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Abstract
This work concerns the development of deep
networks that are certifiably robust to adversarial
attacks. Joint robust classification-detection
was recently introduced as a certified defense
mechanism, where adversarial examples are
either correctly classified or assigned to the
“abstain” class. In this work, we show that such a
provable framework can benefit by extension to
networks with multiple explicit abstain classes,
where the adversarial examples are adaptively
assigned to those. We show that naïvely adding
multiple abstain classes can lead to “model
degeneracy”, then we propose a regularization
approach and a training method to counter this
degeneracy by promoting full use of the multiple
abstain classes. Our experiments demonstrate
that the proposed approach consistently achieves
favorable standard vs. robust verified accu-
racy tradeoffs, outperforming state-of-the-art
algorithms for various choices of number of
abstain classes. Our code is available at https:
//github.com/sinaBaharlouei/
MultipleAbstainDetection.

1 Introduction
Deep Neural Networks (DNNs) have revolutionized
many machine learning tasks such as image process-
ing (Krizhevsky et al., 2012; Zhu et al., 2021) and speech
recognition (Graves et al., 2013; Nassif et al., 2019). How-
ever, despite their superior performance, DNNs are highly
vulnerable to adversarial attacks and perform poorly on out-
of-distributions samples (Goodfellow et al., 2014; Liang
et al., 2017; Yuan et al., 2019). To address the vulnerability
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of DNNs to adversarial attacks, the community has designed
various defense mechanisms against such attacks (Papernot
et al., 2016; Jang et al., 2019; Goldblum et al., 2020; Madry
et al., 2017; Huang et al., 2021). These mechanisms provide
robustness against certain types of attacks, such as the Fast
Gradient Sign Method (FGSM) (Szegedy et al., 2013; Good-
fellow et al., 2014). However, the overwhelming majority
of these defense mechanisms are highly ineffective against
more complex attacks such as adaptive and brute-force meth-
ods (Tramer et al., 2020; Carlini and Wagner, 2017). This
ineffectiveness necessitates: 1) the design of rigorous ver-
ification approaches that can measure the robustness of a
given network; 2) the development of defense mechanisms
that are verifiably robust against any attack strategy within
the class of permissible attack strategies.

To verify the robustness of a given network against any at-
tack in a reasonable set of permissible attacks (e.g. `p-norm
ball around the given input data), one needs to solve a hard
non-convex optimization problem (see, e.g., Problem (1) in
this paper). Consequently, exact verifiers, such as the ones
developed in (Tjeng et al., 2017; Xiao et al., 2018), are not
scalable to large networks. To develop scalable verifiers, the
community turn to “inexact" verifiers which can only verify
a subset of perturbations to the input data that the network
can defend against successfully. These verifiers typically
rely on tractable lower bounds for the verification optimiza-
tion problem. Gowal et al. (2018) finds such a lower-bound
by interval bound propagation (IBP), which is essentially
an efficient convex relaxation of the constraint sets in the
verification problem. Despite its simplicity, this approach
demonstrates relatively superior performance compared to
prior works.

IBP-CROWN (Zhang et al., 2019) combines IBP with novel
linear relaxations to have a tighter approximation than stan-
dalone IBP. β-Crown (Wang et al., 2021) utilizes a branch-
and-bound technique combined with the linear bounds in
IBP-CROWN to tighten the relaxation gap further. While
β-Crown demonstrates a tremendous performance gain over
other verifiers such as Zhang et al. (2019); Fazlyab et al.
(2019); Lu and Kumar (2019), it cannot be used as a tool
in large-scale training procedures due to its computation-
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ally expensive branch-and-bound search. One can adopt a
composition of certified architectures to enhance the perfor-
mance of the obtained model on both natural and adversarial
accuracy (Müller et al., 2021; Horváth et al., 2022).

Another line of work for enhancing the performance of
certifiably robust neural networks relies on the idea of learn-
ing a detector alongside the classifier to capture adversar-
ial samples. Instead of trying to classify adversarial im-
ages correctly, these works design a detector to determine
whether a given sample is natural/in-distribution or a crafted
attack/out-of-distribution. Chen et al. (2020) train the detec-
tor on both in-distribution and out-of-distribution samples
to learn a detector distinguishing these samples. Hendrycks
and Gimpel (2016) develops a method based on a simple
observation that, for real samples, the output of softmax
layer is closer to 0 or 1 compared to out-of-distribution and
adversarial examples where the softmax output entries are
distributed more uniformly. DeVries and Taylor (2018);
Sheikholeslami et al. (2020); Stutz et al. (2020) learn un-
certainty regions around actual samples where the network
prediction remains the same. Interestingly, this approach
does not require out-of-distribution samples during train-
ing. Other approaches such as deep generative models (Ren
et al., 2019), self-supervised and ensemble methods (Vyas
et al., 2018; Chen et al., 2021b) are also used to learn out-of-
distribution samples. However, typically these methods are
vulnerable to adversarial attacks and can be easily fooled by
carefully designed out-of-distribution images (Fort, 2022)
as discussed in Tramer (2022). A more resilient approach
is to jointly learn the detector and the classifier (Laidlaw
and Feizi, 2019; Sheikholeslami et al., 2021; Chen et al.,
2021a) by adding an auxiliary abstain output class capturing
adversarial samples.

Building on these prior works, this paper develops a frame-
work for detecting adversarial examples using multiple ab-
stain classes. We observe that naïvely adding multiple ab-
stain classes (in the existing framework of Sheikholeslami
et al. (2021)) results in a model degeneracy phenomenon
where all adversarial examples are assigned to a small frac-
tion of abstain classes (while other abstain classes are not
utilized). To resolve this issue, we propose a novel regular-
izer and a training procedure to balance the assignment of
adversarial examples to abstain classes. Our experiments
demonstrate that utilizing multiple abstain classes in con-
junction with the proper regularization enhances the robust
verified accuracy on adversarial examples while maintaining
the standard accuracy of the classifier.

Challenges and Contribution. We propose a framework
for training and verifying robust neural nets with multiple
detection classes. The resulting optimization problems for
training and verifying such networks is a constrained min-
max optimization problem over a probability simplex that
is more challenging from an optimization perspective than
the problems associated with networks with no or single

detection classes. We devise an efficient algorithm for this
problem. Furthermore, having multiple detectors leads to
the “model degeneracy" phenomenon, where not all detec-
tion classes are utilized. To prevent model degeneracy and
to avoid tuning the number of network detectors, we intro-
duce a regularization mechanism guaranteeing that all de-
tectors contribute to detecting adversarial examples to the
extent possible. We propose convergent algorithms for the
verification (and training) problems using proximal gradient
descent with Bregman divergence. Compared to networks
with a single detection class, our experiments show that we
enhance the robust verified accuracy by more than 5% and
2% on CIFAR-10 and MNIST datasets, respectively, for
various perturbation sizes.

Roadmap. In section 2 we review interval bound propaga-
tion (IBP) and β-crown as two existing efficient methods for
verifying the performance of multi-layer neural networks
against adversarial attacks. We discuss how to train and
verify joint classifier and detector networks (with a single
abstain class) based on these two approaches. Section 3 is
dedicated to the motivation and procedure of joint verifi-
cation and classification of neural networks with multiple
abstain classes. In particular, we extend IBP and β-crown
verification procedures to networks with multiple detection
classes. In section 4, we show how to train neural networks
with multiple detection classes via IBP procedure. How-
ever, we show that the performance of the trained network
cannot be improved by only increasing the number of detec-
tion classes due to “model degeneracy" (a phenomenon that
happens when multiple detectors behave very similarly and
identify the same adversarial examples). To avoid model de-
generacy and to automatically/implicitly tune the number of
detection classes, we introduce a regularization mechanism
such that all detection classes are used in balance.

2 Background

2.1 Verification of feedforward neural networks
Consider an L-layer feedforward neural network with
{Wi,bi} denoting the weight and bias parameters associ-
ated with layer i, and let σi(·) denote the activation function
applied at layer i. Throughout the paper, we assume the
activation function is the same for all hidden layers, i.e.,
σi(·) = σ(·) = ReLU(·), ∀i = 1, . . . , L − 1. Thus, our
neural network can be described as

zi = σ(Wizi−1 +bi) ∀i ∈ [L−1], zL = WLzL−1 +bL,

where z0 = x is the input to the neural network and zi is the
output of layer i and [N ] denotes the set {1, . . . , N}. Note
that the activation function is not applied at the last layer.
Further, we use [z]i to denote the i-th element of the vector
z. We consider a supervised classification task where zL
represents the logits. To explicitly show the dependence of
zL on the input data, we use the notation zL(x) to denote
logit values when x is used as the input data point.
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Given an input x0 with the ground-truth label y, and a pertur-
bation set C(x0, ε) (e.g. C(x0, ε) = {x | ‖x− x0‖∞ ≤ ε}),
the network is provably robust against adversarial attacks
on x0 if

0 ≤ min
x∈C(x0,ε)

cTykzL(x), ∀ k 6= y, (1)

where cyk = ey − ek with ek (resp. ey) denoting the
standard unit vector whose k-th row (resp. y-th row) is 1
and the other entries are zero. Condition (1) implies that
the logit score of the network for the true label y is always
greater than that of any other label k for all x ∈ C(x0, ε).
Thus, the network will correctly classify all the points inside
C(x0, ε). The objective function in Eq. (1) is non-convex
when L ≥ 2. It is customary in many works to move
the non-convexity of the problem to the constraint set and
reformulate Eq. (1) as

0 ≤ min
z∈Z(x0,ε)

cTykz, ∀ k 6= y, (2)

where Z(x0, ε) = {z | z = zL(x) for some x ∈ C(x0, ε)}.
This verification problem has a linear objective function
and a non-convex constraint set. Since both problems (1)
and (2) are non-convex, existing works proposed efficiently
computable lower-bounds for the optimal objective value of
them. For example, Gowal et al. (2018); Wong and Kolter
(2018) utilize convex relaxation, while Tjeng et al. (2017);
Wang et al. (2021) rely on mixed integer programming and
branch-and-bound to find lower-bounds for the optimal ob-
jective value of (2). In what follows, we explain two popular
and relatively successful approaches for solving the verifi-
cation problem (1) (or equivalently (2)) in detail.

2.2 Verification of neural networks via IBP
Interval Bound Propagation (IBP) of Gowal et al. (2018)
tackles problem (2) by convexification of the constraint set
Z(x0, ε) to its convex hypercube super-set [z(x0), z̄(x0)],
i.e., Z(x0, ε) ⊆ [z(x0), z̄(x0)]. After this relaxation, prob-
lem (2) can be lower-bounded by the convex problem:

min
z(x0)≤z≤z̄(x0)

cTykz (3)

The upper- and lower- bounds z(x0) and z̄(x0) are obtained
by recursively finding the convex relaxation of the image of
the set C(x0, ε) at each layer of the network. In particular,
for the adversarial set C(x0, ε) = {x | ‖x − x0‖∞ ≤ ε},
we start from z0(x0) = x0 − ε1 and z̄0(x0) = x0 + ε1.
Then, the lower-bound zL(x0) and upper-bound z̄L(x0) are
computed by the recursions for all i ∈ [L]:

z̄i(x0) = σ(WT
i

z̄i−1 + zi−1

2
+ |WT

i |
z̄i−1 − zi−1

2
),

zi(x0) = σ(WT
i

z̄i−1 + zi−1

2
− |WT

i |
z̄i−1 − zi−1

2
).

(4)

Note that |W| denotes the element-wise absolute value of
matrix W. One of the main advantages of IBP is its efficient

computation: verification of a given input only requires two
forward passes for finding the lower and upper bounds,
followed by a linear programming.

2.3 Verification of neural networks via β-Crown
Despite its simplicity, IBP-based verification comes with
a certain limitation, namely the looseness of its layer-by-
layer bounds of the input. To overcome this limitation,
tighter verification methods have been proposed in the liter-
ature (Singh et al., 2018; Zhang et al., 2019; Dathathri et al.,
2020; Wang et al., 2021). Among these, β-crown (Wang
et al., 2021) utilizes the branch-and-bound technique to gen-
eralize and improve the IBP-CROWN proposed in Zhang
et al. (2019). Let zi and z̄i be the estimated element-wise
lower-bound and upper-bounds for the pre-activation value
of zi, i.e., zi ≤ zi ≤ z̄i, where these lower and upper
bounds are obtained by the method in Zhang et al. (2019).
Let ẑi be the value we obtain by applying ReLU function
to zi. A neuron is called unstable if its sign after apply-
ing ReLU activation cannot be determined based on only
knowing the corresponding lower and upper bounds. That
is, a neuron is unstable if zi < 0 < z̄i. For stable neu-
rons, no relaxation is needed to enforce convexity of σ(z)
(since the neuron operates in a linear regime). On the other
hand, given an unstable neuron, they use a branch-and-
bound (BAB) approach to split the input range of the neuron
into two sub-domains Cil = {x ∈ C(x0, ε)| ẑi ≤ 0} and
Ciu = {x ∈ C(x0, ε)| ẑi > 0}. The neuron operates linearly
within each subdomain. Thus we can verify each subdo-
main separately. If we have N unstable nodes, the BAB
algorithm requires the investigation of 2N sub-domains in
the worst case. β-Crown proposes a heuristic for traversing
all these subdomains: The higher the absolute value of the
corresponding lower bound of a node is, the sooner the ver-
ifier visits it. For verifying each sub-problem, Wang et al.
(2021) proposed a lower-bounded which requires solving a
maximization problem over two parameters α and β:

min
z∈Z(x0,ε)

cTykz ≥ max
α,β

g(x,α,β)

where g(x,α,β) = (a + Pαβ)Tx + qTαβ + dα. (5)

Here, the matrix P and the vectors q,a and d are functions
of Wi,bi, zi, z̄i,α, and β parameters. See Appendix D for
the precise definition of g. Notice that any choice of (α,β)
provides a valid lower bound for verification. However,
optimizing α and β in (5) leads to a tighter bound.

2.4 Training a joint robust classifier and detector
Sheikholeslami et al. (2021) improves the performance
tradeoff on natural and adversarial examples by introducing
an auxiliary class for detecting adversarial examples. If
this auxiliary class is selected as the output, the network
“abstains" from declaring any of the original K classes for
the given input. Let a be the abstain class. The classification
network performs correctly on an adversarial image if it is
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classified correctly as the class of the original (unperturbed)
image (similar to robust networks without detectors) or it
is classified as the abstain class (detected as an adversarial
example). Hence, for input image (x0, y) the network is
verified against a certain class k 6= y if

0 ≤ min
z∈Z(x0,ε)

max(cTykz, c
T
akz), (6)

i.e., if the score of the true label y or the score of the abstain
class a is larger than the score of class k.

To train a neural network that can jointly detect and classify
a dataset of images, Sheikholeslami et al. (2021) relies on
the loss function of the form:

LTotal = LRobust + λ1L
Abstain
Robust + λ2LNatural, (7)

where the term LNatural denotes the natural loss when
no adversarial examples are considered. More precisely,
LNatural = 1

n

∑n
i=1 `xent

(
zL(xi), yi

)
, where `xent is the stan-

dard cross-entropy loss. The term LRobust in (7) represents
the worst-case adversarial loss used in (Madry et al., 2017),
without considering the abstain class. Precisely,

LRobust = max
δ1,...,δn

1

n

n∑
i=1

`xent
(
zL(xi + δi), yi

)
s.t. ‖δi‖∞ ≤ ε, ∀i = 1, . . . , n.

Finally, the Robust-Abstain loss LAbstain
Robust is the minimum of

the detector and the classifier losses:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
(
`xent
(
zL(xi + δi), yi

)
,

`xent
(
zL(xi + δi), a

))
s.t. ‖δi‖∞ ≤ ε, ∀ i = 1, . . . , n.

(8)

In (7), tuning λ1 and λ2 controls the trade-off between
standard and robust accuracy. Furthermore, to obtain non-
trivial results, IBP-relaxation should be incorporated during
training for the minimization sub-problems in Lrobust and
Labstain

robust (Sheikholeslami et al., 2021; Gowal et al., 2018).

3 Verification of Neural Networks with
Multiple Detection Classes

Motivation: The set of all adversarial images that can be
generated within the ε-neighborhood of clean images might
not be detectable only by a single detection class. Hence,
the robust verified accuracy of the joint classifier and detec-
tor can be enhanced by introducing multiple abstain classes
instead of a single abstain class to detect adversarial exam-
ples. This observation is illustrated in a simple example in
Appendix F where we theoretically show that 2 detection
classes can drastically increase the performance of the de-
tector compared to 1 detection class. Note that a network
with multiple detection classes can be equivalently modeled
by another network with one more layer and a single abstain

Figure 1: The IBP verification for 400 input data points of 2-layer
and 3-layer neural networks. Part (a) shows the assigned four
labels to data points. Part (b) demonstrates that IBP can verify
14 points using one of two abstain classes (black triangles), while
it cannot verify 13 data points (red ×). c) shows that when IBP
is applied to a network with one more layer and one detection
class, 8 points are verified by the detection class, while it fails to
verify 21 points. The description of both networks can be found in
Appendix G.

class. This added layer, which can be a fully connected
layer with a max activation function, can merge all abstain
classes and collapse them into a single class. Thus, any
L-layer neural network with multiple abstain classes can
be equivalently modeled by an L+ 1-layer neural network
with a single abstain class. However, the performance of
verifiers such as IBP reduces as we increase the number of
layers. The reason is that increasing the number of layers
leads to looser bounds in (4) for the last layer. To illustrate
this fact, Figure 1 shows that the number of verified points
by a 2−layer neural network is higher than the number of
points verified by an equivalent network with 3 layers.

Thus, it is beneficial to train/verify the original L-layer
neural network with multiple abstain classes instead ofL+1-
layer network with a single abstain class. This fact will be
illustrated further in the experiments on MNIST and CIFAR-
10 datasets depicted in Figure 2. Next, we present how one
can verify a network with multiple abstain classes:

Let a1, a2, . . . , aM be M abstain classes detecting adver-
sarial samples. A sample is considered adversarial if the
network’s output is any of the M abstain classes. A
neural network with K regular classes and M abstain
classes outputs the label of a given sample as ŷ(x) =
argmaxi∈{1,...,K,a1,...,aM}[zL(x)]i. An input (x, y) is ver-
ified if the network either correctly classifies it as class y
or assigns it to any of the explicit M abstain classes. More
formally and following equation (6), the neural network is
verified for input x0 against a target class k if

0 ≤ min
zL∈Z(x0,ε)

max
{
cTykzL, c

T
a1kzL, . . . , c

T
aMkzL

}
. (9)
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Since the set Z(x0, ε) is nonconvex, verifying (9) is com-
putationally expensive. The next subsections present two
verifiers for solving (9) based on IBP and β-crown.

3.1 Verification with IBP
Using the IBP mechanism to relax the non-convex
setZ(x0, ε) leads to the following result for a given network
with M detection classes:

Theorem 1 Condition (9) is satisfied if for all k 6= y:

min
η∈P

max
zL−1≤zL−1≤z̄L−1

−ck(η)T (WLzL−1 + bL) (10)

is greater than or equal to zero where P =
{(η0, . . . , ηM )|

∑M
i=0 ηi = 1, ηi ≥ 0,∀i = 0, 1, . . . ,M},

and ck(η) = η0cyk + η1ca1k · · · + ηMcaMk. Here, the
bounds zL−1 and z̄L−1 are obtained according to (4).

Unlike (9), the condition in (10) is easy to verify computa-
tionally. To understand this, let us define

Jk(η) = max
zL−1≤zL−1≤z̄L−1

−ck(η)T (WLzL−1 + bL).

(11)
Then, our aim in (10) is to minimize Jk(η) over P .

First, notice that the maximization problem (11) can be
solved in closed form as described in Step 4 of Algorithm 1.
Consequently, one can rely on Danskin’s Theorem (Dan-
skin, 2012) to compute the subgradient of the function Jk(·).
Thus, to minimize Jk(·) in (10), we can rely on the Breg-
man proximal (sub)gradient method (see (Gutman and Pena,
2018) and the references therein). This algorithm is guaran-
teed to find ε− accurate solution to (10) in T = O(1/

√
ε)

iterations–see (Gutman and Pena, 2018, Corollary 2).

Algorithm 1 IBP verification of the network with multiple
detection classes against class k

1: Parameters: Stepsize ν > 0, number of iterations T .
2: Initialize η0 = 1 and η1 = . . . = ηM = 0.
3: for t = 0, 1, . . . , T do

4: [z∗L−1]j =

{
[zL−1]j if [WT

Lck(ηt)]j ≥ 0

[z̄L−1]j otherwise.
.

5: Set ηt+1
m =

ηtm exp(−2ν(z∗tL−1)TWT
Lcamk)∑M

j=0 η
t
j exp(−2ν(z∗tL−1)TWT

Lcajk)
, for all

m ∈ [M ] where a0 = y.

Remark 2 Time Complexity Comparison: Sheikholeslami
et al. (2021) finds Jk(η) using sorting and comparing a
finite number of calculated values based on the last two
layer weight matrices. While their algorithm finds the
exact solution of η, it is limited to the one-dimensional
case (M = 1). In this scenario, their algorithm requires
O(nL−1 log(nL−1)) evaluations to find the optimal η where
nL−1 represents the number of nodes in the one to the last
layer. Alternatively, our algorithm gives an ε-optimal so-
lution in order of O( 1

ε ). By choosing ε = O( 1
nL−1

), Al-
gorithm 1 has almost the same complexity as Algorithm 1

in Sheikholeslami et al. (2021) in the one dimensional case.
When M > 1, their algorithm cannot be utilized, while our
algorithm finds the solution with the same order complexity.
Note that the order complexity, in this case, is linear with
respect to M .

3.2 Verification with β-Crown
IBP verification is computationally efficient but less accurate
than β–Crown. Hence, we focus on β–Crown verification
of networks with multiple abstain classes in this section to
obtain a tighter verifier. To this end, we will find a sufficient
condition for (9) using the lower-bound technique of (5) in
β–Crown. In particular, by switching the minimization and
maximization in (9) and using the β–Crown lower bound (5),
we can find a lower-bound of the form

min
zL∈Z(x0,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL} ≥

max
η∈P,α,β≥0

G(x0,α,β,η). (12)

The details of this inequality and the exact definition of
the function G(·) is provided in Appendix E. Note that
any feasible solution to the right-hand side of (12) is a
valid lower bound to the original verification problem (left-
hand-side). Thus, in order for (9) to be satisfied, it suffices
to find a feasible (α,β,η) such that G(x0,α,β,η) ≥ 0.
To optimize the RHS of (12) in Algorithm 2, we utilize
AutoLirpa library of (Zhang et al., 2019) for updating α,
and use Bregman proximal subgradient method to update β
and η – See appendix B. We use Euclidean norm Bregman
divergence for updating β and Shannon entropy Bregman
divergence for η to obtain closed-form updates.

Algorithm 2 β–Crown verification of networks with multi-
ple detection classes

1: Input: number of iterations T , number of iterations in
the inner-loop T0, Step-size γ.

2: for t = 0, 1, . . . , T do
3: Update α using AutoLirpa (Zhang et al., 2019)
4: for k = 0, 1, . . . , T0 do
5: β = [β + γ ∂G(x0,α,β,η

∂β ]+,

6: ηnew
m =

ηold
m exp(2γ

∂G(x0,α,β,η)
∂ηm

)∑M
j=0 η

old
j exp(2γ

∂G(x0,α,β,η)
∂ηj

)
∀m ∈ [M ].

[w]+ = max(w, 0) denotes the projection to the non-
negative orthant in Algorithm 2.

4 Training of Neural Networks with
Multiple Detection Classes

We follow a similar combination of loss functions to train
a neural network consisting of multiple abstain classes as
in (7). While the last term (LNatural) can be computed ef-
ficiently, the first and second terms cannot be computed
efficiently because even evaluating the functions LRobust and
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LAbstain
Robust requires maximizing nonconcave functions. Thus,

we will minimize their upper bounds instead of minimizing
these two terms. Particularly, following (Sheikholeslami
et al., 2020, Equation (17)), we use L̄Robust as an upper-
bound to LRobust. This upper-bound is obtained by the IBP
relaxation procedure described in subsection 2.2. To obtain
an upper-bound for the Robust-Abstain loss term LAbstain

Robust
in (7), let us first start by clarifying its definition in the
multi-abstain class scenario:

LAbstain
Robust = max

δ1,...,δn

1

n

n∑
i=1

min
{
`xent

(
zL(xi + δi), yi

)
,

min
m∈[M ]

`xent
(
zL(xi + δi), am

)}
.

(13)

This definition implies that the classification is considered
“correct” for a given input if the predicted label is the ground-
truth label or if it is assigned to one of the abstain classes.
Since the maximization problem w.r.t. {δi} is nonconcave,
it is hard to even evaluate LAbstain

Robust . Thus, we minimize an
efficiently computable upper bound of this loss function as
described in Theorem 3.

Theorem 3 Let `Abstain
Robust (x, y) is defined as:

max
‖δ‖≤ε

min
{
`xent

(
zL(x + δ), y

)
, min
m∈[M ]

`xent
(
zL(x + δ), am

)}
Then,

`Abstain
Robust (x, y) ≤ ¯̀Abstain

Robust (x, y) = `xent\A0
(J(x), y), (14)

where J(x) is a vector whose k-th compo-
nent equals Jk(x) as defined in (11) and

`xent\A0
(x0, y) := − log

(
exp(eTy zL(x0))∑

i∈I\A0
exp(eTi zL(x0))

)
.

Here, I = {1, . . . ,K, a1, . . . , aM} is the set of all classes
(true labels and abstain classes) and A0 = {a1, . . . , aM}
is the set of abstain classes.

Notice that the definition of `xent\A0
(x0, y) removes the

terms corresponding to the abstain classes in the denomina-
tor. This definition is less restrictive toward abstain classes
compared to incorrect classes. Thus, for a given sample,
it is more advantageous for the network to classify it as
an abstain class instead of an incorrect classification. This
mechanism enhances the performance of the network in
detecting adversarial examples by abstain classes, while it
does not have an adverse effect on the performance of the
network on natural samples. Note that during the evalua-
tion/test phase, this loss function does not change the final
prediction of the network for a given input since the winner
(the entry with the highest score) remains the same. Overall,
we upper-bound the loss in (7) by replacing LRobust with
the IBP relaxation approach utilized in Gowal et al. (2018);
Sheikholeslami et al. (2021) and replacing LAbstain

Robust with

L̄Abstain
Robust = 1

n

∑n
i=1

¯̀Abstain
Robust (xi, yi) presented in Theorem 3.

Thus our total training loss can be presented as:

LTotal = L̄Robust + λ1L̄
Abstain
Robust + λ2LNatural (15)

Algorithm 3 describes the procedure of optimizing (15) on
a joint classifier and detector with multiple abstain classes.

Algorithm 3 Robust Neural Network Training
1: Input: Batches of data D1, . . . ,DR, step-size ν, θ(L):

optimization parameters for loss L.
2: for t = 1, . . . , R do
3: Compute Jo(x) ∀x ∈ Dt, ∀o ∈ [K] by Algorithm 1.
4: Compute L̄Robust on Batch Dt as Gowal et al. (2018).
5: Compute L̄abstain

Robust on Batch Dt using Theorem 3.
6:
θ(L) = θ(L)− ν∇θ

(
L̄Robust + λ1L̄

abstain
Robust + λ2LNatural

)

4.1 Addressing model degeneracy
Having multiple abstain classes can potentially increase
the capacity of our classifier to detect adversarial examples.
However, as we will see in Figure 4 (10 abstains, unregular-
ized), several abstain classes collapse together and capture
similar adversarial patterns. Such a phenomenon, referred
to as “model degeneracy” and illustrated with an example in
Appendix F will prevent us from fully utilizing all abstain
classes.

To address this issue, we impose a regularization term to the
loss function such that the network utilizes all abstain classes
in balance. We aim to make sure the η values are distributed
nearly uniformly, and there are no idle abstain classes. Let
ηik, zL−1(xi), and yi be the abstain vector corresponding
to the sample xi verifying against the target class k, the
output of the layer L− 1, and the assigned label to the data
point xi respectively. Therefore, the regularized verification
problem over n given samples takes the following form:

min
η1,...,ηn∈P

n∑
i=1

∑
k 6=yi

max
z(xi)≤zL−1≤z̄(xi)

−ck(ηik)T f(zL−1)

+ µ‖
[ γ1

M + 1
−
∑n
j=1

∑
o6=yi η

jo

n(K − 1)

]
+
‖2, (16)

where f(zL−1) = WLzL−1 + bL. The above regularizer
penalizes the objective function if the average value of η co-
efficient corresponding to a given abstain class over all batch
samples is smaller than a threshold (which is determined by
the hyper-parameter γ). In other words, if an abstain class
is not contributing enough to detect adversarial samples, it
will be penalized accordingly. Note that if γ is larger, we
penalize an idle abstain class more.

Note that in the unregularized case, the optimization of pa-
rameters ηik are independent of each other. In contrast,
by adding the regularizer described in (16), we require to
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Figure 2: Performance of Multiple-abstain shallow networks on MNIST and CIFAR-10 datasets. We compared multiple abstain neural
networks (both regularized and non-regularized versions) with the single abstain networks and networks with one more layer. The above
and below rows demonstrate the trade-off between standard and robust verified accuracy on MNIST and CIFAR-10 datasets.

optimize ηik of different samples and target classes jointly
as they are coupled in the regularization term. Since opti-
mizing (16) over the set of all n data points is infeasible
for datasets with many samples, we solve the problem by
choosing small data batches (≤ 64). We utilize the same
Bregman divergence procedure used in Algorithm 1, while
the gradient with respect to ηik takes the regularization term
into account as well.

Hyper-parameter tuning compared to the single-
abstain scenario. In contrast to Sheikholeslami et al.
(2021), our methodology has the additional hyper-parameter
M (the number of abstain classes). Tuning this hyper-
parameter can be costly since, in each run, we have to
change the architecture (and potentially the stepsizes of
the algorithm). This can be viewed as a potential additional
computational overhead for training. However, as we ob-
served in our experiments, setting M = K combined with
our regularization mechanism always leads to significant
performance gains over training with a single abstain class.
Thus, tuning the hyper-parameter M is unnecessary when
we apply the regularization mechanism. In that case, we
have two other hyper-parameters: γ is chosen from the set
{0.1, 0.2, 0.5, 1, 2, 5, 10} over K + M . The experiments
show that 1 consistently works the best across different
datasets and architectures. Further, µ in (16) is the regular-
ization mechanism hyper-parameter. We determine µ by

cross-validation over a wide range of numbers in [0.1, 10].
The experiments show that the optimal value of µ is between
[0.8, 1.5] depending on the network, dataset, and ε.

5 Numerical results
We devise diverse experiments on shallow and deep net-
works to investigate the effectiveness of joint classifiers and
detectors with multiple abstain classes.

5.1 Training Setup

To train the networks on MNIST and CIFAR-10 datasets, we
use Algorithm 3 as a part of an optimizer scheduler. Initially,
we set λ1 = λ2 = 0. Thus, the network is trained without
considering any abstain classes. In the second phase, we
optimize the objective function (15), where we linearly in-
crease ε from 0 to εtrain. Finally, we further tune the network
on the fixed ε = εtrain. On both MNIST and CIFAR-10
datasets, we have used an Adam optimizer with a learning
rate 5× 10−4. The networks are trained with four NVIDIA
V100 GPUs. The trade-off between standard accuracy on
clean images and robust verified accuracy can be tuned by
changing λ2 from 0 to +∞ where the larger values cor-
respond to more robust networks. For the networks with
the regularizer addressing the model degeneracy issue, we
choose γ by tuning it in the [ 0.1

K+M , 1.5
K+M ]. Our observa-

tions on both MNIST and CIFAR-10 datasets for different
ε values show that the optimal value for γ is consistently
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Figure 3: Performance of shallow networks with multiple detec-
tion classes without regularization, with regularization, and the
network with one more layer on CIFAR-10 dataset. As demon-
strated, the networks with regularization work consistently well
for 4 ≤M ≤ 10, which is very close to the best performance we
get from networks without regularization with 4 detection classes.

close to 1
K+M . Thus, we suggest choosing hyper-parameter

γ = 1
K+M where K is the number of labels, and M is the

number of detection classes. The optimal value for M is
4 for the CIFAR-10 and M = 3 for the MNIST dataset.
By adding the "model degeneracy" regularizer, the obtained
network has nearly the same performance for M ∈ [4, 2K].
Overall, we suggest to choose M = K and γ = 1

K+M as
the default values for hyper-parameters M and γ.

The model’s robust verified accuracy will generally be in-
creased by changing λ2 from 0 to large values. As compen-
sation, the standard accuracy of the model is reduced. There-
fore, λ2 determines the trade-offs between the standard and
robust verified accuracy. The tradeoff curves presented in
the figures are obtained by changing λ from 0 to 100.

5.2 Robust Verified Accuracy on Shallow Networks

In the first set of experiments depicted in Figure 2, we
compare the performance of shallow networks with the fully
optimized number of abstain classes to the single abstain net-
work, the network with an additional layer, and the network
with M = K regularized by Equation (16). The shallow
networks have one convolutional layer with sizes 256 and
1024 for MNIST and CIFAR-10 datasets, respectively. This
convolutional layer is connected to the second (last) layer
consisting of K +M (20 for both MNIST and CIFAR-10)
nodes. The optimal number of abstain classes is obtained by
changing the number of them from 1 to 20 on both MNIST
and CIFAR-10. The optimal value for the network trained
on MNIST is M = 3, and M = 4 for the CIFAR-10 dataset.
Moreover, we compare the optimal multi-abstain shallow
network to two other baselines: One is the network with
the number of abstain classes equal to the number of regu-
lar classes (M = K) trained via the regularizer described
in (16). The other is a network with one extra layer than the
shallow network. This network has K +M nodes in one to
the last layer and K + 1 nodes in the last layer compared
to the shallow network. Ideally, the set of models can be

Figure 4: Distribution of Natural and adversarial images over
different abstain classes on CIFAR-10 dataset. When there are 10
abstain classes, model degeneracy leads to lower performance than
the baseline. Adding the regularization term (rightmost column)
will utilize all abstain classes and enhance standard and robust
verified accuracy. Standard accuracy is the proportion of correctly
classified natural images, while robust verified accuracy is the
proportion of images that are robust against all adversarial attacks
within the ε-neighborhood (ε = 16

255
).

supported by such a network is a super-set of the original
shallow network. Therefore, it has more capacity to clas-
sify images and detect adversarial attacks. However, due to
the training procedure of IBP, which is sensitive to a higher
number of layers (the higher the number of layers, the looser,
the lower and upper bounds), we obtain better results with
the original network with multiple abstain classes.

Next, in Figure 3, we investigate the effect of changing the
number of abstain classes of the shallow network described
above. We observe that the unregularized network and the
network with one more layer are much more sensitive to the
change of M than the regularized version. This means we
can use the regularized network with the same performance
while it does not require to be tuned for the optimal M .
In the unregularized version, by increasing the number of
abstain classes fromM = 1 toM = 4, we see improvement.
However, after this threshold, the network performance
drops gradually such that for M = 10 where the number
of labels and abstain classes are equal (M = K = 10), the
performance of the network, in this case, is even worse than
the single-abstain network due to the model degeneracy of
the multi-abstain network. However, the network trained
on the regularized loss maintains its performance when M
changes from the optimal value to larger values.

Figure 4 shows the percentage of adversarial examples cap-
tured by each abstain class (M = 10) on CIFAR-10 for
both regularized and non-regularized networks. The hyper-
parameter γ is set to 1

K+M = 0.05. Next, we illustrate the
performance of networks trained in the first set of experi-
ments by β-crown in Figure 5. The networks verified by
Beta-crown have 1% to 2% improvement in robust accuracy
compared to the same networks verified by IBP.
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Figure 5: Performance of β-crown on verification of Neural Networks with single abstain, 4 abstain classes, 10 abstain classes with
regularized, and networks with one more layer (single abstain) on CIFAR-10 dataset. M = 1 coincides with Sheikholeslami et al. (2021).

Method St Err PGD Success
(Madry et al., 2017) 2.91% 11.35%

IBP 2.27% 6.68%
IBP Crown 2.17% 12.06%

(Balunovic and Vechev, 2019) 2.77% 15.31%
(Sheikholeslami et al., 2021) 4.74% 4.15%

(Aquino et al., 2022) 4.81% 5.86%
Our Method 4.97% 3.91%

Table 1: Standard Error and PGD attack success rate on
the MNIST dataset for different state-of-the-art approaches.
The chosen ε for the PGD attack equals 0.4.

5.3 Performance on Deep Neural Networks

Networks with multiple abstain classes achieve a superior
trade-off between standard and verified robust accuracy on
the deep networks as well. To demonstrate the performance
of multiple abstain classes compared to state-of-the-art ap-
proaches, we trained deep neural networks on MNIST and
CIFAR-10 datasets with different ε values. The results are
reported in Table 4. The structure of the trained deep net-
work is the same as the one described in Sheikholeslami
et al. (2021) (see Appendix A).

While the verified robust accuracy guarantees the robust-
ness of the networks against all attacks within the ε-
neighborhood of each given test data point, one can argue
that in many practical situations, being robust against cer-
tain adversarial attacks such as PGD attack (Madry et al.,
2017) is sufficient. Table 1 and Table 2 demonstrate the
performance of several state-of-the-art approaches for train-
ing robust neural networks against adversarial attacks on
the MNIST and CIFAR-10 datasets, respectively. The per-
formances are evaluated by the standard accuracy and ro-
bustness against the PGD attack on the test samples. The
chosen ε is 0.4 for MNIST and 8/255 for CIFAR-10, and
the attacks are applied to each test sample using 100 itera-
tions of the projected gradient descent (PGD). Our method
achieves the best robustness against PGD attacks on both
MNIST and CIFAR-10 datasets.

Method St Err PGD Success
(Madry et al., 2017) 49.78% 68.48%

IBP 50.51% 65.23%
IBP Crown 54.02% 65.42%

(Balunovic and Vechev, 2019) 48.3% 69.81%
(Sheikholeslami et al., 2021) 55.60% 63.63%

(Aquino et al., 2022) 50.25% 64.94%
Our Method 56.44% 60.29%

Table 2: Standard Error and PGD attack success rate on the
CIFAR-10 dataset for different state-of-the-art approaches.
The chosen ε for the PGD attack equals 8/255.

6 Conclusion
We improved the trade-off between standard accuracy and
robust verifiable accuracy of the shallow and deep neural
networks by introducing a training mechanism for networks
with multiple abstain classes. We observed that increasing
the number of abstain classes results in the “model degener-
acy” phenomenon where not all abstain classes are utilized,
and regular training can lead to solutions with poor perfor-
mance in terms of standard and robust verified accuracy. To
avoid the model degeneracy when the number of abstain
classes is large, we propose a regularizer scheme penaliz-
ing the network if it does not utilize all abstain classes in
balance. Our experiments demonstrate the superiority of
the trained shallow and deep networks over state-of-the-art
approaches on MNIST and CIFAR-10 datasets. We have
used multiple detection classes to improve the performance
of the verifiable neural networks. However, the application
of multiple detection classes can be beyond such networks
for detecting out-of-distribution samples or specific types of
adversarial attacks.
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A Implementation Details

In table A, we demonstrate the structure of the deep networks used in experiments of Table 4.

Network Layers
Conv 64 3×3
Conv 64 3×3

Conv 128 3×3
Conv 128 3×3

Fully Connected 512
Linear 10

Table 3: Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.

1. For MNIST, we train on a single Nvidia V100 GPU for 100 epochs with batch sizes of 100. The total number of
training steps is 60K. We decay the learning rate by 10× at steps 15K and 25K. We use warm-up and ramp-up duration
of 2K and 10K steps, respectively. We do not use any data augmentation techniques and use full 28 × 28 images
without any normalization.

2. CIFAR-10, we train for 3200 epochs with batch sizes of 1600. The total number of training steps is 100K. We decay the
learning rate by 10× at steps 60K and 90K. We use warm-up and ramp-up duration of 5K and 50K steps, respectively.
During training, we add random translations and flips, and normalize each image channel (using the channel statistics
from the train set).

B Bregman-Divergence Method for Optimizing a Convex Function Over a Probability
Simplex

In this section, we use the Bregman divergence method to optimize a convex optimization problem over a probability
simplex. Let η be a vector of n elements. We aim to minimize the following constrained optimization problem where J is a
convex function with respect to η:

min
η1,...,ηn

J(η1, . . . , ηn) subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (17)

To solve the above problem, we define the Bregman distance function as:

B(x,y) = γ(x)− γ(y)− 〈∇γ(x),x− y〉

where γ is a strictly convex function. For this specific problem where the constraint is over a probability simplex, we choose
γ(x) =

∑n
i=1 xi log(xi). Thus:

B(x,y) =

n∑
i=1

xi log(
xi
yi

)

One can rewrite problem 17 as:

min
η1,...,ηn

J(η1, . . . , ηn) + IP(η) (18)

where P =. Applying the proximal gradient descent method to the above problem, we have:
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ηr+1 = argmin
η
IP(η) + 〈∇J(η),η − ηi〉+

1

2ν
B(η,ηi) (19)

= argmin
η

n∑
i=1

∂J(ηr)

∂ηi
(ηi − ηri ) +

1

2ν

( n∑
i=1

ηi log(ηi)−
n∑
i=1

∂γ(ηri )

∂ηi
(ηi − ηri )

)
(20)

By simplifying the above problem, it turns to:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) (21)

subject to
n∑
i=1

ηi = 1, ηi ≥ 0 ∀i = 1, . . . , n. (22)

Writing the Lagrangian function of the above problem, we have:

ηr+1 = argmin
η

n∑
i=1

ηi(
∂J(ηr)

∂ηi
− 1

2ν
log(ηri )−

1

2ν
) +

1

2ν

n∑
i=1

ηi log(ηi) + λ∗(

n∑
i=1

ηi − 1) (23)

subject to ηi ≥ 0 ∀i = 1, . . . , n.

By taking the derivative with respect to ηi and using the constraint
∑n
i=1 ηi = 1, it can be shown that:

ηr+1
i =

ηri exp(−2ν∇J(η)i)∑n
j=1 η

r
j exp(−2ν∇J(η)j)

(24)

We use the update rule (24) in Algorithm 1 and Algorithm 2 to obtain the optimal η at each iteration.

C Proof of Theorems

In this section, we prove Theorem 1 and Theorem 3.

Proof of Theorem 1: Starting from Equation 9, we can equivalently formulate it as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) = min

z∈Z(x0,ε)
max

{η0,...,ηM}∈P
ck(η)T z. (25)

Note that the maximum element of the left-hand side can be obtained by setting its corresponding η coefficient to 1 on the
right-hand side. Conversely, any optimal solution to the right hand is exactly equal to the maximum element of the left-hand
side. According to the min-max equality (duality), when the minimum and the maximum problems are interchanged, the
following inequality holds:

min
z∈Z(x0,ε)

max
{η0,...,ηM}∈P

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (26)

Moreover, by the definition of upper-bounds and lower-bounds presented in Gowal et al. (2018), Z(x0, ε) is a subset of
zL ≤ z ≤ z̄L. Thus:
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max
{η0,...,ηM}∈P

min
z∈Z(x0,ε)

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz ≥

max
{η0,...,ηM}∈P

min
zL≤z≤z̄L

η0c
T
ykz + η1c

T
a1kz + · · ·+ ηMcTaMkz. (27)

Combining Equality (25) with (26) and (27), we have:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

{η0,...,ηM}∈P
min

zL≤z≤z̄L
ck(η)T z. (28)

Since zL = WLzL−1 + bL, the right-hand-side of the above inequality can be rewritten as:

min
z∈Z(x0,ε)

max(cTykz, c
T
a1kz, . . . , c

T
aMkz) ≥ max

η∈P
min

zL−1≤z≤z̄L−1

c(η)T (WLz + bL),

which is exactly the claim of Theorem 1.

Proof of Theorem 3: For the simplicity of the presentation, assume that a0 = y. Partition the set of possible values of zL
in the following sets:

Ẑai = {zL|[zL]ai ≥ [zL]aj ∀j 6= i}

If zL ∈ Ẑai , then:

[zL]ai − [zL]k ≥ [zL]aj − [zL]k ∀j 6= i⇒ [zL]ai − [zL]k

= max
i=0,...,M

{[zL]ai − [zL]k} = max
i∈{0,...,M}

{cTai,kzL}

Thus:

[zL]ai − [zL]k = max
i=0,...,M

{cTai,kzL} ≥ min
zL∈Z(x0,ε)

max
i=0,...,M

{cTai,kzL}

= min
zL−1∈ZL−1(x0,ε)

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

≥ min
z≤zL−1≤z̄

max
i=0,...,M

{cTai,k(WLzL−1 + bL)}

= min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) (29)

Note that the second inequality holds since the minimum is taken over a larger set in the right hand side of the inequality.
Using the min-max inequality:

min
z≤zL−1≤z̄

max
η∈P

c(η)T (WLzL−1 + bL) ≥ max
η∈P

min
z≤zL−1≤z̄

c(η)T (WLzL−1 + bL) = −Jk(η) (30)

Combining (29) and (30), and multiplying both sides by −1, we obtain:

[zL]k − [zL]ai ≤ Jk(η) (31)

On the other hand:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max
‖δ‖∞≤ε

`xent\Ai

(
zL(x + δ), ai

)
≤ max

zL−1≤z≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL. (32)
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Moreover, by the property of the cross-entropy loss, we have:

`xent\Ai(zL) = `xent\Ai(zL − [zL]ai1) (33)

Combining (31), (32) and (33), we have:

max
‖δ‖∞≤ε

min
m=0,...,M

`xent\Am

(
zL(x + δ), am

)
≤ max

zL−1≤zL−1≤z̄L−1

`xent\Ai(zL) s.t. zL = WLzL−1 + bL.

= max
zL−1≤zL−1≤z̄L−1

`xent\Ai(zL − [zL]ai1) s.t. zL = WLzL−1

≤ max
zL−1≤zL−1≤z̄L−1

`xent\Ai(Jk(η), ai)

= max
zL−1≤zL−1≤z̄L−1

`xent\A0
(Jk(η), a0)

Summing up over all data points, the desired result is proven.

D Details of β-Crown

In this section, we show how β-crown sub-problems can be obtained for neural networks without abstain classes and with
multiple abstain classes respectively. Before proceeding, let us have a few definitions and lemmas.

Lemma 4 (Zhang et al., 2019, Theorem 15) Given two vectors u and v, the following inequality holds:

v>ReLU(u) ≥ v>Dαu + b′,

where b′ is a constant vector and Dα is a diagonal matrix containing αj’s as free parameters:

Dj,j(α) =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

(34)

Definition 5 The recursive function Ω(i, j) is defined as follows (Wang et al., 2021):

Ω(i, i) = I, Ω(i, j) = WiDi−1(αi−1)Ω(i− 1, j)

β-crown defines a matrix S for handling splits through the branch-and-bound process. The multiplier(s) β determines the
branching rule.

Si[j][j] =


−1, if split zi[j] ≥ 0

1, if split zi[j] < 0

0, if no split z̄j ,
(35)

Thus, the verification problem of β-crown is formulated as:

min
zinZ

cT
(
WLReLU(zL−1) + bL−1

)
≥ min

zinZ
max
βL−1

cT
(
WLDL−1zL−1 + bL−1

)
+ β>L−1SL−1 (36)

Having these definitions, we can write P,q,a, and d explicitly as functions of α and β. P ∈ Rd0×(
∑L−1
i=1 di) is a block

matrix P :=
[
P>1 P>2 · · · P>L−1

]
, q ∈ R

∑L−1
i=1 di is a vector q :=

[
q>1 · · · q>L−1

]>
. Moreover:
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a = [Ω(L, 1)W1]
> ∈ Rd0×1,

Pi = SiΩ(i, 1)W1 ∈ Rdi×d0 , ∀ 1 ≤ i ≤ L− 1

qi =

i∑
k=1

SiΩ(i, k)bk +

i∑
k=2

SiΩ(i, k)Wkbk−1 ∈ Rdi , ∀ 1 ≤ i ≤ L− 1

d =

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

bi =


1, if zj ≥ 0

0, if z̄j ≤ 0

αj , if z̄j > 0 > zj and vj ≥ 0
z̄j

z̄j−zj
, if z̄j > 0 > zj and vj < 0,

Now we extend the definition of g for the network consisting of multiple abstain classes. Let z̄ be the pre-activation value of
vector z before applying the ReLU function. We aim to solve the following verification problem:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T (WLzL−1 + bL).

Applying Lemma 4 to the above problem, we have:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLzL−1 + bL

)
≤ min

zL−1∈ZL−1(x0,ε)
max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
Adding the β-crown Lagrangian multiplier to the above problem, it turns to:

min
zL−1∈ZL−1(x0,ε)

max
η∈P

ck(η)T
(
WLDL−1

(
αL−1

)
ẑL−1 + bL

)
≤

min
zL−1∈ZL−1(x0,ε)

max
η∈P,αL−1,βL−1

ck(η)T
(
WLDL−1(αL−1)zL−1 + bL

)
+ β>L−1SL−1zL−1

≤ max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1) + β>L−1SL−1

)
ẑL−1

+ ck(η)TbL = max
αL−1,βL−1

min
zL−1∈ZL−1(x0,ε)

max
η∈P

(
ck(η)TWLDL−1(αL−1)

+ β>L−1SL−1

)(
WL−1zL−2 + bL−1

)
+ ck(η)TbL

Replace the definition of A(i) in (Wang et al., 2021, Theorem 3.1) with the following matrix and repeat the proof.

A(i) =

{
ck(η)TWL, if i = L− 1(
A(i+1)Di+1(αi+1) + β>i+1Si+1

)
Wi+1, if 0 ≤ i ≤ L− 2

(37)

Note that the definition of d will be changed in the following way:
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d = ck(η)TbL +

L∑
i=1

Ω(L, i)bi +

L∑
i=2

Ω(L, i)Wibi−1

Moreover, Ω(L, j) = ck(η)TWLDL−1(αL−1)Ω(L− 1, j). The rest of the definitions remain the same.

E Derivation of equation (12)

In this section, we show how to derive Equation E.

min
zL∈Z(x,ε)

max{cTykzL, cTa1kzL, . . . , c
T
aMkzL}

= min
zL∈Z(x,ε)

max
η∈P

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

min
zL∈Z(x,ε)

M∑
i=0

ηic
T
aikzL

≥ max
η∈P

max
α,β≥0

ηic
T
aikzL

= max
α,β≥0,η∈P

( M∑
i=0

ηigi(x0,α,β) , G(x0,α,β,η)
)

F A simple example on the benefits and pitfalls of having multiple abstain classes

In this example, we provide a simple toy example illustrating:

1. How adding multiple abstain classes can improve the detection of adversarial examples.

2. How detection with multiple abstain classes may suffer from a “model degeneracy" phenomenon.

Example: Consider a simple one-dimensional data distributed where the read data is coming from the Laplacian distribution
with probability density function Pr(X = x) = 1

2 exp(−|x|). Assume that the adversary samples are distributed according
to the probability density function Pa(X = x) = 1

4 (exp(−|x− 10|) + exp(−|x+ 10|). Assume that 1
3 data is real, and 2

3
is coming from adversary. The adversary and the real data are illustrated in Fig 6.

Consider a binary neural network classifier with no hidden layer for detecting adversaries. Specifically, the neural
network has two weight vectors wr and wa, and the bias values br and ba. The network classifies a sample x as "real" if
wrx+ br > wax+ ba; otherwise, it classifies the sample as out-of-distribution/abstain. The misclassification rate of this
classifier is given by:

P (error) =
1

3
Px∼Pr (w

ax+ ba > wrx+ br) +
2

3
Px∼Pa(wax+ ba < wrx+ br)

=
1

3
Px∼Pr (x >

br − ba

wa − wr
) +

2

3
Px∼Pa(x <

br − ba

wa − wr
),

where due to symmetry and scaling invariant, without loss of generality, we assumed that wa − wr > 0. Let t = br−ba
wa−wr .

Therefore,

P (error) =
1

3

∫ +∞

t

1

2
exp(−|x|)dx+

2

3

∫ t

−∞

1

4
(exp(−|x− 10|) + exp(−|x+ 10|)dx (38)

Thus, to find the optimal classifier, we require to determine the optimal tminimizing the above equation. One can numerically
verify that the optimal t is given by t∗ = 5, leading to the minimum misclassification rate of ≈ 0.34. This value is the
optimal misclassification rate that can be achieved by our single abstain class neural network.
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Figure 6: Distribution of adversarial and real data described in the example. While one linear classifier cannot separate the
adversarial (red section) and real (green section) data points, two detection classes can detect adversarial examples.

Now consider a neural network with two abstain classes. Assume that the weights and biases corresponding to the abstain
classes are wa1 , w

a
2 , b

a
1 , b

a
2 , and the weight and bias for the real class is given by wr and br. A sample x is classified as a real

example if and only if both of the following conditions hold:

wrx+ br > wa1x+ ba1 (39)
wrx+ br > wa2x+ ba2 , (40)

otherwise, it is classified as an adversarial (out of distribution) sample. The misclassification rate of the such classifier is
given by:

P (error) =
1

3
Px∼Pc(Conditions (39) hold) +

2

3
Px∼Pa(Conditions (39) do not hold) (41)

Claim 1: The point wa1 = −1, wa2 = 1, ba1 = ba2 = 0, br = 5, wr = 0 is a global minimum of (41) with the optimum
misclassification rate less than 0.1.

Proof: Define t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Considering all possible sign cases, it is not hard to see that at the optimal
point, wa1 − wr and wa2 − wr have different signs. Without loss of generality, assume that wa1 − wr < 0 and wa2 − wr > 0.
Then:

P (error) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2) (42)

It is not hard to see that the optimal solution is given by t∗1 = −5, t∗2 = 5. Plugging these values in the above equation, we
can check that the optimal loss is less than 0.1. �

Claim 1 shows that by adding an abstain class, the misclassification rate of the classifier goes down from 0.34 to below 0.1.
This simple example illustrates the benefit of having multiple abstain classes. Next, we show that by having multiple abstain
classes, we are prone to the “model degeneracy" phenomenon.

Claim 2: Let w̄a1 = w̄a2 = 1, b̄a1 = b̄a2 = 0, w̄r = 0, b̄r = 5. Then, there exists a point (w̃, b̃) = (w̃a1 , w̃
a
2 , b̃

a
1 , b̃

a
2 , w̃

r, b̃r)
such that (w̃, b̃) is a local minimum of the loss function in (41) and ‖(w̃, b̃)− (w̄, b̄)‖2 ≤ 0.1.

Proof: Let t1 = − ba1−br
wa1−wr

, t2 = − ba2−br
wa2−wr

. Notice that in a neighborhood of point (w̄, b̄), we have wa1 − wr > 0 and
wa2 − wr > 0. Thus, after the loss function in (41) can be written as:

`(t1, t2) =
1

3
Px∼Pc(x ≤ t1 ∨ x ≥ t2) +

2

3
Px∼Pa(x ≥ t1 ∧ x ≤ t2)

=
1

3
Px∼Pr (x ≥ min(t1, t2)) +

2

3
Px∼Pr (x ≤ min(t1, t2))

=
1

3
Px∼Pr (x ≥ z) +

2

3
Px∼Pr (x ≤ z),
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where z = mint1,t2 . It suffices to show that the above function has a local minimum close to the point z̄ = 5 (see (Nouiehed
and Razaviyayn, 2021)). Simplifying `(t1, t2) as a function of z, we have:

`(t1, t2) = h(z) =
1

6
exp(−z) +

1

3
− 1

6
exp(−z − 10) +

1

6
exp(z − 10)

Plotting h(z) shows that it has a local minimum close to z̄ = 5. �

This claim shows that by optimizing the loss, we may converge to the local optimum (w̃, b̃) where both abstain classes
become essentially the same and we do not utilize the two abstain classes fully.

G Structure of Neural Networks in Section 3

In Section 3 we introduced a toy example in the Motivation subsection to show how loser IBP bounds can become when we
go from a 2-layer network to an equivalent 3-layer network. The structure of the 2-layer neural networks is as follows:

z2(x) = W2ReLU(W1x),

where x is the 2-dimensional input, W1 =

 0.557 −0.296 −0.449
−0.474 −0.504 0.894
−0.0208 0.0679 0.901

, and W2 =


0.817 −0.376 0.36
0.524 0.530 0.0557
0.0753 0.191 0.744
−0.547 0.660 −0.718

.

Note that the input data is 2 dimensional, but we add an extra one for incorporating bias into W1 and W2. The chosen ε for
each data point equals 1.

H Experiments on Deep Neural Networks

To compare the performance of our proposed approach to other state-of-the-art methods on deep neural networks, we run
the methods on the network with the structure described in Appendix A. The results are reported in Table 4.

ε Method Standard Error (%) Robust Verified Error (%)
Interval Bound Propagation (Gowal et al., 2018) 50.51 68.44

IBP-CROWN (Zhang et al., 2019) 54.02 66.94
εtrain = 8.8/255 (Balunovic and Vechev, 2019) 48.3 72.5

Single Abstain (Sheikholeslami et al., 2021) 55.60 63.63
εtest = 8/255 Multiple Abstain Classes (Current Work) 56.72 61.45

Multiple Abstain Classes (Verified by Beta-crown) 56.72 57.55
Interval Bound Propagation (Gowal et al., 2018) 68.97 78.12

εtrain = 17.8/255 IBP-CROWN (Zhang et al., 2019) 66.06 76.80
Single Abstain (Sheikholeslami et al., 2021) 66.37 67.92

εtest = 16/255 Multiple Abstain Classes (verified by IBP) 66.25 64.57
Multiple Abstain Classes (Verified by Beta-crown) 66.25 62.81

Table 4: Standard and Robust Verified error of state-of-the-art approaches on CIFAR-10 dataset.
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I Limitations
The proposed framework for training and verifying joint detector and classifier networks defines the uncertainty set on each
sample as an L∞ norm ball. The results can be extended to other Lp norm balls (L1 or L2) by changing the Interval Bound
Propagation (Gowal et al., 2018) procedure to other constraint sets defined by Lp balls. However, the experiments in the
paper are performed on the L∞ constraint sets. Furthermore, the networks in the numerical section are trained on MNIST
and CIFAR-10 datasets due to the expensive and complex training procedure of verifiable neural networks. The training
procedure of the verifiably robust neural networks is yet limited to these datasets, even for the fastest methods such as IBP.
Besides, on large-scale datasets with millions of samples and many different classes, the optimal M might be much larger
compared to its optimal value of M = 3 and M = 4 on MNIST and CIFAR-10 datasets, respectively. Therefore, it is crucial
to devise techniques for training large verifiable neural networks in general and networks with multiple detection classes in
particular.

J Societal Impacts

Given the susceptibility of presently trained neural networks to adversarial examples and out-of-distribution samples,
the deployment of such models in critical applications like self-driving cars has been the subject of debate. Ensuring
the reliability and safety of neural networks in unpredictable and adversarial environments requires the development of
mechanisms that guarantee the models’ robustness. Our current study proposes a systematic approach for training and
validating neural networks against adversarial attacks. From a broader perspective, establishing verifiable assurances for the
performance of artificial intelligence (AI) models alleviates ethical and safety concerns associated with AI systems.
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