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Abstract

Sampling over combinatorial spaces is a funda-
mental problem in artificial intelligence with a
wide variety of applications. Since state-of-the-
art techniques heavily rely on heuristics whose
rigorous analysis remain beyond the reach of cur-
rent theoretical tools, the past few years have wit-
nessed interest in the design of techniques to test
the quality of samplers. The current state-of-
the-art techniques, Barbarik and Barbarik2, focus
on the cases where combinatorial spaces are en-
coded as Conjunctive Normal Form (CNF) for-
mulas. While CNF is a general-purpose form,
often techniques rely on exploiting specific rep-
resentations to achieve speedup. Of particular in-
terest are Horn clauses, which form the basis of
the logic programming tools in AI. In this con-
text, a natural question is whether it is possible to
design a tester that can determine the correctness
of a given Horn sampler. The primary contribu-
tion of this paper is an affirmative answer to the
above question. We design the first tester, Flash,
which tests the correctness of a given Horn sam-
pler: given a specific distribution I and param-
eters η, ε, and δ, the tester Flash correctly (with
probability at least 1 − δ) distinguishes whether
the underlying distribution of the Horn-sampler
is “ε-close” to I or “η-far” from I by sampling
only Õ(tilt3/(η − ε)4) samples from the Horn-
sampler, where the tilt is the ratio of the max-
imum and the minimum (non-zero) probability
masses of I. We also provide a prototype imple-
mentation of Flash and test three state-of-the-art
samplers on a set of benchmarks.
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1 INTRODUCTION

Sampling from complex combinatorial spaces is a funda-
mental problem in computer science with a wide variety of
applications such as formal verification [Chandra and Iyen-
gar (1992), Yuan et al. (2004), Naveh et al. (2006)], cryp-
tography [Mironov and Zhang (2006), Soos et al. (2009),
Morawiecki and Srebrny (2013), Ashur et al. (2017)] and
various other fields. Often combinatorial spaces are speci-
fied as constraints expressed in logical theories where every
point in the support corresponds to a solution of the given
constraints. The task of designing efficient algorithms for
sampling from such complex combinatorial spaces is very
difficult in general. While techniques like Markov Chain
Monte Carlo (MCMC) as well as those based on univer-
sal hashing allow design of sampling algorithms with the-
oretical guarantees, such algorithms often face scalability
challenges. As a result, heuristic techniques are often em-
ployed to sample satisfying assignments. Although heuris-
tic techniques often work well in practice and are often de-
void of sound theoretical guarantees in general, such tech-
niques may perform well for various scenarios of interest.
Consequently, there is a dire need for the design of compu-
tationally efficient testers with sound theoretical guarantees
that can verify whether a sampler is sampling according to
a desired distribution for a given combinatorial space.

Due to the probabilistic nature of the sampling algorithms,
designing testers for them is indeed a very difficult task.
A tester that uses “black-box” access to the sampling algo-
rithm would essentially need to test properties of the un-
known underlying distribution by obtaining samples from
it. This requires an exponential number of samples [Batu
et al. (2001, 2013, 2004), Valiant and Valiant (2011b)]. Re-
cently, Barbarik and Barbarik2 were proposed as provably
correct testers for a set of constraints specified in Conjunc-
tive Normal Form (CNF) [Chakraborty and Meel (2019),

1Extended version of the paper and the accompanying tool,
available open source, can be found at https://github.
com/uddaloksarkar/flash.
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Meel et al. (2020)].

CNF is widely used to represent Boolean formulas ow-
ing to its expressiveness. In particular, every Boolean for-
mula can be expressed as a CNF with a linear blow-up in
size. Such expressiveness, however, comes at the cost of
computational complexity: even determining the satisfia-
bility of CNF formulas is NP-hard [Cook (1971), Levin
(1973)]. Accordingly, the symbolic reasoning commu-
nity has explored restricted fragments of Boolean formulas
that have tractable complexity. One such fragment is the
class of Horn formulas, which play a vital role in logical
systems [Makowsky (1987)], and forms the backbone of
many logic programming languages, such as Prolog [Lloyd
(2012)]. Horn formulas are also used to model several
real-life topological systems, such as power transmission
lines, water and gas supply lines, and telecommunication
networks [Duenas-Osorio et al. (2017)].

In this paper, we design efficient tester for testing the cor-
rectness of Horn-samplers. When the sampler is supposed
to uniformly sample from the satisfying assignments of ϕ,
we refer them as Uniform-Horn-sampler. For the general
version, when the sampler is supposed to sample accord-
ing to some specified distribution over the set of satisfying
assignments, we refer them as Weighted-Horn-sampler.

It is worth emphasizing that the available testers
Barbarik [Chakraborty and Meel (2019)] and
Barbarik2 [Meel et al. (2020)] for CNF formulas do
not provide testers for Horn-samplers. This is due to the
inner workings of the testers, both of which are based on
the “grey-box” sampling technique of drawing samples
from a conditional distribution. To obtain these conditional
samples, the testers Barbarik and Barbarik2 create a new
formula ϕ̂ based on ϕ and draw samples by running the
sampler over ϕ̂. The correctness of these testers are shown
under suitable assumptions, assuming that the behavior of
the sampler-under-test would remain somewhat unchanged
whether it is given the formula ϕ or ϕ̂ as the input. In
the case of Horn-samplers, this assumption is not valid
(for their testers) as the formula ϕ̂ designed by Barbarik
and Barbarik2 might not be a Horn formula, although the
original formula ϕ was Horn. This is a major stumbling
block for using the testers Barbarik and Barbarik2 for
testing Horn-samplers. In this context, it is worth asking:
is it possible to circumvent the above stumbling block and
design testers for Horn-samplers?

The primary contribution of this work is to answer the
above question affirmatively. In particular, we design
a novel Horn-sampler-tester Flash, that can test general
Weighted-Horn-samplers. For input parameters ε, η, δ ∈
(0, 1), we prove that if the underlying distribution from
which the Horn sampler-under-test draws samples is ε-
close (in multiplicative `∞ distance 1) to a fixed distribution

1For two probability distributions p and q over Ω, the mul-

I (given as input), then our tester Flash will ACCEPT with
probability at least (1 − δ). On the other hand, if the un-
derlying distribution induced by the Horn sampler-under-
test is η-far (in `1 distance) from the given distribution I,
then our tester Flash will REJECT with probability at least
(1 − δ), assuming the sampler satisfies certain conditions.
Flash draws Õ

(
tilt3/(η − ε)4

)
samples from the underly-

ing distribution 2. Here the fixed distribution is generated
from an arbitrary but fixed weight function wt given as in-
put, and tilt denotes the ratio between the maximum and
minimum non-zero probability masses among all the ele-
ments in I. We would like to point out that there is a lower
bound of Ω(1/(η − ε)2) samples for Horn sampler-tester
problem, which follows from the lower bound of estimat-
ing the bias of a coin.

We further provide a prototype implementation of Flash
and experimental results over three state-of-the-art sam-
plers on a set of benchmarks. Our empirical evaluation
shows that we achieve over 107-factor speedup over the
baseline approach.

Additionally, when the given distribution I is uniform over
the set of all satisfying assignments of the input Horn for-
mula, we can design a slightly simpler tester, called uFlash.
Due to shortage of space and for simplicity of presentation,
the details of uFlash along with its formal proof of correct-
ness and experimental results are skipped in the main paper
and presented in the supplementary material.

Organization of the Paper: In Section 2, we formally
define the necessary terminology of our work and present
a short description of related works. In Section 3, we
present our Weighted-Horn-sampler-tester Flash. We show
the evaluation results of the prototype implementation of
Flash with respect to three state-of-the-art samplers UNI-
GEN, QUICKSAMPLER and STS in Section 4. The correct-
ness proofs and detailed experimental results are presented
in the extended version of the paper which is available at
https://github.com/uddaloksarkar/flash.

2 PRELIMINARIES

In this work, we follow the same notations as in
Chakraborty and Meel [Chakraborty and Meel (2019)], and
Meel, Pote and Chakraborty [Meel et al. (2020)] in order to
maintain the consistency. A literal is a Boolean variable or
its negation, and a clause is a collection of disjoint liter-
als, all connected either using the Boolean connective ∨, or
the Boolean connective ∧. Throughout the paper, we shall
be using the terms ‘literal’ and ‘variable’ interchangeably
when it is clear from the context. A Conjunctive Normal

tiplicative `∞ and `1 distance between p and q are defined as
maxi∈Ω |p(i) − q(i)| ≤ εq(i), and

∑
i∈Ω |p(i) − q(i)|, respec-

tively for some parameter ε ∈ (0, 1).
2Õ(·) hides poly-logarithmic terms in 1/η, 1/ε, and 1/δ.

https://github.com/uddaloksarkar/flash


Banerjee, Chakraborty, Chakraborty, Meel, Sarkar & Sen

Form (CNF) is a Boolean formula with clause(s) where the
variables inside any clause are connected using ∨ and dif-
ferent clauses are connected using ∧. A Horn formula is
a CNF formula where each clause contains at most one
positive literal. For any Horn formula ϕ, the support of
ϕ is denoted as Supp(ϕ) and defined as the set of vari-
ables appearing in ϕ. Moreover, we assume that the vari-
ables in Supp(ϕ) are linearly ordered, that is, for a for-
mula ϕ with two variables, the support set can be written as
Supp(ϕ) = {x1, x2}. An assignment σ ∈ {0, 1}|Supp(ϕ)|

is said to be a witness or satisfying assignment of ϕ if ϕ
evaluates to 1 on the assignment σ. For any formula ϕ, let
Rϕ denote the set of all satisfying assignments of ϕ. For
any set S ⊆ Supp(ϕ), σ↓S denotes the restriction or pro-
jection of the assignment σ to the variables of S. Similarly,
Rϕ↓S = {σ↓S | σ ∈ Rϕ} denotes the set of satisfying as-
signments of ϕ projected on S. As an example, consider a
formula ϕ := (x1 ∧ ¬x2 ∧ x3 ∧ ¬x4) defined over the set
of variables {x1, x2, x3, x4, x5}, whose only satisfying as-
signments are σ1 = 10100 and σ2 = 10101. Now consider
S ⊆ {x1, x2, x3, x4, x5} such that S = {x1, x2, x3}. If we
project ϕ onto S, we have Rϕ↓S = {101}.

Definition 2.1 (Weight function). Let S be a set of Boolean
variables. A weight function wt : {0, 1}|S| → (0, 1) as-
signs a weight to each assignment formed using S.

A weight function wt is not specific to any formula. Rather
it assigns weights to every |S|-length Boolean strings, ir-
respective of whether it satisfies a formula or not. We
shall define the notion of samplers next. Thenceforth, we
will move into defining sampler-tester. Vaguely, a Horn-
sampler is a randomized algorithm which, given a Horn
formula ϕ, returns a satisfying assignment of ϕ.

Definition 2.2 (Weighted-Horn-sampler). A Weighted-
Horn-sampler G(ϕ, S,wt, κ) is a randomized algorithm
that takes as input a Horn formula ϕ, a set of variables
S ⊆ Supp(ϕ), a weight function wt and an integer κ, and
outputs κmany independent samples fromRϕ↓S , the set of
satisfying assignments of ϕ, projected on the set S, accord-
ing to the weight function wt.

For brevity, we will often write G(ϕ, S,wt, κ) as G(ϕ) or
G, when it is clear from the context. Also, we will write the
distribution induced by the samples obtained from G with
ϕ as the input with DG(ϕ).

Definition 2.3 (Ideal Weighted-Horn-sampler). Consider
a Horn formula ϕ, a set of variables S ⊆ Supp(ϕ),
and a weight function wt. A Horn sampler IW(ϕ, S,wt)
is said to be an ideal Weighted-Horn-sampler with re-
spect to the weight function wt, if for every σ ∈ Rϕ↓S ,
P [IW(ϕ, S,wt) = σ] = wt(σ)/

∑
σ′∈Rϕ↓S wt(σ

′).

Definition 2.4 (ε-closeness and η-farness). Consider any
Weighted-Horn-sampler G and an ideal Weighted-Horn-
sampler IW . G is said to be ε-close to IW , if for all Horn-

formula ϕ and σ ∈ Rϕ, the following holds 3:

(1− ε)P [IW(ϕ) = σ] ≤ P [G(ϕ) = σ]

≤ (1 + ε)P [IW(ϕ) = σ] .
(1)

On the other hand, G is said to be η-far from IW with re-
spect to some Horn-formula ϕ if∑

σ∈Rϕ

|P [G(ϕ) = σ]− P [IW(ϕ) = σ] | ≥ η.

Several available samplers [Gomes et al. (2006), Ermon
et al. (2013), Chakraborty et al. (2013, 2015a)] with the-
oretical guarantees test for ε-closeness (multiplicative ap-
proximation), and as a result, in our work, we also em-
ploy the same notion for the closeness metric. On the other
hand, since there are several samplers available in the real
world which do not have strong theoretical guarantees, we
design our tester to be more accommodating, in the sense
that our tester rejects based on the `1 distance, which is less
stringent than multiplicative guarantees.

Definition 2.5 (Horn-sampler-tester). A Horn-sampler-
tester takes as input a Weighted-Horn-sampler G, an ideal
Weighted-Horn-sampler IW , a tolerance parameter ε ∈
(0, 1/3), an intolerance parameter η ∈ (0, 2] with η > 9ε,
a confidence parameter δ, and a Horn formula ϕ, and:

(1) If G is ε-close to IW , then the tester outputs ACCEPT
with probability at least (1− δ).

(2) If G is η-far from IW with respect to ϕ, then it outputs
REJECT with probability at least (1− δ).

Definition 2.6 (tilt). For a Horn formula ϕ, and the as-
sociated arbitrary but fixed weight function wt, we define
tilt(ϕ,wt) as

tilt(ϕ,wt) := max
σ1,σ2∈Rϕ

wt(σ1)

wt(σ2)
,

that is, the maximum possible non-zero mass ratio between
two satisfying assignments of a formula ϕ. We will refer to
tilt(ϕ,wt) as tilt when it is clear from the context.

Definition 2.7 (Chain Formula). The notion of chain for-
mula was first introduced in Chakraborty et al. (2015b).
Chain formulas provide a natural way to construct linear
sized Boolean formulas with a precise number of satisfy-
ing assignments. Formally, a chain formula is defined as
follows:

(i) Every literal (a Boolean variable or its negation) is a
chain formula.

(ii) If l is a literal and ϕ be a chain formula such that neither
l nor ¬l appear in ϕ, then (l ∨ϕ) and (l ∧ϕ) are two chain
formulas.

3The definition is given with S = Supp(ϕ). However, a sim-
ilar definition can be defined for any arbitrary S.
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(iii) Let m > 0 be a natural number and k < 2m

be a positive odd number. Let c1c2 . . . cm be the m-
bit representation of k, where cm is the Least Signifi-
cant Bit (LSB) in the representation of m. For every
j ∈ {1, . . . ,m−1}, if cj = 1 then Cj is ‘∨’, else if cj = 0,
then Cj is ‘∧’. The chain formula ψk,m is defined as:
ψk,m(a1, a2, .., am) = a1C1(a2C2(..(am−1Cm−1am)..),
where a1, a2, . . . , am are variables.

For example, for k = 7 and m = 5, since the binary rep-
resentation of 7 in 5 bits is 00111, the corresponding chain
formula would be ϕk,m(a1, a2, a3, a4, a5) = (a1 ∧ (a2 ∧
(a3 ∨ (a4 ∨ a5)))). We will omit the variables when it is
clear from the context.

Given two natural numbers m and k with k < 2m, the
authors in Chakraborty et al. (2015b) constructed a chain
CNF formula ψk,m such that the size of ψk,m is linear in
m and ψk,m has exactly k satisfying assignments. But the
chain formulas constructed in Chakraborty et al. (2015b)
are not necessarily Horn - a property that we study in this
work. We extend their result to obtain Horn-chain-formula
which is crucially used in the design of Flash.

Lemma 2.8 (Horn-chain-formula). Given a natural num-
ber m > 0 and another integer k < 2m, there exists a
Horn-chain-formula ψ′k,m such that the size of ψ′k,m is lin-
ear in m and ψ′k,m has exactly k satisfying assignments.

The exact construction of the Horn-chain-formula and the
proof of the above lemma is in the extended version of the
paper.

Related works: As noted earlier, the problem of testing
correctness of samplers boils down to the problem of test-
ing equivalence between a known distribution I and an un-
known distribution D (namely the underlying distribution
according to which the sampler-under-test samples). This
problem of testing equivalence between a known and an
unknown distribution has been well studied in the literature
of statistics and property testing for several decades. Tradi-
tionally in the field of distribution testing, the distribution
D is accessed via obtaining independent and identically
distributed samples and the goal is to distinguish whetherD
is ε-close or η-far from I by taking as few samples as possi-
ble. Generally, `1 distance is used as the distance measure.
However, it is well known that this requires Θ(N/ logN)
samples, where N is the support size of D [Valiant and
Valiant (2011a), Batu et al. (2001)]. In case of samplers,
since the number of satisfying assignments can be expo-
nential in the number of variables of the formula, tradi-
tional “black-box” approach of sampling is infeasible.

In order to bypass this problem, a new model termed
as conditional sampling model was introduced by
Chakraborty et. al [Chakraborty et al. (2016)] and Can-
none et. al [Canonne et al. (2015)]. In this setting, given a
set X ⊆ [N ], the sampler obtains a sample i ∈ X from the

distribution, conditioned on the setX . Surprisingly, several
interesting problems which have high sample complexity in
the standard black-box sampling model, can be solved very
easily in this model, often using poly-logarithmic or even
constant number of conditional samples [Canonne et al.
(2014), Falahatgar et al. (2015)]. Therefore, the challenge
of designing practically efficient testers boils down to effi-
ciently obtaining conditional samples from the distribution
induced by the sampler.

Chakraborty and Meel [Chakraborty and Meel (2019)] for-
mulated a sampling technique for obtaining conditional
samples from CNF-samplers. Let the sampler-under-test
be G and ϕ is a CNF-formula, and X ⊂ Rϕ be a set of
size 2. To draw a conditional sample (conditioned over X)
from the distribution DG(ϕ), they run the sampler G over
a different and carefully constructed CNF-formula ϕ̂. One
may call this approach of obtaining conditional samples as
“grey-box” sampling. The correctness of Chakraborty and
Meel (2019) crucially depends on the construction of the
new CNF-formula ϕ̂.

Using this grey-box sampling technique, Chakraborty and
Meel [Chakraborty and Meel (2019)] designed the first
efficient tester Barbarik for testing uniformity of CNF-
samplers that takes Õ( 1

(η−2ε)4 ) many samples, where ε
and η are the closeness and farness parameters respec-
tively. They not only built the prototype implementation
of Barbarik and provided experimental analysis, but also
provided strong theoretical guarantee on the correctness of
their algorithm. They proved that if the sampler-under-test
is ε-close to uniform (in the multiplicative `∞ distance),
then the tester would “certainly” 4 accept the sampler. On
the other hand, if the sampler-under-test is η-far from uni-
form (in the additive `1 distance) and the sampler satisfies a
“subquery consistency” assumption, then the tester would
reject the sampler 5. It is important to note that the au-
thors of Chakraborty and Meel (2019) used the notions of
multiplicative `∞ and `1 distance measures for closeness
and farness respectively. They argued that the use of differ-
ent distance measures is more suitable for practice. Later
Meel, Pote and Chakraborty [Meel et al. (2020)] used sim-
ilar grey-box techniques to design the tester Barbarik2 for
testing weighted samplers for CNF formulas.

It is not immediately clear how the grey-box sampling tech-
niques of Chakraborty and Meel (2019) and Meel et al.
(2020) can be employed to obtain conditional samples
when the samplers-under-test can only correctly handle
Horn formulas. One of the crucial technical challenges here
is to design an efficient and practical procedure to obtain
conditional samples from the distribution induced by the
Horn sampler-under-test.

4With probability at least 1−δ for some parameter δ ∈ (0, 1).
5Please see Section 3 for more discussion on the subquery con-

sistency assumption.
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Algorithm 1: Flash (G, IW , S, ε, η, δ, ϕ)

1 t← 10
η(η−9ε) loge

(
1
δ

)
;

2 z ← loge
(

2t
δ

)
;

3 lo← 1+ε
1−ε ;

4 hi← 1 + η+9ε
4 ;

5 Γ1 ← G(ϕ, S, t);
6 Γ2 ← IW(ϕ, S, t);
7 for i← 1 to t do
8 σ1 ← Γ1[i]; σ2 ← Γ2[i];
9 if σ1 == σ2 then

10 continue
11 α← wt(σ1)

wt(σ2) ;
12 L← α·lo

1+α·lo ;
13 H ← α·hi

1+α·hi ;

14 T = (H+L)
2 ;

15 N ← 8z·H
(H−L)2 ;

16 X ←
(

(1−ε)(wt(σ1)+wt(σ2))

(1−ε)(wt(σ1)+wt(σ2))+(1+ε)wt(0̃)

)
;

17 M ←
(√

z+
√
z+4NX

2X

)2

;

18 ϕ̂← HornKernel(ϕ, σ1, σ2,M);
19 Γ3 ← G(ϕ̂, S,M);
20 Γ̂3 ← RemoveZeros(Γ3, σ1, σ2);

21 if
∣∣∣Γ̂3

∣∣∣ < N then
22 return REJECT
23 Bias← Bias(σ1, Γ̂3, S);
24 if Bias > T then
25 return REJECT
26 return ACCEPT

3 TESTER FOR HORN SAMPLERS

As stated in Section 1, any black-box sampling technique
for testing Horn samplers requires exponential number of
samples. To bypass this bottleneck, Flash employs a grey-
box sampling technique by drawing samples from a condi-
tional distribution.

The primary technical challenge of Flash is to draw sam-
ples from a conditional distribution obtained by condition-
ing over the distribution DG(ϕ) on two distinct satisfying
assignments of ϕ, namely, σ1 and σ2. The plan is to con-
struct a new Horn formula ϕ̂ from ϕ such that the only
satisfying assignments of ϕ̂ are σ1 and σ2. One easy way is
to come up with a CNF formula ϕ̂ by conjuncting (σ1∨σ2)
to ϕ and obtaining the new formula ϕ̂ := ϕ ∧ (σ1 ∨ σ2).

However, this brings us to the second challenge. The newly
constructed formula ϕ̂ may not be a Horn formula ϕ̂, and
thus can not be handled by the Horn sampler G. Flash
makes use of the subroutine HornKernel to avoid this in-
consistency. Interestingly, the newly constructed Horn for-
mula ϕ̂may contain another satisfying assignment aside σ1

Algorithm 2: HornKernel (ϕ, σ1, σ2, τ )

1 L ← Encode(σ1, σ2);
2 ϕ̂← ϕ ∧ L;
3 Lits1 ← (σ1\σ2);
4 Lits2 ← (σ2\σ1);
5 n← min(|Lits1 ∪ Lits2|, 4);
6 k ← dτ1/ne;
7 m← dlog(k)e;
8 V ← NewVars(ϕ,m, n);
9 ix← 0;

10 for i ∈ [n] do
11 l ∼ Lits1 ∪ Lits2;
12 ϕ̂← ϕ̂ ∧ (l→ ψ′k,m(V [ix : ix+m]));
13 ϕ̂← ϕ̂ ∧ (¬l→ ψ′k,m(V [ix : ix+m]));
14 ix← ix+m;
15 return ϕ̂;

Algorithm 3: Encode (σ1, σ2)

1 Σ← [σ1, σ2];
2 L ← True;
3 TrueLits← cmmTrueLits(σ1, σ2);
4 FalseLits← cmmFalseLits(σ1, σ2);
5 diffLits← unCmmLits(σ1, σ2);
6 tLit ∼ TrueLits;
7 fLit ∼ FalseLits;
8 for each i ∈ TrueLits \ {tLit} do
9 L ← L ∧ (xi ⇐⇒ xtLit);

10 L ← L ∧ xtLit;
11 for each i ∈ FalseLits \ {fLit} do
12 L ← L ∧ (xi ⇐⇒ xfLit);
13 L ← L ∧ ¬xfLit;
14 diff1 ← NULL;
15 diff2 ← NULL;
16 (diff1, diff2)← findSplitVars(σ1, σ2);
17 for each i ∈ diffLits do
18 if val(xi, σ1) == 1 then
19 L ← L ∧ (xi ⇐⇒ xdiff1);
20 else
21 L ← L ∧ (xi ⇐⇒ xdiff2);
22 if diff1 6= NULL & diff2 6= NULL then
23 L ← L ∧ (xdiff1 =⇒ ¬xdiff2);
24 return L;

Algorithm 4: NewVars (ϕ,m, n)

1 R ← set of all variables;
2 S ← Supp(ϕ);
3 V ← ∅;
4 for i ∈ [n] and j ∈ [m] do
5 l ∼ R \ S;
6 V ← V ∪ l;
7 return V ;
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Algorithm 5: RemoveZeros (Γ, σ1, σ2)

1 Γ̂← ∅;
2 for γ ∈ Γ do
3 if γ ∈ {σ1, σ2} then
4 Γ̂← Γ̂ ∪ γ;
5 return Γ̂

Algorithm 6: Bias (σ, L, S)

1 count← 0;
2 for σ′ ∈ L do
3 if σ′↓S == σ then
4 count← count+ 1;
5 return count

|L| ;

and σ2, which we will denote as 0̃ 6. For correctness, we
try to estimate the weight ratio of σ1 and σ2 with respect
to the weight function wt. For estimation purposes, Flash
draws enough samples of σ1 and σ2 using G from ϕ̂. Mean-
while, a significant amount of 0̃ may appear in the sampled
set which is taken care of properly by Flash.

In Section 3.1, we give a high level overview of various
subroutines, while in Section 3.2, we discuss the correct-
ness of Flash.

3.1 High Level Description of Our Subroutines

While the basic framework of Flash is similar to that
of Barbarik2, there are significant differences in the sub-
routines used. In the following, we start by briefly de-
scribing the subroutines HornKernel, Encode, Bias, and
RemoveZeros.

HornKernel: The primary goal of HornKernel (Algo-
rithm 2) is to employ the conditioning step. It takes as in-
put a Horn formula ϕ, two distinct satisfying assignments
σ1, σ2 ∈ Rϕ, and an integer τ , and returns a Horn formula
ϕ̂ such that ϕ and ϕ̂ have “similar” structures, and the fol-
lowing conditions hold:

(1) |Rϕ̂| = 2τ .

(2) Supp(ϕ) ⊆ Supp(ϕ̂).

(3) Let 0̃ denote the assignment whose only True literals
are the common True literals of σ1 and σ2 and S ⊆
Supp(ϕ) be a set of variables.

(a) If 0̃ 6∈ Rϕ, then Rϕ̂↓S has only two distinct elements
σ1 and σ2 and

|{σ ∈ Rϕ̂ | σ↓S = σ1}| = |{σ ∈ Rϕ̂ | σ↓S = σ2}|

6The structure of 0̃ depends upon σ1 and σ2.

(b) If 0̃ ∈ Rϕ then Rϕ̂↓S has only three distinct elements
σ1, σ2 and 0̃ and

|{σ ∈ Rϕ̂ | σ↓S = σ1}| = |{σ ∈ Rϕ̂ | σ↓S = σ2}|

=
∣∣∣{σ ∈ Rϕ̂ | σ↓S = 0̃}

∣∣∣ .
To achieve these properties, the subroutine HornKernel, in
Line 1, constructs a Horn formula L from σ1, σ2 using the
subroutine Encode (discussed below) such that σ1, σ2 and
0̃ are the only satisfying assignments of L. We note that
it is in fact not possible to construct a Horn formula with
only two satisfying assignments σ1 and σ2, and due to this
reason, we have to deal with the third satisfying assign-
ment, namely 0̃. After HornKernel constructs a Horn for-
mula L from σ1, σ2 using Encode (in Line 1), it constructs
a new Horn formula ϕ̂ by conjuncting the original Horn
formula ϕ with L (which in effect will generate the con-
ditioned distribution) 7. Next HornKernel tries to blow-up
the sample space of ϕ̂ from 3 to O(τ) so that an adversar-
ial sampler could not fool Flash. To do this, HornKernel
makes use of Horn-chain-formula. In Line 3, HornKernel
constructs the symmetric difference of σ1 and σ2 by gener-
ating two sets Lits1 and Lits2, where the symmetric dif-
ference corresponds to a set of literals that are true in ex-
actly one of σ1 and σ2. In Line 5, it sets the variable n
to min{|Lits1 ∪Lits2|, 4}, which indicates the number of
Horn-chain-formulas it will generate further to achieve the
blow-up. Then in Line 7, it calculates the values of k and
m which are the parameters needed to produce Horn-chain
formula ψ′k,m (from Lemma 2.8). As noted earlier, the con-
struction of Horn-chain-formulas in Lemma 2.8, is another
important technical contribution of this paper. ψ′k,m has
exactly k satisfying assignments. Then, in Line 8, it gener-
ates a list V of n×m new variables that are not present in
Supp(ϕ) using a subroutine NewVars (Algorithm 4) which
is required to construct the Horn-chain-formula. Finally, in
the loop of Line 10, HornKernel constructs a new Horn for-
mula ϕ̂ by adding n Horn-clauses of the form (l → ψ′k,m)
and (¬l → ψ′k,m) over the set V of newly generated vari-
ables, where l is a literal chosen from Lits1 ∪ Lits2, and
ψ′k,m is a Horn-chain-formula defined on variables in V ,
with Rϕ̂ of size O(τ).

Encode: The subroutine Encode (Algorithm 3) is an-
other technical contribution of this work. We first define
some terminologies used to describe Encode. As discussed
in Section 2, the set of literals Supp(ϕ) of ϕ is a lin-
early ordered set, where the k-th element literal is denoted
as xk. Given two witnesses σ1 and σ2, TrueLits (resp.
FalseLits) denotes the index-set of literals which are True
(resp. False) in both σ1 and σ2. tLit and fLit are in-
dices chosen from TrueLits and FalseLits respectively.

7L itself cannot represent the conditioning, as the structure of
ϕ and L can be completely different. Hence the distributions on
Rϕ and RL may be completely different.



Banerjee, Chakraborty, Chakraborty, Meel, Sarkar & Sen

diffLits denotes the index-set of literals which have dif-
ferent assignments in σ1 and σ2. Finally diff1 and diff2
are chosen from diffLits, such that, xdiff1 = 0 and
xdiff2 = 1 in σ1, but xdiff1 = 1 and xdiff2 = 0 in σ2.
For example, given σ1 := 1100 and σ2 := 1010, we have
TrueLits = {0}, FalseLits = {3}, tLit = 0, fLit = 3,
diff1 = 2, diff2 = 1.

The idea of Encode is to partition the set of variables ap-
pearing in σ1 and σ2 into four equivalence classes with re-
spect to the relation ‘ ⇐⇒ ’: (i) equivalence class [xtLit]
containing all the common True literals of σ1 and σ2, (ii)
equivalence class [xfLit] containing all the common False
literals of σ1 and σ2, (iii) equivalence class [xdiff1] con-
taining all the literals which are True in σ1, but False in σ2,
and (iv) equivalence class [xdiff2] containing all the liter-
als which are False in σ1, but True in σ2. Thus Encode first
finds the index-set of the common True and False literals of
σ1 and σ2 by means of cmmTrueLits and cmmFalseLits in
Line 3 and Line 4, respectively. It also finds the index-
set of literals diffLits that have different values using
unCmmLits in Line 5. To consider the first equivalence
class [xtLit] containing only the common True literals of
σ1 and σ2, in the for loop at Line 8, it constructs a formula
L by adding equivalence between xtLit and the common
True literals obtained from Line 3. Moreover, to ensure
that all these variables are assigned the True value, it further
conjuncts the literal xtLit with L in Line 10. Similarly, for
the second equivalence class [xfLit] of the common False
literals of σ1 and σ2, it runs the for loop in Line 11, and
conjuncts the literal ¬xfLit in Line 13.

To take care of the last two equivalence classes, it first finds
two variables xdiff1 and xdiff2 using findSplitVars such
that, xdiff1 = 0 and xdiff2 = 1 in σ1, but xdiff1 = 1
and xdiff2 = 0 in σ2 (since σ1 6= σ2, the existence of at
least one of the variables xdiff1 and xdiff2 is guaranteed).
Using xdiff1 and xdiff2, Encode constructs two formu-
las in the for loop starting from Line 17. Finally, to en-
sure the different values of the last two equivalence classes,
Encode adds the clause (xdiff1 =⇒ ¬xdiff2) in Line
23. Although Encode might add the clause (xdiff1 ⇐⇒
¬xdiff2) in Line 23 (which would produce L ≡ σ1 ∨ σ2),
it turns out that (¬xdiff2 =⇒ xdiff1) is not a Horn for-
mula 8. Such incapability causes 3 witnesses of L: σ1, σ2,
and 0̃, instead of only σ1 and σ2.

Flash: Flash (Algorithm 1) first draws t samples from
the Horn sampler G to be tested, as well as from the ideal
Weighted-Horn-sampler IW and stores them in Γ1 and Γ2

in Line 5. Thus, Γ1 is a set of samples obtained from the
distribution DG(ϕ), while Γ2 is a set of samples drawn ac-
cording to the fixed distribution with respect towt overRϕ,
the witness space ofϕ. Then in the for loop of Line 7, it first
takes a sample σ1 from Γ1, and another sample σ2 from Γ2,

8(¬a =⇒ b) ≡ (b ∨ a) contains 2 positive literals.

and calculates the parameters T ,M ,N from the weights of
σ1, σ2 and 0̃. Flash then calls the subroutine HornKernel
with σ1, σ2 and ϕ in Line 18, and HornKernel returns a
Horn formula ϕ̂ that employs the conditioning. Next Flash
obtainsM satisfying assignments of ϕ̂ in Line 19, and calls
the subroutine RemoveZeros (Algorithm 5) in Line 20 to
check if there are at least N witnesses of σ1 and σ2 out
of the M witnesses obtained in Line 19. If the number of
occurrences of σ1 and σ2 is less than N , Flash outputs RE-
JECT and terminates the algorithm. Otherwise, it employs
the subroutine Bias in Line 23 to determine the fraction of
witnesses obtained from RemoveZeros that are same as σ1

when projected on S. If this fraction is more than T , then it
outputs REJECT. If Flash does not output REJECT in any
of the t iterations of the for loop of Line 7, it finally outputs
ACCEPT, and declares that the distribution induced by the
satisfying assignments produced by the Horn sampler G is
ε-close to the fixed distribution. It may be noted that un-
like Barbarik2 [Meel et al. (2020)], Flash has to carefully
handle the fact that the formula ϕ̂ on which the sampler G
is run must be a Horn formula. At the same time, we need
to take care of the fact that the formula ϕ̂ returned by the
subroutine HornKernel may have three satisfying assign-
ments (after projecting onto the support of ϕ), instead of
exactly two - namely σ1 and σ2, which was crucial for the
correctness of Barbarik2.

3.2 Correctness of Flash

For an arbitrary but fixed weight function wt and param-
eters ε ∈ (0, 1/3), η ∈ (0, 2), δ > 0 with η > 9ε, our
Horn-sampler-tester Flash has the following three guaran-
tees:

(i) If G is ε-close to the ideal Weighted-Horn-sampler IW ,
then Flash outputs ACCEPT with probability at least (1 −
δ).

(ii) if Flash outputs REJECT for G, then it provides a cer-
tificate of rejection.

(iii) if G is η-far from IW , and G is subquery consistent as
mentioned in the introduction, Flash outputs REJECT with
probability at least (1− δ).

Now we formally describe the notion of subquery consis-
tency:

Subquery Consistency of Sampler G: Consider any Horn
formula ϕ. For every S ⊆ Supp(ϕ), σ1, σ2 ∈ Rϕ↓S , let
ϕ̂ be the Horn formula obtained from the subroutine EN-
CODE. A Horn sampler G is said to be subquery consis-
tent, if the output of G(ϕ̂, wt, S, κ) is κ independent sam-
ples from the distribution DG(ϕ)|X , that is, the distribution
DG(ϕ) conditioned on the set X . The justification behind
this assumption follows from the fact that ϕ and ϕ̂ have
similar structures. Hence the distribution induced by G for
ϕ̂, that is, DG(ϕ̂) and DG(ϕ)|X has to be similar.
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Before going into our main theorem, we formally state here
the lemma that supports our Encode subroutine.
Lemma 3.1. (i) The formula Γ generated by Encode is a

Horn formula.

(ii) There are only three satisfying assignments of Γ, that
is, RΓ = {σ1, σ2, 0̃}.

The formal statement of correctness of Flash is presented
below, while its proof is in the extended version of the pa-
per.
Theorem 3.2. Given a Weighted-Horn-sampler G, an ideal
Weighted-Horn-sampler IW with respect to an arbitrary
but fixed weight function wt, a tolerance parameter ε ∈
(0, 1/3), an intolerance parameter η ∈ (0, 2], with η >
9ε, and a confidence parameter δ > 0, our Weighted-
Horn-sampler-tester Flash takes Õ( tilt(wt,ϕ)3

η(η−9ε)(η−3ε)2 ) sam-
ples, and:

(i) If G is ε-close to IW , Flash outputs ACCEPT with prob-
ability at least (1− δ).

(ii) If G is η-far from IW , and G is subquery consistent,
Flash outputs REJECT with probability at least (1− δ).

4 EVALUATION RESULTS

To evaluate the practical effectiveness of Flash, we imple-
mented the prototype of Flash in Python 3.8.3. The ex-
periments have been carried out on a high-performance
computer cluster, where each node consists of E5-2690 v3
@2.60GHz CPU with 24 cores and 4 GB memory per core.
For each benchmark-sampler pair, one single core is being
employed with a maximum time limit of 23 hrs 50 minutes.
The detailed logs and the code are in the extended version.

The primary objective of our empirical evaluation was to
answer the following questions:

RQ1 Can Flash test whether off-the-shelf samplers are ε-
close or η-far from ideal samplers?

RQ2 What kind of improvements are possible over the
baseline?

Samplers Tested: We follow the similar setup as in
Barbarik and Barbarik2. We employ the following three
state-of-the-art samplers: UNIGEN3 [Soos et al. (2020)],
QUICKSAMPLER [Dutra et al. (2018)], STS [Ermon et al.
(2012)] 9 and augment these samplers with an inverse
sampling module 10. We shall term the newly gener-
ated samplers as WUNIGEN, WQUICKSAMPLER, WSTS

9We use the default parameters for QUICKSAMPLER, STS
and UNIGEN, which were employed in the previous stud-
ies [Chakraborty and Meel (2019), Meel et al. (2020)] to maintain
the consistency of the experiments.

10Inverse sampling converts (ϕ,wt) to a formula ϕ̂ preserving
the satisfying assignments’ distribution.

respectively in Table 2. Furthermore, while implement-
ing Flash, our algorithm requires the access of a known
ideal Weighted-Horn-sampler IW beforehand. We use
SPUR [Achlioptas et al. (2018)] as the corresponding ideal
Uniform-Horn-sampler, and augment it by inverse sam-
pling to achieve ideal Weighted-Horn-sampler needed for
Flash.

Test Parameters: For our experiments with Flash, the
tolerance parameter ε, intolerance parameter η, and confi-
dence parameter δ are set to be 0.1, 1.6, and 0.1, respec-
tively. This implies that Flash outputs ACCEPT when the
sampler G to be tested is ε-close to the ideal Weighted-
Horn-sampler with probability at least (1 − δ). Similarly,
with probability at least (1 − δ), Flash outputs REJECT
when G is η-far from ideal Weighted-Horn-sampler.

Benchmarks: Our benchmark suite consists of formulas
arising from the reliability computation of power transmis-
sion networks in US cities [Duenas-Osorio et al. (2017)].
For the evaluation of Flash, we only consider log-linear
distributions which play a crucial role in several machine
learning algorithms. A formal discussion on log-linear dis-
tribution is presented in the extended version. In particu-
lar, the weight functions for log-linear distributions can be
specified using weights on literals. For every benchmark
instance of Horn formulas, we designed two sets of weight
functions for evaluation purposes and thus we procured
two sets of benchmarks (Benchmark-I and Benchmark-
II) as depicted in Table 1. Column 3 (Column 4) in Ta-
ble 1 shows the tilt with respect to the weight function
wt in Benchmark-I (Benchmark-II). While designing such
weight functions, we sample a set of literals from the sup-
port set and assign random nontrivial weights 11. Then we
assign weight 0.5 to rest of the literals. For Benchmark-
I, we pick each literal with probability 1/3, while for
Benchmark-II, we uniformly sample a constant (12) num-
ber of literals. Note that assigning the weights of all the
literals as 0.5 is equivalent to uniform sampling.

Benchmark Model Count tilt (Benchmark - I) tilt (Benchmark - II)

Net6_count_91 2.19× 1032 20.40 12.34
Net8_count_96 3.2× 1036 26.23 5.80

Net12_count_106 6.34× 1043 20.40 5.80
Net22_count_116 9.49× 1050 26.23 7.46
Net27_count_118 8.05× 1053 43.36 7.46
Net29_count_164 4.51× 1063 92.17 7.46
Net39_count_240 2.46× 1091 14043.96 9.60
Net43_count_243 8.41× 10100 1137.74 4.51
Net46_count_322 3.22× 10129 23215.53 5.80
Net52_count_362 2.64× 10147 286565.21 2.73
Net53_count_339 4.05× 10143 38376.70 7.46

Table 1: Benchmark Details: Model Count and tilt

Description of the Tables: Table 2 depicts our exper-
iments with Flash. In the 2nd, 3rd and 4th columns of
Table 2, we present the experimental results of Flash on
WUNIGEN, WQUICKSAMPLER and WSTS, respectively.

11Non-trivial weights are of the form k/2m. We have chosen
m = 4 and k is set randomly to either 7 or 9.
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In each of these cells, A and R indicate whether the output
of Flash were ACCEPT or REJECT, respectively, and the
number on the right indicates the number of samples drawn
by the tester in that instance. DNS denotes the situation
where the sampler-under-test has failed to sample any sam-
ple during the period of run-time, and TLE denotes the sit-
uation where Flash is unable to complete the test within the
time limit of the experiment. It is worth noting that DNS is
caused due to the failure of the sampler-under-test to draw
satisfying assignments from the input formula. But TLE
indicates a combined failure of both the sampler-under-test
and our verification algorithm.

WUNIGEN WQUICKSAMPLER WSTS
Benchmark o/p #Samples o/p #Samples o/p #Samples

B
en

ch
m

ar
k-

I

N6_c_91_w1 TLE - R 106910 R 15626
N8_c_96_w1 TLE - R 22716 R 39944
N12_c_106_w1 TLE - R 27428 R 41334
N22_c_116_w1 DNS - R 98629 R 9217
N27_c_118_w1 DNS - R 49654 R 25296
N29_c_164_w1 DNS - R 123202 R 12322
N39_c_240_w1 DNS - R 7745 R 7922
N43_c_243_w1 DNS - R 209062 R 22351
N46_c_322_w1 DNS - R 23105 R 7922
N52_c_362_w1 DNS - R 6085 R 8650
N53_c_339_w1 DNS - R 38417 R 23105

B
en

ch
m

ar
k-

II

N6_c_91_w2 A 274175 R 17667 R 26995
N8_c_96_w2 A 397169 A 388885 R 16385
N12_c_106_w2 A 197713 R 6085 R 5930
N22_c_116_w2 A 302546 R 22947 R 24561
N27_c_118_w2 TLE - R 10405 R 26245
N29_c_164_w2 A 238673 R 7226 R 17706
N39_c_240_w2 A 282138 R 13690 R 14885
N43_c_243_w2 TLE - R 238260 R 9217
N46_c_322_w2 A 437529 R 135368 R 30819
N52_c_362_w2 TLE - R 210925 R 23127
N53_c_339_w2 A 191806 R 8650 R 9605

a Benchmark NetX_count_Y is abbreviated as NX_c_Y

Table 2: Evaluation results of Flash

Detailed Results

RQ1: From our experiments, we find that among the 22
instances, Flash outputs REJECT in all the instances of
WSTS. When run with WQUICKSAMPLER, Flash outputs
REJECT in 21 instances, and outputs ACCEPT in 1 in-
stance. When Flash is run with WUNIGEN, Flash outputs
ACCEPT for 8 instances, while there are 6 cases of TLE
and 8 instances of DNS. For these instances, Flash had
demanded a very high volume of samples that WUNIGEN
failed to provide within the given time limit.

RQ2: The number of samples required by the baseline ap-
proach, following Batu et al. (2013), is extremely high. We
estimate the average time taken by a sampler for particu-
lar instances of our benchmarks. Using our estimate, we
observe that the time taken by our baseline would be over
1012 seconds for all 11 benchmarks for WUNIGEN, WSTS
and WQUICKSAMPLER. It is worth highlighting that Flash
terminates within 24 hours for all the instances for most of
the samplers - hence the massive (over 107) speed up in
the runtime compared to the baseline for all the benchmark
instances.

Conclusion: We designed and implemented the first
Horn-sampler-tester Flash with sound theoretical guaran-
tees. It also works well in practice, as described by the

evaluation results with respect to WUNIGEN, WQUICK-
SAMPLER, and WSTS.

Limitations of our work: The primary limitation of our
approach is the sample complexity of Flash, which depends
on the cubic power of tilt. Thus, when the value of tilt is
large, the sample complexity of Flash becomes quite high.
This phenomenon is also supported from the evaluation
results of Flash presented in Table 2, where for some in-
stances of the benchmark data, we have exceeded the time
limit (TLE), particularly while dealing with WUNIGEN.
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A EXTENDED PRELIMINARY

A.1 Useful Concentration Bounds

In our work, we use the following four concentration inequalities, see Dubhashi and Panconesi (2009).

Lemma A.1 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random variables such that Xi ∈ [0, 1]. For

X =
n∑
i=1

Xi and µ = E[X], the following holds for all 0 ≤ δ ≤ 1

P (|X − µ| ≥ δµ) ≤ 2 exp

(
−µδ2

3

)
.

Lemma A.2 (Chernoff-Hoeffding bound). Let X1, . . . , Xn be independent random variables such that Xi ∈ [0, 1]. For

X =
n∑
i=1

Xi and µl ≤ E[X] ≤ µh, the followings hold for any δ > 0.

(i) P (X ≥ µh + δ) ≤ exp
(
−2δ2

n

)
.

(ii) P (X ≤ µl − δ) ≤ exp
(
−2δ2

n

)
.

Lemma A.3 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent random variables such that ai ≤ Xi ≤ bi and

X =
n∑
i=1

Xi. Then, for all δ > 0,

P (|X − E[X]| ≥ δ) ≤ 2 exp

 −2δ2

n∑
i=1

(bi − ai)2


Lemma A.4. Let Z1, . . . , Zn be n independent and identically distributed 0 − 1 random variable. Then, the following
hold:

(i) If E[Zi] ≥ θ ≥ 0, then for any t ≤ θ, we have

P

∑
j∈[n]

Zj
n
≤ t

 ≤ exp

(
− (θ − t)2n

2θ

)

(ii) If E[Zi] ≤ θ, then for any t ≥ θ, we have

P

∑
j∈[n]

Zj
n
≥ t

 ≤ exp

(
− (t− θ)2n

2θ

)

A.2 Chain Formulas

As mentioned briefly in the Preliminaries section (Section 2), we now formally define the notion of Chain formula as
follows:

Chain Formula: The notion of chain formula was first studied in Chakraborty et al. (2015b). The structure of the chain
formula has been exploited after its inception. Formally, a chain formula is defined as:

• Every literal (a boolean variable or its negation) is a chain formula.

• If l is a literal and ϕ be a chain formula such that neither l nor ¬l appear in ϕ, then (l ∨ ϕ) as well as (l ∧ ϕ) are two
chain formulas.
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• Let m > 0 be a natural number and k < 2m be a positive odd number. Let c1c2 . . . cm be the m-bit representation of k,
where cm is the Least Significant Bit (LSB) in the representation of m. For every j ∈ {1, . . . ,m− 1}, if cj = 1 then Cj
is “∨”, else if cj = 0, then Cj is “∧”. The chain formula ψk,m is defined as:

ψk,m(a1, a2, . . . , am) = a1C1(a2C2(. . . (am−1Cm−1am) . . .)

where a1, a2, . . . , am are variables.

For example, for k = 7 and m = 5, as the binary representation of 6 in 5 bits is 00111, the corresponding chain formula
would be ϕk,m(a1, a2, a3, a4, a5) = (a1 ∧ (a2 ∧ (a3 ∨ (a4 ∨ a5)))). We will omit the variables when it is clear from the
context.

We briefly restate the following theorem from Chakraborty et al. (2015b).

Lemma A.5 (Chakraborty et al. (2015b)). Given a natural number m > 0 and k < 2m, and ψk,m as constructed above.
Then the size of the formula ψk,m, that is, |ψk,m| is linear in m and ψk,m has exactly k satisfying assignments.

Since we need to convert the chain formula to an equivalent Horn formula while preserving all other properties of chain
formula, we define a variant called Horn-Chain-formula as stated in Lemma 2.8 the Preliminaries section (Section 2).
Before proceeding to prove the lemma, we restate it below.

Lemma A.6 (Lemma 2.8 restated). Given a natural number m > 0 and k < 2m, any chain formula ψk,m can be
transformed into a Horn-chain-formula ψ′k,m with the following properties:

(i) The support and structure of ψk,m is preserved in ψ′k,m.

(ii) |ψ′k,m| is linear in m and ψ′k,m has exactly k satisfying assignments.

(iii) ψ′k,m can be converted to an equivalent Horn formula with m variables and at most m clauses.

Proof. Let m > 0 be a natural number and k < 2m and ψk,m be the corresponding chain formula as defined above. Now
we proceed to prove the properties below:

(i) Let ψ′k,m = ψk,m. Now, for each j ∈ {1, . . . ,m}, we replace aj by ãj in ψ′k,m. Since none of the variables have
been changed, Supp(ψk,m) = Supp(ψ′k,m). Also, we have not changed any of the connectives, that is, for each j,
Cj remains same. Thus, the structure of ψk,m is preserved in ψ′k,m. This completes the proof of the first part of the
lemma.

(ii) First, we will prove that ψ′k,m has exactly k satisfying assignments. We prove this by using induction over m. Let us
assume that the statement holds for all Horn-chain-formula upto m variables. Now we will prove this for Horn-chain-
formula with (m+ 1) variables.

Here we will represent k in m+ 1 bits. Let k1 denote the integer if we ignore the MSB of k in (m+ 1)-bit represen-
tation. Now we consider the following two cases:

Case (a): If the Most Significant Bit (MSB) of k in (m + 1)-bit representation is 0, then we can write the above formula
as ã1 ∧ ψ′k1,m. The only way to satisfy this formula is by satisfying both ã1 and ψ′k1,m. Thus the number of
solutions of this formula is k1. Since the MSB is 0, k = k1, and the statement holds true for this case.

Case (b): Now consider the other case when MSB of k in (m + 1)-bit representation is 1. Then we can write the above
formula as ã1 ∨ ψ′k1,m. To satisfy this, we could either satisfy ã1, which can be done in 2m ways by setting a1

as False and rest of the variables can be assigned any value, or by setting a1 as True and satisfying the formula
ψ′k1,m which has k1 solutions. Thus the total number of solutions for this case is 2m + k1. Also, note that
k = 2m + k1.
Thus, ψ′k,m has exactly k satisfying assignments.

A similar inductive argument on m can be used to prove that |ψ′k,m| is linear in m, where two lists are sufficient to
store the Horn-chain-formula ψ′k,m. We use one list to store the m-bit binary representation of k, and another list to
store the m literals of ψ′k,m. This completes the proof of the second part of the lemma.
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(iii) We use induction on the number of variables to prove the statement. Let us assume that the statement is true for all
Horn-chain-formula upto (m− 1) many variables, and consider a Horn-chain-formula of m variables.

Let us first keep aside the variable a1 associated with the MSB of m. Then we write the formula as ψ′k,m =
ã1C1(ψ′k1,m−1). Now ψ′k1,m−1 = ψ′1 ∧ ψ′2 . . . ∧ ψ′j , where for each i ∈ {1, ..., j}, ψ′i is a Horn clause with at
most m− 1 variables and j ≤ m− 1, following the induction hypothesis. Now, consider the two following cases:

Case (a): If C1 is ∧, then ã1 becomes a unit negative clause which is a Horn clause itself. Thus, ψ′k,m is a Horn formula
with m variables and at most m clauses.

Case (b): If C1 is ∨, then ψ′k,m = ã1 ∨ (ψ′1 ∧ . . . ∧ ψ′j). By the distributive property, we can expand it into ψ′k,m =
(ã1 ∨ ψ′1) ∧ (ã1 ∨ ψ′2) . . . ∧ (ã1 ∨ ψ′j).
As the addition of the negative literal ã1 does not change the nature of the Horn formulas ψ′i, with i ∈ {1, . . . , j},
ψ′k,m now has m− 1 clauses each with at most m variables.

Therefore, ψ′k,m can be converted to an equivalent Horn formula with m variables and at most m clauses. This proves
the third part of the lemma.

A.3 Log-Linear Distributions and Inverse Transform Sampling

Log-linear distributions have myriad of applications in machine learning, such as in graphical models, skip-gram models,
and so on. See Murphy (2012) for an exhaustive list of references. For any σ ∈ {0, 1}n and any parameter θ, log-linear
distribution is formally defined as:

P[σ | θ] ∝ eθ·σ

For our purpose, we use literal weighted functions, a notion defined by Chavira and Darwiche (2008), which is equivalent
to log-linear models.

Definition A.7. For any Horn formula ϕ, and a set S ⊆ Supp(ϕ), a weight function wt : {0, 1}|S| → (0, 1) is said to
be a literal weighted function, if there exists another function W : S → (0, 1), such that for any satisfying assignment
σ ∈ Rϕ↓S , wt(σ) is defined as follows:

wt(σ) =
∏
x∈σ

{
W (x), x = 1
1−W (x), x = 0

wt is said to be literal weighted function with respect to the function W .

In order to construct the new Horn formula ϕ̂ from the input formula ϕ and the weight function wt, we apply the method
of inverse transform sampling. The proof follows in similar line as that of Meel et al. (2020). However, instead of chain
formulas, we use the notion of Horn-chain-formulas, introduced in Lemma A.6.

Lemma A.8. Given any ε-Almost Additive Uniform-Horn-sampler G, a Horn formula ϕ, along with a set S = Supp(ϕ), a
literal weighted function wt : {0, 1}|S| → (0, 1), a new Horn formula ϕ̂ can be constructed such that the following holds:

∀σ ∈ Rϕ :
(1− ε)wt(σ)∑
σ1∈Rϕ

wt(σ1)
≤ PG(ϕ̂, S, σ) ≤ (1 + ε)wt(σ)∑

σ1∈Rϕ
wt(σ1)

Proof. In order to construct the new Horn formula ϕ̂, for each yi ∈ S, we will use a set of mi many fresh variables
Si = {y1

i , . . . , y
mi
i } that have not been used before. Once we have the new variable set Si, we will construct a Horn-

chain-formula ψ′ki,mi(y
1
i , . . . , y

mi
i ) for some positive odd integer ki < 2mi , as defined in Lemma A.6. We will write

ψ′ki,mi(y
1
i , . . . , y

mi
i ) as ψ′ki,mi when it is clear from the context. We add the new clause (yi ⇐⇒ ψ′ki,mi).

For each variable yi ∈ S, if yi = 1, then W (yi) = ki
2mi , and if yi = 0, then W (yi) = 1 − ki

2mi , and (yi ⇐⇒ ψ′ki,mi) is
the corresponding clause. Thus, the Horn formula ϕ̂ is defined as follows:

ϕ̂ = ϕ
∧

(
∧
i∈S

(yi ⇐⇒ ψ′ki,mi))
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The size of the set of satisfying assignments of ϕ̂ is as follows:

|Rϕ̂| =
∑
σ∈Rϕ̂

1 =
∑
σ∈Rϕ

∑
σ1∈Rϕ̂:σ1↓S=σ

1

For any assignment σ, let σ0 denote the set of variables that are assigned the False value in σ. Similarly, σ1 corresponds to
the set of variables that are assigned the True value in σ. Thus, we can say that

∑
σ1∈Rϕ̂:σ1↓S=σ

1 =
∏
i∈σ0

(2mi − ki)
∏
i∈σ1

ki

Now consider the Uniform-Horn-sampler IU :

PIU (ϕ̂, S, σ) =
∑

σ1∈Rϕ̂:σ1↓S=σ

PIU (ϕ̂, S, σ1)

=
∑

σ1∈Rϕ̂:σ1↓S=σ

1

|Rϕ̂|

=

∑
σ1∈Rϕ̂:σ1↓S=σ

1∑
σ∈Rϕ

∑
σ1∈Rϕ̂:σ1↓S=σ

1

=

∏
i∈σ0

(2mi − ki)
∏
i∈σ1

ki∑
σ∈Rϕ

∏
i∈σ0

(2mi − ki)
∏
i∈σ1

ki

=

∏
i∈σ0

(2mi − ki)
∏
i∈σ1

ki∏
i∈S

2mi
·

∏
i∈S

2mi∑
σ∈Rϕ

∏
i∈σ0

(2mi − ki)
∏
i∈σ1

ki

=

∏
i∈S

W (σ↓yi)∑
σ∈Rϕ

∏
i∈S

W (σ↓yi)

=
wt(σ1)∑

σ∈Rϕ
wt(σ)

(2)

As G is ε-close to the ideal Uniform-Horn-sampler IU , we can say that

(1− ε)PIU (ϕ, S, σ) ≤ PG(ϕ, S, σ) ≤ (1 + ε)PIU (ϕ, S, σ)

Following Equation (2), we can say that

∀σ ∈ Rϕ :
(1− ε)wt(σ)∑
σ1∈Rϕ

wt(σ1)
≤ PG(ϕ̂, S, σ) ≤ (1 + ε)wt(σ)∑

σ1∈Rϕ
wt(σ1)

As it was also mentioned in Meel et al. (2020), we would like to emphasize the fact that the above lemma (Lemma A.8)
holds only for ε- AAU Horn samplers. The analogous statement does not hold for η-far Horn samplers. As a result, we can
not directly apply Lemma A.8 to test closeness to ideal Uniform-Horn-sampler.

B RELATED WORKS

In the field of sampler testing, the main goal is to test whether the distribution induced by the satisfying assignments of the
sampler to be tested is similar to the distribution of the satisfying assignments of the ideal sampler at hand. It turns out that
this problem has been extensively studied in the sub-field of distribution testing, and in property testing in general.
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As it is often required for testing of samplers, the primary goal is to decide whether two distributions D1 and D2 are
ε-close or η-far, where ε and η are the closeness and farness parameters respectively, provided as inputs. Generally, the
distance measure that is mostly considered is the `1 distance (or variation distance). This problem is termed as the tolerant
testing of two distributions. It turns out that Θ( N

logN ) samples are required [Valiant and Valiant (2011a)] for this problem in
general, where N denotes the support size of the distributions to be tested. A restricted problem called equivalence testing,
where the goal is to decide whether two distributions are same or they are η-far also requires Θ(N

2
3 ) many samples [Batu

et al. (2000), Valiant (2011)]. Moreover, the basic problem of testing whether a distribution is uniform takes Θ(
√
N)

samples [Paninski (2008), Goldreich and Ron (2011)]. However, in case of samplers, as the size N of the support of the
distributions over the satisfying assignments of the samplers is extremely large, these algorithms are not practical to use.

In order to remedy this problem, a new model termed as conditional sampling model was introduced by Chakraborty et al.
(2016) and Canonne et al. (2015). In this setting, given a set T ⊆ [N ], the sampler obtains a sample i ∈ T from the
distribution, conditioned on the set T . Surprisingly, several interesting problems which are difficult in the normal setting,
can be solved very easily in this model, often using poly-logarithmic or even constant number of samples. In fact, the task
of testing whether a distribution is uniform can be decided by taking only constant number of samples here, depending
only on the input parameters. Moreover, the tolerant testing of the equivalence of two distributions can be done by using
samples that is polynomial in logN .

Chakraborty and Meel (2019) crucially used the framework of conditional sampling in order to design the first tester to
test whether the satisfying assignments produced by a sampler is uniform or not. Their tester Barbarik is designed to
test samplers for CNF formulas, and takes only Õ( 1

(η−2ε)4 ) many samples, where ε and η are the closeness and farness
parameters respectively. In fact, they employed a variant of conditional sampling PCOND, defined in Canonne et al. (2015),
where the size of the conditioning set T is 2, and used the technique of chain-formula to generate conditional samples.
However, it turns out the the sample complexity of tolerant testing of closeness of distributions will remain polynomial in
logN , even with PCOND model.

In order to bypass this poly-logarithmic dependency on N , the authors of Chakraborty and Meel (2019) used two different
distance measures for the closeness and farness testing. Namely, they used multiplicative `∞ distance for the closeness
measure, where as they employed `1 distance for the farness case. Later Meel, Pote and Chakraborty [Meel et al. (2020)]
used similar techniques in order to design the tester Barbarik2 for testing weighted samplers for CNF formulas. Barbarik2

takes only Õ( tilt2

η(η−6ε)3 ) many samples, where tilt refers to the maximum ratio between the weights of any two satisfying
assignments of the Horn formula ϕ. Very recently, Pote and Meel (2021) studied the problem of equivalence testing in the
context of testing probabilistic circuits.

In this work, we designed the first Weighted-Horn-sampler-tester Flash, along with the first Uniform-Horn-sampler-tester
uFlash that have sound theoretical guarantees, which also work well in practice. As already mentioned in the introduction,
the testers Barbarik and Barbarik2 do not work for Horn formulas. In order to achieve this, we defined the notion of
Horn-chain-formula, as well as designed the subroutine Encode, which are crucial for our work.

C PROOF OF CORRECTNESS OF THE SUBROUTINE Encode

In this section, we provide the formal proof of correctness of our subroutine Encode, a crucial subroutine that is used in
HornKernel. We formally state and prove the result below.

Lemma C.1. (i) The formula Γ generated by Encode is a Horn formula.

(ii) There are only three satisfying assignments of Γ, that is, RΓ = {σ1, σ2, 0̃}.

Proof. (i) First note that the clauses added by Encode are of size at most 2. Since any clause of size 1 is trivially a Horn
clause, let us now analyse the size 2 clauses that have been added by Encode.

From the description of the subroutine Encode, it is clear that any clause of size 2 added by Encode is either one of
the two forms: (a) (x1 =⇒ x2), or (b) (x1 =⇒ ¬x2), where x1 and x2 are two positive literals. Since both (a)
and (b) are Horn clauses12, the result follows.

(ii) We will prove this by using induction on the number of variables of Γ. Let us assume that Γ be a m variable Horn
clause generated by Encode and RΓ = {σ1, σ2, 0̃}. Now we will prove that the same holds for any (m+ 1) variable
Horn formula generated by Encode.

12(¬x1 =⇒ x2) is not a Horn clause, so we can not add the clause (x1 ⇐⇒ ¬x2) which results in the possibility of 0̃ ∈ RΓ.
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Let us now consider the value of the (m+ 1)th variable xm+1 in σ1 and σ2. Now there can be following 4 cases:

(a) xm+1 = 0 in both σ1 and σ2. In this case, we pick another common False literal, xfLit (if it exists), and we add
the clause (xfLit ⇐⇒ xm+1), and conjuncts it with ¬xfLit. If no such literal xfLit exists, then we just add the
clause ¬xm+1. This ensures that xm+1 = 0 in Γ. Hence, following the induction hypothesis, we can conclude
that, RΓ = {σ1, σ2, 0̃} in this case.

(b) xm+1 = 1 in both σ1 and σ2. In this case, we first pick a common True literal xtLit, and then proceeding in
similar fashion as Case (a), we can infer that RΓ = {σ1, σ2, 0̃} holds here as well.

(c) xm+1 = 0 in σ1 and xm+1 = 1 in σ2. Let xdiff1 denote the first literal where xi = 1 in σ1 and xi = 0
in σ2, and xdiff2 be the first literal where xi = 1 in σ2 and xi = 0 in σ1. In this case, we add the clause
(xm+1 ⇐⇒ xdiff2). Thus, if xdiff2 = 1, then using the fact that xm+1 = 1 in σ2 and the induction
hypothesis, we infer that the sampled witness is σ1 and when xdiff2 = 0, then similarly the sampled witness is
σ0 or 0̃.
However, if no such xdiff2 exists, then we have diff2 = m + 1, and so we only add the clause (xdiff1 =⇒
¬xm+1). Thus, if xdiff1 = 1, then xm+1 = 0 and the sampled witness is σ1 and if xdiff1 = 0, then xm+1 can
be both 0 or 1. Thus, if xm+1 = 1, then the sampled witness is σ2 or if xm+1 = 0, then the sampled witness is 0̃.

(d) xm+1 = 1 in σ1 and xm+1 = 0 in σ2. Following similar arguments like Case (c), we can decide that, RΓ =
{σ1, σ2, 0̃}.

Thus, RΓ = {σ1, σ2, 0̃} holds in all the cases, and this completes the proof of (ii).

D OUR UNIFORM-HORN-SAMPLER-TESTER uFlash

In this section we describe our Uniform-Horn-sampler-tester uFlash, which works for a very simple subclass (uniform)
of general weighted Horn sampler. Our Uniform-Horn-sampler-tester uFlash, similar to Flash, takes as input a black-box
Horn sampler G, a Horn formula ϕ, three parameters ε, η, δ, such that ε ∈ (0, 1/3), η > 9ε, δ > 0, and outputs ACCEPT
with probability at least 1 − δ, if G is ε-close (in `∞ distance) to Uniform-Horn-sampler, and if the distribution of the
satisfying assignments corresponding to G, that is, DG(ϕ), is η-far in `1 distance from the uniform distribution, it outputs
REJECT with probability at least 1− δ.

The basic framework of our tester uFlash is very similar to Flash. The point of designing a Uniform-Horn-sampler-tester
explicitly, in parallel to Flash, is to highlight that uFlash works with much lower number of samples13 and time complexity
as compared to Flash. The subroutines used by uFlash are the same subroutines used by Flash, that is, HornKernel
(Algorithm 2), Encode (Algorithm 3), Bias (Algorithm 6), NewVars (Algorithm 4), and RemoveZeros (Algorithm 5).
But there are subtle changes in the algorithm of uFlash which utilizes the simplicity of testing Uniform-Horn-sampler, as
compared to Weighted-Horn-sampler, and makes uFlash fast.

Theorem D.1. Given a Horn sampler G, access to an ideal Uniform-Horn-sampler IU , a tolerance parameter ε ∈ (0, 1
3 ),

an intolerance parameter η ∈ (0, 2], with η > 9ε and a confidence parameter δ > 0, our Uniform-Horn-sampler-tester
uFlash takes Õ( 1

(η(η−9ε)(η−3ε)2) ) many samples, and:

(i) If G is an ε-AAU Horn sampler, uFlash outputs ACCEPT with probability ≥ (1− δ).

(ii) If G is η-far from IU and G is subquery consistent, uFlash outputs REJECT with probability ≥ (1− δ),

where Õ(·) hides poly-logarithmic factors in 1
(η−3ε) ,

1
(η−9ε) ,

1
η ,

1
δ .

D.1 Algorithm Description of uFlash

Unlike Flash, uFlash (Algorithm 7) first calculates the parameters T , N , M from input parameters ε, η, δ. Then uFlash
draws tmany samples from the Horn sampler G under test, and draw another sample from the ideal Uniform-Horn-sampler
IU and stores them in Γ1 and Γ2 in Line 9 and Line 10, in the same way as Flash. Thus, Γ1 is a set of samples obtained
from the distribution DG(ϕ), while Γ2 is a set of samples drawn from uniform distribution U over Rϕ, the witness space
of ϕ. Then in the for loop of Line 11, it first takes a sample σ1 from Γ1, and another sample σ2 from Γ2, and calls the
subroutine HornKernel with σ1, σ2 and ϕ in Line 16, to get a Horn formula ϕ̂ that employs the conditioning. The rest of

13Sample complexity of uFlash is independent of tilt.
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the algorithm of uFlash is very same as Flash. uFlash obtains M many satisfying assignments of ϕ̂ using G, the sampler-
under-test in Line 17. Then it calls the subroutine RemoveZeros (Algorithm 5) in Line 18 to remove all the 0̃ and checks if
there are at least N many witnesses of σ1 and σ2 out of the M witnesses obtained in Line 17. If the number of occurrences
of σ1 and σ2 is less than N , uFlash outputs REJECT and terminates the algorithm as in Flash. Otherwise, it employs the
subroutine Bias in Line 21 to determine the fraction of witnesses of σ1 (when projected on S) in the obtained sample set
after applying RemoveZeros. If this fraction is more than T , then it outputs REJECT. If uFlash does not output REJECT
in any of the t iterations of the for loop of Line 11, it finally outputs ACCEPT, and declares that the distribution induced
by the satisfying assignments produced by the Horn sampler G is ε-close to uniform distribution U .

Algorithm 7: uFlash (G, IU , S, ε, η, δ, ϕ)

1 t← 10
η(η−9ε) loge

(
1
δ

)
;

2 z ← loge
(

2t
δ

)
;

3 L← 1+ε
2 ;

4 H ← 1+ η+9ε
4

2+ η+9ε
4

;

5 T = (H+L)
2 ;

6 N ← 8z·H
(H−L)2 ;

7 X ← 2
(

1−ε
3−ε

)
;

8 M ←
(√

z+
√
z+4NX

2X

)2

;

9 Γ1 ← G(ϕ, S, t);
10 Γ2 ← IU (ϕ, S, t);
11 for i← 1 to t do
12 σ1 ← Γ1[i];
13 σ2 ← Γ2[i];
14 if σ1 == σ2 then
15 continue;
16 ϕ̂← HornKernel(ϕ, σ1, σ2,M);
17 Γ3 ← G(ϕ̂, S,M);
18 Γ̂3 ← RemoveZeros(Γ3, σ1, σ2);

19 if
∣∣∣Γ̂3

∣∣∣ < N then
20 return REJECT
21 Bias← Bias(σ1, Γ̂3, S);
22 if Bias > T then
23 return REJECT
24 return ACCEPT

D.2 Proof of Correctness of uFlash

Before proceeding to prove the correctness of uFlash, let us first restate the theorem regarding uFlash (Theorem D.1).

Theorem D.2 (Theorem D.1 restated). Given a Horn sampler G, a tolerance parameter ε ∈ (0, 1
3 ), an intolerance pa-

rameter η ∈ (0, 2], with η > 9ε and a confidence parameter δ > 0, our Uniform-Horn-sampler-tester uFlash takes
Õ( 1

η(η−9ε)(η−3ε)2 ) many samples, and decides the following:

(i) If G is an ε-additive almost uniform (AAU) Horn sampler, uFlash outputs ACCEPT with probability at least 1− δ.

(ii) If G is η-far from being the ideal Uniform-Horn-sampler IU and G is subquery consistent, uFlash outputs REJECT
with probability at least 1− δ.

where, Õ(·) hides poly-logarithmic factors in 1
η−3ε ,

1
η−9ε ,

1
η ,

1
δ .
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D.2.1 Completeness Theorem

Theorem D.3 (Completeness). If the Horn sampler G is an ε-additive almost-uniform (AAU) Horn sampler, then uFlash
outputs ACCEPT with probability at least (1− δ).

In order to prove this theorem, we will use the following two lemmas.

Lemma D.4. If G is an ε-AAU Horn sampler, then when we draw M samples from G(ϕ̂, .), the probability that 0̃ appears
at least (M −N) many times among M samples is at most δ

2t .

Lemma D.5. Given that 0̃ has appeared less than (M−N) times out of theM samples, the probability that uFlash outputs
REJECT in each iteration is at most δ

2t .

Assuming Lemma D.4 and Lemma D.5 hold, now we proceed to prove Theorem D.3.

Proof. Note that uFlash (Algorithm 7) outputs REJECT when either number of times 0̃ appears at least (M − N) times
among M samples, or when the Bias computed is more than T . Let us now divide them into two cases as follows:

Case (i): 0̃ appears at least (M −N) times among M samples from G.

Case (ii): Bias > T as determined in Line 21.

From Lemma D.4, we know that the probability of Case (i) is at most δ
2t . Also, by Lemma D.5, we know the probability

of Case (ii) is at most δ
2t as well. So, combining both Case (i) and Case (ii), we can say that with probability at most δt ,

uFlash outputs REJECT in any iteration. Since there are t many iterations of uFlash, the probability that uFlash outputs
ACCEPT is at least (1− δ

t )
t ≥ 1− δ. This completes the proof of Theorem D.3.

Now we proceed to prove Lemma D.4.

Proof of Lemma D.4. Let us define the following binary random variable:

Yj =

{
1 if Γ3[j] = 0̃
0 otherwise

Since G is ε-AAU, from Definition 2.4 we can say that

PG(ϕ̂, S, 0̃)

PG(ϕ̂, S, σ1)
≤ 1 + ε

1− ε
(3)

Similarly, we have
PG(ϕ̂, S, 0̃)

PG(ϕ̂, S, σ2)
≤ 1 + ε

1− ε
(4)

Thus, noting the fact that, PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2) + PG(ϕ̂, S, 0̃) = 1,

E[Yj ] = PG(Yj = 1)

= PG(ϕ̂, S, 0̃)

=
PG(ϕ̂, S, 0̃)

PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2) + PG(ϕ̂, S, 0̃)

≤ 1 + ε

3− ε
(5)

Where the last inequality follows from the fact that if ac <
l
m and a

c <
l
n , then a

b+c <
l

m+n and a
a+b+c <

l
l+m+n , along

with Equation 3 and Equation 4.
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Now consider the random variable Y defined as Y =
M∑
j=1

Yj . Following Equation 5, we can say that, E [Y ] ≤ 1+ε
3−εM .

Applying Chernoff bound A.2, we can say that the probability that Y is more than (M − N) is P (Y > M −N) ≤ δ
2t .

Thus, with probability at least
(
1− δ

t

)
, 0̃ appears less than (M − N) many times among M samples obtained from G in

Line 17 of uFlash.

Proof of Lemma D.5. Consider the case when the count of 0̃ appears less than (M − N) times out of the M samples
obtained from the sampler G in Line 17 of the algorithm uFlash. Now, recall the set Γ̂3 from uFlash that contains only σ1

and σ2 after removing all 0̃ from Γ. Let us define the following binary random variable Zi for each sample j of Γ̂3.

Zj =

{
1 if Γ̂3[j]↓S = σ1

0 if Γ̂3[j]↓S = σ2

So, the expected value of Zj is given by

E[Zj ] =
PG(ϕ̂, S, σ1)

PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2)

As G is ε-AAU, we can say that
PG(ϕ̂, S, σ1)

PG(ϕ̂, S, σ2)
≤ 1 + ε

1− ε

Thus, E[Zj ] ≤ 1+ε
2 . We set L = 1+ε

2 in the algorithm uFlash.

Note that Bias is computed as follows in Line 21 of uFlash:

Bias =
∑

j∈[|Γ̂3|]

I(Γ̂3[j]↓S = σ1)

I(Γ̂3[j]↓S = σ1) + I(Γ̂3[j]↓S = σ2)
=
∑
j∈|Γ̂3|

Zj∣∣∣Γ̂3

∣∣∣
So, the probability that Bias > T is given by:

P(Bias > T |
∣∣∣Γ̂3

∣∣∣ ≥ N) = P(
∑
j∈|Γ̂3|

Zj∣∣∣Γ̂3

∣∣∣ > T |
∣∣∣Γ̂3

∣∣∣ ≥ N)

≤ exp

(
− (H − L)2N

8H

)
≤ δ

t

D.2.2 Soundness Theorem

Theorem D.6 (Soundness). If G is η-far from the ideal Uniform-Horn-sampler IU and G is subquery consistent, uFlash
outputs REJECT with probability at least 1− δ.

Before proceeding to prove Theorem D.6, let us first partition the set Rϕ, the set of satisfying assignments of ϕ into the
following subsets:

• W−1 = {x ∈ Rϕ : PG(ϕ, x) ≤ 1
N }

• W0 = {x ∈ Rϕ : 1
N < PG(ϕ, x) <

(
1 + η+9ε

4

)
1
N }
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• W1 = {x ∈ Rϕ :
(
1 + η+9ε

4

)
1
N ≤ PG(ϕ, x)}

Lemma D.7. If G is η-far from the ideal Uniform-Horn-sampler IU , then

P (Bias > T | (σ1 ∈W1 ∧ σ2 ∈W−1)) ≥ 4

5

Lemma D.8. If the sampler G is η-far from the ideal Uniform-Horn-sampler IU , then

P (σ1 ∈W1 ∧ σ2 ∈W−1) ≥ η(η − 9ε)

8

Assuming Lemma D.7 and Lemma D.8 hold, we are now ready to prove Theorem D.6.

Proof of Theorem D.6. Let us first define the following events:

E1 := σ1 ∈W1 ∧ σ2 ∈W−1

E2 := Bias > T in an iteration

So, following Lemma D.7 and Lemma D.8, we can say that:

P(E2) = P(E2 | E1)P(E1) ≥ 4

5

η(η − 9ε)

8

Thus, the probability that uFlash returns REJECT is:

P (uFlash returns REJECT) ≥ 1−
(

1− η(η − 9ε)

10

)t

As t = 10
η(η−9ε) loge

1
δ , when G is η-far from the Uniform-Horn-sampler IU , uFlash rejects G with probability at least 1−δ.

This completes the proof of Theorem D.6.

Proof of Lemma D.7. Consider the case when σ1 ∈ W1 and σ2 ∈ W−1. From the definition of W1, we know that
PG(ϕ, σ1) ≥

(
1 + η+9ε

4

)
1
N . Also, from the definition of W , we can say that PG(ϕ, σ2) < 1

N . So, we can say that
PG(ϕ, σ1) ≥

(
1 + η+9ε

4

)
PG(ϕ, σ2).

Assuming the subquery consistency property of G, along with the fact that Γ̂3 contains only σ1 and σ2, we can say that

PG(ϕ̂, S, σ1) =
PG(ϕ, S, σ1)

PG(ϕ, S, σ1) + PG(ϕ, S, σ2)
≥

1 + η+9ε
4

2 + η+9ε
4

As H =
1+ η+9ε

4

2+ η+9ε
4

, applying Chernoff bound, we can say that,

P(Bias ≤ T | σ1 ∈W1 ∧ σ2 ∈W−1) ≤ 1

5

So, the proof of the lemma follows.

Proof of Lemma D.8. Since G is η-far from the Uniform-Horn-sampler IU , we can say that∑
x∈W

(
PG(ϕ, x)− 1

N

)
=

∑
x∈W−1

(
1

N
− PG(ϕ, x)

)
≥ η

2
(6)
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Therefore from Equation (6),
|W−1|
N

≥ η

2
(7)

Now,
∑

x∈W0

(
PG(ϕ, x)− 1

N

)
≤

∑
x∈W0

η+9ε
4

1
N < η+9ε

4

Thus, ∑
x∈W1

PG(ϕ, x) ≥ η

2
− η + 9ε

4
≥ η − 9ε

4
(8)

Hence, from the independence of σ1 and σ2 we have proven the Lemma from Equation (7) and Equation (8).

D.2.3 Sample Complexity of uFlash

Theorem D.9. The sample complexity of uFlash is Õ( 1
η(η−9ε)(η−3ε)2 ), where Õ(·) hides poly-logarithmic factor in

1
η ,

1
η−3ε ,

1
η−9ε , and 1

δ .

Proof. We first note that uFlash takes t samples from G and the ideal Uniform-Horn-sampler IU in Line 9 and Line 10
respectively. Thereafter, in each iteration of the for loop starting from Line 11, it takes M samples from G in Line 17.
Since the loop runs for t iterations, the sample complexity is 2t + Mt, which is at most 2Mt. Below, we will bound the
value of 2Mt.

First, we see that N = 8zH
(H−L)2 . As H =

1+ η+9ε
4

2+ η+9ε
4

, and L = 1+ε
2 , we can say that N ≤ 8

log 2t
δ

(η−3ε)2 .

As M =
(√

z+
√
z+4NX

2X

)2

≤ z+4NX
X2 , X = 2

(
1−ε
3−ε

)
, we can say that

2Mt ≤ 2t

(
log

2t

δ

1

X2
+

4N

X

)
≤ 2t

(
log

2t

δ
· 6 + 32 log

2t

δ

1

(η − 3ε)2

)
= Õ

(
1

η(η − 9ε)(η − 3ε)2

)

E CORRECTNESS OF OUR WEIGHTED-HORN-SAMPLER-TESTER Flash

Let us start by restating the theorem corresponding to our Weighted-Horn-sampler-tester Flash.

Theorem E.1. Given a Weighted-Horn-sampler G, an ideal Weighted-Horn-sampler IW , a tolerance parameter ε ∈
(0, 1

3 ), an intolerance parameter η > 0, with η > 9ε and a confidence parameter δ > 0, and an arbitrary but fixed weight

function wt, our Weighted-Horn-sampler-tester Flash takes Õ( tilt(wt,ϕ)3

η(η−9ε)(η−3ε)2 ) many samples, and decides the following:

(i) If G is ε-close to the Weighted-Horn-sampler IW , Flash outputs ACCEPT with probability at least 1− δ.

(ii) If G is η-far from the Weighted-Horn-sampler IW , Flash outputs REJECT with probability at least 1− δ.

where tilt(wt, ϕ) denotes the maximum ratio between any two satisfying assignments of ϕ with respect to the weight
function wt, and Õ(·) hides poly-logarithmic factors in 1

η ,
1

η−3ε ,
1

η−9ε , and 1
δ .

E.1 Completeness Property of Flash

Theorem E.2 (Completeness Theorem). If the Horn sampler G is ε-close to an ideal Weighted-Horn-sampler IW , then
with probability at least (1− δ), Flash will output ACCEPT.
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Proof of Theorem E.2. To begin with, first note that, the algorithm of Flash runs the for loop for t many times. To prove
the Theorem E.2, we will first show that if we have a Horn sampler G which is ε-close to an ideal Weighted-Horn-sampler
IW , then Flash outputs REJECT in some i-th iteration of t loops with probability at most δ/t. Using the union bound, the
proof follows. We divide the proof of the completeness theorem into Lemma E.3 and Lemma E.4.

The proof of Theorem E.2 follows by first proving that if G is ε-close to an ideal Weighted-Horn-sampler IW , then if
we draw M samples from G(ϕ̂, .), with probability at least (1 − δ/2t), we will receive at least N samples from the set
{σ1, σ2}. Then we have to show that if we receive N many samples from {σ1, σ2}, then the probability that G outputs
REJECT in each iteration of Flash is at most δ/2t.

Lemma E.3. If the sampler G is ε-close to the ideal Weighted-Horn-sampler IW , then when we draw M samples from
G(ϕ̂, .), the probability that 0̃ appears at least (M −N) many times among M samples is at most δ

2t .

Lemma E.4. Given that 0̃ has appeared less than (M −N) times out of the M samples, the probability that Flash outputs
REJECT in any iteration is at most δ

2t .

Assuming Lemma E.3 and Lemma E.4 hold, we now prove Theorem E.2 as follows:

First note that ϕ̂ has three satisfying assignments: {σ1, σ2, 0̃} when projected onto the support set S. In each iteration, we
are drawing M samples from G(ϕ̂, .). We now define an index set I on Γ3 as follows:

I =
{
j | Γ3[j]↓S 6= 0̃

}
Note that there are two possibilities when Flash outputs REJECT. They are the following:

Case (i) When we draw M samples in Line 19 of Flash (Algorithm 1), we obtain more than (M − N) many 0̃, that is,
|I| < N . In this case, Flash outputs REJECT.

Case (ii) When we draw M samples and get more than N samples from the set {σ1, σ2} (that is, |I| ≥ N ), but the Bias
estimated by the Bias subroutine exceeds the threshold T .

So, the probability that Flash outputs REJECT in an iteration, is given by,

P (|I| < N) + P (Bias > T | |I| ≥ N) · P (|I| ≥ N)

≤ δ

2t
+

δ

2t
· 1

=
δ

t

The first term in the first line corresponds to Case (i), while the second term corresponds to Case (ii) discussed above. The
first inequality follows from Lemma E.3 and Lemma E.4.

Since the probability that Flash outputs REJECT in some i-th iteration is at most δt , then the probability that Flash does
not REJECT in any of the t iterations is at least (1 − δ

t )
t ≥ 1 − δ. So, when the sampler G is ε-close to the ideal

Weighted-Horn-sampler IW , the algorithm Flash outputs ACCEPT with probability at least 1− δ.

Proof of Lemma E.3. Recall from the Algorithm 1 in Line 19, we sample M many samples from ϕ̂, which are contained
in Γ3. So Γ3 consists of witnesses from the set {σ1, σ2, 0̃}. Let us first define the following binary random variable,

Zj =

{
1 if Γ3[j] = 0̃
0 otherwise

Now, since the sampler G is ε-close to an ideal Weighted-Horn-sampler IW by our assumption, so we have the following
inequalities,

PG(ϕ̂, S, 0̃)

PG(ϕ̂, S, σ1)
≤ (1 + ε)PIW (ϕ̂, S, 0̃)

(1− ε)PIW (ϕ̂, S, σ1)
(9)
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PG(ϕ̂, S, 0̃)

PG(ϕ̂, S, σ2)
≤ (1 + ε)PIW (ϕ̂, S, 0̃)

(1− ε)PIW (ϕ̂, S, σ2)
(10)

As PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2) + PG(ϕ̂, S, 0̃) = 1, we can say that:

E[Zj ] = P (Zj = 1)

= PG
(
ϕ̂, S, 0̃

)
=

PG
(
ϕ̂, S, 0̃

)
PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2) + PG(ϕ̂, S, 0̃)

≤
(1 + ε)PIW

(
ϕ̂, S, 0̃

)
(1− ε)PIW (ϕ̂, S, σ1) + (1− ε)PIW (ϕ̂, S, σ2) + (1 + ε)PIW

(
ϕ̂, S, 0̃

)
=

(1 + ε)PIW
(
ϕ, S, 0̃

)
(1− ε)PIW (ϕ, S, σ1) + (1− ε)PIW (ϕ, S, σ2) + (1 + ε)PIW

(
ϕ, S, 0̃

)

The inequality in fourth line follows due to the fact that if a
c <

l
m and a

c <
l
n , then a

b+c <
l

m+n and a
a+b+c <

l
l+m+n ,

along with Equation (9) and Equation (10).

Now we define the random variable Z as Z =
|M |∑
j=1

Zj . Following the expression of E[Zj ], we can say the following:

E[Z] ≤
(1 + ε)PIW

(
ϕ, S, 0̃

)
M

(1− ε)PIW (ϕ, S, σ1) + (1− ε)PIW (ϕ, S, σ2) + (1 + ε)PIW
(
ϕ, S, 0̃

)
=

(1 + ε)wt
(

0̃
)
M

(1− ε)wt (σ1) + (1− ε)wt (σ2) + (1 + ε)wt
(

0̃
)

Let us define τ as τ = (1 − ε)wt (σ1) + (1 − ε)wt (σ2) + (1 + ε)wt
(

0̃
)

. As M =
(√

n+
√
n+4NX

2X

)2

, where n =

log 2t
δ , and X =

(
(1−ε)wt(σ1)+(1−ε)wt(σ2)

τ

)
, we have M = N + E[Z] +

√
Mn. Applying Lemma A.2, we can say that

P (|I| < N) = P (Z > M −N) = P
(
Z > E[Z] +

√
Mn

)
≤ δ

2t , and the lemma follows.

Proof of Lemma E.4. When M samples drawn from the sampler G in Line 19, if at least N many samples belong to the
set {σ1, σ2}, then Flash outputs REJECT if and only if Bias is more then T . Let us now consider an iteration j among
the t iterations of Flash. Recall the set I on Γ3 defined as I =

{
j | Γ3[j]↓S 6= 0̃

}
. Consider the following binary random

variable Yj with j ∈ I defined as follows:

Yj =

{
1 if Γ̂3[j]↓S = σ1

0 if Γ̂3[j]↓S = σ2

Then, we have the expected value of Yj given by,

E[Yj ] =
PG(ϕ̂, S, σ1)

PG(ϕ̂, S, σ1) + PG(ϕ̂, S, σ2)
(11)
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Since G is ε-close to ideal Weighted-Horn-sampler IW , from Definition 2.4, we can say that:

PG(ϕ̂, S, σ1)

PG(ϕ̂, S, σ2)
≤ (1 + ε)PIW (ϕ̂, S, σ1)

(1− ε)PIW (ϕ̂, S, σ2)
(12)

Following the facts that PIW (ϕ̂, S, σ1) =
PIW (ϕ,S,σ1)

PIW (ϕ,S,σ1)+PIW (ϕ,S,σ2)+PIW (ϕ,S,0̃)
and PIW (ϕ̂, S, σ2) =

PIW (ϕ,S,σ2)

PIW (ϕ,S,σ1)+PIW (ϕ,S,σ2)+PIW (ϕ,S,0̃)
, from Equation (11) and Equation (12), we can say the following:

E[Yj ] ≤
(1 + ε)PIW (ϕ̂, S, σ1)

(1 + ε)PIW (ϕ̂, S, σ1) + (1− ε)PIW (ϕ̂, S, σ2)

=
(1 + ε)PIW (ϕ, S, σ1)

(1 + ε)PIW (ϕ, S, σ1) + (1− ε)PIW (ϕ, S, σ2)

=
(1 + ε)wt(σ1)

(1 + ε)wt(σ1) + (1− ε)wt(σ2)
= L

The first inequality follows due to the fact that if ab <
l
m , then a

a+b ≤
l

l+m , where a, b, l,m ∈ R.

Now, Bias is calculated in Flash as follows:

Bias =
∑
j∈[M ]

I(Γ̂3[j]↓S = σ1)

I(Γ̂3[j]↓S = σ1) + I(Γ̂3[j]↓S = σ2)
=
∑
j∈I

Yj
|I|

Now given that |I| ≥ N , we can apply the Chernoff bound (Lemma A.4) as follows:

P(Bias > T | |I| ≥ N) = P

∑
j∈I

Yj
|I|

> T

∣∣∣∣ |I| ≥ N


< exp

(
− (T − L)2N

2L

)
= exp

(
− (H − L)2N

8L

)
≤ exp

(
− (H − L)2N

8H

)
≤ δ

2t

E.2 Soundness Property of Flash

Theorem E.5 (Soundness Theorem). If the Horn sampler G is subquery consistent with respect to HornKernel and is η-far
from an ideal Weighted-Horn-sampler IW , then with probability at least (1− δ), Flash will output REJECT.

Proof. Let us first partition the set of witnesses of ϕ into the following three disjoint sets as follows:

• W−1 = {x ∈ Rϕ : PG(ϕ, x) ≤ PIW (ϕ, x)}

• W0 = {x ∈ Rϕ : PIW (ϕ, x) < PG(ϕ, x) <
(
1 + η+9ε

4

)
PIW (ϕ, x)}

• W1 = {x ∈ Rϕ :
(
1 + η+9ε

4

)
PIW (ϕ, x) ≤ PG(ϕ, x)}

Now, we will show that if we receive σ1 from W1 and σ2 from W−1, then Flash will output REJECT with high probability.
In order to prove this, we need the following two lemmas.

Lemma E.6. If the sampler G is η-far from the ideal Weighted-Horn-sampler IW , then

P (Bias > T | (σ1 ∈W1 ∧ σ2 ∈W−1)) ≥ 4

5
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Lemma E.7. If the sampler G is η-far from the ideal Weighted-Horn-sampler IW , then

P (σ1 ∈W1 ∧ σ2 ∈W−1) ≥ η(η − 9ε)

8

So, from Lemma E.6 and Lemma E.7, we can estimate the probability of rejection of Flash in an iteration as follows:

P (Bias > T )

= P (Bias > T | (σ1 ∈W1 ∧ σ2 ∈W−1)) · P (σ1 ∈W1 ∧ σ2 ∈W−1)

≥
(

4

5

)
η(η − 9ε)

8

Thus, the probability that Flash returns REJECT for is given by:

1−
∏
i∈[t]

P(Bias < T in i-th iteration) ≥ 1−
∏
i∈[t]

(
1− η(η − 9ε)

10

)

= 1−
(

1− η(η − 9ε)

10

)t
≥ 1− δ

Proof of Lemma E.6. Assuming, σ1 ∈W1 and σ2 ∈W−1, we can obtain the following inequality

PG(ϕ, S, σ1)

PG(ϕ, S, σ2)
≥
(

1 +
η + 9ε

4

)
· PIW (ϕ, S, σ1)

PIW (ϕ, S, σ2)

=

(
1 +

η + 9ε

4

)
· wt(σ1)

wt(σ2)

Thus, assuming the subquery consistent property of sampler G, along with the fact that Γ̂3 contains only σ1 and σ2, we can
say the following:

PG(ϕ̂, S, σ1) =
PG(ϕ, S, σ1)

PG(ϕ, S, σ1) + PG(ϕ, S, σ2)

≥
(

1 +
η + 9ε

4

)
· wt(σ1)

wt(σ2)
·
(

1 +

(
1 +

η + 9ε

4

)
· wt(σ1)

wt(σ2)

)−1

= H

Thus,

P (Bias ≤ T in i-th iteration | (σ1 ∈W1 ∧ σ2 ∈W−1))

≤ exp

(
− (H − L)2N

8H

)
≤ δ

2t
[applying Chernoff bound A.4]

≤ 1

5
[as δ < 0.5 and t ≥ 2]

So, the probability that Flash outputs REJECT when σ1 ∈W1 and σ2 ∈W−1 is,

P (Bias > T in i-th iteration | (σ1 ∈W1 ∧ σ2 ∈W−1)) ≥ 4

5
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Proof of Lemma E.7. Since the sampler G is η-far from the ideal Weighted-Horn-sampler IW , then for input ϕ, the `1
distance between DG(ϕ) and DIW (ϕ) is at least η. Thus,∑

x∈W0∪W1

(PG(ϕ, x)− PIW (ϕ, x)) =
∑

x∈W−1

(PIW (ϕ, x)− PG(ϕ, x)) ≥ η

2
(13)

Therefore from Equation (13), ∑
x∈W−1

PIW (ϕ, x) ≥ η

2
(14)

Now, from the definition of W0, we have,

∑
x∈W0

(PG(ϕ, x)− PIW (ϕ, x)) <
η + 9ε

4

∑
x∈W0

PIW (ϕ, x) <
η + 9ε

4

Hence, we have: ∑
x∈W1

(PG(ϕ, x)− PIW (ϕ, x)) ≥ η

2
− η + 9ε

4
=
η − 9ε

4

Therefore, ∑
x∈W1

PG(ϕ, x) ≥ η

2
− η + 9ε

4
=
η − 9ε

4
(15)

Since the events σ1 ∈W1 and σ2 ∈W−1 are independent, from Equation 14 and Equation 15, we can say that

P (σ1 ∈W1 ∧ σ2 ∈W−1) ≥ η(η − 9ε)

8

E.3 Sample Complexity of Flash

Theorem E.8. The sample complexity of Flash is Õ( tilt(ϕ,wt)3

η(η−9ε)(η−3ε)2 ), where tilt denotes the maximum weight between any

two satisfying assignments, where Õ(·) hides poly-logarithmic factor in 1
η ,

1
η−9ε ,

1
η−3ε , and 1

δ .

Proof. For ease of presentation, we will represent tilt(ϕ,wt) as tilt. Note that Flash (Algorithm 1) takes t samples in the
for loop in Line 5. Also, it takes M samples in Line 6 in each iteration of the for loop. So, Flash takes 2t + Mt samples
from G, which can be at most 2Mt. Now, we find an upper bound of 2Mt below.

Note that

1

X
= 1 +

(1 + ε)wt(0̃)

(1− ε)(wt(σ1) + wt(σ2))

= 1 +
1 + ε

1− ε
1

wt(σ1)

wt(0̃)
+ wt(σ2)

wt(0̃)

≤ 1 +
1 + ε

1− ε
tilt

2

≤ 1 + tilt (∵ ε ≤ 1

3
)

≤ 2 tilt (∵ 1 ≤ tilt)
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Note that N = 8 log 2t
δ

H
(H−L)2 ≤ 8 log 2t

δ

(
tilt

(η−3ε)

)2

. Thus, we can say that

2Mt = 2t

(
log

2t

δ

1

X2
+

4N

X

)
≤ 2t

(
log

2t

δ
· 4 tilt2 + 32 log

2t

δ

tilt3

(η − 3ε)2

)
≤ Õ

(
t · tilt3

(η − 3ε)2

)
≤ Õ

(
tilt3

η(η − 9ε)(η − 3ε)2

)

So, the total sample complexity of Flash is Õ
(

tilt3

η(η−9ε)(η−3ε)2

)
. This completes the proof of Theorem E.8.

F EXTENDED EXPERIMENTAL RESULTS

In this section, we describe the extended experimental results of our Uniform-Horn-sampler-tester uFlash and Weighted-
Horn-sampler-tester Flash. As mentioned in the Evaluation Results section of our main paper (Section 4), we will use DNS
to denote the situation where sampler-under-test has failed to sample during the time period, and TLE to denote when the
tester has not been able to complete the test within the time limit of the experiment. As mentioned in the main paper, for
each benchmark-sampler pair, one single core is being employed with a maximum time limit of 23 hrs 50 minutes, where
the experiments have been carried out on a high-performance computer cluster, where each node consists of E5-2690 v3
@2.60GHz CPU with 24 cores and 4GB memory per core.

We also computed the model count, that is, the number of satisfying assignments of the benchmark Horn formulas using
the tool sharpSAT [Thurley (2006)]. We would like to point out that as we are using the same set of benchmarks for the
Horn samplers UNIGEN, QUICKSAMPLER, and STS, the model count remains same in all the tables corresponding to the
Uniform-Horn-sampler-tester uFlash. Moreover, in the evaluation of our Weighted-Horn-sampler-tester Flash, as we are
considering the same 11 benchmark instances with respect to two different weight functions, model count of the benchmark
instances remain same there as well. For completeness purpose, we are presenting them in each table.

F.1 Results of our Uniform-Horn-sampler-tester uFlash:

Here we present the extended results of our Uniform-Horn-sampler-tester uFlash. For baseline, we employed the tester
from Batu et al. (2001), Paninski (2008). For any Horn formula ϕ, it takes O(

√
n(η − ε)−2 log(nδ )) many samples, where

n denotes the model count of ϕ, and ε, η and δ are the closeness, farness and confidence parameters respectively. Due to
the extremely large sample complexity, it is not feasible to compute the exact time for the baseline approach. Thus, we
have estimated the average time taken for any benchmark instance.

In Table 3, we compare our Uniform-Horn-sampler-tester uFlash with respect to the sampler UNIGEN to the baseline
over the 11 benchmark instances. 1st column of Table 3 represents the name of the benchmark instance and 2nd column
corresponds to the model count of the Horn formula corresponding to that instance. In 3rd and 4th columns, we present
the number of samples and time required by the baseline tester, whereas 5th, 6th and 7th columns represent the number
of samples and the time required by uFlash, and the output of uFlash with respect to that particular benchmark instance.
We find that uFlash outputs ACCEPT in all 11 benchmark instances. As it is evident from the entries of the table, uFlash
vastly outperforms the baseline approach, both in terms of the number of samples required, as well as the time required for
testing.

Similarly, in Table 4, we compare our Uniform-Horn-sampler-tester uFlash when run with the sampler QUICKSAMPLER
along with the baseline tester over the 11 benchmark instances. Similar to Table 3, 1st and 2nd columns represent the
benchmark instance name and the model count, whereas 3rd and 4th columns correspond to the number of samples and
time required by the baseline tester, and 5th, 6th and 7th columns represent the number of samples and total time required
by uFlash, and the output of uFlash on that instance. It turns out that uFlash outputs REJECT in all the instances with
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respect to QUICKSAMPLER. As in the case of UNIGEN, the number of samples required, and the total time taken by uFlash
is much smaller compared to the baseline approach.

Finally, in Table 5, we present our results when we run our Uniform-Horn-sampler-tester uFlash for the sampler STS.
The organization of this table follows in similar fashion as Table 3 and Table 4. As in the case of QUICKSAMPLER,
uFlash outputs REJECT in all 11 instances here as well. Similar to the case of UNIGEN and QUICKSAMPLER, it is clear
that uFlash outperforms the baseline approach by several orders of magnitude both in the context of number of samples
required, as well as the time taken to complete the experiment.

Baseline uFlash
Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6_count_91 2.19× 1032 7.72× 1018 3.41× 1017 218505 643 A
Net8_count_96 3.2× 1036 9.9× 1019 4.7× 1018 218505 664 A

Net12_count_106 6.34× 1043 5.27× 1023 3.15× 1022 218505 709 A
Net22_count_116 9.49× 1050 2.36× 1027 1.73× 1026 218505 756 A
Net27_count_118 8.05× 1053 7.27× 1028 5.46× 1027 218505 537 A
Net29_count_164 4.51× 1063 6.41× 1033 1.02× 1033 218505 671 A
Net39_count_240 2.46× 1091 6.77× 1047 2.61× 1047 218505 1002 A
Net43_count_243 8.41× 10100 4.36× 1052 1.75× 1052 218505 1045 A
Net46_count_322 3.22× 10129 1.09× 1067 1.12× 1067 218505 1491 A
Net52_count_362 2.64× 10147 1.12× 1076 1.24× 1076 218505 1793 A
Net53_count_339 4.05× 10143 1.36× 1074 1.17× 1074 218505 1622 A

Table 3: Evaluation results of uFlash with UNIGEN

Baseline uFlash
Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6_count_91 2.19× 1032 7.72× 1018 1.79× 1016 52025 54 R
Net8_count_96 3.2× 1036 9.91× 1019 2.16× 1017 166480 182 R

Net12_count_106 6.34× 1043 5.27× 1023 1.19× 1021 72835 88 R
Net22_count_116 9.49× 1050 2.36× 1027 6.06× 1024 72835 94 R
Net27_count_118 8.05× 1053 7.27× 1028 1.86× 1026 72835 97 R
Net29_count_164 4.51× 1063 6.41× 103 2.08× 1031 114455 210 R
Net39_count_240 2.46× 1091 6.76× 1047 3.23× 1045 166480 477 R
Net43_count_243 8.41× 10100 4.36× 1052 2.04× 1050 93645 278 R
Net46_count_322 3.22× 10129 1.09× 1067 6.68× 1064 10405 44 R
Net52_count_362 2.64× 10147 1.12× 1076 7.7× 1073 10405 56 R
Net53_count_339 4.05× 10143 1.36× 1074 8.74× 1071 31215 145 R

Table 4: Evaluation results of uFlash with QUICKSAMPLER

Baseline uFlash
Benchmark Model Count #Samples Time (s) #Samples Time (s) o/p

Net6_count_91 2.19× 1032 7.72× 1018 1.68× 1016 20810 16 R
Net8_count_96 3.2× 1036 9.91× 1019 2.45× 1017 31215 26 R

Net12_count_106 6.34× 1043 5.27× 1023 1.7× 1021 52025 51 R
Net22_count_116 9.49× 1050 2.36× 1027 9.17× 1024 41620 43 R
Net27_count_118 8.05× 1053 7.27× 1028 3.12× 1026 10405 12 R
Net29_count_164 4.51× 1063 6.41× 1033 4.05× 1031 20810 30 R
Net39_count_240 2.46× 1091 6.76× 1047 8.94× 1045 114455 310 R
Net43_count_243 8.41× 10100 4.36× 1052 6.49× 1050 114455 273 R
Net46_count_322 3.22× 10129 1.09× 1067 2.65× 1065 10405 35 R
Net52_count_362 2.64× 10147 1.12× 1076 3.33× 1074 20810 97 R
Net53_count_339 4.05× 10143 1.36× 1074 3.68× 1072 72835 267 R

Table 5: Evaluation results of uFlash with STS

F.2 Results of our Weighted-Horn-sampler-tester Flash:

In this section, we present the extended results of the experiments of our Weighted-Horn-sampler-tester Flash to test the
samplers WUNIGEN, WQUICKSAMPLER and WSTS. As mentioned in the main paper, for each of the 11 benchmark
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Baseline WUNIGEN
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

B
en

ch
m

ar
k-

I
Net6_count_91_w1 2.19× 1032 20.40 3.12× 1024 TLE - TLE TLE
Net8_count_96_w1 3.2× 1036 26.23 9.18× 1025 TLE - TLE TLE
Net12_count_106_w1 6.34× 1043 20.40 8.03× 1030 TLE - TLE TLE
Net22_count_116_w1 9.49× 1050 26.23 5.65× 1035 TLE - DNS DNS
Net27_count_118_w1 8.05× 1053 43.36 5.35× 1037 TLE - DNS DNS
Net29_count_164_w1 4.51× 1063 92.17 1.98× 1044 TLE - DNS DNS
Net39_count_240_w1 2.46× 1091 14043.96 8.81× 1062 TLE - DNS DNS
Net43_count_243_w1 8.41× 10100 1137.74 2.20× 1069 TLE - DNS DNS
Net46_count_322_w1 3.22× 10129 23215.53 3.81× 1088 TLE - DNS DNS
Net52_count_362_w1 2.64× 10147 286565.21 3.19× 10100 TLE - DNS DNS
Net53_count_339_w1 4.05× 10143 38376.70 8.92× 1097 TLE - DNS DNS

B
en

ch
m

ar
k-

II

Net6_count_91_w2 2.19× 1032 12.34 3.12× 1024 4.57× 1023 274175 3921 A
Net8_count_96_w2 3.2× 1036 5.80 9.18× 1025 1.35× 1025 397169 5837 A
Net12_count_106_w2 6.34× 1043 5.80 8.03× 1030 1.42× 1030 197713 3022 A
Net22_count_116_w2 9.49× 1050 7.46 5.65× 1035 1.04× 1035 302546 4551 A
Net27_count_118_w2 8.05× 1053 7.46 5.35× 1037 TLE - TLE TLE
Net29_count_164_w2 4.51× 1063 7.46 1.98× 1044 6.36× 1043 238673 3986 A
Net39_count_240_w2 2.46× 1091 9.60 8.81× 1062 5.83× 1062 282138 5909 A
Net43_count_243_w2 8.41× 10100 4.51 2.20× 1069 TLE - TLE TLE
Net46_count_322_w2 3.22× 10129 5.80 3.21× 1088 3.81× 1088 437529 5038 A
Net52_count_362_w2 2.64× 10147 2.73 3.19× 10100 TLE - TLE TLE
Net53_count_339_w2 4.05× 10143 7.46 8.92× 1097 1.12× 1098 191806 2933 A

Table 6: Evaluation results of Flash with WUNIGEN

instances of unweighted Horn formulas, we designed two sets of weight functions and thus, we procured two sets of
benchmarks, and we run our experiments over these 22 benchmark instances.

For baseline, we employed the tester of Batu et al. (2000). For any Horn formula ϕ, the tester of Batu et al. (2000) takes
O(n

2
3 (η − ε)− 8

3 log(nδ )) many samples, where n denotes the model count of ϕ, and ε, η and δ are the closeness, farness
and confidence parameters respectively. Similar to the case of uFlash, as the sample complexity of Batu et al. (2000) is
very large, we have estimated the average time taken for any benchmark instance by the baseline tester.

In Table 6, we present the results of our Weighted-Horn-sampler-tester Flash to test the sampler WUNIGEN. 1st column
of Table 6 denotes the name of the benchmark instance, 2nd column corresponds to the model count of the Horn formula
corresponding to the benchmark instance, and 3rd column represents the tilt of the formula corresponding to the instance,
where tilt denotes the maximum ratio between the weights of any two satisfying assignments. 4th and 5th columns
represent the number of samples and time required by the baseline tester respectively. 6th, 7th and 8th columns corresponds
to the number of samples and time required by Flash and its output on that benchmark instance respectively. Among the
22 benchmark instances, in 8 instances, Flash outputs ACCEPT, whereas there are 6 instances of TLE and 8 instances of
DNS. For the instances where Flash does not output TLE or DNS, it is clear that Flash outperforms the baseline tester by
a large order of magnitude.

In Table 7, we present our results of Flash with respect to WQUICKSAMPLER. The organization of this table is similar
to that of Table 6. Our Weighted-Horn-sampler-tester Flash outputs REJECT in 21 instances out of the 22 instances, and
outputs ACCEPT in 1 benchmark instance. Moreover, as in the case of WUNIGEN, the sample complexity and total time
taken by Flash is much better compared to the baseline approach.

Finally, in Table 8, we show the results of Flash in order to test the sampler STS. The organization of the table follows
in similar line to the preceding tables. It turns out that Flash outputs REJECT in all of the 22 benchmark instances here.
Also, similar to WUNIGEN and WQUICKSAMPLER, Flash outperforms the baseline tester by a large magnitude.



Banerjee, Chakraborty, Chakraborty, Meel, Sarkar & Sen

Baseline WQUICKSAMPLER
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

B
en

ch
m

ar
k-

I

Net6_count_91_w1 2.19× 1032 20.40 3.11× 1024 1.33× 1022 106910 158 R
Net8_count_96_w1 3.2× 1036 26.23 9.18× 1025 3.94× 1023 22716 37 R
Net12_count_106_w1 6.34× 1043 20.40 8.03× 1030 3.22× 1028 27428 48 R
Net22_count_116_w1 9.49× 1050 26.23 5.66× 1035 2.73× 1033 98629 182 R
Net27_count_118_w1 8.05× 1053 43.36 5.35× 1037 2.54× 1035 49654 94 R
Net29_count_164_w1 4.51× 1063 92.17 1.98× 1044 1.53× 1042 123202 337 R
Net39_count_240_w1 2.46× 1091 14043.96 8.81× 1062 1.04× 1061 7745 54 R
Net43_count_243_w1 8.41× 10100 1137.74 2.20× 1069 2.37× 1067 209062 934 R
Net46_count_322_w1 3.22× 10129 23215.53 3.21× 1088 3.89× 1086 23105 174 R
Net52_count_362_w1 2.64× 10147 286565.21 3.19× 10100 4.65× 1098 6085 99 R
Net53_count_339_w1 4.05× 10143 38376.70 8.92× 1097 1.13× 1096 38417 331 R

B
en

ch
m

ar
k-

II

Net6_count_91_w2 2.19× 1032 12.34 3.12× 1024 9.1× 1021 17667 23 R
Net8_count_96_w2 3.2× 1036 5.80 9.18× 1025 2.83× 1023 388885 486 A
Net12_count_106_w2 6.34× 1043 5.80 8.02× 1030 2.98× 1028 6085 10 R
Net22_count_116_w2 9.49× 1050 7.46 5.66× 1035 2.08× 1033 22947 36 R
Net27_count_118_w2 8.05× 1053 7.46 5.35× 1037 1.89× 1035 10405 16 R
Net29_count_164_w2 4.51× 1063 7.46 1.98× 1044 8.94× 1041 7226 17 R
Net39_count_240_w2 2.46× 1091 9.60 8.81× 1062 5.96× 1060 13690 43 R
Net43_count_243_w2 8.41× 10100 4.51 2.20× 1069 1.45× 1067 238260 765 R
Net46_count_322_w2 3.22× 10129 5.80 3.21× 1088 2.56× 1086 135368 592 R
Net52_count_362_w2 2.64× 10147 2.73 3.19× 10100 2.98× 1098 210925 1138 R
Net53_count_339_w2 4.05× 10143 7.46 8.92× 1097 7.23× 1095 8650 43 R

Table 7: Evaluation results of Flash with WQUICKSAMPLER

Baseline WSTS
Benchmark Model Count tilt #Samples Time (s) #Samples Time (s) o/p

B
en

ch
m

ar
k-

I

Net6_count_91_w1 2.19× 1032 20.40 3.12× 1024 2.15× 1022 15626 26 R
Net8_count_96_w1 3.2× 1036 26.23 9.18× 1025 6.27× 1023 39944 73 R
Net12_count_106_w1 6.34× 1043 20.40 8.03× 1030 5.92× 1028 41334 82 R
Net22_count_116_w1 9.49× 1050 26.23 5.66× 1035 5.32× 1033 9217 22 R
Net27_count_118_w1 8.05× 1053 43.36 5.35× 1037 5.2× 1035 25296 64 R
Net29_count_164_w1 4.51× 1063 92.17 1.98× 1044 3.2× 1042 12322 41 R
Net39_count_240_w1 2.46× 1091 14043.96 8.81× 1062 3.6× 1061 7922 77 R
Net43_count_243_w1 8.41× 10100 1137.74 2.2× 1069 8.04× 1067 22351 165 R
Net46_count_322_w1 3.22× 10129 23215.53 3.21× 1088 2.04× 1087 7922 91 R
Net52_count_362_w1 2.64× 10147 286565.21 3.19× 10100 2.63× 1099 8650 153 R
Net53_count_339_w1 4.05× 10143 38376.70 8.92× 1097 6.88× 1096 23105 331 R

B
en

ch
m

ar
k-

II

Net6_count_91_w2 2.19× 1032 12.34 3.12× 1024 1.36× 1022 26995 30 R
Net8_count_96_w2 3.2× 1036 5.80 9.18× 1025 4.07× 1023 16385 21 R
Net12_count_106_w2 6.34× 1043 5.80 8.03× 1030 4.7× 1028 5930 8 R
Net22_count_116_w2 9.49× 1050 7.46 5.66× 1035 3.83× 1033 24561 36 R
Net27_count_118_w2 8.05× 1053 7.46 5.35× 1037 3.91× 1035 26245 37 R
Net29_count_164_w2 4.51× 1063 7.46 1.98× 1044 2.02× 1042 17706 33 R
Net39_count_240_w2 2.46× 1091 9.60 8.81× 1062 1.62× 1061 14885 35 R
Net43_count_243_w2 8.41× 10100 4.51 2.2× 1069 4.53× 1067 9217 26 R
Net46_count_322_w2 3.22× 10129 5.80 3.21× 1088 1.04× 1087 30819 98 R
Net52_count_362_w2 2.64× 10147 2.73 3.19× 10100 1.28× 1099 23127 100 R
Net53_count_339_w2 4.05× 10143 7.46 8.92× 1097 3.04× 1096 9605 38 R

Table 8: Evaluation results of Flash with WSTS
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