
Is interpolation benign for random forest regression?

Ludovic Arnould Claire Boyer Erwan Scornet
LPSM, Sorbonne Université LPSM, Sorbonne Université CMAP, Ecole Polytechnique

Abstract

Statistical wisdom suggests that very complex
models, interpolating training data, will be poor
at predicting unseen examples. Yet, this aphorism
has been recently challenged by the identification
of benign overfitting regimes, specially studied
in the case of parametric models: generalization
capabilities may be preserved despite model high
complexity. While it is widely known that fully-
grown decision trees interpolate and, in turn, have
bad predictive performances, the same behavior
is yet to be analyzed for Random Forests (RF). In
this paper, we study the trade-off between inter-
polation and consistency for several types of RF
algorithms. Theoretically, we prove that interpola-
tion regimes and consistency cannot be achieved
simultaneously for several non-adaptive RF. Since
adaptivity seems to be the cornerstone to bring
together interpolation and consistency, we study
interpolating Median RF which are proved to be
consistent in the interpolating regime. This is the
first result conciliating interpolation and consis-
tency for RF, highlighting that the averaging ef-
fect introduced by feature randomization is a key
mechanism, sufficient to ensure the consistency in
the interpolation regime and beyond. Numerical
experiments show that Breiman’s RF are consis-
tent while exactly interpolating, when no boot-
strap step is involved. We theoretically control
the size of the interpolation area, which converges
fast enough to zero, giving a necessary condition
for exact interpolation and consistency to occur
in conjunction.

1 Introduction

Random Forests (RF, Breiman, 2001) have proven to be
very efficient algorithms, especially on tabular data sets. As
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any machine learning (ML) algorithm, Random Forests and
Decision Trees have been analyzed and used according to
the overfitting-underfitting trade-off. Regularization param-
eters have been introduced in order to control the variance
while still reducing the bias. For instance, one can increase
the variety of the constructed trees (by playing either with
bootstrap samples or feature subsampling) or control the
tree structure (by limiting either the number of points falling
within each leaf or the maximum depth of all trees).

However, the paradigm stating that high model complex-
ity leads to bad generalization capacity has been recently
challenged: in particular, deeper and larger neural networks
still empirically exhibit high predictive performances (Good-
fellow et al., 2016). In such situations, overfitting can be
qualified as "benign": complex models, possibly leading to
interpolation of the training examples, still generalize well
on unseen data (Bartlett et al., 2021).

Regarding parametric methods, benign overfitting has been
exhibited and well understood in linear regression (Bartlett
et al., 2020; Tsigler and Bartlett, 2020; Liang et al., 2020)
and investigated in the context of neural networks (Belkin
et al., 2019a). Many researchers currently study the implicit
bias or implicit regularization of stochastic gradient (SGD)
strategies used during neural network training: the opti-
mization of an over-parametrized one-hidden-layer neural
network via SGD will converge to a minimum of minimal
norm with good generalization properties in a regression
setting (Bach and Chizat, 2021), or with maximal margin in
a classification setting (Chizat and Bach, 2020).

Regarding non-parametric methods, practitioners have no-
ticed the good performances of high-depth RFs for a long
time (by default, several ML libraries such as the popu-
lar Scikit-Learn grow trees until pure leaves are reached).
More recently, the use of interpolating (or very deep) trees
for boosting and bagging methods has been discussed by
Tang et al. (2018) and Wyner et al. (2017). While Tang
et al. (2018) criticize the relevancy of interpolating random
forests, Wyner et al. (2017) believe that the self-averaging
process at hand in RF (or in boosting methods) also pro-
duces an implicit regularization that prevents the interpolat-
ing algorithm from overfitting. Note that the regularization
properties of RF have also been studied in the light of their
complexity (Buschjäger and Morik, 2021) and tree depth
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(Zhou and Mentch, 2021). This phenomenon can be put
in parallel with the results proved in Devroye et al. (1998)
and Belkin et al. (2019b) where they show that an inter-
polating kernel method using a singular kernel (similar to
K(x) = ||x||−α1||x||≤1) is consistent, reaching minimax
convergence rate for β-Hölder regular functions. More re-
cently, Wang and Scott (2022) showed the consistency of
interpolating kernel methods, defined on Riemannian man-
ifolds, whose kernels can be written as weighted random
partition kernels on the sphere (similarly to the kernel ran-
dom forest methods defined in Section 4).

Contributions and outline In this paper, we study the trade-
off between interpolation and consistency in the context of
regression, for different types of RF:

• Centered RF (Section 3). We prove theoretically that in-
terpolation regimes and consistency cannot be achieved
simultaneously for non-adaptive centered RF . The ma-
jor problem arises from empty cells in tree partitions.
Therefore, we also study a slightly modified Centered
RF that does not take into account empty cells;

• Kernel RF (Section 4). We then study a more refined
version of the CRF, the Kernel Random Forest (KeRF),
built by averaging over all connected data points. By
neglecting empty cells, this method is consistent for
larger tree depths, but does not meet the exact interpo-
lation requirement yet;

• Median RF (Section 5). Since adaptivity seems to be
the cornerstone to conciliate interpolation and consis-
tency, we study the interpolating Median RF, which
is proved to be consistent in the exact interpolation
regime . For the first time, it is shown that the aver-
aging effect of the feature randomization inside RF
(without boostrap) is sufficient to "average the noise
out" (interpolating trees being sensitive to the noise),
i.e. to decrease the variance towards 0. The bias of
interpolating trees can be still classically controlled;

• Breiman RF (Section 6). Numerical experiments show
that Breiman RF are consistent when exactly interpo-
lating, i.e. when the whole data set is used to build
each fully-grown tree (no bootstrap). It seems that the
key randomization mechanism at work in RF is suf-
ficient to reach consistency in spite of interpolation.
Finally, we prove that the volume of the interpolation
zone (where noise sensitivity is maximum) for an in-
finite Breiman RF tends to 0 at an exponential rate in
the dimension d. This supports the idea that the decay
of the interpolation volume could be fast enough to
retrieve consistency despite interpolation.

Please refer to Figure 1 for an overview of theoretical con-
tributions. All proofs and details on numerical experiments
are given in Appendix B and C.

Figure 1: Summary of theoretical contributions.

2 Setting

Framework In a general non-parametric regression frame-
work, we assume to be given a training set Dn :=
((X1, Y1), ..., (Xn, Yn)), composed of i.i.d. copies of the
generic random variable (X,Y ), where the input X is as-
sumed throughout the paper to be uniformly distributed
over [0, 1]d, and Y ∈ R is the output. The underly-
ing model is assumed to satisfy Y = f⋆(X) + ε, where
f⋆(x) = E [Y |X = x] is the regression function and ε a
random noise satisfying, almost surely, E [ε|X] = 0 and
V[ε|X] ≤ σ2 < ∞, for some σ2 ≥ 0. Given an input x ∈
[0, 1]d, the goal is to estimate the associated response f⋆(x).
We measure the performance of an estimator fn via its
excess risk, defined as R(fn) := E

[
(fn(X)− f⋆(X))2

]
,

and its consistency property.

Definition 2.1 (Consistency). An estimator fn is consistent
when lim

n→∞
R(fn) = 0.

Estimator A Random Forest (RF) is a predictor consis-
ting of a collection of M randomized trees (see Breiman
et al., 1984, for details about decision trees). To build a
forest, we generate M ∈ N⋆ independent random variables
(Θ1, . . . ,ΘM ), distributed as a generic random variable Θ,
independent of Dn. In our setting, Θj actually represents the
successive random splitting directions and the resampling
data mechanism in the j-th tree. The predicted value at the
query point x given by the j-th tree is defined as

fn(x,Θj) =

n∑
i=1

1Xi∈An(x,Θj)Yi

Nn(x,Θj)
1Nn(x,Θj)>0 ,

where An(x,Θj) is the cell containing x and Nn(x,Θj) is
the number of points falling into An(x,Θj). The (finite)
forest estimate then results from the aggregation of M trees:

fM,n(x,ΘM ) =
1

M

M∑
m=1

fn(x,Θm) ,

where ΘM := (Θ1, ...,ΘM ). By letting M tending to infin-
ity, we can consider the infinite forest estimate, f∞,n(x) =
EΘ[fn(x,Θ)], which has also played an important role in
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the theoretical understanding of random forests (see Scornet,
2016a, for more details). Here, EΘ denotes the expectation
w.r.t. Θ, conditional on Dn.

Several random forests have been proposed depending on
the type of randomness they contain (what Θ represents)
and the type of decision trees they aggregate. Breiman forest
is one of the most widely used RF, which exhibits excel-
lent predictive performances. Unfortunately, its behavior
is difficult to theoretically analyze, because of the numer-
ous complex mechanisms involved in the predictive process
(data resampling, data-dependent splits, split randomiza-
tion). Therefore, in this paper, we simultaneously study the
consistency and interpolation properties of different simpli-
fied versions of RF, both adaptive (i.e. when trees are built
in a data-dependent manner) and non-adaptive.

All forests include a depth parameter, denoted kn, which
limits the maximum length of each branch in a tree, thus
limiting the number of leaves (up to 2kn). In this work,
we analyze how the tuning of kn allows us to adjust the
consistency and interpolation characteristics of the forest.
The classical notion of (exact) interpolation is defined below.
Definition 2.2 ((Exact) interpolation). An estimator fn is
said to interpolate if for all training data (Xi, Yi), we have
fn(Xi) = Yi almost surely.

Recall that the prediction of a single tree at a point x is
given by the average of all Yi such that Xi is contained in
the leaf of x. Therefore, each tree within a forest can be
parameterized in order to interpolate: it is sufficient to grow
the tree until pure leaves (i.e. leaves containing labels of
the same values) are reached. In any regression model with
continuous random noise, we have Yi ̸= Yj for all i ̸= j
almost surely. Therefore, an interpolating tree is a tree that
contains at most one point per leaf.

As the final prediction of the random forest is made by
averaging the predictions of all its trees, if all trees interpo-
late, the random forest interpolates as well. Consequently,
throughout all the theoretical analysis, we consider RF built
without sub-sampling: each tree is built using the whole
dataset instead of bootstrap samples as in standard RF. We
will discuss the empirical effect of bootstrap in Section 6.
Remark 2.3. In a classification setting, it is possible to obtain
pure leaves with more than one point per cell (see Mentch
and Zhou (2020) for more details).

3 Centered RF

We start our analysis of interpolation and consistency of
RF with the simple yet widely studied Centered Random
Forest (CRF, see Biau, 2012). CRF are ensemble methods
said to be non-adaptive since trees are built independently
of the data: at each step of a centered tree construction, a
feature is uniformly chosen among all possible d features
and the split along the chosen feature is made at the center

of the current cell. Then, the trees are aggregated to produce
a CRF. Although simpler, the study of the mechanisms at
hand in non-adaptive RF already provides good insights
about the inner behaviour of more general RF.

3.1 Interpolation in CRF

Lemma 3.1. The CRF fCRF
M,n interpolates if and only if all

trees that form the CRF interpolate.

Since CRF construction is non-adaptive, it is impossible to
enforce exactly one observation per leaf. Hence trees do
not interpolate and in turn, the interpolation regime (De-
finition 2.2) cannot be satisfied for CRF. This leads us to
examine a weaker notion of interpolation in probability.
Proposition 3.2 (Probability of interpolation for a centered
tree). Denote IT the event “a centered tree of depth kn
interpolates the training data". Then, for all n ≥ 3, fixing
kn = ⌊log2(αnn)⌋, with αn ∈ N \ {0, 1}, one has

e−
n

αn−1 ≤ P (IT ) ≤ e−
n

2(αn+1) .

According to Proposition 3.2, the probability that a tree
interpolates tends to one if and only if kn = ⌊log2(αnn)⌋
with αn = ω(n)1. Consequently, the regime αn = ω(n)
completely characterizes the interpolation of a centered tree.

Proposition 3.2 can be in turn used to control the interpola-
tion probability of a centered RF.
Corollary 3.3 (Probability of interpolation for a CRF). We
denote by IF the event “a centered forest fCRF

M,n (.,ΘM )
interpolates". Then, for kn = ⌊log2(αnn)⌋ with αn ≥ 1,

P (IF ) ≤ e−
n

2(αn+1) . (1)

Therefore, the condition αn = ω(n) (corresponding to the
interpolation of a single centered tree with high probability)
is necessary to ensure that w.h.p., the RF interpolates. Our
analysis stresses that a tree depth of at least kn = 2 log2(n)
is required to obtain tree/forest interpolation.

In fact, choosing kn of the order of log2(n) characterizes
another type of interpolation regime. To see this, con-
sider a centered tree of depth k, whose leaves are denoted
L1, . . . , L2k . The number of points falling into the leaf Li

is denoted Nn(Li). Since X is uniformly distributed over
[0, 1]d, then, for all i = 1, . . . , 2k,

P (X ∈ Li) =
1

2k
and E [Nn(Li)] =

n

2k
. (2)

Definition 3.4 (Mean interpolation regime). A CRF fCRF
M,n

satisfies the mean interpolation regime when each tree of
fM,n has at least n leaves, i.e. if and only if kn ≥ log2 n.

By Equation (2), the mean interpolation regime implies that
for all leaves Li, E [Nn(Li)] ≤ 1: one could say that trees
interpolate in expectation, in the mean interpolation regime.

1i.e. αn asymptotically dominates n.
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3.2 Inconsistency of the standard CRF

In both interpolation regimes (mean and in probability),
trees need to be very deep, with a growing number of empty
cells as n tends to infinity, eventually damaging the consis-
tency of the overall CRF.

Proposition 3.5. Suppose that E
[
f⋆(X)2

]
> 0 and set

α > 0. Then the infinite Centered Random Forest fCRF
∞,n of

depth kn ≥ log2 αn is inconsistent.

Proposition 3.5 emphasizes the poor generalization capac-
ities of the interpolating CRF (under any interpolating
regime), which could be expected given its non-adaptive
construction. Indeed, the non-consistency of the CRF stems
from the fact that the probability for a random point X to
fall in an empty cell does not converge to zero, introducing
an irreducible bias in the excess risk.

3.3 Consistency of void-free CRF under the mean
interpolation regime

Since limiting the impact of empty cells seems crucial for
consistency, we study a CRF that averages over non-empty
cells only, which we call the Void-Free CRF. Note that
predictions in empty leaves are arbitrary set to 0. Denoting
Λn(x,ΘM ) the number of non-empty leaves containing x
in the forest with trees Θ1, . . . ,ΘM , the void-free CRF is
written as

fVF
M,n(x,ΘM ) =

∑M
m=1 fn(x,Θm)1Nn(x,Θm)>0

Λn(x,ΘM )
.

The problematic terms that arise in the theoretical deriva-
tions of classical CRF vs. void-free CRF are of different
natures: the probability P (Nn(X,ΘM ) = 0) of falling into
an empty leaf in a random tree of an (infinite) CRF compared
to the probability P [∀m ∈ {1, . . . ,M}, Nn(X,Θm) = 0]
of falling into empty leaves in all trees in the (infinite) CRF.
Lemma 3.6 below controls this last term.

Lemma 3.6. Consider a finite void-free CRF fVF
M,n(·,ΘM )

of depth k ∈ N. Let x ∈ [0, 1]d and denote EM,n(x) the
event “for all m ∈ {1, . . . ,M}, Nn(x,Θm) = 0”. Then,

P (EM,n(x)) ≤ e−
kn

2k+1 + e−Md−k

. (3)

Consequently, if k = ⌊log2(n)⌋ and Mn = ω(nlog2 d), then
lim
n→∞

P (EMn,n(x)) = 0.

As previously, the infinite void-free CRF is defined as
fVF
∞,n(x) = EΘ [fn(x,Θ)|Nn(x,Θ) > 0].

Theorem 3.7. Assume that f⋆ has bounded partial deriva-
tives. Then, the infinite void-free-CRF of depth k =
⌊log2 n⌋ is consistent in a noiseless setting (σ = 0), and,
for all n > 1,

R
(
fVF
∞,n(X)

)
≤Cd

(
n

log2 n

)2 log2(1− 1
2d )

+ (Cd + 2)n−1/(2 ln 2),

where Cd = 4d
(∑d

j=1 ||∂f⋆
j ||2∞

)
.

The overall rate is of order O
(
n2 log(1−1/2d)

)
which is a

typical approximation rate for CRF, see Klusowski (2021).
As a matter of fact, Theorem 3.7 highlights that empty cells
do not limit the performance of the void-free-CRF in the
mean interpolation regime.

However, this construction introduces a conditioning over
Nn(x,Θ) > 0 that prevents us from bounding the variance
in the case of noisy samples. Therefore, in the next section,
we analyze Centered Kernel RF (KeRF) with a different
aggregation rule (empty cells still being neglected).

4 Centered kernel RF

As formalized in Geurts et al. (2006) and developed in Arlot
and Genuer (2014), slightly modifying the aggregation rule
of tree estimates provides a kernel-type estimator. Instead of
averaging the predictions of all centered trees, the construc-
tion of a Kernel RF (KeRF) is performed by growing all
centered trees and then averaging along all points contained
in the leaves in which x falls, i.e.

fKeRF
M,n (x,ΘM ) :=

∑n
i=1 Yi

∑M
m=1 1Xi∈An(x,Θm)∑n

i=1

∑M
m=1 1Xi∈An(x,Θm)

.

One of the benefits of this construction is to limit the in-
fluence of empty cells, which can be harmful both for con-
sistency and interpolation (see Section 3). As earlier, the
infinite KeRF is defined as,

fKeRF
∞,n (x) =

∑n
i=1 YiKn(x,Xi)∑n
i=1 Kn(x,Xi)

,

where Kn(x, z) = PΘ [z ∈ An(x,Θ)] is the probability
that x and z are in the same cell w.r.t. a tree built according
to Θ (see Scornet, 2016b, for details).

Interpolation conditions Since KeRF aggregates cen-
tered trees as CRF (but in a different way), the results of
Section 3 can be extended to KeRF: (i) the mean interpola-
tion regime is met for centered trees (hence for KeRF) when
kn ≥ log2 n; (ii) a necessary condition to attain the KeRF
interpolation in probability is kn > 2 log2(n). One can note
that the depths required for both interpolation regimes are
still large, leading to as many empty cells for KeRF as for
classical CRF but the aggregation rule is such that they are
not taken into account in KeRF predictions, which gives
hope that consistency could be preserved.
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Consistency We study the convergence of the centered
KeRF under the mean interpolation regime. To this end, we
consider extra hypotheses on the noise and on the regularity
of f⋆.

Theorem 4.1. Assume that f⋆ is Lipschitz continuous and
that the additive noise ε is a centered Gaussian variable
independent from X with finite variance σ2. Then, the
risk of the infinite centered KeRF of depth kn = ⌊log2(n)⌋
verifies, for all d > 5, for all n large enough,

R(fKeRF
∞,n ) ≤ 8L2d2n2 log2(1− 1

d )

+ Cd(log2 n)
− d−5

6 (log2(log2 n))
d/3,

where Cd > 0 is a constant dependent on σ2 and made
explicit in the proof.

Theorem 4.1 states that the infinite centered KeRF estimator
is consistent as soon as d > 5, with a slow convergence
rate of log(n)−(d−5)/6. The proof is based on the general
paradigm of bias-variance trade-off and is adapted from
Scornet (2016b). At first sight, one might think that the rate
becomes better as the dimension d increases. However, the
constant term highly depends on the dimension, so that the
established bound should be regarded for a fixed d.

Choosing kn = ⌊log2(n)⌋ in Theorem 4.1 allows us to have
a mean interpolation regime concomitant with consistency
for KeRF, therefore highlighting that consistency and mean
interpolation are compatible. This is not the case for CRF for
which the mean interpolation regime forbids convergence
(Proposition 3.5). If a “mean” overfitting regime is benign
for the consistency of KeRF, it seems to be nonetheless
malignant for the convergence rate. Indeed, Lin and Jeon
(2006) provides a lower bound on the convergence rate
of a deep non-adaptive RF (such as the CRF), scaling in
(log n)−(d−1). This leads us to believe that the convergence
rate we obtain in Theorem 4.1 is marginally improvable.

Interpolation of kernel estimators has been recently stud-
ied with singular kernel by Belkin et al. (2019b). Since
KeRF are kernel estimators, one can wonder how sharp
is our bound (Theorem 4.1) compared to that of Belkin
et al. (2019b), which is minimax. Due to the spikiness of
the singular kernel studied in Belkin et al. (2019b), inter-
polation arises for any kernel bandwidth. The latter can
be then tuned to reach minimax rates of consistency. The
story is totally different for KeRF since interpolation occurs
only for specific tree depths kn ≥ log(n) (where the depth
parameter is closely related to the bandwidth of classical
kernel estimates). Less latitude for choosing the depth then
leads to sub-optimal rates of consistency (see Theorem 4.1).
Of course, a better rate of consistency in O(n1/(3+d log 2))
could be obtained as in Scornet (2016b) when optimizing
this depth parameter, but leaving the interpolation world.

We numerically assess the performance of KeRF in the mean

interpolation regime (see Appendix C).

5 Semi-Adaptive RF: Median RF

So far, consistency has been analyzed in the mean inter-
polation regime. What about consistency with exact RF
interpolation? To analyze this phenomenon, we thus intro-
duce semi-adaptive RF, Median RF, whose constructions
depend on the training inputs Xi’s (and not on the outputs
Yi’s).

The Median RF, studied e.g. in Duroux and Scornet (2018);
Klusowski (2021), is composed of median trees that first
randomly choose the direction to cut over and then cut at
the median of the data points contained in the current cells.
In our analysis, for any cell containing nc observations, the
median is set as the middle of the segment of two consec-
utive order statistics: X(nc/2) and X(nc/2+1) for an even
number of observations, X(nc−1

2 ) and X(nc+1
2 ) otherwise.

5.1 Consistency

In order to obtain consistency for an adaptive RF, one needs
to control two terms: the bias and the variance terms. On
the one hand, the bias is roughly controlled by the diameter
of the leaf times the supremum of the derivatives of f⋆ in
the leaf. In the interpolating regime, the depth is maximum
so the diameter of the leaf is minimum and therefore the
bias is smoothly upper bounded.

On the other hand, a "low" depth regime is usually required
to control the variance term, so that each leaf of each tree
contains an infinite number of points when n tends to +∞.
This directly "averages the noise out" and decreases the
variance towards 0 within each tree. However, in the inter-
polating case, each leaf contains only one point and we can
only rely on the averaging effect of the RF, induced by the
random splitting mechanism, to upper bound the variance.
Studying the effect of the random splitting mechanism in full
generality remains challenging. However, as increasing the
dimension also increases the diversity of the trees within the
RF, it should naturally be easier to control the variance of an
interpolating Median RF in an asymptotic high-dimensional
setting, as we prove and discuss in Appendix B.5.1.

The following theorem establishes the consistency of the
interpolating Median RF in the general setting of noisy data
and fixed input dimension.

Theorem 5.1. Suppose that f⋆ has bounded partial deriva-
tives and that n is a power of two. Then, the infinite interpo-
lating Median RF fMedRF

∞,n is consistent and verifies:

R
(
fMedRF
∞,n

)
≤ C1d

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d(log2 n)
−(d−1)/2,
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where C1 and C2,d are explicit constants, the former being
independent of the dimension d (see the proof for the exact
computations).

The control of the bias term follows the general approach
used in Duroux and Scornet (2018) with substantial tech-
nical refinements. On the other hand, we propose a more
general approach for the control of the variance inspired
by Biau (2012); Klusowski (2021), where we derive ex-
plicit bounds specifically designed for Median RF. Note
that the consistency achieved by Median RF cannot be ob-
tained for CRF under the interpolation regime due to the
non-negligible probability of falling into empty cells (see
Proposition 3.2).

Theorem 5.1 is the first result ensuring consistency of RF
despite exact interpolation. It is even more impressive con-
sidering that bootstrap is off so that the averaging process in
the RF is only due to feature subsampling. More specifically,
when dealing with interpolating trees, the variance reduc-
tion does not come from averaging many points in the leaf
of a given tree anymore (since the tree depth is no longer
limited), but results from averaging single points from the
leaves of different trees.

If interpolation remains compatible with consistency in the
case of Median RF, it nevertheless damages the convergence
rate. Indeed, it has been proved that, for all α small enough,
the convergence rate of Median RF with trees of depth
k = (1− α) log2(n) is n−α (see Theorem 3 in Klusowski,
2021). In the case of interpolating Median RF, Theorem 5.1
highlights a phase transition when k = log2(n), as the
convergence rate is driven by the variance term, which is of
order (log2 n)

−(d−1)/2. While being very slow, this rate is
close to the lower bound (log2 n)

−(d−1) established for non-
adaptive interpolating RF (Lin and Jeon, 2006). Actually, by
assuming log2(n) ≥ d, our proof can be directly modified
so that our upper bound matches the lower bound of Lin and
Jeon (2006) (using the second statement of Lemma S.1 in
Klusowski, 2021, instead of the first one).

Note that Theorem 5.1 does not contradict Proposition 1 in
Tang et al. (2018), as the condition therein is not proved to be
satisfied for interpolating median RF (nor for interpolating
CRF).

We also provide numerical experiments (resp. Section 5.2
and C.1.2) that illustrate the consistency of the interpolating
Median RF.

5.2 Volume of the interpolation area

In this section, we aim at quantifying the volume of the
interpolation area of a Median RF, which is a prerequisite
for the RF consistency. To pursue our analysis, we first give
a rigorous definition of the interpolation area.
Definition 5.2. The interpolation area is the subspace of
[0, 1]d where the forest prediction depends only on one train-

ing point. For a given forest fM,n(.,ΘM ), the interpolation
area is denoted by2

A(fM,n(.,ΘM ))

=

{
x ∈ [0, 1]d,∃!Xi ∈ Dn, Xi ∈

M⋂
m=1

An(x,Θm)

}
.

The interpolation zone is highly dependent on both the ge-
ometry of the training points Xi’s and the construction of
the trees. Analyzing the interpolation area for a finite Me-
dian RF turns out to be quite a challenging task. Therefore,
we focus our study on the core interpolation area Amin

written as

Amin =
⋂

M∈N,ΘM

A(fM,n(.,ΘM )).

The area Amin is the intersection of the interpolation zones
of all possible forests, or equivalently of a forest containing
all possible trees (and therefore all possible cuts). As an
example note that in the case of median trees, every cut
may occur with a positive probability. Therefore, Amin

matches the volume of the interpolation area of an infinite
Median RF. In the following proposition, we control the
Lebesgue measure (denoted by µ) of the core interpolation
area AMedRF

min of an infinite Median RF.

Proposition 5.3. For all n ≥ 2, for all d ≥ 2, consider an
infinite Median RF. Then,

EDn

[
µ(AMedRF

min )
]
≤ 2

(
2

n

)d−1

.

The volume of the core interpolation area of an infinite
Median RF tends to 0 polynomially in n and exponentially
in d.
Remark 5.4. Apart from a very restricted zone, the predic-
tion of a Median RF mostly relies on more than one training
point. More specifically, this is a necessary condition for
consistency: the volume of the area where the prediction
involves only a finite number of points (a fortiori the inter-
polation zone) should tend to 0. Indeed, by decomposing
the risk as R(fn(X)1X∈AMedRF

min
)+R(fn(X)1X/∈AMedRF

min
),

the first term is at least of the order σ2µ(AMedRF
min ). There-

fore, it is not possible to cancel out the noise of the training
dataset when only a finite number of points is used for the
prediction. The noise in such an area remains of order σ2.
Proposition 5.3 portends the predominant self-averaging
property of adaptive RF, and hence underpins the idea of
good capabilities of Median RF in interpolation regimes.

2the symbol ∃! means “there exists a unique”.
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6 Breiman RF

The widely-used Breiman RF is composed of several CART
(Breiman et al., 1984), each one trained on a bootstrap sam-
ple, and for which the successive splitting directions and
thresholds are chosen at each step (among a random sub-
set of directions) in order to minimize the CART criterion.
Breiman RF exhibit excellent predictive performance even
if their adaptivity to the data remains a real hurdle to their
theoretical analysis.

From the interpolation perspective, each CART being
trained on a bootstrap sample, the RF interpolation is not
ensured when considering fully-grown trees. Indeed, a tree
cannot interpolate a point that is not chosen in the bootstrap
step. For this reason, we focus our study on the volume
of interpolation areas for Breiman RF without bootstrap
and then analyze their empirical behavior in interpolating
regimes through a battery of numerical experiments.

Interpolation As a Breiman RF is built using both the
Xi’s and the Yi’s, it is difficult to determine the depth neces-
sary to reach the interpolation state. Depending on the data,
the latter can be of the order k ≈ log2(n) in the best case,
if each cut creates approximately two groups of the same
size), or k ≈ n in the worst case, if only one point is sepa-
rated from the others at each step (low signal-to-noise ratios
situations, see e.g., Ishwaran, 2015). Note that by omitting
the bootstrap in the RF construction, the interpolation of
Breiman RF directly results from aggregating fully-grown
trees.

Volume of the interpolation zone As shown in the next
proposition, the volume of the core interpolation area of
Breiman RF tends to 0 as n tends to infinity.

Proposition 6.1. Consider an infinite Breiman forest con-
structed without bootstrap. Suppose that for a given con-
figuration of the training data, all cuts have a probability
strictly greater than 0 to appear. Then, the volume of the
minimal interpolation zone verifies

E [µ(Amin)] ≤
1

nd−1

(
1− 2−n

)d
.

Similarly to the Median RF, the bound on the interpolation
volume for a Breiman forest enjoys the same order of de-
cay, improved by a constant exponential in the dimension.
Since predictions cannot be accurate in the interpolation
area in a noisy setting, it is necessary that the volume of this
area decreases to zero in order to ensure the RF consistency
(see Remark 5.4). Proposition 6.1 therefore suggests the
good generalization properties of Breiman RF in interpola-
tion regimes, as several training points are mostly used for
prediction.

Setting the number of eligible features for splitting to 1 is
sufficient to ensure the hypothesis on cuts in Proposition

6.1: one can obtain a tree in which all splits are performed
along a single direction. This is a minor modification to
the original algorithm, easy to implement since most ML
libraries have a “max-feature" (as scikit-learn in Python) or
“mtry" (in R) parameter that can be set to 1.

In Appendix C, we numerically evaluate the volume of the
interpolation zone and compare it to the theoretical bounds
in Proposition 6.1.

Empirical study of consistency We now present an em-
pirical study of Breiman RF consistency in interpolation
regimes. In the theoretical analysis, we have focused on a
specific type of Breiman RF (without bootstrap and a max-
features parameter equal to 1). We now examine the char-
acteristics of Breiman forests with their default parameters
and study the regularization processes that limit the noise
sensitivity in the interpolation regime. In order to reach a
better estimation of the regression function, Breiman RF
average several CARTs while introducing randomness in
the construction of each tree to diversify them. The first ran-
domization comes from the bootstrap: each tree is trained
on a bootstrap sample (selecting n observations out of the
n original ones, with replacement). The other randomiza-
tion results from a random selection of splitting directions:
at each node, a subset of {1, . . . , d} of size max-features
is randomly selected and the CART criterion is optimized
along these directions only (setting max-features to 1 pro-
vides the maximum diversity whereas setting it to d results
in the construction of a unique tree).

The benefit of these two aspects in the construction of the
Breiman RF is numerically analyzed when using interpolat-
ing Breiman trees. In Figure 2, we measure the excess risk
of two RFs with 2000 trees and max-depth= None, where
for the first one, bootstrap is used and the max-features
parameter is set to 1, whereas the second one excludes boot-
strap and sets the max-features parameter to ⌈d/3⌉ (default
value in randomForest in R).
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Figure 2: Consistency of two Breiman RF: excess risk w.r.t.
sample size n. Mean over 10 tries (bold lines) and mean ±
std (filled zone), when using 2000 trees per forest, and max-
depth=None. See Appendix C for the model definitions.
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In Figure 2, we observe that the excess risk decreases to 0
for all models and for both forests. Indeed, each randomiz-
ing process alone induces enough diversity across trees for
the self-averaging property to be efficient, resulting in the
consistency of the overall forests (see also Scornet, 2016a;
Mentch and Zhou, 2020; Mourtada et al., 2020, for insights
about tree diversity in random forests).

However, when using bootstrap, consistency comes at the
cost of leaving the interpolation regime, as only 2/3 of the
data are used in average to build each tree (see Figures
18, 19 in Section C.2.3 for more details about the forest
non-interpolation). In regards of this internal sampling se-
lection, the aggregation of interpolating bagged trees results
in smoothing the decision process of the entire forest, pro-
viding thereby a consistent but not interpolating estimate.

In turn, Breiman RF built with max-features= ⌈d/3⌉
seems consistent while preserving its interpolating behavior.
Within this configuration, the final RF still interpolates the
data but the volume of the interpolation zone is very small
as shown in Figure 16. This is in line with the vision of
a locally spiky estimator developed in Wyner et al. (2017)
and Bartlett et al. (2021). Indeed, the influence of the av-
eraging effect is locally null near the data training points,
but increases with the distance from these points. Note that
bootstrap and feature subsampling act differently. Bootstrap
smoothens predictions by averaging different observations,
even at points of the training set, which leads to an empty
interpolation area. On the other hand, feature subsampling
increases tree partition diversity, which reduces but does not
annihilate the interpolation area of the overall forest.
Remark 6.2. One of the advantage of using deep (interpolat-
ing) trees is that it allows the RF to build more diversified
trees. Indeed, the number of possible trees roughly grows
exponentially with regard to the depth (also depending on
n, d and the max-features parameter). Especially when
max-features is low, this should improve the averaging
effect of the RF which is of particular interest when dealing
with noisy data.

In this regard, Breiman RF with max-features= ⌈d/3⌉ are
similar to interpolating spiky non-singular kernel methods,
as studied in Belkin et al. (2019b), except for the leeway
allowed for the hyperparameters tuning. Indeed, as under-
lined for non-adaptive centered forests, the depth kn (i.e. the
tuned parameter) is constrained to a strict range to ensure
both consistency and interpolation. This is not the case for
singular kernel methods, as they interpolate regardless of
the window parameter value.

7 Conclusion

In this paper, we study both empirically and theoretically the
tradeoff between interpolation and consistency of different
types of random forests: when dealing with non-adaptive RF

(CRF), empty cells prevent consistency; so that aggregating
only non-empty leaves (void-free CRF) leads to convergence
rates, only in a noiseless scenario. In a noisy setting, the
kernel RF aggregates leaves differently (also avoiding empty
ones). For kernel RF, we establish a (slow) consistency rate
in the mean interpolation regime. We then study semi-
adaptive RF that are closer to those used in practice and that
present the advantage of being able to exactly interpolate
the training data. The convergence of the median RF in the
exact interpolation regime is established, showing the power
of such architecture (even when used without bootstrap).
Our study also shows that a prerequisite for consistency
is that the minimal interpolation zone tends to zero as n
tends to infinity. We theoretically analyze this quantity for
median and Breiman forests, emphasizing that interpolation
might occur in conjunction with consistency if the volume
of such areas vanishes fast enough. An experimental study
supports the concomitance of consistency and interpolation
in Breiman RF, when no bootstrap step is involved.

Contrary to Nadaraya-Watson methods involving singular
kernels that interpolate regardless of the bandwidth param-
eter, RF interpolate only for a specific choice of the depth,
thus restricting the regime in which interpolation and con-
sistency occur in concordance. Overall, most simple RF
versions were relevant to study RF consistency when the
tree depth was limited but are not actually sufficient to han-
dle deeper trees corresponding to interpolation regimes. For
adaptive forests, increasing the tree depth towards the inter-
polation regime results in a reduced bias, and the variance
reduction phenomenon only results from the split randomiza-
tion effect. The higher the dimension, the more diversified
the trees, the stronger the averaging effect and the vari-
ance reduction. Analyzing the strength of this phenomenon,
which highly depends on the very shape of tree partitions, is
the cornerstone to prove the consistency of adaptive RF in
a general regression setting. We believe that interpolation
remains benign for the consistency of adaptive RF, but can
damage their convergence rate (this was the case for KeRF
in the mean interpolation regime and for Median RF in the
exact interpolation regime), at least when bootstrap is not
used.

The analysis of the interpolation zone of RF introduced in
this article is an important tool for the understanding of
RF prediction in interpolation regimes. Indeed the volume
of the interpolation area is actually a roundabout way to
measure the diversity in the constructed trees: if this volume
is high, all trees end up building similar partitions. This
diversity measure could also be used as a regularization
tool to reduce the RF complexity by keeping only the most
uncorrelated trees (in terms of partition) in a PCA fashion.
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A Summary of contributions

Figure 3: Summary of theoretical contributions

B Proofs

B.1 Reminders and notations

Tree and RF estimator: We recall the prediction of the given by the j-th tree of the RF at point x:

fn(x,Θj) =

n∑
i=1

1Xi∈An(x,Θj)Yi

Nn(x,Θj)
1Nn(x,Θj)>0 ,

where An(x,Θj) is the cell containing x and Nn(x,Θj) is the number of points falling into An(x,Θj). It is also written as
follows:

fn(x,Θj) =

n∑
i=1

Wni(x,Θj)Yi,

where Wni(x,Θj) =
1Xi∈An(x,Θj)

Nn(x,Θj)
1Nn(x,Θj)>0. The (finite) forest estimate then results from the aggregation of M trees:

fM,n(x,ΘM ) =
1

M

M∑
m=1

fn(x,Θm) ,

where ΘM := (Θ1, ...,ΘM ).
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B.2 Proofs of Section 3 (Centered RF)

B.2.1 Proof of Lemma 3.1 (Link between tree and forest interpolation)

First, it is clear that if all trees of a forest interpolate, the forest interpolates. Now, suppose that the forest fCRF
M,n interpolates

a training point Xs, s ∈ {1, . . . , n}. Then, by definition of fCRF
M,n ,

fCRF
M,n (Xs,ΘM ) =

1

M

M∑
j=1

n∑
i=1

YiWni(Xs,Θj)

=

n∑
i=1

Yi

 1

M

M∑
j=1

Wni(Xs,Θj)


= Ys,

where Wni(Xs,Θj) :=
1Xi∈An(Xs,Θj)

Nn(Xs,Θj)
1Nn(Xs,Θj)>0. Consequently,

fCRF
M,n (Xs,ΘM ) = Ys (4)

⇐⇒ Ys

 1

M

M∑
j=1

Wns(Xs,Θj)− 1

+
∑
i ̸=s

Yi

 1

M

M∑
j=1

Wni(Xs,Θj)

 = 0. (5)

For (5) to hold almost surely, it is necessary that it holds conditional on X1, . . . , Xn,Θ1, . . . ,ΘM . Since, for all j ∈
{1, . . . ,M}, the terms Wni(Xs,Θj) are measurable with respect to X1, . . . , Xn,Θ1, . . . ,ΘM and Ys is independent of
(Yi, i ̸= s) given X1, . . . , Xn,Θ1, . . . ,ΘM , equality (5) leads to, for all i ̸= s,

1

M

M∑
j=1

Wns(Xs,Θj) = 1, and
1

M

M∑
j=1

Wni(Xs,Θj) = 0. (6)

Since all weights Wni(X,Θ) take values in [0, 1], we have, for all j ∈ {1, . . . ,M} and for all i ̸= s

Wns(Xs,Θj) = 1 and Wni(Xs,Θj) = 0. (7)

Finally, for all j ∈ {1, . . . ,M}, the prediction of the jth tree at Xs is given by

fCRF
n (Xs,Θj) =

n∑
i=1

Wni(Xs,Θj)Yi (8)

= Ys, (9)

and therefore all trees of the forest interpolate the point Xs.

B.2.2 Proof of Proposition 3.2 (Probability of interpolation for a centered tree)

As all the leaves have the same volume and the data points are independent and uniformly distributed, having at most one
point per leaf is equivalent to distribute n balls into 2k boxes containing at most one point with 2k ≥ n as can be seen on
Figure 4. Recalling that IT is the event “a centered tree of depth kn interpolates the training data", we have

P (IT ) =
(
2k

n

)(
n+2k−1

n

)
=

2k!

(2k − n)!n!

n!(2k − 1)!

(n+ 2k − 1)!

=
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k
.
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Figure 4: Computing the interpolation probability (depth k = 3, n = 6)

If we have k = log2(αnn) ∈ N, we have

P (IT ) =
αnn

(αn + 1)n− 1
· αnn− 1

(αn + 1)n− 2
. . .

(αn − 1)n+ 1

αnn
.

In the general case where k = ⌊log2(αnn)⌋, that is αnn/2 ≤ 2k ≤ αnn, we can lower bound the probability of the event
IT as

P (IT ) =
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k

≥
(
2k − n+ 1

2k + n− 1

)n

≥
(
2k − n

2k + n

)n

≥ exp

(
n log

(
2k − n

2k + n

))
≥ exp

(
n log

(
1− 2n

2k + n

))
≥ exp

(
−n

(
2

2k

n − 1

))

≥ exp

(
−
(

4n

αn − 2

))

since log(1− x) ≥ −x/(1− x) and provided that αn > 2 for the last inequality. To upper bound the probability, note that,
for all r ∈ {1, . . . , ⌊n/2⌋}

2k − n+ r

2k + n− r
≤

2k − n+ n
2

2k + n− n
2 − 1

≤
2k − n

2

2k + n
2 − 1

,

and, for all r ∈ {1, ..., n},

2k − n+ r

2k + n− r
≤ 1.
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Therefore, one can also upper bound the probability as

P (IT ) =
2k × (2k − 1)× . . .× (2k − n+ 1)

(2k + n− 1)× (2k + n− 2)× . . . 2k

≤

(
2k − n

2

2k + n
2 − 1

)⌊n/2⌋

≤ exp

(⌊n
2

⌋
log

(
1− n− 1

2k + n
2 − 1

))
≤ exp

(
−
⌊n
2

⌋( n
2

2k + n
2 − 1

))
≤ exp

(
−
⌊n
2

⌋( 1
2

2k

n + 1
2

))

≤ exp

(
−
⌊n
2

⌋( 1

2αn + 1

))
,

for all n ≥ 2. Finally, for all n ≥ 2, and for all αn > 2,

exp

(
− 4n

αn − 2

)
≤ P (IT ) ≤ exp

(
−
⌊n
2

⌋( 1

2αn + 1

))
.

B.2.3 Proof of Corollary 3.3 (Probability of interpolation for a CRF)

As it is necessary for all trees to interpolation for the forest to interpolate, the probability that the forest interpolates is
smaller than the probability that a single tree interpolates.

B.2.4 Proof of Proposition 3.5 (CRF inconsistency)

Let fCRF
∞,n be an infinite CRF with each tree of depth kn ≥ log2(αnn), that is each tree has at least αnn leaves, with

αnn > 1. Let X be uniformly distributed on [0, 1]d. We write f̄CRF
n,∞ (X) = E

[
fCRF
∞,n (X)|X,X1, ..., Xn

]
. Then, denoting

E the event "Nn,∞(X) = 0" (or equivalently, "X falls into a non-empty leaf"),

R(fCRF
∞,n (X)) = E

[(
fCRF
∞,n (X)− f⋆(X)

)2]
(10)

≥ E
[(
f̄CRF
n,∞ (X)− f⋆(X)

)2]
(11)

= E

( n∑
i=1

EΘ [Wni(X,Θ)f⋆(Xi)]− (1E + 1Ec) f⋆(X)

)2
 (12)

= E

(1Ec

n∑
i=1

EΘ [Wni(X,Θ) (f⋆(Xi)− f⋆(X))]− 1Ef⋆(X)

)2
 (13)

≥ E
[
f⋆(X)21E

]
(14)

≥ E
[
f⋆(X)2P (E|X)

]
. (15)

Besides,

P (E|X) = P (Nn,∞(X) = 0|X) (16)

≥
(
1− 1

αnn

)n

, (17)

and as log(1− 1/x) ≥ − 1
x−1 for x > 1, (

1− 1

αnn

)n

= en log(1− 1
αnn ) (18)

≥ e−
n

αnn−1 . (19)
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Thus,

R(fCRF
∞,n (X)) ≥ e−

n
αnn−1E

[
f⋆(X)2

]
, (20)

which tends to 0 if and only if αn tends to zero as n tends to infinity. Since, by assumptions, αn does not tend to zero and
E
[
f⋆(X)2

]
> 0, the infinite CRF is inconsistent.

B.2.5 Proof of Lemma 3.6 (Probability of falling into an empty cell of the void-free CRF)

Recall that EM,n(x) is the event “for all m ∈ {1, . . . ,M}, Nn(x,Θm) = 0”. We have

EM,n(x) =

M⋂
j=1

{Nn(x,Θj) = 0} . (21)

Given a dataset, we distinguish two situations: either x falls into an area where it cannot be connected to a point Xi for any
tree, or the dataset is such that x could be connected to a point Xi for a certain configuration of cuts within a tree. We write
E1,n(x) the (Dn-measurable) event {∀θ,Nn(x, θ) = 0}. Consequently, we have E1,n(x)c = {∃ θ,Nn(x, θ) ̸= 0}. Using
these notations, we obtain

P (EM,n(x)) = P (EM,n(x) ∩ E1,n(x)) + P (EM,n(X) ∩ E1,n(x)c) (22)
= P (E1,n(x)) + P (EM,n(x) ∩ E1,n(x)c) (23)

where the first probability term of the second line is a probability taken over Dn only, since E1,n(x) does not depend on Θ.
We control this probability thanks to the following Lemma.

Lemma B.1. For all x ∈ [0, 1]d, we let E1,n(x) be the event {∀θ,Nn(x, θ) = 0}. Then, we have

P (E1,n(x)) ≤ e−
n

2k+1 .

Proof. Let x ∈ [0, 1]d. The event E1,n(x) happens if all the points of the dataset fall into parts of the space that cannot
connect to x for any tree. In order to compute its probability, we compute the size of the connection area of x for trees of
depth k, denoted

Zc,k(x) =
{
z ∈ [0, 1]d : ∃θ, z ∈ An(x, θ)

}
. (24)

We recall that trees are built independently from the dataset and that all cuts are made in the middle of the current node for a
uniformly chosen feature at each step. We denote A(k1, ..., kd, x) the cell of x obtained by cutting kj times along feature
X(j) for all j ∈ {1, . . . , d}. Then, the volume of the connection area Zc,k of x is

µ(Zc,k(x)) = µ

 ⋃
0≤k1,...,kd≤k∑

j kj=k

A(k1, ..., kd, x)

 (25)

≥ µ

 ⋃
0≤k1,k2≤k
k1+k2=k

A(k1, k2, 0, ..., 0, x)

 . (26)

By σ-additivity of µ,

µ

 ⋃
0≤k1,k2≤k
k1+k2=k

A(k1, k2, 0, ..., 0, x)


= µ

(
A(k, 0, ..., 0, x)

)
+

k∑
j=1

µ

(
A(k − j, j, 0, ..., 0, x) \

j−1⋃
ℓ=0

A(k − ℓ, ℓ, 0, ..., 0, x)

)
. (27)
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Given the shape of the cells A(k − j, j, 0, ..., 0, x), for all j ∈ {1, . . . , d}, we have (see Figure 5)

A(k − j, j, 0, ..., 0, x) \
j−1⋃
ℓ=0

A(k − ℓ, ℓ, 0, ..., 0, x)

=A(k − j, j, 0, ..., 0, x) \A(k − j + 1, j − 1, 0, ..., 0, x). (28)

Furthermore, note that, for all j ∈ {1, . . . , d}, the volume of each cell A(k − j + 1, j − 1, 0, ..., 0, x) is 2−k (since k cuts
have been performed). Therefore, for all j ∈ {1, . . . , k},

1. µ(A(k − j, j, 0, ..., 0, x)) = µ(A(k − j + 1, j − 1, 0, ..., 0, x)) = 2−k

2. µ
(
(A(k − j, j, 0, ..., 0, x) ∩A(k − j + 1, j − 1, 0, ..., 0, x)

)
= µ(A(k−j,j,0,...,0,x))

2 as can be seen on Figure 5.














































































J=1

k=4

J=0

A(4,0)     A(3,1)

(0,0)

Figure 5: Volume of leaf intersection µ
(
(A(k − j, j, x) ∩ A(k − j + 1, j − 1, x)

)
in dimension 2 with x = (0, 0), k = 4

cuts and j ∈ {0, 1}.

We deduce from these facts that, for all j,

µ
(
A(k − j, j, 0, ..., 0, x) \A(k − j + 1, j − 1, 0, ..., 0, x)) =

µ(A(k − j, j, 0, ..., 0, x))

2
(29)

= 2−(k+1) (30)

Hence, combining equations (27), (28) and (29), we have

µ

 ⋃
0≤k1,k2≤k
k1+k2=k

A(k1, k2, 0, ..., 0, x)

 = 2−k + k2−(k+1). (31)
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Consequently, using inequality (26),

µ(Zc,k(x)) ≥ k2−(k+1). (32)

Finally, as the Xi’s are uniformly distributed on [0, 1]d and E1,n(x) is realized when none of the Xis fall into Zc,k(x),

P (E1,n(x)) = P (∀i ∈ {1, . . . , n}, Xi /∈ Zc,k(x)) (33)
= (1− µ(Zc,k(x)))

n (34)

≤
(
1− k2−(k+1)

)n
(35)

= en log(1−k2−(k+1)) (36)

≤ e−
kn

2k+1 . (37)

Regarding the second term of (23), we have

P (EM,n(x) ∩ E2,n(x)) = P

 M⋂
j=1

Nn(x,Θj) = 0

⋂(
∃i ∈ {1, . . . , n}, Xi ∈ Zc,k(x)

) (38)

= E
[
E
[
1∃i∈{1,...,n},Xi∈Zc,k(x)1

⋂M
j=1 Nn(x,Θj)=0|Dn

]]
(39)

= E

1∃i∈{1,...,n},Xi∈Zc,k(x)P

 M⋂
j=1

Nn(x,Θj) = 0|Dn

 (40)

= E
[
1∃i∈{1,...,n},Xi∈Zc,k(x)(1− pn)

M
]

(41)

where pn = PΘ (Nn(x,Θ) > 0|Dn) and where the last line is obtained by independence of the Θj’s conditionally on Dn.
Note that, if ∃i ∈ {1, . . . , n}, Xi ∈ Zc,k(x), then pn ≥ d−k since a tree connects x and a point in Zc,k(x) with probability
at least d−k (i.e. by choosing the right cut at each step). Hence,

1∃i∈{1,...,n},Xi∈Zc,k(x)(1− pn)
M ≤ (1− d−k)M , (42)

which leads to

P (EM,n(x) ∩ E1,n(x)c) ≤
(
1− d−k

)M
(43)

≤ e−Md−k

. (44)

Finally, gathering Lemma B.1 and inequality (44) yields

P (EM,n(x)) ≤ e−
kn

2k+1 + e−Md−k

. (45)

B.2.6 Proof of Proposition 3.7 (Consistency of void-free-CRF in a noiseless setting)

Recall that, in a noiseless setting (that is, for all i, Yi = f⋆(Xi)), the risk of the Void-free CRF can be written as

E
[(
fVF
∞,n(X)− f⋆(X)

)2]
= E

( 1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ) > 0)

n∑
i=1

f⋆(Xi)EΘ[Wni(X,Θ)1Nn(X,Θ)>0]− f⋆(X)

)2
 .

We decompose f⋆(X) as

f⋆(X) =
(
1PΘ(Nn(X,Θ)>0)>0 + 1PΘ(Nn(X,Θ)>0)=0

)
f⋆(X)
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in order to write

E

( 1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑
i=1

f⋆(Xi)EΘ[Wni(X,Θ)1Nn(X,Θ)>0]− f⋆(X)

)2


= E

( 1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑
i=1

(f⋆(Xi)− f⋆(X))EΘ[Wni(X,Θ)1Nn(X,Θ)>0]− f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2


≤ 2E

( 1PΘ(Nn(X,Θ)>0)>0

PΘ (Nn(X,Θ > 0))

n∑
i=1

(f⋆(Xi)− f⋆(X))EΘ[Wni(X,Θ)1Nn(X,Θ)>0]

)2


+ 2E
[(
f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2]
(46)

The second term of the last inequality verifies

E
[(
f⋆(X)1PΘ(Nn(X,Θ)>0)=0

)2] ≤ ||f⋆||2∞P (PΘ (Nn(X,Θ) > 0) = 0) . (47)

The event {PΘ (Nn(X,Θ) > 0) = 0} is (X,Dn)-measurable, it corresponds to the situation where for any θ, Nn(X, θ) = 0,
i.e. the dataset is such that it is impossible for a tree to connect X with one of the Xi’s. This probability is controlled by
Lemma B.1:

P (PΘ (Nn(X,Θ) > 0) = 0) ≤ e−
kn

2k+1 .

Denoting by µ
(
A

(j)
n (x,Θ)

)
the length of the jth side of the cell containing x and following a computation from Klusowski

(2021),

n∑
i=1

Wni(X,Θ)|f⋆(X)− f⋆(Xi)|1Nn(X,Θ)>0 ≤
n∑

i=1

Wni(X,Θ)

 d∑
j=1

||∂jf⋆||∞|X(j)
i −X(j)|

1Nn(X,Θ)>0 (48)

≤
n∑

i=1

Wni(X,Θ)1Nn(X,Θ)>0

d∑
j=1

||∂jf⋆||∞(bj − aj) (49)

≤ 1Nn(X,Θ)>0

d∑
j=1

||∂jf⋆||∞µ
(
A(j)

n (X,Θ)
)
. (50)

Therefore,

E
[(
fVF
∞,n(X)− f⋆(X)

)2] ≤ 2E


 1

PΘ(Nn(X,Θ) > 0)

d∑
j=1

||∂jf ||∞EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]2


+ 2e−

kn

2k+1 (51)

≤ 2d

d∑
j=1

||∂f⋆
j ||2∞E

[
1

PΘ(Nn(X,Θ) > 0)2
EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]2]

+ 2e−
kn

2k+1 . (52)

Note that the length µ
(
A

(j)
n (X,Θ)

)
of the j-th side of the cell An(X,Θ) and the event {Nn(X,Θ) > 0} are not

independent conditional on X1, ..., Xn, X . Indeed, given the geometry of the dataset, it is possible that cutting along the jth
direction isolates X from the dataset. Therefore its length should be computed conditional on the event {Nn(X,Θ) > 0}.

To this aim, we denote for all κ ∈ N, An,κ(X,Θ) the cell containing X at depth κ in a centered tree built with the extra
randomness Θ. Conditional on Nn(X,Θ) > 0, the jth direction can be chosen to split along if and only if it does not isolate
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X from the points of the dataset. Thus, we denote by En,κ(j,X,Θ) the event "In a centered tree built with the randomized
cuts Θ, at depth κ, splitting the cell containing X along the jth direction does not isolate X". Then,

EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)]

= EΘ

[
1Nn(X,Θ)>0µ

(
A(j)

n (X,Θ)
)
(1En,κ(j,X,Θ)c + 1En,κ(j,X,Θ))

]
(53)

≤ EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)c

]
(54)

+ EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)µ

(
A(j)

n (X,Θ)
)]

, (55)

since µ
(
A

(j)
n (X,Θ)

)
≤ 1. We denote A

(j),left
n,κ (X,Θ) (resp. A(j),right

n,κ (X,Θ)) the left (resp. right) daughter of the cell
An,κ(X,Θ) that has been split along the jth direction (note that the whole cell is considered here, not only the projection on
the j-th side). Then,

EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)c

]
= PΘ

(
En,κ(j,X,Θ)c

∣∣Nn(X,Θ) > 0
)
PΘ (Nn(X,Θ) > 0) (56)

= PΘ

((
Nn(A

(j),left
n,κ (X,Θ)) = 0

)
∩
(
X ∈ A(j),right

n,κ (X,Θ)
) ∣∣Nn(X,Θ) > 0

)
PΘ (Nn(X,Θ) > 0)

+ PΘ

((
Nn(A

(j),right
n,κ (X,Θ)) = 0

)
∩
(
X ∈ A(j),left

n,κ (X,Θ)
) ∣∣Nn(X,Θ) > 0

)
PΘ (Nn(X,Θ) > 0) (57)

≤ 2PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
PΘ (Nn(X,Θ) > 0) . (58)

Moreover,

EΘ

[
1Nn(X,Θ)>01En,κ(j,X,Θ)µ

(
A(j)

n (X,Θ)
)]

≤ EΘ

[
µ
(
A(j)

n (X,Θ)
) ∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0

]
PΘ (Nn(X,Θ) > 0) . (59)

Denoting Kj,κ(X,Θ) the number of splits made on feature j up to depth κ to produce the cell containing X , we obtain

EΘ

[
µ
(
A(j)

n (X,Θ)
) ∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0

]
≤ EΘ

[
2−Kj,κ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]
. (60)

We denote δj(X,Θ) ∈ {0, 1}k the vector indicating at which depth the jth direction is chosen for splitting, that is
δj,ℓ(X,Θ) = 1 if and only if the jth feature is used for splitting at depth ℓ. We have

Kj,κ(X,Θ) =

κ∑
ℓ=1

δj,ℓ(X,Θ).

For ℓ = 1, . . . , κ, the random variables δj,ℓ(X,Θ) are distributed as Bernoulli random variables. Conditional on
En,κ(j,X,Θ) and Nn(X,Θ) > 0, we know that for all ℓ = 1, . . . , κ, the jth direction was eligible for splitting at
level ℓ. Therefore, the probability of selecting the jth direction at any level 1 ≤ ℓ ≤ κ, is pℓ ≥ 1/d (at worst, all variables
are eligible for splitting, leading to pℓ = 1/d). Besides, conditional on En,κ(j,X,Θ) and Nn(X,Θ) > 0, the random
variables δj,ℓ(X,Θ) are independent by construction of the centered forest. Indeed, conditional on En,κ(j,X,Θ) and
Nn(X,Θ) > 0, the jth direction can be chosen up to depth κ (independence is broken only when the direction cannot be
chosen at a given depth as the following one will not be chosen either). Then,

EΘ

[
2−Kj,κ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]
=

κ∏
ℓ=1

EΘ

[
2−δj,ℓ(X,Θ)

∣∣En,κ(j,X,Θ), Nn(X,Θ) > 0
]

(61)

=

κ∏
ℓ=1

(pℓ
2

+ (1− pℓ)
)

(62)

≤
(
1− 1

2d

)κ

. (63)
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Therefore, injecting Equations (58) and (63) into (55), we get

EΘ

[
1Nn(X,Θ)>0µ

(
A

(j)
n (X,Θ)

)]
PΘ (Nn(X,Θ) > 0)

≤ 2PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
+

(
1− 1

2d

)κ

, (64)

which impliesEΘ

[
1Nn(X,Θ)>0µ

(
A

(j)
n (X,Θ)

)]
PΘ (Nn(X,Θ) > 0)

2

≤ 4PΘ

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
+ 2

(
1− 1

2d

)2κ

, (65)

using (a+ b)2 ≤ 2a2 + 2b2 ≤ 2a2 + 2b if b ≤ 1. Plugging-in this expression into (52) leads to

E
[(
fVF
∞,n(X)− f⋆(X)

)2] ≤ 4d

d∑
j=1

||∂f⋆
j ||2∞

(
1− 1

2d

)2κ

+ 2e−
kn

2k+1

+ 8d

d∑
j=1

||∂f⋆
j ||2∞P

(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
. (66)

Then,

P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)

(67)

= E
[
P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0, Nn(An,κ(X,Θ)), X,Θ
)
|Nn(X,Θ) > 0

]
= E

[
2−Nn(An,κ(X,Θ))|Nn(X,Θ) > 0

]
(68)

≤ 2E
[
2−Nn(An,κ(X,Θ))

]
. (69)

The last line is obtained by making the expectation explicit and noting that P (Nn(X,Θ) > 0)
−1 ≤ 1/(1 − e−1) ≤ 2.

Furthermore, conditional on X,Θ, Nn(An,κ(X,Θ)) is distributed as a binomial of parameters n and µ (An,κ(X,Θ)) = 2−κ.
Thus,

P
(
Nn(A

(j),left
n,κ (X,Θ)) = 0

∣∣Nn(X,Θ) > 0
)
≤ 2E

[
2−Nn(An,κ(X,Θ))

]
(70)

≤ 2E
[
E
[
2−Nn(An,κ(X,Θ))|X,Θ

]]
(71)

≤ 2

(
1− µ (An,κ(X,Θ))

2

)n

(72)

= 2
(
1− 2−κ−1

)n
(73)

≤ 2 exp
(
− n

2κ+1

)
. (74)

Overall,

E
[(
fVF
∞,n(X)− f⋆(X)

)2] ≤ 4d

 d∑
j=1

||∂f⋆
j ||2∞

((1− 1

2d

)2κ

+ 4 exp
(
− n

2κ+1

))
+ 2 exp

(
− kn

2k+1

)
. (75)

Choosing κ = log2(n)− log2(log2(n)), that is 2κ = n/(log2(n)), we obtain

exp

(
2κ log

(
1− 1

2d

))
+ 4 exp

(
− n

2κ+1

)
≤
(

n

log2 n

)2 log2(1− 1
2d )

+ 4n−1/(2 ln 2). (76)
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Consequently, recalling that k = ⌊log2(n)⌋,

E
[(
fVF
∞,n(X)− f⋆(X)

)2] ≤ 4d

 d∑
j=1

||∂f⋆
j ||2∞

(( n

log2 n

)2 log2(1− 1
2d )

+ 4n−1/(2 ln 2)

)
+ 2n−1/(2 ln 2) (77)

≤ Cd

(
n

log2 n

)2 log2(1− 1
2d )

+ (Cd + 2)n−1/(2 ln 2), (78)

where Cd = 4d

 d∑
j=1

||∂f⋆
j ||2∞

 .

B.3 Proofs of Section 4 (Theorem 4.1)

In this section, we prove the consistency of the infinite KeRF estimator in the mean interpolating regime (Theorem 4.1). We
follow the proof given in Scornet (2016b) and first present two of its results.

Lemma B.2 (Scornet (2016b)). Let k ∈ N and consider an infinite centered random forest of depth k. Then, for all
x, z ∈ [0, 1]d,

Kk(x, z) =
∑

k1,...,kd∑d
ℓ=1 kℓ=k

k!

k1! . . . kd!

(
1

d

)k d∏
j=1

1⌈2kjx(j)⌉=⌈2kj z(j)⌉.

Theorem B.3 (Scornet (2016b)). Let f⋆ be a L-Lipschitz function. Then, for all k,

sup
x∈[0,1]d

∣∣∣∣∣
∫
[0,1]d

kk(x, z)f
⋆(z)dz1 . . . dzd∫

[0,1]d
kk(x, z)dz1 . . . dzd

− f⋆(x)

∣∣∣∣∣ ≤ Ld

(
1− 1

2d

)k

.

Proof of Theorem 4.1. Let x ∈ [0, 1]d and recall that

fKeRF
∞,n (x) =

∑n
i=1 YiKk(x,Xi)∑n
i=1 Kk(x,Xi)

.

Thus, letting

An(x) =
1

n

n∑
i=1

(
YiKk(x,Xi)

E [Kk(x,X)]
− E [Y Kk(x,X)]

E [Kk(x,X)]

)
,

Bn(x) =
1

n

n∑
i=1

(
Kk(x,Xi)

E [Kk(x,X)]
− 1

)
,

and Mn(x) =
E [Y Kk(x,X)]

E [Kk(x,X)]
,

the estimate fKeRF
∞,n (x) can be rewritten as

fKeRF
∞,n (x) =

Mn(x) +An(x)

1 +Bn(x)
,

which leads to

fKeRF
∞,n (x)− f⋆(x) =

Mn(x)− f⋆(x) +An(x)−Bn(x)f
⋆(x)

1 +Bn(x)
.
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According to Theorem B.3, we have

|Mn(x)− f⋆(x)| =
∣∣∣∣E [f⋆(X)Kk(x,X)]

E [Kk(x,X)]
+
E [εKk(x,X)]

E [Kk(x,X)]
− f⋆(x)

∣∣∣∣
≤
∣∣∣∣E [f⋆(X)Kk(x,X)]

E [Kk(x,X)]
− f⋆(x)

∣∣∣∣
≤ C

(
1− 1

2d

)k

,

where C = Ld. Take α ∈]0, 1/2]. Let Cα(x) be the event
{
|An(x)| ≤ α

}
∩
{
|Bn(x)| ≤ α

}
. On the event Cα(x), we have

|fKeRF
∞,n (x)− f⋆(x)|2 ≤ 8|Mn(x)− f⋆(x)|2 + 8|An(x)−Bn(x)f

⋆(x)|2

≤ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2.

Thus,

E[|fKeRF
∞,n (x)− f⋆(x)|21Cα(x)] ≤ 8C2

(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2. (79)

Consequently, to find an upper bound on the rate of consistency of fKeRF
∞,n , we just need to upper bound

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
≤ E

[∣∣∣ max
1≤i≤n

|Yi|+ |f⋆(x)|
∣∣∣21Cc

α(x)

]
(since fKeRF

∞,n is a local averaging estimate)

≤ E
[∣∣∣2∥f⋆∥∞ + max

1≤i≤n
|εi|
∣∣∣21Cc

α(x)

]
≤

(
E

[
2∥f⋆∥∞ + max

1≤i≤n
|εi|
]4
P [Cc

α(x)]

)1/2

(by Cauchy-Schwarz inequality)

≤
((

16∥f⋆∥4∞ + 8E
[
max
1≤i≤n

|εi|
]4)

P [Cc
α(x)]

)1/2

.

According to Lemma B.5, there exists a constant C ′ > 0 such that, for all n,

E
[
max
1≤i≤n

ε4i

]
≤ C ′σ4(log n)2. (80)

Thus, there exists C ′′ such that, for all n > 1,

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
≤ C ′′σ2(log n)(P [Cc

α(x)])
1/2. (81)
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The last probability P [Cc
α(x)] can be upper bounded by using Chebyshev’s inequality. Indeed, with respect to An(x),

P
[
|An(x)| > α

]
≤ 1

nα2
E

[
Y Kk(x,X)

E [Kk(x,X)]
− E [Y Kk(x,X)]

E [Kk(x,X)]

]2
≤ 1

nα2

1

(E [Kk(x,X)])2
E

[
Y 2Kk(x,X)2

]
≤ 2

nα2

1

(E [Kk(x,X)])2

(
E

[
f⋆(X)2Kk(x,X)2

]
+ E

[
ε2Kk(x,X)2

])
≤ 2(∥f⋆∥2∞ + σ2)

nα2

E
[
Kk(x,X)2

]
(E [Kk(x,X)])2

(82)

=
C0

nα2

E
[
Kk(x,X)2

]
(E [Kk(x,X)])2

(83)

with C0 = 2(∥f⋆∥2∞ + σ2) a constant. Meanwhile with respect to Bn(x), we obtain, still by Chebyshev’s inequality,

P
[
|Bn(x)| > α

]
≤ 1

nα2

E
[
Kk(x,X)2

]
(E [Kk(x,X)])2

(84)

which matches the control made by Scornet (2016b). Consequently,

P [Cc
α(x)] ≤ P

[
|An(x)| > α

]
+ P

[
|Bn(x)| > α

]
(85)

≤ C0 + 1

nα2

E
[
Kk(x,X)2

]
(E [Kk(x,X)])2

. (86)

Besides, for all x ∈ [0, 1]d, for all k, E [Kcc
k (x,X)] = 1

2k
(see in Scornet (2016b) the proof of theorem VI.1 p.11). Since

Kk(x,X) ≤ 1, we know that

E [Kcc
k (x,X)] =

1

2k
≥ E

[
Kcc

k (x,X)2
]
≥ (E [Kcc

k (x,X)])2 =
1

22k
, (87)

which leads to

P [Cc
α(x)] ≤ 22k

(
C0 + 1

nα2

)
E
[
Kk(x,X)2

]
, (88)

but to pursue, we need a tighter upper bound on E
[
Kcc

k (x,X)2
]

than that obtained from (87). Such a control is provided in
Lemma B.4 below, which is original, and departs from the work of Scornet (2016b).

Lemma B.4. For all d ≥ 2, for all k large enough, for all x ∈ [0, 1]d,

E
[
Kcc

k (x,X)2
]
≤ 2−kk−

d−1
2

(
C1 + C2 (log2(k))

d
)
, (89)

where

C1 = 1 +
2dd/2

(4π)(d−1)/2
and C2 = 5d

(
d− 1

2

)d

. (90)

Proof of Lemma B.4. From Lemma B.2, we know that

E
[
Kcc

k (x,X)2
]
= E


 ∑

k1,...,kd∑d
j=1 kj=k

k!

k1!...kd!

(
1

d

)k d∏
j=1

1⌈2kjx(j)⌉=⌈2kjX(j)⌉


2 . (91)
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Developing the square within the expectation, we obtain two terms, the first one A being the sum of squares and the second
one, B, being the cross-product terms. The first term A takes the form

A := E

 ∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏
j=1

1⌈2kjx(j)⌉=⌈2kjx(j)⌉

 (92)

=
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k d∏
j=1

P
(
⌈2kjx(j)⌉ = ⌈2kjX(j)⌉

)
. (93)

Note that, for all j, P
(
⌈2kjx(j)⌉ = ⌈2kjX(j)⌉

)
= 2−kj , and

d∏
j=1

2−kj = 2−k. Therefore,

A =
∑

k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2(
1

d

)2k

2−k. (94)

Thanks to Richmond and Shallit (2009), we know that, for all d ≥ 2,

∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2

∼
k→+∞

d2k+d/2

(4πk)(d−1)/2
. (95)

Therefore, for all k large enough, we have

∑
k1,...,kd∑d
j=1 kj=k

(
k!

k1!...kd!

)2

≤ 2d2k+d/2

(4πk)(d−1)/2
. (96)

Thus, letting C1 = 2dd/2/(4π)(d−1)/2, for all k large enough,

A ≤ C12
−kk−(d−1)/2. (97)

Regarding the second term B,

B := E


∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

d

)2k d∏
j=1

1⌈2kjx(j)⌉=⌈2kjX(j)⌉1⌈2ℓjx(j)⌉=⌈2ℓjX(j)⌉

 (98)

=
∑

(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

d

)2k

P

 d⋂
j=1

(
(⌈2kjx(j)⌉ = ⌈2kjX(j)⌉) ∩ (⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉)

) .
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A small computation yields

P

 d⋂
j=1

(
(⌈2kjx(j)⌉ = ⌈2kjX(j)⌉) ∩ (⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉)

)
= P

 d⋂
j=1

⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉
∣∣∣∣∀j, ⌈2kjx(j)⌉ = ⌈2kjX(j)⌉

 2−k (99)

= 2−k
d∏

j=1

P
(
⌈2ℓjx(j)⌉ = ⌈2ℓjX(j)⌉

∣∣∣∣⌈2kjx(j)⌉ = ⌈2kjX(j)⌉
)

(100)

= 2−k2−
∑d

j=1(ℓj−kj)1ℓj≥kj (101)

= 2−
∑d

j=1 kj(1ℓj≥kj
+1ℓj<kj

)−
∑d

j=1(ℓj−kj)1ℓj≥kj (102)

= 2−
∑d

j=1 kj1ℓj<kj
−
∑d

j=1 ℓj1ℓj≥kj (103)

= 2−
∑d

j=1 max(kj ,ℓj). (104)

Therefore,

B =

(
1

d

)2k ∑
(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

)∑d
j=1 max(kj ,ℓj)

. (105)

=

(
1

d

)2k ∑
(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

)k+ 1
2

∑d
j=1 |kj−ℓj |

(106)

=

(
1

2d2

)k ∑
(k1,...,kd)
̸=(ℓ1,...,ℓd),∑d

j=1 kj=
∑d

j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

. (107)

For all q > 0, define the set Kq = {ℓ = (ℓ1, . . . , ℓd),k = (k1, . . . , kd)|
d∑

j=1

|kj − ℓj | ≥ 2q}, so that

B =

(
1

2d2

)k ∑
(k,ℓ)∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

+

(
1

2d2

)k ∑
(k,ℓ)/∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!

(
1

2

) 1
2

∑d
j=1 |kj−ℓj |

= B1 +B2. (108)
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Regarding B1, we have

B1 ≤
(

1

2d2

)k ∑
(k,ℓ)∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!
2−q (109)

≤
(

1

2d2

)k

2−q

 ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!


 ∑

ℓ,
∑d

j=1 ℓj=k

k!

ℓ1! . . . ℓd!

 (110)

≤ 2−k−q, (111)

as ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!
= dk. (112)

We now define, for all k,Kq(k) := {ℓ = (ℓ1, . . . , ℓd),
d∑

j=1

ℓj = k,
d∑

j=1

|kj − ℓj | ≥ 2q}. Regarding B2, we have

B2 ≤
(

1

2d2

)k ∑
k,ℓ/∈Kq

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

k1! . . . kd!

k!

ℓ1! . . . ℓd!
(113)

=

(
1

2d2

)k ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!

∑
ℓ/∈Kq(k)

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k!

ℓ1! . . . ℓd!
. (114)

(115)

Note that for all ℓ, k!
ℓ1!...ℓd!

is maximal when maxi ℓi is minimal. Therefore, for all k ≥ 2d,

k!

ℓ1! . . . ℓd!
=

k!

Γ(ℓ1 + 1) . . .Γ(ℓd + 1)
(116)

≤ k!

Γ(⌊k/d⌋+ 1) . . .Γ(⌊k/d⌋+ 1)
(117)

≤ k!

Γ(k/d)d
. (118)

Using an inequality from Batir (2008), we obtain

k!

Γ(k/d)d
≤ kk+1/2e−k

kkd−ke−kkd/2

≤ dkk−(d−1)/2.

Overall, for all k ≥ 2d,

B2 ≤
(

1

2d

)k ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!

∑
ℓ/∈Kq(k)

ℓ̸=k∑d
j=1 kj=

∑d
j=1 ℓj=k

k−(d−1)/2 (119)

≤ k−(d−1)/2

(
1

2d

)k ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!
Card(Kq(k)). (120)
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We now want to upper bound the cardinal of Kq(k). Denoting by BL1(0, 2q) the ball of radius 2q with respect to the L1

norm, note that

Card(Kq(k)) ≤ Card({x ∈ Nd ∩BL1(k, 2q)}) (121)

≤ Card({x ∈ Nd ∩BL1(0, 2q)}). (122)

Since,

BL1(0, c) ⊂ BL∞(0, c) ⊂ BL∞(0, ⌈c⌉),

we have,

Card(Kq(k)) ≤ Card({x ∈ Nd ∩BL∞(0, ⌈2q⌉)})

≤ (2⌈2q⌉+ 1)
d

≤ (4q + 3)
d
.

Thus, we have, for all k ≥ 2d,

B2 ≤ k−(d−1)/2

(
1

2d

)k

(4q + 3)
d

∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!
(123)

≤ k−(d−1)/2 (4q + 3)
d
2−k, (124)

as ∑
k,

∑d
j=1 kj=k

k!

k1! . . . kd!
= dk. (125)

Finally, for all q, we have

B = B1 +B2 (126)

≤ 2−k−q + k−(d−1)/2 (4q + 3)
d
2−k. (127)

Let q =
(
d−1
2

)
log2(k). For all q ≥ 3, that is for all k ≥ 26/(d−1), and for all k ≥ 2d,

B ≤ 2−k
(
k−

d−1
2 + k−(d−1)/2C2 (log2(k))

d
)
, (128)

where

C2 = 5d
(
d− 1

2

)d

. (129)

Finally, for all k large enough

E
[
Kcc

k (x,X)2
]
≤ A+B1 +B2 (130)

≤ 2−kk−
d−1
2

(
C1 + 1 + C2 (log2(k))

d
)
. (131)

According to inequality (88) and Lemma B.4, we have, for all k large enough

P [Cc
α(x)] ≤

C0 + 1

nα2
2kk−

d−1
2

(
C1 + C2 (log2(k))

d
)
. (132)
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Consequently, according to inequality (81), we obtain, for all k large enough

E
[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
≤ C ′′σ2 log n

(
C0 + 1

nα2
2kk−

d−1
2

(
C1 + C2 (log2(k))

d
))1/2

≤ C ′′σ2(C0 + 1)1/2(max(C1, C2))
1/2 log n

n1/2α
2k/2k−

d−1
4

((
1 + (log2(k))

d
))1/2

≤ C3
log n

n1/2α
2k/2k−

d−1
4 (log2(k))

d/2
,

where C3 = C ′′σ2(C0 + 1)1/2(2max(C1, C2))
1/2. Then using inequality (79), for all k large enough

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
≤ E

[
|fKeRF

∞,n (x)− f⋆(x)|21Cα(x)

]
+ E

[
|fKeRF

∞,n (x)− f⋆(x)|21Cc
α(x)

]
≤ 8L2d2

(
1− 1

2d

)2k

+ 8α2(1 + ∥f⋆∥∞)2

+ C3σ
2(log n)

2k/2

αn1/2
k−

d−1
4 (log2 k)

d/2.

Optimizing the right hand side in α, that is choosing

α3 = (log n)
2k/2

n1/2
k−

d−1
4 (log2 k)

d/2 C3

8(1 + ∥f⋆∥∞)2
, (133)

we get

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
≤ 8L2d2

(
1− 1

2d

)2k

+ 4C
2/3
3 (1 + ∥f⋆∥∞)2/3(log n)2/3

2k/3

n1/3
k−

d−1
6 (log2 k)

d/3.

Choosing kn = log2(n), we obtain, for all n large enough,

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
≤ 8L2d2n2 log2(1− 1

d ) + 4C
2/3
3 (1 + ∥f⋆∥∞)2/3(log n)2/3(log2 n)

− d−1
6 (log2(log2 n))

d/3.

(134)

Finally,

E
[
fKeRF
∞,n (x)− f⋆(x)

]2
≤ 8L2d2n2 log2(1− 1

d ) + C4(log2 n)
− d−5

6 (log2(log2 n))
d/3. (135)

with

C4 = 18× 22/3 × (log 2)2/3C ′′2/3(∥f⋆∥2∞ + σ2 + 1)(max(C1, C2))
1/3. (136)

Lemma B.5. Consider n i.i.d. random variables ε1, . . . , εn, distributed as N (0, 1). Then, for all n ≥ 21,

E
[
max
1≤i≤n

ε4i

]
≤ 32e(log n)2.

Proof. We have, for all p ≥ 1,

E
[
max
1≤i≤n

|εi|4
]
≤
(
E
[
max
1≤i≤n

|εi|4p
])1/p

(137)

≤

(
E

[
n∑

i=1

|εi|4p
])1/p

, (138)
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using Jensen’s inequality (by concavity of x 7→ x1/p for p ≥ 1). The p-th moment of a Gaussian variable N (0, 1) can be
computed as follows

E [|ε1|p] =
∫ ∞

0

P [|ε|p ≥ u] du (139)

=

∫ ∞

0

P [|ε| ≥ t] ptp−1dt (140)

≤
∫ ∞

0

2 exp(−t2/2)ptp−1dt, (141)

using classical tail inequalities for Gaussian variables. Now, setting s = t2/2 and recalling that Γ(z) =
∫∞
0

exp(−t)tz−1dt,
we have ∫ ∞

0

2 exp(−t2/2)ptp−1dt = 2p

∫ ∞

0

exp(−s)(2s)
p−2
2 ds (142)

= 2p2
p−2
2 Γ(p/2). (143)

According to Theorem 2.2 in Batir (2008), we have, for all x > 0

Γ(x+ 1) <
√
2πxx exp(−x)

(
x2 +

x

3
+

1

18

)1/4

. (144)

Let

f : x 7→ exp(−x)

(
x2 +

x

3
+

1

18

)
, (145)

one can show that f is non-increasing on [1/2,∞). Thus, for all x ≥ 1/2,

Γ(x+ 1) <
√
2πxxf(1/2)1/4 (146)

<
√
2πxx exp(−1/2)

(
1

2

)1/4

(147)

< 2xx. (148)

Hence, for all p ≥ 3,

E [|ε1|p] ≤ 4p2
p−2
2 (p/2)p/2, (149)

which leads to

E
[
max
1≤i≤n

|εi|4
]
≤

(
E

[
n∑

i=1

|εi|4p
])1/p

(150)

≤ n1/p
(
16p2

4p−2
2 (2p)2p

)1/p
(151)

≤ 16n1/pp2
(p
2

)1/p
(152)

≤ 32n1/pp2. (153)

Choosing p = log n yields, for all n ≥ e3,

E
[
max
1≤i≤n

|εi|4
]
≤ 32e(log n)2. (154)
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B.4 Proofs of Section 5 (Semi-adaptive forests)

Lemma B.6. For all α ∈ [0, 1), the depth kAdaCT
n of a semi-adaptive centered tree verifies

lim
n→∞

P
(
kAdaCT
n (X,Θ) ∈ [log2(n)± log1−α

2 (n)]
)
= 1.

Lemma B.6 states that the asymptotic behavior of kAdaCT
n (X,Θ) is equivalent to log2 n up to a negligible factor. The log(n)

equivalent matches the condition for the mean interpolation regime in the case of CRF exhibited in Section 3.

B.4.1 Proof of Lemma B.6

For all 0 ≤ j ≤ k, we let Aj,n(X,Θ) be the cell containing X in the tree truncated at level j. Similarly, we let Nj,n(X,Θ)
the number of observations in this cell. Then,

P (kn(X,Θ) ≥ k) = P (Nk−1,n(X,Θ) ≥ 2) (155)
= E [P (Nk−1,n(X,Θ) ≥ 2|X,Θ)] (156)

= 1−
(
1− 1

2k−1

)n

− n

2k−1

(
1− 1

2k−1

)n−1

. (157)

Using the inequality log(1− x) ≤ −x for all x ∈ [0, 1) yields,

P (kn(X,Θ) ≥ k) ≥ 1− exp
(
− n

2k−1

)
− n

2k−1
exp

(
−n− 1

2k−1

)
(158)

≥ 1−
(
1 +

n

2k−1

)
exp

(
− n

2k−1

)
. (159)

Letting k = (1− εn) log2(n) in (159) yields

P (kn(X,Θ) ≥ k) ≥ 1− (1 + 2nεn) exp (−2nεn) . (160)

Note that, setting εn = c1(log2 n)
−α for any α ∈ [0, 1) implies that

nεn = exp (εn log n) (161)

tends to infinity. Therefore, for all c1 > 0 and all αin[0, 1),

lim
n→∞

P
(
kn(X,Θ) ≥ log2(n)− c1(log2 n)

−α
)
= 1. (162)

Besides,

P (kn(X,Θ) ≤ k) = 1− P (kn(X,Θ) > k) (163)

=

(
1− 1

2k

)n

− n

2k

(
1−+

1

2k

)n−1

. (164)

Using the inequality log(1− x) ≥ −x/(1− x) for all x ∈ [0, 1), we have

P (kn(X,Θ) ≤ k) ≥ exp

(
− n

2k − 1

)
+

n

2k
exp

(
− n− 1

2k − 1

)
(165)

≥
(
1 +

n

2k

)
exp

(
− n

2k − 1

)
. (166)

Letting k = (1 + εn) log2(n) in (166) yields

P (kn(X,Θ) ≥ k) ≥
(
1 + 2n−εn

)
exp

(
− n

n1+εn − 1

)
(167)

≥
(
1 + 2n−εn

)
exp

(
− n−εn

1− 1
n1+εn

)
, (168)

which tends to 1 for the choice εn = c2(log2 n)
−α, for any α ∈ [0, 1) and any c2 > 0.
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B.4.2 Proof of Theorem 5.1 (Consistency of Median RF)

Preliminary results In all the preliminary results, we use the fact that the spacing between two consecutive order statistics,
that originate from an i.i.d. sample uniformly distributed on [0, 1] of size nj is distributed as a beta distribution B(1, nj).
We also recall that, for all α, β,

V [B(α, β)] = αβ

(α+ β)2(α+ β + 1)
and E [B(α, β)] = α

α+ β
. (169)

Lemma B.7 (Control of a cell side of a fully-developed median RF). Assume that n ≥ 16 is a power of two. For all
x ∈ [0, 1]d, for all ℓ ∈ {1, . . . , d} and depth k ∈ N∗, with k ≤ ⌊log2 n⌋, we have

E

[
µ
(
A

(ℓ)
k,n(x,Θ)

)2]
≤ C1

(
1− 3

4d

)k

, (170)

with C1 ≤ 256 exp
(

42+
√
5

2−
√
2

)
.

Proof of Lemma B.7. Fix x ∈ [0, 1]d. For all ℓ, let δℓ(x,Θ) be the vector whose components are defined as δj,ℓ(x,Θ) = 1
if the j-th cut is made along direction ℓ and 0 otherwise. Without loss of generality, we let ℓ = 1 and fix x ∈ [0, 1]d. For all
j ∈ {0, . . . , k}, we denote A

(1)
j,n(x,Θ) the cell containing x at level j, projected onto the first direction, and nj = n2−j the

number of observations falling into this cell.

Recall that we consider the median forest in which splits are performed at the middle of two consecutive order statistics in a
cell, so that each resulting cell contains exactly the same number of observations. With these notations in mind, we want to
upper bound, for all j,

E

[
µ
(
A

(1)
j,n(x,Θ)

)2
|δ1(x,Θ)

]
,

where, for now, the split randomization δ1(x,Θ) is considered fixed and may be omitted in the notations. Let us fix
j ≤ k − 1, define

A
(1)
j,n(x,Θ) = [M1,j ,M2,j ],

and assume that the next cut is made along the first axis at position Mj . Then,

µ
(
A

(1)
j+1,n(x,Θ)

)2
= (Mj −M1,j)

21x∈[M1,j ,Mj ] + (M2,j −Mj)
21x∈[Mj ,M2,j ] (171)

= (Mj −M1,j)
2 +

(
(M2,j −Mj)

2 − (Mj −M1,j)
2
)
1x∈[Mj ,M2,j ] (172)

= (Mj −M1,j)
2 + (M1,j +M2,j − 2Mj) (M2,j −M1,j)1x∈[Mj ,M2,j ]. (173)

We denote X ′
1, ..., X

′
nj

the points contained in the cell A(1)
j,n(x,Θ). Note that the second term in (173) can be decomposed as

(M1,j +M2,j − 2Mj) (M2,j −M1,j)1x∈[Mj ,M2,j ]

=
(
X ′

(1) +X ′
(nj)

−X ′
(nj/2)

−X ′
(nj/2+1) +M1,j −X ′

(1) +M2,j −X ′
(nj)

)
(M2,j −M1,j)1x∈[Mj ,M2,j ] (174)

=

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)
+

X ′
(1) +X ′

(nj)

2
−X ′

(nj/2+1) +M1,j −X ′
(1) +M2,j −X ′

(nj)

)
× (M2,j −M1,j)1x∈[Mj ,M2,j ] (175)

≤

(
X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)
+

X ′
(1) +X ′

(nj)

2
−X ′

(nj/2+1) +M2,j −X ′
(nj)

)
(M2,j −M1,j). (176)
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Injecting (176) into (173), taking the expectation and using Cauchy-Schwarz inequality leads to

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2]
≤ E

[
(Mj −M1,j)

2
]

+

E
(X ′

(1) +X ′
(nj)

2
−X ′

(nj/2)

)2
E [(M2,j −M1,j)

2
]1/2

+

E
(X ′

(1) +X ′
(nj)

2
−X ′

(nj/2+1)

)2
E [(M2,j −M1,j)

2
]1/2

+

(
E

[(
M2,j −X ′

(nj)

)2]
E
[
(M2,j −M1,j)

2
])1/2

. (177)

Considering the second term, we have

E

(X ′
(1) +X ′

(nj)

2
−X ′

(nj/2)

)2
 = E

(X ′
(nj)

−X ′
(1)

2
− (X ′

(nj/2)
−X ′

(1))

)2
 (178)

= E

(X ′
(nj)

−X ′
(1))

2E

(1

2
−

(X ′
(nj/2)

−X ′
(1))

(X ′
(nj)

−X ′
(1))

)2

|X ′
(1), X

′
(nj)

 . (179)

where

(X ′
(nj/2)

−X ′
(1))

(X ′
(nj)

−X ′
(1))

|X ′
(1), X

′
(nj)

∼ B
(nj

2
− 1,

nj

2

)
,

with E[B(nj

2 − 1,
nj

2 )] =
nj−2

2(nj−1) .

Thus,

E

(1

2
−

(X ′
(nj/2)

−X ′
(1))

(X ′
(nj)

−X ′
(1))

)2

|X ′
(1), X

′
(nj)

 =

(
1

2
− nj − 2

2(nj − 1)

)2

+V
[
B
(nj

2
− 1,

nj

2

)]
(180)

=
1

4(nj − 1)2
+

1

4

nj − 2

(nj − 1)2
(181)

=
1

4(nj − 1)
. (182)

Consequently,

E

(X ′
(1) +X ′

(nj)

2
−X ′

(nj/2)

)2
 =

1

4(nj − 1)
E
[
(X ′

(nj)
−X ′

(1))
2
]

(183)

≤ 1

4(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (184)

Similarly,

E

(X ′
(1) +X ′

(nj)

2
−X ′

(nj/2+1)

)2
 =

1

4(nj − 1)
E
[
(X ′

(nj)
−X ′

(1))
2
]

(185)

≤ 1

4(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (186)
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By Lemma B.8,

E

[(
M2,j −X ′

(nj)

)2]
≤ 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

Gathering all previous inequalities into (173) yields

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2]
≤ E

[
(Mj −M1,j)

2
]
+

1√
nj − 1

E
[
(M2,j −M1,j)

2
]

+

√
5

(nj − 1)
E
[
(M2,j −M1,j)

2
]
. (187)

Considering the first term in (187), we have

(Mj −M1,j)
2 =

(
X ′

(nj/2)
+X ′

(nj/2+1)

2
−X ′

(1) +X ′
(1) −M1,j

)2

(188)

≤
(
X ′

(nj/2+1) −X ′
(1) +X ′

(1) −M1,j

)2
(189)

≤
(
X ′

(nj/2+1) −X ′
(1)

)2
+
(
X ′

(1) −M1,j

)2
+ 2

(
X ′

(nj/2+1) −X ′
(1)

)(
X ′

(1) −M1,j

)
.

Taking the expectation and using Cauchy-Schwarz inequality, we obtain

E
[
(Mj −M1,j)

2
]
≤ E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
+ E

[(
X ′

(1) −M1,j

)2]
+ 2

(
E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
E

[(
X ′

(1) −M1,j

)2])1/2

. (190)

Now,

E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
= E

(X ′
(nj)

−X ′
(1)

)2
E

(X ′
(nj/2+1) −X ′

(1)

X ′
(nj)

−X ′
(1)

)2

|X ′
(1), X

′
(nj)

 , (191)

where

E

(X ′
(nj/2+1) −X ′

(1)

X ′
(nj)

−X ′
(1)

)2

|X ′
(1), X

′
(nj)

 = E

[
B
(nj

2
,
nj

2
− 1
)2]

(192)

= V
[
B
(nj

2
,
nj

2
− 1
)]

+
(
E
[
B
(nj

2
,
nj

2
− 1
)])2

(193)

=
nj

2

(nj

2 − 1
)

(nj − 1)2nj
+

(
nj/2

nj − 1

)2

(194)

=
1

4

nj − 2

(nj − 1)2
+

(
1

2

nj

nj − 1

)2

(195)

=
1

4

n2
j + nj − 2

(nj − 1)2
(196)

≤ 1

4

(nj + 1/2)
2

(nj − 1)2
. (197)

Therefore,

E

[(
X ′

(nj/2+1) −X ′
(1)

)2]
≤ 1

4

(nj + 1/2)
2

(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
. (198)
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Injecting this expression into (190), we have

E
[
(Mj −M1,j)

2
]
≤ 1

4

(nj + 1/2)
2

(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
+ E

[(
X ′

(1) −M1,j

)2]
+

(nj + 1/2)

(nj − 1)

(
E

[(
X ′

(nj)
−X ′

(1)

)2]
E

[(
X ′

(1) −M1,j

)2])1/2

. (199)

According to Technical Lemma B.8, we have

E

[(
X ′

(1) −M1,j

)2]
≤ 5

(nj − 1)2
E [M2,j −M1,j ] .

Hence,

E
[
(Mj −M1,j)

2
]

≤ 1

4

(nj + 1/2)
2

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
+

5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]

+
(nj + 1/2)

(nj − 1)

(
E
[
(M2,j −M1,j)

2
] 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
])1/2

(200)

≤

(
1

4

(nj + 1/2)
2

(nj − 1)2
+

5

(nj − 1)2
+

(nj + 1/2)
√
5

(nj − 1)2

)
E
[
(M2,j −M1,j)

2
]

(201)

≤ 1

4

(nj + 1/2)
2

(nj − 1)2

(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]

(202)

≤ 1

4

(
1 +

3

2(nj − 1)

)2
(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]

(203)

≤ 1

4

(
1 +

9

2(nj − 1)

)(
1 +

20

(nj + 1/2)
2 +

4
√
5

(nj + 1/2)

)
E
[
(M2,j −M1,j)

2
]
, (204)

for all nj ≥ 4, since (1 + x)2 ≤ 1 + 3x if x ≤ 1.

Consequently,

E
[
(Mj −M1,j)

2
]

≤ 1

4

(
1 +

9

2(nj − 1)

)(
1 +

30

nj − 1

)
E
[
(M2,j −M1,j)

2
]

(205)

≤ 1

4

(
1 +

69

2(nj − 1)
+

90

(nj − 1)2

)
E
[
(M2,j −M1,j)

2
]

(206)

≤ 1

4

(
1 +

35 + 6

nj − 1

)
E
[
(M2,j −M1,j)

2
]

(207)

≤ 1

4

(
1 +

41

nj − 1

)
E
[
(M2,j −M1,j)

2
]
, (208)

for all nj ≥ 16. Recall that, until now, we have fixed δ1(x,Θ) and omitted the explicit conditioning in the proof to lighten
notations. Thus, plugging-in the previous inequality into (187) yields, for all nj ≥ 16,

E

[
µ
(
A

(1)
j+1,n(x,Θ)

)2
|δ1(x,Θ)

]
≤ 1

4

(
1 +

41

nj − 1

)
E
[
(M2,j −M1,j)

2 |δ1(x,Θ)
]

+
E
[
(M2,j −M1,j)

2
∣∣δ1(x,Θ)

]√
nj − 1

+

√
5

(nj − 1)
E
[
(M2,j −M1,j)

2 ∣∣δ1(x,Θ)
]

≤ 1

4

(
1 +

42 +
√
5√

nj − 1

)
E

[
µ
(
A

(1)
j,n(x,Θ)

)2 ∣∣δ1(x,Θ)

]
. (209)
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Recall that δ1(x,Θ) is the vector whose components are defined as δj,1(x,Θ) = 1 if the j-th cut is made along the first
direction and 0 otherwise. We let K1 = ∥δ1(x,Θ)∥1 be the number of times the first direction is split. By induction, we
have

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
= E

[
E

[
µ
(
A

(1)
k,n(x,Θ)

)2
|δ1(x,Θ)

]]
(210)

≤ E

 ∏
j:δj,1=1
j≤k−4

1

4

(
1 +

42 +
√
5√

nj − 1

) (211)

≤ 44E

4−K1

∏
j:δj,1=1
j≤k−4

(
1 +

42 +
√
5√

nj − 1

) . (212)

The product can be upper bounded as follows, with C = 42 +
√
5,

log

 ∏
j,δj,l=1,j≤k−4

(
1 +

C√
nj − 1

) ≤ log

 ∏
j:δj,1=1,
j≤k−4

(
1 +

C
√
nj+1

) (213)

=
∑

j:δj,1=1,
j≤k−4

log

(
1 +

C
√
2 · 2j/2

n1/2

)
(214)

≤ C
√
2

n1/2

k−4∑
j=0

2j/2 (215)

≤ C
√
2√

2− 1

2(k−3)/2

n1/2
(216)

≤ C

2
√
2− 2

. (217)

Thus,

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
≤ 44 exp

(
C

2
√
2− 2

)
E
[
4−K1

]
. (218)

Since K1 ∼ Bin(k, 1/d), we have

E
[
4−K1

]
=

(
1− 1

d
+

1

4d

)k

(219)

=

(
1− 3

4d

)k

. (220)

Finally,

E

[
µ
(
A

(1)
k,n(x,Θ)

)2]
≤ 44 exp

(
C

2
√
2− 2

)(
1− 3

4d

)k

, (221)

with C = 42 +
√
5.

Lemma B.8 (Technical Lemma). 1. Let x ∈ [0, 1]d and consider the cell An,j(x,Θ) containing x at depth j ≤ k − 1.
W.l.o.g. restrict the study to the one-dimensional cell A(1)

n,j(x,Θ) corresponding to the cell An,j(x,Θ) along the
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first dimension only, and set A(1)
n,j(x,Θ) = [M1,j ;M2,j ]. The one-dimensional cell A(1)

n,j(x,Θ) contains nj points
denoted X ′

1, . . . X
′
nj

(random subsample of the initial training sample). Call X ′
(1), . . . , X

′
(nj)

the ordered version of
X ′

1, . . . X
′
nj

. Then,

E

[(
X ′

(1) −M1,j

)2]
≤ 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
,

and

E

[(
M2,j −X ′

(nj)

)2]
≤ 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

2. Consider now the cell An,j(X1,Θ) containing X1 at depth j ≤ k−1. W.l.o.g. restrict the study to the one-dimensional
cell A(1)

n,j(X1,Θ) corresponding to the cell An,j(X1,Θ) along the first dimension only, and set A(1)
n,j(X1,Θ) =

[M1,j ;M2,j ] = [M1,j(X1,Θ);M2,j(X1,Θ)]. The one-dimensional cell A(1)
n,j(X1,Θ) contains nj points denoted

{X ′
1, . . . X

′
nj−1} ∪ {X1} (random subsample of the initial training sample containing X1 and projected on the first

axis). Call X ′
(1), . . . , X

′
(nj−1) the ordered version of X ′

1, . . . X
′
nj−1. Then,

E
[
X ′

(1) −M1,j |X1

]
≤ 1

nj
E [(M2,j −M1,j)|X1] ,

and

E
[
M2,j −X ′

(nj−1)|X1

]
≤ 1

nj
E [(M2,j −M1,j)|X1] .

Proof of Lemma B.8.

Notations W.l.o.g. consider the following development according to the first direction only. Let x ∈ [0, 1]d. Recall that
we consider the cell A(1)

j,n(x,Θ) = [M1,j ;M2,j ] containing x at depth j ≤ k − 1. The cut at M1,j (resp. M2,j) has been
obtained at an anterior depth j1 ≤ j (resp. j2 ≤ j), as the middle of two order statistics of a previous subsample:

M1,j =
M1,j,− +M1,j,+

2
and M2,j =

M2,j,− +M2,j,+

2
,

with M1,j,− < M1,j,+ and M2,j,− < M2,j,+. The following computations can be also conducted in a similar way when
M1,j = 0 or M2,j = 1. The current cell A(1)

j,n(x,Θ), includes now nj points of the original training sample, which are
denoted by X ′

1, . . . , X
′
nj

. Remark that as M1,j,− and M2,j,+ refer to anterior order statistics of a previous subsample
(including the points X ′

1, . . . , X
′
nj

), then X ′
1, . . . , X

′
nj

are i.i.d. uniformly distributed in [Mj,1,−;M2,j,+]. Denote by

X ′
(1), . . . , X

′
(nj)

, the ordered statistics of the current subsample X ′
1, . . . , X

′
nj

in A
(1)
j,n(x,Θ) for some fixed x.

First statement - Control of E[(X ′
(1) −M1,j)

2]. We have

E

[(
X ′

(1) −M1,j

)2]
≤ 2E

[
(M1,j,+ −M1,j)

2
]
+ 2E

[(
X ′

(1) −M1,j,+

)2]
. (222)

Note that, by definition of M1,j , the quantity M1,j,+ −M1,j corresponds to a half spacing between two points in the cell
previously built by cutting on the first direction at depth j1, denoted A

(1)
j1,n

(x,Θ). By construction, the spacings between

two consecutive points in A
(1)
j1,n

(x,Θ) were the same in distribution. Since points have been removed between A
(1)
j,n(x,Θ)

and A
(1)
j1,n

(x,Θ), the spacings are larger between consecutive points in A
(1)
j,n(x,Θ) than between consecutive points in

A
(1)
j1,n

(x,Θ). This leads to

M1,j,+ −M1,j =
M1,j,+ −M1,j,−

2
≤

X ′
(2) −X ′

(1)

2
.



Is interpolation benign for random forest regression?

Therefore, since all variables are bounded,

E
[
(M1,j,+ −M1,j)

2
]
≤ 1

4
E

[(
X ′

(2) −X ′
(1)

)2]

≤ 1

4
E

(X ′
(nj)

−X ′
(1))

2E


(
X ′

(2) −X ′
(1)

)2
(
X ′

(nj)
−X ′

(1)

)2 |X ′
(1), X

′
(nj)


 .

Regarding the inner expectation,

E


(
X ′

(2) −X ′
(1)

)2
(
X ′

(nj)
−X ′

(1)

)2 |X ′
(1), X

′
(nj)

 = E
[
B (1, nj − 2)

2
]

(223)

= V [B (1, nj − 2)] + (E [B (1, nj − 2)])
2 (224)

=
nj − 2

(nj − 1)2nj
+

(
1

nj − 1

)2

(225)

≤ 2

(nj − 1)2
. (226)

Finally,

E
[
(M1,j,+ −M1,j)

2
]
≤ 1

2(nj − 1)2
E

[(
X ′

(nj)
−X ′

(1)

)2]
(227)

≤ 1

2(nj − 1)2
E
[
(M2,j −M1,j)

2
]
. (228)

Regarding the second term in (222), we have

E

[(
X ′

(1) −M1,j,+

)2]
= E

[
E

[(
X ′

(1) −M1,j,+

)2
|M1,j,+, XM2,j ,−

]]

= E

(M2,j,− −M1,j,+)
2
E

( X ′
(1) −M1,j,+

M2,j,− −M1,j,+

)2

|M1,j,+,M2,j,−


≤ E

[
(M2,j,− −M1,j,+)

2
E
[
B(1, nj − 1)2

]]
≤ 2

n2
j

E
[
(M2,j,− −M1,j,+)

2
]

≤ 2

n2
j

E
[
(M2,j −M1,j)

2
]
.

Finally,

E

[(
X ′

(1) −M1,j

)2]
≤

(
1

(nj − 1)2
+

4

n2
j

)
E
[
(M2,j −M1,j)

2
]

≤ 5

(nj − 1)2
E
[
(M2,j −M1,j)

2
]
.

The second point of the first statement can be proved in the exact same manner.

Second statement - Control of E[X ′
(1) −M1,j |X1]. In this part, we study the cell A(1)

n,j(X1,Θ). The cell A(1)
n,j(X1,Θ)

contains nj data points (including X1). We denote by X ′
1, . . . , X

′
nj−1 the observations falling into A

(1)
n,j(X1,Θ), different
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from X1. Note that, these nj − 1 observations are still i.i.d. uniformly distributed in [M1,j,−;M2,j,+]. We denote by
X ′

(1), . . . , X
′
(nj−1), the subsample X ′

1, . . . , X
′
nj−1. We have

M2,j −M1,j = M2,j −X ′
(nj−1) +

nj−2∑
q=1

(
X ′

(nj−q) −X ′
(nj−q−1)

)
+X ′

(1) −M1,j . (229)

Thus,

E
[
X ′

(1) −M1,j |X1

]
+ E

[
M2,j −X ′

(nj−1)|X1

]
= E [M2,j −M1,j |X1]− (nj − 2)E

[
X ′

(2) −X ′
(1)|X1

]
. (230)

The variables X ′
(1) and X ′

(2) being order statistics of a subsample independent of X1, one gets

E
[
X ′

(2) −X ′
(1)|X1

]
= E

[
E

[
X ′

(2) −X ′
(1)

M2,j,+ −M1,j,−
|X1,M1,j,−,M2,j,+

]
(M2,j,+ −M1,j,−)|X1

]
(231)

= E [E [B(1, nj − 1)] (M2,j,+ −M1,j,−)|X1] (232)

=
1

nj
E [(M2,j,+ −M1,j,−)|X1] (233)

≥ 1

nj
E [(M2,j −M1,j)|X1] . (234)

Finally,

E
[
X ′

(1) −M1,j |X1

]
+ E

[
M2,j −X ′

(nj−1)|X1

]
≤
(
1− nj − 2

nj

)
E [(M2,j −M1,j)|X1] , (235)

=
2

nj
E [(M2,j −M1,j)|X1] , (236)

and, by symmetry,

E
[
X ′

(1) −M1,j |X1

]
≤ 1

nj
E [(M2,j −M1,j)|X1] , (237)

and

E
[
M2,j −X ′

(nj−1)|X1

]
≤ 1

nj
E [(M2,j −M1,j)|X1] . (238)

Lemma B.9 (Control of the leaf side and volume of a fully developed median RF). Assume that n ≥ 4 is a power of
two. Consider a median tree of depth k and denote An,k(X1,Θ) the leaf containing X1. For all ℓ ∈ {1, . . . , d}, we
denote Kℓ the number of splits along the ℓ-th direction. Let also δℓ(X1,Θ) be the vector whose components are defined as
δj,ℓ(X1,Θ) = 1 if the j-th cut of the cell A(ℓ)

n (X1,Θ) is made along direction ℓ and 0 otherwise. Then,

E
[
µ(A

(ℓ)
n,k(X1,Θ))|X1, δℓ(X1,Θ)

]
≤ 2−Kℓ+2

∏
j:δj,ℓ=1,
j≤k−2

(
1 +

2√
nj − 1

)
. (239)

In particular, letting C2 = 4 exp(5/(
√
2− 1)), we have

E
[
µ(A

(ℓ)
n,k(X1,Θ))|X1, δℓ(X1,Θ)

]
≤ C2 2

−Kℓ , (240)

and

E [µ(An,k(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)] ≤ C22
−k. (241)
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Proof. We write A
(ℓ)
n,j(X1,Θ) = [M1,j ,M2,j ] the cell of the RF containing X1 along the direction ℓ, at depth j. To lighten

the notations, we omit the dependencies in X1, in Θ and in ℓ. We also write X ′
1, ..., X

′
nj

the data points contained in the cell

A
(ℓ)
n,j(X1,Θ), and we denote by X ′

(1), ..., X
′
(nj−1) the ordered version of {X ′

1, ..., X
′
nj
} \ {X1}. We suppose that the next

cut is occurring on the ℓ-th direction and compute the size of the new cell containing X1, A(ℓ)
n,j+1(X1,Θ), so that 4 different

events are possible:

1. X1 is in the first "part" of the cell, i.e. X1 ∈
[
M1,j , X

′
(nj/2−1)

]
;

2. X1 is in the second "part" of the cell, i.e. , X1 ∈
[
X ′

(nj/2+1),M2,j

]
;

3. X1 is in the "middle (left)" of the cell, i.e. X1 ∈
[
X ′

(nj/2−1), X
′
(nj/2)

]
;

4. X1 is in the "middle (right)" of the cell, X1 ∈
[
X ′

(nj/2)
, X ′

(nj/2+1)

]
.

The length of the following cell can be therefore decomposed with respect to the previous events:

µ
(
A

(ℓ)
n,j+1(X1,Θ)

)
(242)

=

(
X ′

(nj/2−1) +X ′
(nj/2)

2
−M1,j

)
1
X1∈

[
M1,j ,X′

(nj/2−1)

] (243)

+

(
M2,j −

X ′
(nj/2)

+X ′
(nj/2+1)

2

)
1
X1∈

[
X′

(nj/2+1)
,M2,j

]

+

(
X1 +X ′

(nj/2)

2
−M1,j

)
1
X1∈

[
X′

(nj/2−1)
,X′

(nj/2)

] (244)

+

(
M2,j −

X ′
(nj/2)

+X1

2

)
1
X1∈

[
X′

(nj/2)
,X′

(nj/2+1)

] (245)

≤
(
X ′

(nj/2)
−M1,j

)
1
X1∈

[
M1,j ,X′

(nj/2−1)

] + (M2,j −X ′
(nj/2)

)
1
X1∈

[
X′

(nj/2+1)
,M2,j

] (246)

+
(
X ′

(nj/2)
−M1,j

)
1
X1∈

[
X′

(nj/2−1)
,X′

(nj/2)

] + (M2,j −X ′
(nj/2)

)
1
X1∈

[
X′

(nj/2)
,X′

(nj/2+1)

] (247)

≤
(
X ′

(nj/2)
−M1,j

)
1X1∈[M1,j ,X′

(nj/2)
] +
(
M2,j −X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j ] (248)

=
(
X ′

(nj/2)
−M1,j

)
+ 2

(
M1,j +M2,j

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j ] (249)

=
(
X ′

(nj/2)
−X ′

(1)

)
+
(
X ′

(1) −M1,j

)
+ 2

(
X ′

(1) +X ′
(nj−1)

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j ]

−
((

X ′
(1) +X ′

(nj−1)

)
)− (M1,j +M2,j)

)
1X1∈[X′

(nj/2)
,M2,j ] (250)

≤
(
X ′

(nj/2)
−X ′

(1)

)
+
(
X ′

(1) −M1,j

)
+ 2

(
X ′

(1) +X ′
(nj−1)

2
−X ′

(nj/2)

)
1X1∈[X′

(nj/2)
,M2,j ]

+ (M2,j −X ′
(nj−1)). (251)
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Therefore,

E
[
µ
(
A

(ℓ)
n,j+1(X1,Θ)

) ∣∣∣∣X1, δℓ(X1,Θ)

]
≤ E

[
(X ′

(nj−1) −X ′
(1))E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

|X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

] ∣∣X1, δℓ(X1,Θ)

]

+ 2E

[
E

[∣∣∣∣∣X
′
(nj−1) +X ′

(1)

2
−X ′

(nj/2)

∣∣∣∣∣
∣∣∣∣X1, δℓ(X1,Θ), X ′

(1), X
′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

+ E
[
X ′

(1) −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
+ E

[
M2,j −X ′

(nj−1)

∣∣∣∣X1, δℓ(X1,Θ)

]
. (252)

Regarding the first term of (252), remark that by property of the uniform distribution, conditional on X ′
(1) and X ′

(nj−1), the
order statistics between 1 and nj − 1 follow Beta distributions independently from X1 and δℓ(X1,Θ). Therefore,

X ′
(nj/2)

−X ′
(1)

X ′
(nj−1) −X ′

(1)

∣∣X ′
(1), X

′
(nj−1) ∼ B(nj/2− 1, nj/2− 1),

so that

E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

∣∣∣∣X1, δℓ(X1,Θ), X ′
(1), X

′
(nj−1)

]
=

nj/2− 1

2(nj/2− 1)
=

1

2
.

Overall the first term of (252) verifies

E

[
(X ′

(nj−1) −X ′
(1))E

[
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

∣∣X1, δℓ, X
′
(1), X

′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

= E

[
X ′

(nj−1) −X ′
(1)

2

∣∣X1, δℓ(X1,Θ)

]
(253)

≤ E
[
M2,j −M1,j

2

∣∣X1, δℓ(X1,Θ)

]
. (254)

Regarding the second term of (252), we have

E

[∣∣∣∣∣X
′
(nj−1) +X ′

(1)

2
−X ′

(nj/2)

∣∣∣∣∣
∣∣∣∣X1, δℓ, X

′
(1), X

′
(nj−1)

]

= E

[∣∣∣∣∣X
′
(nj−1) −X ′

(1)

2
−
(
X ′

(nj/2)
−X ′

(1)

)∣∣∣∣∣
∣∣∣∣X1, δℓ, X

′
(1), X

′
(nj−1)

]
(255)

=
(
X ′

(nj−1) −X ′
(1)

)
E

[∣∣∣∣∣12 −
X ′

(nj/2)
−X ′

(1)

X ′
(nj−1) −X ′

(1)

∣∣∣∣∣
∣∣∣∣X1, δℓ, X

′
(1), X

′
(nj−1)

]
(256)

= (X ′
(nj−1) −X ′

(1))E
[∣∣∣∣12 − B(nj/2− 1, nj/2− 1)

∣∣∣∣] (257)

≤ (X ′
(nj−1) −X ′

(1))

√√√√E

[∣∣∣∣B(nj/2− 1, nj/2− 1)− 1

2

∣∣∣∣2
]

(258)

≤ M2,j −M1,j

2
√
nj − 1

, (259)

where the last inequality is simply obtained by computing the variance of a Beta distribution.
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Therefore,

2E

[
E

[∣∣∣∣∣X
′
(nj−1) +X ′

(1)

2
−X ′

(nj/2)

∣∣∣∣∣
∣∣∣∣X1, δℓ(X1,Θ), X ′

(1), X
′
(nj−1)

] ∣∣∣∣X1, δℓ(X1,Θ)

]

≤ 1

2
√
nj − 1

E
[
M2,j −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
. (260)

The third and fourth terms of (252) have the same expression, controlled by Lemma B.8:

E
[
X ′

(1) −M1,j

∣∣∣∣X1, δℓ(X1,Θ)

]
= E

[
M2,j −X ′

(nj−1)

∣∣∣∣X1, δℓ(X1,Θ)

]
(261)

≤ 1

nj
E
[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
]
. (262)

Finally, gathering (254), (260) and (262) yields

E
[
µ
(
A

(ℓ)
n,j+1(X1,Θ)

) ∣∣∣∣X1, δℓ(X1,Θ)

]
≤ E

[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
](1

2
+

1

2
√
nj − 1

+
2

nj

)
(263)

≤ 1

2

(
1 +

5√
nj − 1

)
E
[
M2,j −M1,j

∣∣X1, δℓ(X1,Θ)
]

(264)

=
1

2

(
1 +

5√
nj − 1

)
E
[
µ
(
A

(ℓ)
n,j(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]

(265)

for all nj ≥ 4. An iterative product yields

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]
≤ E

 ∏
j:δj,ℓ=1
j≤k−2

1

2

(
1 +

5√
nj − 1

)∣∣X1, δℓ(X1,Θ)

 (266)

=
∏

j:δj,ℓ=1
j≤k−2

1

2

(
1 +

5√
nj − 1

)
(267)

= 2−Kℓ+2
∏

j:δj,ℓ=1
j≤k−2

(
1 +

5√
nj − 1

)
, (268)

which proves the first statement. Recalling that nj = n2−j ,

k∑
j=0

log

(
1 +

5√
n
2j/2

)
≤ 5√

n

2(k+1)/2 − 1√
2− 1

(269)

≤ 5√
2− 1

2(log2 n)/2

√
n

(270)

=
5√
2− 1

, (271)

we have

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]
≤ 2−Kℓ+2 exp

(
5√
2− 1

)
, (272)
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which proves the second statement. Note that

E
[
µ (An,k(X1,Θ))

∣∣X1, δ1(X1,Θ), . . . , δd(X1,Θ)
]

(273)

=E

[
d∏

ℓ=1

µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δ1(X1,Θ), . . . , δd(X1,Θ)

]
(274)

=

d∏
ℓ=1

E
[
µ
(
A

(ℓ)
n,k(X1,Θ)

) ∣∣X1, δℓ(X1,Θ)
]

(275)

≤
d∏

ℓ=1

∏
j:δj,ℓ=1
j≤k−2

1

2

(
1 +

5√
nj − 1

)
(276)

≤
∏

j≤k−2

1

2

(
1 +

5√
nj − 1

)
(277)

≤4× 2−k
∏

j≤k−2

(
1 +

5√
nj − 1

)
(278)

≤4× 2−k exp

(
5√
2− 1

)
. (279)

B.5 Proof of the main result (median RF consistency)

Theorem B.10 (Upper bound on the risk of the median forest). Consider a generic pair (X,Y ) of random variables such
that Y = f⋆(X) + ε, where ||∂ℓf⋆||2∞ exists for all ℓ ∈ {1, . . . , d}, X is uniformly distributed on [0, 1]d and the noise ε
satisfies, almost surely, E[ε|X] = 0 and V[ε|X] ≤ σ2. Consider n ≥ 16 i.i.d. observations, where n is a power of two,
distributed as the generic pair (X,Y ). Then, the risk of the infinite median forest trained on this data set satisfies

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2] ≤ C1d

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ σ2C2,d(log2 n)
−(d−1)/2, (280)

with

C1 = 1024 exp

(
42 +

√
5

2−
√
2

)
and C2,d = 2

(
32 exp

(
5√
2− 1

) )d

dd/2. (281)

In particular, the infinite median forest is consistent, that is

lim
n→∞

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
= 0. (282)
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Proof. We begin with a simple bias/variance decomposition:

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
= E

(EΘ

[
n∑

i=1

Wni(X,Θ)Yi

]
− f⋆(X)

)2


= E

( n∑
i=1

EΘ [Wni(X,Θ)] (f⋆(Xi) + εi)− f⋆(X)

)2


= E

( n∑
i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X)) +

n∑
i=1

EΘ [Wni(X,Θ)] εi)

)2


= E

( n∑
i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X))

)2
+ E

( n∑
i=1

EΘ [Wni(X,Θ)] εi)

)2
 ,

where the penultimate line comes from the fact that

n∑
i=1

EΘ [Wni(X,Θ)] = EΘ

[
n∑

i=1

Wni(X,Θ)

]
= 1, (283)

(since all leaves contain exactly one observation), and the last line results from a null cross product.

Controlling the bias We have,

E

( n∑
i=1

EΘ [Wni(X,Θ)] (f⋆(Xi)− f⋆(X))

)2


= E

(EΘ

[
n∑

i=1

Wni(X,Θ)(f⋆(Xi)− f⋆(X))

])2
 (284)

≤ E

( n∑
i=1

Wni(X,Θ)(f⋆(Xi)− f⋆(X))

)2
 (285)

≤ E

( n∑
i=1

1X∈An(Xi,Θ)(f
⋆(Xi)− f⋆(X))

)2
 (286)

≤ E

[
n∑

i=1

1X∈An(Xi,Θ) (f
⋆(Xi)− f⋆(X))

2

]
, (287)

because Wni(X,Θ) = 1X∈An(Xi,Θ) and by applying twice Jensen inequality (third and fifth lines). Noticing that,

1X∈An(Xi,Θ)|f⋆(X)− f⋆(Xi)| ≤
d∑

ℓ=1

||∂ℓf⋆||∞|X(ℓ)
i −X(ℓ)|1X∈An(Xi,Θ)

≤
d∑

ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))1X∈An(Xi,Θ),
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we get,

E

[
n∑

i=1

1X∈An(Xi,Θ) (f
⋆(Xi)− f⋆(X))

2

]
≤ E

 n∑
i=1

1X∈An(Xi,Θ)

(
d∑

ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))

)2


≤ E

( d∑
ℓ=1

||∂ℓf⋆||∞µ(A(ℓ)
n (X,Θ))

)2
 (288)

≤

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)
d∑

ℓ=1

E
[
µ(A(ℓ)

n (X,Θ))2
]
. (289)

where the last inequality directly results from Cauchy-Schwarz inequality. By Lemma B.7, since k = ⌊log2 n⌋,(
d∑

ℓ=1

||∂ℓf⋆||2∞

)
d∑

ℓ=1

E
[
µ(A(ℓ)

n (X,Θ))2
]
≤ Cd

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

, (290)

with

C = 1024 exp

(
42 +

√
5

2−
√
2

)
. (291)

Controlling the variance Following Biau (2012), the variance term of the median forest writes

E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2
 = E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
ε2i

]
(292)

= E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
E
[
ε2i |X,X1, . . . , Xn

]]
(293)

≤ E

[
n∑

i=1

(EΘ [Wni(X,Θ)])
2
σ2

]
(294)

≤ σ2nE
[
(EΘ [Wn1(X,Θ)])

2
]
, (295)

where we have used the fact that the cross products are null (since E[εi|Xi] = 0). Since each leaf of the median tree contains
exactly one observation, denoting Θ′ an i.i.d. copy of Θ, we have

(EΘ [Wn1(X,Θ)])
2
= EΘ [Wn1(X,Θ)]EΘ′ [Wn1(X,Θ′)]

= EΘ,Θ′ [Wn1(X,Θ)Wn1(X,Θ′)]

= EΘ,Θ′
[
1X∈An(X1,Θ)1X∈An(X1,Θ′)

]
.

Consequently,

E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2
 ≤ σ2nE

[
1X∈An(X1,Θ)1X∈An(X1,Θ′)

]
.

For all ℓ, we let A(ℓ)
n (X1,Θ) be the cell An(X1,Θ) projected onto the ℓ-th dimension. Let also δℓ(X1,Θ) be the vector

whose components are defined as δj,l = 1 if the j-th cut of the cell A(ℓ)
n (X1,Θ) is made along direction ℓ and 0 otherwise.

We define similarly δℓ(X1,Θ
′) for the cell A(ℓ)

n (X1,Θ
′). We also let Kℓ = ∥δℓ(X1,Θ)∥1 (resp. K ′

ℓ) be the number of
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times the ℓ-th direction is split in the tree built with Θ (resp. Θ′). Then,

E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2


≤ σ2nE
[
1X∈An(X1,Θ)∩An(X1,Θ′)

]
= σ2nE

[
d∏

ℓ=1

µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
)]

= σ2nE

[
E

[
d∏

ℓ=1

µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]]

= σ2nE

[
d∏

ℓ=1

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]]
.

The last equality is obtained by conditional independence: indeed, as the Xis are uniformly distributed, the positions of the
coordinates do not influence each others. Therefore only the number of cuts along the other directions will influence the
length the cell along a given direction, hence the conditional independence. Now,

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]

≤ E
[
min(µ(A(ℓ)

n (X1,Θ)), µ(A(ℓ)
n (X1,Θ

′))

∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]
=

1

2

(
E

[
µ(A(ℓ)

n (X1,Θ))

∣∣∣∣X1, δℓ(X1,Θ)

]
+ E

[
µ(A(ℓ)

n (X1,Θ
′))

∣∣∣∣X1, δℓ(X1,Θ
′)

])
− 1

2
E
[
|µ(A(ℓ)

n (X1,Θ))− µ(A(ℓ)
n (X1,Θ

′))|
∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
.

Moreover,

E
[
|µ(A(ℓ)

n (X1,Θ))− µ(A′(ℓ)
n (X1,Θ))|

∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]
= E

[
|µ(A(ℓ)

n (X1,Θ))− µ(A(ℓ)
n (X1,Θ

′))|
(
1Kℓ<K′

ℓ
+ 1Kℓ≥K′

ℓ

) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]
≥ E

[(
µ(A(ℓ)

n (X1,Θ))− µ(A(ℓ)
n (X1,Θ

′))
) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
1Kℓ<K′

ℓ

+ E
[(

µ(A(ℓ)
n (X1,Θ

′))− µ(A(ℓ)
n (X1,Θ))

) ∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ
′)

]
1Kℓ≥K′

ℓ

≥
(
E
[
µ(A(ℓ)

n (X1,Θ))|X1, δℓ(X1,Θ)
]
− E

[
µ(A(ℓ)

n (X1,Θ
′))|X1, δℓ(X1,Θ

′)
])
1Kℓ<K′

ℓ

+
(
E
[
µ(A(ℓ)

n (X1,Θ
′))|X1, δℓ(X1,Θ

′)
]
− E

[
µ(A(ℓ)

n (X1,Θ))|X1, δℓ(X1,Θ)
])
1Kℓ≥K′

ℓ
.

Letting Bℓ = E
[
µ(A

(ℓ)
n (X1,Θ))|X1, δℓ(X1,Θ)

]
and B′

ℓ = E
[
µ(A

(ℓ)
n (X1,Θ

′))|X1, δℓ(X1,Θ
′)
]
, we have

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]

≤ 1

2
(Bℓ +B′

ℓ)−
1

2
(Bℓ −B′

ℓ)1Kℓ<K′
ℓ
− 1

2
(B′

ℓ −Bℓ)1Kℓ≥K′
ℓ

≤ Bℓ1Kℓ≥K′
ℓ
+B′

ℓ1Kℓ<K′
ℓ
.
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Now, according to Lemma B.9, letting C2 = 4 exp(5/(
√
2− 1)), we have Bℓ ≤ C22

−Kℓ and B′
ℓ ≤ C22

−K′
ℓ . Therefore,

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]
≤ C22

−Kℓ1Kℓ≥K′
ℓ
+ C22

−K′
ℓ1Kℓ<K′

ℓ

≤ C22
−max(Kℓ,K

′
ℓ).

Overall,

E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2
 ≤ σ2nE

[
d∏

ℓ=1

E

[
µ
(
A(ℓ)

n (X1,Θ) ∩A(ℓ)
n (X1,Θ

′)
) ∣∣∣∣∣X1, δℓ(X1,Θ), δℓ(X1,Θ

′)

]]
(296)

≤ σ2nE

[
d∏

ℓ=1

C22
−max(Kℓ,K

′
ℓ)

]
(297)

≤ σ2Cd
2n E

[
2−

∑d
ℓ=1 max(Kℓ,K

′
ℓ)
]

(298)

≤ σ2Cd
2n 2−knE

[
2−

∑d
ℓ=1 |Kℓ−K′

ℓ|
]
, (299)

since

d∑
ℓ=1

max(Kℓ,K
′
ℓ) =

1

2

d∑
ℓ=1

Kℓ +
1

2

d∑
ℓ=1

K ′
ℓ +

1

2

d∑
ℓ=1

|Kℓ −K ′
ℓ|

= kn +
1

2

d∑
ℓ=1

|Kℓ −K ′
ℓ|.

According to Lemma S.1 from Klusowski (2021) (see Supplementary Materials), one has

E
[
2−

∑d
ℓ=1 |Kℓ−K′

ℓ|
]
≤ 8d dd/2

k
(d−1)/2
n

. (300)

Finally, combining (299) and (300), the variance of the median forest is upper bounded by

E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2
 ≤ σ2Cd

2n 2−kn
8d dd/2

k
(d−1)/2
n

(301)

≤ 2σ2
(
8 C2 d

1/2
)d

(log2 n)
−(d−1)/2, (302)

since kn = ⌊log2(n)⌋. All in all,

E
[(
fMedRF
∞,n (X)− f⋆(X)

)2]
≤ Cd

(
d∑

ℓ=1

||∂ℓf⋆||2∞

)(
1− 3

4d

)log2 n

+ 2σ2
(
8 C2 d

1/2
)d

(log2 n)
−(d−1)/2

with C2 = 4 exp(5/(
√
2− 1)) and

C = 1024 exp

(
42 +

√
5

2−
√
2

)
. (303)
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B.5.1 Controlling the variance of an interpolating Median RF in an asymptotic high-dimensional setting

The following result shows the decrease of the variance of the Median RF under an asymptotic high-dimensional framework.
It is also numerically illustrated in Section C.1.5.

Proposition B.11. For all d > log2 n, the variance of the infinite interpolating Median RF fMedRF
∞,n verifies

V (fMedRF
∞,n ) = E

( n∑
i=1

EΘ [Wni(X,Θ)] εi

)2
 ≤ 4C2

2σ
2

n
+ 2C2σ

2

(
1− exp

(
− log22 n

d− log2 n

))
,

where C2 = 4 exp
(
5/(

√
2− 1)

)
. Suppose that the input dimension d dominates log22 n asymptotically (d ≫ log22 n), then

the variance tends to 0 (as n, d tends to infinity), with a rate of the order of max( log
2 n
d , 1

n ).

The proof is given below. This results shows that the Median RF benefits from an increase of the dimension as it will
improve its averaging effect and help to reduce the variance. Of course, in such a setting, the variance is only one part of the
story, and a control on the bias becomes a real hindrance (as the approximation error may explode), unless extra model
assumptions are formulated. For instance, consider for any input dimension d the case of a linear model, i.e. Y = X⊤θ + ε
for θ ∈ Rd and such that ∥θ∥2 ≤ C/

√
d, with C > 0 a constant. One can actually show that in such a setting, the bias term

remains bounded as n (and d) grows towards infinity (using for example the analysis conducted in the next theorem). This
echoes in particular the behavior of ridgeless least squares estimator in modern interpolation regimes (see, Hastie et al.,
2022).

Proof of Proposition B.11. A typical bias-variance decomposition yields (see e.g. Biau (2012))

V (fMedRF
∞,n ) ≤ σ2nP (X ∈ An(X1,Θ) ∩An(X1,Θ

′)) (304)

with Θ′ an independent copy of Θ. Recalling that the depth is chosen as k = ⌊log2 n⌋. Consider the event

E = E(Θ,Θ′, X1, k) := {Θ and Θ′ do not cut on common directions on the path to X1}.

Denote M(Θ, X1) the number of distinct directions chosen by the tree Θ to produce the leaf containing X1 (upper bounded
by log2 n). Then,

P (E) ≥ E

[(
d−M(Θ, X1)

d

)log2 n
]

(305)

≥
(
d− log2 n

d

)log2 n

(306)

= exp

(
log2 n log

(
1− log2 n

d

))
(307)

≥ exp

(
− log22 n

d− log2 n

)
, (308)

using, for all x ∈ [0, 1), log(1− x) ≥ −x/(1− x). The above probability tends to 1 as soon as d ≫ log22 n. Then,

P (X ∈ An(X1,Θ) ∩An(X1,Θ
′)) (309)

= P ({X ∈ An(X1,Θ) ∩An(X1,Θ
′)} ∩ E) + P ({X ∈ An(X1,Θ) ∩An(X1,Θ

′)} ∩ Ec)

≤ P (X ∈ An(X1,Θ)|X ∈ An(X1,Θ
′), E)P (X ∈ An(X1,Θ

′)) + P ({X ∈ An(X1,Θ)} ∩ Ec) . (310)

Applying Lemma B.9 (Line (241)) yields

P (X ∈ An(X1,Θ
′)) = E [µ (An(X1,Θ

′)] (311)
= E [E [µ(An(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)]] (312)

≤ C22
−k (313)
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with C2 = 4 exp
(

5√
2−1

)
. Moreover, conditional on E, {X ∈ An(X1,Θ)} and {X ∈ An(X1,Θ

′)} are independent as
Θ and Θ′ do not share any common direction on the path to X1 and therefore the splits in Θ and Θ′ are performed on
independent sample components (by uniformity of X and X1). Therefore, also by Lemma B.9,

P (X ∈ An(X1,Θ)|X ∈ An(X1,Θ
′), E) = E [µ (An(X1,Θ))] (314)

= E [E [µ(An(X1,Θ))|X1, δ1(X1,Θ), . . . , δd(X1,Θ)]] (315)

≤ C22
−k. (316)

Similarly, the volume µ (An(X1,Θ)) is independent of the directions chosen to build the leaf, therefore

P ({X ∈ An(X1,Θ)} ∩ Ec) = P (X ∈ An(X1,Θ))P (Ec)

≤ C22
−k

(
1− exp

(
− log22 n

d− log2 n

))
.

Overall,

P (X ∈ An(X1,Θ) ∩An(X1,Θ
′)) ≤ C2

22
−2k + C22

−k

(
1− exp

(
− log22 n

d− log2 n

))
and

V (fMedRF
∞,n ) ≤ C2

2nσ
22−2k + nσ2C2

(
1− exp

(
− log22 n

d− log2 n

))
2−k. (317)

Since k = ⌊log2 n⌋, we have 2−k ≤ 2/n and

V (fMedRF
∞,n ) ≤ 4C2

2σ
2

n
+ 2C2σ

2

(
1− e−

log22 n

d−log2 n

)
. (318)

B.5.2 Proof of Proposition 5.3 (Interpolation volume of Median RF)

It is possible to conduct a one-dimensional analysis and then to extend the result to the multi-dimensional case by a simple
multiplication. Indeed all the leaves are determined coordinate per coordinate, therefore the interpolation area is the product
of all interpolation areas along each direction.

Let Z1, . . . , Zn be n i.i.d. random variables uniformly distributed over [0, 1]. As in the infinite Median RF, the univariate
trees, i.e., built by cutting along one direction only, appear almost surely. Then, the length of a leaf of such tree is bounded
in expectation by Z(k+1) − Z(k−1) where Z(i) indicates the i-the statistical order. Moreover, it is known that Z(k) follows a
Beta distribution of parameters (k, n− k + 1). Therefore,

E
[
Z(k+1) − Z(k−1)

]
=

k + 1

n+ 1
− k − 1

n+ 1
(319)

≤ 2

n
. (320)

Now, as X1, ..., Xn are i.i.d. and uniformly distributed over [0, 1]d, for any data point x ∈ [0, 1]d we simply have that

E [µ(Amin,x)] ≤
2d

nd
.

Finally, since by definition all interpolation zones are disjoint and the interpolation area is the union of n interpolation areas,
we have

E [µ(Amin)] ≤
2d

nd−1

which ends the proof.
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B.6 Proofs of Section 6 (Interpolation volume of Breiman RF)

Proof of Proposition 6.1. Before diving into the computations, let us recall two facts about Breiman RF construction. First,
in CART, each cut is made at the middle of two consecutive points in a given direction. Second, considering all univariate
trees (trees whose splits are performed along one single direction), the probability of cutting between all pairs of successive
points along all dimensions is strictly positive. Therefore, for a given point Xi, one can define the minimal interpolation
zone around Xi as

Amin,Xi
:=

⋂
M∈N,ΘM

AXi,ΘM
. (321)

The boundaries of this area are given for each direction by the cuts between Xi and its neighbor points respectively to the
considered direction, as illustrated on Figure 6.








































Minimal 
interpolation 

zone

Potential 
interpolation 

zone

Figure 6: Different interpolation zones of a data point (in red).

1. The interpolation zone is the union of n interpolation zones, each one containing a single Xi. We denote
A(mM,n(.,ΘM )) = AX1,ΘM

∪ ... ∪AXn,ΘM
with AXi,ΘM

= {x ∈ [0, 1]d,mM,n(x,ΘM ) = Yi}. We begin with a
one-dimensional analysis, and consider, without loss of generality, the first variable. We let Z1 := X

(1)
1 , ..., Zn := X

(1)
n

the first components of the observations X1, . . . , Xn. As X1, . . . , Xn are i.i.d. and follow a uniform distribution over
[0, 1]d, Z1, ..., Zn are i.i.d. and uniformly distributed on [0, 1]. We consider the interpolation area at x = Zn and we
reason conditional on Zn in the following. The length (volume) of Amin,x restricted to the first dimension is simply
given by the sum of the distance from x to its closest point on the left side and to its closest point on the right side
(divided by 2 as the cut are made in the middle of two points). Therefore,

µ(Amin,x) =
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi + min

{Zi,Zi>x}∪{1}
Zi − x

)
. (322)

All computations are made conditionally on x. Denoting Nx the cardinal of the set {Zi : Zi < x with 1 ≤ i < n}, we
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have for any t ∈ [0, x/2),

P
(
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi

)
≤ t

∣∣x) (323)

= 1− P
(

max
{Zi,Zi<x}∪{0}

Zi < x− 2t
∣∣x) (324)

= 1− E
[
E
[
P
(
(Zi1 < x− 2t) ∩ ... ∩ (ZiNx

< x− 2t)
∣∣Nx, Zi1 < x, ..., ZiNx

< x, x
)] ∣∣x] (325)

= 1− E
[
P (Z1 < x− 2t|Z1 ≤ x, x)

Nx
∣∣x] (326)

= 1−
n−1∑
k=0

P (Nx = k|x)P (Z1 < x− 2t|Z1 < x, x)
k (327)

= 1−
n−1∑
k=0

P (Nx = k|x)
(
x− 2t

x

)k

(328)

= 1−
(
(1− x) + x

(
x− 2t

x

))n−1

(329)

= 1− (1− 2t)n−1 (330)

where the penultimate equality is obtained by noticing that Nx is a binomial of parameters (n− 1, x) and computing
its probability-generating function. So for all t ≥ 0,

P
(
1

2

(
x− max

{Zi,Zi<x}∪{0}
Zi

)
≤ t|x

)
= 1− (1− 2t)n−11t<x/2.

By symmetry,

P
(
1

2

(
min

{Zi,Zi>x}∪{1}
Zi − x

)
≤ t|x

)
= 1− (1− 2t)n−11t>(1−x)/2.

Overall, using the fact that for any positive variable Z with cumulative function FZ , E [Z] =
∫
(1− FZ), we have

E [µ(Amin,x)|x] =
∫ x/2

0

(1− 2u)n−1du+

∫ (1−x)/2

0

(1− 2u)n−1du

=
1

2n
(2− (1− x)n − xn)

≤ 1

n

(
1− 1

2n

)
.

Now, as X1, ..., Xn are i.i.d. and uniformly distributed over [0, 1]d, for any data point x ∈ [0, 1]d we simply have that

Amin,x =
d×

j=1

Amin,x(j) .

Therefore,

E [µ(Amin,x)] ≤
1

nd

(
1− 2−n

)d
.

Finally, since by definition all interpolation zones are disjoint, we have

E [µ(Amin)] ≤
1

nd−1

(
1− 2−n

)d
.

2. It is enough to notice that the minimal interpolation zone is the intersection of all the potential interpolation zones. It is
reached when the forest contains all the possible cuts. Then, as the probability of any given cut appearing is strictly
greater than 0 by hypothesis, the probability of its appearance in the infinite forest is one. Therefore almost surely,
when M grows to infinity, the interpolation zone of the forest reaches the minimal interpolation zone.
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C Experiments

For all experiments, we consider four different regression models, most of which have been already considered in Van der
Laan et al. (2007): Model 1 is additive without noise (d = 2), Model 2 is polynomial with interactions (d = 8), Model 3
is the sum of elementary terms that contain non-polynomial interactions (d = 6) and Model 4 (d = 5) corresponds to a
generalized linear model:

• Model 1: d = 2, Y = 2X2
1 + exp(−X2

2 )

• Model 2: d = 6, Y = X2
1 +X2

2X3e
−|X4| +X5 −X6 +N (0, 0.5)

• Model 3: d = 8, Y = X1X2 +X2
3 −X4X5 +X6X7 −X2

8 +N (0, 0.5)

• Model 4: d = 5, Y = 1/(1 + exp(−10(
∑d

i=1 Xi − 1/2))) +N (0, 0.05)

• Model 5: d = 4, Y = − sin(2X1X2) +X2
2 +X3 − eX4 +N (0, 0.5)

• Model 6: d = 8, Y = 1{X1≥0} +X3
2 + 1{X3+X5−X6−X7−X8≥1} + e−X2

2 +N (0, 0.5)

• Model 7: d = 4, Y = X1+2(X2−1)2+ sin(2πX3)
2−sin(2πX3)

+2 sin(2πX4)+2 cos(2πX4)+4 sin(2πX4)
2+4 cos(2πX4)

2+

N (0, 0.5)

• Model 8: d = 4, Y = X1 + 3X2
2 − 2eX3 +X4.

All the experiments are conducted using Python3. We use the Scikit-learn RandomForestRegressor class to implement the
Breiman RF model. We coded CRF, KeRF and Median RF models ourselves, mainly relying on numpy and joblib libraries
for computation optimisation. Experiments were run on 4 16-cores CPU and took at most a few hours to run.

C.1 Consistency experiments

For all consistency experiments, the dataset was divided into a train dataset (80% of the data) and a test dataset (20%) of the
data.

Unless specified otherwise, the parameters of the estimators were set as follows:

• all RF estimators have 500 trees to mimic the behavior of the infinite RF.

• parameter bootstrap is set to False for all estimators in order preserve the interpolation property, or set to True when
specified.

• all other parameters are set to default value.

C.1.1 Consistency of KeRF in the mean interpolation regime

We train a centered KeRF (with M = 500) of depth fixed to ⌊log2 n⌋+ 1 (mean interpolation regime) for different sample
sizes n and evaluate the empirical quadratic risk on the test set.

Results On Figure 7, for all models, the risk decreases towards zero as the number of samples n increases (with slow
convergence rates). These numerical results, even though obtained for a finite KeRF with a large number M = 500 of
centered trees, support the theoretical consistency of the infinite KeRF in the mean interpolation regime (see Theorem 4.1).

C.1.2 Consistency of Median RF in the interpolation regime

We analyze the empirical performances of the Median RF in a noiseless and a noisy setting on the models specified above.
For each model, given a training set, we train the Median RF (with M = 500 trees) until pure leaves are reached, and
measure its excess risk on a test set.

Figure 8 shows that the excess risk of the Median RF decreases as n grows. These empirical performances lend support to
the idea that Median RF are consistent even with a finite number of trees and beyond the noiseless setting.
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Figure 7: KeRF consistency results: excess risk w.r.t. sample sizes. For each sample size n, the experiment is repeated 30
times: we represent the mean over the 30 tries (bold line) and the mean ± std (filled zone).
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Figure 8: Consistency results for a Median RF with M = 500 trees: excess risk w.r.t. the sample size n. For each sample
size, the experiment is repeated 30 times: we represent the mean over the 30 tries (bold line) and the mean ± std (filled
zone).

C.1.3 Consistency of Breiman RF, additional models to Figure 1

We assess the consistency of Breiman RF on Figures 9 and 10. The excess risk of both RF decreases towards 0 as n
increases.

C.1.4 Consistency of Breiman RF with max-feature=1

On Figure 11, we see that the excess risk of a Breiman RF with the max-features parameter set to 1 is decreasing towards 0
as n increases. This RF seems consistent for all models.

C.1.5 Decrease of the variance of the Breiman RF in a high-dimensional setting

Numerical experiments show the decrease of the variance of interpolating Breiman RF when d increases (Figures 12 and
13). The model involves no signal and only noise (with specified variance σ2).

C.1.6 Comparison of Breiman RF with and without bootstrap

We compare the performances of Breiman RF with and without bootstrap on Figure 14.

Adding boostrap yields better performances compared to simply diversifying the trees via feature randomization.
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Figure 9: Consistency of Breiman RF: excess risk w.r.t the sample size n. RF parameters: 2000 trees, max-depth set to
None. Boxplots over 10 tries.
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Figure 10: Consistency of Breiman RF: excess risk w.r.t the sample size n. RF parameters: 2000 trees, max-depth set to
None. Boxplots over 10 tries.

C.2 Interpolation experiments

C.2.1 Volume of the interpolation zone w.r.t sample size

We numerically evaluate the volume of the interpolation area of a Breiman RF (with 5000 trees, see Figure 17 in Appendix
C.2 for details about this choice) when the sample size n increases.

In Figure 15, the volume of the minimal interpolation zone is shown to tend polynomially fast to 0 (linear in the logarithmic
scale) for all considered models as the dataset size increases, matching the behavior of the theoretical bound established in
Proposition 6.1.

One could notice the slight gap between the theoretical and experimental curves, which actually reflects the gap between
an infinite forest (for which Proposition 6.1 holds) and its approximation by a finite forest (5000 trees here). This gap
naturally tends to increase with n (when the number of trees is fixed) as the approximation of the infinite RF by a finite one
deteriorates with n.

Increasing max-feature parameter We plot on Figure 16 the log-volume of the interpolation zone of a Breiman RF
with the max-features parameter set to ⌈d/3⌉ (the default value proposed in R randomForest package). The volume
decreases polynomially in n but slower than when max-features= 1 (Figure 15) which is to be expected: choosing
max-features= 1 should increase the diversity of the splits and therefore reduce the volume of the interpolation zone.
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Figure 11: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 500 trees, max-depth set to None,
max-features= 1, no bootstrap. Mean over 30 tries (doted line) and std (filled zone).
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Figure 12: Decrease of the variance of an interpolating Breiman RF with max-features=1 w.r.t. dimension d. 10
repetitions per boxplot, 5000 training points and 50000 testing points were used for each repetition. The Breiman RF
contains 1000 trees.

C.2.2 Volume of the interpolation zone w.r.t number of trees

In this section, we empirically measure how fast decreases the volume of the interpolation zone of a Breiman RF when its
number of trees M increases, and how close the interpolation zone gets from the minimal interpolation zone.

To this end, for a fixed sample size n = 500, we numerically evaluate the volume of the interpolation area when the number
M of trees in the forest grows. This volume is anticipated to be a non-increasing function of M (for M = 1, note that
the interpolation volume is 1, the volume of [0, 1]d), but its decrease rate highly depends on the data geometry, making
its theoretical evaluation difficult. The numerical results in Figure 17 show a fast decay towards zero of the interpolation
volume for all models, already tiny from M = 500 trees. Furthermore, it seems to converge to the theoretical bound (dotted
line) derived in Proposition 6.1 for an infinite RF with a max-feature parameter equal to 1.

C.2.3 Analysis of the interpolation property of Breiman RF with bootstrap

In this experiment, we try to measure how close a Breiman RF with bootstrap on is from exactly interpolating (with other
parameters being 500 trees, max-depth set to None, max-features= d). To this end, we measure the difference between the
true train labels (the Yis) and the predicted ones (the Ŷis) by computing

Iloss :=
1

n

n∑
i=1

|Yi − Ŷi|
Yi

.

The closer is this quantity to 0, the closer is the forest from interpolating. On Figure 18, we plot different quantiles of the
above quantity as n varies.

For instance, if we take the 0.8-quantile in red on Figure 18 and look at the upper-right plot (model 2), we read that the Iloss
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repetitions per boxplot, 5000 training points and 50000 testing points were used for each repetition. The Breiman RF
contains 1000 trees.
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Figure 14: Consistency of Breiman RF: excess risk w.r.t sample size. RF parameters: 2000 trees, max-depth set to None,
max-features= 1. Boxplots over 10 tries.

roughly equals 0.6 for 80% of the points. This quantity seems globally constant in n. Finally, the quantiles are smaller in
the case of a strong signal-to-noise ratio (models 1 and 4) than in the case of a bigger one (models 2 and 3).

On Figure 19, we also plot the quantiles of the Iloss for the four different models while the number of trees varies. Adding
trees does not significantly change the value of the different quantiles.
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Figure 15: Log volume of the interpolation zone of a Breiman RF with 5000 Trees, max features set to 1, no bootstrap.
Mean over 10 tries (red line) and mean ± std (filled zone). The theoretical bound (Proposition 6.1) is represented in green.
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Figure 18: Iloss of a Breiman RF w.r.t sample size n. RF parameters: 500 trees, bootstrap on, max-features= d, max-depth
set to None. Mean over 30 tries (doted lines) and std (filled zones).
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Figure 19: Iloss of a Breiman RF w.r.t number of trees. Parameters: bootstrap on, max-features= d, max-depth set to None.
Sample size n = 1000. Mean over 30 tries (doted lines) and std (filled zones).
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