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Abstract

We introduce vector optimization problems with
stochastic bandit feedback, in which preferences
among designs are encoded by a polyhedral or-
dering cone C. Our setup generalizes the best
arm identification problem to vector-valued re-
wards by extending the concept of Pareto set
beyond multi-objective optimization. We char-
acterize the sample complexity of (ϵ, δ)-PAC
Pareto set identification by defining a new cone-
dependent notion of complexity, called the order-
ing complexity. In particular, we provide gap-
dependent and worst-case lower bounds on the
sample complexity and show that, in the worst-
case, the sample complexity scales with the
square of ordering complexity. Furthermore, we
investigate the sample complexity of the naı̈ve
elimination algorithm and prove that it nearly
matches the worst-case sample complexity. Fi-
nally, we run experiments to verify our theoret-
ical results and illustrate how C and sampling
budget affect the Pareto set, the returned (ϵ, δ)-
PAC Pareto set, and the success of identification.

1 INTRODUCTION

We consider a vector optimization problem with D objec-
tives and K designs, where D and K are positive integers.
The mean vector of design i ∈ [K] is given by µi ∈ RD.
The mean vectors are partially ordered based on an order-
ing cone C ⊆ RD. When these vectors are known, the set
of all Pareto optimal designs (Pareto set) can be found by
solving the following optimization problem (Jahn, 2011)

maximize µi with respect to cone C over i ∈ [K] . (1)
∗Equal contribution and alphabetical ordering.
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In this paper, for the first time in the literature, we inves-
tigate vector optimization problems in a pure exploration
setting with stochastic bandit feedback, i.e., when µis are
unknown and the query of each design i only yields a noisy
observation of µi. In particular, we seek an answer to the
following fundamental question: What is the sample com-
plexity of Pareto set identification and how does it depend
on C?

In Section 1.1, by comparing vector optimization with
scalar and multi-objective optimization within the context
of pure exploration, we argue why one should consider
solving problems like (1). In Section 1.2, we detail our
main contributions.

1.1 Motivation

Pure exploration problems have attracted significant inter-
est from both machine learning theorists and practitioners
(Even-Dar et al., 2006; Bubeck et al., 2009; Audibert et al.,
2010; Kalyanakrishnan et al., 2012; Karnin et al., 2013;
Kaufmann and Kalyanakrishnan, 2013; Zhou et al., 2014;
Laskey et al., 2015). The simplest pure exploration prob-
lem takes the form of a K-armed bandit with arm means
µ1, . . . , µK ∈ R, in which the learner aims to identify
an optimal arm (aka design) by sequential experimenta-
tion under noisy feedback. In this setup, a noisy scalar re-
ward is revealed to the learner immediately after the selec-
tion of a design. As experimentation consumes resources,
the learner seeks to minimize the number of evaluations
by adapting its arm selection based on past reward ob-
servations. This problem has been formalized in many
different ways, with notable examples including (ϵ, δ)-
probably approximately correct (PAC) (Even-Dar et al.,
2006) (aka Explore-1), fixed confidence and fixed budget
(Karnin et al., 2013) best arm identification. Almost all
research in this field focuses on devising sample-efficient
algorithms that “beat the noise” by adaptive sampling and
elimination. Algorithmic contributions include a plethora
of techniques such as Median Elimination (Even-Dar et al.,
2006), LUCB (Kalyanakrishnan et al., 2012), KL-LUCB
(Kaufmann and Kalyanakrishnan, 2013), Sequential Halv-
ing (Karnin et al., 2013), Track-and-Stop (Garivier and
Kaufmann, 2016), ABA (Hassidim et al., 2020), ϵ-TaS
(Garivier and Kaufmann, 2021), several Bayesian sampling
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strategies (Qin et al., 2017; Shang et al., 2020; Russo,
2020), and saddle-point methods (Degenne et al., 2019,
2020). The difficulty of the problem depends on the sub-
optimalty gap of each arm i, straightforwardly found as
maxj µj−µi. Without noise, everything turns into a simple
argmax operation over the design set.

However, not many real-world problems naturally exhibit
scalar rewards. Optimization of D-dimensional perfor-
mance metrics (D > 1) is necessary for tasks such as
hardware design (Zuluaga et al., 2016), and clinical tri-
als for drug development and dose identification (Lizotte
and Laber, 2016). Nevertheless, vector-valued objectives
µi can be scalarized by weights w that encode the impor-
tance of each objective, turning the learning problem into a
scalar one. The choice of w is often left to the practitioner,
and the right choice might be difficult to come up with.

To tackle this issue, another strand of literature focuses on
identifying the set P ∗ of all Pareto optimal designs, whose
mean vectors µi are not dominated by others’ mean vec-
tors. In particular, when D = 2, µi = (µ1

i , µ
2
i )

T is dom-
inated by µj = (µ1

j , µ
2
j )

T (µi ⪯ µj) if and only if (iff)
∀w ∈ [0, 1] : wµ1

i +(1−w)µ2
i ≤ wµ1

j +(1−w)µ2
j , which

is equivalent to the usual componentwise order on R2. This
multi-objective optimization problem has been extensively
studied in the pure exploration setting with stochastic ban-
dit feedback. Auer et al. (2016) study the sample com-
plexity of Pareto set identification in stochastic K-armed
bandit problems. Hernández-Lobato et al. (2016), Shah
and Ghahramani (2016), Zuluaga et al. (2016) study Pareto
set identification in problems with large design sets. They
use Gaussian processes to capture correlations between de-
signs such that a bulk of designs can be explored by a single
sample. In another related work, Katz-Samuels and Scott
(2018) propose the feasible arm identification problem, in
which the goal is to identify arms whose mean rewards be-
long to a given polyhedron through noisy evaluations.

Apart from pure exploration, multi-objective learning has
also been extensively investigated in the bandit regret min-
imization setting (Drugan and Nowe, 2013; Turgay et al.,
2018). This line of research defines gaps that represent the
suboptimality of arms, and propose algorithms that mini-
mize the cumulative sum of gaps of the selected arms while
ensuring some sort of balance between selections of Pareto
optimal arms. Another related line of research is multi-
objective reinforcement learning (Van Moffaert and Nowé,
2014; Hayes et al., 2022).

While the multi-objective optimization viewpoint saves the
practitioner from fixing a weight vector for the objectives,
it ends up returning a large set of designs (see, e.g., P ∗

π/2

in Figure 1), which might be even more frustrating. More-
over, the practitioners may want to narrow down the set
of alternatives by using their domain knowledge about the
relative importance of each objective. For instance, if the
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Figure 1: Pareto sets P ∗
π/4, P ∗

π/2, P ∗
3π/4 of SNW dataset

used in experiments (Section 7) for the cones Cπ/4, Cπ/2,
C3π/4 (Example 2.6). By the structure of the cones,
P ∗
3π/4 ⊆ P ∗

π/2 ⊆ P ∗
π/4.

Figure 2: Three cones in R2 (intersected with balls for il-
lustration purposes). Orange, blue, green cones correspond
to Cπ/4, Cπ/2, C3π/4 defined in Example 2.6, and used in
experiments in Section 7. C ′ corresponds to a wide cone
like the green one, i.e., C ′ ⊇ R2

+.

practitioner wants to give at least 100α% relative impor-
tance to each objective for α ∈ (0, 0.5), then this can
be achieved by defining a new partial order ⪯C′ with
µi ⪯C′ µj iff ∀w ∈ [α, 1 − α] : wµ1

i + (1 − w)µ2
i ≤

wµ1
j + (1−w)µ2

j . This partial order is equivalent to a par-
tial order induced by the cone1

C ′ = {x ∈ R2 | αx1 + (1− α)x2 ≥ 0,

(1− α)x1 + αx2 ≥ 0} . (2)

Such a choice usually narrows down the set of all Pareto
optimal designs (see, e.g., P ∗

3π/4 in Figure 1). In addition,
the flexibility of specifying the relative importance of each
objective leads to a wide spectrum of Pareto sets that can-
not be captured by multi-objective optimization. The aim

1See Figure 2 for examples of ordering cones in R2, and Def-
inition 2.8 for the precise definition of this order.
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of this work is to propose a new framework for pure explo-
ration problems in which the preferences of practitioners
are encoded by ordering cones.

One real-world example in which multi-objective optimiza-
tion does not suffice is intensity-modulated radiation ther-
apy (IMRT) planning (Teichert et al., 2019). Here, the de-
signs represent treatment strategies (e.g., dosage). The ob-
jectives are related to the effectiveness of therapy against
the tumor and the damage to the surrounding tissue, which
are in conflict with each other. Based on the relative impor-
tance of each objective encoded by the cone parametrized
by α ∈ (0, 0.5), the practitioner might want to identify a
set of Pareto optimal treatments via computer simulations.
Note that, in this application, returning the Pareto set of de-
signs according to the componentwise order can be harmful
for the patient. For instance, a treatment which achieves a
large reduction in tumor size at the cost of extensive dam-
age to the surrounding healthy tissue could be returned if
componentwise order were used.

Example 1.1. We illustrate the limitation of using the com-
ponentwise order in IMRT via a simple example. Take D =
2, K = 4. The first dimension represents the effectiveness
against the tumor. Assume that the best value is 1 (e.g.,
the tumor is completely destroyed) and the worst value is
0 (e.g., the tumor does not shrink at all). The second di-
mension represents the negative of the damage to the sur-
rounding tissue. Let the best value be 0 (e.g., the surround-
ing tissue is not damaged at all) and the worst value be
−1 (e.g., the surrounding tissue is completely destroyed).
Let µ1 = [0.8,−0.3]T, µ2 = [0.9,−0.5]T, µ3 = [0, 0]T,
µ4 = [1,−1]T. The Pareto set under the componentwise
order (i.e., the classical multi-objective case) includes all
four designs for this setting. Design 3 is useless since it has
no effect on the tumor. Design 4 is the most effective against
the tumor but it causes significant damage to the surround-
ing tissue; thus, it should not be returned as a treatment
option. By returning all four designs, the componentwise
order does not provide any useful guidance to the practi-
tioner. On the other hand, the Pareto set with cone C pa-
rameterized by relative importance parameter α ≈ 0.29
(equivalent to cone with θ = 3π/4 in Example 2.6 below)
includes only designs 1 and 2, both of which provide mean-
ingful compromise between effectiveness and side-effects.

1.2 Contributions

The subfield of mathematical optimization which general-
izes scalar and multi-objective optimization via partial or-
ders induced by cones is called vector optimization (Jahn,
2011; Löhne, 2011). While there exists a plethora of works
that focuses on multi-objective optimization through noisy
evaluations (Auer et al., 2016; Hernández-Lobato et al.,
2016; Zuluaga et al., 2016; Shah and Ghahramani, 2016),
our work is the first to consider vector optimization for par-
tial orders in RD induced by general polyhedral ordering

cones within the stochastic K-armed bandit framework.

Our first contribution is to generalize the (ϵ, δ)-PAC best
arm identification problem in Even-Dar et al. (2006) to vec-
tor optimization (Definition 4.6). Our success condition
takes into account the directions of improvement specified
by C and the uncertainty induced by the norm-subgaussian
sampling noise. In line with PAC best arm identification,
instead of trying to identify all Pareto optimal designs, we
introduce a direction-free, cone-dependent ϵ-covering re-
quirement for the Pareto set. Based on this, we define the
(ϵ, δ)-PAC Pareto set identification problem.

Our second contribution is to define the notion of ordering
complexity β, determined by C (equations (3), (4)). The or-
dering complexity of C characterizes the sampling budget
required for (ϵ, δ)-PAC Pareto set identification. We ex-
plain how it can be computed for any polyhedral ordering
cone C (Theorem 2.4 in the main text and the theorems in
the supplemental document).

Our third contribution is to characterize the learning diffi-
culty of a vector optimization problem by identifying fun-
damental gaps associated with the geometric properties of
the ordering cone C (equations (8), (9)). We show that
when mean vectors are known, these gaps can be cal-
culated by solving convex optimization problems involv-
ing quadratic and affine functions (Propositions 4.2, 4.3).
Motivated by the fact that the sampling noise can shift
mean estimates in arbitrary directions, these gaps extend
the direction-based gaps proposed for multi-objective prob-
lems in Auer et al. (2016) to arbitrary polyhedral ordering
cones and arbitrary directions. In particular, we rely on the
interpretation of the ordering cone as the set of all direc-
tions of improvement, and define two gaps between designs
i, j: m(i, j) as the minimum step-length in an arbitrary di-
rection of improvement for i that is sufficient to avoid i
being dominated by j, M(i, j) as the minimum step-length
in an arbitrary direction of improvement for j that is suffi-
cient to make j dominate i. For the special case of multi-
objective problems, while m(i, j) coincides with its ana-
logue in Auer et al. (2016), the analogue of M(i, j) in Auer
et al. (2016) gives higher values since the improvement is
restricted to the diagonal direction.2 Hence, our definition
of M(i, j) provides a more flexible gap calculation even in
the multi-objective case.

Our fourth contribution is to provide gap-dependent and
worst-case lower bounds on the sample complexity. Our
lower bounding techniques involve constructing modified
problems via perturbations of mean reward vectors along
special directions in the objective space related to the

2When C = RD
+ , our m(i, j) is the same as Auer et al. (2016)

but our M(i, j) gives ∥(µj − µi)
−∥2 = ∥(µi − µj)

+∥2 (by
Proposition 4.3(ii)), and it is larger than ∥(µi − µj)

+∥∞, which
is the value of M(i, j) in Auer et al. (2016). In the worst-case,
their M(i, j) is

√
D factor more conservative than ours.
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geometry of the ordering cone. This makes our lower
bound analysis substantially different from the analysis
of scalar or multi-objective problems. In particular, we
prove that the worst-case sample complexity scales as
Ω((Kβ2

2/ϵ
2) log(1/δ)), where β2 is one of the two con-

stants whose maximum define the ordering complexity.

As our final contribution, we take a first step towards
Pareto set identification in vector optimization (beyond
multi-objective optimization) by proposing a naı̈ve elimi-
nation algorithm. In particular, we perform sample com-
plexity analysis under the general norm-subgaussian noise
assumption. We show that our algorithm successfully iden-
tifies an (ϵ, δ)-PAC Pareto set with a sample complex-
ity of O((Kβ2/ϵ2) log(1/δ)) (Theorem 6.1). In addition,
we provide numerical results for parametrized polyhedral
cones, and establish a connection between the success rate
of Pareto set identification and the angular width of the
cone. The details of all proofs are given in the supplemental
document.

2 THE ORDERING CONE

In this section, we fix the notation for the rest of the pa-
per, introduce the order structure for vector optimization,
and state some important properties of this structure. Let
D be a positive integer. We write [D] := {1, . . . , D} and
denote by RD the D-dimensional Euclidean space. The
elements of RD are denoted by boldface letters. For a vec-
tor v ∈ RD, ||v||2 represents its ℓ2 norm. For subsets A,
A′ of RD, A + A′ and A − A′ denote their Minkowski
sum and difference, respectively; cl(A), int(A), bd(A),
Ac denote the closure, interior, boundary, and complement
of A in RD, respectively. For v = (v1, . . . , vD)T ∈
RD, we write v+ := ((v1)+, . . . , (vD)+)T and v− :=
((v1)−, . . . , (vD)−)T, where r+ := max{0, r} and r− :=
−min{0, r} for r ∈ R. For v ∈ RD and r ≥ 0, B(v, r)
represents the ball in RD with center v and radius r. The
distance of a vector v ∈ RD to a set A ⊆ RD is defined as
d(v, A) := infx∈A ||v − x||2.

We consider a vector optimization problem with D objec-
tives and a finite set [K] of designs, where D,K are posi-
tive integers. The mean vector of design i ∈ [K] is denoted
by µi = (µ1

i , . . . , µ
D
i )T ∈ RD. To compare mean vec-

tors, we will introduce a partial order on RD based on an
ordering cone. The latter notion is recalled next.

Definition 2.1. A set C ⊆ RD is called a cone if λv ∈ C
for every v ∈ C and λ ≥ 0. A cone C is called pointed if
C ∩ (−C) = {0}, it is called solid if int(C) ̸= ∅. A closed
convex cone that is pointed and solid is called an ordering
cone (proper cone).

Let C ⊆ RD be an ordering cone. As a consequence of the
convexity of C, it is immediate that C + C = C. In gen-
eral, an ordering cone can be polyhedral (e.g., the positive

orthant C = RD
+ ) or non-polyhedral (e.g., the ice-cream

cone C = {x ∈ RD | ∥(x1, . . . , xD−1)T∥2 ≤ xD} for
D ≥ 2). For the purposes of this paper, we focus on the
polyhedral case as detailed in the next definition.
Definition 2.2. A cone C is called polyhedral if it can be
written as C = {x ∈ RD | Wx ≥ 0} for some N ×D real
matrix W with rows wT

1 , . . . ,w
T
N , and positive integer N .

Figure 2 illustrates several examples of polyhedral order-
ing cones in R2. Throughout the paper, we assume that C
is a polyhedral ordering cone as in Definition 2.2.3 Without
loss of generality, we assume that this description has no re-
dundancies, that is, W has the minimal number of rows; as
well as that ||wn||2 = 1 for each n ∈ [N ].4 It follows that
the interior of C is given by int(C) = {x ∈ RD | Wx >
0}. When all entries of W are nonnegative, it is clear that
C ⊇ RD

+ . In financial mathematics, such cones have found
applications in multi-asset markets with transaction costs
as “solvency cones”, where W is defined in terms of the
bid-ask prices of the assets; see Kabanov (1999).
Remark 2.3. As discussed in Section 1.1, practitioners can
prefer large cones (C ⊃ RD

+ ) to narrow down the set of
Pareto optimal designs. On the other hand, some applica-
tions can benefit from using small cones (C ⊂ RD

+ ). One
motivating example is the small molecule drug discovery
problem (Jayatunga et al., 2022). Consider the optimiza-
tion of D properties such as solubility, metabolic stability,
toxicity. Assume that the final goal is to identify the Pareto
optimal molecules in P ∗

π/2 from a set of candidates [K] ac-
cording to cone RD

+ . The discovery process starts with (rel-
atively cheaper) in silico experiments followed by (more
expensive) wet lab experiments. Due to distribution mis-
match, running in silico experiments with C = RD

+ could
result in failing to return an (ϵ, δ)-PAC set for C = RD

+ . By
using a smaller cone C ⊂ RD

+ for in silico experiments, the
practitioner can ensure that more designs are passed to the
wet lab stage P̂C ⊇ P̂π/2 and, since all Pareto optimal de-
signs according to RD

+ are still in C, one can perform more
expensive wet lab experiments on these designs to ensure
that an (ϵ, δ)-PAC set is returned. In this case, the knowl-
edge of an upper bound on the distribution mismatch can
be used to select C.

In order to characterize the sample complexity of Pareto set
identification, we introduce the following constants that are
related to the geometry of C:

β1 := sup
x/∈C

d(x, C ∩ (x+ C))

d(x, C)
, (3)

β2 := sup
x∈int(C)

d(x, (int(C))c ∩ (x− C))

d(x, (int(C))c)
. (4)

3Cone C represents the preferences of the practitioner. It is
treated as an input.

4Unless stated otherwise, all of the results in this paper hold
when C is a polyhedral ordering cone without redundancy and
||wn||2 = 1 for each n ∈ [N ].
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These constants, which will appear in the crux of our
sample complexity analysis, are novel to our work. We
will provide intuitive explanations for these constants after
defining fundamental gaps associated with Pareto set iden-
tification in Section 4 (see Remark 4.9). In this section,
we analyze their technical properties. Note that we have
β1 ≥ 1 and β2 ≥ 1. Let β := max{β1, β2}. We call β the
ordering complexity of C.5 The following theorem summa-
rizes its main properties. To that end, for each n ∈ [N ], let
us introduce the constant αn := supu∈B(0,1)∩C wT

nu; note
that αn ∈ (0, 1] since we assume that supu∈B(0,1) w

T
nu =

∥wn∥2 = 1.

Theorem 2.4. (i) When C is a polyhedral ordering cone
without redundancy and ||wn||2 = 1 for each n ∈ [N ], it
holds β1 < +∞ and β2 ≤ (minn∈[N ] αn)

−1 < +∞. (ii)
Suppose further that C ⊇ RD

+ . Then, β1 = β2 = 1.

Note that Theorem 2.4 establishes the finiteness of the or-
dering complexity β. In the sample complexity analysis,
we will assume that β is known. Hence, we are also in-
terested in the calculation of (an upper bound) β. While
Theorem 2.4(i) already gives an easy-to-calculate upper
bound on β2, the calculation of β1 is more involved and
requires maximizing a Lipschitz function over a compact
set. Moreover, in Theorem 2.4(ii), one can relax the condi-
tion C ⊇ RD

+ slightly. These technical points are discussed
in detail with proofs and additional results in the supple-
mental document.
Remark 2.5. The algorithm we propose in Section 6 re-
quires β as input, which can be computed offline before
starting evaluations. In addition, we would like to point out
that the calculation of β for large values of D is not of pri-
mary concern in our setting. In both multi-objective and
vector optimization, usually a small number 2 ≤ D ≤ 5,
and very typically only D = 2 or D = 3 of conflicting
objectives are considered (Kováčová and Rudloff, 2021;
Ararat et al., 2022). While it is valuable to provide the
decision-maker with a whole frontier of Pareto optimal de-
signs for small number of objectives, the Pareto set be-
comes intractable for larger number of objectives. In the
latter case, it would be more of a burden than flexibility
for the decision-maker to choose from the Pareto set of de-
signs.

We calculate β1, β2 for some standard ordering cones in R2

in the next example.

Example 2.6. Let D = 2. Given x ∈ R2, let α(x) ∈
[0, 2π) denote the angle in the polar coordinates of x. Let
θ ∈ (0, π/2] and define the ordering cone Cθ := {x ∈
R2 | α(x) ∈ [π/4 − θ/2, π/4 + θ/2]}. Let x /∈ Cθ.
Using elementary planar geometry, it can be checked that
β1 = β2 = csc(θ). The details of the calculation are given
in the supplemental document. If we take θ ∈ (π/2, π),

5β only depends on C. It does not depend on the mean re-
wards.

then β1 = β2 = 1 by Theorem 2.4(ii). Note that, up to a
rotation of the angle bisector, this is the general form of an
ordering cone for D = 2; the current choice of the angle
bisector is for convenience.
Remark 2.7. Cone C ′ in (2) can also be represented in the
form given in Example 2.6. For instance, C3π/4 in Fig-

ure 1 is such a cone with α =
− sin(π

4 − θ
2 )√

2 sin( θ
2 )

≈ 0.29, where

θ = 3π/4. Indeed, given any relative importance level
α ∈ (0, 0.5) specified by the practitioner, one can find θ

such that − sin(π
4 − θ

2 )√
2 sin( θ

2 )
= α.

The polyhedral ordering cone C induces two non-total or-
der relations on RD as defined next.
Definition 2.8. For every µ,µ′ ∈ RD, we write µ ⪯C µ′

if µ′ ∈ µ+C, and we write µ ≺C µ′ if µ′ ∈ µ+ int(C).

It can be checked that both ⪯C and ≺C are partial order
relations on RD. If C = RD

+ , then ⪯C coincides with
the usual componentwise order on RD, which is the partial
order used in multi-objective optimization. To explain the
motivation for using an ordering cone that is different from
the positive orthant, let us first observe that

µ ⪯C µ′ ⇔ ∀n ∈ [N ] : wT
nµ ≤ wT

nµ
′ (5)

for every µ,µ′ ∈ RD. We denote by C+ the convex cone
generated by the rows of W , that is,

C+ :=

{
N∑

n=1

λnwn | λ1, . . . , λN ≥ 0

}
. (6)

It can be shown that C+ is also a polyhedral ordering cone
and it coincides with the so-called dual cone of C, that is,
C+ = {w ∈ RD | ∀x ∈ C : wTx ≥ 0}. It is well-known
that the positive orthant is self-dual, that is, (RD

+)+ = RD
+ .

By (6), we may rewrite (5) as

µ ⪯C µ′ ⇔ ∀w ∈ C+ : wTµ ≤ wTµ′. (7)

Here, each w ∈ C+ can be considered as a “weight vec-
tor” since the partial order is determined by comparing the
weighted sums of the components of µ,µ′ for all w ∈ C+.
Moreover, if C ′ is another ordering cone, then we have
C ⊇ C ′ iff C+ ⊆ (C ′)+. In particular, if W has non-
negative entries so that C ⊇ RD

+ , then we have C+ ⊆ RD
+ .

Consequently, ⪯C is weaker than the componentwise order
in this case, thanks to (7). In other words, in vector opti-
mization, the decision-maker may have a more relaxed re-
quirement when comparing two vectors, which is encoded
by having a smaller set C+ of weight vectors.

The above orders on RD induce further orders on the design
space [K].
Definition 2.9. Let i, j ∈ [K]. Design i is said to be
weakly dominated by design j (i ⪯C j) if µi ⪯C µj .
Design i is said to be dominated by design j (i ⪯C\{0} j)
if µi ⪯C\{0} µj . Design i is strongly dominated by design
j (i ≺C j) if µi ≺C µj .
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3 THE VECTOR OPTIMIZATION
PROBLEM

Equipped with the definitions in Section 2, the vector opti-
mization problem can be expressed as

maximize µi with respect to cone C over i ∈ [K] .

The solution of this problem is called the Pareto set, as we
define next.

Definition 3.1. A design i ∈ [K] is called Pareto optimal
if it is not dominated by any other design with respect to
the ordering induced by C. The Pareto set P ∗ := {i ∈
[K] | ∄j ∈ [K] : i ⪯C\{0} j} consists of all Pareto optimal
designs.

In vector optimization, a Pareto optimal design i ∈ P ∗ is
sometimes called an efficient solution or a maximizer of
the design space [K], and the corresponding objective vec-
tor µi is called a C-maximal element of the objective set
{µj | j ∈ [K]}; see Jahn (2011, Definition 3.1), Heyde
and Löhne (2011, Definition 2.1).
Remark 3.2. Let us write P ∗(C) := P ∗ to emphasize the
dependence on the ordering cone. Then, switching to a
larger ordering cone C ′ ⊇ C makes the dominance rela-
tion weaker. Consequently, the Pareto set becomes smaller
under the larger cone: P ∗(C ′) ⊆ P ∗(C).

4 PARETO SET IDENTIFICATION

We consider a learning problem where the mean vectors
µi, i ∈ [K], are not known beforehand. Our goal is to
identify P ∗ from noisy observations of the objective val-
ues of chosen designs in as few evaluations as possible.
We assume that the total number of evaluations, T ≥ 1,
is finite. Evaluations are done in a sequential manner with
t ∈ [T ] representing the round in which the tth evaluation is
made, and we denote by It the random variable represent-
ing the design evaluated in round t. We consider a noisy
feedback setting in which the evaluation in round t yields
a random reward vector Xt = µIt + Y It,t, where Y i,t is
the random noise vector associated to this evaluation when
the evaluated design is It = i. We assume that the family
(Y i,t)i∈[K],t∈[T ] consists of independent and centered ran-
dom vectors, and it is independent of the family (It)t∈[T ].
We also assume that all members of this family are norm-
subgaussian with a common parameter σ ≥ 0 as stated in
the next definition.

Definition 4.1. (Jin et al., 2019, Definition 3) A centered
random vector Y is called norm-subgaussian with param-

eter σ ≥ 0 if P{∥Y ∥2 ≥ ϵ} ≤ 2e−
ϵ2

2σ2 for every ϵ ≥ 0.

Examples of norm-subgaussian random vectors include
bounded random vectors and subgaussian random vectors

(up to a scaling of the parameter); see Jin et al. (2019,
Lemma 1).

Due to sampling noise, the sample complexity of identify-
ing P ∗ depends on the hardness of distinguishing the de-
signs in P ∗ from the designs that are not in P ∗. We quan-
tify the hardness by the following gaps.

Given two designs i, j ∈ [K], we define m(i, j) as the min-
imum increment in µi in an arbitrary direction of increase
that makes design i not strongly dominated by design j.
Formally, we have

m(i, j) := inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C :

µi + su /∈ µj − int(C)} . (8)

The next proposition lists important properties of this gap.

Proposition 4.2. Let i, j ∈ [K]. (i) It holds m(i, j) <
+∞. (ii) It holds m(i, j) = d(µj −µi, (int(C))c ∩ (µj −
µi−C)). (iii) We have m(i, j) > 0 iff i ≺C j. (iv) It holds
m(i, j) = minn∈[N ](w

T
n(µj − µi))

+/αn.

Similarly, given i, j ∈ [K], we define M(i, j) as the min-
imum increment in µj in an arbitrary direction of increase
that makes design i weakly dominated by design j, that is,

M(i, j) := inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C :

µj + su ∈ µi + C} . (9)

We state the fundamental properties of this gap next.

Proposition 4.3. Let i, j ∈ [K]. (i) It holds M(i, j) <
+∞. (ii) It holds M(i, j) = d(µj−µi, C∩(µj−µi+C)).
(iii) We have M(i, j) = 0 iff i ⪯C j.

Remark 4.4. From (9), it is clear that using a larger cone
would result in smaller values of M(i, j).

As an immediate consequence of Propositions 4.2(ii, iii)
and 4.3(ii,iii), we obtain the following corollary.

Corollary 4.5. Let i, j ∈ [K]. Then, exactly one of the
following cases holds.
(i) We have both i ≺C j and i ⪯C j iff µj − µi ∈ int(C)
iff m(i, j) > 0 and M(i, j) = 0.
(ii) We have both i ⊀C j and i ⪯C j iff µj − µi ∈ bd(C)
iff m(i, j) = M(i, j) = 0.
(iii) We have both i ⊀C j and i ⪯̸C j iff µj − µi ∈ Cc iff
m(i, j) = 0 and M(i, j) > 0.
In particular, we have m(i, j) = 0 or M(i, j) = 0.

For each i ∈ [K], let ∆∗
i := maxj∈P∗ m(i, j). By Proposi-

tion 4.3(iii), it is clear that ∆∗
i = 0 if i ∈ P ∗. We consider

an (ϵ, δ)-PAC (probably approximately correct) Pareto set
identification setup under which the estimated Pareto set
P ⊆ [K] returned by the learner needs to satisfy the condi-
tion in the next definition.

Definition 4.6. (Success condition) Let ϵ > 0, δ ∈ (0, 1).
A set P ⊆ [K] is called an (ϵ, δ)-PAC Pareto set if the
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following properties hold with probability at least 1−δ: (i)
∪i∈P (µi +(B(0, ϵ)∩C)−C) ⊇ ∪i∈P∗(µi −C); (ii) for
every i ∈ P \ P ∗, it holds ∆∗

i ≤ ϵ.

Remark 4.7. Note that property (i) in Definition 4.6 is
equivalent to (i′) ∪i∈P (µi + (B(0, ϵ) ∩ C)− C) ⊇ {µi |
i ∈ P ∗}. The implication (i) ⇒ (i′) is obvious. To see
(i′) ⇒ (i), suppose that (i′) holds and let v ∈ µi − C for
some i ∈ P ∗. Then, by (i′), µi ∈ µj + (B(0, ϵ)∩C)−C
for some j ∈ P . Moreover, C+C = C since C is a convex
cone. Hence, v ∈ µi−C ⊆ µj+(B(0, ϵ)∩C)−C−C =
µj + (B(0, ϵ) ∩ C)− C, showing (i). A similar covering
property is used in Ararat et al. (2022, Definition 3.5) in the
context of deterministic convex vector optimization.

Property (i) in Definition 4.6 is an ϵ-covering requirement
for the Pareto set P ∗; in view of Remark 4.7, it is equiva-
lent to the following: for every i ∈ P ∗, there exist j ∈ P
and u ∈ B(0, 1) ∩ C such that µi ⪯C µj + ϵu. Roughly
speaking, although P might not contain all Pareto optimal
designs, it is required to include a close-enough design for
each Pareto optimal design. Moreover, although some de-
signs in P might be suboptimal, property (ii) in Definition
4.6 bounds the gaps of such designs; hence, it controls the
quality of all returned designs.
Remark 4.8. Ignoring the differences in gap definitions, let
us compare our success condition with the two alternative
success conditions (SC1 and SC2) in Auer et al. (2016) at
a structural level. All three conditions require small subop-
timality gap: ∆∗

i ≤ ϵ. While SC1 requires P ∗ to be a sub-
set of the returned set, SC2 and ours impose the weaker ϵ-
covering requirement, which is in line with Even-Dar et al.
(2006); Zuluaga et al. (2016). Finally, SC2 has a sparsity
requirement for the returned set of designs, which we do
not have in Definition 4.6. For instance, when D = 1, our
success condition is satisfied when all returned designs are
ϵ-optimal, which might still violate SC2 depending on the
configuration of the reward vectors. However, due to the
different definitions of the gaps, our success condition is
mathematically incomparable with SC1, SC2.

There is an innate connection between gaps defined in this
section and the ordering complexity terms defined in Sec-
tion 2. The following remark summarizes this relation,
which plays an important role in characterizing the sample
complexity.
Remark 4.9. (Intuitive explanations of β1, β2) Let ∆ij =
µj −µi. Consider i, j such that ∆ij /∈ C, i.e., µi ⪯̸C µj .
By definition, M(i, j) = d(∆ij , C ∩ (∆ij +C)) (numera-
tor in (3)) is the minimum change in ∆ij in an arbitrary
direction of increase that makes i weakly dominated by
j, while d(∆ij , C) (denominator in (3)) is the minimum
change in ∆ij that makes i weakly dominated by j. In
scalar and multi-objective problems, we have M(i, j) =
d(∆ij , C). However, the ratio M(i, j)/d(∆ij , C) can be
as large as β1 in vector optimization. This makes learning
fundamentally more difficult in vector optimization when

β1 > 1. In the scalar or multi-objective case, problems
with larger gaps M(i, j) are easier (success conditions can
be met with fewer samples). However, in general vector op-
timization, larger gaps do not imply easier problems, what
is important is the ratio M(i, j)/d(∆ij , C). A similar ar-
gument can be made for β2.

5 LOWER BOUNDS

We provide gap-dependent and worst-case sample com-
plexity bounds for any algorithm that satisfies the success
condition in Definition 4.6. For each i ∈ P ∗, we define
∆+

i := minj∈P∗\{i} M(i, j) and ∆̃ϵ
i := max{∆+

i , ϵ}. For
each i /∈ P ∗, we have ∆∗

i = maxj∈P∗ m(i, j) and define
∆̃ϵ

i := max{∆∗
i , ϵ}. Finally, let A be the class of all al-

gorithms that return, for any given ϵ > 0 and δ ∈ (0, 1), a
set P ⊆ [K] satisfying Definition 4.6 for every given dis-
tribution of Xt with Xt ∈ [0, 1]D almost surely for each
t ∈ [T ].

Theorem 5.1. (Gap-dependent lower bound) Suppose that
µi ∈ [ 14 ,

3
4 ]

D for each i ∈ [K] and ϵ ≤ 1/8. Then,
there exist such distributions with the property that every
algorithm in A requires Ω(

∑
i∈[K]

1
(∆̃ϵ

i)
2
log( 1δ )) samples

to work correctly.

Remark 5.2. (a) Theorem 5.1 is analogous to Theorem 17
in Auer et al. (2016). However, this result works under their
SC1, which is structurally much stricter than and mathe-
matically incomparable with our success condition in Def-
inition 4.6; see Remark 4.8. Ours is closer to their SC2,
for which there is no lower bound analysis in Auer et al.
(2016). Hence, by relaxing the structure of their SC2, we
are able to provide lower bounds on sample complexity for
a success condition with an ϵ-covering requirement, as op-
posed to the full coverage requirement in their SC1.
(b) Different from their proof in the multi-objective setting,
our proof constructs a special direction vector z∗ ∈ int(C)
along which the rewards and their (empirical) means for a
fixed design are ordered linearly. Precisely, z∗ is chosen in
such a way that z∗ ∈ u + C for every u ∈ B(0, 1) ∩ C.
Using this vector, we analyze the following four cases: (i)
When i ∈ P ∗ \ P , we modify the mean reward of i as
µ′

i := µi + 2∆̃ϵ
iz

∗ and show that i is not covered (in
the sense of Definition 4.6) by any j ∈ [K] that covers
i in the original case. Hence, i must be returned by the
algorithm in the modified case. (ii) When i ∈ P ∗ ∩ P ,
we have ∆+

i = M(i, j) for some j ∈ P ∗ \ {i}. We
take µ′

i := µi − 3k∗∆̃ϵ
iz

∗ with k∗ := maxn∈[N ]
αn

wT
nz

∗

and show that m(i, j) ≥ 2ϵ in the modified case. Hence,
i cannot be returned by the algorithm. (iii) The case
i ∈ P \ P ∗ is similar to (ii). (iv) When i /∈ P ∗ ∪ P ,
we take µ′

i := µi + (1 + 2k∗)∆̃ϵ
iz

∗ and show that i must
be returned. Since we are able to change the returned set
in each possibility, the rest of the proof follows as in Auer
et al. (2016). The main technical novelties in the proof are
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twofold: 1) The direction vector z∗ is constructed by using
the structure of the ordering cone. 2) Compared to Auer
et al. (2016), case (i) is new to our setting as P ∗ ⊆ P is
required there, which is relaxed by our Definition 4.6.

Theorem 5.3. (Worst-case lower bound) Suppose that
there are K ≥ 4 designs. Given ϵ > 0, there
exist mean reward vectors and norm-subgaussian noise
distributions under which any algorithm in A requires
Ω((Kβ2

2/ϵ
2) log(1/δ)) samples to work correctly.

The proof of Theorem 5.3 requires utilizing the geometry
of the ordering cone to construct a special worst-case prob-
lem instance that is hard to distinguish from other similar
problem instances. In this special instance, while mean re-
ward vectors of most designs are identical and Pareto op-
timal, and there is another Pareto optimal design that is in
a specially perturbed direction. We show that, when the
noise is in a special direction determined by β2, a change
in its distribution that is proportional to ϵ/β2 will result in
a change in the returned set of designs. This lower bound
manifests a distinct feature of vector optimization which
is not present in the scalar or multi-objective setting under
noisy feedback, i.e., geometry of the ordering cone charac-
terizes the hardness of the Pareto set identification problem.
Note that we indeed have β = β2 for all ordering cones that
are at least as large as RD

+ (Theorem 2.4(ii)) and all order-
ing cones in the biobjective case (Example 2.6).

6 NAÏVE ELIMINATION AND ITS
SAMPLE COMPLEXITY

In this section, we introduce the naı̈ve elimination algo-
rithm that is used for (ϵ, δ)-PAC Pareto set identification.
The algorithm operates in the same fashion as the naı̈ve
elimination algorithm used for (ϵ, δ)-PAC best arm identi-
fication (Even-Dar et al., 2006). For D = 1, it is known
that naı̈ve elimination is a simple yet provable and practi-
cal algorithm that is known to work reasonably well when
K is not very large (see the discussion in Hassidim et al.
(2020)).6

Naı̈ve elimination takes as inputs (ϵ, δ) and the polyhedral
ordering cone C defined by matrix W . It evaluates each de-
sign L times to form empirical means µ̂i, i ∈ [K], where
L ≥ 1 is a positive integer that is used as the exploration
parameter and it is set depending on ϵ, δ, K and the order-
ing complexity β of C.7 Hence, T = LK evaluations are

6Our aim is to show that even such a simple algorithm can be
successful when its sampling budget is tuned according to order-
ing complexity. We think that many of the successive elimination
and adaptive sampling techniques developed for the scalar case
can be adapted to devise sample-efficient algorithms for vector
optimization. We leave this interesting direction as future work.

7The computation of β, which is offline and done once at the
beginning, is trivially simple when C ⊇ RD

+ (Theorem 2.4). For
general cones, we show how β can be computed in the supplemen-

Algorithm 1 Naı̈ve Elimination
Inputs: ϵ, δ, [K], C, β, L
Initialize: µ̂i = Ni = 0, i ∈ [K]
for t = 1, 2, . . . , LK do

Evaluate It = (t− 1 mod K) + 1
Observe reward Xt

NIt = NIt + 1; µ̂It = ((NIt − 1)µ̂It +Xt)/NIt

end for
Return: P := {i ∈ [K] | ∄j ∈ [K] : i⪯̂C\{0}j}

made in total. Then, the algorithm computes and returns
a random set P by using Definition 3.1. This is done by
checking for each design i whether there exists another de-
sign j with i⪯̂C\{0}j, where ⪯̂C\{0} is the random partial
order that is defined by using µ̂i in place of µi, i ∈ [K], in
the standard expression of ⪯C\{0}; see Definitions 2.8, 2.9
(the random relations ≺̂C and ⪯̂C are defined similarly).
Hence, we set P := {i ∈ [K] | ∄j ∈ [K] : i⪯̂C\{0}j}.
One possible implementation of naı̈ve elimination is given
in Algorithm 1.

For a given (ϵ, δ), we define the per-design sampling budget
as g(ϵ, δ) :=

⌈
4β2c2σ2

ϵ2 log
(

4D
δ

)⌉
. The following theorem

characterizes the sample complexity of naı̈ve elimination
for (ϵ, δ)-PAC Pareto set identification.
Theorem 6.1. When naı̈ve elimination is run with L =
g(ϵ, 2δ/(K(K−1)), the returned Pareto set P is an (ϵ, δ)-
PAC Pareto set.

Theorem 6.1 gives an upper bound on the sample complex-
ity that scales as Õ(Kβ2/ϵ2) which nearly matches the
lower bound in Theorem 5.3.8 It can also be shown that,
when D = 1, the sample complexity of naı̈ve elimination
matches the one given in Even-Dar et al. (2006).

Let us provide a sketch of the proof of Theorem 6.1. Given
i, j ∈ [K], let us introduce empirical estimates for m(i, j)
and M(i, j), defined as m̂(i, j) := d(µ̂j − µ̂i, (int(C))c ∩
(µ̂j− µ̂i−C)) and M̂(i, j) := d(µ̂j− µ̂i, C∩ (µ̂j− µ̂i+
C)), respectively. As a first step, we show that M(i, j) > ϵ
implies M̂(i, j) > 0 whenever i ∈ P ∗, j ∈ [K] \ {i},
as well as that m(i, j) > ϵ implies m̂(i, j) > 0 whenever
i /∈ P ∗, j ∈ P ∗. In the second step, we show that these
implications are sufficient to conclude that P is an (ϵ, δ)-
PAC Pareto set. Then, for i, j ∈ [K] with i ̸= j, we define
∆ij = µj −µi, ∆̂ij = µ̂j − µ̂i, and show that the follow-
ing conditions in terms of the deviation of ∆̂ij from ∆ij

are sufficient for (ϵ, δ)-PAC Pareto set identification:
Condition a. For every i ∈ P ∗ and j ∈ [K] \ {i},

tal document; however, we do not have a computationally efficient
procedure for it as the problem is not convex. Nevertheless, as we
mention in Remark 2.5, problems in vector optimization generally
have small objective dimension (not to be confused with design
space dimension).

8Indeed, the sample complexity is O(Kβ2 log(KD/δ)/ϵ2).
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Table 1: Gap Statistics of Designs i ∈ [K] \ P ∗
θ .

∆∗
i (Cπ/4) ∆∗

i (Cπ/2) ∆∗
i (C3π/4)

count 153 180 196
mean 0.666 0.906 1.343
std 0.520 0.711 0.869
min 0.001 0.004 0.018
max 2.576 3.544 4.726

d(∆ij , C ∩ (∆ij +C)) > ϵ implies that ∥∆̂ij −∆ij∥2 <
d(∆ij , C).
Condition b. For every i /∈ P ∗ and j ∈ P ∗,
d(∆ij , (int(C))c ∩ (∆ij − C)) > ϵ implies that ∥∆̂ij −
∆ij∥2 < d(∆ij , (int(C))c).
Let us also define θij :=

d(∆ij ,C)
d(∆ij ,C∩(∆ij+C)) if ∆ij /∈ C,

θij :=
d(∆ij ,(int(C))c)

d(∆ij ,(int(C))c∩(∆ij−C)) if ∆ij ∈ int(C), and
θij := 1 if ∆ij ∈ bd(C). In the third step, using properties
of norm-subgaussian noise vectors, we show the existence
of a constant c > 0 (free of all problem parameters) such
that, for all i ̸= j, ||∆̂ij −∆ij ||2 ≤ ϵθij with probability
at least 1 − δ provided that naı̈ve elimination is run with
L = g(ϵ, 2δ/(K(K − 1)). Finally, we complete the proof
by checking that Conditions a and b hold with probability
at least 1− δ.

7 NUMERICAL RESULTS

We use SNW dataset from Zuluaga et al. (2016). It con-
sists of 206 different hardware implementations of a sort-
ing network. The objectives are the area and throughput of
the network when synthesized on an FPGA (D = 2). Since
we consider maximization problems, we use the negative
of area as objective value. The mean rewards of designs
are taken as the objective values in the dataset. The reward
vector of a design is formed by adding independent zero
mean Gaussian noise with variance σ2 = 1 to the mean
value of each objective of the design.

We consider the polyhedral cone Cθ in Example 2.6, which
is parametrized by an angle θ ∈ (0, π). We use Cπ/4, Cπ/2

and C3π/4 in our simulations (Figure 2). P ∗
θ represents the

true Pareto optimal set under the ordering induced by Cθ.
The Pareto sets for Cπ/4, Cπ/2 and C3π/4 are shown in
Figure 1. Some statistics of the gaps ∆∗

i of designs i ∈
[K] \ P ∗

θ are given in Table 1.

The simulation code is available in the supplemental mate-
rial. As there is no work that considers vector optimization
with stochastic bandit feedback, we do not compare with
any other method. Instead, we illustrate how the perfor-
mance of naı̈ve elimination varies as a function of the num-
ber of samples from each design and shape of the ordering
cone. We set δ = 0.01 in all simulations. The reported
results correspond to the average of 100 independent runs.

Table 2: Success Rate (%) of Naı̈ve Elimination.
L ϵ Cπ/4 Cπ/2 C3π/4

103
10−2 0 0 29
10−1 78 99 100

104
10−2 22 24 85
10−1 100 100 100

105
10−2 100 99 100
10−1 100 100 100

As typically observed in the best arm identification litera-
ture, the theoretical value of L is very large. For instance,
for θ = π/2, if ϵ = 0.1, then L ≈ 38.8× 103; if ϵ = 0.01,
then L ≈ 38.8 × 105. Therefore, instead of using theo-
retical values, we evaluate the results for different L and ϵ
values. The results are provided in Table 2. For fixed L and
ϵ, the success rate increases as θ increases. For fixed θ and
L, the success rate increases as ϵ increases because both
success conditions become easier to satisfy. For a fixed θ
and ϵ, the success rate increases as L increases since more
samples mean less noise in the estimates. For some (ϵ, θ)
pairs, all runs are successful even when L is much smaller
than its theoretical value.

8 CONCLUSIONS

We propose vector optimization problems with stochastic
bandit feedback. We identify fundamental cone-dependent
gaps that characterize the learning difficulty of the Pareto
set. We derive sample complexity bounds for (ϵ, δ)-PAC
Pareto set identification. Our introduction of noisy bandit
feedback to vector optimization brings forth many inter-
esting future research directions. In particular, the design
of sample-efficient adaptive algorithms remains as an open
problem that we seek to address in the future. For instance,
when learning the Pareto set in large design spaces, one
can incorporate powerful surrogate models such as Gaus-
sian processes. It should also be possible to extend entropy
search (Hernández-Lobato et al., 2016) and hypervolume-
based methods (Shah and Ghahramani, 2016) proposed for
multi-objective Pareto set identification problems to vector
optimization.
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A. Löhne. Vector Optimization with Infimum and Supre-
mum. Springer, 2011.

C. Qin, D. Klabjan, and D. Russo. Improving the expected
improvement algorithm. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

D. Russo. Simple Bayesian algorithms for best-arm identi-
fication. Operations Research, 68(6):1625–1647, 2020.



Çağın Ararat, Cem Tekin

A. Shah and Z. Ghahramani. Pareto frontier learning with
expensive correlated objectives. In Proc. International
Conference on Machine Learning, pages 1919–1927,
2016.

X. Shang, R. Heide, P. Menard, E. Kaufmann, and
M. Valko. Fixed-confidence guarantees for Bayesian
best-arm identification. In Proc. International Con-
ference on Artificial Intelligence and Statistics, pages
1823–1832, 2020.

K. Teichert, G. Currie, K.-H. Küfer, E. Miguel-Chumacero,
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A TABLE OF NOTATIONS

Notation Description

D Number of objectives
K Number of designs
[K] = {1, . . . ,K} Design space
µi ∈ RD Mean reward vector of design i ∈ [K]

C ⊆ RD Ordering cone
int(C) Interior of C
C+ = {w ∈ RD | ∀x ∈ C : wTx ≥ 0} Dual cone of C
W = [w1, . . . ,wN ]T N ×D parameter matrix of the polyhedral ordering cone C

RD
+ Positive orthant in RD

B(v, r) Closed ball in RD with center v ∈ RD and radius r ≥ 0

⪯C , ≺C Partial order relations on RD and on [K] given in Definitions 2.8 and 2.9
d(v, r) = infx∈A ||v − x||2 Distance of vector v ∈ RD to set A ⊆ RD

β = max{β1, β2} Ordering complexity of cone C (β1, β2 are defined in (3), (4), respectively.)
αn = supu∈B(0,1)∩C wT

nu

P ∗ The (true) Pareto set according to cone C

m(i, j) Minimum increment in µi in an arbitrary direction of increase that makes design i ∈ [K]
not strongly dominated by design j ∈ [K]

M(i, j) Minimum increment in µj in an arbitrary direction of increase that makes design i ∈ [K]
weakly dominated by design j ∈ [K]

∆∗
i = maxj∈P∗ m(i, j)

σ Subgaussian parameter of observation noise
It Design evaluated in round t ∈ [T ] in Algorithm 1
µ̂i Empirical mean of the random reward of design i ∈ [K] in Algorithm 1
P Set of designs returned by Algorithm 1

B SUPPLEMENTAL PROOFS

B.1 Detailed version of Example 2.6

We take D = 2. Given x ∈ R2, let α(x) ∈ [0, 2π) denote the angle in the polar coordinates of x. Let θ ∈ (0, π/2]
and define the ordering cone Cθ := {x ∈ R2 | α(x) ∈ [π/4 − θ/2, π/4 + θ/2]}. Let x /∈ Cθ. Using elementary planar
geometry, it can be checked that Cθ∩(x+Cθ) = Cθ so that d(x, Cθ) = d(x, Cθ∩(x+Cθ)) if α(x) ∈ [5π/4−θ/2, 5π/4+
θ/2]. If α(x) ∈ [0, π/4−θ/2)∪(π/4+θ/2, 3π/4+θ/2]∪[7π/4−θ/2, 2π), then d(x, Cθ∩(x+Cθ)) = d(x, Cθ) csc(θ). If
α(x) ∈ (3π/4+θ/2, 5π/4−θ/2), then d(x, Cθ∩(x+Cθ)) = d(x, Cθ) csc(θ) sin(5π/4+θ/2−α(x)) ≤ d(x, Cθ) csc(θ).
Similarly, if α(x) ∈ (5π/4 + θ/2, 7π/4− θ/2), then d(x, Cθ ∩ (x+Cθ)) = d(x, Cθ) csc(θ) sin(α(x)− 5π/4 + θ/2) ≤
d(x, Cθ) csc(θ). Hence, β1 = csc(θ). By a similar calculation, it can be checked that β2 = csc(θ) as well. If we take
θ ∈ (π/2, π), then β1 = β2 = 1 by Theorem 2.4(ii).

B.2 Proof of Theorem 2.4 and additional results for Section 2

B.2.1 Computation of β1 and β2when the ordering cone is large

Recall the definitions of β1, β2 in (4), which depend on the geometry of the ordering cone C. We start by investigating the
special case where the ordering cone is at least as large as the positive orthant (or a rotation of it).

Proposition B.1. Suppose that wT
nwk ≥ 0 for each n, k ∈ [N ]. Then, d(x, C ∩ (x+C)) = d(x, C) for every x /∈ C. In

particular, β1 = 1.

Proof. Let us fix x /∈ C. Note that C = {y ∈ RD | Wy ≥ 0} and x + C = {y ∈ RD | Wy ≥ Wx}. Hence,
C ∩ (x + C) = {y ∈ RD | Wy ≥ (Wx)+}. Since x /∈ C, there exists n ∈ [N ] such that wT

nx < 0. Let I(x) :=
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{n ∈ [N ] | wT
nx ≤ 0} ̸= ∅. We have (wT

nx)
+ = 0 for each n ∈ I(x) and (wT

nx)
+ = wT

nx > 0 for each n ∈ I(x)c :=
[N ]\ I(x). Hence, d(x, C ∩ (x+C))2 can be written as the optimal value of a quadratic optimization problem as follows:

d(x, C ∩ (x+ C))2 = inf{∥y − x∥22 | ∀n ∈ I(x) : wT
ny ≥ 0, ∀n ∈ I(x)c : wT

ny ≥ wT
nx} . (10)

As this is a convex optimization problem with affine constraints and finite optimal value, the standard Karush-Kuhn-
Tucker conditions are necessary and sufficient for optimality. Hence, a vector y ∈ RD that satisfies the constraints of (10)
is optimal if and only if there exists a Lagrange multiplier vector λ ∈ RN

+ such that the following conditions are satisfied:

2(y − x)−
∑

n∈[N ]

λnwn = 0 , (11)

∀n ∈ I(x) : λnw
T
ny = 0 , (12)

∀n ∈ I(x)c : λn(w
T
ny −wT

nx) = 0 . (13)

Here, condition (11) is the first order condition for the Lagrangian of (10) with respect to the primal variable y; conditions
(12) and (13) are the complementary slackness conditions.

Let y ∈ RD be an optimal solution of (10) with an associated Lagrange multiplier vector λ ∈ RN
+ . We claim that

λn = 0 for every n ∈ I(x)c. To get a contradiction, suppose that λn̄ > 0 for some n̄ ∈ I(x)c. By (13), we have
wT

n̄(y − x) = wT
n̄y −wT

n̄x = 0. On the other hand, y − x = 1
2

∑
n∈[N ] λnwn by (11). Combining these, we get∑

n∈[N ]

λnw
T
n̄wn = 0 . (14)

Note that wn ∈ C+ for each n ∈ [N ]. By the assumption on w1, . . . ,wN , (14) implies that λnw
T
n̄wn = 0 for each

n ∈ [N ]. In particular, taking n = n̄ gives λn̄∥wn̄∥22 = λn̄ = 0, which is a contradiction. Therefore, the claim holds.

Thanks to the above claim, the pair (y,λ) satisfies the system

2(y − x)−
∑

n∈[N ]

λnwn = 0 , (15)

∀n ∈ [N ] : λnw
T
ny = 0 . (16)

Moreover, wT
ny ≥ 0 for each n ∈ [N ] by the feasibility of y for (10). Hence, Karush-Kuhn-Tucker conditions are

established for the quadratic optimization problem

d(x, C)2 = inf{∥y − x∥22 | ∀n ∈ [N ] : wT
ny ≥ 0} (17)

and we conclude that y is optimal for (17). Therefore, d(x, C) = d(x, C ∩ (x+ C)) = ∥y − x∥2.

Proposition B.2. Suppose that wT
nwk ≥ 0 for each n, k ∈ [N ]. Then, d(x, (int(C))c ∩ (x− C)) = d(x, (int(C))c) for

every x ∈ int(C). In particular, β2 = 1.

Proof. Let us fix x ∈ int(C). We have x − C = {y ∈ RD | ∀n ∈ [N ] : wT
nx ≥ wT

ny}. Moreover, we have
(int(C))c = {y ∈ RD | ∃k ∈ [N ] : wT

ky ≤ 0}. Hence,

(int(C))c ∩ (x− C) =
⋃

k∈[N ]

{y ∈ RD | ∀n ∈ [N ] : wT
nx ≥ wT

ny, w
T
ky ≤ 0} ,

which is a finite union of convex polyhedra. In particular, we may write

d(x, (int(C))c ∩ (x− C))2 = min
k∈[N ]

fk(x) , (18)

where fk(x) := inf{∥y − x∥22 | ∀n ∈ [N ] : wT
nx ≥ wT

ny, w
T
ky ≤ 0} .

Similarly, we have int(C) =
⋃

k∈[N ]{y ∈ RD | wT
ky ≤ 0} so that

d(x, (int(C))c)2 = min
k∈[N ]

gk(x), where gk(x) := inf{∥y − x∥22 | wT
ky ≤ 0} . (19)
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Let us fix k ∈ [N ]. Note that the optimization problems that define fk(x), gk(x) are quadratic and Karush-Kuhn-Tucker
conditions characterize optimality. Let y ∈ RD be optimal for the calculation of fk(x). Hence, there exists λ ∈ RN+1

+

such that the following conditions are satisfied:

2(y − x) +
∑

n∈[N ]

λnwn + λN+1wk = 0 , (20)

∀n ∈ [N ] : λnw
T
n(y − x) = 0 , (21)

λN+1w
T
ky = 0 . (22)

We claim that λn = 0 for each n ∈ [N ]. To see this, suppose that λn̄ > 0 for some n̄ ∈ [N ]. Then, (21) implies that
wT

n̄(y − x) = 0. Combining this with (20), we get

wT
n̄(x− y) =

1

2

( ∑
n∈[N ]\{k}

λnw
T
n̄wn + (λN+1 + λk)w

T
n̄wk

)
= 0 .

By the assumption on w1, . . . ,wN , we have wT
n̄wn ≥ 0 for every n ∈ [N ]. Hence, all terms in the above sum are

nonnegative. It follows that these terms are indeed zero, that is,

∀n ∈ [N ] \ {k} : λnw
T
n̄wn = 0 , (λN+1 + λk)w

T
n̄wk = 0 .

If n̄ ̸= k, then we have λn̄w
T
n̄wn̄ = λn̄∥wn̄∥22 = λn̄ = 0, which is a contradiction. If n̄ = k, then we have (λN+1 +

λn̄)w
T
n̄wn̄ = (λN+1 + λn̄)∥wn̄∥22 = λN+1 + λn̄ = 0 so that λN+1 = λn̄ = 0, which is also a contradiction. Hence, the

claim holds.

As a consequence of the claim, (20) and (22) yield the equations

2(y − x) + λN+1wk = 0 , (23)

λN+1w
T
ky = 0 , (24)

which establish Karush-Kuhn-Tucker conditions for the calculation of gk(x). In particular, fk(x) = gk(x) = ∥y − x∥22.
It follows that d(x, (int(C))c ∩ (x− C)) = d(x, (int(C))c).

Corollary B.3. (Theorem 2.4(ii)) Suppose that C ⊇ RD
+ . Then, β1 = β2 = 1.

Proof. Since C ⊇ RD
+ , it follows from the definition in (6) that C+ ⊆ RD

+ . Since w1, . . . ,wN ∈ C+, we have wT
nwk ≥ 0

for each n, k ∈ [N ]. Propositions B.1 and B.2 yield the result.

B.2.2 Computation of β1 for general ordering cones

In the general case, without any additional assumptions on the ordering cone C (besides polyhedrality), we will prove that
β1 can be calculated by solving a global optimization problem over a compact set. We begin with a duality lemma.

Lemma B.4. For each x ∈ RD, we have

d(x, (x+ C) ∩ C) = sup

{ ∑
n∈[N ]

λn(w
T
nx)

− |
∥∥∥ ∑

n∈[N ]

λnwn

∥∥∥
2
≤ 1 , λ ∈ RN

+

}
, (25)

In particular, x 7→ d(x, (x+ C) ∩ C) is a continuous convex function on RD.

Proof. Let x ∈ RD. Recall that

d(x, (x+ C) ∩ C) = inf{∥y − x∥2 | ∀n ∈ [N ] : wT
ny ≥ (wT

nx)
+} .

By strong duality for convex optimization, we have

d(x, (x+ C) ∩ C) = sup
λ∈RN

+

h1(λ) ,
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where
h1(λ) := inf

y∈RD

(
∥y − x∥2 −

∑
n∈[N ]

λnw
T
ny +

∑
n∈[N ]

λn(w
T
nx)

+
)
.

With a change-of-variables through u = y − x, we get

h1(λ) = inf
u∈RD

(
∥u∥2 −

∑
n∈[N ]

λnw
T
n(u+ x) +

∑
n∈[N ]

λn(w
T
nx)

+
)

= inf
u∈RD

(
∥u∥2 −

∑
n∈[N ]

λnw
T
nu

)
+

∑
n∈[N ]

λn(w
T
nx)

−

=

{∑
n∈[N ] λn(w

T
nx)

− if
∥∥∑

n∈[N ] λnwn

∥∥
2
≤ 1 ,

−∞ else ,

where the last equality involves the routine calculation of the conjugate of the ℓ2-norm. Hence, (25) follows. Clearly,
x 7→ ∑

n∈[N ] λn(w
T
nx)

− is a convex function for every λ ∈ RN
+ . Then, by (25), x 7→ d(x, (x ∩ C) ∩ C) is convex as a

supremum of convex functions. This function is also finite by definition. Hence, by Rockafellar (1970, Corollary 10.1.1),
it is continuous as a convex finite function on RD.

Proposition B.5. It holds

β1 = sup{d(−w, (−w + C) ∩ C) | ∥w∥2 = 1, w ∈ C+} . (26)

In particular, β1 < +∞.

Proof. Let pC : RD → C be the projection mapping onto C, that is, for each x ∈ RD, pC(x) ∈ RD is the unique point in
C for which d(x, C) = ∥pC(x)− x∥2. Clearly, for x ∈ Cc, we have pC(x) ∈ bd(C).

Let x ∈ Cc. Then, (15), (16) hold with y = pC(x) for some λ = λL ∈ RN
+ . Let us define x̄ := 1

d(x,C)x. Note that

wT
nx̄ = 1

d(x,C)w
T
nx for every n ∈ [N ]. Hence, I(x) = I(x̄). Let us define ȳL := 1

d(x,C)pC(x) and λ̄
L
:= 1

d(x,C)λ
L.

By (15) for (pC(x),λ
L), we have

ȳL − x̄ =
1

d(x, C)
(pC(x)− x) =

1

2

∑
n∈[N ]

λL
n

d(x, C)
wn =

1

2

∑
n∈[N ]

λ̄L
nwn . (27)

Moreover, for each n ∈ [N ], by (16) for (pC(x),λ
L), we have

λ̄L
nw

T
nȳ =

λL
n

d(x, C)2
wT

npC(x) = 0 . (28)

Hence, (27) and (28) establish Karush-Kuhn-Tucker conditions for (ȳL, λ̄
L
) so that ȳL = pC(x̄) and

d(x̄, C) = ∥ȳL − x̄∥2 =
1

d(x, C)
∥pC(x)− x∥2 = 1 .

Next, note that (11), (12), (13) hold for some y = yU ∈ RD, λ = λU ∈ RN
+ . Let us define ȳU := 1

d(x,C)yU and

λ̄
U
:= 1

d(x,C)λ
U . By (11) for (yU ,λ

U ), we have

ȳU − x̄ =
1

d(x, C)
(yU − x) =

1

2

∑
n∈[N ]

λU
n

d(x, C)
wn =

1

2

∑
n∈[N ]

λ̄U
nwn . (29)

Let n ∈ I(x̄) = I(x). Then, by (12) for (yU ,λ
U ), we have

λ̄U
nw

T
nȳ

U =
λU
n

d(x, C)2
wT

nyU = 0 . (30)
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Let n ∈ I(x̄)c = I(x)c. Then, by (13) for (yU ,λ
U ), we have

λ̄U
nw

T
n(ȳ

U − x̄) =
λU
n

d(x, C)2
wT

n(yU − x) = 0 . (31)

Hence, (29), (30), (31) establish Karush-Kuhn-Tucker conditions for (ȳU , λ̄
U
) so that

d(x̄, (x̄+ C) ∩ C) = ∥ȳU − x̄∥2 =
∥yU − x∥2
d(x, C)

=
d(x, (x+ C) ∩ C)

d(x, C)
.

Since we also have d(x̄, C) = 1, we obtain

d(x, (x+ C) ∩ C)

d(x, C)
=

d(x̄, (x̄+ C) ∩ C)

d(x̄, C)
.

Therefore, we may restrict the calculation of β1 to the set of points that are of unit distance to the ordering cone, i.e.,

β1 = sup{d(x, (x+ C ∩ C)) | x ∈ Cc, d(x, C) = 1} .

Note that a vector y ∈ RD is in bd(C) if and only if y ∈ C and wT
ny > 0 for at least one n ∈ [N ]. In view of this

observation, we may write bd(C) as the union of the faces of C, i.e.,

bd(C) =
⋃

I∈2[N]\{∅}

F (I) , where F (I) := {y ∈ C | ∀n ∈ I : wT
ny = 0, ∀n ∈ Ic : wT

ny > 0} .

For each I ∈ 2[N ] \ {∅}, let

X (I) := {x ∈ Cc | pC(x) ∈ F (I)}, C+(I) :=
{∑

n∈I

λnwn | λ ∈ RN
+

}
.

We claim that
X (I) = F (I)− C+(I) . (32)

To see this, first let us fix x ∈ X (I), i.e., pC(x) ∈ F (I). Note that y = pC(x) satisfies (15), (16) for some λ ∈ RN
+ .

Since pC(x) ∈ F (I), it follows from (16) that λn = 0 for each n ∈ Ic. Then, pC(x) − x = 1
2

∑
n∈I λnwn ∈ C+(I).

Hence, x − pC(x) ∈ −C+(I). Conversely, let y ∈ F (I), λ ∈ RN
+ , and define x := y − ∑

n∈I λnwn. Let us define
λ̄ ∈ RN

+ by λ̄n := λn for each n ∈ I , and by λ̄n := 0 for each n ∈ Ic. Then, it is clear that the pair (y, λ̄) satisfies (15),
(16) for the point x. Hence, we conclude that pC(x) = y. Therefore, x ∈ X (I), which completes the proof of (32). The
last part of the proof also shows that d(x, C) = ∥w∥2 whenever x = y −w with y ∈ F (I) and w ∈ C+(I).

Note that we may write Cc =
⋃

I∈2[N]\{∅} X (I) as a disjoint finite union. Accordingly, we have

β1 = max
I∈2[N]\{∅}

β1(I) , where β1(I) := sup{d(x, (x+ C) ∩ C) | d(x, C) = 1, x ∈ X (I)} .

Let us fix I ∈ 2[N ] \ {∅} and x ∈ X (I) with d(x, C) = 1. We may write x = pC(x) − w for some w ∈ C+(I) and
d(x, C) = ∥w∥2 = 1. Let us define x̄ := −w. Let n ∈ [N ]. Since pC(x) ∈ F (I), we have

wT
nx̄ = wT

n(x− pC(x)) = wT
nx

if n ∈ I , and
wT

nx̄ = wT
n(x− pC(x)) < wT

nx

if n ∈ Ic. Hence, for every n ∈ [N ], we have wT
nx̄ ≤ wT

nx so that (wT
nx̄)

− ≥ (wT
nx)

−. Hence, by Lemma B.4,

d(x, (x+ C) ∩ C) = sup

{ ∑
n∈[N ]

λn(w
T
nx)

− |
∥∥∥ ∑

n∈[N ]

λnwn

∥∥∥
2
≤ 1, λ ∈ RN

+

}

≤ sup

{ ∑
n∈[N ]

λn(w
T
nx̄)

− |
∥∥∥ ∑

n∈[N ]

λnwn

∥∥∥
2
≤ 1, λ ∈ RN

+

}
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= d(x̄, (x̄+ C) ∩ C) .

Moreover, note that pC(x̄) = 0 ∈ F ([N ]), x̄ ∈ X ([N ]), and d(x̄, C) = ∥w∥2 = 1. As x̄ ∈ X ([N ]) provides a higher
objective value than x ∈ X ([I]), we can ignore all choices of I but the case I = [N ] in the computation of β1:

β1 = sup{d(x, (x+ C) ∩ C) | d(x, C) = 1, x ∈ X ([N ])} . (33)

Note that F ([N ]) = {0} since C is assumed to be pointed, and C+([N ]) = C+. Hence, X ([N ]) = F ([N ]) − C+(I) =
−C+ by (32). Therefore, (33) becomes

β1 = sup{d(−w, (−w + C) ∩ C) | d(−w, C) = 1, w ∈ C+}
= sup{d(−w, (−w + C) ∩ C) | ∥w∥2 = 1, w ∈ C+} .

Hence, (26) follows.

Finally, note that {w ∈ C+ | ∥w∥2 = 1} is a compact set. Moreover, w 7→ d(−w, (−w+C)∩C) is a continuous function
by Lemma B.4. Hence, there exists w∗ ∈ C+ such that ∥w∗∥2 = 1 and β1 = d(−w∗, (−w∗ + C) ∩ C) < +∞.

The optimization problem in (26) consists of maximizing a finite convex objective function over a compact set; hence, it
is a global (non-convex) optimization problem. Nevertheless, the objective function is indeed Lipschitz over {w ∈ C+ |
∥w∥2 = 1} by Rockafellar (1970, Theorem 10.4). Hence, some classical techniques of global optimization (e.g., Goldstein
(1977)) can be used to calculate the actual value of β1 (approximately). To be able to use these methods, one still needs to
find a Lipschitz constant for the function w 7→ d(−w, (−w + C) ∩ C) over {w ∈ C+ | ∥w∥2 = 1}. A more convenient
alternative would be to use the same methods of global optimization for the following dual representation of β1.

Theorem B.6. It holds

β1 = sup
w∈C+ :
∥w∥2=1

sup
λ∈RN

+ :

∥
∑

n∈[N] λnwn∥2≤1

∑
n∈[N ]

λn(w
T
nw)+

= max
I∈2[N]

sup
w∈C+∩C(I) :

∥w∥2=1

sup
λ∈RN

+ :

∥
∑

n∈[N] λnwn∥2≤1

∑
n∈I

λnw
T
nw ,

where
C(I) := {y ∈ RD | ∀n ∈ I : wT

ny ≥ 0, ∀n ∈ Ic : wT
ny ≤ 0} .

Proof. By Lemma B.4, for each w ∈ C+, we have

d(−w, (−w + C) ∩ C) = sup

{ ∑
n∈[N ]

λn(w
T
nw)+ |

∥∥∥ ∑
n∈[N ]

λnwn

∥∥∥
2
≤ 1, λ ∈ RN

+

}
.

Combining this and Proposition B.5, the first equality in the theorem follows. The second equality follows immediately
by decomposing C+ as C+ =

⋃
I∈2[N](C+ ∩ C(I)) and noting that

∑
n∈[N ] λn(w

T
nw)+ =

∑
n∈I λnw

T
nw whenever

w ∈ C(I).

We complete this subsection by showing that, for each I ∈ 2[N ], the objective function of the second problem in Theorem
B.6 is jointly Lipschitz with a computable Lipschitz constant. This will be achieved by the next proposition. In what
follows, ∥ · ∥1 denotes the ℓ1-norm.

Proposition B.7. (i) Let v∗ := inf{∥∑n∈[N ] λwn∥2 | ∥λ∥1 = 1, λ ∈ RN
+}. Then, v∗ > 0.

(ii) The set {λ ∈ RN
+ | ∥∑n∈[N ] λnwn∥2 ≤ 1} is a nonempty compact subset of RN .

(iii) The function (w,λ) 7→ ∑
n∈I λnw

T
nw is ( 1

v∗ ∨ 1)-Lipschitz with respect to the ℓ2 × ℓ1-norm on RD × RN .

Proof. (i) Let us define Λ := {λ ∈ RN
+ | ∥λ∥1 = 1}, which is a compact set. The function λ 7→ ∥∑n∈[N ] λnwn∥2

is continuous, hence it attains its minimum over Λ at some λ∗ ∈ Λ. We claim that the corresponding minimum value
v∗ = ∥∑n∈[N ] λ

∗
nwn∥2 is nonzero. Indeed, having v∗ = 0 would imply

∑
n∈[N ] λ

∗
nwn = 0, which is not possible since

w1, . . . ,wN are the generating vectors of the dual cone C+ and C+ is pointed (as C is solid). Therefore, the claim holds.



Vector Optimization with Stochastic Bandit Feedback

(ii) By (i), we have ∥∥∥ ∑
n∈[N ]

λnwn

∥∥∥
2
≥ v∗ > 0 (34)

for every λ ∈ Λ. Finally, for an arbitrary vector λ ∈ RN
+ \ {0}, we have∥∥∥ ∑

n∈[N ]

λnwn

∥∥∥
2
≥ v∗∥λ∥1 , (35)

which follows by applying (34) to λ/∥λ∥1 ∈ Λ. Moreover, (35) holds for λ = 0 trivially. Therefore, (35) holds for every
λ ∈ RN

+ . In particular,

sup

{
∥λ∥1 |

∥∥∥ ∑
n∈[N ]

λnwn

∥∥∥
2
≤ 1, λ ∈ RN

+

}
≤ 1

v∗
< +∞ ,

which shows the boundedness of {λ ∈ RN
+ | ∥∑n∈[N ] λnwn∥2 ≤ 1}. Trivially, this set is also closed. Hence, compact-

ness follows.

(iii) For every λ, λ̄ ∈ RN
+ such that ∥∑n∈[N ] λnwn∥2 ≤ 1, ∥∑n∈[N ] λ̄nwn∥2 ≤ 1 and w, w̄ ∈ C+ such that ∥w∥2 =

∥w̄∥2 = 1, we observe that∣∣∣∑
n∈I

λnw
T
nw −

∑
n∈I

λ̄nw
T
nw̄

∣∣∣ ≤ ∥∥∥∑
n∈I

λnwn

∥∥∥
2
∥w − w̄∥2 +

∥∥∥∑
n∈I

(λn − λ̄n)wn

∥∥∥
2
∥w̄∥2

≤
∑
n∈I

λn∥w − w̄∥2 +
∑
n∈I

|λn − λ̄n|

≤ 1

v∗
∥w − w̄∥2 + ∥λ− λ̄n∥1

≤
( 1

v∗
∨ 1

)
(∥w − w̄∥2 + ∥λ− λ̄n∥1) .

Hence, the Lipschitz property follows.

The constant

v∗ = inf

{∥∥∥ ∑
n∈[N ]

λwn

∥∥∥
2
| ∥λ∥1 = 1, λ ∈ RN

+

}
= inf

{∥∥∥ ∑
n∈[N ]

λwn

∥∥∥
2
| ∥λ∥1 ≤ 1, λ ∈ RN

+

}
,

which appears in Proposition B.7, can be calculated by solving a simple minimization problem whose objective function
is quadratic and constraints can be linearized. Therefore, in view of Theorem B.6, to evaluate β1 approximately, one can
solve finitely many optimization problems with a compact feasible region and Lipschitz objective function with a known
Lipschitz constant.

B.2.3 Computation of β2 for general ordering cones

We will find an upper bound for β2. For this, we first provide a simple formula for the calculation of the distance functions
that appear in the definition of β2.

Lemma B.8. Let x ∈ (int(C))c. Then,

d(x, (int(C))c ∩ (x− C)) = min
n∈[N ]

wT
nx

αn
, d(x, (int(C))c) = min

n∈[N ]
wT

nx .

Proof. To see the first identity, note that replacing µj−µi with x in Proposition 4.2(ii,iv) gives d(x, (int(C))c∩(x−C)) =

minn∈[N ]
(wT

nx)
+

αn
. Since x ∈ int(C), we have wT

nx > 0 for each n ∈ [N ]. Hence, the first identity follows. Alternatively,
one can use (18) and formulate the Lagrange dual problem of fn(x) for each n ∈ [N ], which yields the same identity.

To prove the second identity, let us use (19). By strong duality for convex optimization, for each n ∈ [N ], we have

gn(x) = sup
λ≥0

inf
y∈RD

(
∥y − x∥2 + λwT

ny
)
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= sup
λ≥0

inf
u∈RD

(
∥u∥2 + λwT

n(u+ x)
)

= sup
λ≥0

(
λwT

nx− sup
u∈RD

(
− λwT

nu− ∥u∥2
))

= sup
λ≥0

{
λwT

nx if λ = ∥λwn∥ ≤ 1

−∞ else

= sup
λ∈[0,1]

λwT
nx = wT

nx ,

where the last equality holds since wT
nx > 0. Hence, the second identity follows.

Theorem B.9. It holds

β2 ≤ 1

minn∈[N ] αn
< +∞ .

Proof. Let n∗ ∈ [N ] be such that αn∗ = minn∈[N ] αn. By the definition of β2 and Lemma B.8, we have

β2 = sup
x∈int(C)

d(x, (int(C))c ∩ (x− C))

d(x, (int(C))c)
= sup

x∈int(C)

minn∈[N ]
wT

nx
αn

minn∈[N ] wT
nx

≤ 1

αn∗
sup

x∈int(C)

minn∈[N ] w
T
nx

minn∈[N ] wT
nx

=
1

αn∗
.

Note that Proposition B.5 and Theorem B.9 yield Theorem 2.4(i).

B.3 Proof of Proposition 4.2

(i) To get a contradiction, suppose that m(i, j) = +∞. Hence, the set whose infimum is calculated in (8) is empty, that is,
for every s ≥ 0 and u ∈ B(0, 1) ∩ C, we have µi + su ∈ µj − int(C). Since {su | s ≥ 0,u ∈ B(0, 1) ∩ C} = C, we
have µi + C ⊆ µj − int(C) ⊆ µj − C. Hence, µi − µj + C ⊆ −C so that C ∩ (−C) ⊇ C ∩ (µi − µj + C). The
latter intersection consists of all points x ∈ RD such that 0 ⪯C x and µi − µj ⪯C x. Since C is a solid cone, there are
infinitely many such points, which contradicts with C ∩ (−C) = {0}. Hence, m(i, j) < +∞.
(ii) Note that

m(i, j) = inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µi + su ∈ (µj − int(C))c}
inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µi + su ∈ µj − (int(C))c}

= inf
c∈(int(C))c

inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µj − µi − c = su}

= inf
c∈(int(C))c∩(µj−µi−C)

inf{s ≥ 0 | s = ∥µj − µi − c∥2}

= inf
c∈(int(C))c∩(µj−µi−C)

∥µj − µi − c∥2

=d(µj − µi, (intC)c ∩ (µj − µi − C)) .

(iii) Since (int(C))c∩ (µj −µi−C) is a closed set, by the well-known properties of distance function, we have µj −µi ∈
(int(C))c∩(µj−µi−C) if and only if m(i, j) = d(µj−µi, (int(C))c∩(µj−µi−C)) = 0. Since µj−µi ∈ µj−µi−C
always holds, we have µj − µi ∈ (int(C))c if and only if m(i, j) = 0. Since the former condition precisely means that
i ⊀C j, the desired equivalence follows.
(iv) First, suppose that m(i, j) = 0, that is, µj−µi /∈ int(C). Since int(C) = {x ∈ RD | Wx > 0}, there exists n̄ ∈ [N ]

such that wT
n̄(µj − µi) ≤ 0, that is, (wT

n̄(µj − µi))
+ = 0. Hence, minn∈[N ](w

T
n(µj − µi))

+/αn = 0 = m(i, j). Next,
suppose that m(i, j) > 0, that is, µj − µi ∈ int(C). Note that we may write m(i, j) = inf R, where

R := {s ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µi + su /∈ µj − C} .
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We show that R is an interval that is unbounded from above. To that end, let s ≥ 0 be such that µi + su /∈ µj − C for
some u ∈ B(0, 1)∩C. Let s′ > s. We claim that µi + s′u /∈ µj −C. Suppose otherwise that µi + s′u ∈ µj −C. Since
µi ∈ µj − int(C) ⊆ µj − C by supposition, and µj − C is a convex set, we obtain

µi + su =
(
1− s

s′

)
µi +

s

s′
(µi + s′u) ∈ µj − C ,

which is a contradiction to the definition of s. Hence, the claim holds. Since R is an interval in [0,+∞) that is unbounded
from above, we have inf R = sup([0,+∞) \R). Therefore,

m(i, j) = sup{s ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µi + su ∈ µj − C}
=sup{s ≥ 0 | ∀u ∈ B(0, 1) ∩ C,∀n ∈ [N ] : wT

n(µj − µi − su) ≥ 0}
=sup{s ≥ 0 | ∀u ∈ B(0, 1) ∩ C,∀n ∈ [N ] : wT

n(µj − µi) ≥ swT
nu}

=sup{s ≥ 0 | ∀n ∈ [N ] : wT
n(µj − µi) ≥ s sup

u∈B(0,1)∩C

wT
nu}

=sup{s ≥ 0 | ∀n ∈ [N ] : wT
n(µj − µi) ≥ sαn}

=sup

{
s ≥ 0 | min

n∈[N ]

1

αn
wT

n(µj − µi) ≥ s

}
=max

{
0, min

n∈[N ]

1

αn
wT

n(µj − µi)

}
= min

n∈[N ]

(wT
n(µj − µi))

+

αn
,

which completes the proof.

B.4 Proof of Proposition 4.3

(i) We prove that the set whose infimum is calculated in (9) is nonempty. To get a contradiction, suppose that for every
s ≥ 0 and u ∈ B(0, 1) ∩ C, we have µj − µi + su /∈ C, that is,(

µj − µi +
⋃
s≥0

(B(0, s) ∩ C)
)
∩ C = ∅ .

However, we have
⋃

s≥0(B(0, s)∩C) = C; hence, we get a contradiction to the solidity of C as in the proof of Proposition
4.2(i). It follows that M(i, j) < +∞.
(ii) By elementary calculations, we have

M(i, j) = inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C,∃c ∈ C : µj + su = µi + c}
= inf

c∈C
inf{s ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µj − µi − c = −su}

= inf
c∈C∩(µj−µi+C)

inf{s ≥ 0 | s = ∥µj − µi − c∥2}

= inf
c∈C∩(µj−µi+C)

||µj − µi − c||2

=d(µj − µi, C ∩ (µj − µi + C)) .

(iii) Since C ∩ (µj − µi + C) is a closed set, we have M(i, j) = d(µj − µi, C ∩ (µj − µi + C)) = 0 if and only if
µj − µi ∈ C ∩ (µj − µi + C). Since µj − µi ∈ µj − µi + C is always the case, these conditions are also equivalent to
µj − µi ∈ C, that is, i ⪯C j.

B.5 Proof of Theorem 5.1

For each s > 0, let us define

A(s) :=
⋂

u∈B(0,1)∩C

(su+ C), f(s) := d(0, A(s)) = inf{∥z∥ | z ∈ A(s)} .
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Note that z ∈ A(s) if and only if wT
n(z − su) ≥ 0 for every n ∈ [N ] and u ∈ B(0, 1), which is equivalent to

wT
nz ≥ sαn = s supu∈B(0,1)∩C wT

nu for every n ∈ [N ]. It follows that

A(s) = {z ∈ RD | ∀n ∈ [N ] : wT
nz ≥ sαn}, A(s) = sA(1), f(s) = sf(1) .

Since A(1) is a nonempty closed set, it can be checked that there exists z∗ ∈ A(1) such that ∥z∗∥ = f(1), this vector can
be calculated by solving a simple quadratic minimization problem with affine constraints. Since wT

nz
∗ ≥ αn > 0 for each

n ∈ [N ], we have z∗ ∈ int(C). Let u∗ := z∗

f(1) ∈ B(0, 1) ∩ int(C). Then, for every s > 0, we have sf(1)u∗ ∈ A(s),
whose norm yields f(s).

For each t ∈ [T ], we assume that the noise vector Y t is either 1
4u

∗ with probability p ∈ (0, 1) or it is − 1
4u

∗ with
probability 1 − p, which implies E[Y t] = (p2 − 1

4 )u
∗. Moreover, due to the structure of this distribution, the difference

µ̂i −µi between the empirical and true means of a design i ∈ [K] has a discrete distribution over a finite subset of the line
segment that connects − 1

4u
∗ and 1

4u
∗, hence we may write µ̂i − µi = ( p̂i

2 − 1
4 )u

∗, where p̂i is the empirical frequency
of observing Y t =

1
4u

∗ over all rounds t at which design i is sampled.

As in Auer et al. (2016), we consider the case pi =
1
2 for every i ∈ [K] as the original case, where the noise vectors are

centered as in the problem setup. We will introduce modifications on (pi)i∈[N ] in such a way that the algorithm returns an
output P ′ that is different from the original one P . This could be due to a change in the Pareto set or a change in the gap
values of the designs.

We consider the following four possibilities for i ∈ [K].

Case 1: Suppose that i ∈ P ∗ \ P . Then, Remark 3.7 implies that there exist j ∈ P and u ∈ B(0, 1) ∩ C such that
µj + ϵu ∈ µi + C. Let J(i) ⊆ P be the set of all such j. Then, by the definition of M(i, j), we have 0 < M(i, j) ≤ ϵ

for every j ∈ J(i). In particular, M(i, j) ≤ ϵ for every j ∈ J(i) and ∆̃ϵ
i = ϵ. Consider a modification of pi such that the

corresponding mean vector becomes µ′
i := µi + 2∆̃ϵ

if(1)u
∗ = µi + 2ϵf(1)u∗ while all the other mean vectors remain

the same. Note that µ′
i − µi = 2ϵf(1)u∗ ∈ A(2ϵ), i.e., µ′

i ∈ µi + 2ϵu + C for every u ∈ B(0, 1) ∩ C. We claim
that i is not covered by any j ∈ J(i) in the modified case. Indeed, if we had j ∈ J(i) and u ∈ B(0, 1) ∩ C such that
µj + ϵu ∈ µ′

i+C, then the properties of µ′
i would imply that µj + ϵu ∈ µi+2ϵu+C, i.e., µj ∈ µi+ ϵu+C ⊆ µi+C

so that µj dominates µi and i /∈ P ∗, a contradiction. Hence, the claim holds. On the other hand, we have i ∈ (P ∗)′, where
(P ∗)′ denotes the Pareto set in the modified case. Hence, due to Definition 3.6, we must have i ∈ P ′, where P ′ is the set
returned by the algorithm in the modified case.

Case 2: Suppose that i ∈ P ∗ ∩ P . Then, ∆+
i = M(i, j) for some j ∈ P ∗ \ {i}. Let us modify µi as µ′

i := µi − k∆̃ϵ
iu

∗,
where k > 0 is to be determined. We want to choose k in such a way that m′(i, j) ≥ 2ϵ for the gap m′(i, j) in the
modified case so that i /∈ P ′ due to Definition 3.6. Note that m′(i, j) ≥ 2ϵ if and only if µ′ + 2ϵu ∈ µj − C for every
u ∈ B(0, 1) ∩ C. Hence, the minimum value of k is given by

ki := inf{k ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µi − k∆̃ϵ
iu

∗ + 2ϵu ∈ µj − C}
= inf{k ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µj − µi + k∆̃ϵ

iu
∗ ∈ 2ϵu+ C}

= inf{k ≥ 0 | µj − µi + k∆̃ϵ
iu

∗ ∈ A(2ϵ)}
= inf{k ≥ 0 | ∀n ∈ [N ] : wT

n(µj − µi + k∆̃ϵ
iu

∗) ≥ 2ϵαn}

= inf
{
k ≥ 0 | ∀n ∈ [N ] : k ≥ 2ϵαn −wT

n(µj − µi)

∆̃ϵ
iw

T
nu

∗

}
= max

n∈[N ]

(2ϵαn −wT
n(µj − µi))

+

∆̃ϵ
iw

T
nu

∗
≤ max

n∈[N ]

2ϵαn + (wT
n(µi − µj))

+

∆̃ϵ
iw

T
nu

∗
.

We claim that maxn∈[N ]
(wT

n(µi−µj))
+

αn
≤ M(i, j). To see this, we observe that, given a number s ≥ 0, a sufficient

condition for s ≤ M(i, j) to hold is given by the following:

∀u ∈ B(0, 1) ∩ C : µj + su /∈ µi + int(C)

⇔ ∀u ∈ B(0, 1) ∩ C ∃n ∈ [N ] : wT
n(µj + su) ≤ wT

nµi

⇔ ∀u ∈ B(0, 1) ∩ C ∃n ∈ [N ] : s ≤ wT
n(µi − µj)

wT
nu
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⇔ ∀u ∈ B(0, 1) ∩ C : s ≤ max
n∈[N ]

(wT
n(µi − µj))

+

wT
nu

.

Now, taking s = maxn∈[N ]
(wT

n(µi−µj))
+

αn
, the last condition above is verified immediately thanks to the definition of αn.

Hence, the claim holds. Then, we may write

ki ≤ max
n∈[N ]

2ϵαn + (wT
n(µi − µj))

+

∆̃ϵ
iw

T
nu

∗

≤ max
n∈[N ]

2ϵαn +M(i, j)αn

∆̃ϵ
iw

T
nu

∗
≤ max

n∈[N ]

2∆̃ϵ
iαn + ∆̃ϵ

iαn

∆̃ϵ
iw

T
nu

∗
= max

n∈[N ]

3αn

wT
nu

∗ .

Therefore, choosing k := maxn∈[N ]
3αn

wT
nu

∗ ensures that m′(i, j) ≥ 2ϵ.

Case 3: Suppose that i ∈ P \ P ∗. Then, there exists j ∈ P ∗ such that ∆∗
i = m(i, j) and we have m(i, j) ≤ ϵ by

Definition 3.6. In particular, ∆̃ϵ
i = ϵ. Let us modify µ′ as µ′

i := µi − k∆̃ϵ
iu

∗, where k > 0 is to be chosen such that
m′(i, j) ≥ 2ϵ. Once this is achieved, we have i /∈ P ′ according to Definition 3.6. By the proof of Proposition 3.2(iv), we
have m′(i, j) ≥ 2ϵ if and only if µ′

i + 2ϵu ∈ µj −C for every u ∈ B(0, 1)∩C. Hence, the minimum value of k is given
by

ki := inf{k ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µi − k∆̃ϵ
iu

∗ + 2ϵu ∈ µj − C}
= inf{k ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µj − µi + k∆̃ϵ

iu
∗ ∈ 2ϵu+ C}

= inf{k ≥ 0 | µj − µi + k∆̃ϵ
iu

∗ ∈ A(2ϵ)}
= inf{k ≥ 0 | ∀n ∈ [N ] : wT

n(µj − µi + k∆̃ϵ
iu

∗) ≥ 2ϵαn}

= inf
{
k ≥ 0 | ∀n ∈ [N ] : k ≥ 2ϵαn −wT

n(µj − µi)

∆̃ϵ
iw

T
nu

∗

}
= max

n∈[N ]

(2ϵαn −wT
n(µj − µi))

+

∆̃ϵ
iw

T
nu

∗

≤ max
n∈[N ]

(2ϵαn −m(i, j)αn)
+

∆̃ϵ
iw

T
nu

∗
= max

n∈[N ]

2ϵαn −m(i, j)αn

∆̃ϵ
iw

T
nu

∗
≤ max

n∈[N ]

2αn

wT
nu

∗ .

Hence, choosing k := maxn∈[N ]
2αn

wT
nu

∗ ensures that m′(i, j) ≥ 2ϵ.

Case 4: Suppose that i /∈ P ∗ ∪ P . Let us modify µ′ as µ′
i := µi + k∆̃ϵ

iu
∗, where k > 0 is to be chosen such that i is

not covered by any j ∈ P ∗ in the modified case. For such k, i will automatically be in the Pareto set of the modified case,
i.e., i ∈ (P ∗)′, hence we must have i ∈ P ′ due to Definition 3.6. To determine the desired value of k, note that the largest
value of k for which i is covered by j ∈ P ∗ in the modified case is given by

kij := sup{k ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µ′
i ∈ µj + ϵu− C}

= sup
u∈B(0,1)∩C

sup{k ≥ 0 | ∀n ∈ [N ] : wT
nµi + k∆̃ϵ

iw
T
nu

∗ ≤ wT
nµj + ϵwT

nu}

= sup
u∈B(0,1)∩C

sup
{
k ≥ 0 | ∀n ∈ [N ] : k ≤ wT

n(µj − µi + ϵu)

∆̃ϵ
iw

T
nu

∗

}
= sup

u∈B(0,1)∩C

min
n∈[N ]

(wT
n(µj − µi + ϵu))+

∆̃ϵ
iw

T
nu

∗
≤ sup

u∈B(0,1)∩C

min
n∈[N ]

(wT
n(µj − µi))

+ + ϵwT
nu

∆̃ϵ
iw

T
nu

∗

≤ sup
u∈B(0,1)∩C

min
n∈[N ]

m(i, j)αn + ϵwT
nu

∆̃ϵ
iw

T
nu

∗
≤ sup

u∈B(0,1)∩C

min
n∈[N ]

αn +wT
nu

wT
nu

∗

≤ sup
u∈B(0,1)∩C

max
n∈[N ]

αn +wT
nu

wT
nu

∗ ≤ max
n∈[N ]

2αn

wT
nu

∗ ,

where the passage to the penultimate line follows from Proposition 3.2(iv). Hence, choosing k := 1 + maxn∈[N ]
2αn

wT
nu

∗

ensures that i is not covered by any j ∈ P ∗.
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Since we are able to change the returned output in each possibility, as argued in Auer et al. (2016), the algorithm has to
sample design i at least Ω( 1

(∆̃ϵ
i)

2
log( 1δ )) times in order to detect these changes, which completes the proof.

B.6 Proof of Theorem 5.3

Let v ∈ RD be such that v /∈ C ∪ (−C). Note that d(v, (v+C)∩C) > 0. The arguments in the proof of Proposition B.7
show that the function x 7→ d(x, (x + C) ∩ C) is positively homogeneous. Hence, by scaling, we may assume without
loss of generality that

d(v, (v + C) ∩ C) = ϵ .

Let µ ∈ C \ {0}. We set the mean reward vectors as

µ1 = 0, µ2 = µ, µi = µ− v ∀i ∈ [K] \ [2] .

Since v /∈ C ∪ (−C), it follows that P ∗ = [K] \ [1].
Let u∗ ∈ int(C) be such that

β2 =
d(u∗, (int(C))c ∩ (u∗ − C))

d(u∗, (int(C))c)
.

It can be checked that, for every a > 0, replacing u∗ with au∗ does not change the value of the above ratio; hence,
we assume that d(u∗, (int(C))c) = 1 without loss of generality (otherwise, we may take a = 1/d(u∗, (int(C))c)). By
Lemma B.8, we have

d(u∗, (int(C))c ∩ (u∗ − C)) = min
n∈[N ]

wT
nu

∗

αn
. (36)

For each t ∈ [T ], we assume that the noise vector Y i,t is either 1
4u

∗ with probability pi = 1/2 or it is − 1
4u

∗ with
probability 1 − pi, which implies that E[Y i,t] = 0. Moreover, due to the structure of this distribution, the difference
µ̂i − µi between the empirical and true means of a design i has a discrete distribution over a finite subset of the line
segment that connects − 1

4u
∗ and 1

4u
∗, hence we may write µ̂i − µi = ( p̂i

2 − 1
4 )u

∗, where p̂i is the empirical frequency
of observing Y i,t =

1
4u

∗ over all rounds t at which design i is sampled.

We proceed by choosing an arbitrary design i ∈ [K] \ [2]. Under the original problem (µj)j∈[K], we have i ∈ P ∗. Then,
we define two modified problems (µ′

j)j∈[K] and (µ′′
j )j∈[K], where µi is replaced by µ′

i and µ′′
i respectively, while other

designs’ mean reward vectors remain unchanged, i.e., µj = µ′
j = µ′′

j for each j ̸= i. The new mean reward vectors will
be formed by only changing the parameter of noise from pi to p′i and p′′i whose values will be specified later. We will
carefully set the noise direction to make the Pareto set identification problem difficult. Then, we will argue that any i /∈ P
should be in P ′, the returned set of the modified problem (µ′

j)j∈[K]. We will also argue that any i ∈ P should not be in
P ′′, the returned set of the modified problem (µ′′

j )j∈[K]. Making an analogy with the coin bias problem as in Auer et al.

(2016), we will conclude that design i needs to be sampled Ω(
β2
2

ϵ2 log 1
δ ) times in order to distinguish these cases with at

least 1− δ probability. Since the number of such designs is K − 2, this yields Ω(Kβ2
2

ϵ2 log 1
δ ) lower bound on the regret.

Case 1: Fix some i > 2 and suppose that i /∈ P . Then, Remark 4.7 implies that there exist j ∈ P and u ∈ B(0, 1) ∩ C
such that µj + ϵu ∈ µi +C. Let J(i) ⊆ P be the set of all such j. By the definition of M(i, j), we have 0 < M(i, j) ≤ ϵ

for every j ∈ J(i). In particular, ∆̃ϵ
i = ϵ.

Let us consider the modification µ′
i = µi + kϵu∗, where k > 0 is to be chosen such that i is not covered by any j ∈ P ∗

in the modified case. For such k, i will automatically be in the Pareto set of the modified case, i.e., i ∈ (P ∗)′, hence we
must have i ∈ P ′ due to Definition 4.6. To determine the desired value of k, note that the largest value of k for which i is
covered by j ∈ P ∗ in the modified case is given by

kij := sup{k ≥ 0 | ∃u ∈ B(0, 1) ∩ C : µ′
i ∈ µj + ϵu− C} ≤ max

n∈[N ]

2αn

wT
nu

∗ .

as computed in Case 4 of the proof of Theorem 5.1. Moreover, by (36) and the definition of u∗, we have

max
n∈[N ]

2αn

wT
nu

∗ =
2

d(u∗, (int(C))c ∩ (u∗ − C))
=

2

β2

1

d(u∗, (int(C))c)
=

2

β2
. (37)
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Hence, choosing any k that satisfies

k >
2

β2

does the job. For such k, we automatically have i ∈ (P ∗)′, which implies that i ∈ P ′ due to Definition 4.6.

Case 2: Fix i > 2 and suppose that i ∈ P . Let us consider the modification µ′′
i = µi − kϵu∗, where k > 0 is to be chosen

such that m′′(i, 2) ≥ 2ϵ. Hence, for such k, we have i /∈ P ′′ in the modified case thanks to Definition 4.6.

Following a similar derivation as in Case 2 of the proof of Theorem 5.1, the minimum k for which m′′(i, 2) ≥ 2ϵ is given
by

ki := inf{k ≥ 0 | ∀u ∈ B(0, 1) ∩ C : µi − kϵu∗ + 2ϵu ∈ µ2 − C} ≤ max
n∈[N ]

2ϵαn +M(i, 2)αn

ϵwT
nu

∗ .

Note that M(i, 2) = d(µ2 − µi, (µ2 − µi + C) ∩ C) = d(v, (v + C) ∩ C) = ϵ by construction. Hence,

ki ≤ max
n∈[N ]

2ϵαn + ϵαn

ϵwT
nu

∗ = max
n∈[N ]

3αn

wT
nu

∗ =
3

β2
,

where the last equality is by (37). Hence, we may simply choose k = 3
β2

and ensure that i /∈ P ′′.

B.7 Proof of Theorem 6.1

Given i, j ∈ [K], let m̂(i, j) := d(µ̂j − µ̂i, (int(C))c ∩ (µ̂j − µ̂i −C)) and M̂(i, j) := d(µ̂j − µ̂i, C ∩ (µ̂j − µ̂i +C))
represent the empirical estimates of m(i, j) and M(i, j), respectively. In the next lemma, we prove that the following
conditions in terms of the gaps are sufficient for (ϵ, δ)-PAC Pareto set identification.

Condition 1. For every i ∈ P ∗ and j ∈ [K] \ {i}, M(i, j) > ϵ implies that M̂(i, j) > 0.
Condition 2. For every i /∈ P ∗ and j ∈ P ∗, m(i, j) > ϵ implies that m̂(i, j) > 0.

Lemma B.10. If Conditions 1 and 2 hold, then P is an (ϵ, δ)-PAC Pareto set.

Proof. Assume that Condition 1 holds. To get a contradiction, suppose that property (i) in Definition 4.6 does not hold. By
Remark 4.7, this implies that there exists i ∈ P ∗ such that µi /∈ µj +(B(0, ϵ)∩C)−C for each j ∈ P . Hence, µj −µi /∈
(B(0, ϵ)∩ (−C))+C for each j ∈ P . Next, we will show that this implies M(i, j) = d(µj −µi, C ∩ (µj −µi+C)) > ϵ
for each j ∈ P .

The result follows from a more general argument. Consider x ∈ RD. Let x∗ ∈ C∩(x+C) be such that d(x, C∩(x+C)) =
d(x,x∗). Note that x∗ ∈ C ∩ (x + C) implies the existence of unit vectors u1,u2 ∈ C and scalars c1, c2 ∈ R+

such that x∗ = x + c1u1 = c2u2. Hence, we have x = c2u2 − c1u1. We claim that d(x,x∗) ≤ ϵ implies that
x ∈ (B(0, ϵ) ∩ (−C)) + C. Now assume that d(x,x∗) ≤ ϵ. Note that d(x,x∗) = c1 ≤ ϵ. It immediately follows that
x = c2u2 − c1u1 ∈ (B(0, ϵ) ∩ (−C)) + C, since −c1u1 ∈ (B(0, ϵ) ∩ (−C)) and c2u2 ∈ C. This proves our claim.
Therefore, x /∈ (B(0, ϵ) ∩ (−C)) + C implies that d(x, C ∩ (x + C)) = d(x,x∗) > ϵ. Plugging x = µj − µi to the
argument above gives the desired result.

Then, Condition 1 implies M̂(i, j) > 0 for each j ∈ P . By Corollary 4.5(iii) applied to the random partial orders ≺̂C , ⪯̂C ,
we get i⪯̸̂

C
j for each j ∈ P . Hence, we must have i ∈ P . In particular, taking j = i gives µi /∈ µi + (B(0, ϵ) ∩C)−C,

a contradiction. Hence, property (i) holds.

Assume that Condition 2 holds. Let i ∈ P \ P ∗. Then, there is no j ∈ [K] \ {i} such that i⪯̂Cj. By Corollary 4.5(iii)
applied to the random orders ≺̂C , ⪯̂C , we have m̂(i, j) = 0 for every j ∈ [K] \ {i}, hence, for every j ∈ P ∗. Then,
Condition 2 implies that m(i, j) ≤ ϵ for every j ∈ P ∗. Hence, ∆∗

i ≤ ϵ, i.e., property (ii) in Definition 4.6 holds.

For each i, j ∈ [K] with i ̸= j, let us define ∆ij = µj − µi, ∆̂ij = µ̂j − µ̂i. The next lemma shows that the following
conditions in terms of the deviation of ∆̂ij from ∆ij are sufficient for (ϵ, δ)-PAC Pareto set identification.

Condition a. For every i ∈ P ∗ and j ∈ [K] \ {i}, d(∆ij , C ∩ (∆ij + C)) > ϵ implies that ∥∆̂ij −∆ij∥2 < d(∆ij , C).
Condition b. For every i /∈ P ∗ and j ∈ P ∗, d(∆ij , (int(C))c ∩ (∆ij − C)) > ϵ implies that ∥∆̂ij − ∆ij∥2 <
d(∆ij , (int(C))c).
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Lemma B.11. If Conditions a and b hold, then P satisfies the success condition in Definition 4.6.

Proof. Assume that Condition a holds. We verify Condition 1. Let i ∈ P ∗ and j ∈ [K] \ {i} such that M(i, j) > ϵ, that
is, d(∆ij , C ∩ (∆ij + C)) > ϵ by Proposition 4.3(ii). Then, Condition a implies that ∥∆̂ij −∆ij∥2 < d(∆ij , C). Since
d(∆ij , C ∩ (∆ij + C)) > 0 and C ∩ (∆ij + C) is a closed set, we have ∆ij /∈ C ∩ (∆ij + C). Hence, ∆ij /∈ C. We
claim that ∆̂ij /∈ C. To get a contradiction, suppose that ∆̂ij ∈ C. Then, we have ∥∆̂ij −∆ij∥2 ≥ infc∈C ∥∆ij −c∥2 =

d(∆ij , C), which is a contradiction. Hence, the claim holds and we have ∆̂ij /∈ C ∩ (∆̂ij + C). By Proposition 4.3(ii),
we obtain M̂(i, j) = d(∆̂ij , C ∩ (∆̂ij + C)) > 0. Hence, Condition 1 holds.

Assume that Condition b holds. We verify Condition 2. Let i /∈ P ∗ and j ∈ P ∗ such that m(i, j) > ϵ, that
is, d(∆ij , (int(C))c ∩ (∆ij − C)) > ϵ by Proposition 4.2(ii). Then, Condition b implies that ∥∆̂ij − ∆ij∥2 <
d(∆ij , (int(C))c). Moreover, since (int(C))c ∩ (∆ij − C) is a closed set, we have ∆ij /∈ (int(C))c ∩ (∆ij − C)

and hence ∆ij ∈ int(C). We claim that ∆̂ij ∈ int(C). Supposing otherwise that ∆̂ij ∈ (int(C))c, we get
∥∆̂ij − ∆ij∥2 ≥ infc∈(int(C))c ∥∆ij − c∥2 = d(∆ij , (int(C))c), which is a contradiction. Hence, the claim holds
and we have ∆̂ij /∈ (int(C))c ∩ (∆̂ij −C). By Proposition 4.2(ii), we get m̂(i, j) = d(∆̂ij , C ∩ (∆̂ij +C)) > 0. Hence,
Condition 2 holds.

Let i, j ∈ [K] with i ̸= j. The next lemma explains how ∆̂ij concentrates around ∆ij in ℓ2 norm as a function of the
exploration parameter L. Let us introduce the constant

θij :=


d(∆ij ,C)

d(∆ij ,C∩(∆ij+C)) if ∆ij /∈ C ,
d(∆ij ,(int(C))c)

d(∆ij ,(int(C))c∩(∆ij−C)) if ∆ij ∈ int(C) ,

1 if ∆ij ∈ bd(C) .

Moreover, for a given (ϵ, δ), we define the per-design sampling budget as

g(ϵ, δ) :=
⌈4β2c2σ2

ϵ2
log

(4D
δ

)⌉
.

Lemma B.12. Suppose that L = g(ϵ, δ) noisy observations are evaluated for each design, where c > 0 is a constant.
Then, there exists a choice of c > 0 (free of all problem parameters) such that, for each i, j ∈ [K] with i ̸= j, we have
||∆̂ij −∆ij ||2 ≤ ϵθij with probability at least 1− δ.

Proof. By Jin et al. 2019, Corollary 7, there exists an absolute constant c > 0 such that, with probability at least 1− δ/2,
we have

L∥µ̂i − µi∥2 = L
∣∣∣∣∣∣∑LK

t=1 XtI(It = i)

L
− µi

∣∣∣∣∣∣
2

=
∣∣∣∣∣∣ KL∑

t=1

(Xt − µi)I(It = i)
∣∣∣∣∣∣
2
≤ c

√
Lσ2 log

(4D
δ

)
,

that is, ||µ̂i − µi||2 ≤ c
√

σ2

L log( 4Dδ ). Setting L = ⌈(4β2c2σ2/ϵ2) log(4D/δ)⌉ ensures that ||µ̂i − µi||2 ≤ ϵ/(2β) with
probability at least 1− δ/2. Applying a union bound, we obtain P{||µ̂i−µi||2 ≤ ϵ

2β , ||µ̂j −µj ||2 ≤ ϵ
2β } ≥ 1− δ. Noting

that ||∆̂ij −∆ij ||2 = ||µ̂j −µj +µi − µ̂i||2 ≤ ||µ̂i −µi||2 + ||µ̂j −µj ||2, we have P{∥∆̂ij −∆ij∥2 ≤ ϵ/β} ≥ 1− δ.
If ∆ij /∈ C, then

ϵ

β
≤ ϵ

β1
≤ ϵd(∆ij , C)

d(∆ij , C ∩ (∆ij + C))
= ϵθij ;

if ∆ij ∈ int(C), then

ϵ

β
≤ ϵ

β2
≤ ϵd(∆ij , (int(C))c)

d(∆ij , (int(C))c ∩ (∆ij − C))
;

and if ∆ij ∈ bd(C), then ϵ/β ≤ ϵ = ϵθij ; see (4) for the definitions of β1, β2. Hence, the result follows.
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After defining the lemmas that will be used in the proof, we complete the proof of Theorem 6.1 by the argument below.

With the given choice of L, by Lemma B.12, for every i, j ∈ [K] with i ̸= j, we have ||∆̂ij − ∆ij ||2 ≤ ϵθij with
probability at least 1 − 2δ/(K(K − 1)). The application of union bound shows that with probability at least 1 − δ,
||∆̂ij −∆ij ||2 ≤ ϵθij simultaneously for all i, j ∈ [K] such that i ̸= j. Under this event, we verify Conditions a and b.
Let i ∈ P ∗ and j ∈ [K] \ {i} such that d(∆ij , C ∩ (∆ij + C)) > ϵ. In particular, ∆ij /∈ C. Hence, we have

∥∆̂ij −∆ij∥2 ≤ ϵθij =
ϵd(∆ij , C)

d(∆ij , C ∩ (∆ij + C))
< d(∆ij , C) .

This shows that Condition a holds. Let i /∈ P ∗ and j ∈ P ∗ such that d(∆ij , (int(C))c ∩ (∆ij − C)) > ϵ. In particular,
∆ij ∈ int(C). Hence, we have

∥∆̂ij −∆ij∥2 ≤ ϵθij =
ϵd(∆ij , (int(C))c)

d(∆ij , (int(C))c ∩ (∆ij − C))
< d(∆ij , (int(C))c) .

This shows that Condition b holds. Therefore, by Lemma B.11, P is an (ϵ, δ)-PAC Pareto set.

When D = 1, the sample complexity of naı̈ve elimination will match the one given in Even-Dar et al. (2006). In order to
match, the analysis in Lemma B.10 and Theorem 6.1 needs to be updated. In particular, we no longer need concentration
of ∆̂ijs. Showing concentration of µ̂js will suffice.

C SUPPLEMENTAL NUMERICAL RESULTS

The following table contains additional numerical results about the experiments performed in Section 7. Code for the paper
is included as non-textual supplementary material (ZIP file).

Table 3: Additional results for experiments conducted in Section 7. θ: cone angle in degrees. SRθ: success rate (in %)
for Cθ. NF1θ: average number of designs in P ∗

θ that fail success condition (i) in Definition 4.6. NF2θ: average number of
designs in P \ P ∗

θ that fail success condition (ii) in Definition 4.6. PMθ: (|P ∗
θ \ P |/|P ∗

θ |)× 100.

L ϵ SR45 SR90 SR135 NF145 NF190 NF1135 NF245 NF290 NF2135 PM45 PM90 PM135

102 10−3 0 0 0 12.44 7.61 1.83 9.26 7.07 2.52 24.8 29.3 18.3
10−2 0 0 0 11.52 6.87 1.83 7.44 6.08 2.52 24.8 29.3 18.3
10−1 1 7 27 4.22 1.21 0.63 1.27 0.98 0.83 24.8 29.3 18.3

103 10−3 0 0 29 4.45 3.33 0.32 5.78 3.72 0.89 9.5 12.8 3.2
10−2 0 0 29 3.68 2.73 0.32 3.57 2.40 0.89 9.5 12.8 3.2
10−1 78 99 100 0.18 0.00 0.00 0.06 0.01 0.00 9.5 12.8 3.2

104 10−3 1 3 85 1.33 1.06 0.00 2.54 1.88 0.15 3.4 4.1 0
10−2 22 24 85 0.63 0.77 0.00 0.87 0.57 0.15 3.4 4.1 0
10−1 100 100 100 0.00 0.00 0.00 0.00 0.00 0.00 3.4 4.1 0

105 10−3 17 55 100 0.24 0.06 0.00 1.10 0.44 0.00 1.2 0.2 0
10−2 100 99 100 0.00 0.00 0.00 0.00 0.01 0.00 1.2 0.2 0
10−1 100 100 100 0.00 0.00 0.00 0.00 0.00 0.00 1.2 0.2 0
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