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Abstract

Byzantine machine learning (ML) aims to ensure
the resilience of distributed learning algorithms to
misbehaving (or Byzantine) machines. Although
this problem received significant attention, prior
works often assume the data held by the machines
to be homogeneous, which is seldom true in prac-
tical settings. Data heterogeneity makes Byzan-
tine ML considerably more challenging, since a
Byzantine machine can hardly be distinguished
from a non-Byzantine outlier. A few solutions
have been proposed to tackle this issue, but these
provide suboptimal probabilistic guarantees and
fare poorly in practice.

This paper closes the theoretical gap, achieving
optimality and inducing good empirical results. In
fact, we show how to automatically adapt existing
solutions for (homogeneous) Byzantine ML to the
heterogeneous setting through a powerful mech-
anism, we call nearest neighbor mixing (NNM),
which boosts any standard robust distributed gra-
dient descent variant to yield optimal Byzantine
resilience under heterogeneity. We obtain similar
guarantees (in expectation) by plugging NNM in
the distributed stochastic heavy ball method, a
practical substitute to distributed gradient descent.
We obtain empirical results that significantly out-
perform state-of-the-art Byzantine ML solutions.

1 INTRODUCTION

Distributed machine learning (ML), i.e., distributing the
training process amongst several machines (or workers), has
been pivotal to the development of large complex models
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with high accuracy guarantees (Abadi et al., 2015; Konečnỳ
et al., 2016; Kairouz et al., 2021). In the now standard
master-worker architecture, distributed ML essentially con-
sists in the workers sharing their local actions with the
help of a master machine (a.k.a., server) to compute an
accurate global model. Despite its rising popularity, dis-
tributed ML is arguably very fragile and not yet ready for
real-world deployment. In particular, a handful of misbe-
having (a.k.a., Byzantine (Lamport et al., 1982)) workers
can highly compromise the efficacy of standard distributed
ML algorithms such as distributed gradient descent (D-
GD) (Bertsekas and Tsitsiklis, 2015), by sending erroneous
information to the server, e.g., see (Baruch et al., 2019; Xie
et al., 2019). Such behaviors can be caused by software and
hardware bugs, by poisoned data or by malicious players
controlling part of the system. Besides, this vulnerability
can lead to severe societal repercussions if the resulting ML
models are deployed in sensitive data-oriented applications
such as medicine.

The problem of Byzantine resilience in distributed ML (or
Byzantine ML) has received significant attention in recent
years (Blanchard et al., 2017; Chen et al., 2017; Yin et al.,
2018; Allen-Zhu et al., 2020; El Mhamdi et al., 2021a;
Karimireddy et al., 2021; Karimireddy et al., 2022; Farhad-
khani et al., 2022b). It consists in designing a distributed al-
gorithm that delivers an accurate model despite the presence
of a subset of Byzantine workers. The standard approach (in
a master-worker architecture) consists in having the server
compute a robust aggregation to merge the information sent
by the workers, to discard outliers. Most prior works relies
however upon the strong assumption of homogeneity; i.e,
the data sampled by the workers during the training process
are assumed to be identically distributed. This assumption,
although justifiable in a centralized setting (Bottou et al.,
2018), is impractical in a distributed environment (Kairouz
et al., 2021). Indeed, as each worker only holds a small part
of the entire training dataset, the data samples at the work-
ers are usually heterogeneous and need not be an accurate
representation of the entire population. These differences in
the workers’ data samples can camouflage disruptive devia-
tions of Byzantine machines from the prescribed algorithm,
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making the problem of Byzantine ML under heterogene-
ity significantly more challenging than its homogeneous
counterpart (El Mhamdi et al., 2021a; Karimireddy et al.,
2022).

Recent works have shown that heterogeneity in workers’
data inevitably prevents any distributed ML algorithm from
delivering an arbitrarily accurate model in the presence of
Byzantine workers (Charikar et al., 2017; Liu et al., 2021).
More specifically, in the context of smooth loss functions, a
Byzantine ML solution can only deliver an approximate sta-
tionary point with an error lower bounded by the fraction of
Byzantine workers times the maximal dispersion in workers’
gradients (stemming from data heterogeneity) (Karimireddy
et al., 2022). Despite a few attempts (Gupta and Vaidya,
2020; El Mhamdi et al., 2021a; Karimireddy et al., 2022),
no solution has so far matched the above lower bound deter-
ministically, i.e., achieved optimal Byzantine resilience. The
best solutions so far (Karimireddy et al., 2022) are random-
ized and could only match the lower bound in expectation
(see Section 2).

Main result. We close the theoretical gap and reach opti-
mal Byzantine resilience under heterogeneity. Specifically,
we show how to automatically adapt existing solutions for
homogeneous Byzantine ML to the heterogeneous setting,
while ensuring optimality. We do so through nearest neigh-
bor mixing (NNM), a pre-aggregation method that averages
each input with a subset of their nearest neighbors. We
show that enhancing D-GD using a composition of NNM
and a standard robust aggregation directly yields the first
Byzantine ML solution to achieve optimal resilience under
heterogeneity. Our guarantee holds as long as less than half
of the workers are Byzantine, which is optimal.

Technical contributions. To prove our guarantees, we in-
troduce a novel robustness criterion called (f, κ)-robustness.
This notion quantifies the ability of an aggregation rule
to estimate the average of honest workers’ inputs despite
f out of n workers being Byzantine. Crucially, our crite-
rion characterizes a class of aggregations rules (for which
κ = O (f/n)) that grant optimal Byzantine resilience to D-
GD under heterogeneity. While many notable aggregation
rules (e.g., geometric median (Small, 1990), coordinate-
wise median (Yin et al., 2018), and Krum (Blanchard et al.,
2017)) satisfy (f, κ)-robustness, they fall short of optimal
robustness, as their κ is in Θ(1). Our main technical con-
tribution is showing that NNM overcomes this shortcom-
ing. Particularly, we prove that NNM deterministically re-
duces the variance of the honest inputs by a factor O(f/n),
while sufficiently limiting their drift from the true aver-
age. Consequently, we show that composing a (f,O(1))-
robust aggregation with NNM enables the larger class of
(f,O(1))-robust aggregation rules to confer optimal Byzan-
tine resilience to D-GD. As a byproduct, we provide novel
and tight robustness analyses of aggregation rules, notably
coordinate-wise trimmed mean (Yin et al., 2018), which

may be of independent interest to the Byzantine ML and
robust statistics communities.

Empirical evaluation. Although we prove D-GD enhanced
by NNM to be optimal, workers still need to compute the
full gradient of their local loss function at every step, and
risk getting stuck at saddle points (Du et al., 2017; Bottou
et al., 2018). We go one step further and show that ap-
plying NNM to a stochastic variant of D-GD, namely the
distributed stochastic heavy ball method (D-SHB) (Polyak,
1964), matches the lower bound in expectation1. We empiri-
cally show that the resulting scheme significantly improves
over the state-of-the-art when tested on standard classifi-
cation tasks such as MNIST and CIFAR-10. In short, our
approach enables a modular practice of Byzantine resilient
ML under heterogeneity, by first patching existing solutions
with NNM and then deploying them with D-SHB.

Paper outline. Section 2 formally presents the problem
of Byzantine ML and discusses the related work. Section 3
introduces the analysis framework for robust variants of
D-GD. Section 4 presents NNM, our solution to render
existing methods optimal. Section 5 presents a practical
stochastic extension of our approach. Section 6 presents our
experimental results. We defer all proofs to Appendix 8-13.

2 BACKGROUND & RELATED WORK

We consider a master-worker distributed architecture with n
workers w1, . . . , wn and a central server. The workers hold
local datasets D1, . . . ,Dn, composed each of m data points
from an input space Z . Specifically, for any i ∈ [n], Di :=
{z(i)1 , . . . , z

(i)
m } ⊂ Zm. For a given model parameterized

by vector θ ∈ Rd, each worker wi has a loss function

Li(θ) :=
1

m

m∑
k=1

ℓ(θ, z
(i)
k ),

where ℓ : Rd × Z → R is a point-wise loss function,
which we assume to be differentiable with respect to θ.
Furthermore, we assume each loss function Li to be L-
smooth; i.e., for all θ, θ′ ∈ Rd,

∥∇Li(θ)−∇Li(θ′)∥ ≤ L ∥θ − θ′∥ .

Objective in a Byzantine-free setting. When all the work-
ers are honest, i.e., they follow the prescribed algorithm
correctly, the goal of the server is to compute a stationary
point of the global loss function2 L(θ) := 1

n

∑n
i=1 Li(θ).

1The expectation is on the randomness due to data subsampling,
unlike (Karimireddy et al., 2022) which features additional sources
of randomness that hinder empirical performance. See Section 5.2
for details.

2Ideally, the server seeks to find a global minimizer of L. How-
ever, as the loss could be non-convex (e.g., for neural networks),
global minimization is NP-hard in general (Boyd and Vanden-
berghe, 2004). Hence, we usually aim to find stationary points.
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Specifically, the server seeks to compute a stationary point
θ∗, i.e. ∇L(θ∗) = 0, where ∇L denotes the gradient of
L. Assuming that L admits a stationary point, this goal
can be achieved using the classical distributed (stochastic)
gradient descent (D-GD/SGD) method (Bertsekas and Tsit-
siklis, 2015), up to an approximation error. In this method,
the server maintains a model which is updated iteratively
upon averaging the (stochastic) gradients computed by the
workers on their loss functions.

Objective with Byzantine workers. We consider an adver-
sarial setting where f workers, of a priori unknown identi-
ties, are Byzantine (Lamport et al., 1982). These workers
need not follow the prescribed protocol and may send arbi-
trary messages to the server. Here, the goal of the server is
finding a stationary point of the average loss function of the
honest (i.e., non-Byzantine) workers. We formally define
Byzantine resilience in this context as follows.

Definition 1 ((f, ε)-Byzantine resilience). A learning al-
gorithm is said (f, ε)-Byzantine resilient if, despite the
presence of f Byzantine workers, it outputs θ̂ such that∥∥∥∇LH(θ̂)

∥∥∥2 ≤ ε,

where H denotes the set of indices of honest workers and
LH(θ) := 1

|H|
∑
i∈H Li(θ).

In words, an (f, ε)-Byzantine resilient algorithm finds an
ε-approximate stationary point for the honest empirical loss
even in the presence of f Byzantine workers. Note that
(f, ε)-Byzantine resilience is impossible in general (for any
ε) when f ≥ n/2, see (Liu et al., 2021). Therefore, through-
out the paper, we assume that f < n/2.

Standard Byzantine ML solutions. A typical strategy
to obtain (f, ε)-Byzantine resilience is to enhance the D-
GD (or D-SGD) method by replacing the simple averag-
ing of the workers’ gradients at the server by a robust
aggregation rule. Basically, such a scheme aims to mit-
igate the negative impact of Byzantine gradients by ac-
curately estimating the average of honest workers’ gradi-
ents. Prominent aggregation rules include Krum (Blanchard
et al., 2017), geometric median (GM) (Small, 1990; Pillutla
et al., 2022; Acharya et al., 2022), coordinate-wise median
(CWMed) (Yin et al., 2018), coordinate-wise trimmed mean
(CWTM) (Yin et al., 2018), and minimum diameter aver-
aging (MDA) (Rousseeuw, 1985; El Mhamdi et al., 2021a).
Recent studies have also explored the idea of using the his-
tory of workers’ gradients to strengthen the resilience guar-
antees of these solutions, e.g., by using distributed momen-
tum (Karimireddy et al., 2022; Farhadkhani et al., 2022b) or
by tracking the history of the workers’ gradients (Allen-Zhu
et al., 2020).

Nevertheless, all these works rely heavily on the assumption
that the honest workers have homogeneous data, i.e., there
exists a ground-truth distribution D such that Di ∼ Dm for

all i ∈ H. Crucially, the robustness of these methods deteri-
orates drastically when this assumption is violated (Karim-
ireddy et al., 2022).

The challenge of heterogeneity in Byzantine ML. The
data across the honest workers is arguably heterogeneous in
real-world distributed settings. In the context of non-convex
optimization, data heterogeneity can be modeled as stated
per the following assumption (Karimireddy et al., 2020;
Karimireddy et al., 2022).

Assumption 1 (Bounded heterogeneity). There exists a real
value G such that for all θ ∈ Rd,

1

|H|
∑
i∈H

∥∇Li(θ)−∇LH(θ)∥2 ≤ G2.

Such heterogeneity makes the problem of Byzantine ML
much more challenging, as the server can confuse incorrect
gradients (from a Byzantine worker) with correct gradients
from an honest worker holding outlier data points. Indeed,
recent works show that there exists a lower bound on the
error of any distributed algorithm in the presence of Byzan-
tine workers (El Mhamdi et al., 2021a; Karimireddy et al.,
2022). Specifically, we have the following result, owing to
Theorem III in (Karimireddy et al., 2022).

Proposition 1. If a learning algorithm A is (f, ε)-Byzantine
resilient for every collection of smooth loss functions
L1, . . . ,Ln satisfying Assumption 1, then ε = Ω

(
f/nG2

)
.

Brittleness of existing solutions for heterogeneity. Only
a handful of prior works have studied Byzantine ML under
heterogeneity. The problem was first formally addressed
in (Li et al., 2019) by proposing RSA, a variant of D-SGD
built upon ℓp regularization. However, the analysis of RSA
relies on the assumption of strong convexity, which is rarely
satisfied in modern-day ML. A subsequent work (Gupta and
Vaidya, 2020) introduced a novel aggregation rule, namely
comparative gradient elimination (CGE). While this work
provides some valuable insight on the general problem of
heterogeneous Byzantine ML (notably on the need for re-
dundancy), CGE fails to guarantee convergence even in the
homogeneous setting (see (Farhadkhani et al., 2022b)). The
work (El Mhamdi et al., 2021a) considers a peer-to-peer set-
ting with asynchronous communication and heterogeneous
data. However, the proposed algorithm is only analyzed
asymptotically and provides suboptimal probabilistic ro-
bustness. In this peer-to-peer setting, another work used a
nearest neighbor scheme similar to ours (Farhadkhani et al.,
2022a), with honest nodes using their own honest vectors
as pivots. However, in our master-worker setting, their tech-
nique cannot be used as the server does not have access to
any reliable vector.

The closest relevant work to ours is (Karimireddy et al.,
2022), which also proposes a pre-aggregation step called
Bucketing, which is reminiscent of the median-of-means
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estimator (Nemirovsky et al., 1983; Jerrum et al., 1986;
Alon et al., 1996; Tu et al., 2021). Essentially, Bucketing
consists in randomly partitioning the inputs into buckets,
and then feeding the average of the inputs of each bucket to
the robust aggregation rule. The randomness of the partition
process reduces the empirical variance of the honest inputs
in expectation, but it highly compromises the worst-case
robustness of the scheme (see Appendix 10 for a detailed
explanation). Furthermore, our experiments expose the in-
ability of these methods to defend against state-of-the-art
Byzantine attacks (Xie et al., 2019; Baruch et al., 2019;
Allen-Zhu et al., 2020; Karimireddy et al., 2022).

3 ROBUST DISTRIBUTED GRADIENT
DESCENT

In this section, we introduce a general framework for an-
alyzing the convergence of robust variants of D-GD (or
robust D-GD). We use this framework later in Section 4 to
showcase the benefits of our proposed pre-aggregation step
NNM. We start by presenting the skeleton of robust D-GD
in Section 3.1 below. Then, we present the convergence
analysis of robust D-GD in Section 3.2 upon introducing
the notion of (f, κ)-robustness.

3.1 Description of Robust D-GD

Robust D-GD, summarized below in Algorithm 1, is an
iterative algorithm that proceeds in T steps.

Algorithm 1: Robust D-GD
Input: Initial model θ0, robust aggregation F , learning

rate γ, and number of steps T .
for t = 1 . . . T do

Server broadcasts θt−1 to all workers;
for every honest worker, i in parallel do

Compute and send gradient g(i)t = ∇Li(θt−1);
Server aggregates the gradients:
Rt = F (g

(1)
t , . . . , g

(n)
t );

Server updates the model: θt = θt−1 − γRt;

Server finds τ ∈ argmin
1≤t≤T

∥Rt∥ and sets θ̂ = θτ−1.

return θ̂;

Essentially, the server starts by initializing a parameter vec-
tor θ0. At each step t ∈ [T ], the server broadcasts the model
θt−1 to all the workers. After receiving θt−1, each honest
worker sends back the gradient g(i)t = ∇Li(θt−1), com-
puted by evaluating θt−1 on their local dataset Di. While the
honest workers follow the algorithm correctly, a Byzantine
worker wi may send any arbitrary value for g(i)t . Upon re-
ceiving the gradients from all the workers, the server aggre-
gates them using a robust aggregation rule F : Rd×n → Rd.

Specifically, the server computes

Rt = F
(
g
(1)
t , . . . , g

(n)
t

)
.

Finally, the server updates the model to θt = θt−1 − γRt,
where γ > 0 is referred to as the learning rate. After T steps,
the server outputs the model θt for which the associated
aggregate Rt has the smallest norm. That is, the algorithm
outputs θ̂ = θτ−1, where τ ∈ argmin

1≤t≤T
∥Rt∥ .

3.2 Analysis of Robust D-GD

At the core of robust D-GD lies the aggregation rule F . To
tightly analyze the utility of F , we introduce the notion of
(f, κ)-robustness which unifies previous robustness criteria
and is sufficiently fine-grained to obtain tight convergence
guarantees. In words, (f, κ)-robustness ensures that the
error of an aggregation rule, in estimating the average of the
honest inputs, is uniformly bounded by κ times the variance
of honest inputs. Formally, it is defined as follows.

Definition 2 ((f, κ)-robustness). Let f < n/2 and κ ≥ 0.
An aggregation rule F is said to be (f, κ)-robust if for any
vectors x1, . . . , xn ∈ Rd, and any set S ⊆ [n] of size n−f ,

∥F (x1, . . . , xn)− xS∥2 ≤ κ

|S|
∑
i∈S

∥xi − xS∥2

where xS = 1
|S|
∑
i∈S xi. We refer to κ as the robustness

coefficient.

Our criterion unifies the existing robustness definitions
including (f, λ)-resilient averaging (Farhadkhani et al.,
2022b) and (δmax, c)-ARAgg (Karimireddy et al., 2022).
Specifically, when κ = O(f/n), our definition implies both
(f, λ)-resilient averaging and (δmax, c)-ARAgg3. We prove
this claim in Appendix 8.3. Furthermore, (f, κ)-robustness
allows us to devise a general convergence analysis for ro-
bust D-GD when up to f workers are Byzantine, under the
standard heterogeneity assumption. We present our general
convergence analysis of robust D-GD in Theorem 1 below,
assuming F to be (f, κ)-robust. Recall that H denotes the
set of indices for honest workers.

Theorem 1. Let Assumption 1 hold and recall that LH is
L-smooth. Consider Algorithm 1 with T ≥ 1 and learning
rate γ = 1/L. If F is (f, κ)-robust then∥∥∥∇LH(θ̂)

∥∥∥2 ≤ 4κG2 +
4L(LH(θ0)− L∗)

T
,

where L∗ := infθ∈Rd LH(θ).

According to Theorem 1, the asymptotic error for robust
D-GD (when T → ∞) is optimal, i.e., it matches the

3Although for satisfying (f, λ)-resilient averaging condition
having κ =

√
λ suffices, i.e., it need not be in O(f/n).
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Aggregation GM CWTM CWMed Krum Lower bound

κ
(
1 + f

n−2f

)2
f

n−2f

(
1 + f

n−2f

) (
1 + f

n−2f

)2
1 + f

n−2f
f

n−2f

Table 1: Robustness coefficient κ for different (f, κ)-robust aggregation rules, ignoring numerical constants. The exact
robustness coefficients are deferred to Appendix 8.1. Note also that our analysis is tight and significantly improves over
previous works (Farhadkhani et al., 2022b; Karimireddy et al., 2022), e.g., eliminating the dependence on dimension for
CWMed and CWTM.

lower bound from Proposition 1 if F is (f, κ)-robust with
κ = O (f/n). In the homogeneous case, i.e., when G = 0,
robust D-GD can asymptotically reach a stationary point
of the average honest loss function despite the presence of
f Byzantine workers, as long as F is (f, κ)-robust with a
bounded κ. Note that the convergence rate of 1/T is stan-
dard for smooth non-convex loss functions when analyzing
first-order methods such as gradient descent (Ghadimi and
Lan, 2016).

Suboptimality of existing aggregations. Several existing
aggregation rules such as CWTM, Krum, GM, and CWMed
can be shown to be (f, κ)-robust. The robustness coeffi-
cients κ for these rules are listed in Table 1, and the formal
derivations are deferred to Appendix 8.1. Note also that for
any f < n/2, an aggregation rule cannot be (f, κ)-robust for
κ < f

n−2f (see Appendix 8.2 for details). This lower bound
means that, in general, a robust aggregation rule cannot pro-
vide an estimate that is arbitrarily close to the average of
honest inputs. This also indicates that the values in Table 1
for Krum, GM, and CWMed are suboptimal, as they do
not match the lower bound. We show in the next section
that NNM solves this issue by boosting the robustness of
these aggregation rules and provides optimal convergence
for robust D-GD.

4 FIXING BY NEAREST NEIGHBOR
MIXING

In this section, we present a principled way of fixing the
suboptimality of existing solutions in terms of Byzantine
resilience. Specifically, we introduce a pre-aggregation
algorithm called nearest neighbor mixing (NNM), and prove
optimal Byzantine robustness when it is embedded in D-
GD. We describe the NNM procedure in Section 4.1 and
demonstrate in Section 4.2 that NNM amplifies robustness
when applied prior to an aggregation rule.

4.1 Description of NNM

Given a set of n input vectors x1, . . . , xn ∈ Rd, NNM
replaces every vector with the average of its n − f near-
est neighbors (including itself). Formally, NNM outputs

(y1, . . . , yn) = NNM(x1, . . . , xn) where for each i ∈ [n],

yi =
1

n− f

n−f∑
j=1

xi:j ; (1)

where xi:j is the jth nearest vector to xi in (x1, . . . , xn).
Intuitively, in the context of robust D-GD, applying NNM
mixes the gradients artificially, hence making every mixed
gradient a better representation of ∇LH(θt−1). The overall
procedure for NNM can be found in Algorithm 2.

Algorithm 2: Nearest Neighbor Mixing (NNM)
Input: number of inputs n, number of Byzantine inputs
f < n/2, vectors x1, . . . , xn ∈ Rd.

for i = 1 . . . n do
Sort inputs to get (xi:1, . . . , xi:n) such that

∥xi:1 − xi∥ ≤ . . . ≤ ∥xi:n − xi∥;

Average the n− f nearest neighbors of xi, i.e.,

yi =
1

n− f

n−f∑
j=1

xi:j ;

return y1, . . . , yn;

Remark 1. The computational cost of NNM is O
(
dn2
)

in
the worst case, which is due to the search of the n − f
nearest neighbors of each input. Faster algorithms for ap-
proximate nearest neighbor search (Hajebi et al., 2011;
Muja and Lowe, 2014) could be used for efficiency. Nev-
ertheless, we argue that the cost of NNM is comparable
to (or even smaller than) several aggregation rules includ-
ing Krum (Blanchard et al., 2017), Multi-Krum (Blanchard
et al., 2017), and MDA (Rousseeuw, 1985; El Mhamdi et al.,
2018). Below, we list the cost of prominent aggregation
rules: Krum and Multi-Krum: O(dn2), CWMed (Yin et al.,
2018) and MeaMed (Xie et al., 2018): O(dn), CWTM (Yin
et al., 2018): O(dn log n), ϵ-approximate GM (Acharya
et al., 2022): O(dn+ dϵ−2), MDA: O(dn2 +

(
n
f

)
n2). Fi-

nally, unlike spectral methods (Shejwalkar and Houmansadr,
2021), we stress that our algorithm preserves linear depen-
dency in d, which may be extremely large in modern-day
ML (i.e., d≫ n).
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4.2 Analysis of NNM

We now present in Lemma 1 the robustness amplification
that NNM brings to a (f, κ)-robust aggregation rule. We
then show in Corollary 1 how it leads to optimal Byzantine
resilience guarantees under heterogeneity.

Lemma 1. Let f < n/2 and F : Rd×n → Rd. If F is
(f, κ)-robust, then F ◦ NNM is (f, κ′)-robust with

κ′ ≤ 8f

n− f
(κ+ 1).

Essentially, Lemma 1 means that the composition of NNM
with any (f, κ)-robust aggregation rule improves the order
of magnitude of the robustness coefficient to O(f/n(κ+ 1)).
Specifically, this means that if F has a robustness coefficient
κ = O(1), NNM renders the new robustness coefficient
optimal. We believe that the condition κ = O (1) is general
enough to hold for any standard robust aggregation rule.
In fact, assuming that there exists ν > 0 such that n ≥
(2+ν)f , all the aforementioned aggregation rules are (f, κ)-
robust with κ = O (1). Thus, from a theoretical point of
view, any aggregation rule from Table 1 becomes a good
candidate in Algorithm 1 when combined with NNM. Then,
as stated in Corollary 1 below, we obtain optimal Byzantine
resilience under heterogeneity.

Corollary 1. Let Assumption 1 hold and recall that LH is
L-smooth. Consider Algorithm 1 with γ = 1/L and aggre-
gation F ◦ NNM. If F is (f, κ)-robust with κ = O(1), then
Algorithm 1 is (f, ε)-Byzantine resilient with

ε = O
(
f/nG2 + 1/T

)
.

Remark 2. Note that CWTM achieves an order-optimal
robustness coefficient κ = O(f/n) without the use of NNM,
whenever n ≥ (2 + ν)f for some constant ν > 0. How-
ever, using NNM prior to CWTM significantly improves its
empirical performance (see Section 6). We believe that an
average-case analysis, instead of our worst-case approach,
could capture this improvement in theory.

5 STOCHASTIC EXTENSION

Despite its optimality, our solution for robust D-GD is com-
putationally demanding, as it requires the honest workers to
compute each gradient on the whole dataset. In practice, it
is more common to consider stochastic variants of D-GD,
where workers compute gradients on random mini-batches
of datasets. To accommodate this, we show that NNM can
also be used to enhance the performance of robust variants
of distributed stochastic heavy ball (D-SHB) that has been
recently proven to perform well in Byzantine ML in the ho-
mogeneous setting (El Mhamdi et al., 2021b; Karimireddy
et al., 2021; Farhadkhani et al., 2022b).

5.1 Description of Robust D-SHB

Similarly to robust D-GD, the algorithm proceeds in T iter-
ations as follows. At every step t ∈ [T ], the server holds a
model θt−1 and each honest worker holds a local momen-
tum m

(i)
t−1

4. The server broadcasts the current model θt−1

to all the workers for them to update their local momentum.
To do so, each honest worker samples a mini-batch of data
S
(i)
t at random from Di and computes a stochastic estimate
g
(i)
t of its gradient ∇Li(θt−1), defined as

g
(i)
t =

1

|S(i)
t |

∑
z∈S(i)

t

∇ℓ(θt−1, z). (2)

Then, each honest worker updates and sends to the server
its local momentum

m
(i)
t = βm

(i)
t−1 + (1− β)g

(i)
t , (3)

where β ∈ (0, 1) is the momentum parameter and is shared
by all the honest users. Similarly to D-SGD, the server
computes an aggregate of the momentums it receives as
Rt = F (m

(1)
t , . . . ,m

(n)
t ). Finally, the server updates the

model to θt = θt−1 − γRt, where γ > 0 is the learning
rate. After the T iterations, the server outputs θ̂ by sampling
uniformly from (θ0, . . . , θT−1). The overall procedure for
robust D-SHB is summarized in Algorithm 3.

Algorithm 3: Robust D-SHB

Input: Initial model θ0, initial momentum m
(i)
0 = 0 for

honest workers, robust aggregation F , learning rate γ,
momentum coefficient β, and number of steps T .

for t = 1 . . . T do
Server broadcasts θt−1 to all workers;
for every honest worker i, in parallel do

Compute a stochastic gradient g(i)t as per (2) ;
Update local momentum m

(i)
t as per (3) ;

Send m(i)
t to the server ;

Server aggregates the momentums:
Rt = F (m

(1)
t , . . . ,m

(n)
t );

Server updates the model: θt = θt−1 − γRt;

Sample θ̂ uniformly from (θ0, . . . , θT−1);
return θ̂;

5.2 Analysis of Robust D-SHB with NNM

We now provide convergence guarantees for robust D-SHB
with NNM. To do so, we make an additional (standard)
assumption on the variance of the stochastic gradients.

4θ0 is set by the server and m
(i)
0 = 0 for all honest workers.
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Assumption 2 (Bounded variance). For each honest worker
wi, i ∈ H, and all θ ∈ Rd, it holds that

1

m

∑
z∈Di

∥∇θℓ(θ, z)−∇Li (θ)∥2 ≤ σ2.

We now present in Theorem 2 the extension of our results to
D-SHB. Essentially, we analyze Algorithm 3 upon assuming
a constant learning rate, that assumptions 1 and 2 hold, and
that LH is L-smooth. For convenience, we introduce the
following numerical constants before stating the theorem:

a1 := 36, a2 := 6
√
LH(θ0)− L∗, a3 := 1728L,

a4 := 288L, a5 := 6La22, and L∗ = inf
θ∈Rd

LH(θ).

Theorem 2. Let assumption 1 and 2 hold and recall that
LH is L-smooth. Let F be a (f, κ)-robust aggregation
rule. Consider Algorithm 3 with momentum coefficient β =√
1− 24γL, and learning rate

γ = min

{
1

24L
,

a2

2aκσ
√
T

}
,

with a2κ := a3κ+ a4
n−f . For all T ≥ 1, we have

E
[∥∥∥∇LH(θ̂)

∥∥∥2]≤ a1κG
2 +

a2aκσ√
T

+
a5
T

+
a2a4σ

naκT
3/2
,

where the expectation is over the algorithm’s randomness.

Tight probabilistic guarantee. The non-vanishing error
in Theorem 2 is in O(κG2). Hence, this error is tight when
κ = O(f/n). However, the main difference with robust
D-GD (Theorem 1) is that the inequality only holds in ex-
pectation, and therefore may not verify (f, ε)-Byzantine
resilience. Nevertheless, this result is consistent with the
state-of-the-art convergence guarantees (Karimireddy et al.,
2022) (Theorem II). Note that a subtle difference remains
between our result and the one from (Karimireddy et al.,
2022). The randomness of our result in Theorem 2 only
depends on the random subsampling of data and the final
choice of the model. These are natural sources of random-
ness that are usually considered when studying stochastic
gradient descent (Bottou et al., 2018). On the other hand,
the results from (Karimireddy et al., 2022) also incorporate
an additional (exogenous) randomness introduced by the
shuffling operation of Bucketing. This source of random-
ness cannot be canceled even if true gradients are computed
by the workers, and it may amplify the uncertainty in the
computations (see Section 6 and Appendix 10 for more de-
tails). As a result, we believe the probabilistic convergence
guarantees from Theorem 2 to be strictly stronger than those
obtained in (Karimireddy et al., 2022).

Once again, using Lemma 1, we can show that the tight
(probabilistic) resilience guarantee implied by Theorem 2
holds for the larger class of (f, κ)-robust aggregation rules
with κ = O(1). We formalize this in Corollary 2 below.

Corollary 2. Let Assumption 1 hold and recall that LH is
L-smooth. Consider Algorithm 3 with aggregation F ◦NNM,
under the same setting as Theorem 2. If F is (f, κ)-robust
with κ = O(1), then we have

E
[∥∥∥∇LH(θ̂)

∥∥∥2] = O
(
f/nG2 + 1/

√
T
)
,

where the expectation is over the algorithm’s randomness.

6 EXPERIMENTAL EVALUATION

In this section, we investigate the practical performances of
NNM. We report on a comprehensive set of experiments
evaluating our solution against the state-of-the-art on three
benchmark image classification tasks and under five differ-
ent Byzantine attacks.

6.1 Experimental Setup

Datasets, models, and hyperparameters. We consider
three image classification datasets, namely MNIST (LeCun
and Cortes, 2010), Fashion-MNIST (Xiao et al., 2017), and
CIFAR-10 (Krizhevsky et al., 2014); and we implement
NNM on top of robust D-SHB. Due to space limitation, we
only present results on MNIST and CIFAR-10, and defer the
remaining results to Appendix 15, including experiments on
D-GD with NNM.

On MNIST, we train a convolutional neural network (CNN)
for T = 800 steps using a batch size b = 25, with a decay-
ing learning rate starting at 0.75, and a momentum param-
eter β = 0.9. On CIFAR-10, we use a CNN with b = 50,
T = 2000, γ = 0.25 that decays at step 1500, and β = 0.9.
Furthermore, we implement our solution with four aggre-
gation rules namely Krum, CWTM, CWMed, and GM5,
and compare its performance against the Bucketing (Karim-
ireddy et al., 2022) method and vanilla aggregation rules.
As a benchmark, we also implement vanilla D-SHB (i.e.,
robust D-SHB with F = average) in a setting where there
are no faults (f = 0).

Heterogeneity. We simulate heterogeneity in honest work-
ers’ data by sampling from the original dataset using a
Dirichlet distribution of parameter α (as done in (Hsu et al.,
2019)). We consider three heterogeneity regimes: extreme
(α = 0.1), moderate (α = 1), and low (α = 10). A pictorial
representation of the resulting heterogeneity as a function
of α can be found in Appendix 14. We run our algorithm
on MNIST and Fashion-MNIST over the whole spectrum
of heterogeneity defined above. However, as CIFAR-10 is
considerably more challenging, we restrict the heterogeneity
to α ∈ {1, 10}.

Distributed system and Byzantine attacks. We consider
a distributed system of n = 17 workers, among which

5We implement GM using the approximation from (Pillutla
et al., 2022).
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Aggregation ALIE FOE LF SF Mimic Worst Case

Krum 10.19± 00.61 10.28± 00.57 12.76 ± 06.25 51.17 ± 06.14 86.78 ± 07.04 10.19± 00.61

1 Bucketing + Krum 44.78± 06.18 36.10± 15.70 56.21 ± 19.49 47.54 ± 11.74 94.92 ± 03.93 36.10± 15.70

NNM + Krum 78.30 ± 07.78 70.07 ± 04.39 93.07 ± 05.24 82.44 ± 02.86 97.69 ± 00.77 70.07± 04.39

GM 92.01 ± 04.35 65.61 ± 12.17 93.94 ± 03.70 57.86 ± 10.42 96.85 ± 01.57 57.86± 10.42

2 Bucketing + GM 39.83 ± 11.35 44.73 ± 16.47 96.22 ± 02.83 91.30 ± 03.91 97.68 ± 00.91 39.83± 11.35

NNM + GM 81.26 ± 08.91 75.27 ± 02.69 94.23 ± 03.20 86.33 ± 03.73 97.17 ± 01.09 75.27± 02.69

CWMed 68.74 ± 06.99 19.48 ± 10.97 33.34 ± 17.02 27.96 ± 09.97 64.01 ± 12.77 19.48± 10.97

3 Bucketing + CWMed 55.86 ± 10.00 42.80 ± 21.25 70.16 ± 11.65 50.96 ± 16.52 94.43 ± 03.48 42.80± 21.25

NNM + CWMed 80.52 ± 07.45 75.20 ± 08.80 93.42 ± 02.98 85.10 ± 06.05 97.38 ± 00.70 75.20± 08.80

CWTM 76.16 ± 07.68 69.96 ± 16.57 36.87 ± 21.43 27.45 ± 08.83 89.83 ± 02.83 27.45± 08.83

4 Bucketing + CWTM 55.86 ± 10.00 42.80 ± 21.25 70.16 ± 11.65 50.96 ± 16.52 94.43 ± 03.48 42.80± 21.25

NNM + CWTM 79.04 ± 09.19 79.91 ± 03.94 94.75 ± 02.22 84.78 ± 05.78 96.02 ± 03.25 79.04± 09.19

Table 2: Maximum test accuracies (%) across T = 800 learning steps on MNIST, under extreme heterogeneity (α = 0.1)
and five Byzantine attacks. There are f = 4 Byzantine workers among n = 17. The baseline accuracy (D-SHB) is
98.03± 0.70%. In each of the four horizontal blocks and under each attack, we highlight in bold the best accuracy. For
every method, we also show the worst-case accuracy across attacks, and highlight the best and worst one in each block.

f < n/2 can be Byzantine. We vary f ∈ {4, 6, 8} on
the MNIST dataset, and f ∈ {2, 3, 4} on CIFAR-10. The
Byzantine workers execute five state-of-the-art gradient at-
tacks, namely Fall of Empires (FOE) (Xie et al., 2019), A
Little is Enough (ALIE) (Baruch et al., 2019), Sign Flipping
(SF) (Allen-Zhu et al., 2020), Label Flipping (Allen-Zhu
et al., 2020), and Mimic (Karimireddy et al., 2022). Note
that for ALIE and FOE, we design optimized versions of
the attacks, as done in (Shejwalkar and Houmansadr, 2021).
We explain this further in Appendix 14.

Reproducibility and reusability. All experiments are run
with five seeds from 1 to 5 for reproducibility purposes. The
code will also be made available for reusability. Additional
details on the setup can be found in Appendix 14.

6.2 Empirical Results on MNIST

In Table 2, we carefully examine the performance of NNM
on MNIST under extreme heterogeneity (α = 0.1), in com-
parison with Bucketing and vanilla aggregation rules. For
every block (i.e., every aggregation rule) and under every
attack, we highlight in bold the algorithm resulting in the
highest accuracy in the considered scenario.

NNM improves robustness. We clearly see that our algo-
rithm boosts the resilience of aggregation rules in Byzantine
settings, and provides the most consistent behavior across at-
tacks. In fact, for Krum, CWMed, and CWTM (i.e., blocks
1, 3, and 4 in Table 2), NNM outputs the maximal accuracy
under all attacks. The two other techniques (Bucketing and
vanilla) showcase much weaker performances and are some-
times on par with a random classifier (e.g., 10.19% under

ALIE and 10.28% under FOE for vanilla Krum).

The case of GM is less evident since the other techniques
can outperform our method in some settings (e.g., ALIE,
SF). However, a crucial observation is that there always
exists at least one attack that considerably deteriorates the
performance of Bucketing+GM and vanilla GM, whereas
NNM+GM consistently yields desirable accuracies in all
attack scenarios. Indeed, the minimum accuracy across
attacks achieved by NNM+GM is 75.27%, which is con-
siderably better than Bucketing+GM and vanilla GM with
39.83% and 57.86% minimum accuracies, respectively.
Moreover, although vanilla GM scores the highest under
ALIE, it showcases low accuracies of 65.61% and 57.86%
under FOE and SF, respectively. Bucketing+GM also fails
considerably under ALIE and FOE with accuracies far be-
low 50%. Finally, even though Bucketing+GM scores the
highest under LF and Mimic, NNM+GM is also excellent
under these two attacks with accuracies greater than 96%.

Worst-case performance. We show in the last column
of Table 2 the worst-case performance (across attacks) of
every aggregation technique (i.e., every row), and rank them
within each block from worst (in red) to best (in green).
We argue that this is a critical metric to correctly evaluate
Byzantine resilience, as the same algorithm can simulta-
neously greatly defend against some attacks but perform
poorly against others. Accordingly, we see from the last
column that our method always displays the “best” worst
case. In fact, the lowest accuracy NNM yields across attacks
and aggregation rules is 70.07% with Krum. Furthermore,
the worst case performances of the other techniques are
much worse than ours, yielding values as low as 10.19%
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Figure 1: Experiments on CIFAR-10 with f = 2 Byzantine workers among n = 17. The Byzantine workers execute the
ALIE (column 1) and LF (column 2) attacks. 1st row: moderate heterogeneity (α = 1). 2nd row: low heterogeneity (α = 10).

with Krum and 39.83% with Bucketing+GM.

Additionally, the worst case performance of Bucketing is al-
most equally poor for all aggregation rules (36.1%, 39.83%,
and 42.80%). However, all worst case accuracies of NNM
are within the range 70-79%. This highly suggests the unre-
liability of Bucketing, due to its subpar worst case behavior
independently of the aggregation rule used.

6.3 Empirical Results on CIFAR-10

In Figure 1, we plot the performance of NNM and Bucketing
on CIFAR-10 during T = 2000 steps of learning, with GM,
CWMed, CWTM, and Krum as base aggregation rules6. We
consider two heterogeneity levels (α = 1 in row 1, and
α = 10 in row 2), with two Byzantine workers executing
the ALIE and LF attacks.

Heterogeneity impairs learning. Our first observation is
that stronger heterogeneity regimes hinder the learning, as
expected. As can be seen in Figure 1, increasing α from 1 to
10 significantly improves all NNM aggregations (especially
under ALIE), whereas Bucketing+CWMed still stagnates at
10% and Bucketing+GM barely reaches 30%.

Empirical superiority of NNM. Under ALIE, we clearly
see that NNM greatly outperforms Bucketing in both het-
erogeneity regimes. In particular, ALIE deteriorates the
learning when using Bucketing with GM and CWMed, with
both methods reaching a final accuracy close to 10% when
α = 1. Although Bucketing+Krum has a better perfor-
mance, it still displays a lower accuracy and a much larger
variance than any NNM aggregation. On the other hand,
we observe that LF is a much weaker attack. Although all

6In the considered setting, Bucketing with CWMed and CWTM
are exactly equivalent.

aggregation methods are able to converge to a desirable ac-
curacy, our algorithm still portrays better convergence rates
than Bucketing. This is particularly apparent for α = 10
where all NNM aggregations almost exactly match D-SHB’s
convergence rate, whereas Bucketing converges slower, es-
pecially in the case of Krum. The remaining three attacks
have a similar behavior to LF and are in Appendix 15.

7 CONCLUSION AND FUTURE WORK

We show that robust D-GD enhanced by NNM is an opti-
mal solution for Byzantine ML under heterogeneity. We
also derive similar results for robust D-SHB (with NNM) in
expectation. We believe that an interesting future direction
would be to tighten these guarantees by investigating almost
sure convergence rates for our stochastic solution. Such
guarantees have been recently introduced in the Byzantine-
free setting for SHB (Sebbouh et al., 2021; Liu and Yuan,
2022; Gadat et al., 2018). Yet, adapting them to our setting
remains an open question. In general, we believe subsequent
works on Byzantine ML should strive to obtain almost sure
convergence guarantees (instead of expectation), preclud-
ing the use of unnecessary randomness and certifying the
robustness of these algorithms.
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ORGANIZATION OF THE APPENDIX

Appendix 8 contains proofs related to (f, κ)-robustness. Appendix 9 contains the analysis of NNM (proof of Lemma 1).
Appendix 10 contains a formal discussion on Bucketing (Karimireddy et al., 2022). Appendix 11 contains the analysis of
robust D-GD (proof of Theorem 1). Appendix 12 contains the analysis of robust D-GD with NNM (proof of Corollary 1),
and the Byzantine resilience lower bound (Proposition 1). Appendix 13 contains the analysis of robust D-SHB with NNM
(proofs of Theorem 2 and Corollary 2). Appendix 14 contains details on the experimental setup. Appendix 15 contains all
experimental results.

8 ROBUSTNESS ANALYSIS

In this section, we prove all our claims related to (f, κ)-robustness. In Section 8.1, we prove several existing aggregation
rules to be (f, κ)-robust and give their exact robustness coefficients. We then establish the tightness of our analysis in
Section 8.2 by proving a universal lower bound on κ, and an aggregation-specific lower bound. Finally, we prove that
(f, κ)-robustness unifies existing robustness definitions in Section 8.3.

We first recall the definition of (f, κ)-robustness:

Definition 2. Let f < n/2 and κ ≥ 0. An aggregation rule F is said to be (f, κ)-robust if for any vectors x1, . . . , xn ∈ Rd,
and any set S ⊆ [n] of size n− f ,

∥F (x1, . . . , xn)− xS∥2 ≤ κ

|S|
∑
i∈S

∥xi − xS∥2

where xS = 1
|S|
∑
i∈S xi. We refer to κ as the robustness coefficient.

8.1 (f, κ)-robust Aggregation Rules

In this section, we prove that coordinate-wise Trimmed Mean (CWTM) (Yin et al., 2018), Krum (Blanchard et al.,
2017), Geometric Median (GM) (Small, 1990), and coordinate-wise Median (CWMed) (Yin et al., 2018) all satisfy
(f, κ)-robustness.

8.1.1 Trimmed Mean

Let x ∈ Rd, we denote by [x]k, the k-th coordinate of x. Given the input vectors x1, . . . , xn ∈ Rd, we let τk denote a
permutation on [n] that sorts the k-th coordinate of the input vectors in non-decreasing order, i.e., [xτk(1)]k ≤ [xτk(2)]k ≤
. . . ≤ [xτk(n)]k. Then, the coordinate-wise trimmed mean of x1, . . . , xn, denoted by CWTM(x1, . . . , xn), is a vector in
Rd whose k-th coordinate is defined as follows,

[CWTM(x1, . . . , xn)]k :=
1

n− 2f

n−f∑
j=f+1

[xτk(j)]k.

We first show a general lemma simplifying the analysis of (f, κ)-robustness for coordinate-wise aggregations, by reducing
the analysis to scalars without loss of generality. Specifically, we show that if F is a coordinate-wise function, i.e., each
k-th coordinate of F denoted by Fk only depends on the respective k-th coordinates of the inputs [x1]k , . . . , [xn]k, then
coordinate-wise robustness implies overall robustness.
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Lemma 2. Assume that F : Rd×n → Rd is a coordinate-wise aggregation function, i.e., there exist d real-valued functions
F1, . . . , Fd : Rn → R such that for all x1, . . . , xn ∈ Rd, [F (x1, . . . , xn)]k = Fk([x1]k, . . . , [xn]k). If for each k ∈ [d], Fk
is (f, κ)-robust then F is (f, κ)-robust.

Proof. Consider n arbitrary vectors in Rd, x1, . . . , xn, and an arbitrary set S ⊆ [n] such that |S| = n− f . Assume that for
each k ∈ [d], Fk is (f, κ)-robust. Since F is assume to be a coordinate-wise aggregation function, we have

∥F (x1, . . . , xn)− xS∥2 =

d∑
k=1

|Fk([x1]k, . . . , [xn]k)− [xS ]k|2 . (4)

Since for each k ∈ [d], Fk is (f, κ)-robust, we have

d∑
k=1

|Fk([x1]k, . . . , [xn]k)− [xS ]k|2 ≤
d∑
k=1

κ

|S|
∑
i∈S

|[xi]k − [xS ]k|2 =
κ

|S|
∑
i∈S

d∑
k=1

|[xi]k − [xS ]k|2 =
κ

|S|
∑
i∈S

∥xi − xS∥2 .

Substituting from above in (4) concludes the proof.

We now show an important property in Lemma 3 below on the sorting of real values that proves essential in obtaining a tight
(f, κ)-robustness guarantee for trimmed mean.

Lemma 3. Consider n real values x1, . . . , xn be such that x1 ≤ . . . ≤ xn. Let S ⊆ [n] of size |S| = n − f , and
I := {f + 1, . . . , n− f}. We obtain that ∑

i∈I\S

|xi − xS |2 ≤
∑
i∈S\I

|xi − xS |2 .

Proof. First, note that, as |I| = n− 2f and |S| = n− f , |I \ S| ≤ f and |S \ I| ≥ f . Thus, |I \ S| ≤ |S \ I|. To prove
the lemma, we show that there exists an injection ϕ : I \ S → S \ I such that

∀i ∈ I \ S, |xi − xS | ≤
∣∣xϕ(i) − xS

∣∣ . (5)

As |I \ S| ≤ |S \ I|, we have
∑
i∈I\S

∣∣xϕ(i) − xS
∣∣2 ≤

∑
i∈S\I |xi − xS |2. Hence, (5) proves the lemma.

We denote by B the complement of S in [n], i.e., B = [n] \ S. Therefore, |B| = f and I \ S = I ∩ B. We denote
I+ := {n − f + 1, . . . , n}, and I− := {1, . . . , f} to be the indices of values that are larger (or equal to) and smaller (or
equal to) the values in I , respectively. Let |I ∩B| = q. As B = [n] \ S, we obtain that∣∣I+ ∩ S

∣∣ = f −
∣∣I+ ∩B

∣∣ ≥ f − |B \ (I ∩B)| = f − (f − q) = q. (6)

Similarly, we obtain that ∣∣I− ∩ S
∣∣ ≥ q. (7)

Recall that q = |I ∩B| where I \ S = I ∩ B. Therefore, due to (6) and (7), there exists an injection from I \ S to
(I− ∩ S) × (I+ ∩ S). Let ψ be such an injection. For each i ∈ I \ S, ψ(i) is a pair, denoted by (ψ−(i), ψ+(i)), in
(I− ∩ S)× (I+ ∩ S). Consider an arbitrary i ∈ I \ S. By definition of I− and I+, we have

xψ−(i) ≤ xi ≤ xψ+(i).

Therefore, for any real value y,

|xi − y| ≤ max
{∣∣xψ+(i) − y

∣∣ , ∣∣xψ−(i) − y
∣∣} .

The above proves (5), where the injection ϕ is defined as ϕ(i) = argmaxj∈{ψ+(i), ψ−(i)} |xj − xS | for all i ∈ I \ S.

We now prove the (f, κ)-robustness property of trimmed mean in the proposition below.
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Proposition 2. Let n ∈ N∗ and f < n/2. CWTM is (f, κ)-robust with κ = 6f
n−2f

(
1 + f

n−2f

)
.

Proof. First, note that trimmed mean Trimmed Mean is a coordinate-wise aggregation, defined in Lemma 2. Thus, due to
Lemma 2, it suffices to show that Trimmed Mean is (f, κ)-robust in the scalar domain, i.e., when d = 1.

Let x1, . . . , xn ∈ R and, without loss of generality, let us assume that x1 ≤ . . . ≤ xn. We denote by I := {f+1, . . . , n−f},
and let S be an arbitrary subset of [n] of size n − f . Recall that the set of indices selected by TM(x1, . . . , xn) =

1
n−2f

∑
i∈I xi. We obtain that

|CWTM(x1, . . . , xn)− xS |2 =

∣∣∣∣∣ 1

n− 2f

∑
i∈I

xi − xS

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

n− 2f

∑
i∈I

(xi − xS)

∣∣∣∣∣
2

=

∣∣∣∣∣ 1

n− 2f

∑
i∈I

(xi − xS)−
1

n− 2f

∑
i∈S

(xi − xS)

∣∣∣∣∣
2 (

as
∑
i∈S

(xi − xS) = 0
)

=
1

(n− 2f)2

∣∣∣∣∣∣
∑
i∈I\S

(xi − xS)−
∑
i∈S\I

(xi − xS)

∣∣∣∣∣∣
2

.

Using Jensen’s inequality above, we obtain that

|CWTM(x1, . . . , xn)− xS |2 ≤ |I \ S|+ |S \ I|
(n− 2f)2

 ∑
i∈I\S

|xi − xS |2 +
∑
i∈S\I

|xi − xS |2
 .

Note that |I \ S| = |I ∪ S|− |S| ≤ n− (n−f) = f . Similarly, |S \ I| = |I ∪ S|− |I| ≤ n− (n−2f) = 2f . Accordingly,
|I \ S|+ |S \ I| ≤ 3f . Therefore, we have

|CWTM(x1, . . . , xn)− xS |2 ≤ 3f

(n− 2f)2

 ∑
i∈I\S

|xi − xS |2 +
∑
i∈S\I

|xi − xS |2
 .

Recall from Lemma 3 that
∑
i∈I\S |xi − xS |2 ≤

∑
i∈S\I |xi − xS |2. Using this fact above we obtain that

|CWTM(x1, . . . , xn)− xS |2 ≤ 6f

(n− 2f)2

∑
i∈S\I

|xi − xS |2 ≤ 6f

(n− 2f)2

∑
i∈S

|xi − xS |2 .

Finally, as f
(n−2f)2 = f(n−f)

(n−2f)2

(
1

n−f

)
=
(

f
n−2f +

(
f

n−2f

)2 )
1

n−f , we obtain that

|CWTM(x1, . . . , xn)− xS |2 ≤ 6

(
f

n− 2f
+

(
f

n− 2f

)2
)

1

|S|
∑
i∈S

|xi − xS |2 . (8)

The above concludes the proof.

8.1.2 Krum

In this section, we study a slight adaptation of the Krum algorithm first introduced in (Blanchard et al., 2017). Essentially,
given the input vectors x1, . . . , xn, Krum outputs the vector that is the nearest to its neighbors upon discarding f (as
opposed to f + 1 in the original version) furthest vectors. Specifically, we denote by Nj the set the of indices of the n− f
nearest neighbors of xj in {x1, . . . , xn}, with ties arbitrarily broken. Krum outputs the vector xk∗ such that

k∗ ∈ argmin
j∈[n]

∑
i∈Nj

∥xj − xi∥2 ,

with ties arbitrarily broken if the set of minimizers above includes more than one element.
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Proposition 3. Let n ∈ N∗ and f < n/2. Krum is (f, κ)-robust with κ = 6(1 + f
n−2f ).

Proof. Let n ∈ N, f < n/2, and x1, . . . , xn ∈ Rd. Consider any subset S ⊆ [n] of size |S| = n − f . In the following,
for every j ∈ [n], we denote by Nj the set the of indices of the n− f nearest neighbors of xj in {x1, . . . , xn}, with ties
arbitrarily broken. Observe that this implies, for every j ∈ [n], that

∑
i∈Nj

∥xj − xi∥2 ≤
∑
i∈S

∥xj − xi∥2 . (9)

Let k∗ ∈ [n] be the index selected by Krum. By definition, it holds that k∗ ∈ argminj∈[n]

∑
i∈Nj

∥xj − xi∥2 . Therefore,
leveraging (9) we have

∑
i∈Nk∗

∥xk∗ − xi∥2 = min
j∈[n]

∑
i∈Nj

∥xj − xi∥2 ≤ min
j∈S

∑
i∈Nj

∥xj − xi∥2 ≤ 1

|S|
∑
j∈S

∑
i∈Nj

∥xj − xi∥2

≤ 1

|S|
∑
j∈S

∑
i∈S

∥xj − xi∥2 =
1

|S|
∑
i,j∈S

∥xj − xS − (xi − xS)∥2

=
1

|S|
∑
i,j∈S

(
∥xj − xS∥2 + ∥xi − xS∥2 − 2 ⟨xj − xS , xi − xS⟩

)
=

1

|S|

[ ∑
i,j∈S

∥xj − xS∥2 +
∑
i,j∈S

∥xi − xS∥2 − 2
∑
i,j∈S

⟨xj − xS , xi − xS⟩
]

=
1

|S|

[
2 |S|

∑
i∈S

∥xi − xS∥2 − 2
∑
i,j∈S

⟨xj − xS , xi − xS⟩
]

=
1

|S|

[
2 |S|

∑
i∈S

∥xi − xS∥2 − 2
∑
i∈S

〈∑
j∈S

(xj − xS)︸ ︷︷ ︸
=0

, xi − xS

〉]
= 2

∑
i∈S

∥xi − xS∥2 . (10)

Now, using Jensen’s inequality, we can write for all i ∈ S,

∥xk∗ − xS∥2 ≤ 2 ∥xk∗ − xi∥2 + 2 ∥xi − xS∥2 .

Therefore, by rearranging the terms, we have for all i ∈ S,

∥xk∗ − xi∥2 ≥ 1

2
∥xk∗ − xS∥2 − ∥xi − xS∥2 .

Together with the fact that |S ∩Nk∗ | = |S| + |Nk∗ | − |S ∪Nk∗ | ≥ (n − f) + (n − f) − n = n − 2f , the previous
inequality implies that

∑
i∈Nk∗

∥xk∗ − xi∥2 ≥
∑

i∈S∩Nk∗

∥xk∗ − xi∥2 ≥ |S ∩Nk∗ |
1

2
∥xk∗ − xS∥2 −

∑
i∈S∩Nk∗

∥xi − xS∥2

≥ n− 2f

2
∥xk∗ − xS∥2 −

∑
i∈S∩Nk∗

∥xi − xS∥2 .
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By rearranging the terms, and invoking (10) we can write

∥xk∗ − xS∥2 ≤ 2

n− 2f

 ∑
i∈Nk∗

∥xk∗ − xi∥2 +
∑

i∈S∩Nk∗

∥xi − xS∥2


≤ 2

n− 2f

 ∑
i∈Nk∗

∥xk∗ − xi∥2 +
∑
i∈S

∥xi − xS∥2


≤ 2

n− 2f

[
2
∑
i∈S

∥xi − xS∥2 +
∑
i∈S

∥xi − xS∥2
]

=
6

n− 2f

∑
i∈S

∥xi − xS∥2 =
6(n− f)

n− 2f

1

|S|
∑
i∈S

∥xi − xS∥2 .

We conclude by remarking that n−f
n−2f = 1 + f

n−2f .

8.1.3 Geometric Median

The Geometric Median of x1, . . . , xn ∈ Rd denoted by GM(x1, . . . , xn), is defined to be a vector that minimizes the sum
of the ℓ2-distances to these vectors. Specifically, we have

GM(x1, . . . , xn) ∈ argmin
y∈Rd

n∑
i=1

∥y − xi∥ .

Proposition 4. Let n ∈ N∗ and f < n/2. GM is (f, κ)-robust with κ = 4
(
1 + f

n−2f

)2
.

Proof. The proof is similar to the analysis of Geometric Median in (Karimireddy et al., 2022). For completeness, we provide
the full proof adapted to the definition of (f, κ)-robustness. Let us denote by x∗ := GM(x1, . . . , xn), the geometric median
of the input vectors. Consider any subset S ⊆ [n] of size |S| = n− f . By the reverse triangle inequality, for any i ∈ S, we
have

∥x∗ − xi∥ ≥ ∥x∗ − xS∥ − ∥xi − xS∥ . (11)

Similarly, for any i ∈ [n] \ S, we obtain

∥x∗ − xi∥ ≥ ∥xi − xS∥ − ∥x∗ − xS∥ . (12)

Summing up (11) and (12) over all input vectors we obtain∑
i∈[n]

∥x∗ − xi∥ ≥ (n− 2f) ∥x∗ − xS∥+
∑

i∈[n]\S

∥xi − xS∥ −
∑
i∈S

∥xi − xS∥ .

Rearranging the terms, we obtain

∥x∗ − xS∥ ≤ 1

n− 2f

∑
i∈[n]

∥x∗ − xi∥ −
∑

i∈[n]\S

∥xi − xS∥+
∑
i∈S

∥xi − xS∥


Note that by the definition of the geometric median, we have∑

i∈[n]

∥x∗ − xi∥ ≤
∑
i∈[n]

∥xS − xi∥ .

Therefore,

∥x∗ − xS∥ ≤ 1

n− 2f

∑
i∈[n]

∥xi − xS∥ −
∑

i∈[n]\S

∥xi − xS∥+
∑
i∈S

∥xi − xS∥

 ≤ 2

n− 2f

∑
i∈S

∥xi − xS∥ .



Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity

Squaring both sides and using Jensen’s inequality, we obtain

∥x∗ − xS∥2 ≤ 4(n− f)

(n− 2f)2

∑
i∈S

∥xi − xS∥2 =
4(n− f)2

(n− 2f)2
· 1

n− f

∑
i∈S

∥xi − xS∥2

= 4

(
1 +

f

n− 2f

)2
1

|S|
∑
i∈S

∥xi − xS∥2 .

This is the desired result.

8.1.4 Median

For input vectors x1, . . . , xn, their coordinate-wise median, denoted by CWMed(x1, . . . , xn), is defined to be a vector
whose k-th coordinate, for all k ∈ [d], is defined to be

[CWMed (x1, . . . , xn)]k := Median ([x1]k, . . . [xn]k) . (13)

Proposition 5. Let n ∈ N∗ and f < n/2. CWMed is (f, κ)-robust with κ = 4
(
1 + f

n−2f

)2
.

Proof. Given that Geometric Median coincides with Median for one-dimensional inputs, it follows from Proposition 4 that,

for one-dimensional inputs, Median is (f, κ)-robust with κ = 4
(
1 + f

n−2f

)2
. Since Median is coordinate-wise, we deduce

from Lemma 2 that the latter holds for any d-dimensional inputs, and conclude the proof.

8.2 Lower Bounds

In this section, we establish the tightness of our analysis by proving a universal lower bound on κ in Proposition 6, and an
aggregation-specific lower bound in Proposition 7.
Proposition 6. Let n ∈ N∗, f < n and κ > 0. If F is (f, κ)-robust, then n > 2f and κ ≥ f

n−2f .

Proof. Let n ∈ N∗, f < n and κ > 0. Assume that F is (f, κ)-resilient averaging aggregation rule. Consider x1, . . . , xn
such that x1 = . . . = xn−f = 0, and xn−f+1 = . . . = xn = 1. Let us first consider a set S0 = {1, . . . , n− f}. Since
|S0| = n− f , by definition, we have

|F (x1, . . . , xn)− xS0 |
2 ≤ κ

1

n− f

∑
i∈S0

|xi − xS0 |
2
= 0.

Thus, F (x1, . . . , xn) = xS0 = 0.

Now, consider another set S1 = {f + 1, . . . , n}. Observe that we necessarily have n > 2f . Assume by contradiction
that 2f ≥ n, i.e., f + 1 ≥ n − f + 1. This implies that, for every i ∈ S1, xi = 1. Therefore, xS1 = 1. And, since F is
(f, κ)-robust, we must have

|F (x1, . . . , xn)− xS1 |
2 ≤ κ

1

n− f

∑
i∈S1

|xi − xS1 |
2
.

Therefore, 0 = xS0 = F (x1, . . . , xn) = xS1 = 1, which is a contradiction.

As a result, we must have n > 2f . This implies that xS1 = f
n−f . Thus,

|F (x1, . . . , xn)− xS1
|2 =

(
f

n− f

)2

. (14)

Since F is (f, κ)-resilient averaging rule, we have

|F (x1, . . . , xn)− xS1
|2 ≤ κ

1

n− f

∑
i∈S1

|xi − xS1
|2 =

κ

n− f

(
(n− 2f)

∣∣∣∣0− f

n− f

∣∣∣∣2 + f

∣∣∣∣1− f

n− f

∣∣∣∣2
)

=
κ

n− f

(
(n− 2f)

f2

(n− f)2
+ f

(n− 2f)2

(n− f)2

)
=
κ f(n− 2f)

n− f

(
f + n− 2f

(n− f)2

)
= κ

f(n− 2f)

(n− f)2
.
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Plugging this inequality back in (14), we conclude κ ≥ f
n−2f .

Proposition 7. Let n ∈ N∗, f ≥ 1 such that n > 2f , and κ ≥ 0. For any F ∈ {GM,CWMed,Krum}, if F is (f, κ)-robust
then κ ∈ Ω(1).

Proof. Let n ∈ N∗, f ≥ 1 such that n > 2f and κ ≥ 0. Let F ∈ {GM,CWMed,Krum}. We will prove that if F is
(f, κ)-robust, then there exists an absolute constant c > 0 such that κ ≥ c.

Consider x1, . . . , xn ∈ R such that x1, . . . , x⌊n−f
2 ⌋ = −1 and x⌊n−f

2 ⌋+1, . . . , xn−f = 1. Moreover, we set
xn−f+1, . . . , xn = 1. Observe that, because f ≥ 1, there is a strict majority of the inputs taking value 1: the num-

ber of such inputs is
(
n− f −

⌊
n−f
2

⌋)
+ f =

⌈
n−f
2

⌉
+ f ≥

⌊
n−f
2

⌋
+ f >

⌊
n−f
2

⌋
.

Besides, recall that by setting S = {1, . . . , n− f}, any (f, κ)-robust function F should verify

|F (x1, . . . , xn)− xS |2 ≤ κ
1

n− f

∑
i∈S

|xi − xS |2 . (15)

However, the average xS is equal to

xS =
1

n− f

∑
i∈S

xi =
1

n− f

[⌊
n− f

2

⌋
× (−1) +

(
n− f −

⌊
n− f

2

⌋)
× (+1)

]

=
1

n− f

(
n− f − 2

⌊
n− f

2

⌋)
=

{
0 if n− f is even,

1
n−f if n− f is odd.

(16)

Besides, the empirical average 1
n−f

∑
i∈S |xi − xS |2 is equal to

1

n− f

∑
i∈S

|xi − xS |2 =
1

n− f

∑
i∈S

(
x2i + x2S − 2xixS

)
=

1

n− f

∑
i∈S

x2i − x2S

= 1− x2S =

1 if n− f is even,

1−
(

1
n−f

)2
if n− f is odd.

(17)

Now, observe that the value of F (x1, . . . , xn) is equal to 1 for every F ∈ {GM,CWMed,Krum}. Indeed, since f ≥ 1, a
strict majority of the inputs take the value 1, while the remaining inputs take the value −1. Recall also that GM is identical
to CWMed in one dimension.

By plugging this in (15), using (16) and (17), and rearranging terms, we obtain for every F ∈ {GM,CWMed,Krum}

κ ≥ |F (x1, . . . , xn)− xS |2
1

n−f
∑
i∈S |xi − xS |2

=
|1− xS |2

1
n−f

∑
i∈S |xi − xS |2

=

1 if n− f is even,
|1− 1

n−f |2
1−( 1

n−f )
2 if n− f is odd.

(18)

Note however that |1− 1
n−f |2

1−( 1
n−f )

2 =
1− 1

n−f

1+ 1
n−f

= n−f−1
n−f+1 = 1 − 2

n−f+1 . Since f ≥ 1, then n ≥ 2f + 1 ≥ 3, and thus

|1− 1
n−f |2

1−( 1
n−f )

2 = 1− 2
n−f+1 ≥ 1

3 . Therefore, in both cases of (18), we have κ ≥ 1
3 for every F ∈ {GM,CWMed,Krum}. This

concludes the proof.

We can now see that the robustness coefficients given in Table 1 are tight in order of magnitude. Assume that n ≥ (2 + ν)f

for some absolute constant ν > 0. The coefficient of CWTM is of order O
(

f
n−2f

)
, which is optimal following Proposition 6.

The coefficients of CWMed, GM and Krum are of order O(1), which is optimal following Proposition 7.
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8.3 Unifying Robustness Definitions

In this section, we prove that (f, κ)-robustness unifies existing robustness definitions in the literature (Farhadkhani et al.,
2022b; Karimireddy et al., 2022). Specifically, we prove that verifying our definition implies verifying the other definitions.
The reason behind this is that, in (f, κ)-robustness, we control the error on estimating the average with a smaller quantity
compared to existing works.

8.3.1 (f, λ)-resilient Averaging

Recall the definition of (f, λ)-resilient averaging (Farhadkhani et al., 2022b) below.

Definition 3 ((f, λ)-Resilient averaging). For f < n and real value λ ≥ 0, an aggregation rule F is called (f, λ)-resilient
averaging if for any collection of n vectors x1, . . . , xn, and any set S ⊆ {1, . . . , n} of size n− f ,

∥F (x1, . . . , xn)− xS∥ ≤ λmax
i,j∈S

∥xi − xj∥ ,

where xS := 1
|S|
∑
i∈S xi, and |S| is the cardinality of S.

The following proposition shows that (f, κ)-robustness implies (f, λ)-resilient averaging.

Proposition 8. Let n ∈ N∗, f < n and κ > 0. If F is (f, κ)-robust, then F is (f, λ)-resilient with λ =
√
κ/2.

Proof. Let n ∈ N∗, f < n and λ, κ > 0. Let x1, . . . , xn ∈ Rd and S ⊆ {1, . . . , n} such that |S| = n− f .

If F is (f, κ)-robust, then we have

∥F (x1, . . . , xn)− xS∥2 ≤ κ
1

n− f

∑
i∈S

∥xi − xS∥2 = κ
1

2(n− f)2

∑
i,j∈S

∥xi − xj∥2 ≤ κ

2
max
i,j∈S

∥xi − xj∥2 . (19)

The equality above is due to

1

2(n− f)2

∑
i,j∈S

∥xi − xj∥2 =
1

2(n− f)2

∑
i,j∈S

∥xi − xS + xS − xj∥2

=
1

2(n− f)2

∑
i,j∈S

(
∥xi − xS∥2 + ∥xS − xj∥2 − 2(xi − xS)(xj − xS)

)

=
1

2(n− f)2

(n− f)
∑
i∈S

∥xi − xS∥2 + (n− f)
∑
j∈S

∥xS − xj∥2


− 1

(n− f)2

∑
i,j∈S

(xi − xS)(xj − xS)

=
1

n− f

∑
i∈S

∥xi − xS∥2 −
1

(n− f)2

∑
i∈S

(xi − xS)
∑
j∈S

(xj − xS)︸ ︷︷ ︸
=0

=
1

n− f

∑
i∈S

∥xi − xS∥2 . (20)

Taking the square root of both sides in (19) concludes the proof.

As a consequence of Proposition 8, one can measure the significant improvement over the analysis of aggregation rules
in (Farhadkhani et al., 2022b). For example, the coefficient λ proved for CWMed in (Farhadkhani et al., 2022b) is

n
2(n−f) min {2

√
n− f,

√
d}, which is either growing with the dimension or n. In contrast, Proposition 8 shows that our

analysis implies the coefficient λ =
√
κ/2 =

√
2
(
1 + f

n−2f

)
, which is bounded whenever n ≥ (2 + ν)f for some ν > 0.

A similar observation can be made for CWTM.
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8.3.2 (δmax, c)-agnostic Robust Aggregation

We recall the definition of an agnostic robust aggregator (ARAgg) (Karimireddy et al., 2022) below. Note that the so-
called ”good” subset in the original definition of (δmax, c)-ARAgg (Karimireddy et al., 2022) is only required to be of size
|S| ≥ (1− δ)n, where δ is an upper bound on the fraction of Byzantine workers. In our formalism, f is the actual number
of Byzantine workers, and thus we directly require |S| = n− f without loss of generality.

Definition 4 ((δmax, c)-ARAgg). Given inputs X1, . . . , Xn such that a subset S, |S| = n− f with f
n ≤ δmax < 0.5 satisfies

E
[
∥Xi −Xj∥2

]
≤ ρ2 for all i, j ∈ S. Then, the output X̂ of a (δmax, c)-ARAgg satisfies E

[∥∥∥X̂ −XS

∥∥∥2] ≤ c fnρ
2.

The following proposition shows that (f, κ)-robustness implies (δmax, c)-agnostic robust aggregation. We also show
that to obtain (δmax, c)-agnostic robust aggregation with c = O(1), although there is no such theoretical requirement in
(Karimireddy et al., 2022), it is sufficient to have κ ∈ O

(
f

n−2f

)
.

Proposition 9. Let n ∈ N∗, 0 < f < n/2, κ > 0, and f
n ≤ δmax <

1
2 . If F is (f, κ)-robust, then F is (δmax, c)-ARAgg with

c = κ n
2f . Furthermore, if κ ∈ O

(
f

n−2f

)
then c = O(1).

Proof. Let n ∈ N∗, 0 < f < n/2, κ > 0, and 0 < δmax <
1
2 . Assume that F is (f, κ)-robust. Consider any x1, . . . , xn ∈ Rd

and S ⊆ [n] such that |S| = n− f .

As F is (f, κ)-robust, using (20), we have

∥F (x1, . . . , xn)− xS∥2 ≤ κ

n− f

∑
i∈S

∥xi − xS∥2 =
κ

2(n− f)2

∑
i,j∈S

∥xi − xj∥2 . (21)

For any random variables X1, . . . , Xn, integrating over (21) with the joint probability measure of these variables then gives

E
[∥∥F (X1, . . . , Xn)−XS

∥∥2] ≤ κ

2
E

 1

(n− f)2

∑
i,j∈S

∥Xi −Xj∥2
 =

κ

2

1

|S|2
∑
i,j∈S

E
[
∥Xi −Xj∥2

]
≤ κ

2
max
i,j∈S

E
[
∥Xi −Xj∥2

]
= c

f

n
max
i,j∈S

E
[
∥Xi −Xj∥2

]
. (22)

where c := κ n
2f . Thus, ifX1, . . . , Xn are such that there exists a subset S ⊆ [n], |S| = n−f, for which E

[
∥Xi −Xj∥2

]
≤

ρ2 for all i, j ∈ S. Then, it holds that ρ2 ≥ maxi,j∈S E
[
∥Xi −Xj∥2

]
. This fact together with (22) allows to conclude the

desired result; that is,

E
[∥∥F (X1, . . . , Xn)−XS

∥∥2] ≤ c
f

n
ρ2.

Furthermore, if κ = O
(

f
n−2f

)
, then we can write κ ≤ 2m(1 − 2δmax)

f
n−2f for some absolute constant m > 0, since

δmax ∈ (0, 12 ). However, since f
n ≤ δmax and δ 7→ 2δ

1−2δ is non-decreasing, we have f
n−2f = f

n (1+
2f

n−2f ) ≤
f
n (1+

2δmax
1−2δmax

),

and thus κ ≤ 2m(1− 2δmax)
f

n−2f ≤ 2m f
n . As a result, we have c = κ n

2f ≤ m = O(1). This concludes the proof.

Our analysis improves over that of (Karimireddy et al., 2022) for CWMed and Krum. For CWMed, their rate is dimension-
dependent unlike ours. For Krum, they only prove robustness assuming n > 4f , while our analysis holds for n > 2f .



Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity

9 PROOF OF LEMMA 1: ANALYSIS OF NNM

9.1 Proof Overview

The proof of Lemma 1 relies on the observation that NNM brings the inputs closer to the true average. This is formalized in
Lemma 5 where we show that the empirical variance is reduced by a factor of order f/n. Note that although outputs of NNM
have smaller variance than the original inputs, their average may deviate from the original average. Then, in the proof of
Lemma 1, we control this bias introduced by the NNM operation, and use the reduction proved in Lemma 5 to conclude.

Notation. In the following, for every set S ⊆ [n], and every vectors x1, . . . , xn ∈ Rd, we denote by xS the average
1
|S|
∑
i∈S xi. Let µ ∈ Rd. We denote by yµ the average of the n− f nearest neighbors of µ in {x1, . . . , xn}:

yµ :=
1

|Nµ|
∑
i∈Nµ

xi,

where Nµ ⊆ {1, . . . , n}, |Nµ| = n− f, is the set of indices of the n− f nearest neighbors of µ.

9.2 Proof of Supporting Lemmas

We first prove a general lemma allowing us to control the distance between the nearest neighbor average yµ and the true
average xS with the dispersion of (xi)i∈S around the pivot µ.

Lemma 4. Let n ∈ N∗, f < n, and µ ∈ Rd. For any set S ⊆ {1, . . . , n}, |S| = n − f , we have for any vectors
x1, . . . , xn ∈ Rd,

∥yµ − xS∥2 ≤ 4f

n− f

1

|S|
∑
i∈S

∥xi − µ∥2 .

Proof. Let n ∈ N∗, f < n, µ ∈ Rd, x1, . . . , xn ∈ Rd, and S ⊆ {1, . . . , n}, |S| = n − f . Recall that, by definition, we
have yµ = 1

n−f
∑
i∈Nµ

xi, where Nµ ⊆ {1, . . . , n}, |Nµ| = n− f, is the set of indices of the n− f nearest neighbors of
µ. We then have

∥yµ − xS∥2 =

∥∥∥∥∥∥ 1

n− f

∑
i∈Nµ

xi −
1

n− f

∑
i∈S

xi

∥∥∥∥∥∥
2

=
1

(n− f)2

∥∥∥∥∥∥
∑
i∈Nµ

xi −
∑
i∈S

xi

∥∥∥∥∥∥
2

=
1

(n− f)2

∥∥∥∥∥∥
∑

i∈Nµ\S

xi −
∑

i∈S\Nµ

xi

∥∥∥∥∥∥
2

.

Observe that, since |S| = |Nµ| = n− f , we have |S \ Nµ| = |Nµ \ S| = |S ∪Nµ| − |S| ≤ n− (n− f) ≤ f . As a result,
by applying Jensen’s inequality, we have

∥yµ − xS∥2 =
1

(n− f)2

∥∥∥∥∥∥
∑

i∈Nµ\S

xi −
∑

i∈S\Nµ

xi

∥∥∥∥∥∥
2

=
1

(n− f)2

∥∥∥∥∥∥
∑

i∈Nµ\S

(xi − µ)−
∑

i∈S\Nµ

(xi − µ)

∥∥∥∥∥∥
2

≤ |S \ Nµ|+ |Nµ \ S|
(n− f)2

 ∑
i∈Nµ\S

∥xi − µ∥2 +
∑

i∈S\Nµ

∥xi − µ∥2


≤ 2f

(n− f)2

 ∑
i∈Nµ\S

∥xi − µ∥2 +
∑

i∈S\Nµ

∥xi − µ∥2
 .

On one hand, since Nµ is the set of n− f nearest neighbors to µ, the first term can be bounded by∑
i∈Nµ\S

∥xi − µ∥2 ≤
∑
i∈Nµ

∥xi − µ∥2 ≤
∑
i∈S

∥xi − µ∥2 .
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On the other hand, the second term can be bounded by∑
i∈S\Nµ

∥xi − µ∥2 ≤
∑
i∈S

∥xi − µ∥2 .

We finally conclude that

∥yµ − xS∥2 ≤ 4f

(n− f)2

∑
i∈S

∥xi − µ∥2 .

The second lemma crucially shows that the sum of the bias and the variance is reduced by a factor 8f
n−f . To do so, we

specialize the first lemma by setting the pivot to be the element xi, i ∈ S.

Lemma 5. Let n ∈ N∗, f < n . For any set S ⊆ {1, . . . , n}, |S| = n− f , for any vectors x1, . . . , xn ∈ Rd, the vectors
(y1, . . . , yn) = NNM(x1, . . . , xn) verify

1

|S|
∑
i∈S

∥yi − yS∥
2

︸ ︷︷ ︸
variance

+ ∥yS − xS∥2︸ ︷︷ ︸
bias

≤ 8f

n− f

1

|S|
∑
i∈S

∥xi − xS∥2 .

Proof. Let n ∈ N∗, f < n, x1, . . . , xn ∈ Rd, and S ⊆ {1, . . . , n}, |S| = n− f . We first prove the following bias-variance
decomposition

1

|S|
∑
i∈S

∥yi − yS∥
2
+ ∥yS − xS∥2 =

1

|S|
∑
i∈S

∥yi − xS∥ . (23)

We develop the first term of the l.h.s. of the equality above and obtain

1

n− f

∑
i∈S

∥yi − yS∥
2
=

1

n− f

∑
i∈S

∥yi − xS + xS − yS∥
2

=
1

n− f

∑
i∈S

∥yi − xS∥2 + ∥xS − yS∥
2
+ 2

1

n− f

∑
i∈S

⟨yi − xS , xS − yS⟩ .

However, we have

1

n− f

∑
i∈S

⟨yi − xS , xS − yS⟩ =

〈
1

n− f

∑
i∈S

yi︸ ︷︷ ︸
=yS

−xS , xS − yS

〉
= −∥xS − yS∥

2
.

As a result, we then have

1

n− f

∑
i∈S

∥yi − yS∥
2
=

1

n− f

∑
i∈S

∥yi − xS∥2 + ∥xS − yS∥
2 − 2 ∥xS − yS∥

2

=
1

n− f

∑
i∈S

∥yi − xS∥2 − ∥xS − yS∥
2
.

This proves (23). Besides, for any i ∈ S, we know from Lemma 4, with µ = xi, that

∥yi − xS∥2 ≤ 4f

n− f

1

n− f

∑
j∈S

∥xj − xi∥2 .
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As a consequence, using (23), we have

1

|S|
∑
i∈S

∥yi − yS∥
2
+ ∥yS − xS∥2 =

1

n− f

∑
i∈S

∥yi − xS∥2 ≤ 4f

n− f

1

(n− f)2

∑
i,j∈S

∥xj − xi∥2

=
4f

n− f

1

(n− f)2

∑
i,j∈S

∥xj − xS − (xi − xS)∥2

=
4f

n− f

1

(n− f)2

∑
i,j∈S

(
∥xj − xS∥2 + ∥xi − xS∥2 − 2 ⟨xj − xS , xi − xS⟩

)
=

4f

n− f

1

(n− f)2

[ ∑
i,j∈S

∥xj − xS∥2 +
∑
i,j∈S

∥xi − xS∥2 − 2
∑
i,j∈S

⟨xj − xS , xi − xS⟩
]

=
4f

n− f

1

(n− f)2

[
2(n− f)

∑
i∈S

∥xi − xS∥2 − 2
∑
i,j∈S

⟨xj − xS , xi − xS⟩
]

=
4f

n− f

1

(n− f)2

[
2(n− f)

∑
i∈S

∥xi − xS∥2 − 2
∑
i∈S

〈∑
j∈S

(xj − xS)︸ ︷︷ ︸
=0

, xi − xS

〉]

=
8f

n− f

1

n− f

∑
i∈S

∥xi − xS∥2 .

This concludes the proof.

9.3 Proof of Lemma 1

We can now prove Lemma 1, mainly thanks to the bias-variance trade-off guaranteed by Lemma 5.

Lemma 1. Let f < n/2 and F : Rd×n → Rd. If F is (f, κ)-robust, then F ◦ NNM is (f, κ′)-robust with κ′ ≤ 8f
n−f (κ+ 1).

Proof. Let n ∈ N∗, f < n, x1, . . . , xn ∈ Rd, S ⊆ {1, . . . , n}, |S| = n − f . Assume F is (f, κ)-robust. First, denote
(y1, . . . , yn) := F ◦ NNM(x1, . . . , xn) and yS := 1

n−f
∑
i∈S yi. Since F is (f, κ)-robust, the vectors y1, . . . , yn satisfy

∥F ◦ NNM(x1, . . . , xn)− yS∥
2
= ∥F (y1, . . . , yn)− yS∥

2 ≤ κ
1

|S|
∑
i∈S

∥yi − yS∥
2
. (24)

Now, thanks to Young’s inequality we have for c = 1/κ, (a+ b)2 ≤ (1 + c)a2 + (1 + 1/c)b2. We can then write using (24)

∥F ◦ NNM(x1, . . . , xn)− xS∥2 = ∥F ◦ NNM(x1, . . . , xn)− yS + yS − xS∥2

≤ (1 +
1

κ
) ∥F ◦ NNM(x1, . . . , xn)− yS∥

2
+ (1 + κ) ∥yS − xS∥2

≤ (1 +
1

κ
)κ

1

|S|
∑
i∈S

∥yi − yS∥
2
+ (1 + κ) ∥yS − xS∥2

=
1 + κ

n− f

∑
i∈S

∥yi − yS∥
2
+ (1 + κ) ∥yS − xS∥2 . (25)

Recall that Lemma 5 shows that 1
|S|
∑
i∈S ∥yi − yS∥

2
+ ∥yS − xS∥2 ≤ 8f

n−f
1
|S|
∑
i∈S ∥xi − xS∥2 . Plugging this in (25)

allows to conclude

∥F ◦ NNM(x1, . . . , xn)− xS∥2 ≤ 8f

n− f

1 + κ

n− f

∑
i∈S

∥xi − xS∥2 .
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10 ANALYSIS OF BUCKETING

In this section, we compare the robustness guarantees of the Bucketing algorithm (Karimireddy et al., 2022) with NNM.
Bucketing is a pre-aggregation step that maps input vectors {x1, . . . , xn} to output vectors {y1, . . . , y⌈n/s⌉}, where s is
a parameter called the bucket size. The Bucketing algorithm works as follows. First, it samples a random permutation
π : [n] → [n]. Then, for each i ∈ {1, . . . , ⌈n/s⌉}, it computes the output of bucket i as7

yi :=
1

s

min(s·i,n)∑
k=s(i−1)+1

xπ(k).

Recall that the property that enables NNM to boost the robustness of aggregations is that the heterogeneity of the output
vectors 1

|S|
∑
i∈S ∥yi − xS∥2 is a factor O(f/n) smaller than the heterogeneity of the input vectors 1

|S|
∑
i∈S ∥xi − xS∥2

(see Lemma 5). But, unlike NNM, Bucketing only reduces the heterogeneity in expectation over the random permutations
(see Lemma 1 in (Karimireddy et al., 2022)). Thus, there are iterations of the learning algorithm where Bucketing may not
reduce the heterogeneity, and these iterations are the best opportunity for the Byzantine workers to cause the most damage
to the learning.

We give in Observation 1 below a simple example showing that deterministically reducing the heterogeneity of inputs is
impossible using Bucketing in general, even in the absence of malicious inputs.
Observation 1. Using Bucketing, it is impossible to provide a worst-case heterogeneity reduction guarantee regardless of
the value of s, even in the absence of Byzantine inputs.

Proof. Let π be any permutation over [n]. We will construct an instance of n inputs such that an execution of Bucketing
using permutation π does not reduce the heterogeneity. Consider the inputs (x1, . . . , xn) such that for all 1 ≤ i ≤ ⌈n/s⌉ and
all k, l ∈ {s(i− 1)+ 1, . . . , s · i}, it holds that xπ(k) = xπ(l) =: yi. Thus, applying the permutation π on these inputs yields( s times︷ ︸︸ ︷
y1, . . . , y1, . . . ,

s times︷ ︸︸ ︷
yn/s, . . . , yn/s

)
in which each vector yi is repeated s times. Overall, the execution of Bucketing with π

will produce (y1, . . . , yn/s), which has the same variance as the original inputs, and thus heterogeneity was not reduced.

Moreover, given that the buckets are randomly chosen, the (expected) reduction of heterogeneity is only achieved at the
expense of an increase in the fraction of Byzantine inputs:
Observation 2. Bucketing increases the fraction of Byzantine workers by a factor s in the worst case.

Proof. In some executions, Bucketing might assign every Byzantine input to a different bucket. In this case, since the
average within each “contaminated” bucket is arbitrarily manipulable by a single Byzantine input, the number of Byzantine
output vectors is the same as the number of Byzantine input vectors. However, the total number of output vectors is s times
smaller than the total number of input vectors, thereby effectively increasing the fraction of Byzantine workers.

This observation implies that in order to have a worst-case robustness guarantee, the bucket size s can be at most
⌊
n
2f

⌋
, as

done in (Karimireddy et al., 2022). This instability in reducing the heterogeneity results in a poor estimation of the mean in
some iterations. We observe this instability in practice as we show below on experiments on CIFAR-10.

Experimental validation. Recall robust D-SHB (Algorithm 3), and the corresponding notations. In Figure 2, we plot in
each step t ∈ [T ] the quantity κ̂t defined as follows

κ̂2t := ∥Rt −mt∥2 /
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2 , (26)

where mt :=
1

|H|
∑
i∈Hm

(i)
t is the average of honest momentums at step t. In words, Figure 2 shows the error in estimating

the true average, scaled by the standard deviation of the honest inputs, across different steps of the learning. The quantity in
Equation (26) is an empirical estimation of κ, a parameter of the definition of (f, κ)-robustness in our theory. The figure
validates our insights about Bucketing and shows the superiority of NNM both in terms of stability of the error curves, as
well as the quality of the average estimation. Indeed, the NNM curves are consistently below Bucketing’s.

7In the theoretical analysis, for simplicity, we assume that n is divisible by s. If this is not the case, some buckets will include less than
s vectors which is less favorable for the theoretical guarantees of Bucketing but does not change the asymptotic behavior.
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Figure 2: Plot of κ̂t (defined in (26)) on CIFAR-10 with f = 2 Byzantine workers among n = 17 executing the ALIE
(column 1) and FOE (column 2) attacks. The heterogeneity level is α = 1. The corresponding accuracies are in Figure 25.

11 PROOF OF THEOREM 1: Analysis of Robust D-GD

Theorem 1. Let Assumption 1 hold and recall that LH is L-smooth. Consider Algorithm 1 with learning rate γ = 1
L . If F

is (f, κ)-robust, then for all T ≥ 1 ∥∥∥∇LH(θ̂)
∥∥∥2 ≤ 4κG2 +

4L(LH(θ0)− L∗)

T
.

Proof. Let Assumption 1 hold. Assume LH to be L-smooth and F to be (f, κ)-robust. Consider Algorithm 1 with learning
rate γ = 1

L . The update step corresponds to θt = θt−1 − 1
LRt for every t ≥ 1.

Since LH is L-smooth, we have (see (Bottou et al., 2018)) for all t ≥ 1,

LH(θt)− LH(θt−1) ≤ ⟨∇LH(θt−1), θt − θt−1⟩+
L

2
∥θt − θt−1∥2 = −γ ⟨∇LH(θt−1), Rt⟩+

1

2
γ2L ∥Rt∥2

= − 1

L
⟨∇LH(θt−1), Rt⟩+

1

2L
∥Rt∥2 . (27)

We expand the second term as follows

∥Rt∥2 = ∥Rt −∇LH(θt−1) +∇LH(θt−1)∥2

= ∥Rt −∇LH(θt−1)∥2 + ∥∇LH(θt−1)∥2 + 2 ⟨∇LH(θt−1), Rt −∇LH(θt−1)⟩ .

Plugging this back in (27), then simplifying, yields

LH(θt)− LH(θt−1) ≤ − 1

L
⟨∇LH(θt−1), Rt⟩+

1

2L
∥Rt −∇LH(θt−1)∥2 +

1

2L
∥∇LH(θt−1)∥2

+
1

L
⟨∇LH(θt−1), Rt −∇LH(θt−1)⟩

=
1

2L
∥Rt −∇LH(θt−1)∥2 −

1

2L
∥∇LH(θt−1)∥2 .

Upon rearranging terms and multiplying both sides by 2L we get

∥∇LH(θt−1)∥2 ≤ ∥Rt −∇LH(θt−1)∥2 + 2L(LH(θt−1)− LH(θt)).

By the (f, κ)-robustness property of F and Assumption 1, we can bound the first term as follows

∥Rt −∇LH(θt−1)∥2 =

∥∥∥∥∥F(g(1)t , . . . , g
(n)
t

)
− 1

|H|
∑
i∈H

g
(i)
t

∥∥∥∥∥
2

≤ κ

|H|
∑
i∈H

∥∥∥∥∥g(i)t − 1

|H|
∑
i∈H

g
(i)
t

∥∥∥∥∥
2

=
κ

|H|
∑
i∈H

∥∇Li(θt−1)−∇LH(θt−1)∥2 ≤ κG2. (28)

As a result, we have

∥∇LH(θt−1)∥2 ≤ κG2 + 2L (LH(θt−1)− LH(θt)) .
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By taking the average over t from 1 to T , and since LH(θT ) ≥ infθ∈Rd LH(θ) = L∗, we have

1

T

T−1∑
t=0

∥∇LH(θt)∥2 ≤ κG2 +
2L (LH(θ0)− LH(θT ))

T
≤ κG2 +

2L (LH(θ0)− L∗)

T
. (29)

Final step. Recall from Algorithm 1 that θ̂ = θτ−1 with τ ∈ argmin1≤t≤T ∥Rt∥. Thus, using Jensen’s inequality, (28) and
then (29), we have∥∥∥∇LH(θ̂)

∥∥∥2 = min
1≤t≤T

∥Rt∥2 = min
1≤t≤T

∥∇LH(θt−1) + (Rt −∇LH(θt−1))∥2

≤ min
1≤t≤T

{
2 ∥∇LH(θt−1)∥2 + 2 ∥Rt −∇LH(θt−1)∥2

}
≤ 2 min

1≤t≤T
∥∇LH(θt−1)∥2 + 2κG2

≤ 2
1

T

T−1∑
t=0

∥∇LH (θt)∥
2
+ 2κG2 ≤ 2κG2 +

4L(LH(θ0)− L∗)

T
+ 2κG2

= 4κG2 +
4L(LH(θ0)− L∗)

T
.

This concludes the proof.

12 PROOF OF COROLLARY 1: ANALYSIS OF ROBUST D-GD WITH NNM

Corollary 1. Let Assumption 1 hold and recall that LH is L-smooth. Consider Algorithm 1 with γ = 1/L and aggregation
F ◦ NNM. If F is (f, κ)-robust with κ = O(1), then Algorithm 1 is (f, ε)-Byzantine resilient with

ε = O
(
f/nG2 + 1/T

)
.

Proof. Let Assumption 1 hold. Assume LH to be L-smooth and F to be (f, κ)-robust. First recall that, by Lemma 1, the
composition F ◦ NNM is (f, κ′)-robust with κ′ = 8f

n−f (κ+ 1).

Consider Algorithm 1 with learning rate γ = 1/L and aggregation rule F ◦ NNM. Following Theorem 1, we have for every
T ≥ 1, ∥∥∥∇LH

(
θ̂
)∥∥∥2 ≤ 4κ′G2 +

4L(LH(θ0)− L∗)

T
=

32f

n− f
(κ+ 1)G2 +

4L(LH(θ0)− L∗)

T
.

Recall that, as f < n/2, we have f
n−f ≤ 2f

n . Thus, if κ = O(1), we can write∥∥∥∇LH

(
θ̂
)∥∥∥2 = O

(
f/nG2 + 1/T

)
.

This concludes the proof.

We provide the proof of the lower bound on Byzantine resilience under heterogeneity (Proposition 1) below.

Proposition 1. If a learning algorithm A is (f, ε)-Byzantine resilient for every collection of smooth loss functions
L1, . . . ,Ln satisfying Assumption 1, then ε = Ω

(
f/nG2

)
.

Proof. The proof is similar to that of Theorem III (Karimireddy et al., 2022). Assume learning algorithm A is (f, ε)-
Byzantine resilient for every collection of smooth loss functions L1, . . . ,Ln satisfying Assumption 1. Consider the following
quadratic loss functions L1 = . . . = Ln−f = θ 7→ 1

2 ∥θ∥
2 and Ln−f+1 = . . . = Ln = θ 7→ 1

2 ∥θ − z∥2, where z ∈ Rd is

such that ∥z∥2 = (n−f)2
f(n−2f)G

2. Consider the two situations H1 = {1, . . . , n− f} and H2 = {f + 1, . . . , n}.

We first show that the loss functions satisfy Assumption 1 in both situations. This is straightforward in situation H1 since
honest losses are identical. In situation H2, we have for all θ ∈ Rd,

∇LH2
(θ) =

1

n− f

∑
i∈H2

∇Li(θ) =
n− 2f

n− f
θ +

f

n− f
(θ − z) = θ − f

n− f
z.
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Therefore, thanks to the choice of z, we now show that Assumption 1 holds, as for all θ ∈ Rd we have

1

|H2|
∑
i∈H2

∥∇Li(θ)−∇LH2(θ)∥
2
=
n− 2f

n− f

∥∥∥∥ f

n− f
z

∥∥∥∥2 + f

n− f

∥∥∥∥n− 2f

n− f
z

∥∥∥∥2 =
f(n− 2f)

(n− f)2
∥z∥2 = G2.

Now, since learning algorithm A is (f, ε)-Byzantine resilient, it outputs θ̂ such that
∥∥∥∇LH1

(θ̂)
∥∥∥2 ≤ ε and

∥∥∥∇LH2
(θ̂)
∥∥∥2 ≤ ε.

Note that situations H1 and H2 are indistinguishable to algorithm A because it ignores the Byzantine identities, and thus θ̂
is the same in both situations. Therefore, invoking Jensen’s inequality, we have

ε ≥ max

{∥∥∥∇LH1
(θ̂)
∥∥∥2 ,∥∥∥∇LH2

(θ̂)
∥∥∥2} ≥ 1

2

(∥∥∥∇LH1
(θ̂)
∥∥∥2 + ∥∥∥∇LH2

(θ̂)
∥∥∥2)

=
1

2

(∥∥∥θ̂∥∥∥2 + ∥∥∥∥θ̂ − f

n− f
z

∥∥∥∥2
)

≥ 1

4

∥∥∥∥ f

n− f
z

∥∥∥∥2 =
1

4

(
f

n− f

)2
(n− f)2

f(n− 2f)
G2 =

1

4

f

n− 2f
G2.

Since n− 2f ≤ n, we obtain ε ≥ 1
4
f/nG2, which concludes the proof.

13 PROOF OF THEOREM 2: ANALYSIS OF ROBUST D-SHB

13.1 Proof Outline

Our analysis of robust D-SHB (Algorithm 3) follows (Farhadkhani et al., 2022b) and consists of four elements: (i) Momentum
drift (Lemma 6), (ii) Aggregation error (Lemma 7), (iii) Momentum deviation (Lemma 8), and (iv) Descent bound (Lemma 9).
We combine these elements to obtain the final convergence result stated in Theorem 2. The originality of our analysis,
compared to (Farhadkhani et al., 2022b), is (i) the tighter analysis of the aggregation error thanks to (f, κ)-robustness, and
(ii) the extension of the momentum drift analysis to the heterogeneous setting. There are other subtle differences, such as the
choice of the learning rate.

Notation. Recall that for each step t, for each honest worker wi,

m
(i)
t = βm

(i)
t−1 + (1− β)g

(i)
t (30)

where m(i)
0 = 0 by convention. As we analyze Algorithm 3 with aggregation F , we denote

Rt := F
(
m

(1)
t , . . . ,m

(n)
t

)
, (31)

and

θt = θt−1 − γRt. (32)

We denote by Pt the history from steps 1 to t. Specifically,

Pt :=
{
θ0, . . . , θt−1; m

(i)
1 , . . . , m

(i)
t−1; i = 1, . . . , n

}
.

By convention, P1 = {θ0}. We denote by Et [·] and E [·] the conditional expectation E [· Pt] and the total expectation,
respectively. Thus, E [·] = E1 [· · ·ET [·]].

13.1.1 Momentum Drift

Along the trajectory θ0, . . . , θt−1, the honest workers’ local momentums may drift away from each other. This is in part due
to the heterogeneity between the training sets. This induces a dissimilarity between honest workers’ local gradients that we
can control thanks to Assumption 1. The drift is also due to the stochasticity of the local gradients.

We show in Lemma 6 below that the bound on the drift between the honest workers’ momentums can be controlled by
tuning the momentum coefficient β. In fact, the smaller (1− β) the smaller the bound on the drift. Recall that we denote by
H ⊆ [n] the set of n− f honest workers. We define

mt := 1/(n−f)
∑
i∈H

m
(i)
t , (33)
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the average of honest workers’ local momentums. We obtain the following bound on the momentum drift, i.e., Lemma 6,
proof of which can be found in Appendix 13.4.1.
Lemma 6. Suppose that assumptions 1 and 2 hold true. Consider Algorithm 3. For each t ∈ [T ], we obtain that

E

[
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2] ≤ 3

(
1− β

1 + β

) (
1 +

1

n− f

)
σ2 + 3G2.

13.1.2 Aggregation Error

By building upon this first lemma and the (f, κ)-robustness property, we can obtain a bound on the error between the
aggregate Rt and mt the average momentum of honest workers for the case. Specifically, when defining the error

ξt := Rt −mt, (34)

we get the following bound on the error in Lemma 7, proof of which can be found in Appendix 13.4.2.
Lemma 7. Suppose that assumptions 1 and 2 hold true. Assume F is (f, κ)-robust. Consider Algorithm 3 with aggregation
F . For each step t ∈ [T ], we obtain that

E
[
∥ξt∥2

]
≤ 6κ

1− β

1 + β
σ2 + 3κG2.

13.1.3 Momentum Deviation

Next, we study the momentum deviation; i.e., the distance between the average honest momentum mt and the true gradient
∇LH(θt−1) in an arbitrary step t. Specifically, we define deviation to be

δt := mt −∇LH
(
θt−1

)
, (35)

and obtain in Lemma 8 below an upper bound on the growth of the deviation over the learning steps t ∈ [T ]. (Proof of
Lemma 8 can be found in Appendix 13.4.3.)
Lemma 8. Suppose that Assumption 2 holds. Recall that LH is L-smooth. Consider Algorithm 3 with T > 1. For all t ≥ 2
we obtain that

E
[
∥δt∥2

]
≤β2cE

[
∥δt−1∥2

]
+ 4γL(1 + γL)β2 E

[∥∥∇LH(θt−2)
∥∥2]+ (1− β)2

σ2

(n− f)

+ 2γL(1 + γL)β2 E
[
∥ξt−1∥2

]
,

where c := (1 + γL) (1 + 4γL).

13.1.4 Descent Bound

Finally, we analyze the fourth element, i.e., the growth of cost function LH(θ) along the trajectory of Algorithm 3. From (32)
and (31), we obtain that, for each step t,

θt = θt−1 − γRt = θt−1 − γ mt − γ (Rt − mt) ,

Furthermore, by (34), Rt − mt = ξt. Thus, for all t,

θt = θt−1 − γ mt − γξt. (36)

This means that Algorithm 3 can actually be treated as distributed SGD with a momentum term that is subject to perturbation
proportional to ξt at each step t. This perspective leads us to Lemma 9, proof of which can be found in Appendix 13.4.4.
Lemma 9. Recall that LH is L-smooth. Consider Algorithm 3. For all t ∈ [T ], we obtain that

E
[
2LH(θt)− 2LH(θt−1)

]
≤− γ (1− 4γL)E

[∥∥∇LH(θt−1)
∥∥2]+ 2γ (1 + 2γL)E

[
∥δt∥2

]
+ 2γ (1 + γL)E

[
∥ξt∥2

]
.

Putting all of the previous lemmas together, we prove Theorem 2 in Section 13.2 below. As a corollary of Theorem 2 and
Lemma 1, we prove Corollary 2 in Section 13.3.
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13.2 Proof of Theorem 2

We recall the theorem statement below for convenience. Recall that

L∗ = inf
θ∈Rd

LH(θ), a1 = 36, a2 = 6
√
LH(θ0)− L∗, a3 = 1728L, a4 = 288L, and a5 = 6La22. (37)

Theorem 2. Let assumption 1 and 2 hold and recall that LH is L-smooth. Let F be a (f, κ)-robust aggregation rule.
Consider Algorithm 3 with momentum coefficient β =

√
1− 24γL, and learning rate

γ = min

{
1

24L
,

a2

2aκσ
√
T

}
,

with a2κ := a3κ+ a4
n−f . For all T ≥ 1

E
[∥∥∥∇LH(θ̂)

∥∥∥2]≤ a1κG
2 +

a2aκσ√
T

+
a5
T

+
a2a4σ

naκT
3/2
,

where the expectation is over the randomness of the algorithm.

Proof. Define

γo :=
1

18L
. (38)

Note that as specified in the theorem statement, by definition of γ, we have

γ ≤ 1

24L
≤ γo. (39)

Therefore, β =
√
1− 24γL (as defined) is a well-defined real value in (0, 1).

To obtain the convergence result we define the Lyapunov function to be

Vt := E
[
2LH(θt−1) + z ∥δt∥2

]
and z =

1

8L
. (40)

We consider an arbitrary t ∈ [T ].

Invoking Lemma 8. Upon substituting from Lemma 8, we obtain that

E
[
z ∥δt+1∥2 − z ∥δt∥2

]
≤zβ2cE

[
∥δt∥2

]
+ 4zγL(1 + γL)β2 E

[∥∥∇LH(θt−1)
∥∥2]+ z(1− β)2

σ2

n− f

+ 2zγL(1 + γL)β2 E
[
∥ξt∥2

]
− z E

[
∥δt∥2

]
. (41)

Recall that

c = (1 + γL) (1 + 4γL) = 1 + 5γL+ 4γ2L2. (42)

Invoking Lemma 9. Substituting from Lemma 9 we obtain that

E
[
2LH(θt)− 2LH(θt−1)

]
≤ −γ (1− 4γL)E

[∥∥∇LH(θt−1)
∥∥2]+ 2γ (1 + 2γL)E

[
∥δt∥2

]
+ 2γ (1 + γL)E

[
∥ξt∥2

]
. (43)

Substituting from (41) and (43) in (40) we obtain that

Vt+1 − Vt =E
[
2LH(θt)− 2LH(θt−1)

]
+ E

[
z ∥δt+1∥2 − z ∥δt∥2

]
≤− γ (1− 4γL)E

[∥∥∇LH(θt−1)
∥∥2]+ 2γ (1 + 2γL)E

[
∥δt∥2

]
+ 2γ (1 + γL)E

[
∥ξt∥2

]
+ zβ2cE

[
∥δt∥2

]
+ 4zγL(1 + γL)β2 E

[∥∥∇LH(θt−1)
∥∥2]+ z(1− β)2

σ2

n− f

+ 2zγL(1 + γL)β2 E
[
∥ξt∥2

]
− z E

[
∥δt∥2

]
. (44)
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Upon re-arranging the R.H.S. in (44) we obtain that

Vt+1 − Vt ≤− γ
(
(1− 4γL)− 4zL(1 + γL)β2

)
E
[∥∥∇LH(θt−1)

∥∥2]+ z(1− β)2
σ2

n− f

+
(
2γ (1 + 2γL) + zβ2c− z

)
E
[
∥δt∥2

]
+ 2γ

(
1 + γL+ zL(1 + γL)β2

)
E
[
∥ξt∥2

]
.

For simplicity, we define

A := (1− 4γL)− 4zL(1 + γL)β2, (45)

B := 2γ (1 + 2γL) + zβ2c− z, (46)

and

C := 2γ
(
1 + γL+ zL(1 + γL)β2

)
, (47)

Thus,

Vt+1 − Vt ≤ −Aγ E
[∥∥∇LH(θt−1)

∥∥2]+B E
[
∥δt∥2

]
+ C E

[
∥ξt∥2

]
+ z(1− β)2

σ2

n− f
. (48)

We now analyse below the terms A, B and C.

Term A. Recall from (39) that γ ≤ γo =
1

18L . Upon using this in (45), and the facts that z = 1
8L and β2 < 1, we obtain that

A ≥ 1− 4γoL− 4L

8L
(1 + γoL) ≥

1

2
− 9γoL

2
≥ 1

4
. (49)

Term B. Substituting c from (42) in (46) we obtain that

B = 2γ (1 + 2γL) + zβ2
(
1 + 5γL+ 4γ2L2

)
− z

= −
(
1− β2

)
z + γ

(
2 + 4γL+ 5zβ2L+ 4zβ2LγL

)
.

Using the facts that β2 ≤ 1 and γ ≤ γo ≤ 1
18L , and then substituting z = 1

8L we obtain that

B ≤ −(1− β2)

8L
+ γ

(
2 +

4

18
+

5

8
+

4

18× 8

)
≤ −(1− β2)

8L
+ 3γ ≤ −(1− β2) + 24γL

8L
= 0, (50)

where the last equality follows from the fact that 1− β2 = 24γL.

Term C. Substituting z = 1
8L in (47), and then using the fact that β2 < 1, we obtain that

C = 2γ

(
1 + γL+

1

8
(1 + γL)

)
≤ 9γ

4
(1 + γL) .

As γ ≤ γo ≤ 1
18L , from above we obtain that

C ≤ 9γ

4

(
1 +

1

18

)
≤ 3γ. (51)

Combining terms A, B, and C. Finally, substituting from (49), (50), and (51) in (48) (and recalling that z = 1
8L ) we

obtain that

Vt+1 − Vt ≤ −γ
4
E
[∥∥∇LH(θt−1)

∥∥2]+ 3γ E
[
∥ξt∥2

]
+ (1− β)2

σ2

8L(n− f)
.
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As the above is true for an arbitrary t ∈ [T ], by taking summation on both sides from t = 1 to t = T we obtain that

VT+1 − V1 ≤ −γ
4

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2]+ 3γ

T∑
t=1

E
[
∥ξt∥2

]
+ (1− β)2

σ2

8L(n− f)
T.

Thus,

γ

4

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ V1 − VT+1 + 3γ

T∑
t=1

E
[
∥ξt∥2

]
+ (1− β)2

σ2

8L(n− f)
T. (52)

Note that, as β > 0, and 1− β2 = 24γL, we have

(1− β)2 =

(
1− β2

)2
(1 + β)

2 ≤
(
1− β2

)2
= 576γ2L2.

Substituting from above in (52) we obtain that

γ

4

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ V1 − VT+1 + 3γ

T∑
t=1

E
[
∥ξt∥2

]
+

576γ2L2σ2

8L(n− f)
T.

Multiplying both sides by 4/γ we obtain that

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ 4 (V1 − VT+1)

γ
+ 12

T∑
t=1

E
[
∥ξt∥2

]
+

576γLσ2

2(n− f)
T. (53)

Invoking Lemma 7. Next, we use Lemma 7 to derive an upper bound on
∑T
t=1 E

[
∥ξt∥2

]
. Since F is (f, κ)-robust, we

have from Lemma 7 that for all t ∈ [T ],

E
[
∥ξt∥2

]
≤ 6κ

1− β

1 + β
σ2 + 3κG2.

By summing over t from 1 to T , we obtain that

T∑
t=1

E
[
∥ξt∥2

]
≤ 6κ

1− β

1 + β
σ2T + 3κG2T. (54)

As β > 0, and the fact that 1− β2 = 24γL, we have

1− β

1 + β
=

1− β2

(1 + β)2
≤ 1− β2 = 24γL.

Substituting the above in (54), we obtain that

T∑
t=1

E
[
∥ξt∥2

]
≤ (24× 6)σ2κγLT + 3κG2T = 144σ2κγLT + 3κG2T.

Substituting from above in (53) we obtain that

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤4 (V1 − VT+1)

γ
+ (12× 144)σ2κγLT + (12× 3)κG2T +

288γLσ2

(n− f)
.

Recall that

a1 = (12× 3) = 36, a3 = (12× 144)L = 1728L, and a4 = 288L
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Thus, from above we obtain that

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ 4 (V1 − VT+1)

γ
+ a3κσ

2γT +
a4σ

2

(n− f)
γT + a1κG

2T.

Diving both sides by T we obtain that

1

T

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ 4 (V1 − VT+1)

γT
+ a3κσ

2 γ +
a4σ

2

(n− f)
γ + a1κG

2. (55)

Analyzing Vt. Recall that L∗ = infθ∈Rd LH(θ). Note that for an arbitrary t, by definition of Vt in (40),

Vt − 2L∗ = 2E
[
LH(θt−1)− L∗]+ z E

[
∥δt∥2

]
≥ 0 + z E

[
∥δt∥2

]
≥ 0.

Thus,

V1 − VT+1 = V1 − 2L∗ − (VT+1 − 2L∗) ≤ V1 − 2L∗. (56)

Moreover,

V1 = 2LH(θ0) + z E
[
∥δ1∥2

]
. (57)

By definition of δt in (35), the definition of mt in (33), and the fact that m(i)
0 = 0 for all i ∈ H, we obtain that

E
[
∥δ1∥2

]
= E

[
∥m1 −∇LH(θ0)∥

2
]
= E

[
∥(1− β)g1 −∇LH(θ0)∥

2
]

where g1, defined in (59), is the average of n− f honest workers’ stochastic gradients in step 1. Expanding the R.H.S. above
we obtain that

E
[
∥δ1∥2

]
= (1− β)2 E

[
∥g1 −∇LH(θ0)∥

2
]
+ β2 ∥∇LH(θ0)∥

2 − 2β(1− β) ⟨E [g1]−∇LH(θ0), ∇LH(θ0)⟩ .

Recall that E [g1] = ∇LH(θ0), and that (due to Assumption 2) E
[
∥g1 −∇LH(θ0)∥

2
]
≤ σ2/(n− f). Therefore,

E
[
∥δ1∥2

]
≤ (1− β)2σ2

(n− f)
+ β2 ∥∇LH(θ0)∥

2
.

Recall that LH is L-smooth. Thus, ∥∇LH(θ0)∥
2 ≤ 2L(LH(θ0) − L∗) (see (Nesterov et al., 2018), Theorem 2.1.5).

Therefore,

E
[
∥δ1∥2

]
≤ (1− β)2σ2

(n− f)
+ 2β2L(LH(θ0)− L∗).

Substituting from above in (57) we obtain that

V1 ≤ 2LH(θ0) + z

(
(1− β)2σ2

(n− f)
+ 2β2L(LH(θ0)− L∗)

)
.

Recall that (1− β)2 ≤
(
1− β2

)2
= 576γ2L2. Using this, and the facts that β2 < 1 and z = 1

8L , we obtain that

V1 ≤ 2LH(θ0) +
1

4
(LH(θ0)− L∗) +

72γ2L2σ2

L(n− f)
.

Recall that a4 = 288L. Therefore,

V1 ≤ 2LH(θ0) +
1

4
(LH(θ0)− L∗) +

a4σ
2

4(n− f)
γ2.
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Substituting the above in (56) we obtain that

V1 − VT+1 ≤ 2LH(θ0)− 2L∗ +
1

4
(LH(θ0)− L∗) +

a4σ
2

4(n− f)
γ2 =

9

4
(LH(θ0)− L∗) +

a4σ
2

4(n− f)
γ2.

Substituting from above in (55) we obtain that

1

T

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤ (4× 9
4 )(LH(θ0)− L∗)

γT
+

(
a4σ

2

n− f

)
γ

T
+ a3κσ

2 γ +
a4σ

2

(n− f)
γ + a1κG

2.

Upon re-arranging the terms on R.H.S. above we obtain that

1

T

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤a1κG2 +
9(LH(θ0)− L∗)

γT
+

(
a3κ+

a4
n− f

)
σ2γ +

(
a4σ

2

n− f

)
γ

T
.

Recall that a22 = 36(LH(θ0)− L∗) and a2κ := a3κ+ a4
n−f , we obtain that

1

T

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤a1κG2 +
a22
4γT

+ a2κσ
2γ +

(
a4σ

2

n− f

)
γ

T
(58)

Final step. Recall that by definition

γ = min

{
1

24L
,

a2

2aκσ
√
T

}
,

and thus 1
γ = max

{
24L, 2aκσ

√
T

a2

}
≤ 24L+ 2aκσ

√
T

a2
.

Upon substituting this value of γ in (58), and recalling that a5 = 6La22, we obtain that

1

T

T∑
t=1

E
[∥∥∇LH(θt−1)

∥∥2] ≤a1κG2 +
a2aκσ√

T
+

24La22
4T

+
a2a4σ

2

2(n− f)aκT
3/2

≤a1κG2 +
a2aκσ√

T
+
a5
T

+
a2a4σ

naκT
3/2
. (since n ≥ 2f)

Finally, recall from Algorithm 3 that θ̂ is chosen randomly from the set of computed parameter vectors
(
θ0, . . . , θT−1

)
.

Thus, E
[∥∥∥∇LH

(
θ̂
)∥∥∥2] = 1

T

∑T
t=1 E

[∥∥∇LH(θt−1)
∥∥2]. Substituting this above proves the theorem.
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13.3 Proof of Corollary 2: Analysis of Robust D-SHB with NNM

Corollary 2. Let Assumption 1 hold and recall that LH is L-smooth. Consider Algorithm 3 with aggregation F ◦ NNM,
under the same setting as Theorem 2. If F is (f, κ)-robust with κ = O(1), then we have

E
[∥∥∥∇LH(θ̂)

∥∥∥2] = O
(
f/nG2 + 1/

√
T
)
,

where the expectation is over the randomness of the algorithm.

Proof. Let Assumption 1 hold. Assume LH to be L-smooth and F to be (f, κ)-robust. First recall that, by Lemma 1, the
composition F ◦ NNM is (f, κ′)-robust with κ′ = 8f

n−f (κ+ 1).

Consider Algorithm 1 with aggregation rule F ◦ NNM, and learning rate and momentum coefficient set as in Theorem 2.
Following Theorem 2, and recalling the constants defined in (37), we have for every T ≥ 1,

E
[∥∥∥∇LH(θ̂)

∥∥∥2] ≤ a1κ
′G2 +

a2aκ′σ√
T

+
a5
T

+
a2a4σ

naκ′T 3/2

=
8a1f

n− f
(κ+ 1)G2 +

a2aκ′σ√
T

+
a5
T

+
a2a4σ

naκ′T 3/2
.

Recall that a2κ′ = a3κ
′ + a4

n−f = 8a3f
n−f (κ+ 1) + a4

n−f . As κ ≥ 0 and κ = O(1) by assumption, we have aκ′ = Θ(1). Now,
ignoring constants and the last two terms on the RHS above (since they are dominated by 1√

T
), we obtain

E
[∥∥∥∇LH(θ̂)

∥∥∥2] = O
(

f

n− f
(κ+ 1)G2 +

1√
T

)
.

Recall that, as f < n/2, we have f
n−f ≤ 2f

n . Thus, if κ = O(1), we can write

E
[∥∥∥∇LH(θ̂)

∥∥∥2] = O
(
f/nG2 + 1/

√
T
)
.

This concludes the proof.
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13.4 Proof of Supporting Lemmas

13.4.1 Proof of Lemma 6

We now recall Lemma 6 below, and present its proof.
Lemma 6. Suppose that assumptions 2 and 1 hold true. Consider Algorithm 3. For each t ∈ [T ], we have

E

[
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2] ≤ 3

(
1− β

1 + β

) (
1 +

1

n− f

)
σ2 + 3G2.

Proof. Recall from (33) that

mt := 1/(n−f)
∑
i∈H

m
(i)
t .

We consider an arbitrary i ∈ H. For simplicity we define

gt := 1/(n−f)
∑
j∈H

g
(j)
t . (59)

Now, we consider an arbitrary step t ∈ [T ]. Expanding the sum in (30) we obtain that

m
(i)
t = (1− β)

t∑
k=1

βt−kg
(i)
k .

Therefore, applying Jensen’s inequality, we write

E

[
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2] = (1− β)2 E

 1

|H|
∑
i∈H

∥∥∥∥∥
t∑

k=1

βt−k(g
(i)
k − gt)

∥∥∥∥∥
2


≤ 3(1− β)2 E

 1

|H|
∑
i∈H

∥∥∥∥∥
t∑

k=1

βt−k(g
(i)
k −∇Li(θk−1))

∥∥∥∥∥
2


+ 3(1− β)2 E

 1

|H|
∑
i∈H

∥∥∥∥∥
t∑

k=1

βt−k(gk −∇LH(θk−1))

∥∥∥∥∥
2


+ 3(1− β)2 E

 1

|H|
∑
i∈H

∥∥∥∥∥
t∑

k=1

βt−k(∇Li(θk−1)−∇LH(θk−1))

∥∥∥∥∥
2
 . (60)

We obtain below upper bounds for each of the three terms on the right-hand side of (60).

For the first term on the R.H.S in (60) we denote

At := E

∥∥∥∥∥
t∑

k=1

βt−k(g
(i)
k −∇Li(θk−1))

∥∥∥∥∥
2
 .

We obtain that

At = E

∥∥∥∥∥
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1)) + (g

(i)
t −∇Li(θt−1))

∥∥∥∥∥
2


= E

∥∥∥∥∥
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1))

∥∥∥∥∥
2
+ E

[∥∥∥g(i)t −∇Li(θt−1)
∥∥∥2]

+ 2E

[〈
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1)), g

(i)
t −∇Li(θt−1)

〉]
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The last term on the right-hand side is zero by the total law of expectation, and the unbiasedness of stochastic gradients
(Assumption 2):

E

[〈
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1)), g

(i)
t −∇Li(θt−1)

〉]
= E

[
Et

[〈
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1)), g

(i)
t −∇Li(θt−1)

〉]]

= E

〈t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1)), Et

[
g
(i)
t −∇Li(θt−1)

]
︸ ︷︷ ︸

=0

〉
= 0.

By Assumption 2, we have E
[∥∥∥g(i)t −∇Li(θt−1)

∥∥∥2] ≤ σ2. Thus, we have

At ≤ E

∥∥∥∥∥
t−1∑
k=1

βt−k(g
(i)
k −∇Li(θk−1))

∥∥∥∥∥
2
+ σ2 = β2At−1 + σ2.

By recursion, we obtain

At ≤ β2(t−1)A1 + σ2
t−2∑
l=0

β2l.

As A1 = E
[∥∥∥g(i)1 −∇Li(θ0)

∥∥∥2] ≤ σ2, from above we obtain that

At ≤ σ2
t−1∑
l=0

β2l ≤ σ2

1− β2
. (61)

For the second term on the R.H.S in (60), we denote

Bt := E

∥∥∥∥∥
t∑

k=1

βt−k(gk −∇LH(θk−1))

∥∥∥∥∥
2
 .

By Assumption 2 and the mutual independence of stochastic gradients we have

E
[
∥gt −∇LH(θt−1)∥2

]
=

1

(n− f)2

∑
i∈H

E
[∥∥∥g(i)t −∇LH(θt−1)

∥∥∥2] ≤ σ2

n− f
.

Thus, similar to the bound on At, we obtain that

Bt ≤
σ2

(1− β2)(n− f)
. (62)

For the third term on the R.H.S in (60), we denote

Ct := E

 1

|H|
∑
i∈H

∥∥∥∥∥
t∑

k=1

βt−k(∇Li(θk−1)−∇LH(θk−1))

∥∥∥∥∥
2
 .
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By applying Jensen’s inequality, followed by Assumption 1, we have

Ct ≤

(
t∑

k=1

βt−k

)
E

[
1

|H|
∑
i∈H

t∑
k=1

βt−k ∥∇Li(θk−1)−∇LH(θk−1)∥2
]

=

(
t∑

k=1

βt−k

)
E

[
t∑

k=1

βt−k
1

|H|
∑
i∈H

∥∇Li(θk−1)−∇LH(θk−1)∥2
]

≤

(
t∑

k=1

βt−k

)2

·G2 ≤ G2

(1− β)2
. (63)

Finally, substituting from (61), (62) and (63) in (60) we obtain that

E

[
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2] ≤ 3(1− β)2
1

|H|
∑
i∈H

(At +Bt + Ct)

≤ 3(1− β)2
1

|H|
∑
i∈H

(
σ2

1− β2
+

σ2

(1− β2)(n− f)
+

G2

(1− β)2

)
= 3

1− β

1 + β

(
1 +

1

n− f

)
σ2 + 3G2.

The above proves the lemma.

13.4.2 Proof of Lemma 7

Lemma 7. Suppose that assumptions 1 and 2 hold true. Assume F is (f, κ)-robust. Consider Algorithm 3 with aggregation
F . For each step t ∈ [T ], we obtain that

E
[
∥ξt∥2

]
≤ 6κ

1− β

1 + β
σ2 + 48κG2.

Proof. Recall from (31) and (34), respectively, that

mt := F
(
m

(1)
t , . . . , m

(n)
t

)
and ξt := mt −mt.

We consider an arbitrary step t. Since F is (f, κ)-robust, we obtain that

∥ξt∥2 = ∥mt −mt∥2 ≤ κ

n− f

∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2 . (64)

Upon taking total expectations on both sides we obtain that

E
[
∥ξt∥2

]
≤ κ

n− f

∑
i∈H

E
[∥∥∥m(i)

t −mt

∥∥∥2] . (65)

From Lemma 6, under Assumption 2, we have

E

[
1

|H|
∑
i∈H

∥∥∥m(i)
t −mt

∥∥∥2] ≤ 3
1− β

1 + β

(
1 +

1

n− f

)
σ2 + 3G2

≤ 6
1− β

1 + β
σ2 + 3G2. (n− f ≥ 1)

Substituting from above in (65) proves the lemma, i.e., we conclude that

E
[
∥ξt∥2

]
≤ 6κ

1− β

1 + β
σ2 + 3κG2.

This concludes the proof.
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13.4.3 Proof of Lemma 8

The proof of Lemma 8 is similar to that of Lemma 3 in (Farhadkhani et al., 2022b). We recall the lemma and the proof
below for completeness.

Lemma 8. Suppose that Assumption 2 holds. Recall that LH is L-smooth. Consider Algorithm 3 with T > 1. For all t ≥ 2
we obtain that

E
[
∥δt∥2

]
≤β2cE

[
∥δt−1∥2

]
+ 4γL(1 + γL)β2 E

[∥∥∇LH(θt−2)
∥∥2]+ (1− β)2

σ2

(n− f)

+ 2γL(1 + γL)β2 E
[
∥ξt−1∥2

]
,

where c := (1 + γL) (1 + 4γL).

Proof. Recall from (35) that

δt := mt −∇LH
(
θt−1

)
.

Consider an arbitrary step t > 1. Substituting from (30) and (33) we obtain that

δt = β mt−1 + (1− β) gt −∇LH
(
θt−1

)
.

Upon adding and subtracting β∇LH(θt−2) and β∇LH(θt−1) on the R.H.S. above we obtain that

δt = β mt−1 − β∇LH(θt−2) + (1− β) gt −∇LH (θt) + β∇LH(θt−1) + β∇LH(θt−2)− β∇LH(θt−1)

= β
(
mt−1 −∇LH(θt−2)

)
+ (1− β) gt − (1− β)∇LH

(
θt−1

)
+ β

(
∇LH(θt−2)−∇LH(θt−1)

)
.

As mt−1 −∇LH(θt−2) = δt−1 (by (35)), from above we obtain that

δt = βδt−1 + (1− β)
(
gt −∇LH

(
θt−1

))
+ β

(
∇LH(θt−2)−∇LH(θt−1)

)
.

Therefore,

∥δt∥2 =β2 ∥δt−1∥2 + (1− β)2
∥∥gt −∇LH

(
θt−1

)∥∥2 + β2
∥∥∇LH(θt−2)−∇LH(θt−1)

∥∥2 + 2β(1− β)
〈
δt−1, gt −∇LH

(
θt−1

)〉
+ 2β2

〈
δt−1, ∇LH(θt−2)−∇LH(θt−1)

〉
+ 2β(1− β)

〈
gt −∇LH

(
θt−1

)
, ∇LH(θt−2)−∇LH(θt−1)

〉
.

By taking conditional expectation Et [·] on both sides, and recalling that δt−1, θt−1 and θt−2 are deterministic values when
the history Pt is given, we obtain that

Et
[
∥δt∥2

]
=β2 ∥δt−1∥2 + (1− β)2Et

[∥∥gt −∇LH
(
θt−1

)∥∥2]+ β2
∥∥∇LH(θt−2)−∇LH(θt−1)

∥∥2 +
2β(1− β)

〈
δt−1, Et [gt]−∇LH

(
θt−1

)〉
+ 2β2

〈
δt−1, ∇LH(θt−2)−∇LH(θt−1)

〉
+ 2β(1− β)

〈
Et [gt]−∇LH

(
θt−1

)
, ∇LH(θt−2)−∇LH(θt−1)

〉
.

Recall that gt := 1/(n−f)
∑
j∈H g

(i)
t . Thus, we have Et [gt] = ∇LH(θt−1). Using this above we obtain that

Et
[
∥δt∥2

]
=β2 ∥δt−1∥2 + (1− β)2Et

[∥∥gt −∇LH
(
θt−1

)∥∥2]+ β2
∥∥∇LH(θt−2)−∇LH(θt−1)

∥∥2
+ 2β2

〈
δt−1, ∇LH(θt−2)−∇LH(θt−1)

〉
.

Also, by Assumption 2 and the fact that g(j)t ’s for j ∈ H are independent of each other, we obtain that
Et
[∥∥gt −∇LH

(
θt−1

)∥∥2] ≤ σ2

(n−f) . Thus,

Et
[
∥δt∥2

]
≤ β2 ∥δt−1∥2 + (1− β)2

σ2

(n− f)
+ β2

∥∥∇LH(θt−2)−∇LH(θt−1)
∥∥2 + 2β2

〈
δt−1, ∇LH(θt−2)−∇LH(θt−1)

〉
.
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By the Cauchy-Schwartz inequality,
〈
δt−1, ∇LH(θt−2)−∇LH(θt−1)

〉
≤ ∥δt−1∥

∥∥∇LH(θt−2)−∇LH(θt−1)
∥∥. Since

LH is L-smooth, we have
∥∥∇LH(θt−2)−∇LH(θt−1)

∥∥ ≤ L
∥∥θt−1 − θt−2

∥∥. Recall from (32) that θt = θt−1 − γmt.
Thus,

∥∥∇LH(θt−2)−∇LH(θt−1)
∥∥ ≤ γL ∥mt−1∥. Using this above we obtain that

Et
[
∥δt∥2

]
≤ β2 ∥δt−1∥2 + (1− β)2

σ2

(n− f)
+ γ2β2L2 ∥mt−1∥2 + 2γβ2L ∥δt−1∥ ∥mt−1∥ .

As 2ab ≤ a2 + b2, from above we obtain that

Et
[
∥δt∥2

]
≤ β2 ∥δt−1∥2 + (1− β)2

σ2

(n− f)
+ γ2β2L2 ∥mt−1∥2 + γLβ2

(
∥δt−1∥2 + ∥mt−1∥2

)
= (1 + γL)β2 ∥δt−1∥2 + (1− β)2

σ2

(n− f)
+ γL(1 + γL)β2 ∥mt−1∥2 . (66)

By definition of ξt in (34), we have mt−1 = ξt−1 + mt−1. Thus, owing to the triangle inequality and the fact that
2ab ≤ a2 + b2, we have ∥mt−1∥2 ≤ 2 ∥ξt−1∥2 + 2 ∥mt−1∥2. Similarly, by definition of δt in (35), we have ∥mt−1∥2 ≤
2 ∥δt−1∥2+2

∥∥∇LH(θt−2)
∥∥2. Thus, ∥mt−1∥2 ≤ 2 ∥ξt−1∥2+4 ∥δt−1∥2+4

∥∥∇LH(θt−2)
∥∥2. Using this in (66) we obtain

that

Et
[
∥δt∥2

]
≤(1 + γL)β2 ∥δt−1∥2 + (1− β)2

σ2

(n− f)

+ 2γL(1 + γL)β2
(
∥ξt−1∥2 + 2 ∥δt−1∥2 + 2

∥∥∇LH(θt−2)
∥∥2) .

By re-arranging the terms on the R.H.S. we get

Et
[
∥δt∥2

]
≤β2(1 + γL) (1 + 4γL) ∥δt−1∥2 + 4γL(1 + γL)β2

∥∥∇LH(θt−2)
∥∥2 + (1− β)2

σ2

(n− f)

+ 2γL(1 + γL)β2 ∥ξt−1∥2 .

Substituting c = (1 + γL) (1 + 4γL) above we obtain that

Et
[
∥δt∥2

]
≤β2c ∥δt−1∥2 + 4γL(1 + γL)β2

∥∥∇LH(θt−2)
∥∥2 + (1− β)2

σ2

(n− f)
+ 2γL(1 + γL)β2 ∥ξt−1∥2 .

Recall that t in the above is an arbitrary value in [T ] greater than 1. Hence, upon taking total expectation on both sides above
proves the lemma.

13.4.4 Proof of Lemma 9

The proof of Lemma 9 is similar to that of Lemma 4 in (Farhadkhani et al., 2022b). We recall the lemma and the proof
below for completeness.
Lemma 9. Recall that LH is L-smooth. Consider Algorithm 3. For all t ∈ [T ], we obtain that

E
[
2LH(θt)− 2LH(θt−1)

]
≤− γ (1− 4γL)E

[∥∥∇LH(θt−1)
∥∥2]+ 2γ (1 + 2γL)E

[
∥δt∥2

]
+ 2γ (1 + γL)E

[
∥ξt∥2

]
.

Proof. Consider an arbitrary step t. Since LH is L-smooth, we have (see (Bottou et al., 2018))

LH(θt)− LH(θt−1) ≤
〈
θt − θt−1, ∇LH(θt−1)

〉
+
L

2

∥∥θt − θt−1

∥∥2 .
Substituting from (36), i.e., θt = θt−1 − γ mt − γξt, we obtain that

LH(θt)− LH(θt−1) ≤ −γ
〈
mt, ∇LH(θt−1)

〉
− γ

〈
ξt, ∇LH(θt−1)

〉
+ γ2

L

2
∥mt + ξt∥2

= −γ
〈
mt −∇LH(θt−1) +∇LH(θt−1), ∇LH(θt−1)

〉
− γ

〈
ξt, ∇LH(θt−1)

〉
+ γ2

L

2
∥mt + ξt∥2 .



Allouah, Farhadkhani, Guerraoui, Gupta, Pinot, Stephan

By Definition (35), mt −∇LH(θt−1) = δt. Thus, from above we obtain that (scaling by factor of 2)

2LH(θt)− 2LH(θt−1) ≤ −2γ
∥∥∇LH(θt−1)

∥∥2 − 2γ
〈
δt, ∇LH(θt−1)

〉
− 2γ

〈
ξt, ∇LH(θt−1)

〉
+ γ2L ∥mt + ξt∥2 .

(67)

Now, we consider the last three terms on the R.H.S. separately. Using Cauchy-Schwartz inequality, and the fact that
2ab ≤ 1

ca
2 + cb2 for any c > 0, we obtain that (by substituting c = 2)

2
∣∣〈δt, ∇LH(θt−1)

〉∣∣ ≤ 2 ∥δt∥
∥∥∇LH(θt−1)

∥∥ ≤ 2

1
∥δt∥2 +

1

2

∥∥∇LH(θt−1)
∥∥2 . (68)

Similarly,

2
∣∣〈ξt, ∇LH(θt−1)

〉∣∣ ≤ 2 ∥ξt∥
∥∥∇LH(θt−1)

∥∥ ≤ 2

1
∥ξt∥2 +

1

2

∥∥∇LH(θt−1)
∥∥2 . (69)

Finally, using triangle inequality and the fact that 2ab ≤ a2 + b2 we have

∥mt + ξt∥2 ≤ 2 ∥mt∥2 + 2 ∥ξt∥2 = 2
∥∥mt −∇LH(θt) +∇LH(θt−1)

∥∥2 + 2 ∥ξt∥2

≤ 4 ∥δt∥2 + 4
∥∥∇LH(θt−1)

∥∥2 + 2 ∥ξt∥2 . [since mt −∇LH(θt−1) = δt] (70)

Substituting from (68), (69) and (70) in (67) we obtain that

2LH(θt)− 2LH(θt−1) ≤− 2γ
∥∥∇LH(θt−1)

∥∥2 + γ

(
2 ∥δt∥2 +

1

2

∥∥∇LH(θt−1)
∥∥2)+ γ

(
2 ∥ξt∥2 +

1

2

∥∥∇LH(θt−1)
∥∥2)

+ γ2L
(
4 ∥δt∥2 + 4

∥∥∇LH(θt−1)
∥∥2 + 2 ∥ξt∥2

)
.

Upon re-arranging the terms in the R.H.S. we obtain that

2LH(θt)− 2LH(θt−1) ≤ −γ (1− 4γL)
∥∥∇LH(θt−1)

∥∥2 + 2γ (1 + 2γL) ∥δt∥2 + 2γ (1 + γL) ∥ξt∥2 .

As t is arbitrarily chosen from [T ], taking expectation on both sides above proves the lemma.



Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity

14 EXPERIMENTAL SETUP

14.1 Detailed Experimental Setup

The architecture of the models, as well as additional details on the experimental setup, are presented in Table 3. Note that
CNN stands for convolutional neural network, and NLL refers to the negative log likelihood loss. In order to present the
architecture of the models used, we introduce the following compact notation.

L(#outputs) represents a fully-connected linear layer, R stands for ReLU activation, S stands for log-softmax,
C(#channels) represents a fully-connected 2D-convolutional layer (kernel size 5, padding 0, stride 1), M stands for
2D-maxpool (kernel size 2), B stands for batch-normalization, and D represents dropout (with fixed probability 0.25).

.

Dataset MNIST & Fashion-MNIST CIFAR-10

Model type CNN CNN

Model architecture C(20)-R-M-C(20)-R-M-L(500)-R-
L(10)-S

(3,32×32)-C(64)-R-B-C(64)-R-B-M-
D-C(128)-R-B-C(128)-R-B-M-D-

L(128)-R-D-L(10)-S

Loss NLL NLL

Gradient clipping 2 5

ℓ2-regularization 10−4 10−2

Number of steps T = 800 T = 2000

Learning rate

γt =
0.75

1 + ⌊ t
50⌋ γt =

{
0.25 t ≤ 1500

0.025 1500 < t ≤ 2000

Momentum parameter β = 0.9 β = 0.9, 0.99

Batch size b = 25 b = 50

Total number of workers n = 17 n = 17

Number of Byzantine workers f = 4, 6, 8 f = 2, 3, 4

Table 3: Model Architectures, Hyperparameters, and Distributed Settings

On all datasets, we implement NNM and Bucketing with four aggregation rules namely geometric median (GM), coordinate-
wise median (CWMed), coordinate-wise trimmed mean (CWTM), and Krum. In every setting, we execute the Bucketing
algorithm with bucket size s = ⌊ n2f ⌋ (Karimireddy et al., 2022). We also implement the vanilla aggregation rules.
Note that when f = 4 (out of n = 17), Bucketing+CWMed and Bucketing+CWTM are exactly equivalent. In fact, when
f = 4, buckets are of size s = 2. Therefore, applying Bucketing results in a total of n′ = 9 buckets, out of which f ′ = 4
buckets might be potentially Byzantine (i.e., contaminated by at least one Byzantine worker). Therefore, we can clearly see
that executing CWMed and CWTM with n′ = 9 and f ′ = 4 (i.e., post Bucketing) outputs the same vector. Accordingly, we
only show the performance of the learning under Bucketing+CWMed in the plots of Appendix 15 when f = 4.

14.2 Dataset Preprocessing

MNIST receives an input image normalization of mean 0.1307 and standard deviation 0.3081, while Fashion-MNIST is
expanded with horizontally flipped images. Furthermore, the images of CIFAR-10 are horizontally flipped, and per channel
normalization is also applied with means 0.4914, 0.4822, 0.4465 and standard deviations 0.2023, 0.1994, 0.2010.



Allouah, Farhadkhani, Guerraoui, Gupta, Pinot, Stephan

14.3 Byzantine Attacks

In our experiments, the Byzantine workers execute five state-of-the-art gradient attacks, namely A Little is Enough
(ALIE) (Baruch et al., 2019), Fall of Empires (FOE) (Xie et al., 2019), Sign-flipping (SF) (Allen-Zhu et al., 2020), Label-
flipping (LF) (Allen-Zhu et al., 2020), and Mimic (Karimireddy et al., 2022). The first three attacks rely on the same
primitive explained below.
Let at be the attack vector in step t and η ≥ 0 a fixed real number. In every step t, the Byzantine workers send to the server
the Byzantine vector Bt = st + ηat, where st is an estimation of the true gradient (or momentum) at step t.
Experimentally, when running the gradient descent (GD) algorithm, we set st = 1

|H|
∑
i∈H

g
(i)
t , where g(i)t is the gradient

computed by honest worker wi in step t. However, when executing the stochastic heavy ball (SHB) method, we set
st =

1
|H|

∑
i∈H

m
(i)
t , where m(i)

t is the momentum vector sent by honest worker wi in step t.

• ALIE: In this attack, at = σt, where σt is coordinate-wise standard deviation of st.

• FOE: In this attack, at = −st. All Byzantine workers thus send (1− η)st in step t.

• SF: In this attack, at = −st, and η = 2. All Byzantine workers thus send Bt = at = −st in step t.

In our experiments, as done in (Shejwalkar and Houmansadr, 2021), we implement optimized versions of ALIE and FOE,
where the optimal η is determined greedily by linearly searching over a defined range of values. In every step t, we pick the
value of η that maximises the L2-distance between the output of the aggregation rule Rt at the server and the average of
honest gradients or momentums, i.e., st. In other words, we pick the value of η that causes the maximum damage (in terms
of L2-distance from the average of honest inputs) by the Byzantine workers.

LF and Mimic on the other hand are executed as follows:

• LF: Every Byzantine worker computes its gradient on flipped labels. Since the labels l for MNIST, Fashion-MNIST,
and CIFAR-10 are in {0, 1, ..., 9}, the Byzantine workers flip the labels by computing l′ = 9− l on the batch, where l′

is the flipped/modified label.

• Mimic: All Byzantine workers “mimic” a certain honest worker by simply sending its gradient or momentum to
the server. In order to chose which honest worker to mimic during the learning, we adopt the heuristic introduced
by (Karimireddy et al., 2022).

14.4 Data Heterogeneity

Figure 3: Distribution of data samples across workers and class labels on MNIST/CIFAR-10 when sampling from a Dirichlet
distribution of parameter α. Left: α = 0.1, Middle: α = 1, Right: α = 10.

In order to simulate heterogeneity in our experiments, we sample from the original datasets (i.e., MNIST, Fashion-MNIST,
and CIFAR-10) using a Dirichlet distribution of parameter α, which indicates the level of heterogeneity induced in the
workers’ datasets. The smaller is α, the more heterogeneous is the setting (i.e., the more likely it is that workers possess
samples from only one class). We consider three heterogeneity regimes in our experiments, namely extreme where α = 0.1,
moderate where α = 1, and low where α = 10. The corresponding distributions of the number of samples across workers
and class labels (depending on α) are shown in Figure 3.



Fixing by Mixing: A Recipe for Optimal Byzantine ML under Heterogeneity

15 FULL EXPERIMENTAL RESULTS

Section 15.1 presents our results on the MNIST dataset. Section 15.2 contains our results on Fashion-MNIST. Section 15.3
shows the performance of our algorithm on CIFAR-10.

15.1 Comprehensive Results on MNIST

In this section, we present the entirety of our results on the MNIST dataset.

15.1.1 Results on D-SHB

We consider three Byzantine regimes: f = 4, f = 6, and f = 8 (largest possible) out of n = 17 workers in total. We
also consider three heterogeneity regimes: α = 0.1 (extreme), α = 1 (moderate), and α = 10 (low). We compare the
performance of NNM and Bucketing when executed with four aggregation rules namely Krum (Blanchard et al., 2017),
GM (Small, 1990), CWMed (Yin et al., 2018), and CWTM (Yin et al., 2018). The plots are presented below and complement
our (partial) results in Table 2 in Section 6.2 of the main paper. We note that in the two strongest Byzantine settings, i.e.,
when f > 4, Bucketing can only be applied with bucket size s = 1 (Karimireddy et al., 2022). This means that when
f = 6, 8, executing Bucketing boils down to running the vanilla aggregation rules.
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Figure 4: Experiments on MNIST using robust D-SHB with f = 4 among n = 17 workers, with β = 0.9 and α = 0.1. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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Figure 5: Experiments on MNIST using robust D-SHB with f = 4 among n = 17 workers, with β = 0.9 and α = 1. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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Figure 6: Experiments on MNIST using robust D-SHB with f = 4 among n = 17 workers, with β = 0.9 and α = 10. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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Figure 7: Experiments on MNIST using robust D-SHB with f = 6 among n = 17 workers, with β = 0.9 and α = 1. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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Figure 8: Experiments on MNIST using robust D-SHB with f = 6 among n = 17 workers, with β = 0.9 and α = 10. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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Figure 9: Experiments on MNIST using robust D-SHB with f = 8 among n = 17 workers, with β = 0.9 and α = 10. The
Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3).
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15.1.2 Results on D-GD

We also test our algorithm with robust D-GD on MNIST in one Byzantine regime: f = 4 Byzantine workers among a total
of n = 17 workers. We also consider three heterogeneity settings: α = 0.1, α = 1, and α = 10. The results are shown
below, and convey the same observations made in Appendix 15.1.
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Figure 10: Experiments on MNIST using robust D-GD with f = 4 among n = 17 workers, with α = 0.1. The Byzantine
workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3) attacks.
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Figure 11: Experiments on MNIST using robust D-GD with f = 4 among n = 17 workers, with α = 1. The Byzantine
workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3) attacks.
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Figure 12: Experiments on MNIST using robust D-GD with f = 4 among n = 17 workers, with α = 10. The Byzantine
workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right), and LF (row 3) attacks.
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15.1.3 Results on Other Aggregation Rules: MDA, MultiKrum, and MeaMed

We also execute NNM with three additional aggregation rules namely MDA (Rousseeuw, 1985; El Mhamdi et al., 2021a),
MeaMed (Xie et al., 2018), and Multi-Krum (Blanchard et al., 2017). The experimental setup is the following. We consider
three Byzantine regimes: f = 4, f = 6, and f = 8 (largest possible) out of n = 17 workers in total. We also consider three
heterogeneity regimes: α = 0.1 (extreme), α = 1 (moderate), and α = 10 (low). We compare the performance of NNM
and Bucketing when executed with MDA, MultiKrum, and MeaMed. The results (shown below) are very similar to the
ones presented in Appendix 15.1, and convey exactly the same observations made in Section 6. Indeed, NNM combined
with these methods provides consistently good performance on MNIST in three regimes of data heterogeneity and under
five state-of-the-art Byzantine attacks. Given that no guarantees have yet been derived for these aggregation techniques,
an interesting future direction would be to prove that MDA, MultiKrum, and MeaMed are (f, κ)-robust with κ ∈ O(1),
confirming the modularity of our solution as a reliable framework for heterogeneous Byzantine learning.
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Figure 13: Experiments on MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with β = 0.9 and
α = 0.1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 14: Experiments on MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with β = 0.9 and
α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 15: Experiments on MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with β = 0.9 and
α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 16: Experiments on MNIST using robust D-SHB with f = 6 Byzantine among n = 17 workers, with β = 0.9 and
α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 17: Experiments on MNIST using robust D-SHB with f = 6 Byzantine among n = 17 workers, with β = 0.9 and
α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 18: Experiments on MNIST using robust D-SHB with f = 8 Byzantine among n = 17 workers, with β = 0.9 and
α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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15.1.4 Results without Clipping

We also run experiments on MNIST without clipping the gradients on honest workers, as suggested by the reviewers. We
consider f = 4 Byzantine workers among n = 17 workers, and a moderate heterogeneity setting where α = 1. The results
are shown in Figure 19, and convey the same observations made from Figure 5 in Section 15.1. Note that we also obtain
similar results when running with α = 10.

Finally, we also consider the case α = 0.1 without clipping honest gradients. However, we do not show the results since
no technique (including Bucketing and NNM) is able to withstand the considered Byzantine attacks in such an extreme
heterogeneity setting. In fact, we believe that exploding gradients are even more detrimental when considering Byzantine
attacks, and thus gradient clipping is important in our setting, although not needed in theory.
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Figure 19: Experiments on MNIST without clipping and using robust D-SHB with f = 4 among n = 17 workers, with
β = 0.9 and α = 1. The Byzantine workers execute FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2,
right), and LF (row 3).
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15.2 Comprehensive Results on Fashion-MNIST

In this section, we showcase our results on the Fashion-MNIST dataset. We consider two Byzantine regimes: f = 4 and
f = 6 out of n = 17 workers in total. We also consider three heterogeneity regimes: α = 0.1 (extreme), α = 1 (moderate),
and α = 10 (low). We plots compare the performance of NNM and Bucketing when executed with four aggregation rules
namely Krum, GM, CWMed, and CWTM. The plots are presented below. We note that in the strongest Byzantine setting,
i.e., when f > 4, Bucketing can only be applied with bucket size s = 1 (Karimireddy et al., 2022). This means that when
f = 6, executing Bucketing boils down to running the vanilla aggregation rules.
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Figure 20: Experiments on Fashion-MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with
β = 0.9 and α = 0.1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF
(row 2, right), and LF (row 3) attacks.
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Figure 21: Experiments on Fashion-MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with
β = 0.9 and α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row
2, right), and LF (row 3) attacks.
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Figure 22: Experiments on Fashion-MNIST using robust D-SHB with f = 4 Byzantine among n = 17 workers, with
β = 0.9 and α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF
(row 2, right), and LF (row 3) attacks.
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Figure 23: Experiments on Fashion-MNIST using robust D-SHB with f = 6 Byzantine among n = 17 workers, with
β = 0.9 and α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row
2, right), and LF (row 3) attacks.
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Figure 24: Experiments on Fashion-MNIST using robust D-SHB with f = 6 Byzantine among n = 17 workers, with
β = 0.9 and α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF
(row 2, right), and LF (row 3) attacks.
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15.3 Comprehensive Results on CIFAR-10

In this section, we present the entirety of our results on CIFAR-10. We consider three Byzantine regimes: f = 2, f = 3,
and f = 4 out of n = 17 workers in total. We also consider two heterogeneity regimes: α = 1 (moderate), and α = 10
(low). We compare the performance of NNM and Bucketing when executed with four aggregation rules namely Krum, GM,
CWMed, and CWTM. The plots are presented below and complement our (partial) results in Figure 1 in Section 6.3 of the
main paper.
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Figure 25: Experiments on CIFAR-10 using robust D-SHB with f = 2 Byzantine among n = 17 workers, with β = 0.9 and
α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 26: Experiments on CIFAR-10 using robust D-SHB with f = 2 Byzantine among n = 17 workers, with β = 0.9 and
α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 27: Experiments on CIFAR-10 using robust D-SHB with f = 3 Byzantine among n = 17 workers, with β = 0.9 and
α = 1. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 28: Experiments on CIFAR-10 using robust D-SHB with f = 3 Byzantine among n = 17 workers, with β = 0.9 and
α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2, right),
and LF (row 3) attacks.
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Figure 29: Experiments on CIFAR-10 using robust D-SHB with f = 4 Byzantine among n = 17 workers, with β = 0.99
and α = 10. The Byzantine workers execute the FOE (row 1, left), ALIE (row 1, right), Mimic (row 2, left), SF (row 2,
right), and LF (row 3) attacks.
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