. (2021), Theorem 8). As a crucial
corollary, we can guarantee that Lookahead does not
induce a spurious stabilization in such settings.
Corollary 9 (No spurious stabilization for wide 2-layer
WGANs; informal). Under certain assumptions on 2-
layer random-feature fully-connected WGANs with sig-
moidal activation and `2-regularized discriminator, for
any ζ > 0, there exists a large enough generator hidden
layer width Ng ∈ N such that the following statement
holds with probability at least 1 − ζ: a set of station-
ary points that are stabilized by Lookahead contains no
other points than the Nash equilibria of the game.

The key assumptions of No et al. (2021) include (i) a
small discriminator, and (ii) sample space spanning
random features, where the first assumption can be
dropped for an infinitely wide generator. We defer the
precise statements of the assumptions and the corollary
to Appendix C. This result gives a promising guarantee
that Lookahead does not create a spurious stabilization
in simple settings and only stabilizes Nash equilibria.

However, there still exists a gap between the corollary
and practice: modern GANs adopt deep convolutional
architectures, and neither use a small discriminator
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(a) Theorem 4 – LA-GDSim. (b) Theorem 5 – LA-EGSim.

(c) Corollary 7 – LA-GDSim. (d) Corollary 8 – LA-EGSim.

Figure 6: Stabilization and acceleration over a
range of (k, α) in the (a–b) nonlinear and (c–d) bilinear
game experiments. Each plot illustrates the relative
size of the spectral radius of Lookahead ρk(α) over a
range of (k, α). Each blue cell represents (k, α) that
achieves either stabilization ρk(α) < 1 or acceleration
ρk(α) < ρk0 with respect to the spectral radius ρ0 of
its base dynamics. The blue cells contained in the
yellow lines represent the improvements predicted by
each theorem, i.e., (k, α) that satisfies k ∈ (β1, β2) and
α < c or α > c, where c is the threshold for α predicted
by each theorem in Appendix C. Each red cell indicates
(k, α) that fails to improve the convergence.

nor an infinitely wide generator. Hence, we conjecture
that the success of Lookahead in GANs originates from
the stabilization of a small region that contains unsta-
ble, yet highly-performant generators, which may not
necessarily be the Nash equilibria.

To verify our hypothesis, we train a SNDCGAN (Miy-
ato et al., 2018) on CIFAR-10 using LA-AdamAlt with
k = 5000, α = 0.5. Specifically, we train GANs with
Lookahead until the convergence of FID scores (Heusel
et al., 2017), and turn off the Lookahead iteration to
see if the base dynamics AdamAlt quickly diverges from
the highly-performant generators found by Lookahead.
We illustrate our results over 8 runs in Figure 5.

Figure 5 shows that Lookahead LA-AdamAlt achieves
much lower FID scores than its base dynamics AdamAlt.
However, as we stop the Lookahead iteration after 300k
steps, AdamAlt quickly diverges from the region that
contains highly performant generators found by Looka-
head, and suffers from a severe performance drop. This
suggests that Lookahead stabilizes a small region that

contains highly-performant, yet unstable generators,
and justifies the usage of Lookahead in practical GANs.

6 NUMERICAL EXPERIMENTS

Nonlinear game. We numerically verify the predic-
tions of Theorem 4–5 on Equation 9 with ε = 0.001.
We fix the learning rate η = 0.1, under which the local
Nash equilibrium (0, 0) becomes unstable for GDSim
and stable for EGSim. We derive the constants β1, β2
and the threshold c from each theorem to stabilize
GDSim, and accelerate EGSim at (0, 0). Then, we in-
spect the spectral radius of Lookahead at (0, 0) over a
range of k and α to verify whether the local stabiliza-
tion ρk(α) < 1 or acceleration ρk(α) < ρk0 promised by
the theorems actually hold. We illustrate the results
in Figure 6 (a)–(b). Figure 6 (a) shows that the local
stabilization promised by Theorem 4 actually holds for
GDSim. Similarly, Figure 6 (b) verifies the acceleration
of EGSim promised by Theorem 5. We do not observe
any non-necessity in our sufficient conditions.

Bilinear game. We verify Corollary 7–8 on a bilinear
game with A = In+ε·En and b1 = b2 = 0, where each
element of En ∈ Rn×n is sampled from N (0, 1). For the
learning rate η = 0.1, we derive the constants β1, β2 and
the precise threshold c from each theorem. We compute
the spectral radius of Lookahead ρk(α) over a range of
(k, α) that contains the sufficient conditions of Corollary
7–8. Then, we inspect the spectral radius ρk(α) to
verify whether the global stabilization ρk(α) < 1 or
acceleration ρk(α) < ρk0 promised by the corollaries
actually hold. As Corollary 7 is provably non-vacuous
for the games with conditioning less than 3, we report
our results using n = 1000 and ε = 0.01, which gives
a sample of A with conditioning σmax

σmin
= 2.5 < 3; we

report the results on a larger conditioning in Appendix
E. Figure 6 (c)–(d) illustrate the results. Figure 6 (c)
verifies the stabilization guarantee of Corollary 7, and
Figure 6 (d) confirms the acceleration of Corollary 8.
Most blue cells are tightly contained in the yellow lines,
suggesting the sharpness of our conditions.

7 CONCLUSION

In this work, we established the first convergence guar-
antees of Lookahead in smooth games. Our results
reveal that Lookahead provides a general mechanism
for stabilization and acceleration, and points to several
future research directions. The first step would be ana-
lyzing Lookahead in stochastic settings; as Chavdarova
et al. (2021) report Lookahead tends to be especially
effective for stochastic games, we expect a variance
reduction effect in Lookahead. Another important di-
rection would be studying whether our local results
could be transferred to global guarantees of GANs.
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Supplementary Material:
On Convergence of Lookahead in Smooth Games

A NOTATION

Table A.1: The notation used throughout the paper.

Symbol Definition
a A scalar.
A A matrix.
AT Transpose of matrix A.
I Identity matrix with its shape implied by context.
In Identity matrix with n rows and n columns.
R The set of real numbers
[a, b] The real interval including a and b.
(a, b] The real interval excluding a but including b.
‖·‖ L2 norm.
xi i-th element of a vector x = (x1, . . . , xn).
xi i-th vector of the concatenated x = (x1, . . . ,xn).
x−i (x1, . . . ,xi−1,xi+1, . . . ,xn).
1condition 1 if the condition is true, 0 otherwise.
∇xf(x′) The derivative of a function f evaluated at x′.
Sr The zero-centered circle of radius r > 0 in C.
<(z) The real part of z ∈ C.
=(z) The imaginary part of z ∈ C.
Arg(z) The angle between z ∈ C and the real axis.
σ(A) The set of singular values of A ∈ Rm×n.
ρ(A) The spectral radius of A ∈ Rm×m.
λ(A) The set of eigenvalues of A ∈ Rm×m.
λ≥a(A) {λi ∈ λ(A) : |λi| ≥ a}
λmax(A) {λi ∈ λ(A) : |λi| = maxλi∈λ(A) |λi|}.

B USEFUL FACTS

B.1 Standard Results on Convergence

Lemma B.1 (Bertsekas (1999)). Let F : Rm → Rm be continuously differentiable, and let x∗ ∈ Rm be a fixed
point of F such that ρ(∇xF (x∗)) < 1. Then, there exists an open neighborhood Ux∗ of x∗ such that for any
x ∈ Ux∗ , ‖F t(x)− x∗‖2 ∈ O(ρ(∇xF (x∗))t) for t→∞.

Lemma B.2 (Gidel et al. (2019b)). Let M ∈ Rm×m and u(t) be a sequence of iterates such that, u(t+1) = Mu(t).
Then, we have three cases of interest for the spectral radius ρ(M):

• If ρ(M) < 1 and M is diagonalizable,1 then
∥∥u(t)

∥∥
2 ∈ O(ρ(M)t

∥∥u(0)
∥∥

2).

• If ρ(M) > 1, then there exists u(0) such that
∥∥u(t)

∥∥
2 ∈ Ω(ρ(M)t

∥∥u(0)
∥∥

2).

• If |λi| = 1,∀λi ∈ λ(M), and M is diagonalizable, then
∥∥u(t)

∥∥
2 ∈ Θ(

∥∥u(0)
∥∥

2).
1In fact, M does not has to be diagonalizable; see Theorem 5.4 and Theorem 5.D4 in Chen (1995).
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B.2 Characteristic Equations for Bilinear Games

Recent work Zhang and Yu (2020) provides an exact and optimal conditions for popular first-order methods to
converge in bilinear games. They also derive the characteristic equation for each first-order dynamics. As our
proofs rely on spectral arguments, we restate a simplified version of the equations for completeness. We denote
the singular values of a game matrix by σi, and the eigenvalues of each dynamics’ by λi.

GDAlt : (λi − 1)2 + η2σ2
i λi = 0,

GDSim : (λi − 1)2 + η2σ2
i = 0,

PPSim : (λ−1
i − 1)2 + η2σ2

i = 0,
EGSim : (λi − 1)2 + 2ησ2

i (λi − 1) + η2σ2
i + η2σ4

i = 0.

B.3 Bilinear Game Reduction

In this paper, we consider the bilinear games of general form

min
x1∈Rm

max
x2∈Rn

xT1 Ax2 − xT1 b1 − xT2 b2, (12)

where A ∈ Rm×n,b1 ∈ Rm,b2 ∈ Rn admits x∗1 ∈ Rm,x∗2 ∈ Rn such that ATx∗1 = b2,Ax∗2 = b1. The existence
of x∗1,x∗2 allows us to rewrite the game as

min
x1∈Rm

max
x2∈Rn

(x1 − x∗1)TU
[
Σr 0
0 0

]
VT (x2 − x∗2), (13)

where U ∈ Rm×m,Σr ∈ Rr×r,V ∈ Rn×n is the SVD of A with r
def= rank(A). Hence, we can analyze the

convergence of a dynamics in Equation 12 by inspecting a rather simpler problem

min
x1∈Rr

max
x2∈Rr

xT1 Σrx2, (14)

as they are equivalent up to some rotations and translations. Therefore, we can establish the convergence
guarantees for Lookahead in Equation 14 without loss of generality. Since Σr is non-singular, the reduced bilinear
game of Equation 14 has the unique Nash equilibrium at the origin. This bilinear game reduction is well-known,
and has been widely used for simplifying the analysis Gidel et al. (2019b,a); Mokhtari et al. (2020); Zhang and
Yu (2020).

B.4 Local Nash Equilibrium

Following Balduzzi et al. (2018), the concept of Nash equilibrium can be generalized to its local variant as follows.
Definition B.1 (Local Nash equilibrium). For a smooth game {fi}ni=1 with strategy spaces {Rdi}ni=1 such that
d =

∑n
i=1 di, x∗ ∈ Rd is a local Nash equilibrium of the game if, for each i = 1, . . . , n, there exists an open

neighborhood Ui ⊆ Rdi of x∗i such that satisfies fi(x∗) ≤ fi(xi,x∗−i),∀xi ∈ Ui.

However, it is not straightforward from the definition how to test whether an equilibriuma is a local Nash or not.
The following result from Mescheder et al. (2017) provides a tool for verifying a local Nash equilibrium.
Proposition B.3 (Mescheder et al. (2017)). For any two-player zero-sum game {f,−f} with strategy spaces
{Rd1 ,Rd2}, x∗ = (x∗1,x∗2) ∈ Rd1+d2 is a local Nash equilibrium if ∇x1f(x∗) = ∇x2f(x∗) = 0, and the matrix

J(x∗) =
[
−∇2

x1
f(x∗) −∇x1,x2f(x∗)

∇x1,x2f(x∗) ∇2
x2
f(x∗)

]
is negative definite, i.e., xTJ(x∗)x < 0 for any non-zero x ∈ Rd1+d2 .

C OMITTED PROOFS

C.1 Examples

Example 3 (Stabilization). Lookahead dynamics GLA-GDSim with η > 0, k ∈ N, α ∈ (0, 1) converges to the Nash
equilibrium of Equation 8 if k satisfies <((1 + iη)k) < 1 and α is small enough.
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Proof. The eigenvalues of ∇xFGDSim are λ±
def= 1 ± iη. Hence, plugging λ± into the first case of Proposition 1

gives ρ(∇xGLA-GDSim) < 1 if <((1± iη)k) < 1 and α < c1, where c1 > 0 if <((1± iη)k) < 1. Therefore, combining
the results with the first case of Lemma B.2 proves the statement.

Example 4 (Acceleration). Lookahead dynamics GLA-PPSim with η ∈ (0, 1), k ∈ N, α ∈ (0, 1) converges to the
Nash equilibrium of Equation 8. The rate of convergence improves upon its base dynamics FPPSim if k satisfies
<((1 + iη)k) < 1 and α is large enough.

Proof. The eigenvalues of ∇xFPPSim are λ± = 1±iη
1+η2 , and each has modulus |λ±i| = 1√

1+η2
< 1. It follows

ρ(∇xGLA-PPSim) = |1 − α + αλk±| < 1 as 1 − α + αλk± is an interpolation between two distinct points on the
unit disk. Therefore, the first case of Lemma B.2 implies that Lookahead dynamics GLA-PPSim with k ∈ N and
α ∈ (0, 1) converges to the Nash equilibrium. Furthermore, plugging λ± into the last case of Proposition 1 yields
ρ(∇xGLA-PPSim) < ρ(∇xFPPSim)k for <((1 + iη)k) < 1 and α > c2, where c2 < 1 if <((1 + iη)k) < 1. Therefore,
combining the results with the first case of Lemma B.2 proves the last statement on the improved convergence
rate.

Example 5 (Stabilization). Lookahead dynamics GLA-GDAlt with η ∈ (0, 2), k ∈ N, α ∈ (0, 1) converges to the
Nash equilibrium of Equation 8 if and only if k arccos(1− η2/2) mod 2π 6= 0.

Proof. The eigenvalues of ∇xFGDSim are λ±
def= 1− η2/2± iη

√
1− η2/4, and each has the modulus |λ±| = 1 for

any η ∈ (0, 2). Hence, plugging λ± into the second case of Proposition 1 gives ρ(∇xGLA-GDAlt) < 1 if and only if
<(λk±) < 1. However, <(λk±) < 1 holds if and only if k arccos(1− η2/2) mod 2π 6= 0, and combining the results
with the first case of Lemma B.2 proves the statement.

Example 6 (Acceleration). Lookahead dynamics GLA-EGSim with η ∈ (0, 1), k ∈ N, α ∈ (0, 1) converges to the
Nash equilibrium of Equation 8. The rate of convergence improves upon its base dynamics FEGSim if k satisfies
<((1− η + iη)k) < (1− 2η + 2η2)k and α is large enough.

Proof. The eigenvalues of ∇xFEGSim are λ± = 1−η±iη, and each has the modulus |λ±i| =
√

1− 2η + 2η2 < 1 for
any η ∈ (0, 1). It follows ρ(∇xGLA-EGSim) = |1− α+ αλk±| < 1 since 1− α+ αλk± is an interpolation between two
distinct points on the unit disk. Therefore, the first case of Lemma B.2 implies Lookahead dynamics GLA-EGSim

with k ∈ N and α ∈ (0, 1) converges to the Nash equilibrium. Furthermore, plugging λ± into the last case of
Proposition 1 yields ρ(∇xGLA-EGSim) < ρ(∇xFEGSim)k if <((1− η + iη)k) < (1− 2η + 2η2)k and α > c2, where
c2 < 1 if <((1− η + iη)k) < (1− 2η + 2η2)k. Therefore, combining the results with the first case of Lemma B.2
proves the last statement on the improved convergence rate.

C.2 The Spectral Contraction

Proposition 1 (Spectral contraction). Let X ∈ Rm×m be a Jacobian of a dynamics at an equilibrium. Denote
its spectral radius by ρ0

def= ρ(X) and the radius of its Lookahead dynamics with k ∈ N, α ∈ (0, 1) by ρk(α) def=
ρ((1− α)I + αXk). Then, either stabilization (ρk(α)<1) or acceleration (ρk(α)<ρk0) is achieved according to
whether the base dynamics is stable (ρ0<1) or not (ρ0>1) as follows.

• For ρ0 > 1, ρk(α) < 1 if and only if τk|≥1 < 1, α < c1,

• For ρ0 = 1, ρk(α) < 1 if and only if τk|max < 1,

• For ρ0 < 1, ρk(α) < ρk0 if and only if τk|max < ρ2k
0 , α > c2,

where τk|≥1
def= max
λi∈λ≥1(X)

<(λki ), τk|max
def= max
λi∈λmax(X)

<(λki ), and c1, c2 ∈ R are such that

c1
def= min

λi∈λ≥1(X)

2 cosφi
|1− λki |

> 0 ⇐⇒ τk|≥1 < 1,

c2
def= max

λi∈λ(X)

cosφi −∆i

|1− λki |
< 1 ρ0<1⇐⇒ τk|max < ρ2k

0 ,

with φi
def= Arg(1− λki ), ∆i

def=
√
ρ2k

0 − sin2 φi.
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Proof. We prove each of the statements in their order.

The case for ρ0 > 1: Assume τk|≥1 < 1. Then, for each λi ∈ λ≥1(X), λki can be visualized as B in Figure C.7
(a), where the existence of D is guaranteed by τk|≥1 < 1. Then, we can see that, for A, C, D in Figure C.7 (a),

|AC| = α|1− λk| < 2 cosφi = |AD| (15)

is sufficient to place 1− α+ αλk inside S1. Furthermore, for any λj ∈ λ(X) such that |λj | < 1, 1− α+ αλkj lies
inside S1 since 1 − α + αλkj is an interpolation between two distinct points on/inside S1. Hence, we conclude
ρk(α) < 1.

Conversely, assume ρk(α) < 1 and suppose that there exists λi ∈ λ≥1(X) such that <(λki ) ≥ 1, i.e., τk|≥1 ≥ 1.
Then, we have a contradiction ρk(α) ≥ 1 since |1− α+ αλki | ≥ 1 for such λi. Additionally, suppose that there is
λi ∈ λ≥1(X) such that <(λki ) < 1 but α ≥ 2 cosφi

|λk
i
−1| . For such λi, we have

|AC| = α|1− λki | ≥ 2 cosφi = |AD| (16)

for A, C, D in Figure C.7 (a). This implies |1 − α + αλk| ≥ 1, a contradiction to the assumption ρk(α) < 1.
Therefore, we conclude τk|≥1 < 1 and α < c1.

The case for ρ0 = 1: Assume τk|max < 1. Then, ρk(α) < 1 is immediate since for any λi ∈ λ(X), 1− α+ αλki is
an interpolation between two distinct points 1 and λki on the unit disk. Conversely assume ρk(α) < 1. Then, by
the definition of spectral radius, we have τk|max < 1.

The case for ρ0 < 1: Assume τk|max < ρ2k
0 . Then, for any λi ∈ λ(X), λki can be visualized as B in Figure C.7

(b), where the existence of D is guaranteed by <(λk) < ρ2k
0 . Then, we can see that, for A, C, D in Figure C.7 (b),

|AC| = α|1− λki | > cosφi −∆i = |AD| (17)

is sufficient to place 1− α+ αλki inside Sρk
0
.

Conversely, assume ρk(α) < ρk0 and suppose that there exists λi ∈ λmax(X) such that <(λki ) ≥ ρ2k
0 , i.e.,

τk|max ≥ ρ2k
0 . Then, we have |1− α + αλki | ≥ ρk0 for such λi since the line between 1 and λki cannot be secant

to Sρk
0
. This contradicts the assumption ρk(α) < ρk0 . Now suppose that there exists λi ∈ λ(X) such that

α ≤ cosφi−∆i

|λk
i
−1| . For such λi, we have

|AC| = α|1− λki | ≤ cosφi −∆i = |AD| (18)

for A, C, D in Figure C.7 (b), implying |1 − α + αλki | ≥ ρk0 , which contradicts the assumption ρk(α) < ρk0 .
Therefore, we conclude τk|max < ρ2k

0 and α > c2.

The inequality on c1: Assume c1 > 0. Then, we have cosφi > 0 for all λi ∈ λ≥1(X), and by definition of φi, it
follows that every λki lies on the left side of the vertical line <(z) = 1, i.e. τk|≥1 < 1. Conversely, if τk|≥1 < 1,
every λki lies on the left side of the vertical line <(z) = 1. Then, by definition of φi, we have cosφi > 0 for all
λi ∈ λ≥1(X).

The inequality on c2: Assume ρ0 < 1, c2 < 1, and suppose τk|max ≥ ρ2k
0 . Then, there exists λi ∈ λmax(X) such

that <(λki ) ≥ ρ2k
0 . For such λi, it follows that

|AB| = |1− λki | = cosφi −∆i = |AD| (19)

for A, B, D in Figure C.7 (b). Therefore, we have c2 ≥ 1, a contradiction to the assumption c2 < 1. Hence, we
conclude τk|max < ρ2k

0 . Conversely, assume ρ0 < 1, τk|max < ρ2k
0 and suppose c2 ≥ 1. Then, there exists λi ∈ λ(X)

such that

|AB| = |1− λki | ≤ cosφi −∆i = |AD| (20)

for A, B, D in Figure C.7 (b), implying |AB| = |AD| since |AB| ≥ |AD|. This implies λi lying on the circle Sρk
0
,

and therefore, we have λi ∈ λmax(X). Then, the assumption τk|max < ρ2k
0 gives a contradiction |AB| > |AD| for

such λi, since it guarantees the line between A and B to be secant to the circle Sρk
0
. Therefore, we conclude

c2 < 1.
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(a) The case for ρ0 > 1. (b) The case for ρ0 < 1.

Figure C.7: Eigenvalues of (1− α)I + αXk in the proof of Proposition 1.

Proposition 2 (Contraction bounds). Let X ∈ Rm×m be the Jacobian of a dynamics at an equilibrium, and denote
its spectral radius by ρ0

def= ρ(X) and the optimal radius of its Lookahead dynamics with k∈N by ρ∗k
def= inf
α∈(0,1)

ρk(α).

Then, for τk
def= max
λi∈λ(X)

<(λki ), the following statements hold:

• For ρ0 ≥ 1, the upper bound ρ∗k
2 ≤ 1− (1−τk)2

1+ρ2k
0 −2τk

< 1 holds if τk < 1,

• For ρ0 < 1, the upper bound ρ∗k
2 ≤ 1− (1−τk)2

1+ρ2k
0 −2τk

< ρ2k
0 holds if τk < ρ2k

0 ,

• The lower bound ρ∗k ≥ max
λi∈D

|λi|k holds for the eigenvalues D def= {λi∈λ(X) : |λki − 1
2 | <

1
2}.

Proof. We start by observing the following inequalities:

ρ∗k
2 = min

α∈(0,1)
max

λi∈λ(X)
|1− α+ αλki |2 (21)

≤ min
α∈(0,1)

(α− 1)2 + 2α(1− α)τk + α2ρ2k
0 (22)

≤ (α− 1)2 + 2α(1− α)τk + α2ρ2k
0 (23)

= (1 + ρ2k
0 − 2τk)

(
α− 1− τk

1 + ρ2k
0 − 2τk

)2
+ 1− (1− τk)2

1 + ρ2k
0 − 2τk

, (24)

where the first inequality follows from the maximum over each terms, and the second inequality holds for any
α ∈ (0, 1). We can see from the last equation that the upper bound 1 − (1−τk)2

1+ρ2k
0 −2τk

can be achieved when
1−τk

1+ρ2k
0 −2τk

∈ (0, 1).

The upper bound of ρ∗k
2 for ρ0 ≥ 1: Assume τk < 1. Then, we have 1−τk

1+ρ2k
0 −2τk

∈ (0, 1), since:

1− τk > 0, (25)
1 + ρ2k

0 − 2τk ≥ (1− ρk0)2 > 0, (26)
(1− τk)− (1 + ρ2k

0 − 2τk) = τk − ρ2k < 0. (27)

Therefore, we conclude

ρ∗k
2 ≤ 1− (1− τk)2

1 + ρ2k
0 − 2τk

< 1. (28)
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The upper bound of ρ∗k
2 for ρ0 < 1: Assume τk < ρ2k

0 . Then, we have 1−τk

1+ρ2k
0 −2τk

∈ (0, 1), since:

1− τk ≥ 1− ρk0 > 0, (29)
1 + ρ2k

0 − 2τk ≥ (1− ρk0)2 > 0, (30)
(1− τk)− (1 + ρ2k

0 − 2τk) = τk − ρ2k
0 < 0. (31)

Furthermore, we also have

1− (1− τk)2

1 + ρ2k
0 − 2τk

− ρ2k
0 = − (ρ2k

0 − τk)2

1 + ρ2k
0 − 2τk

< 0. (32)

Therefore, we conclude

ρ∗k
2 ≤ 1− (1− τk)2

1 + ρ2k
0 − 2τk

< ρ2k
0 . (33)

The lower bound of ρ∗k
2: The lower bound is immediate from the following inequalities:

ρ∗k
2 = min

α∈(0,1)
max

λi∈λ(X)
|1− α+ αλki |2 (34)

≥ max
λi∈λ(X)

min
α∈(0,1)

|1− α+ αλki |2 (35)

= max
λi∈λ(X)

min
α∈(0,1)

|1− λki |2
(
α− <(1− λki )

|1− λki |2

)2

+ 1−
(
<(1− λki )
|1− λki |

)2

(36)

≥ max
λi∈λ(X)

(1− ai) sin2 φ(λi) + ai|λi|2k (37)

≥ max
λi∈λ(X)

ai|λi|2k = max
λi∈D

|λi|2k, (38)

where we define ai
def= 1|λk

i
− 1

2 |<
1
2
. The first inequality follows from the min-max inequality, and the second

inequality follows from the minimum of the quadratic with constraints α ∈ (0, 1).

Lemma 3 (Sufficient conditions for left-rotating k). Let X∈Rm×m be a Jacobian that can be written as X = I−ηJ
for some J ∈ Rm×m and η > 0. Assume that a subset of the eigenvalues S ⊆ λ(X) contains non-reals only, and
every element of S has its conjugate pair in S. Then, for ρ0

def= ρ(X), τk
def= max

λi∈S
<(λki ), θmin

def= min
λi∈S

|Arg(λi)|,

θmax
def= max

λi∈S
|Arg(λi)|, the following statements hold:

• When ρ0 > 1, the eigenvalues in S are left-rotated so that τk < 1 if k ∈ (β1, β2), where β1, β2 > 0 are such
that β1θmin = arccos ρ−β1

0 and β2θmax = 2π − arccos ρ−β2
0 .

• When ρ0 < 1, the eigenvalues in S are left-rotated so that τk < ρ2k
0 if k ∈ (β1, β2), where β1, β2 > 0 are such

that β1θmin = arccos ρβ1
0 and β2θmax = 2π − arccos ρβ2

0 .

The existence of a feasible k ∈ (β1, β2) is guaranteed for a small enough η > 0 if the imaginary conditioning
max

λi,λj∈S
|=(λi)/=(λj)| of the subset of the eigenvalues S is less than 3.

Proof. We prove each of the statements in their order.

The case for ρ0 > 1: Let k ∈ (β1, β2) and define θi
def= Arg(λi) for each λi ∈ λ(S). Then, we have

kθmin > arccos 1/ρk0 , (39)
kθmax < 2π − arccos 1/ρk0 , (40)

since arccos 1/ρx0 is monotone and bounded for any x > 0. Hence, for each θi, we have

arccos 1/ρk0 < kθi < 2π − arccos 1/ρk0 . (41)
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Notice that this implies cos kθi < 1/ρk0 for each θi, since arccos 1/ρk0 ∈ (0, π/2) for any k > 0. Hence, we conclude

τk = max
λi∈S

|λi|k cos kθi ≤ ρk0 max
λi∈S

cos kθi < 1. (42)

The case for ρ0 < 1: Let k ∈ (β1, β2) and let θi
def= |Arg(λi)| for each λi ∈ λ(S). Then, we have

kθmin > arccos ρk0 , (43)
kθmax < 2π − arccos ρk0 , (44)

since arccos ρx0 is monotone and bounded for any x > 0. Hence, for each θi, we have

arccos ρk0 < kθi < 2π − arccos ρk0 . (45)

Notice that this implies cos kθi < ρk0 for each θi, since arccos 1/ρk0 ∈ (0, π/2) for any k > 0. Hence, we conclude

τk = max
λi∈S

|λi|k cos kθi ≤ ρk0 max
λi∈S

cos kθi < ρ2k
0 . (46)

The existence of a feasible k: Note that we have the inequalities

β1 <
π

2θmin
,

3π
2θmax

< β2, (47)

since arccos(·) < π
2 and 2π − arccos(·) > 3

2π for any positive numbers. Therefore, we have
(

π
2θmin

, 3π
2θmax

)
⊂

(β1, β2). For a scalar function f : R → R given by f(x) = 3πx
π+2x , one can easily verify that θmax < f(θmin)

is equivalent to 3π
2θmax −

π
2θmin

> 1, which implies nonempty N ∩ (β1, β2). Hence, for =min
def= min
λi∈S

|=(λi)| and

=max
def=max
λi∈S

|=(λi)|, it suffices to show that the imaginary conditioning =max
=min

< 3 implies the existence of δ > 0
such that θmax < f(θmin) for any η ∈ (0, δ).

Let us define <min
def= min

λi∈S
<(λi), <max

def= max
λi∈S

<(λi), and a scalar function H : R→ R as

H(η) def=
(

1 + 2θmax
+

π

)(
1 + η<max

1 + η<min

)(
1 + 2 sec θmin

−

1 + 2 sec θmax+ + b

)
,

where θmin
− def= arctan η=min

1+η<max , θmax
+ def= arctan η=max

1+η<min
, and b def= (1+2 sec θmin

−) tan4 θmax+

540 .

We show that the inequality

=max

=min
<

3
H(η) (48)

implies θmax < f(θmin), and that there exists δ > 0 such that Equation 48 holds for any η ∈ (0, δ) when =max
=min

< 3.

The inequalities θmin
− ≤ θmin and θmax ≤ θmax

+ directly follow from the definitions of θmin
− and θmax

+.
Furthermore, using the Shafer-type double inequalities (Mortici and Srivastava, 2014) for arctan(·), we can obtain

θmin
− ≥ 3 tan θmin

−

1 + 2
√

1 + tan2 θmin−
= 3η=min

(1 + η<max)(1 + 2 sec θmin−) ,

θmax
+ ≤ 3 tan θmax

+

1 + 2
√

1 + tan2 θmax+
+ 1

180 tan5 θmax
+

= 3η=max

(1 + η<min)(1 + 2 sec θmax+) + η=max tan4 θmax
+

180(1 + η<min) ,

from which follows that
θmax

θmin
≤ θmax

+

θmin−
= =max

=min

(
1 + η<max

1 + η<min

)(
1 + 2 sec θmin

−

1 + 2 sec θmax+ + b

)
. (49)
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On the other hand, assuming Equation 48, we can derive

=max

=min

(
1 + η<max

1 + η<min

)(
1 + 2 sec θmin

−

1 + 2 sec θmax+ + b

)
<
f(θmax

+)
θmax+ . (50)

Furthermore, f is concave and monotonically increasing since f ′(x) = 3π2

(π+2x)2 . Hence, we have

f(θmax
+)

θmax+ <
f(θmin)
θmin

. (51)

Consequently, combining the inequalities of Equation 49-51 gives us θmax < f(θmin).

Assume =max
=min

< 3 and define ε def= 3− =max
=min

> 0. By the continuity of 3
H(·) at η = 0 and H(0) = 1, there exists

δ > 0 such that
∣∣∣3− 3

H(η)

∣∣∣ < ε for any η ∈ (0, δ). Hence, we have =max
=min

= 3 − ε < 3
H(η) for any η ∈ (0, δ).

Then, we obtain the chain of implications =max
=min

< 3
H(η) =⇒ θmax<f(θmin) =⇒ 3π

2θmax −
π

2θmin
> 1, which implies

nonempty N ∩ (β1, β2), i.e., the existence of a feasible k.

Theorem 4 (Local stabilization). Let x∗ ∈ Rn be an unstable equilibrium of dynamics F with the spectral
radius ρ0. Assume each element of S=λ≥1(∇xF (x∗)) is non-real. Then, x∗ becomes locally asymptotically
stable in its Lookahead dynamics with k ∈ N, α ∈ (0, 1) if k ∈ (β1, β2) and α < c, where β1, β2 > 0, c ∈ R are
such that β1θmin(S) = arccos ρ−β1

0 , β2θmax(S) = 2π − arccos ρ−β2
0 , and c = min

λi∈S
2 cosφi

|1−λk
i
| > 0,∀k ∈ (β1, β2) with

φi
def= Arg(1− λki ).

Proof. By the instability, we have ρ0 > 1. Furthermore, by the assumption, each element of S is non-real and
has its conjugate pair in S. Hence, for any k ∈ (β1, β2), the first case of Lemma 3 gives τk|≥1

def= max
λi∈S

<(λKi ) < 1,
and Proposition 1 guarantees c > 0. As a result, the first case of Proposition 1 gives ρ(∇xG(x∗)) < 1 for any
k ∈ (β1, β2) and α < c. Then, it follows from Lemma B.1 that x∗ is locally asymptotically stable in G for any
k ∈ (β1, β2) and α < c.

Theorem 5 (Local acceleration). Let x∗ ∈ Rn be an equilibrium of dynamics F with the spectral radius ρ0 < 1.
Assume each element of S=λmax(∇xF (x∗)) is non-real. Then, the local convergence rate to x∗ in its Lookahead
dynamics with k ∈ N, α ∈ (0, 1) improves upon F if k ∈ (β1, β2) and α > c, where β1, β2 > 0, c ∈ R are such
that β1θmin(S) = arccos ρβ1

0 , β2θmax(S) = 2π − arccos ρβ2
0 , and c = max

λi∈S

cosφi−
√
ρ2k

0 −sin2 φi

|1−λk
i
| < 1,∀k ∈ (β1, β2) with

φi
def= Arg(1− λki ).

Proof. By the assumption, we have ρ0 < 1. Furthermore, each element of S is non-real and has its conjugate pair
in S. Then, for any k ∈ (β1, β2), the second case of Lemma 3 gives τk|max

def= max
λi∈S

<(λki ) < ρ2k
0 , and Proposition

1 guarantees c < 1. As a result, the last case of Proposition 1 yields ρ(∇xG(x∗)) < ρk0 for any k ∈ (β1, β2)
and α > c. Then, it follows from Lemma B.1 that the local convergence rate of a Lookahead dynamics G is
improves upon its base dynamics F if k ∈ (β1, β2) and α > c, assuming the amortized computation over k forward
steps.

C.3 General Bilinear Games

Corollary 6 (Stabilization of GDAlt). Lookahead dynamics GLA-GDAlt with η ∈ (0, 2σ−1
max), k ∈ N, α ∈ (0, 1)

converges to a Nash equilibrium of Equation 10 if k arccos(1− η2σ2
i /2) mod 2π 6= 0,∀σi.

Proof. For any learning rate η ∈ (0, 2σ−1
max), the eigenvalues of the Jacobian ∇xGLA-GDAlt can be written as

1 − α + αλk±i for each λ±i
def= 1 − η2σ2

i /2 ± iησi
√

1− η2σ2
i /4 ∈ λ(∇xFGDAlt) with unit modulus |λ±i| = 1.

Note that <(λk±i) < 1 holds for each σi if k arccos(1 − η2σ2
i /2) mod 2π 6= 0 for each λ±i, and the second

case of Proposition 1 gives ρ(∇xGLA-GDAlt) < 1 if <(λk±i) < 1 for each λ±i. Therefore, the first case of
Lemma B.2 implies that a Lookahead dynamics LA-GDAlt converges to a Nash equilibrium of Equation 10 if
k arccos(1− η2σ2

i /2) mod 2π 6= 0,∀σi ∈ σi(Σr).
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Corollary 7 (Stabilization of GDSim). Lookahead dynamics GLA-GDSim with η > 0, k ∈ N, α ∈ (0, 1) converges to
a Nash equilibrium of Equation 10 if k ∈ (β1, β2), α < c, where β1, β2 > 0, c ∈ R are such that

β1 arctan ησmin = arccos ρ−β1
0 ,

β2 arctan ησmax = 2π − arccos ρ−β2
0

c = min
σi∈σ(Σr)

2 cosφi
|1− (1 + iησi)k|

> 0,∀k ∈ (β1, β2),

with ρ0
def=
√

1 + η2σ2
max, φi

def= Arg(1− (1 + iησi)k).

Proof. For any base learning rate η > 0, the eigenvalues of the Jacobian∇xGLA-GDSim can be written as 1−α+αλk±i
for each λ±i

def= 1 ± iησi ∈ λ(∇xFGDSim) with modulus |λ±i| > 1. Define the smallest and largest angles of
the eigenvalues λ±i as θmin

def= min
σi

arctan ησi = arctan ησmin and θmax
def= maxσi arctan ησi = arctan ησmax,

respectively. Then, for any k ∈ (β1, β2), the first case of Lemma 3 gives τk|≥1
def= max

λ±i

<(λk±i) < 1, and Proposition

1 guarantees c > 0. Furthermore, for any k ∈ (β1, β2) and α < c, the first case of Proposition 1 implies
ρ(λ(∇xFGDSim)) < 1. Therefore, the first case of Lemma B.2 implies that a Lookahead dynamics LA-GDSim
converges to a Nash equilibrium of Equation 10 if k ∈ (β1, β2) and α < c.

Corollary 8 (Acceleration of LA-EGSim). Lookahead dynamics GLA-EGSim with η ∈ (0, σ−1
max), k ∈ N, α ∈ (0, 1)

converges to a Nash equilibrium of Equation 10. The rate of convergence is improved upon its base dynamics
FEGSim if η ∈ (0, σ−1

max/2), k ∈ (β1, β2), α > c, where β1, β2 > 0 and c ∈ R are such that

β1 arctan ησmin(1− ησmin)−1 = arccos ρβ1
0 ,

β2 arctan ησmin(1− ησmin)−1 = 2π − arccos ρβ2
0 ,

c = max
σi∈σ(Σr)

cosφi −
√
ρ2k

0 − sin2 φi
|1− (1− ησi + iησi)k|

< 1,∀k ∈ (β1, β2),

with ρ0
def=
√

1− 2ησmin + 2η2σ2
min, φi

def= Arg(1− (1− ησi + iησi)k).

Proof. For any learning rate η > 0, the eigenvalues of the Jacobian ∇xGLA-EGSim can be written as 1− α+ αλk±i

for each λ±i
def= 1− ησi + iησi ∈ λ(∇xFEGSim). Additionally, we have the modulus |λ±i| =

√
1− 2ησi + 2η2σ2

i < 1
for each λ±i when η < σ−1

max. Hence, |1− α+ αλk±i| < 1 holds for each λ±i for any η < σ−1
max, since 1− α+ αλk±i

is an interpolation between two distinct points on the unit disk. Therefore, it follows from the first case of
Lemma B.2 that Lookahead dynamics LA-EGSim converges to a Nash equilibrium of Equation 10 for any
η ∈ (0, σ−1

max), k ∈ N, α ∈ (0, 1).

Now assume η ∈ (0, σ−1
max/2) and notice that the quadratic |λ±i|2 = 2η2(σi − 1

2η )2 + 1
2 holds for each λ±i. As a

result, we have the set of eigenvalues with the maximal modulus λmax(∇xFEGSim) = {1− ησmin ± iησmin} and
their angles θmin = θmax = arctan ησmin(1− ησmin)−1. Hence, for any k ∈ (β1, β2), the second case of Lemma
3 gives us τk|max

def= max
λ±i

<(λk±i) < ρ2k
0 , and Proposition 1 guarantees c < 1 for any k ∈ (β1, β2). Furthermore,

for any k ∈ (β1, β2) and α > c, the last case of Proposition 1 implies ρ(∇xGLA-EGSim) < ρk0 . Then, it follows
from the first case of Lemma B.2 that the convergence rate of Lookahead dynamics LA-EGSim improves upon its
base dynamics EGSim if η ∈ (0, σ−1

max/2), k ∈ (β1, β2), α > c, assuming the amortized computation over k forward
steps.

Corollary C (Acceleration of LA-PPSim). Lookahead dynamics GLA-PPSim with η > 0, k ∈ N, α ∈ (0, 1) converges
to a Nash equilibrium of Equation 10. The rate of convergence is improved upon its base dynamics FPPSim if
k ∈ (β1, β2) and α > c, where β1, β2 > 0 and c ∈ R are such that

β1 arctan ησmin = arccos ρβ1
0 ,

β2 arctan ησmin = 2π − arccos ρβ2
0 ,
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c = max
σi∈σ(Σr)

cosφi −
√
ρ2k

0 − sin2 φi∣∣∣∣1− ( 1+iησi

1+η2σ2
i

)k∣∣∣∣ < 1,∀k ∈ (β1, β2),

with ρ0
def= 1√

1+η2σ2
min

, φi
def= Arg

(
1−

(
1+iησi

1+η2σ2
i

)k)
.

Proof. For any learning rate η > 0, the eigenvalues of the Jacobian ∇xGLA-PPSim can be written as 1− α+ αλk±i

for each λ±i
def= 1±iησi

1+η2σ2
i
∈ λ(∇xFPPSim) with modulus |λ±i| = 1√

1+η2σ2
i

< 1. As a result, |1− α+ αλk±i| < 1 holds

for each λ±i since 1− α+ αλk±i is an interpolation between two distinct points on the unit disk. Therefore, it
follows from the first case of Lemma B.2 that Lookahead dynamics LA-PPSim converges to a Nash equilibrium of
Equation 10 for any η > 0, k ∈ N, α ∈ (0, 1).

Notice we have the set of eigenvalues with the maximal modulus λmax(∇xFPPSim) =
{

1±iησmin
1+η2σ2

min

}
and their

angles θmin = θmax = arctan ησmin. Hence, for any k ∈ (β1, β2), the second case of Lemma 3 gives τk|max
def=

max
λ±i

<(λk±i) < ρ2k
0 , and Proposition 1 guarantees c < 1. Furthermore, for any k ∈ (β1, β2) and α > c, the last

case of Proposition 1 implies ρ(∇xGLA-PPSim) < ρk0 . Then, it follows from the first case of Lemma B.2 that the
convergence rate of Lookahead dynamics LA-PPSim improves upon its base dynamics PPSim if k ∈ (β1, β2) and
α > c, assuming the amortized computation over k forward steps.

C.4 Stabilization Effect in GANs

Recently, No et al. (2021) have shown that 2-layer random-feature fully-connected WGANs with wide generator
exhibit no spurious stationary points, i.e., each stationary point is a Nash equilibrium of the game. As a simple,
yet crucial corollary, we can guarantee that Lookahead does not introduce a spurious stabilization in such settings.
For completeness, we restate the underlying assumptions and one of the main result of No et al. (2021) below.
Assumption 1 (AL). A continuous random vector Z ∈ Rk has a Lipschitz continuous probability density function
qZ(z) satisfying qZ(z) > 0 for all z ∈ Rk.
Assumption 2 (AG). Let G = {φ(·;κ)κ ∈ Rp|}, where φ(·;κ) : Rk → Rn, be a collection of generator feature
functions such that φ ∈ G are of form φ(z;κ) = σg(κwz + κb), where κ = (κw, κb) ∈ Rn×k × Rn, and σg : R→ R
is a bounded continuous activation function satisfying lim

r→−∞
σg(r) < lim

r→∞
σg(r).

Assumption 3 (AD). Let D = {ψ1, . . . , ψNd
} be a class of discriminator feature functions ψj : Rn → R for each

1 ≤ j ≤ Nd such that each ψj ∈ D has a form of ψj(x) = σ(aTj x+ bj) for some aj ∈ Rn and bj ∈ R. The twice
differentiable activation function σ satisfies σ′(x) > 0 for all x ∈ R and supx∈R |σ(x)|+ |σ′(x)|+ |σ′′(x)| ≤ ∞.
The weights a1, . . . , aNd

and biases b1, . . . , bNd
are sampled (IID) from a distribution with a probability density

function.
Assumption 4. The first n parameters {κi}ni=1 of generator random feature functions are chosen so that {φi}ni=1
are constant functions spanning the sample space Rn, and the remaining parameters {κi}

Ng

i=n+1 are sampled (IID)
from a probability distribution that has a continuous and strictly positive density function.

Generator. For the generator feature functions φ1, . . . , φNg
∈ G with 1 ≤ Ng < ∞ and θ ∈ RNg , a 2-layer

random-feature generator is given by

gθ(z) =
Ng∑
i=1

θiφi(z), (52)

and the class of generators constructed from the feature functions {φi}Ng

i=1 is written as

span({φi}Ng

i=1) = {gθ : θ ∈ RNg}. (53)
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Discriminator. For η ∈ RNd and Ψ(x) = (ψ1(x), . . . , ψNd
(x)) ∈ RNd , a 2-layer random-feature discriminator is

given by

fη(x) =
Nd∑
j=1

ηjψj(x) = ηTΨ(x), (54)

and the class of discriminators constructed from the feature functions in D is written as

span(D) = {fη : η ∈ RNd}. (55)

The game. For the Wasserstein GAN loss function

L(θ, η) = EX [fη(X)]− EZ [fη(gθ(Z))]− 1
2 ‖η‖

2
2 , (56)

where the Lipschitz constraint on the discriminator has been replaced with an explicit `2 regularizer, the game
between the generator gθ and the discriminator fη is given by

inf
θ

sup
η
L(θ, η) = inf

θ
J(θ), where J(θ) def= sup

η
L(θ, η). (57)

Under Assumption 1–4, No et al. (2021) shows that 2-layer random-feature WGANs with a small discriminator,
and a sufficiently wide generator does not exhibit a spurious stationary point.
Theorem (Theorem 9, No et al. (2021)). Let the discriminator hidden layer width be Nd ≤ n for the sample
space dimension n ∈ N. Assume Assumption 1–4. Then, for any C > 0 and ζ > 0, there exists a large enough
generator hidden layer width Ng ∈ N such that the following statement holds with probability at least 1− ζ: any
stationary point θs ∈ RNg satisfying ‖θs‖1 ≤ C is a global minimum of J(·).

A simple, yet crucial corollary of the above theorem is that the stabilization effect of Lookahead introduces
benefits for the game optimization and has no spurious effect, i.e., only stabilizes the Nash equilibria of the game.
Corollary 9 (No spurious stabilization for wide 2-layer WGANs). For the sample space dimension n ∈ N,
under Assumption 1–4 on 2-layer random-feature WGANs with discriminator hidden layer width Nd ≤ n and
`2-regularized discriminator, for any C > 0 and ζ > 0, there exists a large enough generator hidden layer
width Ng ∈ N such that the following statement holds with probability at least 1− ζ: a set of stationary points
{(θs, ηs) ∈ RNg+Nd : ∇(θs,ηs)L(θs, ηs) = 0, ‖θs‖1 ≤ C} that are stabilized by Lookahead contains no other points
than the Nash equilibria of Equation 57.

Proof. By the equivalance between gradient descent dynamics of Equation 57 and gradient descent minimization of
J(·) (Section 2.3, No et al. (2021)), each stationary point of J(·) is also a stationary point of the game. As a result,
each stationary of the game is a Nash equilibrium (Theorem 9, No et al. (2021)), and therefore, the stationary
points that are stabilized by Lookahead contains no other points than the Nash equilibra of Equation 57.

D EXPERIMENTAL DETAILS

D.1 Nonlinear Game

We use ε = 0.001 for the nonlinear game experiment in Figure 3 and Section 6. Using the automatic differentiation
package provided by PyTorch, we verify with Proposition B.3 that (0, 0) is a local Nash equilibrium of the game.
For a fixed learning rate η = 0.1, we use the automatic differentiation to inspect the spectral radius of each
dynamics, and actually verify that the equilibrium (0, 0) is unstable for simultaneous gradient descent GDSim,
and asymptotically stable for extragradient EGSim. Then, we use Theorem 4 to stabilize GDSim and Theorem 5
to accelerate EGSim. For each theorem, we compute the constants β1, β2 by solving the implicit equations in
each theorem for β1, β2 with the numerical solver provided by WolframAlpha. Then, we evaluate the precise
threshold c for α over a range of k that covers (β1, β2). Lastly, we compute the spectral radius of each Lookahead
dynamics LA-GDSim and LA-EGSim for a range of (k, α) that covers the sufficient conditions of Theorem 4–5,
and illustrate their relative sizes in Figure 6 (a)–(b). We report the actual values of (β1, β2) and c in Table D.2.
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Table D.2: The constants β1, β2, c in the nonlinear game experiments of Section 6.

Name β1, β2 (k, c)
Theorem 4 1.50, 26.58 (2, 0.24), (4, 0.60), (6, 0.71), (8, 0.76), (10, 0.79), (12,

0.79), (14, 0.79), (16, 0.77), (18, 0.73), (20, 0.67), (22,
0.57), (24, 0.40), (26, 0.11), (28, -0.36)

Theorem 5 0.04, 27.16 (2, 0.20), (4, 0.10), (6, 0.07), (8, 0.06), (10, 0.05), (12,
0.05), (14, 0.06), (16, 0.06), (18, 0.08), (20, 0.11), (22,
0.16), (24, 0.27), (26, 0.56), (28, 1.00)

Corollary 7 6.09, 37.51 (5, 0.79), (10, 0.88), (15, 0.89), (20, 0.89), (25, 0.86), (30,
0.76), (35, 0.46), (40, -1.17), (45, -3.63), (50, -4.13), (55,
-4.63), (60, -5.13), (65, -5.64), (70, -6.14)

Corollary 8 20.31, 76.16 (15, 1.00), (19, 1.00), (23, 0.93), (27, 0.88), (31, 0.85),
(35, 0.87), (39, 0.90), (43, 0.92), (47, 0.94), (51, 0.95),
(55, 0.96), (59, 0.97), (63, 0.97), (67, 0.98), (71, 0.98),
(75, 0.99)

For the experiments in Section 5, we choose k and α that are predicted by Theorem 4–5 to stabilize GDSim and
accelerate EGSim. Specifically, we choose (k, α) = (50, 0.3) for LA-GDSim and LA-GDNM

Sim, and (k, α) = (50, 0.7)
for LA-EGSim and LA-GDNM

Alt . We use negative momentum coefficients m = −0.2 for both GDNM
Sim and LA-GDNM

Sim,
and m = −0.9 for GDNM

Alt and LA-GDNM
Alt . The trajectories and progress in Figure 3 are evaluated for every k

base-dynamics steps.

D.2 Bilinear Game

For the bilinear game experiments in Section 6, we use ε = 0.01 and n = 1000. This gives a sample of the game
matrix An with σmax = 1.462 and σmin = 0.583, which yields the conditioning σmax

σmin
= 2.505 < 3. We fix the base

learning rate η = 0.1 for all the experiments. For Corollary 7–8, we compute the constants β1, β2 by solving the
implicit equations of β1, β2 in each theorem using the numerical solver provided by WolframAlpha. Then, for
each theorem, we evaluate the precise threshold c for α over a range of k that covers (β1, β2). Lastly, we compute
the spectral radius of each Lookahead dynamics LA-GDAlt, LA-GDSim, LA-PPSim and LA-EGSim for a range of
(k, α) that covers the sufficient conditions of Corollary 6–8, and illustrate their relative sizes in Figure 6 (c)–(d).
We report the actual values of (β1, β2) and c in Table D.2.

D.3 GANs

For the GAN experiment in Section 5, we train a SNDCGAN Miyato et al. (2018) with the non-saturating
loss function Goodfellow et al. (2014) on CIFAR-10 using LA-AdamAlt with k = 5000, α = 0.5. We use a
base learning rate 0.0003 for the discriminator, and 0.0001 for the generator. We use Adam hyperparameters
βAdam = (0.5, 0.999) and weight decay 0.0003 for the both networks. Following Kurach et al. (2019), we report
the FID Heusel et al. (2017) scores between 10k generated samples and 10k test samples of CIFAR 10 dataset.
We report our results over 8 different random initializations, and present the mean and standard deviation of
each metric with the solid lines and the shaded area of Figure 5, respectively.

E ADDITIONAL EXPERIMENTS

E.1 Bilinear Game

In this section, we verify our results on a bilinear game with larger conditioning. Specifically, we use n = 2000 and
ε = 0.02 to obtain a sample of game matrix An with larger conditioning σmax

σmin
= 56.84 > 3. We fix the learning

rate η = 0.1 for all the dynamics throughout the experiments, and follow the same protocol as in the bilinear
experiment of Section 6. We illustrate the results in Figure E.8 and report the actual values of the constants
β1, β2, c in Table E.3.

Figure E.8 (a) shows that the convergence guarantee of Corollary 6 still holds for any k and α even in a game
of larger conditioning. On the other hand, Figure E.8 (b) shows that Lookahead fails to stabilize GDSim for
any k and α. This result suggests that the non-necessity of Lemma 3 might be small in practice. Figure E.8
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(a) Corollary 6 – LA-GDAlt. (b) Corollary 7 – LA-GDSim. (c) Corollary 8 – LA-EGSim. (d) Corollary C – LA-PPSim.

Figure E.8: Stabilization and acceleration over a range of (k, α) in the bilinear game experiment in
Section E.1. Each plot illustrates the relative size of spectral radius of Lookahead ρk(α) over a range of (k, α).
Each blue cell represents (k, α) that achieves either stabilization ρk(α) < 1 or acceleration ρk(α) < ρk0 with
respect to the spectral radius ρ0 of its base dynamics. The blue cells contained in the yellow lines represent the
improvements predicted by each theorem, i.e., (k, α) that satisfies k ∈ (β1, β2) and α < c or α > c. Each red cell
indicates (k, α) that fails to improve the convergence.

Table E.3: The constants β1, β2, c in the bilinear game experiment in Section E.1.

Name β1, β2 (k, c)
Corollary C 1, 1442.94 (100, 0.01), (200, 0.01), (300, 0.04), (400, 0.07), (500,

0.11), (600, 0.16), (700, 0.20), (800, 0.28), (900, 0.36),
(1000, 0.45), (1100, 0.28), (1200, 0.17), (1300, 0.26),
(1400, 0.59), (1500, 1.00)

Corollary 8 302.85, 1108.05 (100, 1.00), (200, 1.00), (300, 1.00), (400, 1.00), (500,
0.89), (600, 0.88), (700, 0.92), (800, 0.95), (900, 0.96),
(1000, 0.98), (1100, 0.99), (1200, 1.00), (1300, 1.00),
(1400, 1.00), (1500, 1.00)

(a) Convergence of LA-GDAlt. (b) Convergence of LA-EGSim.

Figure E.9: Convergence of each Lookahead dynamics in the bilinear game experiment in Section E.1.
(a). The base dynamics GDAlt fails to converge towards the Nash equilibrium of the game. However, as predicted
by Corollary 6, its Lookahead dynamics LA-GDAlt with k = 500 and α = 0.25 successfully converges to the Nash
equilibrium. (b). As predicted by Corollary 8, LA-EGSim with k = 500 and α = 0.9, denoted by LA-EG∗Sim,
accelerates its base dynamics EGSim. However, LA-EGSim with k = 500 and α = 0.1, denoted by LA-EG†Sim, fails
to accelerate its base dynamics and slows down the convergence.

(c)–(d) verify that the acceleration guarantees in Corollary 8 and Corollary C still hold for the game with larger
conditioning. Again, we do not observe any non-necessity of our sufficient conditions in Figure E.8 (c)–(d).

To observe the actual improvements in convergence progress of each Lookahead dynamics, we choose k and α from
Figure E.8 (a) and Figure E.8 (d), and measure the distance to the origin, which is the unique Nash equilibrium
of the non-singular bilinear game. For LA-GDAlt, we choose k = 500 and α = 0.25, which are guaranteed by
Corollary 6 to converge towards the Nash equilibrium. We test the same configuration for the negative momentum
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(a) Unstable NS: IS=9.07. (b) Unstable GP: IS=9.05.

(c) Stable NS: IS=8.925. (d) Stable GP: IS=9.16.

Figure E.10: Top 20 largest eigenvalues of GANs trained with non-saturating (NS) Goodfellow et al. (2014)
and WGAN-GP (GP) Gulrajani et al. (2017) loss functions on MNIST dataset. The black dots in each plot
represent the eigenvalues at initialization. Top: Unstable points with competitive inception score (IS) 9.07 and
9.05. In (a)–(b), only a single pair of conjugate eigenvalues consists of the eigenvalues λ≥1(∇xFGDSim); hence,
they have the imaginary conditioning 1, and therefore, both of them can be locally stabilized by Theorem 4.
Bottom: Stable points with competitive IS=8.925 and IS=9.16. The largest eigenvalues λmax(∇xFGDSim) are
non-real; hence, they have the imaginary conditioning 1, and therefore, the local convergence towards both of
them can be accelerated by Theorem 5.

method GDNM
Alt with momentum coefficient m = −0.5. Similarly, for LA-EGSim, we choose k = 500 and α = 0.9,

which are predicted by Corollary 8 to accelerate the convergence. We also test LA-EGSim with k = 500 and
α = 0.1, which are predicted by Figure E.8 to slow down the convergence of its base dynamics EGSim.

We illustrate the results in Figure E.9. Figure E.9 (a) verifies the convergence guarantee of Corollary 6 and
shows that LA-GDAlt indeed converges towards the Nash equilibrium even for a game with larger conditioning.
Furthermore, LA-GDNM

Alt successfully accelerates the negative momentum GDNM
Alt . The result in Figure E.9 (b)

verifies the acceleration guarantee in Corollary 8. However, the result in Figure E.9 (b) suggests that badly
configured Lookahead can slow down the convergence.

E.2 GANs

The local stabilization and acceleration guarantees given by Theorem 4–5 assume the eigenvalues λ≥1(∇xF (x∗))
and λmax(∇xF (x∗)) to be non-reals with imaginary conditioning less than 3; otherwise, they lose the provable
guarantee for the existence of a feasible k ∈ (β1, β2) from Lemma 3. We verify whether such assumptions can
be realistic in a practical nonlinear game like GANs. Specifically, we train GANs on MNIST dataset LeCun
and Cortes (2010) with two different loss functions, namely non-saturating (NS) Goodfellow et al. (2014) and
WGAN-GP (GP) Gulrajani et al. (2017) with Adam Kingma and Ba (2015). Then, we visualize the top 20
largest eigenvalues of ∇xFGDSim at well-performing checkpoints, i.e., the weights of GANs where the generators
achieve high inception scores (IS) Salimans et al. (2016). We use a small variant of DCGAN Radford et al.
(2016) architecture with spectral normalization Miyato et al. (2018), and use the alternating updates for both NS
and WGAN-GP loss functions. We perform 5 discriminator updates for each generator update in WGAN-GP
experiments, and perform a single discriminator update for each iteration in NS experiments. We use a batch size
of 100 and Adam hyperparameters β1 = 0.5, β2 = 0.9 with a fixed learning rate 0.0001. For each loss function,
we perform 8 runs of training, and report top 20 eigenvalues of 2 representative points in Figure E.10.
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The results in Figure E.10 (a)–(b) suggest that there are unstable, yet highly-performant points in GANs, and show
that the assumptions in Theorem 4 can be realistic even for a practical nonlinear game like GANs. Specifically,
the unstable points illustrated in Figure E.10 (a)–(b) have the eigenvalues with modulus greater than or equal to
1 λ≥1(∇xFGDSim) of imaginary conditioning 1; hence, Theorem 4 can stabilize such unstable points. This verifies
that the eigenvalue assumptions in Theorem 4 is can be realistic even for a practical nonlinear game like GANs.
On the other hand, the results in Figure E.10 (c)–(d) show that the well-performing stable points of GANs can
exhibit non-real maximum eigenvalues. For such points, Theorem 5 can accelerate the local convergence. This
verifies that the eigenvalue assumptions in Theorem 5 can be realistic in a practical nonlinear game as well.


