
Near-Optimal Algorithms for Private
Online Optimization in the Realizable Regime

Hilal Asi 1 Vitaly Feldman 1 Tomer Koren 2 Kunal Talwar 1

Abstract
We consider online learning problems in the real-
izable setting, where there is a zero-loss solution,
and propose new Differentially Private (DP) algo-
rithms that obtain near-optimal regret bounds. For
the problem of online prediction from experts, we
design new algorithms that obtain near-optimal
regret 𝑂

(
𝜀−1 log1.5 𝑑

)
where 𝑑 is the number of

experts. This significantly improves over the best
existing regret bounds for the DP non-realizable
setting which are𝑂

(
𝜀−1 min

{
𝑑, 𝑇1/3 log 𝑑

})
. We

also develop an adaptive algorithm for the small-
loss setting with regret𝑂 (𝐿★ log 𝑑 + 𝜀−1 log1.5 𝑑)
where 𝐿★ is the total loss of the best expert. Ad-
ditionally, we consider DP online convex opti-
mization in the realizable setting and propose an
algorithm with near-optimal regret𝑂

(
𝜀−1𝑑1.5) , as

well as an algorithm for the smooth case with re-
gret 𝑂

(
𝜀−2/3 (𝑑𝑇)1/3) , both significantly improv-

ing over existing bounds in the non-realizable
regime.

1. Introduction
We study the problem of private online optimization in the
realizable setting where there is a zero-loss solution. In this
problem, an online algorithm A interacts with an adver-
sary over 𝑇 rounds. The adversary picks a (non-negative)
loss function ℓ𝑡 : X → ℝ at round 𝑡 and simultaneously
the algorithm A picks a response 𝑥𝑡 , suffering loss ℓ𝑡 (𝑥𝑡).
The algorithm aims to minimize the regret, which is the
loss compared to the best solution 𝑥★ ∈ X in hindsight,
while at the same time keeping the sequence of predictions
𝑥1, . . . , 𝑥𝑇 differentially private with respect to individual
loss functions.

In this paper, we focus on two well-studied instances of

1Apple 2Blavatnik School of Computer Science, Tel Aviv
University, Tel Aviv, Israel. Correspondence to: Hilal Asi <hi-
lal.asi94@gmail.com>.

Proceedings of the 40𝑡ℎ International Conference on Machine
Learning, Honolulu, Hawaii, USA. PMLR 202, 2023. Copyright
2023 by the author(s).

this problem. In differentially private online prediction
from experts (DP-OPE), we have 𝑑 experts X = [𝑑] and
the adversary chooses a loss function ℓ𝑡 : [𝑑] → [0, 1].
Our second setting is differentially private online convex
optimization (DP-OCO) where X ⊂ ℝ𝑑 is a convex set with
bounded diameter, and the adversary chooses convex and
𝐿-Lipschitz loss functions ℓ𝑡 : X → ℝ+.

Several papers have recently studied DP-OPE and DP-
OCO in the general non-realizable setting (Jain et al., 2012;
Smith & Thakurta, 2013; Jain & Thakurta, 2014; Agar-
wal & Singh, 2017; Kairouz et al., 2021). These papers
have resulted in different algorithms with sub-linear re-
gret for both problems. For DP-OPE, Agarwal & Singh
(2017); Jain & Thakurta (2014) developed private versions
of follow-the-regularized-leader (FTRL) obtaining regret
min

{
𝑑/𝜀,

√︁
𝑇 log 𝑑/𝜀

}
. More recently, Asi et al. (2022b)

developed low-switching algorithms for DP-OPE with obliv-
ious adversaries, obtaining regret roughly 𝑂 (

√︁
𝑇 log(𝑑) +

𝑇1/3 log 𝑑/𝜀). Additionally, for the problem of DP-OCO,
Kairouz et al. (2021) have recently proposed a DP-FTRL al-
gorithm based on the binary tree mechanism which obtains
regret

(
𝑇
√
𝑑/𝜀

)1/2.

Despite this progress, the regret bounds of existing algo-
rithms are still polynomially worse than existing lower
bounds. Currently, the only existing lower bounds for obliv-
ious adversaries are the trivial bounds from the non-online
versions of the same problems: for DP-OPE, lower bounds
for private selection (Steinke & Ullman, 2017) imply a
regret lower bound of 𝑂 (log(𝑑)/𝜀), while existing lower
bounds for DP-SCO (Feldman et al., 2020) give a regret
lower bound of Ω(

√
𝑑/𝜀) for DP-OCO.

Practical optimization problems arising from over-
parameterized models often lead to instances that addition-
ally satisfy realizability, i.e. that the optimal loss is zero
or close to zero. This motivates the study of designing
algorithms that can do better under this assumption. Real-
izability has been studied since the early days of learning
theory and ubiquitous in the non-private online optimization
literature (Srebro et al., 2010; Shalev-Shwartz, 2012; Hazan,
2016). It has proven useful for improving regret bounds in
non-private OPE and OCO (Shalev-Shwartz, 2012; Srebro
et al., 2010) and in the closely related problem of differen-

1

Near-Optimal Algorithms for DP Realizable Online Optimization

tially private stochastic convex optimization (DP-SCO) (Asi
et al., 2022a). In this work we study DP-OPE and DP-OCO
in the realizable setting and develop new algorithms that
obtain near-optimal regret bounds in several settings.

1.1. Contributions

We propose new algorithms and lower bounds for the prob-
lems of differentially private online prediction from experts
(DP-OPE) and differentially private online convex optimiza-
tion (DP-OCO) in the realizable setting. The following are
our primary contributions:

• Near-optimal algorithms for DP-OPE. We de-
sign new algorithms that obtain near-optimal regret
𝑂

(
log1.5 (𝑑)/𝜀

)
for DP-OPE with 𝑑 experts when

there is a zero-loss expert. The best existing algo-
rithms for non-realizable DP-OPE obtain significantly
worse regret bounds min

{
𝑑/𝜀, 𝑇1/3 log 𝑑/𝜀

}
(Agarwal

& Singh, 2017; Asi et al., 2022b), which have a polyno-
mial dependence on either𝑇 or the number of experts 𝑑.
Our algorithms build on sequential applications of the
exponential mechanism to pick a good expert, and the
sparse-vector-technique to identify when the current
expert is no longer a good expert (with near-zero loss).
Crucially, an oblivious adversary cannot identify which
expert the algorithm has picked, resulting in a small
number of switches. We deploy a potential-based proof
strategy to show that this algorithm have logarithmic
number of switches. We also show that a lower bound
of Ω(log 𝑑/𝜀) holds for any 𝜀-DP algorithm even in
the realizable case.

• Adaptive algorithms for DP-OPE with low-loss ex-
perts. We also develop an algorithm that adapts
to the setting where there is an expert with low loss,
that is, 𝐿★ = min𝑥∈[𝑑]

∑𝑇
𝑡=1 ℓ𝑡 (𝑥). Our algorithms are

adaptive to the value of 𝐿★ and obtain total regret of
𝐿★ log 𝑑 + 𝜀−1 log1.5 𝑑.

• Near-optimal regret for low-dimensional DP-
OCO. Building on our algorithms for DP-OPE,
we propose a new algorithm for DP-OCO that ob-
tains regret 𝑂

(
𝑑1.5/𝜀

)
. This is near-optimal for low-

dimensional problems where 𝑑 = 𝑂 (1) and improves
over the best existing algorithm which obtains a regret
(𝑇
√
𝑑/𝜀)1/2 (Kairouz et al., 2021).

• Improved regret for smooth DP-OCO. When
the loss function is smooth, we show that DP-
FTRL (Kairouz et al., 2021) with certain parameters
obtains an improved regret of (

√
𝑇𝑑/𝜀)2/3 if there is a

zero-loss expert.

1.2. Related work

Several works have studied online optimization in the re-
alizable setting, developing algorithms with better regret
bounds (Shalev-Shwartz, 2012; Srebro et al., 2010). For
online prediction from experts, the weighted majority al-
gorithm obtains a regret bound of 4 log 𝑑 compared to
𝑂 (

√︁
𝑇 log 𝑑) in the non-realizable setting. Moreover, for

online convex optimization, Srebro et al. (2010) show that
online mirror descent achieves regret 4𝛽𝐷2 + 2

√︁
𝛽𝐷2𝑇𝐿★

compared to 𝑂 (
√
𝑇) in the general case.

On the other hand, the private online optimization lit-
erature has mainly studied the general non-realizable
case (Jain et al., 2012; Smith & Thakurta, 2013; Jain
& Thakurta, 2014; Agarwal & Singh, 2017; Kairouz
et al., 2021). For online prediction from experts,
the best existing regret bounds for (𝜀, 𝛿)-DP are
𝑂 (𝜀−1

√︁
𝑇 log 𝑑 log(1/𝛿)) (Jain & Thakurta, 2014) and

𝑂 (
√︁
𝑇 log 𝑑 + 𝜀−1

√︁
𝑑 log(1/𝛿) log 𝑑 log2 𝑇) (Agarwal &

Singh, 2017). Asi et al. (2022b) show that these rates can
be improved using a private version of the shrinking dart-
board algorithm, obtaining regret roughly 𝑂 (

√︁
𝑇 log 𝑑 +

𝑇1/3 log 𝑑/𝜀). For online convex optimization, Kairouz et al.
(2021) developed a private follow-the-regularized-leader al-
gorithm using the binary tree mechanism that obtains regret
bound 𝑂

(
𝑇
√
𝑑/𝜀

)1/2.

The realizable setting has recently been studied in the differ-
ent but related problem of differentially private stochastic
convex optimization (DP-SCO) (Asi et al., 2022a). DP-SCO
and DP-OCO are closely related as one can convert an OCO
algorithm into an SCO algorithm using standard online-to-
batch transformations (Hazan, 2016) Asi et al. (2022a) study
DP-SCO problems in the interpolation regime where there
exists a minimizer that minimizes all loss functions, and
propose algorithms that improve the regret over the general
setting if the functions satisfy certain growth conditions.

2. Preliminaries
In online optimization, we have an interactive 𝑇-round game
between an adversary and an online algorithm. In this paper,
we focus on oblivious adversaries that choose in advance
a sequence of loss functions ℓ1, . . . , ℓ𝑇 where ℓ𝑡 : X → ℝ.
Then, at round 𝑡, the adversary releases a loss function ℓ𝑡
and simultaneously the algorithm plays a solution 𝑥𝑡 ∈ X.
The algorithm then suffers loss ℓ𝑡 (𝑥𝑡) at this round. The
regret of the online algorithm is

𝑅𝑒𝑔𝑇 (A) =
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − min
𝑥★∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥★).

For ease of notation, for an oblivious adversary that
chooses a loss sequence S = (ℓ1, . . . , ℓ𝑇), we let A(S) =

2

Near-Optimal Algorithms for DP Realizable Online Optimization

Non-realizable Realizable
(This work)

DP-OPE min

{√
𝑑

𝜀
,
√︁
𝑇 log 𝑑 + 𝑇

1/3 log 𝑑
𝜀

}
(Agarwal & Singh, 2017; Asi et al., 2022b)

log1.5 𝑑

𝜀

DP-OCO

(
𝑇
√
𝑑

𝜀

)1/2

(Kairouz et al., 2021)
𝑑1.5

𝜀

DP-OCO (smooth)

(
𝑇
√
𝑑

𝜀

)1/2

(Kairouz et al., 2021)

(√
𝑇𝑑

𝜀

)2/3

Table 1. Comparison between regret upper bounds for the realizable and non-realizable case for both DP-OPE and DP-OCO. For
readability, we omit logarithmic factors in 𝑇 and 1/𝛿.

(𝑥1, . . . , 𝑥𝑇) denote the output of the interaction between
the online algorithm and the adversary.

In this work, we are mainly interested in two instances of
the above general online optimization problem:

• Online prediction from experts (OPE). In this prob-
lem, we have a set of 𝑑 experts X = [𝑑], and the
adversary chooses loss functions ℓ𝑡 : [𝑑] → [0, 1].

• Online convex optimization (OCO). In OCO, we are
optimizing over a convex set X ⊆ ℝ𝑑 with bounded
diameter diam(X) ≤ 𝐷,1 and the adversary chooses
loss functions ℓ𝑡 : X → ℝ that are convex and 𝐿-
Lipschitz.

We are mainly interested in the so-called realizable setting.
More precisely, we say than an OPE (or OCO) problem is
realizable if there exists a feasible solution 𝑥★ ∈ X such that
𝐿★ =

∑𝑇
𝑡=1 ℓ𝑡 (𝑥★) = 0. We also extend some of our results

to the near-realizable setting where 0 < 𝐿★ ≪ 𝑇 .

The main goal of this paper is to study both of these prob-
lems under the restriction of differential privacy.

Definition 2.1 (Differential Privacy). A randomized algo-
rithm A is (𝜀, 𝛿)-differentially private against oblivious ad-
versaries ((𝜀, 𝛿)-DP) if, for all sequences S = (ℓ1, . . . , ℓ𝑇)
and S′ = (ℓ′1, . . . , ℓ

′
𝑇
) that differ in a single element, and for

all events O in the output space of A, we have

Pr[A(S) ∈ O] ≤ 𝑒𝜀 Pr[A(S′) ∈ O] + 𝛿.

We note that our algorithms satisfy a stronger privacy guar-
antee against adaptive adversaries (see for example the pri-
vacy definition in (Jain et al., 2021)). However, we choose

1The diameter of a set X ⊆ ℝ𝑑 (in Euclidean geometry) is
defined as diam(X) = sup𝑥,𝑦∈X ∥𝑥 − 𝑦∥.

to focus solely on oblivious adversaries for ease of presenta-
tion and readability.

2.1. Background on Differential Privacy

In our analysis, we require the following standard privacy
composition results.

Lemma 2.1 (Basic composition Dwork & Roth, 2014). If
A1, . . . , 𝐴𝑘 are randomized algorithms that each is 𝜀-DP,
then their composition (A1 (S), . . . , 𝐴𝑘 (S)) is 𝑘𝜀-DP.

Lemma 2.2 (Advanced composition Dwork & Roth, 2014).
If A1, . . . , 𝐴𝑘 are randomized algorithms that each is
(𝜀, 𝛿)-DP, then their composition (A1 (S), . . . , 𝐴𝑘 (S)) is
(
√︁

2𝑘 log(1/𝛿′)𝜀 + 𝑘𝜀(𝑒𝜀 − 1), 𝛿′ + 𝑘𝛿)-DP.

In addition to basic facts about differential privacy such
as composition and post-processing, our development uses
two key techniques from the privacy literature: the Sparse-
vector-technique and the binary tree mechanism, which we
now describe.

Sparse vector technique. We recall the sparse-vector-
technique (Dwork & Roth, 2014) which we use for the realiz-
able setting in Section 3. Given an input S = (𝑧1, . . . , 𝑧𝑛) ∈
Z𝑛, the algorithm takes a stream of queries 𝑞1, 𝑞2, . . . , 𝑞𝑇
in an online manner. We assume that each 𝑞𝑖 is 1-sensitive,
that is, |𝑞𝑖 (S) − 𝑞𝑖 (S′) | ≤ 1 for neighboring datasets
S,S′ ∈ Z𝑛 that differ in a single element. We have the
following guarantee.

Lemma 2.3 (Dwork & Roth, 2014, Theorem 3.24). Let
S = (𝑧1, . . . , 𝑧𝑛) ∈ Z𝑛. For a threshold 𝐿 and 𝛽 > 0,
there is an 𝜀-DP algorithm (AboveThreshold) that halts
at time 𝑘 ∈ [𝑇 + 1] such that for 𝛼 =

8(log𝑇+log(2/𝛽))
𝜀

with
probability at least 1 − 𝛽,

• For all 𝑡 < 𝑘 , 𝑞𝑖 (S) ≤ 𝐿 + 𝛼;

3

Near-Optimal Algorithms for DP Realizable Online Optimization

• 𝑞𝑘 (S) ≥ 𝐿 − 𝛼 or 𝑘 = 𝑇 + 1.

To facilitate the notation for using AboveThreshold in our
algorithms, we assume that it has the following components:

1. InitializeSparseVec(𝜀, 𝐿, 𝛽): initializes a new in-
stance of AboveThreshold with privacy parameter
𝜀, threshold 𝐿, and probability parameter 𝛽. This re-
turns an instance (data structure) 𝑄 that supports the
following two functions.

2. 𝑄.AddQuery(𝑞): adds a new query 𝑞 : Z𝑛 → ℝ to
𝑄.

3. 𝑄.TestAboThr(): tests if the last query that was added
to 𝑄 was above threshold. In that case, the algorithm
stops and does not accept more queries.

The binary tree mechanism. We also build on the binary
tree mechanism (Dwork et al., 2010; Chan et al., 2011)
which allows to privately estimate the running sum of a
sequence of 𝑇 numbers 𝑎1, . . . , 𝑎𝑇 ∈ [0, 1].
Lemma 2.4 (Dwork et al., 2010, Theorem 4.1). Let 𝜀 ≤ 1.
There is an 𝜀-DP algorithm (BinaryTree) that takes a stream
of numbers 𝑎1, 𝑎2, . . . , 𝑎𝑇 and outputs 𝑐1, 𝑐2, . . . , 𝑐𝑇 such
that for all 𝑡 ∈ [𝑇] with probability at least 1 − 𝛽,���𝑐𝑡 − 𝑡∑︁

𝑖=1
𝑎𝑖

��� = 1
𝜀
· poly(log(𝛽−1) log𝑇).

The same approach extends to the case when 𝑎𝑖’s are vectors
in ℝ𝑑 with ∥𝑎𝑖 ∥2 ≤ 1. In this case, the error vector (𝑐𝑡 −∑𝑡
𝑖=1 𝑎𝑖) is distributed at N(0, 𝑑 · poly(log𝑇/𝛽𝛿)/𝜀2𝕀) and

the mechanism satisfies (𝜀, 𝛿)-DP.

Additional notation. For a positive integer 𝑘 ∈ ℕ, we let
[𝑘] = {1, 2, . . . , 𝑘}. Moreover, for a sequence 𝑎1, . . . , 𝑎𝑡 ,
we use the shorthand 𝑎1:𝑡 = 𝑎1, . . . , 𝑎𝑡 .

3. Near-optimal regret for online prediction
from experts

In this section, we consider the online prediction from
experts problem in the near-realizable regime, where the
best expert achieves small loss 𝐿★𝑙𝑙𝑇 . Under this set-
ting, we develop a new private algorithm that achieves re-
gret 𝑂 (𝐿★ log 𝑑 + log3/2 (𝑑)/𝜀). For the realizable setting
where 𝐿★ = 0, this algorithm obtains near-optimal regret
𝑂 (log3/2 (𝑑)/𝜀).

The algorithm builds on the fact that an oblivious adversary
cannot know which expert the algorithm picks. Therefore, if
the algorithm picks a random good expert with loss smaller
than 𝐿★, the adversary has to increase the loss for many

experts before identifying the expert chosen by the algo-
rithm. The algorithm will therefore proceed as follows: at
each round, privately check using sparse-vector-technique
whether the previous expert is still a good expert (has loss
nearly 𝐿★). If not, randomly pick (privately) a new expert
from the set of remaining good experts. The full details are
in Algorithm 1.

The following theorem summarizes the performance of Al-
gorithm 1.

Theorem 1. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an
oblivious adversary such that there is 𝑥★ ∈ [𝑑] such that∑𝑇
𝑡=1 ℓ𝑡 (𝑥★) ≤ 𝐿★. Let 0 < 𝛽 < 1/2, 𝐵 = log(2𝑇2/𝛽), and

𝐿 = 𝐿★+4/𝜂+ 8𝐵
𝜀

. If 𝜂 = 𝜀/(12 ⌈log 𝑑⌉ +48 log(1/𝛽)) then
Algorithm 1 is 𝜀-DP and with probability at least 1 −𝑂 (𝛽)
has regret

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) ≤ 𝑂
(
𝐿★ log(𝑑/𝛽)

)
+𝑂

(
log2 (𝑑) + log(𝑇/𝛽) log(𝑑/𝛽)

𝜀

)
.

Further, if 𝜀 ≤
√︁

log𝑇 log(1/𝛿) and 𝜂 =

𝜀/
√︁

32(6 ⌈log 𝑑⌉ + 24 log(1/𝛽)) log(1/𝛿) then Algo-
rithm 1 is (𝜀, 𝛿)-DP and with probability at least 1 −𝑂 (𝛽)
has regret

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) ≤ 𝑂
(
𝐿★ log(𝑑/𝛽)

)
+𝑂

(
log3/2 (𝑑)

√︁
log(1/𝛿) + log(𝑇/𝛽) log(𝑑/𝛽)

𝜀

)
.

While Algorithm 1 requires the knowledge of 𝐿★, we also
design an adaptive version that does not require 𝐿★ in the
next section. Note that the algorithm obtains regret roughly
log3/2 (𝑑)/𝜀 for the realizable setting where 𝐿★ = 0.

Proof. First, we prove the privacy guarantees of the algo-
rithm using privacy composition results: there are 𝐾 appli-
cations of the exponential mechanism with privacy parame-
ter 𝜂. Moreover, sparse-vector is applied over each user’s
data only once, hence the 𝐾 applications of sparse-vector
are 𝜀/2-DP. Overall, the algorithm is (𝜀/2 + 𝐾𝜂)-DP and
(𝜀/2+

√︁
2𝐾 log(1/𝛿)𝜂+𝐾𝜂(𝑒𝜂−1), 𝛿)-DP (using advanced

compositions; see Lemma 2.2). Setting 𝜂 = 𝜀/2𝐾 results in
𝜀-DP and 𝜂 = 𝑂 (𝜀/

√︁
𝐾 log(1/𝛿)) results in (𝜀, 𝛿)-DP.

We proceed to analyze utility. First, note that the guarantees
of the sparse-vector algorithm (Lemma 2.3) imply that with
probability at least 1 − 𝛽 for each time-step 𝑡 ∈ [𝑇], if
sparse-vector identifies above threshold query then 𝑠𝑡 (𝑥) ≥

¯
Δ B 𝐿 − 8𝐵

𝜀
≥ 4/𝜂. Otherwise, 𝑠𝑡 (𝑥) ≤ Δ̄ B 𝐿 + 8𝐵

𝜀
. In

the remainder of the proof, we condition on this event. The

4

Near-Optimal Algorithms for DP Realizable Online Optimization

Algorithm 1 Sparse-Vector for zero loss experts
Require: Switching bound 𝐾, optimal loss 𝐿★, Sampling

parameter 𝜂, Threshold parameter 𝐿, failure probability
𝛽, privacy parameters (𝜀, 𝛿)

1: Set 𝐾 = 6 ⌈log 𝑑⌉ + 24 log(1/𝛽), 𝑘 = 0, and current
expert 𝑥0 = Unif[𝑑]

2: Set 𝑡𝑝 = 0
3: while 𝑡 ≤ 𝑇 do
4: Set 𝑥𝑡 = 𝑥𝑡−1
5: if 𝑘 < 𝐾 then
6: 𝑄 = InitializeSparseVec(𝜀/2, 𝐿, 𝛽/𝑇)
7: while Q.TestAboThr() = False do
8: Set 𝑥𝑡 = 𝑥𝑡−1
9: Define a new query 𝑞𝑡 =

∑𝑡−1
𝑖=𝑡𝑝

ℓ𝑖 (𝑥𝑡)
10: Add new query 𝑄.AddQuery(𝑞𝑡)
11: Receive loss function ℓ𝑡 : [𝑑] → [0, 1]
12: Pay cost ℓ𝑡 (𝑥𝑡)
13: Update 𝑡 = 𝑡 + 1
14: Sample 𝑥𝑡 from the exponential mechanism with

scores 𝑠𝑡 (𝑥) = max
(∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥), 𝐿★
)

for 𝑥 ∈ [𝑑]:

ℙ(𝑥𝑡 = 𝑥) ∝ 𝑒−𝜂𝑠𝑡 (𝑥)/2

15: Set 𝑘 = 𝑘 + 1 and 𝑡𝑝 = 𝑡

16: Receive loss function ℓ𝑡 : [𝑑] → [0, 1]
17: Pay cost ℓ𝑡 (𝑥𝑡)
18: Update 𝑡 = 𝑡 + 1

idea is to show that the algorithm has logarithmic number of
switches, and each switch the algorithm pays roughly 1/𝜀
regret.
To this end, we define a potential at time 𝑡 ∈ [𝑇]:

𝜙𝑡 =
∑︁
𝑥∈[𝑑]

𝑒−𝜂𝐿𝑡 (𝑥)/2,

where 𝐿𝑡 (𝑥) = max(∑𝑡−1
𝑗=1 ℓ 𝑗 (𝑥), 𝐿★). Note that 𝜙1 =

𝑑𝑒−𝜂𝐿
★/2 and 𝜙𝑡 ≥ 𝑒−𝜂𝐿

★/2 for all 𝑡 ∈ [𝑇] as there is
𝑥 ∈ [𝑑] such that

∑𝑇
𝑡=1 ℓ𝑡 (𝑥) = 𝐿★. We split the iterates

to 𝑚 = ⌈log 𝑑⌉ rounds 𝑡0, 𝑡1, . . . , 𝑡𝑚 where 𝑡𝑖 is the largest
𝑡 ∈ [𝑇] such that 𝜙𝑡𝑖 ≥ 𝜙1/2𝑖 . Let 𝑍𝑖 be the number of
switches in [𝑡𝑖 , 𝑡𝑖+1 − 1] (number of times the exponential
mechanism is used to pick 𝑥𝑡). The following key lemma
shows that 𝑍𝑖 cannot be too large.

Lemma 3.1. Fix 0 ≤ 𝑖 ≤ 𝑚 − 1. Then for any 1 ≤ 𝑘 ≤ 𝑇 , it
holds that

𝑃(𝑍𝑖 = 𝑘 + 1) ≤ (2/3)𝑘 .

Proof. Let 𝑡𝑖 ≤ 𝑡 ≤ 𝑡𝑖+1 be a time-step where a switch
happens (exponential mechanism is used to pick 𝑥𝑡). Note
that 𝜙𝑡𝑖+1 ≥ 𝜙𝑡/2. We prove that the probability that 𝑥𝑡 is
switched between 𝑡 and 𝑡𝑖+1 is at most 2/3. To this end,

note that if 𝑥𝑡 is switched before 𝑡𝑖+1 then
∑𝑡𝑖+1
𝑖=𝑡
ℓ𝑖 (𝑥) ≥ ¯

Δ as
sparse-vector identifies 𝑥𝑡 , and therefore 𝐿𝑡𝑖+1 (𝑥) − 𝐿𝑡 (𝑥) ≥

¯
Δ − 𝐿★ ≥ 4/𝜂. Thus we have that

𝑃(𝑥𝑡 is switched before 𝑡𝑖+1)

≤
∑︁
𝑥∈[𝑑]

𝑃(𝑥𝑡 = 𝑥)1
{
𝐿𝑡𝑖+1 (𝑥) − 𝐿𝑡 (𝑥) ≥ 4/𝜂

}
=

∑︁
𝑥∈[𝑑]

𝑒−𝜂𝐿𝑡 (𝑥)/2

𝜙𝑡
· 1

{
𝐿𝑡𝑖+1 (𝑥) − 𝐿𝑡 (𝑥) ≥ 4/𝜂

}
≤

∑︁
𝑥∈[𝑑]

𝑒−𝜂𝐿𝑡 (𝑥)/2

𝜙𝑡
· 1 − 𝑒−𝜂 (𝐿𝑡𝑖+1 (𝑥)−𝐿𝑡 (𝑥))/2

1 − 𝑒−2

≤ 4/3(1 − 𝜙𝑡𝑖+1/𝜙𝑡)
≤ 2/3.

where the second inequality follows the fact that
1{𝑎 ≥ 𝑏} ≤ 1−𝑒−𝜂𝑏

1−𝑒−𝜂𝑎 for 𝑎, 𝑏, 𝜂 ≥ 0, and the last inequal-
ity since 𝜙𝑡𝑖+1/𝜙𝑡1 ≥ 1/2. This argument shows that after
the first switch inside the range [𝑡𝑖 , 𝑡𝑖+1], each additional
switch happens with probability at most 2/3. The claim
follows. □

We now proceed with the proof. Let 𝑍 =
∑𝑚−1
𝑖=0 𝑍𝑖 be the to-

tal number of switches. Note that 𝑍 ≤ 𝑚 +∑𝑚−1
𝑖=0 max(𝑍𝑖 −

1, 0) and Lemma 3.1 implies max(𝑍𝑖 − 1, 0) is upper
bounded by a geometric random variable with success prob-
ability 1/3. Therefore, using concentration of geometric
random variables (Lemma A.2), we get that

𝑃(𝑍 ≥ 6𝑚 + 24 log(1/𝛽)) ≤ 𝛽.

Noting that 𝐾 ≥ 6𝑚 + 24 log(1/𝛽), this shows that the algo-
rithm does not reach the switching budget with probability
1 − 𝑂 (𝛽). Thus, the guarantees of the sparse-vector algo-
rithm imply that the algorithm pays regret at most Δ̄ for
each switch, hence the total regret of the algorithm is at
most 𝑂 (Δ̄(𝑚 + log(1/𝛽))) = 𝑂 (Δ̄ log(𝑑/𝛽)). The claim
follows as Δ̄ ≤ 𝐿★ + 4/𝜂 + 16𝐵/𝜀. □

3.1. Adaptive algorithms for DP experts

While Algorithm 1 achieves near-optimal loss for settings
with low-loss experts, it requires the knowledge of the value
of 𝐿★. As 𝐿★ is not always available in practice, our goal in
this section is to develop an adaptive version of Algorithm 1
which obtains similar regret without requiring the knowl-
edge of 𝐿★. Similarly to other online learning problems,
we propose to use the doubling trick (Kalai & Vempala,
2005) to design our adaptive algorithms. We begin with
an estimate 𝐿★1 = 1 of 𝐿★. Then we apply Algorithm 1
using 𝐿★ = 𝐿★1 until the exponential mechanism picks an
expert that contradicts the current estimate of 𝐿★, that is,∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥𝑡) ≫ 𝐿★1 . We use the Laplace mechanism to check

5

Near-Optimal Algorithms for DP Realizable Online Optimization

Algorithm 2 Adaptive Sparse-Vector for low-loss experts
Require: Failure probability 𝛽

1: Set 𝜀0 = 𝜀/2 log𝑇 , 𝛽0 = 𝛽/𝑇
2: 𝐾 = 6 ⌈log 𝑑⌉ + 24 log(1/𝛽0), 𝜂 = 𝜀0/2𝐾, 𝐵 =

log(2𝑇2/𝛽0)
3: Set �̄�★ = 1, 𝐿 = 𝐿★ + 4/𝜂 + 8𝐵

𝜀0
4: while 𝑡 < 𝑇 do
5: Run Algorithm 1 with parameters �̄�★, 𝜂, 𝐿, 𝛽0, 𝜀0
6: if Algorithm 1 applies the exponential mechanism

(step 12) then
7: Calculate �̄�𝑡 =

∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥𝑡) + 𝜁𝑡 where 𝜁𝑡 ∼

Laplace(𝐾/𝜀0)
8: if �̄�𝑡 > �̄�★ − 5𝐾 log(1/𝛽0)/𝜀0 then
9: Set �̄�★ = 2�̄�★

10: Go to step 4

this privately. Noting that this happens with small prob-
ability if 𝐿★ ≤ 𝐿★1 , we conclude that our estimate of 𝐿★

was too small and set a new estimate 𝐿★2 = 2𝐿★1 and repeat
the same steps. As 𝐿★ ≤ 𝑇 , this process will stop in at
most log𝑇 phases, hence we can divide the privacy budget
equally among phases while losing at most a factor of log𝑇 .
We present the full details in Algorithm 2.

We have the following guarantees for the adaptive algorithm.
We defer the proof to Appendix B.2.

Theorem 2. Let ℓ1, . . . , ℓ𝑇 ∈ [0, 1]𝑑 be chosen by an
oblivious adversary such that there is 𝑥★ ∈ [𝑑] such that∑𝑇
𝑡=1 ℓ𝑡 (𝑥★) ≤ 𝐿★. Let 0 < 𝛽 < 1/2. Then Algorithm 2 is

𝜀-DP and with probability at least 1 −𝑂 (𝛽) has regret

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) ≤ 𝑂
(
𝐿★ log(𝑇𝑑/𝛽) log(𝑇)

)
+𝑂

(
log2 (𝑑) log(𝑇) + log(𝑇/𝛽) log(𝑇𝑑/𝛽) log(𝑇)

𝜀

)
.

We also present a different binary-tree based mechanism for
this problem with similar rates in Appendix B.1.

4. Faster rates for DP-OCO
In this section we study differentially private online convex
optimization (DP-OCO) and propose new algorithms with
faster rates in the realizable setting. In Section 4.1, we
develop an algorithm that reduces the OCO problem to an
experts problem (by discretizing the space) and then uses
our procedure for experts. In Section 4.2, we show that
follow-the-regularized-leader (FTRL) using the binary tree
mechanism results in faster rates in the realizable setting for
smooth functions.

4.1. Experts-based algorithm for DP-OCO

The algorithm in this section essentially reduces the prob-
lem of DP-OCO to DP-OPE by discretizing the space
X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} into sufficiently many ex-
perts. In particular, we consider a 𝜌-net of the space X,
that is, a set Xexperts = {𝑥1, . . . , 𝑥𝑀 } ⊂ X such that for all
𝑥 ∈ X there is 𝑥𝑖 ∈ X𝜌experts such that

𝑥𝑖 − 𝑥2 ≤ 𝜌. Such
a set exists if 𝑀 ≥ 2𝑑 log(4𝐷/𝜌) (Duchi, 2019, Lemma 7.6).
Given a loss function ℓ𝑡 : X → ℝ, we define the loss of
expert 𝑥𝑖 to be ℓ𝑡 (𝑥𝑖). Then, we run Algorithm 1 for the
given DP-OPE problem. This algorithm has the following
guarantees.
Theorem 3. Let X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} and
ℓ1, . . . , ℓ𝑇 : X → ℝ be non-negative, convex and 𝐿-
Lipschitz functions chosen by an oblivious adversary. Then
running Algorithm 1 over X𝜌experts with 𝜌 = 1/(𝐿𝑇) is (𝜀, 𝛿)-
DP and with probability at least 1 −𝑂 (𝛽) has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]

≤ (𝐿★ + 1
𝜀
)𝑑1.5 · 𝑂 (poly(log(𝐷𝐿𝑇/𝛿))) .

We defer the proof to Appendix D.1.

These results demonstrates that existing algorithms which
achieve regret roughly (𝑇

√
𝑑
𝜀

)1/2 are not optimal for the re-
alizable setting. Moreover, in the low-dimensional regime
(constant 𝑑), the above bound is nearly-optimal up to log-
arithmic factors as we have a lower bound of

√
𝑑/𝜀 from

the stochastic setting of this problem (see discussion in the
introduction).

Finally, while the algorithm we presented in Theorem 3
has exponential runtime due to discretizing the space, we
note that applying Algorithm 1 over the unit ball results
in similar rates and polynomial runtime. Recall that this
algorithm only accesses the loss functions to sample from
the exponential mechanism, and uses sparse-vector over the
running loss. Both of these can be implemented in poly-
nomial time—since the losses are convex—using standard
techniques from log-concave sampling.

4.2. Binary-tree based FTRL

In this section, we consider DP-OCO with smooth loss
functions and show that DP-FTRL (Algorithm 1, Kairouz
et al., 2021) with modified parameters obtains improved
regret 𝛽𝐷2+ (

√
𝑇𝑑/𝜀)2/3 in the realizable setting, compared

to 𝐿𝐷
√
𝑇 + (𝑇

√
𝑑/𝜀)1/2 in the non-realizable setting.

We present the details in Algorithm 3. Appendix B.1
in (Kairouz et al., 2021) has more detailed information
about the implementation of the binary tree mechanism
in DP-FTRL.

6

Near-Optimal Algorithms for DP Realizable Online Optimization

Algorithm 3 DP-FTRL (Kairouz et al., 2021)
Require: Regularization parameter 𝜆

1: Set 𝑥0 ∈ X
2: for 𝑡 = 1 to 𝑇 do
3: Use the binary tree mechanism to estimate the sum∑𝑡−1

𝑖=1 ∇ℓ𝑖 (𝑥𝑖); let �̄�𝑡−1 be the estimate
4: Apply follow-the-regularized-leader step

𝑥𝑡 = argmin
𝑥∈X

⟨�̄�𝑡−1, 𝑥⟩ +
𝜆

2
∥𝑥∥2

2 ,

5: Receive loss function ℓ𝑡 : X → ℝ

6: Pay cost ℓ𝑡 (𝑥𝑡)

We have the following guarantees for DP-FTRL in the real-
izable and smooth setting.

Theorem 4. Let X = {𝑥 ∈ ℝ𝑑 : ∥𝑥∥2 ≤ 𝐷} and ℓ1, . . . , ℓ𝑇 :
X → ℝ be non-negative, convex, 𝐿-Lipschitz, and 𝛽-smooth
functions chosen by an oblivious adversary. DP-FTRL with

𝜆 = 32𝛽 +
(
𝛽

𝜀2 (𝐿/𝐷)2𝑇𝑑 log(𝑇) log(1/𝛿)
)1/3

is (𝜀, 𝛿)-DP
and generates 𝑥1, . . . , 𝑥𝑇 that has regret

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − ℓ𝑡 (𝑥★)
]

≤ 𝑂 ©«𝐿★ + 𝛽𝐷2 +
(
𝐿𝐷

√︁
𝛽𝐷2𝑇𝑑 log(𝑇) log(1/𝛿)

𝜀

)2/3ª®¬ .
For the proof, we use the following property for smooth
non-negative functions.

Lemma 4.1 (Nesterov, 2004). Let ℓ : X → ℝ be non-
negative and 𝛽-smooth function. Then ∥∇ℓ(𝑥)∥2

2 ≤ 4𝛽ℓ(𝑥).

Proof. The proof follows similar arguments to the proof of
Theorem 5.1 in (Kairouz et al., 2021). Let

𝑥𝑡+1 = argmin
𝑥∈X

𝑡∑︁
𝑖=1

⟨∇ℓ𝑖 (𝑥𝑖), 𝑥⟩ +
𝜆

2
∥𝑥∥2

2 + ⟨𝑏𝑡 , 𝑥⟩,

be the iteration of DP-FTRL where 𝑏𝑡 is the noise added
by the binary tree mechanism. Moreover, let 𝑥𝑡+1 be the
non-private solution, that is,

𝑥𝑡+1 = argmin
𝑥∈X

𝑡∑︁
𝑖=1

⟨∇ℓ𝑖 (𝑥𝑖), 𝑥⟩ +
𝜆

2
∥𝑥∥2

2 .

Lemma C.2 in (Kairouz et al., 2021) states that

∥𝑥𝑡+1 − 𝑥𝑡+1∥2 ≤ ∥𝑏𝑡 ∥2 /𝜆. Therefore, we have

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − ℓ𝑡 (𝑥★)

≤
𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩

=

𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥𝑡 ⟩ +
𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩

≤
𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (𝑥𝑡)∥2 ∥𝑥𝑡 − 𝑥𝑡 ∥2 +
𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩

≤ 1
8𝛽

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (𝑥𝑡)∥2
2 + 4𝛽

𝑇∑︁
𝑡=1

∥𝑥𝑡 − 𝑥𝑡 ∥2
2

+
𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩

≤ 1
2

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) + 4𝛽
𝑇∑︁
𝑡=1

∥𝑏𝑡 ∥2
2 /𝜆2

+
𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩,

where the second inequality follows from the Fenchel-
Young inequality. We can now upper bound the right term.
Indeed, Theorem 5.2 in (Hazan, 2016) implies that FTRL
has

𝑇∑︁
𝑡=1

⟨∇ℓ𝑡 (𝑥𝑡), 𝑥𝑡 − 𝑥★⟩ ≤
2
𝜆

𝑇∑︁
𝑡=1

∥∇ℓ𝑡 (𝑥𝑡)∥2
2 + 𝜆𝐷2

≤ 8𝛽
𝜆

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) + 𝜆𝐷2.

Overall we now get

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − ℓ𝑡 (𝑥★) ≤
1
2

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) +
4𝛽
𝜆2

𝑇∑︁
𝑡=1

∥𝑏𝑡 ∥2
2

+ 8𝛽
𝜆

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) + 𝜆𝐷2.

The binary tree mechanism also guarantees that for all 𝑡 ∈
[𝑇],

𝔼[∥𝑏𝑡 ∥2
2] ≤ 𝑂

(
𝐿2𝑑 log(𝑇) log(1/𝛿)

𝜀2

)
(see Appendix B.1 in (Kairouz et al., 2021)). Thus, taking
expectation and setting the regularization parameter to 𝜆 =

7

Near-Optimal Algorithms for DP Realizable Online Optimization

32𝛽 +
(𝛽
𝜀2 (𝐿/𝐷)2𝑇𝑑 log(𝑇) log(1/𝛿)

)1/3, we have

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − ℓ𝑡 (𝑥★)
]
≤ 𝑂 (𝐿★ + 𝛽𝐷2)

+𝑂
((
𝛽𝐷2 (𝐿𝐷)2𝑇𝑑 log(𝑇) log(1/𝛿)

𝜀2

)1/3
)
.

□

5. Lower bounds
In this section, we prove lower bounds for private experts
in the realizable setting which show that our upper bounds
are nearly-optimal up to logarithmic factors. The lower
bound demonstrates that a logarithmic dependence on 𝑑
is necessary even in the realizable setting. Note that for
DP-OCO in the realizable setting, a lower bound of 𝑑/𝜀 for
pure DP follows from known lower bounds for DP-SCO in
the interpolation regime (Asi et al., 2022a) using online-to-
batch conversions (Hazan, 2016).

The following theorem states our lower bound for DP-OPE.

Theorem 5. Let 𝜀 ≤ 1/10 and 𝛿 ≤ 𝜀/𝑑. If A is
(𝜀, 𝛿)-DP then there is an oblivious adversary such that
min𝑥∈[𝑑]

∑𝑇
𝑡=1 ℓ𝑡 (𝑥) = 0 and

𝔼

[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − min
𝑥∈[𝑑]

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥)
]
≥ Ω

(
log(𝑑)
𝜀

)
.

Proof. Let ℓ0 (𝑥) = 0 for all 𝑥 and for 𝑗 ∈ [𝑑] let ℓ 𝑗 (𝑥)
be the function that has ℓ 𝑗 (𝑥) = 0 for 𝑥 = 𝑗 and other-
wise ℓ 𝑗 (𝑥) = 1. The oblivious adversary picks one of
the following 𝑑 sequences uniformly at random: S 𝑗 =

(ℓ0, . . . , ℓ0︸ ︷︷ ︸
𝑇−𝑘

, ℓ 𝑗 , . . . , ℓ 𝑗︸ ︷︷ ︸
𝑘

) where 𝑘 =
log 𝑑
2𝜀 and 𝑗 ∈ [𝑑]. As-

sume towards a contradiction that the algorithm obtains
regret log(𝑑)/(32𝜀). This implies that there exists 𝑑/2 se-
quences such that the algorithm obtains expected regret
log(𝑑)/(16𝜀) where the expectation is only over the ran-
domness of the algorithm. Assume without loss of general-
ity these sequences are S1, . . . ,S𝑑/2. Let 𝐵 𝑗 be the set of
outputs that has low regret on S 𝑗 , that is,

𝐵 𝑗 = {(𝑥1, . . . , 𝑥𝑇) ∈ [𝑑]𝑇 :
𝑇∑︁
𝑡=1

ℓ 𝑗 (𝑥𝑡) ≤ log(𝑑)/(8𝜀)}.

Note that 𝐵 𝑗 ∩ 𝐵 𝑗′ = ∅ since if 𝑥1:𝑇 ∈ 𝐵 𝑗 then at least
3𝑘/4 = 3 log(𝑑)/(8𝜀) of the last 𝑘 outputs must be equal to
𝑗 . Now Markov inequality implies that

ℙ(A(S 𝑗) ∈ 𝐵 𝑗) ≥ 1/2.

Moreover, group privacy gives

ℙ(A(S 𝑗) ∈ 𝐵 𝑗′) ≥ 𝑒−𝑘𝜀ℙ(A(S 𝑗′) ∈ 𝐵 𝑗′) − 𝑘𝑒−𝜀𝛿

≥ 1
2
√
𝑑
− log(𝑑)

2𝜀
𝛿

≥ 1
4
√
𝑑
,

where the last inequality follows since 𝛿 ≤ 𝜀/𝑑. Overall we
get that

𝑑/2 − 1
4
√
𝑑

≤ ℙ(A(S 𝑗) ∉ 𝐵 𝑗) ≤
1
2
,

which is a contradiction for 𝑑 ≥ 32. □

6. Conclusion
In this work, we studied differentially private online learn-
ing problems in the realizable setting, and developed algo-
rithms with improved rates compared to the non-realizable
setting. However, several questions remain open in this
domain. First, our near-optimal algorithms for DP-OPE
obtain log1.5 (𝑑)/𝜀 regret, whereas the lower bound we have
is Ω(log(𝑑)/𝜀). Hence, perhaps there are better algorithms
with tighter logarithmic factors than our sparse-vector based
algorithms. Additionally, for DP-OCO, our algorithms are
optimal only for low-dimensional setting, and there remains
polynomial gaps in the high-dimensional setting. Finally,
optimal rates for both problems (DP-OPE and DP-OCO)
are still unknown in the general non-realizable setting.

Acknowledgements
This work has received support from the Israeli Science
Foundation (ISF, grant no. 2549/19), Len Blavatnik and
the Blavatnik Family foundation, and from the Tel Aviv
University Center for AI and Data Science (TAD).

References
Agarwal, N. and Singh, K. The price of differential privacy

for online learning. In Proceedings of the 34th Inter-
national Conference on Machine Learning, pp. 32–40,
2017.

Asi, H., Chadha, K., Cheng, G., and Duchi, J. Private
optimization in the interpolation regime: faster rates and
hardness results. In Proceedings of the 39th International
Conference on Machine Learning, 2022a.

Asi, H., Feldman, V., Koren, T., and Talwar, K. Private
online prediction from experts: Separations and faster
rates. arXiv:2210.13537 [cs.LG], 2022b.

8

Near-Optimal Algorithms for DP Realizable Online Optimization

Chan, T.-H. H., Shi, E., and Song, D. Private and continual
release of statistics. ACM Transactions on Information
and System Security (TISSEC), 14(3):1–24, 2011.

Duchi, J. C. Information theory and statistics. Lecture
Notes for Statistics 311/EE 377, Stanford University,
2019. URL http://web.stanford.edu/class/
stats311/lecture-notes.pdf. Accessed May
2019.

Dwork, C. and Roth, A. The algorithmic foundations of dif-
ferential privacy. Foundations and Trends in Theoretical
Computer Science, 9(3 & 4):211–407, 2014.

Dwork, C., Naor, M., Pitassi, T., and Rothblum, G. N. Dif-
ferential privacy under continual observation. In Proceed-
ings of the Forty-Second Annual ACM Symposium on the
Theory of Computing, pp. 715–724, 2010.

Feldman, V., Koren, T., and Talwar, K. Private stochastic
convex optimization: optimal rates in linear time. In
Proceedings of the 52nd Annual ACM on the Theory of
Computing, pp. 439–449, 2020.

Hazan, E. Introduction to online convex optimization. Foun-
dations and Trends in Optimization, 2(3–4):157–325,
2016.

Jain, P. and Thakurta, A. (Near) dimension independent risk
bounds for differentially private learning. In Proceed-
ings of the 31st International Conference on Machine
Learning, pp. 476–484, 2014.

Jain, P., Kothari, P., and Thakurta, A. Differentially pri-
vate online learning. In Proceedings of the Twenty Fifth
Annual Conference on Computational Learning Theory,
2012.

Jain, P., Raskhodnikova, S., Sivakumar, S., and Smith, A.
The price of differential privacy under continual observa-
tion. arXiv:2112.00828 [cs.DS], 2021.

Kairouz, P., McMahan, B., Song, S., Thakkar, O., Thakurta,
A., and Xu, Z. Practical and private (deep) learning
without sampling or shuffling. arXiv:2103.00039 [cs.CR],
2021.

Kalai, A. and Vempala, S. Efficient algorithms for online
decision problems. Journal of Computer and System
Sciences, 71(3):291–307, 2005.

Mitzenmacher, M. and Upfal, E. Probability and comput-
ing: Randomized algorithms and probabilistic analysis.
Cambridge University Press, 2005.

Nesterov, Y. Introductory Lectures on Convex Optimization.
Kluwer Academic Publishers, 2004.

Shalev-Shwartz, S. Online learning and online convex opti-
mization. Foundations and Trends in Machine Learning,
4(2):107–194, 2012.

Smith, A. and Thakurta, A. (Nearly) optimal algorithms
for private online learning in full-information and bandit
settings. In Advances in Neural Information Processing
Systems 26, 2013.

Srebro, N., Sridharan, K., and Tewari, A. Smoothness, low
noise and fast rates. In nips2010, pp. 2199–2207, 2010.

Steinke, T. and Ullman, J. Tight lower bounds for differ-
entially private selection. In 58th Annual Symposium on
Foundations of Computer Science, pp. 552–563. IEEE,
2017.

9

http://web.stanford.edu/class/stats311/lecture-notes.pdf
http://web.stanford.edu/class/stats311/lecture-notes.pdf

Near-Optimal Algorithms for DP Realizable Online Optimization

A. Concentration for sums of geometric variables
In this section, we proof a concentration result for the sum of geometric random variables, which allows us to upper bound
the number of switches in the sparse-vector based algorithm. We say that 𝑍 is geometric random variable with success
probability 𝑝 if 𝑃(𝑊 = 𝑘) = (1 − 𝑝)𝑘−1𝑝 for 𝑘 ∈ {1, 2, . . . }. To this end, we use the following Chernoff bound.

Lemma A.1 (Mitzenmacher & Upfal, 2005, Ch. 4.2.1). Let 𝑋 =
∑𝑛
𝑖=1 𝑋𝑖 for 𝑋𝑖

iid∼Ber(𝑝). Then for 𝛿 ∈ [0, 1],

ℙ(𝑋 > (1 + 𝛿)𝑛𝑝) ≤ 𝑒−𝑛𝑝𝛿2/3 and ℙ(𝑋 < (1 − 𝛿)𝑛𝑝) ≤ 𝑒−𝑛𝑝𝛿2/2.

The following lemma demonstrates that the sum of geometric random variables concentrates around its mean with high
probability.

Lemma A.2. Let𝑊1, . . . ,𝑊𝑛 be iid geometric random variables with success probability 𝑝. Let𝑊 =
∑𝑛
𝑖=1𝑊𝑖 . Then for

any 𝑘 ≥ 𝑛
ℙ(𝑊 > 2𝑘/𝑝) ≤ exp (−𝑘/4).

Proof. Notice that𝑊 is distributed according to the negative binomial distribution where we can think of𝑊 as the number
of Bernoulli trials until we get 𝑛 successes. More precisely, let {𝐵𝑖} for 𝑖 ≥ 1 be Bernoulli random variables with probability
𝑝. Then the event𝑊 > 𝑡 has the same probability as

∑𝑡
𝑖=1 𝐵𝑖 < 𝑛. Thus we have that

ℙ(𝑊 > 𝑡) ≤ ℙ(
𝑡∑︁
𝑖=1

𝐵𝑖 < 𝑛).

We can now use Chernoff inequality (Lemma A.1) to get that for 𝑡 = 2𝑛/𝑝:

ℙ(
𝑡∑︁
𝑖=1

𝐵𝑖 < 𝑛) ≤ exp (−𝑡 𝑝/8) = exp (−𝑛/4).

This proves that
ℙ(𝑊 > 2𝑛/𝑝) ≤ exp (−𝑛/4).

The claim now follows by noticing that
∑𝑛
𝑖=1𝑊𝑖 ≤ ∑𝑘

𝑖=1𝑊𝑖 for 𝑊𝑖 iid geometric random variable when 𝑘 ≥ 𝑛, thus
ℙ(∑𝑛

𝑖=1𝑊𝑖 ≥ 2𝑘/𝑝) ≤ ℙ(∑𝑘
𝑖=1𝑊𝑖 ≥ 2𝑘/𝑝) ≤ exp (−𝑘/4)

□

B. Additional details for Section 3
B.1. A binary-tree based algorithm

In this section, we present another algorithm which achieves the optimal regret for settings with zero-expert loss. Instead of
using sparse-vector, this algorithm builds on the binary tree mechanism. The idea is to repetitively select 𝑂 (poly(log(𝑑𝑇)))
random good experts and apply the binary tree to calculate a private version of their aggregate losses. Whenever all of the
chosen experts are detected to have non-zero loss, we choose a new set of good experts. Similarly to Algorithm 1, each new
phase reduces the number of good experts by a constant factor as an oblivious adversary does not know the choices of the
algorithm, hence there are only 𝑂 (poly(log(𝑑𝑇))) phases.

We provide a somewhat informal description of the algorithm in Algorithm 4. This algorithm also achieves regret
𝑂 (poly(log(𝑑𝑇))/𝜀) in the realizable case. We do not provide a proof as it is somewhat similar to that of Theorem 1.

B.2. Proof for Theorem 2

First we prove privacy. Note that �̄�★ can change at most log(𝑇) times as 𝐿★ ≤ 𝑇 . Therefore, we have at most log(𝑇)
applications of Algorithm 1. Each one of these is 𝜀/(2 log(𝑇))-DP. Moreover, since we have at most 𝐾 applications of the
exponential mechanism in Algorithm 1, we have at most 𝐾 log(𝑇) applications of the Laplace mechanism in Algorithm 2.
Each of these is 𝜀/2𝐾 log(𝑇)-DP. Overall, privacy composition implies that the final privacy is 𝜀-DP.

10

Near-Optimal Algorithms for DP Realizable Online Optimization

Algorithm 4 Binary-tree algorithm for zero loss experts (sketch)
1: Set 𝑘 = 0 and 𝐵 = 𝑂 (poly(log(𝑑𝑇)))
2: while 𝑡 ≤ 𝑇 do
3: Use the exponential mechanism with score function 𝑠(𝑥) = ∑𝑡

𝑖=1 ℓ𝑖 (𝑥) to privately select a set 𝑆𝑘 of 𝐵 experts from
[𝑑] \ ∪0≤𝑖≤𝑘𝑆𝑖

4: Apply binary tree for each expert 𝑥 ∈ 𝑆𝑘 to get private aggregate estimates for
∑𝑡
𝑖=1 ℓ𝑖 (𝑥) for every 𝑡 ∈ [𝑇]

5: Let 𝑐𝑡 ,𝑥 denote the output of the binary tree for expert 𝑥 ∈ 𝑆𝑘 at time 𝑡
6: while there exists 𝑥 ∈ 𝑆𝑘 such that 𝑐𝑡 ,𝑥 ≤ 𝑂 (poly(log(𝑑𝑇))/𝜀) do
7: Receive ℓ𝑡 : [𝑑] → [0, 1]
8: Choose 𝑥𝑡 ∈ 𝑆𝑘 that minimizes 𝑐𝑡 ,𝑥
9: Pay error ℓ𝑡 (𝑥𝑡)

10: 𝑡 = 𝑡 + 1
11: 𝑘 = 𝑘 + 1

Now we prove utility. Algorithm 2 consists of at most log(𝑇) applications of Algorithm 1 with different values of �̄�★. We
will show that each of these applications incurrs low regret. Consider an application of Algorithm 1 with �̄�★. If �̄�★ ≥ 𝐿★,
then Theorem 1 implies that the regret is at most

𝑂

(
�̄�★ log(𝑑/𝛽0) +

log2 (𝑑) + log(𝑇/𝛽0) log(𝑑/𝛽0)
𝜀0

)
.

Now consider the case where �̄�★ ≤ 𝐿★. We will show that Algorithm 2 will double �̄�★ and that the regret of Algorithm 1 up
to that time-step is not too large. Let 𝑡0 be the largest 𝑡 such that min𝑥∈[𝑑]

∑𝑡0
𝑡=1 ℓ𝑡 (𝑥) ≤ �̄�★. Note that up to time 𝑡0, the best

expert had loss at most �̄�★ hence the regret up to time 𝑡0 is

𝑂

(
�̄�★ log(𝑑/𝛽0) +

log2 (𝑑) + log(𝑇/𝛽0) log(𝑑/𝛽0)
𝜀0

)
.

Now let 𝑡1 denote the next time-step when Algorithm 1 applies the exponential mechanism. Sparse-vector guarantees
that in the range [𝑡0, 𝑡1] the algorithm suffers regret at most 𝑂

(
�̄�★ + log(𝑑)+log(𝑇/𝛽0)

𝜀0

)
. Moreover, the guarantees of the

Laplace mechanism imply that at this time-step, �̄�𝑡 ≥ �̄�★ − 5𝐾 log(1/𝛽0)/𝜀0 with probability 1 − 𝛽0, hence Algorithm 2
will double �̄�★ and run a new application of Algorithm 1. Overall, an application of Algorithm 1 with �̄�★ ≤ 𝐿★ results in
regret (𝐿★ + 1

𝜀0
) · poly(log 𝑇𝑑

𝛽0
) and doubles �̄�★. Finally, note that if �̄�★ ≥ 𝐿★ + 5 log(1/𝛽0)/𝜀0 then with probability 1− 𝛽0

the algorithm will not double the value of �̄�★. As each application of Algorithm 1 has regret

𝑂

(
�̄�★ log(𝑑/𝛽0) +

log2 (𝑑) + log(𝑇/𝛽0) log(𝑑/𝛽0)
𝜀0

)
,

and �̄�★ is bounded by 𝐿★ + 5 log(𝑇/𝛽0)/𝜀0 with probability 1−𝑂 (𝛽0). Overall, the failure probability is 𝑂 (𝑇𝛽0) = 𝑂 (𝛽).

C. Potential-based algorithm for DP-experts
The algorithm in Algorithm 1 uses the sparse vector technique to evaluate the current arm. In this section, we present a
more direct algorithm that uses the sparse vector technique on a potential function. This more direct approach allows us to
improve the polylogarithmic terms, which results in significant improvements for DP-OCO as we show in the next section.

We describe the algorithm in a more abstract way, which will translate more easily to OCO. Let 𝜇 be the uniform measure
over the space of experts; this will be the uniform distribution over the finite number of experts in the case of DP-OPE,
and the uniform distribution over the unit ball in ℝ𝑑 in the case of DP-OCO. At a high level, the algorithm is similar to
Algorithm 1 in that it samples from the exponential mechanism, and keeps that sample until a certain condition is met.
While the condition there dealt only with the chosen expert, we will instead test a global condition. For a parameter 𝜂, we
define the potential 𝜙𝜂 (𝑡) =

∫
exp(−𝜂∑𝑡

𝑖=1 ℓ𝑖 (𝑥)𝜇(𝑥)d𝑥. The condition we check (using the sparse vector technique) is that
log 𝜙𝜂 (𝑡) has changed by at least 𝛼 since the last resample. We formally describe the algorithm in Algorithm 5.

We first observe some simple properties of 𝜙𝜂 .

11

Near-Optimal Algorithms for DP Realizable Online Optimization

Algorithm 5 Potential-based Algorithm for Experts
Require: Switching bound 𝐾 , Parameters 𝜂, 𝛼, failure probability 𝛽, per-phase privacy parameter 𝜀0, measure 𝜇 on set of

experts.
1: Set 𝑘 = 0, 𝑡∗ (𝑘) = 0 and sample current expert 𝑥0 ∼ 𝜇.
2: for 𝑡 = 1 to 𝑇 do
3: if 𝑘 < 𝐾 then
4: 𝑄 = InitializeSparseVec(𝜀0, 2𝛼, 𝛽/𝑇)
5: while Q.TestAboThr() = False do
6: Set 𝑥𝑡 = 𝑥𝑡−1
7: Define a new query 𝑞𝑡 = 1

𝜂
(log 𝜙𝜂 (𝑡∗ (𝑘)) − log 𝜙𝜂 (𝑡))

8: Add new query 𝑄.AddQuery(𝑞𝑡)
9: Receive loss function ℓ𝑡 : [𝑑] → [0, 1]

10: Pay cost ℓ𝑡 (𝑥𝑡)
11: Update 𝑡 = 𝑡 + 1
12: Sample 𝑥𝑡 from the distribution:

𝑃(𝑥𝑡 = 𝑥) = 𝑒−𝜂
∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥)𝜇 (𝑥)/𝜙𝜂 (𝑡 − 1)

13: 𝑘 = 𝑘 + 1.
14: 𝑡∗ (𝑘) = 𝑡 − 1.
15: else
16: Set 𝑥𝑡 = 𝑥𝑡−1
17: Receive loss function ℓ𝑡 : [𝑑] → [0, 1]
18: Pay cost ℓ𝑡 (𝑥𝑡)

Lemma C.1. Suppose that the per-step losses ℓ𝑡 (𝑠) are in [0, 1]. Then 𝜙𝜂 (𝑡 − 1) ≥ 𝜙𝜂 (𝑡) ≥ 𝑒−𝜂𝜙𝜂 (𝑡 − 1).

Proof. For any 𝑥, we have

𝑡−1∑︁
𝑖=1

ℓ𝑖 (𝑥) ≤
𝑡∑︁
𝑖=1

ℓ𝑖 (𝑥) ≤
𝑡−1∑︁
𝑖=1

ℓ𝑖 (𝑥) + 1.

This implies that

𝑒−𝜂
∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥) ≥ 𝑒−𝜂
∑𝑡

𝑖=1 ℓ𝑖 (𝑥) ≥ 𝑒−𝜂𝑒−𝜂
∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥) .

The claim follows by integrating with respect to 𝜇. □

Lemma C.2. Suppose that 𝛼 ≥ 8𝜂 (log𝑇+log 2𝑇/𝛽)
𝜀0

. Then during the run of the algorithm, log 𝜙𝜂 (𝑡∗ (𝑘)) − log 𝜙𝜂 (𝑡) ≤ 3𝛼
always holds except with probability 𝛽. Moreover, log 𝜙𝜂 (𝑡∗ (𝑘)) − log 𝜙𝜂 (𝑡∗ (𝑘 + 1)) ≥ 𝛼 holds for all 𝑘 except with
probability 𝛽.

Proof. We use sparse vector with a threshold of 2𝛼. The condition on 𝛼 along with the first property of the sparse vector
algorithm Lemma 2.3 implies that if log 𝜙𝜂 (𝑡∗) − log 𝜙𝜂 (𝑡) ≤ 3𝛼. The second property of sparse vector implies the second
property. □

We next analyze the loss of the algorithm.

Lemma C.3. Suppose that 𝜂 < 1
2 and losses are in the range [0, 1]. For some 𝛾 > 0, let 𝐿∗ (𝛾) be such that

Pr𝑥∼𝜇 [
∑𝑇
𝑡=1 ℓ𝑥 (𝑡) ≤ 𝐿∗ (𝛾)] ≥ 𝛾. Let 𝐾 ≥ 𝜂𝐿∗ (𝛾)+log 1/𝛾

𝛼
. Then the expected loss of Algorithm 5 satisfies

𝔼[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡)] ≤ 2𝑒3𝛼 (𝐿∗ (𝛾) + log 1/𝛾
𝜂

) + 2𝛽𝑇.

12

Near-Optimal Algorithms for DP Realizable Online Optimization

Proof. We first observe that by the assumption on sufficient probability mass on experts with loss at most 𝐿∗ (𝛾), it
follows that 𝜙𝜂 (𝑇) ≥ 𝛾𝑒−𝜂𝐿

∗ (𝛾)𝜙𝜂 (0). Let 𝐸 be the event that both the conditions on 𝜙𝜂 (𝑡)’s in Lemma C.2 hold. Thus
Pr[𝐸] ≥ 1 − 2𝛽. The second condition implies that if we reach the bound 𝐾 on the number of switches, then conditioned on
𝐸 , 𝜙𝜂 (𝑇) ≤ 𝑒−𝐾𝛼𝜙𝜂 (0). Thus if 𝐾 ≥ 𝜂𝐿∗ (𝛾)+log 1/𝛾

𝛼
, then the switching bound is never reached under 𝐸 .

Now note that if we sampled 𝑥 ∼ 𝑒−𝜂
∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥)/𝜙𝜂 (𝑡 − 1), then we would have

𝔼[𝜂ℓ𝑡 (𝑥)/2] = 1
𝜙𝜂 (𝑡 − 1)

∫
𝜂ℓ𝑡 (𝑥)𝑒−𝜂

∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥)𝜇(𝑥)d𝑥

≤ 1
𝜙𝜂 (𝑡 − 1)

∫
(1 − 𝑒−𝜂ℓ𝑡 (𝑥))𝑒−𝜂

∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥)𝜇(𝑥)d𝑥

=
1

𝜙𝜂 (𝑡 − 1)

∫
(𝑒−𝜂

∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥) − 𝑒−𝜂

∑𝑡
𝑖=1 ℓ𝑖 (𝑥))𝜇(𝑥)d𝑥

=
𝜙𝜂 (𝑡 − 1) − 𝜙𝜂 (𝑡)

𝜙𝜂 (𝑡 − 1)

≤ log
𝜙𝜂 (𝑡 − 1)
𝜙𝜂 (𝑡)

.

Here the first inequality uses the fact that for 𝑦 ∈ [0, 1], we have 𝑦/2 < 1 − 𝑒−𝑦 , and the second inequality uses
(1 − 𝑟) ≤ − log 𝑟 for 𝑟 ∈ [1

2 , 1]. The assumptions on 𝜂 and the losses imply that the relevant conditions hold.

Our algorithm however uses an outdated sample based on the distribution at 𝑡∗ (𝑘), whenever 𝑡 is in phase 𝑘 . Nevertheless,

note that the cumulative losses increase with 𝑡 so that 𝑒−𝜂
∑𝑡−1

𝑖=1 ℓ𝑖 (𝑥) is smaller than 𝑒−𝜂
∑𝑡∗ (𝑘)

𝑖=1 ℓ𝑖 (𝑥) .We then write

𝔼[𝜂ℓ𝑡 (𝑥𝑡)/2 · 1(𝐸)] = 1
𝜙𝜂 (𝑡∗ (𝑘))

∫
1(𝐸)𝜂ℓ𝑡 (𝑥)𝑒−𝜂

∑𝑡∗ (𝑘)
𝑖=1 ℓ𝑖 (𝑥)𝜇(𝑥)d𝑥

≤
𝜙𝜂 (𝑡 − 1)
𝜙𝜂 (𝑡∗ (𝑘))

· 1
𝜙𝜂 (𝑡 − 1)

∫
𝜂ℓ𝑡 (𝑥)𝑒−𝜂

∑𝑡−1
𝑖=1 ℓ𝑖 (𝑥)𝜇(𝑥)d𝑥

≤ 𝑒3𝛼 log
𝜙𝜂 (𝑡 − 1)
𝜙𝜂 (𝑡)

.

Rearranging and summing over the 𝑡 steps, we get

𝔼[
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) · 1(𝐸)] ≤ 2𝑒3𝛼

𝜂

𝑇∑︁
𝑡=1

log
𝜙𝜂 (𝑡 − 1)
𝜙𝜂 (𝑡)

≤ 2𝑒3𝛼

𝜂
log

𝜙𝜂 (0)
𝜙𝜂 (𝑇)

.

Since 𝜙𝜂 (𝑇) ≥ 𝛾𝑒−𝜂𝐿
∗ (𝛾)𝜙𝜂 (0), we can upper bound this expression. Furthermore, 𝔼[∑𝑇

𝑡=1 ℓ𝑡 (𝑥𝑡) · 1(𝐸𝑐)] is clearly
bounded Pr[𝐸𝑐] · 𝑇 ≤ 2𝛽𝑇 . The claim follows. □

This can yield pure or approximate DP. Indeed each phase of the algorithm satisfies (𝜂 + 𝜀0)-DP. Composing over the at
most 𝐾 phases, we get (𝜂 + 𝜀0)-DP or (2(𝜂 + 𝜀0)

√︁
𝐾 log 1/𝛿, 𝛿)-DP. With this in mind, we can now plug in appropriate

values of 𝜂, 𝛼, 𝜀0 to derive the following result for pure 𝜀-DP.

Theorem 6. (pure DP) Suppose that we run Algorithm 5 with parameters 𝛼 = 1, 𝛽 = 1
𝑇2 , 𝐾 = 2 log 1/𝛾 , 𝜀0 = 𝜀/𝐾, and

𝜂 = 𝜀0/(56 log𝑇) = 𝜀/(112 log𝑇 log 1/𝛾). If 𝐿∗ (𝛾) ≤ log2 1/𝛾 log𝑇/𝜀, then this algorithm satisfies 𝜀-DP and incurs loss
𝑂 (𝐿∗ + log2 1/𝛾 log𝑇

𝜀
). In particular, for DP-OPE with 𝑑 experts, assuming that that 𝑂𝑃𝑇 ≤ log2 𝑑 log𝑇/𝜀, we get regret

𝑂 (log2 𝑑 log𝑇/𝜀) by setting 𝛾 = 1
𝑑

.

Moreover, we have the following improved bound for (𝜀, 𝛿)-DP.

Theorem 7. ((𝜀, 𝛿)-DP) Suppose that for 𝜀 < 1, we run Algorithm 5 with parameters 𝛼 = 1, 𝛽 = 1
𝑇2 , 𝐾 = 2 log 1/𝛾 ,

𝜀0 = 𝜀/
√︁
𝐾 log 1/𝛿, and 𝜂 = 𝜀0/(56 log𝑇) = 𝜀/(112 log𝑇

√︁
log 1/𝛾 log 1/𝛿). If 𝐿∗ (𝛾) ≤ log1.5 1/𝛾 log𝑇

√︁
log 1/𝛿/𝜀, then

13

Near-Optimal Algorithms for DP Realizable Online Optimization

this algorithm satisfies (𝜀, 𝛿)-DP and incurs loss 𝑂 (𝐿∗ + log1.5 1/𝛾 log𝑇
√

log 1/𝛿
𝜀

). In particular, for DP-OPE with 𝑑 experts,
assuming that 𝑂𝑃𝑇 ≤ log1.5 𝑑 log𝑇

√︁
log 1/𝛿/𝜀, we get regret 𝑂 (log1.5 𝑑 log𝑇

√︁
log 1/𝛿/𝜀) by setting 𝛾 = 1

𝑑
.

For the setting of DP-OCO in the realizable case, we get that by Lipschitzness, a small ball of radius 𝑟 around 𝑥∗ has loss
𝑂 (𝑟𝐿𝑇). Setting 𝑟 = (𝐿𝑇)−1 then ensures that this value is at most 1 This ball has measure 𝛾 = (𝑟/𝐷)−𝑑 . Scaling so
that 𝐷, 𝐿 ≤ 1, we get an regret 𝑂 (𝑑2 log3 𝑇/𝜀) for the case of 𝜀-DP and 𝑂 (𝑑1.5 log2.5 𝑇

√︁
log 1/𝛿/𝜀) for (𝜀, 𝛿)-DP. Finally

we note that this algorithm only accesses the loss functions to sample from the exponential mechanism, and compute the
potential 𝜙𝜂 (𝑡). Both of these can be implemented in polynomial time for the case of 𝜇 being uniform over the ball, and the
losses being convex using standard techniques from logconcave sampling. Thus this algorithm can be run in polynomial
time for DP-OCO.

D. Missing proofs for Section 4
D.1. Proof of Theorem 3

Let 𝑥1, . . . , 𝑥𝑇 be the experts chosen by the algorithm. First, Theorem 2 implies that this algorithm obtains the following
regret with respect to the best expert

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − 𝐿
★

experts ≤ (𝐿★

experts +
1
𝜀
) · 𝑂

(
poly(𝑑 log

𝐷𝑇

𝜌𝛽
)
)
,

where 𝐿
★

experts = min𝑥∈X𝜌

experts

∑𝑇
𝑡=1 ℓ𝑡 (𝑥). Since ℓ𝑡 is 𝐿-Lipschitz for each 𝑡 ∈ [𝑇], we obtain that

|𝐿★ − 𝐿★

experts | = | min
𝑥∈X

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) − min
𝑥∈X𝜌

experts

𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥) | ≤ 𝑇𝐿𝜌.

Overall this gives
𝑇∑︁
𝑡=1

ℓ𝑡 (𝑥𝑡) − 𝐿
★ ≤ (𝐿★ + 𝑇𝐿𝜌 + 1

𝜀
) · 𝑂

(
poly(𝑑 log

𝐷𝑇

𝜌𝛽
)
)
.

Setting 𝜌 = 1/(𝐿𝑇) proves the claim.

14

