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Abstract
Stochastic Gradient Descent-Ascent (SGDA) is
one of the most prominent algorithms for solving
min-max optimization and variational inequali-
ties problems (VIP) appearing in various machine
learning tasks. The success of the method led
to several advanced extensions of the classical
SGDA, including variants with arbitrary sam-
pling, variance reduction, coordinate randomiza-
tion, and distributed variants with compression,
which were extensively studied in the literature,
especially during the last few years. In this pa-
per, we propose a unified convergence analysis
that covers a large variety of stochastic gradi-
ent descent-ascent methods, which so far have
required different intuitions, have different ap-
plications and have been developed separately
in various communities. A key to our unified
framework is a parametric assumption on the
stochastic estimates. Via our general theoreti-
cal framework, we either recover the sharpest
known rates for the known special cases or tighten
them. Moreover, to illustrate the flexibility of
our approach, we develop several new variants of
SGDA such as a new variance-reduced method
(L-SVRGDA), new distributed methods with com-
pression (QSGDA, DIANA-SGDA, VR-DIANA-
SGDA), and a new method with coordinate ran-
domization (SEGA-SGDA). Although variants
of the new methods are known for solving min-
imization problems, they were never considered
or analyzed for solving min-max problems and
VIPs. We also demonstrate the most important
properties of the new methods through extensive
numerical experiments.
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1 INTRODUCTION

Min-max optimization and, more generally, variational in-
equality problems (VIPs) appear in a wide range of research
areas, including but not limited to statistics (Bach, 2019),
online learning (Cesa-Bianchi and Lugosi, 2006), game the-
ory (Morgenstern and Von Neumann, 1953), and machine
learning (Goodfellow et al., 2014). Motivated by applica-
tions in these areas, in this paper, we focus on solving the
following regularized VIP: Find x∗ ∈ Rd such that

⟨F (x∗), x− x∗⟩+R(x)−R(x∗) ≥ 0 ∀x ∈ Rd, (1)

where F : Rd → Rd is some operator and R : Rd → R is a
regularization term (a proper lower semicontinuous convex
function), which is assumed to have a simple structure. This
problem is quite general and covers a wide range of possible
problem formulations. For example, when operator F (x)
is the gradient of a convex function f , then problem (1) is
equivalent to the composite minimization problem (Beck,
2017), i.e., minimization of f(x) + R(x). Problem (1) is
also a more abstract formulation of the min-max problem

min
x1∈Q1

max
x2∈Q2

f(x1, x2), (2)

with convex-concave continuously differentiable f . In
that case, first-order optimality conditions imply that
(2) is equivalent to (1) with x = (x⊤

1 , x
⊤
2 )

⊤,
F (x) = (∇x1

f(x1, x2)
⊤,−∇x2

f(x1, x2)
⊤)⊤, and

R(x) = δQ1
(x1) + δQ2

(x2), where δQ(·) is an indicator
function of the set Q (Alacaoglu and Malitsky, 2021). In
addition, to formulate the constraints, regularization R al-
lows us to enforce some properties to the solution x∗, e.g.,
sparsity (Candes et al., 2008; Beck, 2017).

More precisely, we are interested in the situations when
operator F is accessible through the calls of unbiased
stochastic oracle. This is natural when F has an expec-
tation form F (x) = Eξ∼D[Fξ(x)] or a finite-sum form
F (x) = 1

n

∑n
i=1 Fi(x). In the context of machine learn-

ing, D corresponds to some unknown distribution on the
data, n corresponds to the number of samples, and Fξ, Fi

denote vector fields corresponding to the samples ξ, and i,
respectively (Gidel et al., 2019; Loizou et al., 2021).



Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods

One of the most popular methods for solving (1) is Stochas-
tic Gradient Descent-Ascent1 (SGDA) (Dem’yanov and
Pevnyi, 1972; Nemirovski et al., 2009). However, besides
its rich history, SGDA only recently was analyzed without
using strong assumptions on the noise (Loizou et al., 2021)
such as uniformly bounded variance. In the last few years,
several powerful algorithmic techniques like variance reduc-
tion (Palaniappan and Bach, 2016; Yang et al., 2020) and
coordinate-wise randomization (Sadiev et al., 2021), were
also combined with SGDA resulting in better algorithms.
However, these methods were analyzed under different as-
sumptions, using different analysis approaches, and required
different intuitions. Moreover, to the best of our knowledge,
fruitful directions such as communication compression for
distributed versions of SGDA or linearly converging vari-
ants of coordinate-wise methods for regularized VIPs were
never considered in the literature before.

All of these facts motivate the importance and necessity of
a novel general analysis of SGDA unifying several special
cases and providing the ability to design and analyze new
SGDA-like methods filling existing gaps in the theoretical
understanding of the method.

In this work, we develop such unified analysis.

1.1 Technical Preliminaries

Throughout the paper, we assume that (1) has at least one
solution and operator F is µ-quasi-strongly monotone and
ℓ-star-cocoercive: there exist constants µ ≥ 0 and ℓ > 0
such that for all x ∈ Rd

⟨F (x)− F (x∗), x− x∗⟩ ≥ µ∥x− x∗∥2, (3)

∥F (x)− F (x∗)∥2 ≤ ℓ⟨F (x)− F (x∗), x− x∗⟩, (4)

where x∗ = projX∗(x) := argminy∈X∗ ∥y − x∥ is the
projection of x on the solution set X∗ of (1). If µ = 0,
inequality (3) is known as variational stability condition
Hsieh et al. (2020), which is weaker than standard mono-
tonicity: ⟨F (x) − F (y), x − y⟩ ≥ 0 for all x, y ∈ Rd.
It is worth mentioning that there exist examples of non-
monotone operators satisfying (3) with µ > 0 (Loizou et al.,
2021). Condition (4) is a relaxation of standard cocoercivity
∥F (x)−F (y)∥2 ≤ ℓ⟨F (x)−F (y), x−y⟩. At this point, let
us highlight that it is possible for an operator F to satisfy (4)
and not be Lipschitz continuous (Loizou et al., 2021). This
emphasizes the wider applicability of the ℓ-star-cocoercivity
compared to ℓ-cocoercivity. We emphasize that in our con-
vergence analysis, we do not assume ℓ-cocoercivity nor
L-Lipschitzness of F .

We consider SGDA for solving (1) in its general form:

xk+1 = proxγkR
(xk − γkg

k), (5)

1This name is usually used in the min-max setup. Although we
consider a more general problem formulation, we keep the name
SGDA to highlight the connection with min-max problems.

where gk is an unbiased estimator of F (xk), γk >
0 is a stepsize at iteration k, and proxγR(x) :=

argminy∈Rd

{
R(y) + ∥y−x∥2

/2γ
}

is a proximal operator
defined for any γ > 0 and x ∈ Rd. While gk gives an
information about operator F at step k, proximal operator
is needed to take into account regularization term R. We
assume that function R is such that proxγR(x) can be easily
computed for all x ∈ Rd. This is a standard assumption
satisfied for many practically interesting regularizers (Beck,
2017). By default we assume that γk ≡ γ > 0 for all k ≥ 0.

1.2 Our Contributions

⋄ Unified analysis of SGDA. We propose a general as-
sumption on the stochastic estimates and the problem (1)
(Assumption 2.1) and show that several variants of
SGDA (5) satisfy this assumption. In particular, through
our approach, we cover SGDA with arbitrary sampling
(Loizou et al., 2021), variance reduction, coordinate ran-
domization, and compressed communications. Under
Assumption 2.1 we derive general convergence results
for quasi-strongly monotone (Theorem 2.2), monotone
star-cocoercive (Theorem 2.5) and cocoercive problems
(Theorem 2.6).

⋄ Extensions of known methods and analysis. As a by-
product of the generality of our theoretical framework,
we derive new results for the proximal extensions of
several known methods such as proximal SGDA-AS
(Loizou et al., 2021) and proximal SGDA with coordi-
nate randomization (Sadiev et al., 2021). Moreover, we
close some gaps on the convergence of known methods,
e.g., we derive the first convergence guarantees in the
monotone case for SGDA-AS (Loizou et al., 2021) and
SAGA-SGDA (Palaniappan and Bach, 2016) and we ob-
tain the first result on the convergence of SAGA-SGDA
for (averaged star-)cocoercive operators.

⋄ Sharp rates for known special cases. For the known
methods fitting our framework our general theorems
either recover the best rates known for these methods
(SGDA-AS) or tighten them (SGDA-SAGA, Coordi-
nate SGDA).

⋄ New methods. The flexibility of our approach al-
lows us to develop and analyze several new variants of
SGDA. Guided by algorithmic advances for solving min-
imization problems we propose a new variance-reduced
method (L-SVRGDA), new distributed methods with
compression (QSGDA, DIANA-SGDA, VR-DIANA-
SGDA), and a new method with coordinate random-
ization (SEGA-SGDA). We show that the proposed new
methods fit our theoretical framework and, using our
general theorems, we obtain tight convergence guaran-
tees for them. Although the analogs of these methods
are known for solving minimization problems (Hofmann
et al., 2015; Kovalev et al., 2020; Alistarh et al., 2017;
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Mishchenko et al., 2019; Horváth et al., 2019; Hanzely
et al., 2018), they were never considered for solving min-
max and variational inequality problems. Therefore, by
proposing and analyzing these new methods we close
several gaps in the literature on SGDA. For example,
VR-DIANA-SGDA is the first SGDA-type linearly con-
verging distributed stochastic method with compression
and SEGA-SGDA is the first linearly converging coor-
dinate method for solving regularized VIPs.

⋄ Numerical evaluation. In numerical experiments, we
illustrate the most important properties of the new meth-
ods. The results corroborate our theoretical findings.

Throughout the paper, we provide necessary comparisons
with closely related work. Additional works relevant to our
paper are discussed in Appendix A.

2 UNIFIED ANALYSIS OF SGDA

Key assumption. We start by introducing the next para-
metric assumption – a central part of our approach.

Assumption 2.1. We assume that for all k ≥ 0 the esti-
mator gk from (5) is unbiased: Ek

[
gk
]
= F (xk), where

Ek[·] denotes the expectation w.r.t. the randomness at itera-
tion k. Next, we assume that there exist non-negative con-
stants A,B,C,D1, D1 ≥ 0, ρ ∈ (0, 1] and a sequence of
(possibly random) non-negative variables {σk}k≥0 such
that for all k ≥ 0

Ek

[
∥gk − g∗,k∥2

]
≤ 2A⟨F (xk)− g∗,k, xk − x∗,k⟩

+Bσ2
k +D1, (6)

Ek

[
σ2
k+1

]
≤ 2C⟨F (xk)− g∗,k, xk − x∗,k⟩

+(1− ρ)σ2
k +D2, (7)

where x∗,k = projX∗(xk) and g∗,k = F (x∗,k).

While unbiasedness of gk is a standard assumption, inequali-
ties (6)-(7) are new and require clarifications. For simplicity,
assume that σ2

k ≡ 0, F (x∗) = 0 for all x∗ ∈ X∗, and
focus on (6). In this case, (6) gives an upper bound for
the second moment of the stochastic estimate gk. For ex-
ample, such a bound follows from expected cocoercivity
assumption (Loizou et al., 2021), where A denotes some ex-
pected/averaged (star-)cocoercivity constant and D1 stands
for the variance at the solution (see also Section 3). When F
is not necessarily zero on X∗, the shift g∗,k helps to take this
fact into account. Finally, the sequence {σ2

k}k≥0 is typically
needed to capture the variance reduction process, parameter
B is typically some numerical constant, C is another con-
stant related to (star-)cocoercivity2, and D2 is the remaining

2Although Assumption 2.1 does not formally imply star-
cocoercivity of F , but in all special cases, considered in this work,
operator F is star-cocoercive.

noise that is not handled by the variance reduction process.
As we show in the next sections, inequalities (6)-(7) hold
for various SGDA-type methods.

We point out that Assumption 2.1 is inspired by similar
assumptions appeared in Gorbunov et al. (2020a, 2022a).
However, the difference between our assumption and the
ones appeared in these papers is significant: Gorbunov et al.
(2020a) focuses only on solving minimization problems
and as a result, their assumption includes a much simpler
quantity (function suboptimality), instead of the ⟨F (xk)−
g∗,k, xk − x∗,k⟩, in the right-hand sides of (6)-(7). The
assumption proposed in Gorbunov et al. (2022a), is designed
specifically for analyzing vanilla Stochastic EG, it does not
have {σ2

k}k≥0 sequence (not able to capture variants of
Stochastic EG with variance reduction, quantization, nor
coordinate-wise randomization) and works only for (1) with
R(x) ≡ 0. For more detailed comparison of our approach
and this line of work, see Appendix A.

Quasi-strongly monotone case. Under Assumption 2.1
and quasi-strong monotonicity of F , we derive the following
general result.

Theorem 2.2. Let F be µ-quasi-strongly monotone (µ >
0) and let Assumption 2.1 hold. Assume that 0 < γ ≤
min {1/µ, 1/2(A+CM)} for some M > B/ρ (when B =
0, we suppose M = 0 and B/M := 0 in all following
expressions). Then the iterates of SGDA (5), satisfy:

E[Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

V0

+
γ2(D1 +MD2)

min {γµ, ρ− B/M}
. (8)

where the Lyapunov function Vk is defined by Vk = ∥xk−
x∗,k∥2 +Mγ2σ2

k for all k ≥ 0.

The above theorem states that SGDA (5) converges linearly
to the neighborhood of the solution. The size of the neigh-
borhood is proportional to the noises D1 and D2. When
D1 = D2 = 0, i.e., the method is variance reduced, it
converges linearly to the exact solution in expectation. How-
ever, in general, to achieve any predefined accuracy, one
needs to reduce the size of the neighborhood somehow. One
possible way to do that is to use a proper stepsize schedule.
We formalize this discussion in the following result.

Corollary 2.3. Let the assumptions of Theorem 2.2 hold.
Consider two possible cases.

Case 1. Let D1 = D2 = 0. Then, for any K ≥
0, M = 2B/ρ, and γ = min {1/µ, 1/2(A+2BC/ρ)}, the
iterates of SGDA, given by (5), satisfy: E[VK ] ≤
V0 exp

(
−min

{
µ

2(A+2BC/ρ) ,
ρ
2

}
K
)
.
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Case 2. Let D1 + MD2 > 0. For any K ≥ 0 and
M = 2B/ρ one can choose {γk}k≥0 as follows:

γk =
1

h
if K ≤ h

µ
or
(
K >

h

µ
and k < k0

)
,

γk =
2

µ(κ+ k − k0)
if K >

h

µ
and k ≥ k0,

where h = max {2(A+ 2BC/ρ), 2µ/ρ}, κ = 2h/µ and
k0 = ⌈K/2⌉. For this choice of γk, the iterates of SGDA,
given by (5), satisfy:

E[VK ] ≤ 32hV0

µ
exp

(
−µ

h
K
)
+

36(D1 + 2BD2/ρ)

µ2K
.

Monotone case. When µ = 0, we additionally assume
that F is monotone, i.e., for all x, y ∈ Rd

⟨F (x)− F (y), x− y⟩ ≥ 0.

Similar to minimization, in the case of µ = 0, the squared
distance to the solution is not a valid measure of conver-
gence. To introduce an appropriate convergence measure,
we make the following assumption.

Assumption 2.4. There exists a compact convex set C
(with the diameter ΩC := maxx,y∈C ∥x − y∥) such that
X∗ ⊂ C.

In this setting, we focus on the following quantity called
a restricted gap-function (Nesterov, 2007) defined for any
z ∈ Rd and any C ⊂ Rd satisfying Assumption 2.4:

GapC(z) := max
u∈C

[⟨F (u), z − u⟩+R(z)−R(u)] . (9)

Assumption 2.4 and function GapC(z) are standard for the
convergence analysis of methods for solving (1) with mono-
tone F (Nesterov, 2007; Alacaoglu and Malitsky, 2021).
Additional discussion is left to Appendix D.2.

Under these assumptions, Assumption 2.1, and star-
cocoercivity we derive the following general result.

Theorem 2.5. Let F be monotone, ℓ-star-cocoercive and
let Assumptions 2.1, 2.4 hold. Assume that 0 < γ ≤
1/2(A+BC/ρ). Then for all K ≥ 0 the iterates of SGDA,
given by (5), satisfy:

E

[
GapC

(
1

K

K∑
k=1

xk

)]

≤
3
[
maxu∈C ∥x0 − u∥2

]
2γK

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+ (4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+ γ(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ). (10)

The above result establishes O(1/K) rate of convergence
to the accuracy proportional to the stepsize γ multiplied
by the noise term D1 + 2BD2/ρ and maxx∗∈X∗ ∥F (x∗)∥2.
We notice that if R ≡ 0 in (1), then F (x∗) = 0, meaning
that in this case, the second term from (10) equals zero.
Otherwise, even in the deterministic case one needs to use
small stepsizes to ensure the convergence to any predefined
accuracy (see Corollary D.4 in Appendix D.2).

Cocoercive case. The term proportional to
maxx∗∈X∗ ∥F (x∗)∥2 can be removed if we assume
that the operator F is not just monotone star-cocoercive (4),
but general cocoercive, i.e., it holds that for all x, y ∈ Rd

∥F (x)− F (y)∥2 ≤ ℓ⟨F (x)− F (y), x− y⟩.

Theorem 2.6. Let F be ℓ-cocoercive and Assump-
tions 2.1, 2.4 hold. Assume that 0 < γ ≤
min {1/ℓ, 1/2(A+BC/ρ)} . Then for all K ≥ 0 the iterates
of SGDA, given by (5), satisfy:

E

[
GapC

(
1

K

K∑
k=1

xk

)]

≤3maxu∈C ∥x0 − u∥2

2γK

+ (6A+ 3ℓ+ 12BC/ρ) · ∥x
0 − x∗,0∥2

K

+ (6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK

+ γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ).
(11)

In contrast to Theorem 2.5, the above result implies O(1/K)
convergence rate in the deterministic case. See Corol-
lary D.6 in Appendix D.3 for the results of the convergence
with a selected stepsize.

3 SGDA WITH ARBITRARY SAMPLING

We start our consideration of special cases with a standard
SGDA (5) with gk = Fξk(x

k), ξk ∼ D under so-called
expected cocoercivity assumption from Loizou et al. (2021),
which we properly adjust to the setting of regularized VIPs.

Assumption 3.1 (Expected Cocoercivity). We assume
that stochastic operator Fξ(x), ξ ∼ D is such that for
all x ∈ Rd, ED

[
∥Fξ(x)− Fξ(x

∗)∥2
]
≤ ℓD⟨F (x) −

F (x∗), x− x∗⟩, where x∗ = projX∗(x).

When R(x) ≡ 0, this assumption recovers the original
one from Loizou et al. (2021). We also emphasize that for
operator F Assumption 3.1 implies only star-cocoercivity.
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Following Loizou et al. (2021), we mainly focus on the
finite-sum case and its stochastic reformulation: we consider
a random sampling vector ξ = (ξ1, . . . , ξn)

⊤ ∈ Rn having
a distribution D such that ED[ξi] = 1 for all i ∈ [n]. Using
this we can rewrite F (x) = 1

n

∑n
i=1 Fi(x) as

F (x) =
1

n

n∑
i=1

ED[ξiFi(x)] = ED [Fξ(x)] , (12)

where Fξ(x) = 1
n

∑n
i=1 ξiFi(x). Such a reformulation

allows to handle a wide range of samplings: the only as-
sumption on D is ED[ξi] = 1 for all i ∈ [n]. Therefore, this
setup is often referred to as arbitrary sampling (Richtárik
and Takác, 2020; Loizou and Richtárik, 2020a,b; Gower
et al., 2019, 2021; Hanzely and Richtárik, 2019; Qian et al.,
2019, 2021a). We elaborate on several special cases in
Appendix E.5.

In this setting, SGDA with Arbitrary Sampling (SGDA-
AS)3 fits our framework.

Proposition 3.2. Let Assumption 3.1 hold. Then, SGDA-
AS satisfies Assumption 2.1 with A = ℓD, D1 = 2σ2

∗ :=
2maxx∗∈X∗ ED

[
∥Fξ(x

∗)− F (x∗)∥2
]
, B = 0, σ2

k ≡ 0,
C = 0, ρ = 1, D2 = 0.

Plugging these parameters to Theorem 2.2 we recover the
result4 from Loizou et al. (2021) when R(x) ≡ 0 and gener-
alize it to the case of R(x) ̸≡ 0 without sacrificing the rate.
Applying Corollary 2.3, we establish the rate of convergence
to the exact solution.
Corollary 3.3. Let F be µ-quasi-strongly monotone and
Assumption 3.1 hold. Then for all K > 0 there exists a
choice of γ (see (48)) for which the iterates of SGDA-AS,
satisfy:

E[∥xK − x∗,K∥2]

= O
(
ℓDΩ2

0

µ
exp

(
− µ

ℓD
K

)
+

σ2
∗

µ2K

)
,

where Ω2
0 = ∥x0 − x∗,0∥2.

For the different stepsize schedule, Loizou et al. (2021)
derive the convergence rate O(1/K+ 1/K2) which is inferior
to our rate, especially when σ2

∗ is small. In addition, Loizou
et al. (2021) consider explicitly only uniform minibatch
sampling without replacement as a special case of arbitrary
sampling. In Appendix E.5, we discuss another prominent
sampling strategy called importance sampling. In Section 6,
we provide numerical experiments verifying our theoretical

3For the pseudo-code of SGDA-AS see Algorithm 1 in Ap-
pendix E.

4In the main part of the paper, we focus on µ-quasi strongly
monotone case with µ > 0. For simplicity, we provide here
the rates of convergence to the exact solution. Further details,
including the rates in monotone case, are left to the Appendix.

findings and showing the benefits of importance sampling
over uniform sampling for SGDA.

4 SGDA WITH VARIANCE REDUCTION

In this section, we focus on variance-reduced variants
of SGDA for solving finite-sum problems F (x) =
1
n

∑n
i=1 Fi(x). We start with the Loopless Stochastic

Variance Reduced Gradient Descent-Ascent (L-SVRGDA),
which is a generalization of the L-SVRG algorithm pro-
posed in Hofmann et al. (2015); Kovalev et al. (2020). L-
SVRGDA (see Alg. 2) follows the update rule (5) with

gk = Fjk(x
k)− Fjk(w

k) + F (wk),

wk+1 =

{
xk, with prob. p,
wk, with prob. 1− p,

(13)

where in kth iteration jk is sampled uniformly at random
from [n]. Here full operator F is computed once wk is
updated, which happens with probability p. Typically, p
is chosen as p ∼ 1/n ensuring that the expected cost of
1 iteration equals O(1) oracle calls, i.e., computations of
Fi(x) for some i ∈ [n].

We introduce the following assumption about operators
Fi.

Assumption 4.1 (Averaged Star-Cocoercivity). We as-
sume that there exists a constant ℓ̂ > 0 such that for all
x ∈ Rd

1

n

n∑
i=1

∥∆Fi
(x, x∗)∥2 ≤ ℓ̂⟨F (x)−F (x∗), x−x∗⟩, (14)

where ∆Fi(x, x
∗) = Fi(x) − Fi(x

∗) and x∗ =
projX∗(x).

For example, if Fi is ℓi-cocoercive for i ∈ [n], then (14)
holds with ℓ̂ ≤ maxi∈[n] ℓi. Next, if Fi is Li-Lipschitz for
all i ∈ [n] and F is µ-quasi strongly monotone, then (14) is
satisfied for ℓ̂ ∈ [L, L

2
/µ], where L

2
= 1

n

∑n
i=1 L

2
i .

Moreover, for the analysis of variance-reduced variants of
SGDA we also use the uniqueness of the solution.

Assumption 4.2 (Unique Solution). We assume that the
solution set X∗ of problem (1) is a singleton: X∗ = {x∗}.

These assumptions are sufficient to derive validity of As-
sumption 2.1 for L-SVRGDA estimator.

Proposition 4.3. Let Assumptions 4.1 and 4.2 hold. Then,
L-SVRGDA satisfies Assumption 2.1 with A = ℓ̂, B = 2,
σ2
k = 1

n

∑n
i=1 ∥Fi(w

k) − Fi(x
∗)∥2, C = pℓ̂/2, ρ = p,

D1 = D2 = 0.

Plugging these parameters in our general results on the con-
vergence of SGDA-type algorithms we derive the conver-
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gence results for L-SVRGDA, see Table 1 and Appendix F.1
for the details. Moreover, in Appendix F.2, we show that
SAGA-SGDA (Palaniappan and Bach, 2016) fits our frame-
work and using our general analysis we tighten the conver-
gence rates for this method.

We compare our convergence guarantees with known results
in Table 1. We note that by neglecting importance sampling
scenario, in the worst case, our convergence results match
the best-known results for SGDA-type methods, i.e., ones
derived in Palaniappan and Bach (2016). Indeed, this fol-
lows from ℓ̂ ∈ [L, L

2
/µ]. Next, when the difference between

ℓ and ℓ̂ is not significant, our complexity results match the
one derived in Chavdarova et al. (2019) for SVRE, which is
EG-type method. Although in general, ℓ might be smaller
than ℓ̂, our analysis does not require cocoercivity of each Fi

and it works for R(x) ̸≡ 0. Finally, Alacaoglu and Malitsky
(2021) derive a better rate (when n = O(L

2
/µ2)), but their

method is based on EG. Therefore, our results match the
best-known ones in the literature on SGDA-type methods.

5 DISTRIBUTED SGDA WITH
COMPRESSION

In this section, we consider the distributed version of (1),
i.e., we assume that F (x) = 1

n

∑n
i=1 Fi(x), where {Fi}ni=1

are distributed across n devices connected with parameter-
server in a centralized fashion. Each device i has an access
to the computation of the unbiased estimate of Fi at the
given point. Typically, in these settings, communication is a
bottleneck, especially when n and d are huge. This means
that in the naive distributed implementations of SGDA,
communication rounds take much more time than local
computations on the clients. Various approaches are used to
circumvent this issue.

One of them is based on the usage of compressed com-
munications. We focus on unbiased compression opera-
tors.

Definition 5.1. Operator Q : Rd → Rd (possibly ran-
domized) is called unbiased compressor/quantization if
there exists a constant ω ≥ 0 such that for all x ∈ Rd

E[Q(x)] = x, E[∥Q(x)− x∥2] ≤ ω∥x∥2. (15)

In this paper, we consider compressed communications in
the direction from clients to the server. The simplest method
with compression – QSGDA (Alg. 4) – can be described as
SGDA (5) with gk = 1

n

∑n
i=1 Q(gki ). Here gki are stochas-

tic estimators satisfying the following assumption5.

5We use this assumption for illustrating the flexibility of the
framework. It is possible to consider Arbitrary Sampling setup as
well.

Assumption 5.2 (Bounded variance). All stochastic real-
izations gki are unbiased and have bounded variance, i.e.,
for all i ∈ [n] and k ≥ 0 the following holds:

E[gki ] = Fi(x
k), E[∥gki − Fi(x

k)∥2] ≤ σ2
i . (16)

Despite its simplicity, QSGDA was never considered in
the literature on solving min-max problems and VIPs. It
turns out that under such assumptions QSGDA satisfies our
Assumption 2.1.

Proposition 5.3. Let F be ℓ-star-cocoercive and As-
sumptions 4.1, 5.2 hold. Then, QSGDA satisfies As-
sumption 2.1 with A = 3ℓ

2 + 9ωℓ̂
2n , B = 0, σ2

k ≡ 0,

D1 =
3(1+3ω)σ2+9ωζ2

∗
n , C = 0, ρ = 1, D2 = 0, where

σ2 = 1
n

∑n
i=1 σ

2
i , ζ

2
∗ := 1

n maxx∗∈X∗
∑n

i=1 ∥Fi(x
∗)∥2.

As for the other special cases, we derive the convergence
results for QSGDA using our general theorems (see Table 2
and Appendix G.1 for the details). The proposed method
is simple, but has a significant drawback: even in the deter-
ministic case (σ = 0), QSGDA does not converge linearly
unless ζ2∗ = 0. However, when the data on clients is arbi-
trarily heterogeneous the dissimilarity measure ζ2∗ is strictly
positive and can be large (even when R(x) ≡ 0).

To resolve this issue, we propose a more advanced scheme
based on DIANA update (Mishchenko et al., 2019; Horváth
et al., 2019) – DIANA-SGDA (Alg. 5). In a nutshell,
DIANA-SGDA is SGDA (5) with gk defined as follows:

∆k
i = gki − hk

i , hk+1
i = hk

i + αQ(∆k
i ),

gk = hk +
1

n

n∑
i=1

Q(∆k
i ),

hk+1 =
1

n

n∑
i=1

hk+1
i = hk + α

1

n

n∑
i=1

Q(∆k
i ),

(17)

where the first two lines correspond to the local computa-
tions on the clients and the last two lines – to the server-side
computations. Taking into account the update rule for hk+1,
one can notice that DIANA-SGDA requires workers to send
only vectors Q(∆k

i ) to the server at step k, i.e., the method
uses only compressed workers-server communications.

As we show next, DIANA-SGDA fits our framework.

Proposition 5.4. Let Assumptions 4.1, 4.2, 5.2 hold.
Suppose that α ≤ 1/(1+ω). Then, DIANA-SGDA with
quantization (15) satisfies Assumption 2.1 with σ2

k =
1
n

∑n
i=1 ∥hk

i − Fi(x
∗)∥2 and A =

(
1
2 + ω

n

)
ℓ̂, B = 2ω

n ,

D1 = (1+ω)σ2

n , C = αℓ̂
2 , ρ = α, D2 = ασ2, where

σ2 = 1
n

∑n
i=1 σ

2
i .

DIANA-SGDA can be considered as a variance-reduced
method since it reduces the term proportional to ωζ2∗ that the
bound for QSGDA contains (see Table 2 and Appendix G.2
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Table 1: Summary of the complexity results for variance reduced methods for solving (1). By complexity we mean the number of oracle
calls required for the method to find x such that E[∥x − x∗∥2] ≤ ε. Dependencies on numerical and logarithmic factors are hidden.
By default, operator F is assumed to be µ-strongly monotone and, as the result, the solution is unique. Our results rely on µ-quasi
strong monotonicity of F (3), but we also assume uniqueness of the solution. Methods supporting R(x) ̸≡ 0 are highlighted with ∗. Our
results are highlighted in green. Notation: ℓ, L = averaged cocoercivity/Lipschitz constants depending on the sampling strategy, e.g.,
for uniform sampling ℓ

2
= 1

n

∑n
i=1 ℓ

2
i , L

2
= 1

n

∑n
i=1 L

2
i and for importance sampling ℓ = 1

n

∑n
i=1 ℓi, L = 1

n

∑n
i=1 Li; ℓ̂ = averaged

star-cocoercivity constant from Assumption 4.1.

Method Citation Assumptions Complexity

SVRE (1) (Chavdarova et al., 2019) Fi is ℓi-cocoer. n+ ℓ
µ

EG-VR ∗(1) (Alacaoglu and Malitsky, 2021) Fi is Li-Lip. n+
√
nL

µ

SVRGDA ∗ (Palaniappan and Bach, 2016) Fi is Li-Lip. n+ L
2

µ2

SAGA-SGDA ∗ (Palaniappan and Bach, 2016) Fi is Li-Lip. n+ L
2

µ2

VR-AGDA (Yang et al., 2020) Fi is Lmax-Lip.(2) min
{
n+

L9
max
µ9 , n

2/3 L3
max
µ3

}
L-SVRGDA ∗ This paper As. 4.1 n+ ℓ̂

µ

SAGA-SGDA ∗ This paper As. 4.1 n+ ℓ̂
µ

(1) The method is based on Extragradient update rule.
(2) Yang et al. (2020) consider saddle point problems satisfying so-called two-sided PL condition, which is
weaker than strong-convexity-strong-concavity of the objective function.

for the details). As the result, when σ = 0, i.e., workers
compute Fi(x) at each step, DIANA-SGDA enjoys linear
convergence to the exact solution.

Next, when local operators Fi have a finite-sum form
Fi(x) = 1

m

∑m
j=1 Fij(x), one can combine L-SVRGDA

and DIANA-SGDA as follows: consider the scheme from
(17) with

gki = Fijk(x
k)− Fijk(w

k) + F (wk
i ),

wk+1
i =

{
xk, with prob. p,
wk

i , with prob. 1− p,

(18)

where jk is sampled uniformly at random from [m]. We
call the resulting method VR-DIANA-SGDA (Alg. 6) and
we note that its analog for solving minimization problems
(VR-DIANA) was proposed and analyzed in Horváth et al.
(2019).

To cast VR-DIANA-SGDA as a special case of our gen-
eral framework, we need to make the following assump-
tion.
Assumption 5.5. We assume that there exists a constant
ℓ̃ > 0 such that for all x ∈ Rd

1

nm

n,m∑
i,j=1,1

∥∆Fij (x, x
∗)∥2 ≤ ℓ̃⟨F (x)−F (x∗), x−x∗⟩,

(19)
where ∆Fij

(x, x∗) = Fij(x)−Fij(x
∗), x∗ = projX∗(x).

Using Assumption 5.5 and previously introduced conditions,
we get the following result.

Proposition 5.6. Let F be ℓ-star-cocoercive and Assump-
tions 4.1, 4.2, 5.5 hold. Suppose that α ≤ min

{
p
3 ,

1
1+ω

}
.

Then, VR-DIANA-SGDA satisfies Assumption 2.1 with
A = ℓ

2 +
ℓ̃
n + ω(ℓ̂+ℓ̃)

n , B = 2(ω+1)
n , σ2

k = 1
n

∑n
i=1 ∥hk

i −
Fi(x

∗)∥2+ 1
nm

∑n
i=1

∑m
j=1 ∥Fij(w

k
i )−Fij(x

∗)∥2, C =
pl̃
2 + α(ℓ̃+ ℓ̂), ρ = α, D1 = D2 = 0.

Since D1 = D2 = 0, our general results imply linear con-
vergence of VR-DIANA-SGDA when µ > 0 (see the details
in Appendix G.3). That is, VR-DIANA-SGDA is the first
linearly converging distributed SGDA-type method with
compression. We compare it with MASHA1 (Beznosikov
et al., 2021b) in Table 2. Firstly, let us note that MASHA1
is a method based on EG, and its convergence guarantees
depend on the Lipschitz constants. In addition, we note
that the complexity of MASHA1 could be better than the
one of VR-DIANA-SGDA when cocoercivity constants are
large compared to Lipschitz ones. However, our compleixty
bound has better dependency on quantization parameter ω,
number of clients n, and the size of the local dataset m.
These parameters can be large meaning that the improve-
ment is noticeable.

6 NUMERICAL EXPERIMENTS

To illustrate our theoretical results, we conduct several nu-
merical experiments on quadratic games, which are defined
through the affine operator: F (x) = 1

n

∑n
i=1 Aix + bi,

where each matrix Ai ∈ Rd×d is non-symmetric with all
eigenvalues having strictly positive real parts. Enforcing all
the eigenvalues to have strictly positive real part ensures that
the operator is strongly monotone and cocoercive. We con-
sider two different settings: (i) problem without constraints,
and (ii) problem that has ℓ1 regularization and constraints
forcing the solution to lie in the ℓ∞-ball of radius r. In
all experiments, we use a constant stepsize for all methods
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Table 2: Summary of the complexity results for distributed methods with unbiased compression for solving distributed (1) with
F = 1

n

∑n
i=1 Fi(x). By complexity we mean the number of communication rounds required for the method to find x such that

E[∥x− x∗∥2] ≤ ε. Dependencies on numerical and logarithmic factors are hidden. E stands for the setup, when Fi(x) = Eξi [Fξi(x)];
Σ denotes the case, when Fi(x) =

1
m

∑m
j=1 Fij(x). Our results rely on µ-quasi strong monotonicity of F (3), but we also assume

the uniqueness of the solution. Methods supporting R(x) ̸≡ 0 are highlighted with ∗. Our results are highlighted in green. Notation:
σ2 = 1

n

∑n
i=1 σ

2
i – averaged upper bound for the variance (see Ass. 5.2 for the definition of σ2

i ); ω = quantization parameter (see
Def. 5.1); ζ2∗ = 1

n
maxx∗∈X∗

∑n
i=1 ∥Fi(x

∗)∥2; Lmax = maxi∈[n] Li; ℓ̃ = averaged star-cocoercivity constant from Ass. 5.5.

Setup Method Citation Assumptions Complexity

E
QSGDA ∗ This paper As. 4.1, 5.2 ℓ

µ
+ ωℓ̂

nµ
+

(1+ω)σ2+ωζ2∗
nµ2ε

DIANA-SGDA ∗ This paper As. 4.1, 5.2 ω + ℓ
µ
+ ωℓ̂

nµ
+ (1+ω)σ2

nµ2ε

Σ

MASHA1 ∗(1) (Beznosikov et al., 2021b) Fi is Li-Avg. Lip.(2)
m+ ω +

Lmax

√
(m+ω)(1+ω

n )
µ

VR-DIANA-SGDA ∗ This paper As. 4.1, 5.5
m+ ω + ℓ

µ
+ (1+ω)(ℓ̂+ℓ̃)

nµ

+ (1+ω)max{m,ω}ℓ̃
nmµ

(1) The method is based on Extragradient update rule.
(2) This means that for all x, y ∈ Rd and i ∈ [n] the following inequality holds: 1

m

∑m
j=1 ∥Fij(x)−Fij(y)∥2 ≤ L2

i ∥x−y∥2.

which was selected manually using a grid search and picking
the best-performing stepsize for each method. For further
details about the experiments and additional experiments
see Appendix B.

Uniform sampling (US) vs Important sampling (IS). We
note that Loizou et al. (2021) which studies SGDA-AS does
not consider IS explicitly. Although we show the theoret-
ical benefits of IS in comparison to US in Appendix E.5,
here we provide a numerical comparison to illustrate the
superiority of IS (on both constrained and unconstrained
quadratic games). We choose the matrices Ai such that
ℓmax = maxi ℓi ≫ ℓ̄. In this case, our theory predicts that
IS should perform better than US. We provide the results
in Fig. 1. We observe that indeed SGDA with IS converges
faster and to a smaller neighborhood than SGDA with US.
This observation perfectly corroborates our theory.

Comparison of variance reduced methods. In this ex-
periment, we test the performance of our proposed L-
SVRGDA (Alg. 2) and compare it to other variance-reduced
methods on quadratic games, see Fig. 2. In particular, we
compare it to SVRG (Palaniappan and Bach, 2016), SVRE
(Chavdarova et al., 2019), EG-VR (Alacaoglu and Malitsky,
2021) and VR-AGDA (Yang et al., 2020). In the constrained
setting, we only compare L-SVRGDA to SVRG and EG-
VR, since they are the only methods from this list that han-
dle constrained settings. For loopless variants, we choose
p = 1

n and for the non-loopless variants we pick the number
of inner-loop iterations to be n. We observe that all methods
converge linearly and that L-SVRGDA is competitive with
the other considered variance-reduced methods, converging
slightly faster than all of them.

We point out that we plot the distance to optimality as a
function of the number of oracle calls. When using variance-
reduced methods we sometimes have to compute the full-
batch gradient, and thus have to make n oracle calls. This
is why we observe “steps” for variance-reduced methods

in Fig. 2: we observe a “step” every time the full batch
gradient is computed.

Comparison of distributed methods. In our last exper-
iment, we consider a distributed version of the quadratic
game, in which we assume that F (x) = 1

n

∑n
i=1 Fi(x)

with each {Fi}ni=1 being constructed similarly to the pre-
vious experiments. The information about operator Fi is
stored on node i only. We compare the distributed methods
proposed in the paper: QSGDA, DIANA-SGDA, and VR-
DIANA-SGDA. For the quantization, we use the RandK
sparsification (Beznosikov et al., 2020a) with K = 5. We
show our findings in Fig. 3, where the performance is mea-
sured both in terms of the number of oracle calls and the
number of bits communicated from workers to the server.
In both figures, we can clearly see the advantage of using
quantization in terms of reducing the communication cost
compared to the baseline SGDA. We also observe that VR-
DIANA-SGDA achieves linear convergence to the solution.
Additional experiments are deferred to Appendix B.
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A FURTHER RELATED WORK

The references necessary to motivate our work and connect it to the most relevant literature are included in the appropriate
sections of the main body of the paper. Here we present a broader view of the literature, including some more references to
papers of the area that are not directly related with our work.

Variants of the key assumption in prior work & Detailed comparison to our results. Here we would like to provide
more details on the comparison with the closely related works (Gorbunov et al., 2020a, 2022a; Loizou et al., 2021).

As we mention in the main part of the paper, Gorbunov et al. (2020a) focus on solving the much simpler minimization
problems using SGD. In particular, their Assumption 4.1 requires a function suboptimality (or Bregman divergence) for
the upper bound, a concept that cannot be used in VI problems (there are no functions). Thus, the difference of the two
notions does not solely lie on the norm bound, but begins at the deeper, conceptual level. In addition, we focus also on
monotone VIs (non-quasi-strongly monotone), while Gorbunov et al. (2020a) consider only the class of quasi-strongly
convex minimization problems.

Next, Gorbunov et al. (2022a) provide convergence guarantees for vanilla SEG under the arbitrary sampling paradigm.
Their analysis is not able to capture SEG with variance reduction, quantization, and coordinate-wise randomization. In
contrast, our approach covers variants of SGDA with variance reduction, quantization and coordinate-wise randomization.
We are able to capture these more advanced variants by using sequence {σ2

k}k≥0 (see (7)) in our key assumption, and
this is a major difference between our approach and the approach of Gorbunov et al. (2022a). In addition, our analysis
works for the case R(x) ̸≡ 0. Although the generalization of the analysis to the case of non-zero R might be trivial in the
quasi-strongly monotone case, for the monotone case this is definitely not straightforward. Finally, for the monotone case,
we do not require large batch-sizes to achieve any predefined accuracy, while analysis of SEG in (Gorbunov et al., 2022a)
does (see Appendix B in their work).

Finally, we highlight again that Loizou et al. (2021) focus only on uniform minibatch SGDA for solving quasi-strongly
monotone problems. This is only a special case of our approach (see Section 3). We note that even in this scenario, through
our analysis we were able to provide faster convergence by considering SGDA with importance sampling (see Appendix E.5
and Fig. 1).

Stochastic methods for solving VIPs. Although this paper is devoted to SGDA-type methods, we briefly mention here
the works studying other popular stochastic methods for solving VIPs based on different algorithmic schemes such as
Extragradient (EG) method (Korpelevich, 1976) and Optimistic Gradient (OG) method (Popov, 1980). The first analysis of
Stochastic EG for solving (quasi-strongly) monotone VIPs was proposed in Juditsky et al. (2011) and then was extended
and generalized in various ways (Mishchenko et al., 2020; Hsieh et al., 2020; Beznosikov et al., 2020c; Li et al., 2021;
Gorbunov et al., 2022a). Stochastic OG was studied in Gidel et al. (2019); Hsieh et al. (2019); Azizian et al. (2021). In
addition, lightweight second-order methods like stochastic Hamiltonian methods and stochastic consensus optimization
were studied in Loizou et al. (2020), and Loizou et al. (2021), respectively.

Analysis of SGDA. SGDA is usually analyzed under uniformly bounded variance assumption. That is, E[∥gk −
F (xk)∥2 | xk] ≤ σ2 is typically assumed to get convergence guarantees (Nemirovski et al., 2009; Mertikopoulos and
Zhou, 2019; Yang et al., 2020). This assumption rarely holds, especially for unconstrained VIPs: it is easy to construct an
example of (1) with F being a finite sum of linear operators such that the variance is unbounded. Lin et al. (2020) provide a
convergence analysis of SGDA under a relative random noise assumption allowing to handle some special cases not covered
by uniformly bounded variance assumption. However, relative noise is also a quite strong assumption and usually requires a
special type of noise appearing in coordinate methods6 or in the training of overparameterized models (Vaswani et al., 2019).
In their recent work, Loizou et al. (2021) proposed a new weak condition called expected cocoercivity. This assumption fits
our theoretical framework (see Section 3) and does not imply strong conditions on the variance of the stochastic estimator
but it is stronger than star-cocoercivity of operator F .

Variance reduction for VIPs. The first variance-reduced variants of SGDA (SVRGDA and SAGA-SGDA – analogs
of SVRG (Johnson and Zhang, 2013) and SAGA (Defazio et al., 2014)) for solving (1) with strongly monotone operator
F having a finite-sum form with Lipschitz summands were proposed in Palaniappan and Bach (2016). For two-sided

6For example, see inequality (64) from Appendix H in the case when there is no regularization term, i.e., when R(x) ≡ 0 and, as a
result, F (x∗) = 0 for all x∗ ∈ X∗.
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PL min-max problems without regularization Yang et al. (2020) proposed a variance-reduced version of SGDA with
alternating updates. Since the considered class of problems includes non-strongly-convex-non-strongly-concave min-max
problems, the rates from Yang et al. (2020) are inferior to Palaniappan and Bach (2016). There are also several works
studying variance-reduced methods based on different methods rather than SGDA. Chavdarova et al. (2019) proposed a
combination of SVRG and Extragradient (EG) (Korpelevich, 1976) called SVRE and analyzed the method for strongly
monotone VIPs without regularization and with cocoercive summands Fi. The cocoercivity assumption was relaxed to
averaged Lipschitzness in Alacaoglu and Malitsky (2021), where the authors proposed another variance-reduced version
of EG (EG-VR) based on Loopless variant of SVRG (Hofmann et al., 2015; Kovalev et al., 2020). Loizou et al. (2020)
studied stochastic Hamiltonian gradient descent (SHGD), and propose the first stochastic variance reduced Hamiltonian
method, named L-SVRHG, for solving stochastic bilinear games and and stochastic games satisfying a “sufficiently bilinear”
condition. Moreover, Loizou et al. (2020) provided the first set of global non-asymptotic last-iterate convergence guarantees
for a stochastic game over a non-compact domain, in the absence of strong monotonicity assumptions.

We should highlight that the rates from Alacaoglu and Malitsky (2021) match the lower bounds from Han et al. (2021).
Under additional assumptions similar results were achieved in Carmon et al. (2019). Alacaoglu et al. (2021) developed
variance-reduced method (FoRB-VR) based on Forward-Reflected-Backward algorithm (Malitsky and Tam, 2020), but the
derived rates are inferior to those from Alacaoglu and Malitsky (2021).

Using Catalyst acceleration framework of Lin et al. (2018), Palaniappan and Bach (2016); Tominin et al. (2021) achieve
(neglecting extra logarithmic factors) similar rates as in Alacaoglu and Malitsky (2021) and Luo et al. (2021) derive even
tighter rates for min-max problems. However, as all Catalyst-based approaches, these methods require solving an auxiliary
problem at each iteration, which reduces their practical efficiency.

Communication compression for VIPs. While distributed methods with compression were extensively studied for solving
minimization problems both for unbiased compression operators (Alistarh et al., 2017; Wen et al., 2017; Mishchenko et al.,
2019; Horváth et al., 2019; Li et al., 2020; Khaled et al., 2020; Gorbunov et al., 2021) and biased compression operators
(Seide et al., 2014; Stich et al., 2018; Karimireddy et al., 2019; Beznosikov et al., 2020a; Gorbunov et al., 2020b; Qian et al.,
2021b; Richtárik et al., 2021), much less is known for min-max problems and VIPs. To the best of our knowledge, the first
work on distributed methods with compression for min-max problems is Yuan et al. (2014), where the authors proposed a
distributed version of Dual Averaging (Nesterov, 2009) with rounding and showed a convergence to the neighborhood of the
solution that cannot be reduced via standard tricks like increasing the batchsize or decreasing the stepsize. More recently,
Beznosikov et al. (2021b) proposed new distributed variants of EG with unbiased/biased compression for solving (1) with
(strongly) monotone and Lipschitz operator F . Beznosikov et al. (2021b) obtained the first linear convergence guarantees on
distributed VIPs with compressed communication.

On quasi-strong monotonicity and star-cocoercivity. In this work we focus on quasi-strongly monotone VI problems, a
class of structured non-monotone operators for which we are able to provide tight convergence guarantees and avoid the
standard issues (cycling and divergence of the methods) appearing in the more general non-monotone regime.

Since in general non-monotone problems, finding approximate first-order locally optimal solutions is intractable (Daskalakis
et al., 2021; Diakonikolas et al., 2021), it is reasonable to consider class of problems that satisfy special structural assumptions
on the objective function for which these intractability barriers can be bypassed. Examples of problems belong in this
category are the ones of our work which satisfy (3) or, for example, the two-sided PL condition (Yang et al., 2020) or the
error-bound condition (Hsieh et al., 2020). It is worth highlighting that quasi-strong monotone problems were considered in
Mertikopoulos and Zhou (2019); Song et al. (2020); Loizou et al. (2021); Gorbunov et al. (2022a) as well.

Cocoercivity is a classical assumption in the literature on VIPs (Zhu and Marcotte, 1996) and operator splittings (Davis and
Yin, 2017; Vũ, 2013). It can be interpreted as an intermediate notion between monotonicity and strong monotonicity. In
general, it is stronger than monotonicity and Lipschitzness of the operator, e.g., simple bilinear games are non-cocoercive.
From Cauchy-Swartz’s inequality, one can show that a ℓ-co-coercive operator is ℓ-Lipschitz. In single-objective minization,
one can prove the converse statement by using convex duality. Thus, a gradient of a function is L–co-coercive if and only if
the function is convex and L-smooth (i.e. L-Lipschitz gradients) (Bauschke et al., 2011). However, in general, a L-Lipchitz
operator is not L–co-coercive. Star-cocoercivity is a new notion recently introduced in Loizou et al. (2021) and is weaker
than classical cocoercivity and can be achieved via a proper transformation of quasi-monotone Lipschitz operator (Gorbunov
et al., 2022b). Moreover, any µ-quasi strongly monotone L-Lipschitz operator F is ℓ-star-cocoercive with ℓ ∈ [L, L

2
/µ] and

there exist examples of operators that are quasi-strongly monotone and star-cocoercive but neither monotone nor Lipschitz
(Loizou et al., 2021).
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Coordinate and zeroth-order methods for solving min-max problems and VIPs. Coordinate methods for solving
VIPs are rarely considered in the literature. The most relevant results are given in the literature on zeroth-order methods for
solving min-max problems. Although some of them can be easily extended to the coordinate versions of methods for solving
VIPs, these methods are usually considered and analyzed for min-max problems. The closest work to our paper is Sadiev
et al. (2021): they propose and analyze several zeroth-order variants of SGDA and Stochastic EG with two-point feedback
oracle for solving strongly-convex-strongly-concave and convex-concave smooth min-max problems with bounded domain.
Moreover, Sadiev et al. (2021) consider firmly smooth convex-concave min-max problems which is an analog of cocoercivity
for min-max problems. There are also papers focusing on different problems like non-sonvex-strongly-concave smooth
min-max problems (Liu et al., 2020; Wang et al., 2020), non-smooth strongly-convex-strongly-concave and convex-concave
min-max problems (Beznosikov et al., 2020b) and on different methods like ones that use one-point feedback oracle
(Beznosikov et al., 2021a). These works are less relevant to our paper than Sadiev et al. (2021). Moreover, the results
derived in these papers are inferior to the ones from Sadiev et al. (2021).
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B MISSING DETAILS ON NUMERICAL EXPERIMENTS

The code for the experiments is available here: https://github.com/hugobb/sgda.

B.1 Setup

We consider the special case of (1) with F and R defined as follows:

F (x) =
1

n

n∑
i=1

Fi(x), Fi(x) = Aix+ bi, (20)

R(x) = λ∥x∥1 + δBr(0)(x) = λ∥x∥1 +

{
0, if ∥x∥∞ ≤ r,

+∞, if ∥x∥∞ > r,
(21)

where each matrix Ai ∈ Rd×d is non-symmetric with all eigenvalues with strictly positive real part, bi ∈ Rd, r > 0 is the
radius of ℓ∞-ball, and λ ≥ 0 is regularization parameter. One can show (see Example 6.22 from Beck (2017)) that for the
given R(x) prox operator has an explicit formula:

proxγR(x) = sign (x)min {max {|x| − γλ, 0} , r} , (22)

where sign(·) and | · | are component-wise operators. The considered problem generalizes the following quadratic game:

min
∥x1∥∞≤r

max
∥x2∥∞≤r

1

n

n∑
i=1

1

2
x⊤
1 A1,ix1 + x⊤

1 A2,ix2 −
1

2
x⊤
2 A3,ix2 + b⊤1,ix1 − b⊤2,ix2 + λ∥x1∥1 − λ∥x2∥1

with µiI ≼ A1,i ≼ LiI and µiI ≼ A3,i ≼ LiI. Indeed, the above problem is a special case of (1)+(21) with

x =

(
x1

x2

)
, Ai =

(
A1,i A2,i

−A2,i A3,i

)
, bi =

(
b1,i
b2,i

)
,

R(x) = λ∥x1∥1 + λ∥x2∥1 + δBr(0)(x1) + δBr(0)(x2).

In our experiments, to generate the non-symmetric matrices Ai ∈ Rd×d defined in (21), we first sample real random matrices
Bi where the elements of the matrices are sampled from a normal distribution. We then compute the eigendecomposition
of the matrices Bi = QiDiQ

−1
i , where the Di are diagonal matrices with complex numbers on the diagonal. Next, we

construct the matrices Ai = ℜ(QiD
+
i Q

−1
i ) where ℜ(M)i,j = ℜ(Mi,j) and D+

i is obtained by transforming all the
elements of Di to have positive real part. This process ensures that the eigenvalues of Ai all have positive real part, and thus
that F (x) is strongly monotone and cocoercive. The bi ∈ Rd are sampled from a normal distribution with variance 100/d.
For all the experiments we choose n = 1000 and d = 100. For the distributed experiments we simulate m = 10 nodes on a
single machine with 2 CPUs.

B.2 Additional Numerical Experiments with Distributed Methods

In the main part, we reported the numerical results on the comparison of QSGDA, DIANA-SGDA, and VR-DIANA-SGDA
applied to solve a distributed version of the quadratic game, in which we assume that F (x) = 1

n

∑n
i=1 Fi(x) with each

{Fi}ni=1 having similar form to (20). Fig. 3 shows the results for the problem with R(x) = 0. In Fig. 4, we present the
results for the problem with R(x) defined in (21). The behavior of the methods in this case is very similar to the case
without regularization R(x).

https://github.com/hugobb/sgda
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Figure 4: Results on distributed quadratic games with constraints. Letf: Number of oracle calls. Right: Number of bits communicated
between nodes.

However, in both Fig. 3 and 4, DIANA-SGDA performs similarly to QSGDA since the noise σ2 is larger than the dissimilarity
constant ζ2∗ . To illustrate further the difference between DIANA-SGDA and QSGDA, we conduct an additional experiment
with full-batched methods (σ = 0), see Fig. 5. We consider the full-batch version of QSGDA and DIANA-SGDA. This
enables us to separate the noise coming from the quantization from the noise coming from the stochasticity. We observe that
when using full-batch DIANA-SGDA converges linearly to the solution while QSGDA only converges to a neighborhood
of the solution. An interesting observation is that although the convergence is linear, the distance to optimality is not
monotonically decreasing, this does not contradicts the theory.
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Figure 5: QSGDA vs DIANA-SGDA: DIANA-SGDA converges linearly to the solution while QSGDA only converges to a neighborhood
of the solution.
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C AUXILIARY RESULTS AND TECHNICAL LEMMAS

Useful inequalities. In our proofs, we often apply the following inequalities that hold for any a, b ∈ Rd and α > 0:

∥a+ b∥2 ≤ 2∥a∥2 + 2∥b∥2, (23)

⟨a, b⟩ ≤ 1

2α
∥a∥2 + α

2
∥b∥2. (24)

Useful lemmas. The following lemma from Stich (2019) allows us to derive the rates of convergence to the exact
solution.

Lemma C.1 (Simplified version of Lemma 3 from Stich (2019)). Let the non-negative sequence {rk}k≥0 satisfy the
relation

rk+1 ≤ (1− aγk)rk + cγ2
k

for all k ≥ 0, parameters a > 0, c ≥ 0, and any non-negative sequence {γk}k≥0 such that γk ≤ 1/h for some h ≥ a,
h > 0. Then, for any K ≥ 0 one can choose {γk}k≥0 as follows:

if K ≤ h

a
, γk =

1

h
,

if K >
h

a
and k < k0, γk =

1

h
,

if K >
h

a
and k ≥ k0, γk =

2

a(κ+ k − k0)
,

where κ = 2h/a and k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

rK ≤ 32hr0
a

exp

(
−aK

2h

)
+

36c

a2K
.

In the analysis of monotone case, we rely on the classical result from proximal operators theory.

Lemma C.2 (Theorem 6.39 (iii) from Beck (2017)). Let R be a proper lower semicontinuous convex function and
x+ = proxγR(x). Then for all z ∈ Rd the following inequality holds:

⟨x+ − x, z − x+⟩ ≥ γ
(
R(x+)−R(z)

)
.

Finally, we rely on the following technical lemma for handling the sums arising in the proofs for the monotone case.

Lemma C.3. Let K > 0 be a positive integer and η1, η2, . . . , ηK be random vectors such that Ek[ηk] := E[ηk |
η1, . . . , ηk−1] = 0 for k = 2, . . . ,K. Then

E

∥∥∥∥∥
K∑

k=1

ηk

∥∥∥∥∥
2
 =

K∑
k=1

E[∥ηk∥2]. (25)

Proof. We start with the following derivation:

E

∥∥∥∥∥
K∑

k=1

ηk

∥∥∥∥∥
2
 = E[∥ηK∥2] + 2E

[〈
ηK ,

K−1∑
k=1

ηk

〉]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2


= E[∥ηK∥2] + 2E

[
EK

[〈
ηK ,

K−1∑
k=1

ηk

〉]]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2


= E[∥ηK∥2] + 2E

[〈
EK [ηK ],

K−1∑
k=1

ηk

〉]
+ E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2

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= E[∥ηK∥2] + E

∥∥∥∥∥
K−1∑
k=1

ηk

∥∥∥∥∥
2
 .

Applying similar steps to E
[∥∥∥∑K−1

k=1 ηk

∥∥∥2] ,E [∥∥∥∑K−2
k=1 ηk

∥∥∥2] , . . . ,E [∥∥∥∑2
k=1 ηk

∥∥∥2], we get the result.
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D PROOFS OF THE MAIN RESULTS

In this section, we provide complete proofs of our main results.

D.1 Quasi-Strongly Monotone Case

We start with the case when F satisfies (3) with µ > 0. For readers convenience, we restate the theorems below.

Theorem D.1 (Theorem 2.2). Let F be µ-quasi-strongly monotone with µ > 0 and Assumption 2.1 hold. Assume that

0 < γ ≤ min

{
1

µ
,

1

2(A+ CM)

}
(26)

for some M > B/ρ. Then for the Lyapunov function Vk = ∥xk − x∗,k∥2 +Mγ2σ2
k, and for all k ≥ 0 we have

E[Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] +
γ2(D1 +MD2)

min {γµ, ρ− B/M}
. (27)

Proof. First of all, we recall a well-known fact about proximal operators: for any solution x∗ of (1) we have

x∗ = proxγR(x
∗ − γF (x∗)). (28)

Using this and non-expansiveness of proximal operator, we derive

∥xk+1 − x∗,k+1∥2 ≤ ∥xk+1 − x∗,k∥2

=
∥∥proxγR(x

k − γgk)− proxγR(x
∗,k − γF (x∗,k))

∥∥2
≤

∥∥xk − γgk − x∗,k − γF (x∗,k)
∥∥2

= ∥xk − x∗,k∥2 − 2γ
〈
xk − x∗,k, gk − F (x∗,k)

〉
+ γ2∥gk − F (x∗,k)∥2.

Next, we take an expectation Ek[·] w.r.t. the randomness at iteration k and get

Ek

[
∥xk+1 − x∗,k+1∥2

]
= ∥xk − x∗,k∥2 − 2γ

〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+γ2Ek

[∥∥gk − F (x∗,k)
∥∥2]

(6)
≤ ∥xk − x∗,k∥2 − 2γ

〈
xk − x∗, F (xk)− F (x∗,k)

〉
+γ2

(
2A
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+Bσ2

k +D1

)
.

Summing up this inequality with (7) multiplied by Mγ2, we obtain

Ek

[
∥xk+1 − x∗,k+1∥2

]
+Mγ2Ek[σ

2
k+1]

≤ ∥xk − x∗,k∥2 − 2γ
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+ γ2

(
2A
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+Bσ2

k +D1

)
+Mγ2

(
2C
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
+ (1− ρ)σ2

k +D2

)
= ∥xk − x∗,k∥2 +Mγ2

(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2)

− 2γ (1− γ(A+ CM))
〈
xk − x∗,k, F (xk)− F (x∗,k)

〉
. (29)

Since γ ≤ 1
2(A+CM) the factor −2γ (1− γ(A+ CM)) is non-positive. Therefore, applying strong quasi-monotonicity of

F , we derive

Ek

[
∥xk+1 − x∗,k+1∥2 +Mγ2σ2

k+1

]
≤ (1− 2γµ (1− γ(A+ CM))) ∥xk − x∗,k∥2

+Mγ2

(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2).
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Using γ ≤ 1
2(A+CM) and the definition Vk = ∥xk − x∗,k∥2 +Mγ2σ2

k, we get

Ek [Vk+1] ≤ (1− γµ) ∥xk − x∗,k∥2 +Mγ2

(
1− ρ+

B

M

)
σ2
k + γ2(D1 +MD2)

≤
(
1−min

{
γµ, ρ− B

M

})
Vk + γ2(D1 +MD2).

Next, we take the full expectation from the above inequality and establish the following recurrence:

E [Vk+1] ≤
(
1−min

{
γµ, ρ− B

M

})
E[Vk] + γ2(D1 +MD2). (30)

Unrolling the recurrence, we derive

E [Vk] ≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] + γ2(D1 +MD2)

k−1∑
t=0

(
1−min

{
γµ, ρ− B

M

})t

≤
(
1−min

{
γµ, ρ− B

M

})k

E[V0] + γ2(D1 +MD2)

∞∑
t=0

(
1−min

{
γµ, ρ− B

M

})t

=

(
1−min

{
γµ, ρ− B

M

})k

E[V0] +
γ2(D1 +MD2)

min {γµ, ρ− B/M}
,

which finishes the proof.

Using this and Lemma C.1, we derive the following result about the convergence to the exact solution.

Corollary D.2 (Corollary 2.3). Let the assumptions of Theorem 2.2 hold. Consider two possible cases.

1. Let D1 = D2 = 0. Then, for any K ≥ 0, M = 2B/ρ, and

γ = min

{
1

µ
,

1

2(A+ 2BC/ρ)

}
(31)

we have

E[VK ] ≤ E[V0] exp

(
−min

{
µ

2(A+ 2BC/ρ)
,
ρ

2

}
K

)
. (32)

2. Let D1 +MD2 > 0. Then, for any K ≥ 0 and M = 2B/ρ one can choose {γk}k≥0 as follows:

if K ≤ h

µ
, γk =

1

h
,

if K >
h

µ
and k < k0, γk =

1

h
, (33)

if K >
h

µ
and k ≥ k0, γk =

2

µ(κ+ k − k0)
,

where h = max {2(A+ 2BC/ρ), 2µ/ρ}, κ = 2h/µ and k0 = ⌈K/2⌉. For this choice of γk the following inequality
holds:

E[VK ] ≤ 32max

{
2(A+ 2BC/ρ)

µ
,
2

ρ

}
E[V0] exp

(
−min

{
µ

2(A+ 2BC/ρ)
,
ρ

4

}
K

)
+
36(D1 + 2BD2/ρ)

µ2K
. (34)

Proof. The first part of the corollary follows from Theorem 2.2 due to(
1−min

{
γµ, ρ− B

M

})K

=
(
1−min

{
γµ,

ρ

2

})K
≤ exp

(
−min

{
γµ,

ρ

2

}
K
)
.
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Plugging (31) in the above inequality, we derive (32). Next, we consider the case when D1 +MD2 > 0. First, we notice
that (30) holds for non-constant stepsizes γk such that

0 < γk ≤ min

{
1

µ
,

1

2(A+ CM)

}
.

Therefore, for any k ≥ 0 we have

E [Vk+1] ≤
(
1−min

{
γkµ, ρ−

B

M

})
E[Vk] + γ2

k(D1 +MD2)

M=2B/ρ
= (1−min {γkµ, ρ/2})E[Vk] + γ2

k(D1 + 2BD2/ρ).

Secondly, we assume that for all k ≥ 0

0 < γk ≤ min

{
ρ

2µ
,

1

2(A+ CM)

}
.

Applying this to the recurrence for E[Vk], we obtain

E [Vk+1] ≤ (1− γkµ)E[Vk] + γ2
k(D1 + 2BD2/ρ).

It remains to apply Lemma C.1 with rk = E[Vk], a = µ, c = D1 + 2BD2/ρ, and
h = max {2(A+ 2BC/ρ), 2µ/ρ} to the above recurrence.

D.2 Monotone Case

Next, we consider the case when µ = 0. Before deriving the proof, we provide additional discussion of the setup.

We emphasize that the maximum in (9) is taken over the compact set C containing the solution set X∗. Therefore, the
quantity GapC(z) is a valid measure of convergence (Nesterov, 2007). We point out that the iterates xk do not have to lie
in C. Our analysis works for the problems with unbounded and bounded domains (see Nesterov (2007); Alacaoglu and
Malitsky (2021) for similar setups).

Another popular convergence measure for the case when R(x) ≡ 0 in (1) is ∥F (xk)∥2. Although the squared norm of the
operator is a weaker guarantee, it is easier to compute in practice and better suited for non-monotone problems (Yoon and
Ryu, 2021). Nevertheless, ∥F (xk)∥2 is not a valid measure of convergence for (1) with R(x) ̸≡ 0. Therefore, we focus on
GapC(z) in the monotone case.7

Theorem D.3 (Theorem 2.5). Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4 hold. Assume that

0 < γ ≤ 1

2(A+ BC/ρ)
. (35)

Then for the function GapC(z) from (9) and for all K ≥ 0 we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+γ(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ)

+9γ max
x∗∈X∗

∥F (x∗)∥2. (36)

Proof. First, we apply the classical result about proximal operators (Lemma C.2) with x+ = xk+1, x = xk − γgk, and
z = u for arbitrary point u ∈ Rd:

⟨xk+1 − xk + γgk, u− xk+1⟩ ≥ γ
(
R(xk+1)−R(u)

)
.

7When R(x) ≡ 0, our analysis can be modified to get the guarantees on the squared norm of the operator.
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Multiplying by the factor of 2 and making small rearrangement, we get

2γ⟨gk, u− xk⟩+ 2⟨xk+1 − xk, u− xk⟩+ 2⟨xk+1 − xk + γgk, xk − xk+1⟩ ≥ 2γ
(
R(xk+1)−R(u)

)
implying

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ 2⟨xk+1 − xk, u− xk⟩+ 2γ⟨F (xk)− gk, xk − u⟩

+2⟨xk+1 − xk, xk − xk+1⟩+ 2γ⟨gk, xk − xk+1⟩.

Next, we use a squared norm decomposition ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2⟨a, b⟩, and obtain

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + 2γ⟨gk, xk − xk+1⟩. (37)

Then, due to 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 we have

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + γ2∥gk∥2 + ∥xk − xk+1∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩+ γ2∥gk∥2.

Monotonicity of F implies ⟨F (u), xk − u⟩ ≤ ⟨F (xk), xk − u⟩, allowing us to continue our derivation as follows:

2γ
(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩+ γ2∥gk∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+γ2∥gk − g∗,k + g∗,k∥2

(23)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+2γ2∥gk − g∗,k∥2 + 2γ2∥g∗,k∥2.

Summing up the above inequality for k = 0, 1, . . . ,K − 1, we get

2γ

K−1∑
k=0

(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤

K−1∑
k=0

∥xk − u∥2 −
K−1∑
k=0

∥xk+1 − u∥2

+2γ2
K−1∑
k=0

∥g∗,k∥2

+2γ

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+2γ2
K−1∑
k=0

∥gk − g∗,k∥2

= ∥x0 − u∥2 − ∥xK − u∥2 + 2γ2
K−1∑
k=0

∥g∗,k∥2

+2γ

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩
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+2γ2
K−1∑
k=0

∥gk − g∗,k∥2.

Next, we divide both sides by 2γK

1

K

K−1∑
k=0

(
⟨F (u), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2

and, after small rearrangement, we obtain

1

K

K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

⟨F (u), xK − x0⟩
K

+
γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2.

Applying Jensen’s inequality for convex function R, we get R
(

1
K

∑K−1
k=0 xk+1

)
≤ 1

K

∑K−1
k=0 R(xk+1). Plugging this in

the previous inequality, we derive for u∗ being a projection of u on X∗〈
F (u),

(
1

K

K−1∑
k=0

xk+1

)
− u

〉
+R

(
1

K

K−1∑
k=0

xk+1

)
−R(u)

≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

⟨F (u), xK − x0⟩
K

+
γ

K

K−1∑
k=0

∥g∗,k∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(24)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

∥xK − x0∥2

4γK
+

4γ

K
∥F (u)− F (u∗) + F (u∗)∥2

+
γ

K

K−1∑
k=0

∥g∗,k∥2 + 1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(23)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK
+

∥x0 − u∥2 + ∥xK − u∥2

2γK
+

8γ

K
∥F (u)− F (u∗)∥2

+
γ

K

K−1∑
k=0

∥g∗,k∥2 + 8γ∥F (u∗)∥2 + 1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

+
γ

K

K−1∑
k=0

∥gk − g∗,k∥2

(4)
≤ ∥x0 − u∥2

γK
+

8γℓ2∥u− u∗∥2

K
+ 9γ max

x∗∈X∗
∥F (x∗)∥2
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+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩+ γ

K

K−1∑
k=0

∥gk − g∗,k∥2.

Next, we take maximum from the both sides in u ∈ C, which gives GapC

(
1
K

∑K
k=1 x

k
)

in the left-hand side by definition
(9), and take the expectation of the result:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
8γℓ2E

[
maxu∈C ∥u− u∗∥2

]
K

+9γ max
x∗∈X∗

∥F (x∗)∥2

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
+

γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]

+
γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
. (38)

In the last step, we also use that X∗ ⊂ C and ΩC := maxx,y∈C ∥x− y∥ (Assumption 2.4).

It remains to upper bound the terms from the last two lines of (38). We start with the first one. Since

E

[
K−1∑
k=0

⟨F (xk)− gk, xk⟩

]
= E

[
K−1∑
k=0

⟨E[F (xk)− gk | xk], xk⟩

]
= 0,

E

[
K−1∑
k=0

⟨F (xk)− gk, x0⟩

]
=

K−1∑
k=0

〈
E[F (xk)− gk], x0

〉
= 0,

we have

1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
=

1

K
E

[
K−1∑
k=0

⟨F (xk)− gk, xk⟩

]

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

=
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

=
1

K
E

[
K−1∑
k=0

⟨F (xk)− gk, x0⟩

]

+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk,−u⟩

]

= E

[
max
u∈C

〈
1

K

K−1∑
k=0

(F (xk)− gk), x0 − u

〉]
(24)
≤ E

max
u∈C

γK

2

∥∥∥∥∥ 1

K

K−1∑
k=0

(F (xk)− gk)

∥∥∥∥∥
2

+
1

2γK
∥x0 − u∥2




=
γ

2K
E

∥∥∥∥∥
K−1∑
k=0

(F (xk)− gk)

∥∥∥∥∥
2
+

1

2γK
max
u∈C

∥x0 − u∥2.
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We notice that E[F (xk) − gk | F (x0) − g0, . . . , F (xk−1) − gk−1] = 0 for all k ≥ 1, i.e., conditions of Lemma C.3 are
satisfied. Therefore, applying Lemma C.3, we get

1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
≤ γ

2K

K−1∑
k=0

E[∥F (xk)− gk∥2]

+
1

2γK
max
u∈C

∥x0 − u∥2. (39)

Combining (38) and (39), we derive

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ

2K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
+

γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
(40)

(23)
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ

K

K−1∑
k=0

E
[
∥F (xk)− g∗,k∥2

]
+

2γ

K

K−1∑
k=0

E
[
∥gk − g∗,k∥2

]
.

Using ℓ-star-cocoercivity of F together with the first part of Assumption 2.1, we continue our derivation as follows:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+

2γB

K

K−1∑
k=0

E
[
σ2
k

]
=

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=0

E
[
σ2
k

]
− 2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
.

Next, we use the second part of Assumption 2.1 and get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 2γD1 + 9γ max
x∗∈X∗

∥F (x∗)∥2

+
γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=1

E
[
2C⟨F (xk−1)− g∗,k−1, xk−1 − x∗,k−1⟩

]
+
2γB

K

(
1 +

1

ρ

)K−1∑
k=1

E
[
(1− ρ)σ2

k−1 +D2

]
+
2γB

K

(
1 +

1

ρ

)
σ2
0 −

2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
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≤
3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2)

+9γ max
x∗∈X∗

∥F (x∗)∥2 + γ(4A+ ℓ)

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K

(
1 +

1

ρ

)K−2∑
k=0

E
[
2C⟨F (xk)− g∗,k, xk − x∗,k⟩+ (1− ρ)σ2

k

]
−2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2

+(4A+ ℓ+ 4BC(1 + 1/ρ))
γ

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
+
2γB

K
(1− ρ)

(
1 +

1

ρ

)K−2∑
k=0

E
[
σ2
k

]
− 2γB

ρK

K−1∑
k=0

E
[
σ2
k

]
.

Since (1− ρ) (1 + 1/ρ) = −ρ+ 1/ρ ≤ 1/ρ, the last row is non-positive and we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2 (41)

+
γ (4A+ ℓ+ 4BC(1 + 1/ρ))

K

K−1∑
k=0

E
[
⟨F (xk)− g∗,k, xk − x∗,k⟩

]
.

Note that inequality (29) from the proof of Theorem 2.2 is derived using Assumption 2.1 only. With M = B/ρ it gives

E
[
∥xk+1 − x∗,k+1∥2

]
+

γ2B

ρ
E[σ2

k+1] ≤ E
[
∥xk − x∗,k∥2

]
+

γ2B

ρ
E
[
σ2
k

]
+ γ2(D1 + BD2/ρ)

−2γ (1− γ(A+ BC/ρ))E
[〈
xk − x∗,k, F (xk)− g∗,k

〉]
.

Since γ ≤ 1/2(A+BC/ρ) we obtain

γE
[〈
xk − x∗,k, F (xk)− g∗,k

〉]
≤ E

[
∥xk − x∗,k∥2

]
+

γ2B

ρ
E
[
σ2
k

]
− E

[
∥xk+1 − x∗,k+1∥2

]
−γ2B

ρ
E[σ2

k+1] + γ2(D1 + BD2/ρ).

Plugging this inequality in (41), we derive

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
2γB(1 + 1/ρ)

K
σ2
0

+2γ (D1 +B(1 + 1/ρ)D2) + 9γ max
x∗∈X∗

∥F (x∗)∥2

+(4A+ ℓ+ 4BC(1 + 1/ρ)) · 1

K

K−1∑
k=0

E
[
∥xk − x∗,k∥2

]
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− (4A+ ℓ+ 4BC(1 + 1/ρ)) · 1

K

K−1∑
k=0

E
[
∥xk+1 − x∗,k+1∥2

]
+(4A+ ℓ+ 4BC(1 + 1/ρ)) · γ

2B

ρK

K−1∑
k=0

E
[
σ2
k − σ2

k+1

]
+γ2 (4A+ ℓ+ 4BC(1 + 1/ρ)) · (D1 + BD2/ρ)

≤
3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK
(42)

+γ

(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9 max

x∗∈X∗
∥F (x∗)∥2

)
,

where in the last inequality we use 1 + 1/ρ ≤ 2/ρ.

Corollary D.4. Let the assumptions of Theorem 2.5 hold. Then, for all K one can choose γ as

γ = min

{
1

4A+ ℓ+ 8BC/ρ
,
Ω0,C

√
ρ

σ̂0

√
B

,
Ω0,C√

K(D1 + 2BD2/ρ)
,

Ω0,C
G∗

√
K

}
, (43)

where Ω0 := ∥x0−x∗,0∥2 and Ω0,C , σ̂0, and G∗ are some upper bounds for maxu∈C ∥x0−u∥, σ0, and maxx∗∈X∗ ∥F (x∗)∥
respectively. This choice of γ implies E

[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C(

√
D1 + BD2/ρ +G∗)√

K

)
.

Proof. First of all, the choice of γ from (43) implies (35) since

1

4A+ ℓ+ 8BC/ρ
≤ 1

2 (A+ BC/ρ)
.

Using (10), the definitions of Ω0,C , σ̂0, G∗, and γ ≤ 1/(4A+ℓ+8BC/ρ), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ (4A+ ℓ+ 8BC/ρ) · ∥x
0 − x∗,0∥2

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ2

0

ρK

+γ

(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9 max

x∗∈X∗
∥F (x∗)∥2

)
≤

3Ω2
0,C

2γK
+

8γℓ2Ω2
C

K
+

(4A+ ℓ+ 8BC/ρ)Ω2
0

K

+(4 + (4A+ ℓ+ 8BC/ρ) γ)
γBσ̂2

0

ρK

+γ
(
(2 + γ (4A+ ℓ+ 8BC/ρ))(D1 + 2BD2/ρ) + 9G2

∗
)

≤
3Ω2

0,C
2γK

+
8γℓ2Ω2

C
K

+
(4A+ ℓ+ 8BC/ρ)Ω2

0

K
+

5γBσ̂2
0

ρK

+3γ

(
D1 +

2BD2

ρ
+ 3G2

∗

)
.
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Finally, we apply (43):

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3Ω2
0,C

2min

{
1

4A+ℓ+8BC/ρ ,
Ω0,C

√
ρ

σ̂0

√
B

,
Ω0,C√

K(D1+2BD2/ρ)
,

Ω0,C

G∗
√
K

}
K

+
1

ℓ
· 8ℓ

2Ω2
C

K

+
(4A+ ℓ+ 8BC/ρ)Ω2

0

K
+

Ω0,C
√
ρ

σ̂0

√
B

· γBσ̂2
0

ρK

+
Ω0,C√

K(D1 + 2BD2/ρ)
· 3
(
D1 +

2BD2

ρ

)
+

Ω0,C
G∗

√
K

· 9G2
∗

= O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C(

√
D1 + BD2/ρ +G∗)√

K

)
.
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D.3 Cocoercive Case

The upper bound from Theorem 2.5 contains the term proportional to maxx∗∈X∗ ∥F (x∗)∥2, which is non-zero in general.
Therefore, even when there is no noise the method with constant stepsize converges only to some error proportional to
maxx∗∈X∗ ∥F (x∗)∥2. To resolve this issue we assume ℓ-cocoercivity of F , i.e., we assume that

∥F (x)− F (y)∥2 ≤ ℓ⟨F (x)− F (y), x− y⟩ ∀x, y ∈ Rd.

Theorem D.5 (Theorem 2.6). Let F be ℓ-cocoercive and Assumptions 2.1, 2.4 hold. Assume that

0 < γ ≤ min

{
1

ℓ
,

1

2(A+ BC/ρ)

}
. (44)

Then for the function GapC(z) from (9) and for all K ≥ 0 we have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK
(45)

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ).

Proof. We start the proof from (37).

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk+1 − xk∥2 + ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−2∥xk+1 − xk∥2 + 2γ⟨gk, xk − xk+1⟩

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−∥xk+1 − xk∥2 + 2γ⟨F (u), xk − xk+1⟩
+2γ⟨gk − F (u), xk − xk+1⟩.

Then, due to 2⟨a, b⟩ ≤ ∥a∥2 + ∥b∥2 we have

2γ
(
⟨F (xk), xk − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
−∥xk+1 − xk∥2 + 2γ⟨F (u), xk − xk+1⟩
+γ2∥gk − F (u)∥2 + ∥xk − xk+1∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (xk)− gk, xk − u⟩
+2γ⟨F (u), xk − xk+1⟩+ γ2∥gk − F (u)∥2.

Next, we add 2γ
(
⟨F (u), xk+1 − u⟩ − ⟨F (xk), xk − u⟩

)
to both sides of the previous inequality.

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

+2γ⟨F (u)− gk, xk − u⟩+ γ2∥gk − F (u)∥2

≤ ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ⟨F (xk)− F (u), xk − u⟩
−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2 + 2γ2∥F (xk)− F (u)∥2.

Using that F is ℓ-co-cocoercive, we get

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2
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−2γ

ℓ
∥F (xk)− F (u)∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2 + 2γ2∥F (xk)− F (u)∥2

= ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ

ℓ
(1− γℓ) ∥F (xk)− F (u)∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2.

With γ ≤ 1
ℓ , we have

2γ
(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥xk − u∥2 − ∥xk+1 − u∥2

−2γ⟨gk − F (xk), xk − u⟩
+2γ2∥gk − F (xk)∥2.

Summing up the above inequality for k = 0, 1, . . . ,K − 1, we get

2γ

K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤

K−1∑
k=0

∥xk − u∥2 −
K−1∑
k=0

∥xk+1 − u∥2

+2γ2
K−1∑
k=0

∥gk − F (xk)∥2

+2γ

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.

Next, we divide both sides by 2γK

1

K

K−1∑
k=0

(
⟨F (u), xk+1 − u⟩+R(xk+1)−R(u)

)
≤ ∥x0 − u∥2 − ∥xK − u∥2

2γK

+
γ

K

K−1∑
k=0

∥gk − F (xk)∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.

Applying Jensen’s inequality for convex function R, we get R
(

1
K

∑K−1
k=0 xk+1

)
≤ 1

K

∑K−1
k=0 R(xk+1).〈

F (u),

(
1

K

K−1∑
k=0

xk+1

)
− u

〉
+R

(
1

K

K−1∑
k=0

xk+1

)
−R(u)

≤∥x0 − u∥2 − ∥xK − u∥2

2γK

+
γ

K

K−1∑
k=0

∥gk − F (xk)∥2

+
1

K

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩.

Next, we take maximum from the both sides in u ∈ C, which gives GapC

(
1
K

∑K
k=1 x

k
)

in the left-hand side by definition
(9), and take the expectation of the result:

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

E
[
maxu∈C ∥x0 − u∥2

]
γK

+
γ

K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
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+
1

K
E

[
max
u∈C

K−1∑
k=0

⟨F (xk)− gk, xk − u⟩

]
.

Using the estimate (39), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ maxu∈C ∥x0 − u∥2

γK
+

γ

K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
+

γ

2K

K−1∑
k=0

E[∥F (xk)− gk∥2] + 1

2γK
max
u∈C

∥x0 − u∥2

≤ 3maxu∈C ∥x0 − u∥2

2γK
+

3γ

2K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
.

It remains to estimate 1
K

K−1∑
k=0

E
[
∥gk − F (xk)∥2

]
. This was done in the previous proof (see from (40) to (42)). Then, we

finally have

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ).

Corollary D.6. Let the assumptions of Theorem D.5 hold. Then, for all K one can choose γ as

γ = min

{
1

6A+ 3ℓ+ 12BC/ρ
,
Ω0,C

√
ρ

σ̂0

√
B

,
Ω0,C√

K(D1 + 2BD2/ρ)

}
, (46)

where Ω0 := ∥x0 − x∗,0∥2 and Ω0,C , and σ̂0 are some upper bounds for maxu∈C ∥x0 − u∥, and σ0 respectively. This

choice of γ implies E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C

√
D1 + BD2/ρ√
K

)
.

Proof. First of all, the choice of γ from (46) implies (35) since

1

6A+ 3ℓ+ 12BC/ρ
≤ 1

2 (A+ BC/ρ)
.

Using (45), the definitions of Ω0,C , σ̂0, and γ ≤ 1/(6A+3ℓ+12BC/ρ), we get

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+ (6A+ 3ℓ+ 12BC/ρ) · ∥x

0 − x∗,0∥2

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ2

0

ρK

+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ)

≤
3Ω2

0,C
2γK

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K

+(6 + (6A+ 3ℓ+ 12BC/ρ) γ)
γBσ̂2

0

ρK
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+γ(3 + γ (6A+ 3ℓ+ 12BC/ρ))(D1 + 2BD2/ρ)

≤
3Ω2

0,C
2γK

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K
+

7γBσ̂2
0

ρK
+ 4γ

(
D1 +

2BD2

ρ

)
.

Finally, we apply (43):

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3Ω2
0,C

2min

{
1

6A+3ℓ+12BC/ρ ,
Ω0,C

√
ρ

σ̂0

√
B

,
Ω0,C√

K(D1+2BD2/ρ)

}
K

+
(6A+ 3ℓ+ 12BC/ρ)Ω2

0

K
+

Ω0,C
√
ρ

σ̂0

√
B

· γBσ̂2
0

ρK

+
Ω0,C√

K(D1 + 2BD2/ρ)
· 4
(
D1 +

2BD2

ρ

)

= O

(
(A+ ℓ+ BC/ρ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ̂0

√
B

√
ρK

+
Ω0,C

√
D1 + BD2/ρ√
K

)
.
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E SGDA WITH ARBITRARY SAMPLING: MISSING PROOFS AND DETAILS

Algorithm 1 SGDA-AS: Stochastic Gradient Descent-Ascent with Arvitrary Sampling

1: Input: starting point x0 ∈ Rd, distribution D, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Sample ξk ∼ D independently from previous iterations and compute gk = Fξk(x

k)
4: xk+1 = proxγR(x

k − γgk)
5:
6: end for

E.1 Proof of Proposition 3.2
Proposition E.1 (Proposition 3.2). Let Assumption 3.1 hold. Then, SGDA satisfies Assumption 2.1 with

A = ℓD, B = 0, σ2
k ≡ 0, D1 = 2σ2

∗ := 2 max
x∗∈X∗

ED
[
∥Fξ(x

∗)− F (x∗)∥2
]
,

C = 0, ρ = 1, D2 = 0.

Proof. To prove the result, it is sufficient to derive an upper bound for Ek

[
∥gk − F (x∗,k)∥2

]
:

Ek

[
∥gk − F (x∗,k)∥2

]
= ED

[
∥Fξk(x

k)− F (x∗,k)∥2
]

≤ 2ED
[
∥Fξk(x

k)− Fξk(x
∗,k)∥2

]
+ 2ED

[
∥Fξk(x

∗,k)− F (x∗,k)∥2
]

Ass.(3.1)
≤ 2ℓD⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

∗,

where σ2
∗ := maxx∗∈X∗ ED

[
∥Fξ(x

∗)− F (x∗)∥2
]
. The above inequality implies that Assumption 2.1 holds with

A = ℓD, B = 0, σ2
k ≡ 0, D1 = 2σ2

∗ := 2 max
x∗∈X∗

ED
[
∥Fξ(x

∗)− F (x∗)∥2
]
,

C = 0, ρ = 1, D2 = 0.

E.2 Analysis of SGDA-AS in the Quasi-Strongly Monotone Case

Plugging the parameters from the above proposition in Theorem 2.2 and Corollary 2.3 we get the following results.

Theorem E.2. Let F be µ-quasi strongly monotone, Assumption 3.1 hold, and 0 < γ ≤ 1/2ℓD. Then, for all k ≥ 0 the
iterates produced by SGDA-AS satisfy

E
[
∥xk − x∗,k∥2

]
≤ (1− γµ)k∥x0 − x0,∗∥2 + 2γσ2

∗
µ

. (47)

Corollary E.3 (Corollary 3.3). Let the assumptions of Theorem E.2 hold. Then, for any K ≥ 0 one can choose {γk}k≥0

as follows:

if K ≤ 2ℓD
µ

, γk =
1

2ℓD
,

if K >
2ℓD
µ

and k < k0, γk =
1

2ℓD
, (48)

if K >
2ℓD
µ

and k ≥ k0, γk =
2

4ℓD + µ(k − k0)
,
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where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds for SGDA-AS:

E[∥xK − x∗,K∥2] ≤ 64ℓD
µ

∥x0 − x∗,0∥2 exp
(
− µ

2ℓD
K

)
+

72σ2
∗

µ2K
.

E.3 Analysis of SGDA-AS in the Monotone Case

In the monotone case, using Theorem 2.5, we establish the new result for SGDA-AS.

Theorem E.4. Let F be monotone ℓ-star-cocoercive and Assumptions 2.1, 2.4, 3.1 hold. Assume that γ ≤ 1/2ℓD. Then
for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(4ℓD + ℓ) ∥x0 − x∗,0∥2

K

+2γ(2 + γ (4ℓD + ℓ))σ2
∗ + 9γ max

x∗∈X∗
∥F (x∗)∥2.

Next, we apply Corollary D.4 and get the following rate of convergence to the exact solution.

Corollary E.5. Let the assumptions of Theorem E.4 hold. Then ∀K > 0 and

γ = min

{
1

4ℓD + ℓ
,

Ω0,C√
2Kσ∗

,
Ω0,C

G∗
√
K

}
(49)

the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓD + ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗ +G∗)√

K

)
.

As we already mentioned before, the above result is new for SGDA-AS: the only known work on SGDA-AS (Loizou
et al., 2021) focuses on the µ-quasi-strongly monotone case only with µ > 0. Moreover, neglecting the dependence on
problem/noise parameters, the derived convergence rate O (1/K + 1/

√
K) is standard for the analysis of stochastic methods

for solving monotone VIPs (Juditsky et al., 2011).

E.4 Analysis of SGDA-AS in the Cocoercive Case

In the cocoercive case, using Theorem D.5, we establish the new result for SGDA-AS.

Theorem E.6. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 3.1 hold. Assume that γ ≤ 1/2ℓD. Then for GapC(z)
from (9) and for all K ≥ 0 the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(6ℓD + 3ℓ) ∥x0 − x∗,0∥2

K

+2γ(3 + γ (6ℓD + 3ℓ))σ2
∗.

Next, we apply Corollary D.6 and get the following rate of convergence to the exact solution.

Corollary E.7. Let the assumptions of Theorem E.6 hold. Then ∀K > 0 and

γ = min

{
1

6ℓD + 3ℓ
,

Ω0,C√
2Kσ∗

}
(50)
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the iterates produced by SGDA-AS satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓD + ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗√
K

)
.

E.5 Missing Details on Arbitrary Sampling

In the main part of the paper, we discuss the Arbitrary Sampling paradigm and, in particular, using our general theoretical
framework, we obtain convergence guarantees for SGDA under Expected Cocoercivity assumption (Assumption 3.1). In
this section, we give the particular examples of arbitrary sampling fitting this setup. In all the examples below, we focus on a
special case of stochastic reformulation from (12) and assume that for all i ∈ [n] operator Fi is (ℓi, X∗)-cocoercive, i.e., for
all i ∈ [n] and x ∈ Rd we have

∥Fi(x)− Fi(x
∗)∥2 ≤ ℓi⟨Fi(x)− Fi(x

∗), x− x∗⟩, (51)

where x∗ is the projection of x on X∗. Note that (51) holds whenever Fi are cocoercive.

Uniform Sampling. We start with the classical uniform sampling: let P {ξ = nei} = 1/n for all i ∈ [n], where ei ∈ Rn is
the i-th coordinate vector from the standard basis in Rn. Then, E[ξi] = 1 for all i ∈ [n] and Assumption 3.1 holds with
ℓD = maxi∈[n] ℓi:

ED
[
∥Fξ(x)− Fξ(x

∗)∥2
]

=
1

n

n∑
i=1

∥Fi(x)− Fi(x
∗)∥2

(51)
≤ 1

n

∑
(ℓi⟨Fi(x)− Fi(x

∗), x− x∗⟩)

≤ max
i∈[n]

ℓi⟨F (x)− F (x∗), x− x∗⟩

In this case, Corollaries E.3 and E.5 imply the following rate for SGDA in µ-quasi strongly monotone, monotone and
cocoercive cases respectively:

E[∥xK − x∗,K∥2] ≤
64maxi∈[n] ℓi

µ
∥x0 − x∗,0∥2 exp

(
− µ

2maxi∈[n] ℓi
K

)
+

72σ2
∗,US

µ2K
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(maxi∈[n] ℓi + ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗,US +G∗)√

K

)
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(maxi∈[n] ℓi + ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗,US√
K

)
,

where σ2
∗,US := maxx∗∈X∗

1
n

∑n
i=1 ∥Fi(x

∗)− F (x∗)∥2.

Importance Sampling. Next, we consider a non-uniform sampling strategy – importance sampling: let P
{
ξ = einℓ/ℓi

}
=

ℓi/nℓ for all i ∈ [n], where ℓ = 1
n

∑n
i=1 ℓi. Then, E[ξi] = 1 for all i ∈ [n] and Assumption 3.1 holds with ℓD = ℓ:

ED
[
∥Fξ(x)− Fξ(x

∗)∥2
]

=

n∑
i=1

ℓi

nℓ

∥∥∥∥ ℓ

ℓi
(Fi(x)− Fi(x

∗))

∥∥∥∥2
=

n∑
i=1

ℓ

nℓi
∥Fi(x)− Fi(x

∗)∥2

(51)
≤ ℓ

n

∑
⟨Fi(x)− Fi(x

∗), x− x∗⟩

≤ ℓ⟨F (x)− F (x∗), x− x∗⟩
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In this case, Corollaries E.3 and E.5 imply the following rate for SGDA in µ-quasi strongly monotone, monotone and
cocoercive cases respectively:

E[∥xK − x∗,K∥2] ≤ 64ℓ

µ
∥x0 − x∗,0∥2 exp

(
− µ

2ℓ
K

)
+

72σ2
∗,IS

µ2K
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓ+ ℓ)(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ∗,IS +G∗)√

K

)
,

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
(ℓ+ ℓ)(Ω2

0,C +Ω2
0)

K
+

Ω0,Cσ∗,IS√
K

)

where σ2
∗,IS := maxx∗∈X∗

1
n

∑n
i=1

ℓi
ℓ

∥∥∥ ℓ
ℓi
Fi(x

∗)− F (x∗)
∥∥∥2. We emphasize that ℓ ≤ maxi∈[n] ℓi and, in fact, ℓ might be

much smaller than maxi∈[n] ℓi. Therefore, compared to SGDA with uniform sampling, SGDA with importance sampling
has better exponentially decaying term in the quasi-strongly monotone case and converges faster to the neighborhood,
if executed with constant stepsize. Moreover, σ2

∗,IS ≤ σ2
∗,US, when maxx∗∈X∗ ∥Fi(x

∗)∥ ∼ ℓi. In this case, SGDA with
importance sampling has better O(1/K) term than SGDA with uniform sampling as well.

Minibatch Sampling With Replacement. Let ξ = 1
b

∑b
i=1 ξ

i, where ξi are i.i.d. samples from some distribution D
satisfying (12) and Assumption 3.1. Then, the distribution of ξ satisfies (12) and Assumption 3.1 as well with the same
constant ℓD. Therefore, minibatched versions of uniform sampling and importance sampling fit the framework as well with

ℓD = maxi∈[n] ℓi, σ
2
∗ =

σ2
∗,US
b and ℓD = ℓ, σ2

∗ =
σ2
∗,IS
b .

Minibatch Sampling Without Replacement. For given batchsize b ∈ [n] we consider the following sampling strategy:
for each subset S ⊆ [n] such that |S| = b we have P

{
ξ = n

b

∑
i∈S ei

}
= b!(n−b)!

n! , i.e., S is chosen uniformly at random
from all b-element subsets of [n]. In the special case, when R(x) ≡ 0, Loizou et al. (2021) show that this sampling strategy
satisfies (12) and Assumption 3.1 with

ℓD =
n(b− 1)

b(n− 1)
ℓ+

n− b

b(n− 1)
max
i∈[n]

ℓi, σ2
∗ =

n− b

b(n− 1)
σ2
∗,US. (52)

Clearly, both parameters are smaller than corresponding parameters for minibatched version of uniform sampling with
replacement, which indicates the theoretical benefits of sampling without replacement. Plugging the parameters from (52) in
Corollaries E.3 and E.5, we get the rate of convergence for this sampling strategy. Moreover, in the quasi-strongly monotone
case, to guarantee E[∥xK − x∗,K∥2] ≤ ε for some ε > 0, the method requires

Kb = O

(
max

{(
b
ℓ

µ
+

(n− b)

n

maxi∈[n] ℓi

µ

)
log

ℓD∥x0 − x∗,0∥2

µε
,
(n− b)σ2

∗,US

nµ2ε

})

= Õ

(
max

{
b
(
ℓ− 1

n maxi∈[n] ℓi
)
+maxi∈[n] ℓi

µ
,
(n− b)σ2

∗,US

nµ2ε

})
oracle calls, (53)

where Õ(·) hides numerical and logarithmic factors. One can notice that the first term in the maximum linearly increases
in b (since ℓ cannot be smaller than 1

n maxi∈[n] ℓi), while the second term linearly decreases in b. The first term in the

maximum is lower bounded by (n−b)
n

maxi∈[n] ℓi
µ . Therefore, if maxi∈[n] ℓi ≥

σ2
∗,US
µε , the the first term in the maximum is

always larger than the second one, meaning that the optimal batchsize, i.e., the batchsize that minimizes oracle complexity

(53) neglecting the logarithmic terms, equals b∗ = 1. Next, if maxi∈[n] ℓi <
σ2
∗,US
µε , then there exists a positive value of b

such that the first term in the maximum equals the second term. This value equals

n
(
σ2
∗,US − µεmaxi∈[n] ℓi

)
σ2∗ + µε

(
nℓ−maxi∈[n] ℓi

) .
One can easily verify that it is always smaller than n, but it can be non integer and it can be smaller than 1 as well. Therefore,
the optimal batchsize is

b∗ =


1, if maxi∈[n] ℓi ≥

σ2
∗,US
µε ,

max

{
1,

⌊
n(σ2

∗,US−µεmaxi∈[n] ℓi)
σ2
∗+µε(nℓ−maxi∈[n] ℓi)

⌋}
, otherwise.
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We notice that Loizou et al. (2021) derive the following formula for the optimal batchsize (ignoring numerical constants):

b̃∗ =


1, if maxi∈[n] ℓi − ℓ ≥ σ2

∗,US
µε ,

max

{
1,

⌊
n(σ2

∗,US−µε(maxi∈[n] ℓi−ℓ))
σ2
∗+µε(nℓ−maxi∈[n] ℓi)

⌋}
, otherwise.

However, in terms of Õ(·) both formulas give the same complexity result.
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F SGDA WITH VARIANCE REDUCTION: MISSING PROOFS AND DETAILS

In this section, we provide missing proofs and details for Section 4.

F.1 L-SVRGDA

Algorithm 2 L-SVRGDA: Loopless Stochastic Variance Reduced Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, probability p ∈ (0, 1], stepsize γ > 0, number of steps K
2: Set w0 = x0 and compute F (w0)
3: for k = 0 to K − 1 do
4: Draw a fresh sample jk from the uniform distribution on [n] and compute gk = Fjk(x

k)− Fjk(w
k) + F (wk)

5: wk+1 =

{
xk, with probability p,

wk, with probability 1− p,

6: xk+1 = proxγR(x
k − γgk)

7: end for

F.1.1 Proof of Proposition 4.3
Lemma F.1. Let Assumption 4.1 hold. Then for all k ≥ 0 L-SVRGDA satisfies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k, (54)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k)− Fi(x
∗,k)∥2.

Proof. Since gk = Fjk(x
k)− Fjk(w

k) + F (wk), we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥Fjk(x

k)− Fjk(w
k) + F (wk)− F (x∗,k)∥2

]
=

1

n

n∑
i=1

∥Fi(x
k)− Fi(w

k) + F (wk)− F (x∗,k)∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2

+
2

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)− (F (wk)− F (x∗,k))∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 2

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)∥2

(14)
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k.

Lemma F.2. Let Assumptions 4.1 and 4.2 hold. Then for all k ≥ 0 L-SVRGDA satisfies

Ek

[
σ2
k+1

]
≤ pℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− p)σ2

k, (55)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k)− Fi(x
∗,k)∥2.

Proof. Using the definitions of σ2
k+1 and wk+1 (see (13)), we derive

Ek

[
σ2
k+1

]
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1)− Fi(x
∗,k+1)∥2

]
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As. 4.2
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1)− Fi(x
∗,k)∥2

]
=

p

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 1− p

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗,k)∥2

(14)
≤ pℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− p)σ2

k.

The above two lemmas imply that Assumption 2.1 is satisfied with certain parameters.

Proposition F.3 (Proposition 4.3). Let Assumptions 4.1 and 4.2 hold. Then, L-SVRGDA satisfies Assumption 2.1 with

A = ℓ̂, B = 2, σ2
k =

1

n

n∑
i=1

∥Fi(w
k)− Fi(x

∗)∥2, C =
pℓ̂

2
, ρ = p, D1 = D2 = 0.

F.1.2 Analysis of L-SVRGDA in the Quasi-Strongly Monotone Case

Plugging the parameters from the above proposition in Theorem 2.2 and Corollary 2.3 with M = 4
p we get the following

results.

Theorem F.4. Let F be µ-quasi strongly monotone, Assumptions 4.1, 4.2 hold, and 0 < γ ≤ 1/6ℓ̂. Then for all k ≥ 0 the
iterates produced by L-SVRGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, p/2})k V0, (56)

where V0 = ∥x0 − x∗∥2 + 4γ2σ2
0/p.

Corollary F.5. Let the assumptions of Theorem F.4 hold. Then, for p = n, γ = 1/6ℓ̂ and any K ≥ 0 we have

E[∥xk − x∗∥2] ≤ V0 exp

(
−min

{
µ

6ℓ̂
,
1

2n

}
K

)
.

F.1.3 Analysis of L-SVRGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of L-SVRGDA in the monotone case.

Theorem F.6. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2 hold. Assume that γ ≤ 1/6ℓ̂. Then
for GapC(z) from (9) and for all K ≥ 0 the iterates of L-SVRGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(
12ℓ̂+ ℓ

)
∥x0 − x∗,0∥2

K

+
(
4 +

(
12ℓ̂+ ℓ

)
γ
) 2γσ2

0

pK
+ 9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary F.7. Let the assumptions of Theorem F.6 hold and p = 1/n. Then ∀K > 0 one can choose γ as

γ = min

{
1

12ℓ̂+ ℓ
,

1√
2nℓ̂ℓ

,
Ω0,C

G∗
√
K

}
. (57)
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This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

 (ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√
nℓ̂ℓΩ2

0,C + ℓΩ2
C

K
+

Ω0,CG∗√
K

 .

Proof. First of all, (14), (4), and Cauchy-Schwarz inequality imply

σ2
0 =

1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

(14)
≤ ℓ̂⟨F (x0)− F (x∗), x0 − x∗⟩
≤ ℓ̂∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ ℓ̂ℓ∥x0 − x∗∥2 ≤ ℓ̂ℓmax

u∈C
∥x0 − u∥2 ≤ ℓ̂ℓΩ2

0,C .

Next, applying Corollary D.4 with σ̂0 :=
√

ℓ̂ℓΩ0,C , we get the result.

F.1.4 Analysis of L-SVRGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of L-SVRGDA in the cocoercive case.

Theorem F.8. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2 hold. Assume that γ ≤ 1/6ℓ̂. Then for GapC(z)
from (9) and for all K ≥ 0 the iterates of L-SVRGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(
18ℓ̂+ 3ℓ

)
∥x0 − x∗,0∥2

K

+
(
6 +

(
18ℓ̂+ 3ℓ

)
γ
) 2γσ2

0

pK
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary F.9. Let the assumptions of Theorem F.8 hold and p = 1/n. Then ∀K > 0 one can choose γ as

γ = min

{
1

18ℓ̂+ 3ℓ
,

1√
2nℓ̂ℓ

}
. (58)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

 (ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√

nℓ̂ℓΩ2
0,C

K

 .

F.2 SAGA-SGDA

In this section, we show that SAGA-SGDA (Palaniappan and Bach, 2016) fits our theoretical framework and derive new
results for this method under averaged star-cocoercivity.

F.2.1 SAGA-SGDA Fits Assumption 2.1
Lemma F.10. Let Assumption 4.1 hold. Then for all k ≥ 0 SAGA-SGDA satisfies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k, (59)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k
i )− Fi(x

∗,k)∥2.
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Algorithm 3 SAGA-SGDA (Palaniappan and Bach, 2016)

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: Set w0

i = x0 and compute Fi(w
0
i ) for all i ∈ [n]

3: for k = 0 to K − 1 do
4: Draw a fresh sample jk from the uniform distribution on [n] and compute gk = Fjk(x

k) − Fjk(w
k
jk
) +

1
n

∑n
i=1 Fi(w

k
i )

5: Set wk+1
jk

= xk and wk+1
i = wk

i for i ̸= jk
6: xk+1 = proxγR(x

k − γgk)
7: end for

Proof. For brevity, we introduce a new notation: Sk = 1
n

∑n
i=1 Fi(w

k
i ). Since gk = Fjk(x

k)− Fjk(w
k
jk
) + Sk, we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥Fjk(x

k)− Fjk(w
k
jk
) + Sk − F (x∗,k)∥2

]
=

1

n

n∑
i=1

∥Fi(x
k)− Fi(w

k
i ) + Sk − F (x∗,k)∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2

+
2

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)− (Sk − F (x∗,k))∥2

≤ 2

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 2

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)∥2

(14)
≤ 2ℓ̂⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ 2σ2

k.

Lemma F.11. Let Assumptions 4.1 and 4.2 hold. Then for all k ≥ 0 SAGA-SGDA satisfies

Ek

[
σ2
k+1

]
≤ ℓ̂

n
⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− 1/n)σ2

k, (60)

where σ2
k := 1

n

∑n
i=1 ∥Fi(w

k
i )− Fi(x

∗,k)∥2.

Proof. Using the definitions of σ2
k+1 and wk+1

i , we derive

Ek

[
σ2
k+1

]
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1
i )− Fi(x

∗,k+1)∥2
]

As. 4.2
=

1

n

n∑
i=1

Ek

[
∥Fi(w

k+1
i )− Fi(x

∗,k)∥2
]

=
1

n2

n∑
i=1

∥Fi(x
k)− Fi(x

∗,k)∥2 + 1− 1/n

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗,k)∥2

(14)
≤ ℓ̂

n
⟨F (xk)− F (x∗,k), xk − x∗,k⟩+ (1− 1/n)σ2

k.

The above two lemmas imply that Assumption 2.1 is satisfied with certain parameters.
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Proposition F.12. Let Assumptions 4.1 and 4.2 hold. Then, SAGA-SGDA satisfies Assumption 2.1 with

A = ℓ̂, B = 2, σ2
k =

1

n

n∑
i=1

∥Fi(w
k
i )− Fi(x

∗)∥2, C =
ℓ̂

2n
, ρ =

1

n
, D1 = D2 = 0.

F.2.2 Analysis of SAGA-SGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3 with M = 4n, we get the following results.

Theorem F.13. Let F be µ-quasi strongly monotone, Assumptions 4.1, 4.2 hold, and 0 < γ ≤ 1/6ℓ̂. Then for all k ≥ 0
the iterates produced by SAGA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, 1/2n})k V0, (61)

where V0 = ∥x0 − x∗∥2 + 4nγ2σ2
0 .

Corollary F.14. Let the assumptions of Theorem F.13 hold. Then, for γ = 1/6ℓ̂ and any K ≥ 0 we have

E[∥xK − x∗∥2] ≤ V0 exp

(
−min

{
µ

6ℓ̂
,
1

2n

}
K

)
.

F.2.3 Analysis of SAGA-SGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of SAGA-SGDA in the monotone case.

Theorem F.15. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2 hold. Assume that γ ≤ 1/6ℓ̂.
Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SAGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

8γℓ2Ω2
C

K
+

(
12ℓ̂+ ℓ

)
∥x0 − x∗,0∥2

K

+
(
4 +

(
12ℓ̂+ ℓ

)
γ
) 2γσ2

0

pK
+ 9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary F.16. Let the assumptions of Theorem F.15 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

12ℓ̂+ ℓ
,

1√
2nℓ̂ℓ

,
Ω0,C

G∗
√
K

}
, (62)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

 (ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√
nℓ̂ℓΩ2

0,C + ℓΩ2
C

K
+

Ω0,CG∗√
K

 .

Proof. Since σ0 for SAGA-SGDA and L-SVRGDA are the same, the proof of this corollary is identical to the one for
Corollary F.7.

F.2.4 Analysis of SAGA-SGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of SAGA-SGDA in the cocoercive case.

Theorem F.17. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2 hold. Assume that γ ≤ 1/6ℓ̂. Then for GapC(z)
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from (9) and for all K ≥ 0 the iterates produced by SAGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤ 3maxu∈C ∥x0 − u∥2

2γK
+

(
18ℓ̂+ 3ℓ

)
∥x0 − x∗,0∥2

K

+
(
6 +

(
18ℓ̂+ 3ℓ

)
γ
) 2γσ2

0

pK
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary F.18. Let the assumptions of Theorem F.17 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

18ℓ̂+ 3ℓ
,

1√
2nℓ̂ℓ

}
, (63)

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

 (ℓ̂+ ℓ)(Ω2
0,C +Ω2

0) +
√

nℓ̂ℓΩ2
0,C

K

 .

F.3 Discussion of the Results in the Monotone and Cocoercive Cases

Among the papers mentioned in the related work on variance-reduced methods (see Section A), only Alacaoglu and Malitsky
(2021); Carmon et al. (2019); Alacaoglu et al. (2021); Tominin et al. (2021); Luo et al. (2021) consider monotone (convex-
concave) and Lipschitz (smooth) VIPs (min-max problems) without assuming strong monotonicity (strong-convexity-
strong-concavity) of the problem. In this case, Alacaoglu and Malitsky (2021) derive O

(
n+

√
nL
K

)
convergence rate

(neglecting the dependence on the quantities like Ω2
0,C = maxu∈C ∥x0 − u∥2), which is optimal for the considered setting

(Han et al., 2021). Under additional assumptions a similar rate is derived in Carmon et al. (2019). Tominin et al. (2021); Luo
et al. (2021) also achieve this rate but using Catalyst. Finally, Alacaoglu et al. (2021) derive O

(
n+ nL

K

)
, which is worse

than the one from Alacaoglu and Malitsky (2021). Our results for monotone and star-cocoercive regularized VIPs give

O
(√

nℓℓ̂+ℓ̂
K + G∗√

K

)
rate, which is typically worse than O

(
n+

√
nL
K

)
rate from Alacaoglu and Malitsky (2021) due to the

relation between cocoercivity constants and Lipschitz constants (even when R(x) ≡ 0, i.e., G∗ = 0). However, in general, it
is possible that star-cocoercivity holds, while Lipschitzness does not (Loizou et al., 2021). As for cocoercive case, we obtain

O
(√

nℓℓ̂+ℓ̂
K

)
, which matches the rate from Alacaoglu and Malitsky (2021) up to the difference between cocoercivity and

Lipschitz constants. Moreover, we emphasize here that Alacaoglu and Malitsky (2021) and other works do not consider
SGDA as the basis for their methods. To the best of our knowledge, our results are the first ones for variance-reduced
SGDA-type methods derived in the monotone case without assuming (quasi-)strong monotonicity.
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G DISTRIBUTED SGDA WITH COMPRESSION: MISSING PROOFS AND DETAILS

In this section, we provide missing proofs and details for Section 5.

G.1 QSGDA

In this section (and in the one about DIANA-SGDA), we assume that each Fi has an expectation form: Fi(x) =
Eξi∼Di

[Fξi(x)].

Algorithm 4 QSGDA: Quantized Stochastic Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Compute gki and send Q(gki ) to the server
6: end for
7: gk = 1

n

∑n
i=1 Q(gki )

8: xk+1 = proxγR
(
xk − γgk

)
9: end for

G.1.1 Proof of Proposition 5.3
Proposition G.1 (Proposition 5.3). Let F be ℓ-star-cocoercive and Assumptions 4.1, 5.2 hold. Then, QSGDA with
quantization (15) satisfies Assumption 2.1 with

A =

(
3ℓ

2
+

9ωℓ̂

2n

)
, D1 =

3(1 + 3ω)σ2 + 9ωζ2∗
n

, σ2
k = 0, B = 0,

C = 0, ρ = 1, D2 = 0,

where σ2 = 1
n

∑n
i=1 σ

2
i and ζ2∗ = 1

n maxx∗∈X∗

[∑n
i=1 ∥Fi(x

∗)∥2
]
.

Proof. Since gk = 1
n

n∑
i=1

Q
(
gki
)
, Q
(
gk1
)
, . . . ,Q

(
gkn
)

are independent for fixed gk1 , . . . , g
k
n, and gk1 , . . . , g

k
n are independent

for fixed xk, we have

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

∥∥∥∥∥ 1n
n∑

i=1

Q
(
gki
)
− F (x∗,k)

∥∥∥∥∥
2


= Ek

∥∥∥∥∥ 1n
n∑

i=1

[
Q
(
gki
)
− gki + gki − Fi(x

k)
]
+ F (xk)− F (x∗,k)

∥∥∥∥∥
2


≤ 3Ek

∥∥∥∥∥ 1n
n∑

i=1

[Q
(
gki
)
− gki ]

∥∥∥∥∥
2
+ 3Ek

∥∥∥∥∥ 1n
n∑

i=1

[gki − Fi(x
k)]

∥∥∥∥∥
2


+3
∥∥F (xk)− F (x∗,k)

∥∥2
=

3

n2

n∑
i=1

Ek

[∥∥Q (gki )− gki
∥∥2]+ 3

n2

n∑
i=1

Ek

[∥∥gki − Fi(x
k)
∥∥2]

+3
∥∥F (xk)− F (x∗,k)

∥∥2 .
Next, we use Assumption 5.2, σ2 = 1

n

∑n
i=1 σ

2
i , and the definition of quantization (15) and get

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 3ω

n2

n∑
i=1

Ek

[∥∥gki ∥∥2]+ 3σ2

n
+ 3

∥∥F (xk)− F (x∗,k)
∥∥2
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≤ 3ω

n2

n∑
i=1

Ek

[∥∥gki − Fi(x
k) + Fi(x

k)− Fi(x
∗,k) + Fi(x

∗,k)
∥∥2]

+
3σ2

n
+ 3

∥∥F (xk)− F (x∗,k)
∥∥2

≤ 9ω

n2

n∑
i=1

Ek

[∥∥gki − Fi(x
k)
∥∥2]+ 9ω

n2

n∑
i=1

Ek

[∥∥Fi(x
k)− Fi(x

∗,k)
∥∥2]

+
9ω

n2

n∑
i=1

Ek

[∥∥Fi(x
∗,k)
∥∥2]+ 3σ2

n
+ 3

∥∥F (xk)− F (x∗,k)
∥∥2

(16)
≤ 9ω

n2

n∑
i=1

Ek

[∥∥Fi(x
k)− Fi(x

∗,k)
∥∥2]+ 3

∥∥F (xk)− F (x∗,k)
∥∥2

+
9ω

n2

n∑
i=1

Ek

[∥∥Fi(x
∗,k)
∥∥2]+ 3(1 + 3ω)σ2

n
.

Star-cocoercivity of F and Assumption 4.1 give

Ek

[
∥gk − F (x∗,k)∥2

]
≤

(
3ℓ+

9ω

n
ℓ̂

)
⟨F (xk)− F (x∗,k), xk − x∗,k⟩

+
9ω

n2

n∑
i=1

Ek

[∥∥Fi(x
∗,k)
∥∥2]+ 3(1 + 3ω)σ2

n

≤
(
3ℓ+

9ω

n
ℓ̂

)
⟨F (xk)− F (x∗,k), xk − x∗,k⟩

+
9ω

n2
max
x∗∈X∗

[
n∑

i=1

∥Fi(x
∗)∥2

]
+

3(1 + 3ω)σ2

n
.

G.1.2 Analysis of QSGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3, we get the following results.

Theorem G.2. Let F be µ-quasi strongly monotone, ℓ-star-cocoercive, Assumptions 4.1, 5.2 hold, and

0 < γ ≤ 1

3ℓ+ 9ωℓ̂
n

.

Then, for all k ≥ 0 the iterates produced by QSGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1− γµ)

k ∥x0 − x∗∥2 + γ
3(1 + 3ω)σ2 + 9ωζ2∗

nµ
.

Corollary G.3. Let the assumptions of Theorem G.2 hold. Then, for any K ≥ 0 one can choose {γk}k≥0 as follows:

if K ≤ 1

µ
·

(
3ℓ+

9ωℓ̂

n

)
, γk =

(
3ℓ+

9ωℓ̂

n

)−1

,

if K >
1

µ
·

(
3ℓ+

9ωℓ̂

n

)
and k < k0, γk =

(
3ℓ+

9ωℓ̂

n

)−1

,

if K >
1

µ
·

(
3ℓ+

9ωℓ̂

n

)
and k ≥ k0, γk =

2

(6ℓ+ 18ωℓ̂/n + µ(k − k0))
,
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where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

E[∥xK − x∗,K∥2] ≤ 32(3ℓ+ 9ωℓ̂/n)

µ
∥x0 − x∗,0∥2 exp

(
− µ

(3ℓ+ 9ωℓ̂/n)
K

)
+

36

µ2K
· 3(1 + 3ω)σ2 + 9ωζ2∗

n
.

G.1.3 Analysis of QSGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of QSGDA in the monotone case.

Theorem G.4. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.1, 5.2 hold. Assume that γ ≤(
3ℓ+ 9ωℓ̂

n

)−1

. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by QSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+

(
7ℓ+

18ωℓ̂

n

)
· ∥x

0 − x∗,0∥2

K

+γ

(
2 + γ

(
7ℓ+

18ωℓ̂

n

))
· 3(1 + 3ω)σ2 + 9ωζ2∗

n

+9γ max
x∗∈X∗

[
∥F (x∗)∥2

]
Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary G.5. Let the assumptions of Theorem G.4 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

7ℓ+ 18ωℓ̂
n

,
Ω0,C

√
n√

3K(1 + 3ω)σ2 + 9Kωζ2∗
,

Ω0,C
G∗

√
K

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ ωℓ̂/n

)
(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,C(σ

√
1 + ω +G∗

√
n+ ζ∗

√
ω)√

nK

)
.

G.1.4 Analysis of QSGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of QSGDA in the cocoercive case.

Theorem G.6. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.1, 5.2 hold. Assume that γ ≤
(
3ℓ+ 9ωℓ̂

n

)−1

. Then for
GapC(z) from (9) and for all K ≥ 0 the iterates produced by QSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
10ℓ+

27ωℓ̂

n

)
· ∥x

0 − x∗,0∥2

K

+γ

(
3 + γ

(
10ℓ+

27ωℓ̂

n

))
· 3(1 + 3ω)σ2 + 9ωζ2∗

n
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary G.7. Let the assumptions of Theorem G.6 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

10ℓ+ 27ωℓ̂
n

,
Ω0,C

√
n√

3K(1 + 3ω)σ2 + 9Kωζ2∗

}
.
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This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ ωℓ̂/n

)
(Ω2

0,C +Ω2
0)

K
+

Ω0,C(σ
√
1 + ω + ζ∗

√
ω)√

nK

)
.

G.2 DIANA-SGDA

Algorithm 5 DIANA-SGDA: DIANA Stochastic Gradient Descent-Ascent Mishchenko et al. (2019); Horváth et al. (2019)

1: Input: starting points x0, h0
1, . . . , h

0
n ∈ Rd, h0 = 1

n

∑n
i=1 h

0
i , stepsizes γ, α > 0, number of steps K

2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Compute gki and ∆k

i = gki − hk
i

6: Send Q(∆k
i ) to the server

7: hk+1
i = hk

i + αQ(∆k
i )

8: end for
9: gk = hk + 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

(hk
i +Q(∆k

i ))

10: xk+1 = proxγR
(
xk − γgk

)
11: hk+1 = hk + α 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

hk
i

12: end for

G.2.1 Proof of Proposition 5.4

The following result follows from Lemmas 1 and 2 from Horváth et al. (2019). It holds in our settings as well, since it does
not rely on the exact form of Fi(x

k).

Lemma G.8 (Lemmas 1 and 2 from Horváth et al. (2019)). Let Assumptions 4.2, 5.2 hold. Suppose that α ≤ 1/(1+ω).
Then, for all k ≥ 0 DIANA-SGDA satisfies

Ek

[
gk
]

= F (xk),

Ek

[
∥gk − F (x∗)∥2

]
≤

(
1 +

2ω

n

)
1

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗)∥2 + 2ωσ2
k

n
+

(1 + ω)σ2

n
,

Ek

[
σ2
k+1

]
≤ (1− α)σ2

k +
α

n

n∑
i=1

∥Fi(x
k)− Fi(x

∗)∥2 + ασ2,

where σ2
k = 1

n

n∑
i=1

∥hk
i − Fi(x

∗)∥2 and σ2 = 1
n

∑n
i=1 σ

2
i .

The lemma above implies that Assumption 2.1 is satisfied with certain parameters.

Proposition G.9 (Proposition 5.4). Let Assumptions 4.1, 4.2, 5.2 hold. Suppose that α ≤ 1
1+ω . Then, DIANA-SGDA

with quantization (15) satisfies Assumption 2.1 with σ2
k = 1

n

∑n
i=1 ∥hk

i − Fi(x
∗)∥2 and

A =

(
1

2
+

ω

n

)
ℓ̂, B =

2ω

n
, D1 =

(1 + ω)σ2

n
, C =

αℓ̂

2
, ρ = α, D2 = ασ2.

Proof. To get the result, one needs to apply Assumption 4.1 to estimate 1
n

∑n
i=1 ∥Fi(x

k)−Fi(x
∗)∥2 from Lemma G.8.

G.2.2 Analysis of DIANA-SGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3 with M = 4ω
αn , we get the following results.
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Theorem G.10. Let F be µ-quasi strongly monotone, Assumptions 4.1, 4.2, 5.2 hold, α ≤ 1/(1+ω), and

0 < γ ≤ 1(
1 + 6ω

n

)
ℓ̂
.

Then, for all k ≥ 0 the iterates produced by DIANA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤
(
1−min

{
γµ,

α

2

})k
E[V0] +

γ2σ2(1 + 5ω)

n ·min {γµ, α/2}
,

where V0 = ∥x0 − x∗∥2 + 4ωγ2σ2
0/αn.

Corollary G.11. Let the assumptions of Theorem 5.4 hold. Then, for any K ≥ 0 one can choose α = 1/(1+ω) and
{γk}k≥0 as follows:

if K ≤ h

µ
, γk =

1

h
,

if K >
h

µ
and k < k0, γk =

1

h
,

if K >
h

µ
and k ≥ k0, γk =

2

2h+ µ(k − k0)
,

where h = max
{(

1 + 6ω
n

)
ℓ̂, 2µ(1 + ω)

}
, k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

E[∥xK − x∗,K∥2] ≤ 32max

{(
1 + 6ω

n

)
ℓ̂

µ
, 2(1 + ω)

}
V0 exp

(
−min

{
µ

ℓ̂(1 + 6ω
n )

,
1

1 + ω

}
K

)

+
36(1 + 5ω)σ2

µ2nK
.

G.2.3 Analysis of DIANA-SGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of DIANA-SGDA in the monotone case.

Theorem G.12. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2, 5.2 hold. Assume that

0 < γ ≤ 1(
1 + 4ω

n

)
ℓ̂
.

Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

)
∥x0 − x∗,0∥2

K

+

(
4 + γ

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

))
γBσ2

0

ρK

+γ

((
2 + γ

(
2ℓ̂+

12ωℓ̂

n
+ ℓ

))(
(1 + 5ω)σ2

n

))
+9γ max

x∗∈X∗
∥F (x∗)∥2.

Applying Corollary D.4, we get the rate of convergence to the exact solution.
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Corollary G.13. Let the assumptions of Theorem G.12 hold. Then ∀K > 0 one can choose γ as

γ = min


(
ℓ+ 2ℓ̂+

12ωℓ̂

n

)−1

,

√
αn√
2ωℓ̂ℓ

,
Ω0,C

σ
√
K(1+3ω)/n

,
Ω0,C

G∗
√
K

 ,

This choice of γ implies that E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

 (ℓ+ ℓ̂+ ωℓ̂/n)(Ω2
0,C +Ω2

0) + ℓΩ2
C

K
+

Ω2
0,C

√
ℓ̂ℓ
√
ω

√
αnK

+
Ω0,C(

√
(1+ω)σ2

/n +G∗)√
K

 .

Proof. The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0
i = Fi(x

0)

σ2
0 =

1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

≤ ℓ̂⟨F (x0)− F (x∗), x0 − x∗⟩
≤ ℓ̂∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ ℓ̂ℓ∥x0 − x∗∥2 ≤ ℓ̂ℓmax

u∈C
∥x0 − u∥2 ≤ ℓ̂ℓΩ2

0,C .

Next, applying Corollary D.4 with σ̂0 :=
√

ℓ̂ℓΩ0,C , we get the result.

G.2.4 Analysis of DIANA-SGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of DIANA-SGDA in the cocoercive case.

Theorem G.14. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2, 5.2 hold. Assume that

0 < γ ≤ 1(
1 + 4ω

n

)
ℓ̂
.

Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by DIANA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+

(
3ℓ̂+

18ωℓ̂

n
+ 3ℓ

)
∥x0 − x∗,0∥2

K

+

(
6 + γ

(
4ℓ̂+

18ωℓ̂

n
+ 3ℓ

))
γBσ2

0

ρK

+γ

((
3 + γ

(
3ℓ̂+

18ωℓ̂

n
+ 3ℓ

))(
(1 + 5ω)σ2

n

))
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary G.15. Let the assumptions of Theorem G.14 hold. Then ∀K > 0 one can choose γ as

γ = min


(
3ℓ+ 3ℓ̂+

18ωℓ̂

n

)−1

,

√
αn√
2ωℓ̂ℓ

,
Ω0,C

σ
√
K(1+3ω)/n

 ,
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This choice of γ implies that E
[
GapC

(
1
K

∑K
k=1 x

k
)]

equals

O

 (ℓ+ ℓ̂+ ωℓ̂/n)(Ω2
0,C +Ω2

0)

K
+

Ω2
0,C

√
ℓ̂ℓ
√
ω

√
αnK

+
Ω0,C

√
(1+ω)σ2

/n√
K

 .

G.3 VR-DIANA-SGDA

In this section, we assume that each Fi has a finite-sum form: Fi(x) =
1
m

∑m
j=1 Fij(x).

Algorithm 6 VR-DIANA-SGDA: VR-DIANA Stochastic Gradient Descent-Ascent Horváth et al. (2019)

1: Input: starting points x0, h0
1, . . . , h

0
n ∈ Rd, h0 = 1

n

n∑
i=1

h0
i , probability p ∈ (0, 1] stepsizes γ, α > 0, number of steps

K,
2: for k = 0 to K − 1 do
3: Broadcast xk to all workers
4: for i = 1, . . . , n in parallel do
5: Draw a fresh sample jki from the uniform distribution on [m] and compute gki = Fijki

(xk)−Fijki
(wk

i )+Fi(w
k
i )

6: wk+1
i =

{
xk, with probability p,

wk
i , with probability 1− p,

7: ∆k
i = gki − hk

i

8: Send Q(∆k
i ) to the server

9: hk+1
i = hk

i + αQ(∆k
i )

10: end for
11: gk = hk + 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

(hk
i +Q(∆k

i ))

12: xk+1 = proxγR
(
xk − γgk

)
13: hk+1 = hk + α 1

n

n∑
i=1

Q(∆k
i ) =

1
n

n∑
i=1

hk
i

14: end for

G.3.1 Proof of Proposition 5.6
Lemma G.16 (Modification of Lemmas 3 and 7 from Horváth et al. (2019)). Let F be ℓ-star-cocoercive and Assump-
tions 4.1, 4.2, 5.5 hold. Then for all k ≥ 0 VR-DIANA-SGDA satisfies

Ek

[
gk
]

= F (xk),

Ek

[
∥gk − F (x∗)∥

]
≤

(
ℓ+

2ℓ̃

n
+

2ω(ℓ̂+ ℓ̃)

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2(ω + 1)

n
σ2
k,

where σ2
k = Hk

n + Dk

nm with Hk =
n∑

i=1

∥∥hk
i − Fi(x

∗)
∥∥2 and Dk =

n∑
i=1

m∑
j=1

∥∥Fij(w
k
i )− Fij(x

∗)
∥∥2.

Proof. First of all, we derive unbiasedness:

E
[
gk
]
=

1

n

n∑
i=1

E
[
Q(gki − hk

i ) + hk
i

]
=

1

n

n∑
i=1

E
[
gki − hk

i + hk
i

]
=

1

n

n∑
i=1

Fi(x
k) = F (xk).

By definition of the variance we get

EQ
[∥∥gk − F (x∗)

∥∥2]=∥∥EQ
[
gk
]
− F (x∗)

∥∥2︸ ︷︷ ︸
T1

+EQ

[∥∥gk − EQ

[
gk
]∥∥2]︸ ︷︷ ︸

T2

.
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Next, we derive the upper bounds for terms T1 and T2 separately. For T2 we use unbiasedness of quantization and
independence of workers:

T2 = EQ

∥∥∥∥∥ 1n
n∑

i=1

Q(gki − hk
i )− (gki − hk

i )

∥∥∥∥∥
2


=
1

n2

n∑
i=1

EQ
[∥∥Q(gki − hk

i )− (gki − hk
i )
∥∥2] (15)

≤ ω

n2

n∑
i=1

∥∥gki − hk
i

∥∥2 .
Taking Ek[·] from the both sides of the above inequality, we derive

Ek [T2] ≤
ω

n2

n∑
i=1

Ek

[∥∥gki − hk
i

∥∥2] = ω

n2

n∑
i=1

(∥∥Ek

[
gki − hk

i

]∥∥2 + Ek

[∥∥gki − hk
i − Ek

[
gki − hk

i

]∥∥2])
=

ω

n2

n∑
i=1

(∥∥Fi(x
k)− hk

i

∥∥2 + Ek

[∥∥gki − Fi(x
k)
∥∥2])

=
ω

n2

n∑
i=1

(∥∥Fi(x
k)− hk

i

∥∥2 + Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2])

≤ ω

n2

n∑
i=1

(∥∥Fi(x
k)− hk

i

∥∥2 + Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )
∥∥∥2])

≤2ω

n2

n∑
i=1

(∥∥hk
i − Fi(x

⋆)
∥∥2 + ∥∥Fi(x

k)− Fi(x
⋆)
∥∥2)

+
2ω

n2

n∑
i=1

(
Ek

[∥∥∥Fijki
(wk

i )− Fijki
(x⋆)

∥∥∥2]+ Ek

[∥∥∥Fijki
(xk)− Fijki

(x⋆)
∥∥∥2]) .

Since jki is sampled uniformly at random from [m], we have

Ek [T2] ≤ 2ω

n2

n∑
i=1

(∥∥hk
i − Fi(x

⋆)
∥∥2 + ∥∥Fi(x

k)− Fi(x
⋆)
∥∥2)

+
2ω

mn2

n∑
i=1

m∑
j=1

(
Ek

[∥∥Fij(w
k
i )− Fij(x

⋆)
∥∥2]+ Ek

[∥∥Fij(x
k)− Fij(x

⋆)
∥∥2])

(14),(19)
≤ 2ω

n2
Hk +

2ω

mn2
Dk +

2ω(ℓ̂+ ℓ̃)

n
⟨F (xk)− F (x∗), xk − x∗⟩.

In last line, we also use the definitions of Hk, Dk. For T1 we use definition of gk:

T1 =

∥∥∥∥∥ 1n
n∑

i=1

EQ
[
Q(gki − hk

i ) + hk
i

]
− F (x∗)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1n
n∑

i=1

gki − F (x∗).

∥∥∥∥∥
2

Next, we estimate Ek[T1] similarly to Ek[T2]:

Ek [T1] = Ek

∥∥∥∥∥ 1n
n∑

i=1

gki − F (x∗)

∥∥∥∥∥
2
 =

∥∥∥∥∥ 1n
n∑

i=1

E
[
gki
]
− F (x∗)

∥∥∥∥∥
2

+ Ek

∥∥∥∥∥ 1n
n∑

i=1

(
gki − E

[
gki
])∥∥∥∥∥

2

2


=
∥∥F (xk)− F (x∗)

∥∥2 + 1

n2

n∑
i=1

Ek

[∥∥gki − Fi(x
k)
∥∥2]

(4)
≤ ℓ⟨F (xk)− F (x∗), xk − x∗⟩

+
1

n2

n∑
i=1

E
[∥∥∥Fijki

(xk)− Fijki
(wk

i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2]
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≤ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 1

n2

n∑
i=1

Ek

[∥∥∥Fijki
(xk)− Fijki

(wk
i )
∥∥∥2]

=ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 1

mn2

n∑
i=1

m∑
j=1

∥∥Fij(x
k)− Fij(w

k
i )
∥∥2

≤ℓ⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2

n∑
i=1

m∑
j=1

(∥∥Fij(w
k
i )− Fij(x

⋆)
∥∥2 + ∥∥Fij(x

k)− Fij(x
⋆)
∥∥2)

(19)
≤

(
ℓ+

2ℓ̃

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2
Dk.

Finally, summing E [T1] and E [T2] we get

E
[∥∥gk − F (x∗)

∥∥2] = E [T1 + T2]

≤

(
ℓ+

2ℓ̃

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2

mn2
Dk

+
2ω

n2
Hk +

2ω

mn2
Dk +

2ω(ℓ̂+ ℓ̃)

n
⟨F (xk)− F (x∗), xk − x∗⟩

≤

(
ℓ+

2ℓ̃

n
+

2ω(ℓ̂+ ℓ̃)

n

)
⟨F (xk)− F (x∗), xk − x∗⟩+ 2ω

n2
Hk +

2(ω + 1)

mn2
Dk,

which concludes the proof since σ2
k = Hk

n + Dk

nm .

Lemma G.17 (Modification of Lemmas 5 and 6 from Horváth et al. (2019)). Let F be ℓ-star-cocoercive and Assump-
tions 4.1, 4.2, 5.5 hold. Suppose that α ≤ min

{
p
3 ;

1
1+ω

}
. Then for all k ≥ 0 VR-DIANA-SGDA satisfies

Ek

[
σ2
k+1

]
≤ (1− α)σ2

k +
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩,

where σ2
k = Hk

n + Dk

nm with Hk =
n∑

i=1

∥∥hk
i − Fi(x

∗)
∥∥2 and Dk =

n∑
i=1

m∑
j=1

∥∥Fij(w
k
i )− Fij(x

∗)
∥∥2.

Proof. We start with considering Hk+1:

Ek

[
Hk+1

]
= Ek

[
n∑

i=1

∥∥hk+1
i − Fi(x

⋆)
∥∥2]

=

n∑
i=1

∥∥hk
i − Fi(x

⋆)
∥∥2 + n∑

i=1

Ek

[
2⟨αQ(gki − hk

i ), h
k
i − Fi(x

⋆)⟩+ α2
∥∥Q(gki − hk

i )
∥∥2]

(15)
≤ Hk +

n∑
i=1

Ek

[
2α⟨gki − hk

i , h
k
i − Fi(x

⋆)⟩+ α2(ω + 1)
∥∥gki − hk

i

∥∥2].
Since α ≤ 1/(ω+1), we have

Ek

[
Hk+1

]
≤ Hk + Ek

[
n∑

i=1

α⟨gki − hk
i , g

k
i + hk

i − 2Fi(x
⋆)⟩

]

= Hk + Ek

[
n∑

i=1

α⟨gki − Fi(x
⋆) + Fi(x

⋆)− hk
i , g

k
i − Fi(x

⋆) + hk
i − Fi(x

⋆)⟩

]

= Hk + Ek

[
n∑

i=1

α
(∥∥gki − Fi(x

⋆)
∥∥2 − ∥∥hk

i − Fi(x
⋆)
∥∥2)]
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= Hk(1− α) + Ek

[
n∑

i=1

α
(∥∥gki − Fi(x

⋆)
∥∥2)]

≤ Hk(1− α) +

n∑
i=1

(
2αEk

[∥∥gki − Fi(x
k)
∥∥2]+ 2α

∥∥Fi(x
k)− Fi(x

⋆)
∥∥2)

= Hk(1− α) +

n∑
i=1

Ek

[
2α
∥∥∥Fijki

(xk)− Fijki
(wk

i )− Ek

[
Fijki

(xk)− Fijki
(wk

i )
]∥∥∥2]

+2α

n∑
i=1

∥∥Fi(x
k)− Fi(x

⋆)
∥∥2

≤ Hk(1− α) +

n∑
i=1

(
Ek

[
2α
∥∥∥Fijki

(xk)− Fijki
(wk

i )
∥∥∥2]+ 2α

∥∥Fi(x
k)− Fi(x

⋆)
∥∥2)

≤ Hk(1− α) +
2α

m

n∑
i=1

m∑
j=1

(∥∥Fij(x
k)− Fij(x

⋆)
∥∥2 + ∥∥Fij(w

k
i )− Fij(x

⋆)
∥∥2)

+2α

n∑
i=1

∥∥Fi(x
k)− Fi(x

⋆)
∥∥2
2

(14),(19)
≤ Hk(1− α) +

2α

m

n∑
i=1

m∑
j=1

∥∥Fij(w
k
ij)− Fij(x

⋆)
∥∥2
2

+2αn(ℓ̃+ ℓ̂)⟨F (xk)− F (x∗), xk − x∗⟩

= Hk(1− α) +
2α

m
Dk + 2αn(ℓ̃+ ℓ̂)⟨F (xk)− F (x∗), xk − x∗⟩.

Next, we consider Dk+1

Ek

[
Dk+1

]
=

n∑
i=1

m∑
j=1

Ek

[∥∥Fij(w
k+1
i )− Fij(x

⋆)
∥∥2]

=

n∑
i=1

m∑
j=1

[
(1− p)

∥∥Fij(w
k
ij)− Fij(x

⋆)
∥∥2
2
+ p

∥∥Fij(x
k)− Fij(x

⋆)
∥∥2
2

]
(19)
≤ Dk (1− p) + nmpℓ̃⟨F (xk)− F (x∗), xk − x∗⟩.

It remains put the upper bounds on Dk+1, Hk+1 together and use the definition of σ2
k+1:

Ek

[
σ2
k+1

]
=

Ek

[
Hk+1

]
n

+
Ek

[
Dk+1

]
nm

≤ (1− α)
Hk

n
+ (1 + 2α− p)

Dk

nm
+
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩

With α ≤ p
3 we get −p ≤ −3α, implying

Ek

[
σ2
k+1

]
≤ (1− α)

Hk

n
+ (1− α)

Dk

nm
+
(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩

= (1− α)σ2
k +

(
pℓ̃+ 2α(ℓ̃+ ℓ̂)

)
⟨F (xk)− F (x∗), xk − x∗⟩.

The above two lemmas imply that Assumption 2.1 is satisfied with certain parameters.

Proposition G.18 (Proposition 5.6). Let F be ℓ-star-cocoercive and Assumptions 4.1, 4.2, 5.5 hold. Suppose that
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α ≤ min
{

p
3 ;

1
1+ω

}
. Then, VR-DIANA-SGDA satisfies Assumption 2.1 with

A =

(
ℓ

2
+

ℓ̃

n
+

ω(ℓ̂+ ℓ̃)

n

)
, B =

2(ω + 1)

n
,

σ2
k =

1

n

n∑
i=1

∥∥hk
i − Fi(x

∗)
∥∥2 + 1

nm

n∑
i=1

m∑
j=1

∥∥Fij(w
k
i )− Fij(x

∗)
∥∥2 ,

C =

(
pl̃

2
+ α(ℓ̃+ ℓ̂)

)
, ρ = α ≤ min

{
p

3
;

1

1 + ω

}
, D1 = D2 = 0.

G.3.2 Analysis of VR-DIANA-SGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3 with M = 4(ω+1)
nα , we get the following results.

Theorem G.19. Let F be µ-quasi strongly monotone, ℓ-star-cocoercive and Assumptions 4.1, 4.2, 5.5 hold. Suppose that
α ≤ min

{
p
3 ;

1
1+ω

}
and

0 < γ ≤

(
ℓ+

10(ω + 1)(ℓ̂+ ℓ̃)

n
+

4(ω + 1)pl̃

αn

)−1

.

Then for all k ≥ 0 the iterates of VR-DIANA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤ (1−min {γµ, 1/αn})k V0,

where V0 = ∥x0 − x∗∥2 + 4(ω+1)γ2

nα σ2
0 .

Corollary G.20. Let the assumptions of Theorem G.19 hold. Then, for p = 1
m , α = min

{
1

3m , 1
1+ω

}
,

γ =

(
ℓ+

10(ω + 1)(ℓ̂+ ℓ̃)

n
+

4(ω + 1)max{3m, 1 + ω}ℓ̃
nm

)−1

and any K ≥ 0 we have

E[∥xk − x∗∥2] ≤ V0 exp

(
−min

{
µ

ℓ+ 10(ω+1)(ℓ̂+ℓ̃)
n + 4(ω+1)max{3m,1+ω}ℓ̃

nm

,
1

6m
,

1

2(1 + ω)

}
K

)
.

G.3.3 Analysis of VR-DIANA-SGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of VR-DIANA-SGDA in the monotone case.

Theorem G.21. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2, 5.5 hold. Assume that

0 < γ ≤

(
ℓ+

6(ω + 1)(ℓ̂+ ℓ̃)

n
+

2(ω + 1)pl̃

αn

)−1

and α = min
{

p
3 ,

1
1+ω

}
. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by VR-DIANA-SGDA

satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK
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+

(
3ℓ+

12(ω + 1)(ℓ̂+ ℓ̃)

n
+

8(ω + 1)pl̃

αn

)
· ∥x

0 − x∗,0∥2

K

+

(
4 + γ

(
3ℓ+

12(ω + 1)(ℓ̂+ ℓ̃)

n
+

8(ω + 1)pl̃

αn

))
γBσ2

0

ρK
.

Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary G.22. Let the assumptions of Theorem G.21 hold. Then ∀K > 0 one can choose p = 1
m , α = min

{
1

3m , 1
1+ω

}
and γ as

γ = min

{
1

3ℓ+ 12(ω+1)(ℓ̂+ℓ̃)
n + 8(ω+1)max{3m,1+ω}ℓ̃

mn

,

Ω0,C
√
n

Ω0,C

√
2max{3m, 1 + ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

,
Ω0,C

G∗
√
K

}
.

This choice of α and γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ (ω+1)(ℓ̂+ℓ̃)/n + (ω+1)max{m,ω}ℓ̃/mn

)
(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω2

0,C

√
max{m,ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

√
nK

+
Ω0,CG∗√

K

)
.

Proof. The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0
i = Fi(x

0) and wi = x0

σ2
0 =

1

nm

n∑
i=1

m∑
j=1

∥Fij(x
0)− Fij(x

∗)∥2 + 1

n

n∑
i=1

∥Fi(x
0)− Fi(x

∗)∥2

≤ (ℓ̃+ ℓ̂)⟨F (x0)− F (x∗), x0 − x∗⟩
≤ (ℓ̃+ ℓ̂)∥F (x0)− F (x∗)∥ · ∥x0 − x∗∥
≤ (ℓ̃+ ℓ̂)ℓ∥x0 − x∗∥2 ≤ (ℓ̃+ ℓ̂)ℓmax

u∈C
∥x0 − u∥2 ≤ (ℓ̃+ ℓ̂)ℓΩ2

0,C .

Next, applying Corollary D.4 with σ̂0 :=

√
(ℓ̃+ ℓ̂)ℓΩ0,C , we get the result.

G.3.4 Analysis of VR-DIANA-SGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of VR-DIANA-SGDA in the cocoercive case.

Theorem G.23. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.1, 4.2, 5.5 hold. Assume that

0 < γ ≤

(
ℓ+

6(ω + 1)(ℓ̂+ ℓ̃)

n
+

2(ω + 1)pl̃

αn

)−1

and α = min
{

p
3 ,

1
1+ω

}
. Then for GapC(z) from (9) and for all K ≥ 0 the iterates produced by VR-DIANA-SGDA

satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK
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+

(
6ℓ+

18(ω + 1)(ℓ̂+ ℓ̃)

n
+

12(ω + 1)pl̃

αn

)
· ∥x

0 − x∗,0∥2

K

+

(
6 + γ

(
6ℓ+

18(ω + 1)(ℓ̂+ ℓ̃)

n
+

12(ω + 1)pl̃

αn

))
γBσ2

0

ρK
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary G.24. Let the assumptions of Theorem G.23 hold. Then ∀K > 0 one can choose p = 1
m , α = min

{
1

3m , 1
1+ω

}
and γ as

γ = min

{
1

6ℓ+ 18(ω+1)(ℓ̂+ℓ̃)
n + 12(ω+1)max{3m,1+ω}ℓ̃

mn

,

Ω0,C
√
n

Ω0,C

√
2max{3m, 1 + ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

}
.

This choice of α and γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

((
ℓ+ (ω+1)(ℓ̂+ℓ̃)/n + (ω+1)max{m,ω}ℓ̃/mn

)
(Ω2

0,C +Ω2
0)

K

+
Ω2

0,C

√
max{m,ω}(ω + 1)(ℓ̃+ ℓ̂)ℓ

√
nK

)
.

G.4 Discussion of the Results in the Monotone and Cocoercive Cases

Beznosikov et al. (2021b) also consider monotone case and derive the following rate for MASHA1 (neglecting the
dependence on Lipschitz parameters and the quantities like Ω2

0,C = maxu∈C ∥x0 − u∥2): O
(√

(m+ ω)(1 + ω/n) 1
K

)
. In

general, due to the term proportional to 1/
√
K and due to the relation between (star-)cocoercivity constants and Lipschitz

constants our rate

O
(

(1+ω)
nK + (1+ω)max{m,ω}

mnK +

√
max{m,ω}(1+ω)√

nK
+ G∗√

K

)
our rate is worse than the one from Beznosikov et al. (2021b)

(even when R(x) ≡ 0, i.e., G∗ = 0). However, when the difference between cocoercivity and Lipschitz constants is not
significant, and m,n or ω are sufficiently large, our result in the cocoercive case (Corollary G.24) might be better. Moreover,
we emphasize here that Beznosikov et al. (2021b) do not consider SGDA as the basis for their methods. To the best of our
knowledge, our results are the first ones for distributed SGDA-type methods with compression derived in the monotone case
without assuming (quasi-)strong monotonicity.
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H COORDINATE SGDA

In this section, we focus on the coordinate versions of SGDA. To denote i-th component of the vector x we use [x]i. Vectors
e1, . . . , ed ∈ Rd form a standard basis in Rd.

H.1 CSGDA

Algorithm 7 CSGDA: Coordinate Stochastic Gradient Descent-Ascent

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: for k = 0 to K − 1 do
3: Sample uniformly at random j ∈ [d]
4: gk = dej [F (xk)]j
5: xk+1 = proxγR

(
xk − γgk

)
6: end for

H.1.1 CSGDA Fits Assumption 2.1
Proposition H.1. Let F be ℓ-star-cocoercive. Then, CSGDA satisfies Assumption 2.1 with

A = dℓ, D1 = 2d max
x∗∈X∗

[
∥F (x∗)∥2

]
, σ2

k = 0, B = 0, C = 0, ρ = 1, D2 = 0.

Proof. First of all, for all a ∈ Rd and for random index j uniformly distributed on [d] we have Ej [∥ej [a]j∥2] =
1
d

∑d
i=1[a]

2
j = 1

d∥a∥
2. Using this and gk = dej [F (xk)]j , we derive

Ek

[
∥gk − F (x∗,k)∥2

]
= Ek

[
∥dej [F (xk)− F (x∗,k)]j + dej [F (x∗,k)]j − F (x∗,k)∥2

]
≤ 2Ek

[
∥dej [F (xk)− F (x∗,k)]j∥2

]
+ 2Ek

[
∥dej [F (x∗,k)]j − F (x∗,k)∥2

]
= 2d∥F (xk)− F (x∗,k)∥2 + 2Ek

[
∥dej [F (x∗,k)]j − Ek[dej [F (x∗,k)]j ]∥2

]
≤ 2d∥F (xk)− F (x∗,k)∥2 + 2Ek

[
∥dej [F (x∗,k)]j∥2

]
= 2d∥F (xk)− F (x∗,k)∥2 + 2d∥F (x∗,k)∥2. (64)

Finally, the star-cocoercivity of F implies

Ek

[
∥gk − F (x∗,k)∥2

]
≤ 2dℓ⟨F (xk)− F (x∗,k), xk − x∗⟩+ 2d∥F (x∗,k)∥2

≤ 2dℓ⟨F (xk)− F (x∗,k), xk − x∗⟩+ 2d max
x∗∈X∗

[
∥F (x∗)∥2

]
.

H.1.2 Analysis of CSGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3, we get the following results.

Theorem H.2. Let F be µ-quasi strongly monotone and ℓ-star-cocoercive, 0 < γ ≤ 1/2dℓ. Then for all k ≥ 0

E
[
∥xk − x∗∥2

]
≤ (1− γµ)

k ∥x0 − x∗,0∥2 + 2γd

µ
· max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Corollary H.3. Let the assumptions of Theorem H.2 hold. Then, for any K ≥ 0 one can choose {γk}k≥0 as follows:

if K ≤ 2dℓ

µ
, γk =

1

2dℓ
,

if K >
2dℓ

µ
and k < k0, γk =

1

2dℓ
,
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if K >
2dℓ

µ
and k ≥ k0, γk =

2

µ(4dℓ+ µ(k − k0))
,

where k0 = ⌈K/2⌉. For this choice of γk the following inequality holds:

E[VK ] ≤ 64dℓ

µ
∥x0 − x∗,0∥2 exp

(
−µK

2dℓ

)
+

72d

µ2K
· max
x∗∈X∗

[
∥F (x∗)∥2

]
.

H.1.3 Analysis of CSGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of CSGDA in the monotone case.

Theorem H.4. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4 hold. Assume that γ ≤ 1/2dℓ. Then for
GapC(z) from (9) and for all K ≥ 0 the iterates produced by CSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+
5dℓ∥x0 − x∗,0∥2

K

+20γd · max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary H.5. Let the assumptions of Theorem H.4 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

5dℓ
,

Ω0,C
G∗

√
2dK

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
Ω0,CG∗√

K

)
.

H.1.4 Analysis of CSGDA in the Cocoercive Case

Next, using Theorem 2.6, we establish the convergence of CSGDA in the cocoercive case.

Theorem H.6. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4 hold. Assume that γ ≤ 1/2dℓ. Then for GapC(z) from (9)
and for all K ≥ 0 the iterates produced by CSGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
9dℓ∥x0 − x∗,0∥2

K

+16γd · max
x∗∈X∗

[
∥F (x∗)∥2

]
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary H.7. Let the assumptions of Theorem H.6 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

9dℓ
,

Ω0,C
G∗

√
2dK

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0)

K
+

Ω0,CG∗√
K

)
.
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H.2 SEGA-SGDA

In this section, we consider a modification of SEGA (Hanzely et al., 2018) – the linearly converging coordinate method for
composite optimization problems working even for non-separable regularizers.

Algorithm 8 SEGA-SGDA: SEGA Stochastic Gradient Descent-Ascent Hanzely et al. (2018)

1: Input: starting point x0 ∈ Rd, stepsize γ > 0, number of steps K
2: Set h0 = 0
3: for k = 0 to K − 1 do
4: Sample uniformly at random j ∈ [d]
5: hk+1 = hk + ej([F (xk)]j − hk

j )

6: gk = dej([F (xk)]j − hk
j ) + hk

7: xk+1 = proxγR
(
xk − γgk

)
8: end for

H.2.1 SEGA-SGDA Fits Assumption 2.1

The following result from Hanzely et al. (2018) does not rely on the fact that F (x) is the gradient of some function.
Therefore, it holds in our settings as well.

Lemma H.8 (Lemmas A.3 and A.4 from Hanzely et al. (2018)). Let Assumption 4.2 hold. Then for all k ≥ 0 SEGA-
SGDA satisfies

Ek

[
∥gk − F (x∗)∥2

]
≤ 2d∥F (xk)− F (x∗)∥2 + 2dσ2

k,

Ek

[
σ2
k+1

]
≤

(
1− 1

d

)
σ2
k +

1

d
∥F (xk)− F (x∗)∥2,

where σ2
k = ∥hk − F (x∗)∥2.

The lemma above implies that Assumption 2.1 is satisfied with certain parameters.

Proposition H.9. Let F be ℓ-star-cocoercive and Assumption 4.2 holds. Then, SEGA-SGDA satisfies Assumption 2.1
with σ2

k = ∥hk − F (x∗)∥2 and

A = dℓ, B = 2d, D1 = 0, C =
ℓ

2d
, ρ =

1

d
, D2 = 0.

Proof. The result follows from Lemma H.8 and star-cocoercivity of F .

H.2.2 Analysis of SEGA-SGDA in the Quasi-Strongly Monotone Case

Applying Theorem 2.2 and Corollary 2.3 with M = 4d2, we get the following results.

Theorem H.10. Let F be µ-quasi strongly monotone, ℓ-star-cocoercive, Assumption 4.2 holds, and 0 < γ ≤ 1
6dℓ . Then,

for all k ≥ 0 the iterates produced by SEGA-SGDA satisfy

E
[
∥xk − x∗∥2

]
≤
(
1−min

{
γµ,

1

2d

})k

· V0,

where V0 = ∥x0 − x∗∥2 + 4d2γ2σ2
0 .

Corollary H.11. Let the assumptions of Theorem H.10 hold. Then, for γ = 1
6dℓ and any K ≥ 0 we have

E[∥xk − x∗∥2] ≤ V0 exp

(
−min

{
µ

6dℓ
,
1

2d

}
K

)
.
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H.2.3 Analysis of SEGA-SGDA in the Monotone Case

Next, using Theorem 2.5, we establish the convergence of CSGDA in the monotone case.

Theorem H.12. Let F be monotone, ℓ-star-cocoercive and Assumptions 2.1, 2.4, 4.2 hold. Assume that γ ≤ 1/6dℓ. Then
for GapC(z) from (9) and for all K ≥ 0 the iterates produced by SEGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+
8γℓ2Ω2

C
K

+ 13dℓ · ∥x
0 − x∗,0∥2

K

+ (4 + 13γdℓ)
2dγσ2

0

K
+ 9γ · max

x∗∈X∗

[
∥F (x∗)∥2

]
.

Applying Corollary D.4, we get the rate of convergence to the exact solution.

Corollary H.13. Let the assumptions of Theorem H.12 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

13dℓ
,

Ω0,C√
2G∗d

,
Ω0,C

G∗
√
K

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0) + ℓΩ2

C
K

+
dΩ0,CG∗

K
+

Ω0,CG∗√
K

)
.

Proof. The proof follows from the next upper bound σ̂2
0 for σ2

0 with initialization h0 = 0

σ2
0 = ∥h0 − F (x∗)∥2 = ∥F (x∗)∥2 ≤ G2

∗.

H.2.4 Analysis of SEGA-SGDA in the Cocoercive Case

Next, using Theorem D.5, we establish the convergence of CSGDA in the cocoercive case.

Theorem H.14. Let F be ℓ-cocoercive and Assumptions 2.1, 2.4, 4.2 hold. Assume that γ ≤ 1/6dℓ. Then for GapC(z)
from (9) and for all K ≥ 0 the iterates produced by SEGA-SGDA satisfy

E

[
GapC

(
1

K

K∑
k=1

xk

)]
≤

3
[
maxu∈C ∥x0 − u∥2

]
2γK

+ 21dℓ · ∥x
0 − x∗,0∥2

K

+ (6 + 21γdℓ)
2dγσ2

0

K
.

Applying Corollary D.6, we get the rate of convergence to the exact solution.

Corollary H.15. Let the assumptions of Theorem H.14 hold. Then ∀K > 0 one can choose γ as

γ = min

{
1

21dℓ
,

Ω0,C√
2G∗d

}
.

This choice of γ implies

E

[
GapC

(
1

K

K∑
k=1

xk

)]
= O

(
dℓ(Ω2

0,C +Ω2
0)

K
+

dΩ0,CG∗
K

)
.

H.3 Comparison with Related Work

The summary of rates in the (quasi-) strongly monotone case is provided in Table 3. First of all, our results are the first
convergence for solving regularized VIPs via coordinate methods. In particular, SEGA-SGDA is the first linearly converging
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coordinate method for solving regularized VIPs. Next, when q = 2 in zoVIA from Sadiev et al. (2021), i.e., Euclidean
proximal setup is used, our rate for SEGA-SGDA is better than the one derived for zoVIA in Sadiev et al. (2021) since
ℓ ≤ L2

/µ. Finally, zoscESVIA might have better rate, but it is based on EG and it uses approximation of each component of
operator F at each iteration, which makes one iteration of the method costly.

In the monotone and cocoercive cases, our result and the results from Sadiev et al. (2021) are comparable modulo the
difference between (star-)cocoercivity and Lipschitz constants.

Table 3: Summary of the complexity results for zeroth-order methods with two-points feedback oracles for solving (1). By complexity we
mean the number of oracle calls required for the method to find x such that E[∥x− x∗∥2] ≤ ε. By default, operator F is assumed to be
µ-strongly monotone and, as the result, the solution is unique. Our results rely on µ-quasi strong monotonicity of F (3). Methods
supporting R(x) ̸≡ 0 are highlighted with ∗. Our results are highlighted in green. Notation: q = the parameter depending on the proximal
setup, q = 2 in Euclidean case and q = +∞ in the ℓ1-proximal setup; G∗ = maxx∗∈X∗ ∥F (x∗)∥, which is zero when R(x) ≡ 0.

Method Citation Assumptions Complexity

zoscESVIA (1) (Sadiev et al., 2021) F is L-Lip.(2) Õ
(
dL
µ

)
zoVIA (Sadiev et al., 2021) F is L-Lip.(2) Õ

(
d2/q L2

µ2

)
CSGDA ∗ This paper F is ℓ-cocoer. Õ

(
d ℓ
µ +

dG2
∗

µ2ε

)
SEGA-SGDA ∗ This paper F is ℓ-cocoer.

As. 4.2 Õ
(
d+ d ℓ

µ

)
(1) The method is based on Extragradient update rule. Moreover, at each step full operator is
approximated.
(2) The problem is defined on a bounded set.
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