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Abstract

For many of the classic online learning settings,
it is known that having a “hint” about the loss
function before making a prediction yields sig-
nificantly better regret guarantees. In this work
we study the question, do hints allow us to go be-
yond the standard notion of regret (which com-
petes against the best fixed strategy) and com-
pete against adaptive or dynamic strategies? Af-
ter all, if hints were perfect, we can clearly com-
pete against a fully dynamic strategy. For some
common online learning settings, we provide up-
per and lower bounds for the switching regret,
i.e., the difference between the loss incurred by
the algorithm and the optimal strategy in hind-
sight that switches state at most L times, where
L is some parameter. We show positive results
for online linear optimization and the classic ex-
perts problem. Interestingly, such results turn out
to be impossible for the classic bandit setting.

1 Introduction

The problems of online prediction and online linear opti-
mization are central to machine learning, online decision
theory, and game theory. In the canonical online prediction
or experts problem [31], there is a set of options (also called
arms), each of which incurs an unknown and adversarially
generated loss at each time step. A decision maker needs to
choose an arm to play each time step, only with knowledge
of all the losses incurred at previous time steps, and the goal
is to compete with the total loss of the best arm in hindsight
via the notion of regret. A generalization is online linear
optimization [43], where there is an unknown linear cost
function each step, and the decision maker needs to choose
a point within a convex space, incurring as its loss, the cost
function at that point. The goal again is to compete with
the best fixed point applied to all cost functions.
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Online learning problems typically differ in the informa-
tion available to the decision maker. In the bandit set-
ting [29, 3, 4], the decision maker only learns the loss of
the arm played – that is, only the value of loss actually
incurred – while the settings described above are full infor-
mation, where the decision maker learns the losses of all
the arms. Starting with seminal work in game theory and
statistics [18, 7] and later in machine learning [31, 15, 43],
sublinear regret bounds as well as matching lower bounds
are known for several variants of this problem.

A line of research starting with [38] has asked the ques-
tion: What if the decision maker is given a “hint” each
time step about the loss vector that will arise at that step?
Such a model can be natural in many settings. For instance,
there can be a temporal correlation in the losses (thus pre-
vious losses could serve as a hint). Alternatively, one might
be able to employ an auxiliary ML model trained on side-
information to predict the loss sequence. The challenge
in these settings is dealing with prediction errors (which
are typically impossible to avoid). The goal then becomes
to achieve a “best of both worlds” guarantee: if the hints
are accurate, the regret should improve upon the standard
bounds, while if the hints are inaccurate, the regret should
be no worse asymptotically than that of the best policy that
ignores the hints entirely.

Surprisingly, such a guarantee is indeed possible for both
the experts problem [38, 40], and its bandit version [38,
41]. Further, in the context of online linear optimiza-
tion when the domain is strictly convex, it was recently
shown [21, 14, 5] that an exponentially better regret bound
of O(log T ) is achievable if the hint vector is “correlated”
with the actual cost function at each step.

The above results assume that our algorithm is competing
with the best fixed decision in hindsight. However, with a
hint at every step, we can ask for more: after all, if hints are
perfect, an algorithm can compete against the best dynamic
(changing at every step) solution. In the classical online
learning literature (without hints), sublinear regret bounds
are known in many settings when competing against a so-
lution that only changes a small number of times. This
has been termed the switching regret and is parameterized
by L, the number of changes/switches [24]. These works
show that the online learning paradigm can adapt to chang-
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ing environments without knowing the change points. For
a horizon of T steps, regret bounds with dependence of
O(
√

(1 + L)T ) are known for the full information prob-
lems [24, 43, 22, 27, 42], and O((1 + L)

√
T ) for ban-

dits [4]. In this work, we ask:

Does the availability of hints allow us to obtain
significantly better switching regret bounds for
fundamental online learning problems like online
linear optimization (OLO), experts, and bandits?

1.1 Our Results

At a high level, our results show a surprising difference be-
tween the full information and bandit problems with hints
when switching is allowed. We show that “best of both
worlds” guarantees are achievable for online linear opti-
mization and for learning with experts, but are not possible
in a very strong sense for the bandit problem, even when
only two switches are allowed for the comparator!

Our positive results are as follows. First, we consider the
setting of online linear optimization (OLO) when the do-
main is the unit ball.1 Here, recent results [14, 5] showed
that surprisingly, logarithmic regret bounds are possible as
long as the hint vectors have positive correlation (mea-
sured by a possibly unknown parameter α) with the loss
at each step. Under the slightly stronger assumption that
α is known, we prove a similar bound on the adaptive re-
gret [22]. This yields an algorithm that achieves a switch-
ing regret bound of O(((1 +L) log2 T )/α), where L is the
number of switches.

Second, we consider the classic problem of learning with
expert advice. Although it is a special case of OLO where
the domain is the simplex, our result above does not apply
since the simplex is not strongly convex (indeed, it is easy
to construct examples where the hint has a constant correla-
tion at every time step but is still uninformative). However,
a regret bound of a different form is possible: specifically,
it is possible to achieve a regret that only depends on the
total squared prediction error (defined as the difference be-
tween the true loss and the loss predicted by the hint) of
the best arm in hindsight. The appeal of this result is also
that it allows the hint/prediction to be arbitrarily bad for the
non-optimal arms! Very recently, [12] extended this result
to the case of switching regret, deriving regret that depends
on the total squared prediction error along the optimal path.
We give an alternative proof of this result by incorporating
hints into the sleeping experts framework [16]. The regret
bound for sleeping experts with hints is novel and does not
follow from [12]. Our algorithm gives a way of incorporat-
ing hints into fixed share style algorithms [23], an idea of

1As in previous works such as [14, 5], it is straightforward
to extend our results to other strongly convex domains (where
the strong convexity of a set is defined as in, say, Definition 2.1
of [14]).

independent interest.

Finally, we show that an analogous result is not possible
for the classic multi-armed bandit problem [4], even when
L = 1 (i.e., only one switch is allowed for the optimal solu-
tion). We first show (Theorem 12) that a regret bound only
depending on the total squared prediction error along the
optimal path — which is what is possible for experts (The-
orem 9) and for bandits with L = 0 (see [41]) — is impos-
sible. Second, we show (Theorem 13) that even if we had
a small squared prediction error for every arm (as opposed
to low prediction error only along the optimal path), any
online algorithm must incur TΩ(1) regret, even for the case
L = 2. In our lower bound example, we also know that
the squared prediction error is 1, and thus the issue is not
one of “tuning” to find the prediction error. These results
may be viewed as complementing existing negative results
for automatic parameter tuning and multi-scale learning in
bandits [9, 12].

Other Related Work. For background on online learn-
ing and bandits, we refer to the excellent books of [10,
11, 19]. As discussed earlier, our work builds on the body
of literature on optimistic regret bounds (see [38, 41] and
references therein). For online linear optimization, our re-
quirement on the strong convexity of the domain is reminis-
cent of the work of [26]. Indeed, the connection between
the assumptions of [26] and the logarithmic regret bounds
in [14] was made explicit in [6].

Apart from these, our work is related to the research on
using ML predictions to improve the performance of on-
line algorithms, an area that has received considerable re-
cent attention. This model has been applied to a wide
variety of classical online problems, including rent or
buy problems [37, 17, 1], caching [33, 39, 28], schedul-
ing [37, 30, 36], auctions [34], frequency estimation [25],
Bloom filters [35], metrical task systems [2], etc.

2 Preliminaries
2.1 Learning with expert advice
In the classic experts problem [19], we have M experts or
arms; at each time step t ∈ [T ], an online algorithm is
required to choose an expert (say it, possibly probabilisti-
cally), and then the losses `t,i (which denotes the loss of
arm i at time t) are revealed. The regret of the algorithm is
defined as:

Regret = E[

T∑
t=1

`t,it ]−min
i

T∑
t=1

`t,i.

The first term is the total expected loss incurred by the al-
gorithm, while the second is the total loss of the best fixed
expert in hindsight.

Experts with hints. In the experts with hints problem,
before playing round t, we assume that the learner gets ac-
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cess to a prediction or hint for `t,i (for every i), which we
denote by mt,i. In this setting, the work of [40] shows that
the classic regret bound of Θ(

√
T ) (which holds as long

as `t,i ∈ [0, 1])) can be improved to
√∑

t(`t,i∗ −mt,i∗)2,
where i∗ is the best expert in hindsight. In other words,
the regret is bounded in terms of the `2 “prediction error”
for the best expert. This improves upon the earlier work
of [38], whose bounds depend on the prediction errors of
all experts.

Switching regret. Our focus in this paper is to com-
pete against a dynamic optimum in hindsight, specifically,
against the best sequence of experts that has at most L
switches. In other words, the switching regret, parameter-
ized by L, is defined as

Switching Regret = E[

T∑
t=1

`t,it ]− min
j1,j2,...jT

T∑
t=1

`t,jt ,

where the minimum is taken over all decision sequences
~j with jt 6= jt−1 for at most L indices t. Very re-
cently, [12], generalizing [40], gave an algorithm whose
regret only depends on L, as well as the quantity E :=√∑T

t=1(`t,jt −mt,jt)
2, i.e., E is the `2 prediction error

along the path induced by the optimum sequence of ex-
perts. In Section 4, we present an alternative proof of this
result via the sleeping experts problem.

Sleeping Experts. In the sleeping experts problem [16],
at any time step t, an arbitrary subset of armsAt are awake,
and the rest are asleep. The algorithm can only play one of
the awake arms, and at the end of the step, learns the losses
of all the awake arms. The total loss of an arm is simply
the sum of the losses in steps it was awake, and the goal
of the online algorithm is to achieve low regret against the
total loss of any arm. For this problem, a regret bound of
O(
√
Ti lnM) is known when comparing against the total

loss of arm i, where Ti is the number of time steps this arm
is awake [8, 13]. In Section 4, we show how to extend these
results to incorporate hints.

2.2 Online linear optimization
Online linear optimization (OLO) is another classic online
learning setting. Here, we are given a convex set P of pos-
sible decisions. At each of T steps, the algorithm needs
to choose a point xt ∈ P . After this, a linear cost func-
tion ct with ‖ct‖ ≤ 1 is revealed, and the loss incurred is
`t(xt) = 〈ct, xt〉. As before, the traditional notion of regret
against the best fixed comparator is:

Regret =

T∑
t=1

`t(xt)−min
x∈P

T∑
t=1

〈ct, x〉.

It is well-known [43] that one can obtain O(
√
T ) regret,

and this is best possible under most natural assumptions on
the domain and objective functions.

OLO with hints. In recent work [21, 14, 5], it was shown
that if the domain P is strongly convex and if the learner is
provided access to a hint vector ht that is correlated with
the cost vector ct at every step t, the learner can achieve
a regret O(log T ), drastically improving upon the general
case. In all our OLO results, we assume that the domain is
the unit ball (in `2 norm), which is strongly convex.

The works [14, 5] define ht to be α-correlated with ct if
〈ct, ht〉 ≥ α ‖ct‖2. The regret bound achieved in [14] is
O
(

log T
α

)
if the hints are always α-correlated. The as-

sumption of correlation at every step was relaxed in [5],
but both the works compare against the best fixed x ∈
P . Here, we ask if we can compare against a sequence
u1, u2, . . . , uT with L switches. Formally,

Switching Regret =

T∑
t=1

`t(xt)− min
u1,u2,...uT

T∑
t=1

〈ct, ut〉,

where `t(xt) is the algorithm’s loss at time t, and the mini-
mum is taken over all sequences ~u with at most L switches.
In the absence of hints, an online gradient descent algo-
rithm is known [43, 42] to achieve a dynamic regret bound
of O(

√
(1 + L)T ). Our goal in Section 3 is to improve the

dependence on T to logarithmic assuming correlated hints
and the domain being the unit ball.

2.3 The multi-armed bandit problem
The adversarial bandit problem [4] follows the same set-
ting as learning with experts, but the difference is in the
feedback received by the online algorithm. In the experts
problem, the algorithm is provided with the losses of all
the arms (i.e., experts) at the end of each step, whereas in
bandits, the only feedback provided to the algorithm is the
loss of the arm it actually played. The notion of regret,
switching, and hints are now exactly the same as for the
experts problem described above. For bandits, a switching
regret bound of O((1 + L)

√
T ) in the absence of hints is

presented in [4]. In Section 5, we wish to study if hints help
with achieving dynamic regret that depends on a quantity
analogous to E defined above. This was shown for L = 0
(no switches) in [41].

3 Switching Regret for OLO with Hints

We first consider the online linear optimization (OLO)
problem where the domain is the unit ball. In the presence
of α-correlated hints (defined in Section 2), we prove that
the well-known switching regret bound of O(

√
(1 + L)T )

(due to [43, 42]) can be improved to O( (1+L) log2 T
α ). As

in the work of [5], we do not require the hint to be cor-
related with the cost vector at every step: the number of
bad hints enters our regret bounds as a natural additional
term. Throughout the paper, we assume that α is a given
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parameter. It is an interesting open question to obtain sim-
ilar guarantees without knowing α.
Theorem 1. There exists an algorithm (Algorithm 1 below)
for the OLO with hints problem on the unit ball (denoted
B(0, 1)) with the following guarantee. Suppose {ct, ht}Tt=1

denotes the sequence of cost and hint vectors, and let B
be the number of rounds in which the hint is bad, i.e.,
〈ct, ht〉 < α ‖ct‖2. The algorithm outputs a sequence of
vectors xt ∈ B(0, 1) such that for every sequence {ut}Tt=1

of vectors in B(0, 1) with L switches, we have:
T∑
t=1

〈ct, xt − ut〉 ≤ O
(

(1 + L) · log2 T

α

√
B

)
.

Indeed, the
√
B term can be replaced with rT as defined in

Algorithm 1.

Tightness of the bound. Modulo logarithmic factors, for
constant α, our regret bound is O(L

√
B). We remark that

the dependence on
√
B is unavoidable, even in the case

L = 1 (see, e.g., the lower bounds in [5]). It is also easy to
see a regret lower bound of Ω(L) even when α = 1/2 and
all hints are good. Consider the following instance in 2D
(with an orthogonal basis e0, e1, say), and L > 1: the hint
ht is always e0. For the first (L − 1) time steps, ct are of
the form 1

2e0±
√

3
2 e1, where the signs are chosen uniformly

at random. Time L and beyond, suppose that ct = e0.
An L switching optimum has loss −T , while any online
algorithm incurs regret Ω(L) in the first (L−1) steps. This
instance shows that an L dependence is needed even when
all the hints are good. However, an overall bound ofO(L+√
LB) is not ruled out to the best of our knowledge.

The theorem above follows from the adaptive regret guar-
antee (low regret in every sub-interval [22]) presented be-
low, which is our main technical result.
Theorem 2. There exists an algorithm (Algorithm 1) for
the OLO with hints problem on B(0, 1) with the follow-
ing guarantee. Suppose {ct, ht}Tt=1 denote the sequence
of cost and hint vectors, and let rt be defined as in Al-
gorithm 1. Then for any interval [a, b] and for any u ∈
B(0, 1), the output xt of the algorithm satisfies

b∑
t=a

〈ct, xt − u〉 ≤ O
(

log2 T

α
· rb+1

)
.

Note that the term rb+1 is always upper bounded by the
square root of the number of bad hints in time steps [1, b].
The algorithm and its analysis involve adapting the ideas
from [5] and [22], and then using a meta algorithm that can
help avoid knowledge of a certain crucial hyperparameter.

3.1 Adaptive algorithm for OLO with hints

The algorithm used in both the theorems is described in Al-
gorithm 1). It assumes access to an “inner” online learning

Algorithm 1 Adaptive OLO with Hints
input Hints ht followed by costs ct, parameter α

Initialize r1 = 1.
for t = 1 . . . T do

Receive hint ht
Get xt from procedure INNER, and set

xt = xt +
(‖xt‖2 − 1)

2rt
ht

Play xt and receive cost vector ct
Define zt = max(0, α ‖ct‖2 − 〈ct, ht〉), and set

rt+1 =
√
r2
t + zt

Define the function:

`t(x) = 〈ct, x〉+
max(α ‖ct‖2 , 〈ct, ht〉)

2rt

(
‖x‖2 − 1

)
Send `t as the loss at time t to procedure INNER

end for

Algorithm 2 Procedure INNER

input Loss functions `t, knowledge of time horizon T
Initialize c∗ = 1, C = {2−j ; 0 ≤ j ≤ 2dlog T e}
Start procedure INNER[δ] for all δ ∈ C, in parallel (as
described in the proof of Lemma 5)
for t = 1 . . . T do

Let c∗ be the largest c ∈ C for which `s are c-exp
concave, for 1 ≤ s < t
Return the output of INNER[c∗]
Receive `t; send it to all the INNER[δ]

end for

algorithm that is denoted by INNER.

Outline. Algorithm 1 follows the same structure as the
algorithm from [5], but in order to show an adaptive guar-
antee (i.e., regret bound for every interval), we need differ-
ent parameters and a different procedure INNER. As in [5],
Algorithm 1 uses the inner learner to obtain a point xt, and
then moves along the (negative) direction of the hint by
an amount proportional to rt, which is (the inverse of) the
“trust” in the hints so far. The analysis relates the regret of
the algorithm to the regret of the inner learner (Lemmas 3
and 4). While the inner learner in [5] is a simple FTRL
procedure, here we need to design a new algorithm and
show that it has a low adaptive regret. The choice of pa-
rameters rt and zt in Algorithm 1 are also important: they
ensure that the functions `t passed to INNER have a time-
independent exp-concavity parameter, which is needed for
our analysis.

We now begin the analysis of Algorithm 1 with an elemen-
tary lemma:

Lemma 3. (Proved in Appendix A.) Let xt be any point in
B(0, 1). Then we have:

1. As long as ‖ht‖ ≤ 1, we have xt ∈ B(0, 1). (I.e., the
algorithm always plays a feasible point.)
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2. Loss function `t(x) is 2 ‖ct‖-Lipschitz and is strongly
convex with a parameter ≥ α ‖ct‖2 /rt for all t.

3. If the hint ht is good, then `t(xt) = 〈ct, xt〉.

4. Whether the hint ht is good or bad, we have

〈ct, xt〉 ≤ `t(xt) +
zt
2rt

.

Part (1) of the lemma is important as it shows that the algo-
rithm always plays a feasible point. Part (2) turns out to be
important in the proof of Theorem 2.

Next, we show how to bound the regret of Algorithm 1
by the regret of INNER. To this end, let us denote by
RINNER[a, b] an upper bound on the regret of INNER over
the interval [a, b]. I.e., assume that ∀u ∈ B(0, 1),

b∑
t=a

`t(xt)− `t(u) ≤ RINNER[a, b].

Lemma 4. (Proved in Appendix A.) Consider any time
interval [a, b] and let u be any vector in B(0, 1). Then the
point xt returned by Algorithm 1 satisfies

b∑
t=a

〈ct, xt − u〉 ≤ RINNER[a, b] + 2(rb+1 − ra).

3.2 INNER algorithm

The algorithm INNER works by “combining” algorithms
INNER[δ] for different values of δ. So we begin by first de-
scribing INNER[δ] that assumes an auxiliary parameter δ.
The combination procedure is described in Section 3.2.1.

Lemma 5. Let {`t}Tt=1 be a sequence of functions such that
for all t, `t is γt-Lipschitz and αt strongly convex, where
γt > 0 and 2 ≥ αt ≥ δγ2

t for some known parameter
δ > 0. There exists an online algorithm INNER[δ] that at
each time step outputs a point xt ∈ B(0, 1), such that for
all intervals [a, b] and for all u ∈ B(0, 1),

b∑
t=a

`t(xt)− `t(u) ≤ O
(

log2 T

δ

)
.

Moreover, for `t defined in Algorithm 1, xt can be com-
puted in time O(d log T ), where d is the dimension of the
domain.

Proof. The first observation is that the functions `t have
Exp-Concavity parameter at least δ, which is independent
of the time t. This holds because the exp-concavity param-
eter of a function that isG-Lipschitz and S-strongly convex
is at least S/G2 (see, e.g., [20]).

Then, we use the results of [22] to show the existence of
INNER[δ] with the desired properties. Specifically, by com-
bining Theorem 4.1 with Theorem 3.1 of [22]2, we have the
following.

Theorem 6. Suppose δ > 0 is a known parameter, and
suppose `1, `2, . . . , `T are δ-exp concave loss functions
over a (fixed) convex domain. Let A be an algorithm with
the property that its regret over the interval [1, t] is bounded
by O(log t)/δ. Then there exists an algorithm A′ whose
run time is a factor O(log T ) worse than that ofA, that for
every interval [a, b], has a regret over that interval upper
bounded by O(log2 T/δ).

In other words, the theorem allows one to move from a
bound over a time prefix (that many algorithms enjoy) to a
bound over any interval. Note also that for us, it is not im-
portant to have a bound that depends only on the length of
the interval (this is an important concern in [22]). In sum-
mary, we have shown that it suffices to give an algorithmA
whose regret over the time interval [1, T ] is O((log T )/δ).

For our functions `t, such A can be obtained either using
FTRL or online gradient descent by leveraging the strong
convexity assumption on `t. For concreteness, let A be
the online gradient descent algorithm with the step size
ηt = 1

1+α1:t
, initialized anywhere in B(0, 1). A standard

calculation (see Chapter 3 of [19]) shows that the regret
(over the T steps) is bounded by:

T∑
t=1

γ2
t

1 + α1:t
≤ 1

δ

T∑
t=1

αt
1 + α1:t

≤ 1

δ

T∑
t=1

∫ 1+α1:t

1+α1:(t−1)

dz

z
=

log(1 + α1:T )

δ
.

Since αt ≤ 2 for all t, the regret is at most O((log T )/δ),
thus completing the proof.

The “moreover” part of the theorem follows once again
from Theorem 4.1 of [22] together with the observation that
for the functions `t we work with, a single step of online
gradient descent takes only O(d) time.

3.2.1 Combining algorithms for different δ

In order to obtain our final guarantee for OLO, we need to
apply INNER[δ] for an unknown value of δ. To achieve this,
we argue that as long as we have a bounded range of can-
didate values, the guarantees can be combined effectively.
Theorem 7. Let {`t}Tt=1 be a sequence of functions that
satisfy the hypothesis of Lemma 5 for some (unknown) pa-
rameter δ in the interval [ 1

∆ , 1], where ∆ is known. Then

2Note that the algorithms of [22] require a knowledge
of δ, which is why we need to as well. We also note
that the Theorem numbers above refer to the version of [22]
available at https://eccc.weizmann.ac.il/report/
2007/088/download.
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there exists an online algorithm INNER that at each step
outputs an xt ∈ B(0, 1), with the property that for all in-
tervals [a, b] and for all u ∈ B(0, 1),

b∑
t=a

`t(xt)− `t(u) ≤ O
(

log2 T

δ

)
. (1)

For `t of the form we consider in Algorithm 1, the running
time per step is O(d log T log ∆).

Note that the regret bound only depends on the (unknown)
parameter δ and has no dependence on the “range” ∆.

Proof. We consider INNER to be the following meta algo-
rithm. Let C be the set of candidate δ values,

C = {2−j : 0 ≤ j ≤ dlog2 ∆e}.

The meta algorithm runs the algorithms INNER[c] in paral-
lel for all c ∈ C. At t = 1, INNER returns the output of
the INNER[1]. As we see the functions `t, we keep track of
the largest value of c ∈ C for which the `t so far satisfy the
hypothesis of Lemma 5 with δ = c, and use the output of
the corresponding copy INNER[c]. Because we run all the
algorithms in parallel, the run time bound is easy to see.

We can analyze the regret of the meta algorithm as follows.
Consider any interval [a, b] and any u ∈ B(0, 1). Sup-
pose we used the output of INNER[c] for some fixed c ∈ C
throughout [a, b], we can use the bound from Lemma 5 di-
rectly. Otherwise, we can split the interval [a, b] into sub-
intervals [a, a1], [a1, a2], . . . , [ar−1, b], where we use the
values c1, c2, . . . , cr respectively. We can apply the guaran-
tee from Lemma 5 for INNER[cj ] in the interval [aj−1, aj ],
and thus bound the LHS of (1) by

O(log2 T ) · (2c1 + 2c2 + · · ·+ 2cr )

The largest term dominates the summation, and thus we
can bound the sum by O(log2 T ) · 2cr . Since we assumed
that the hypothesis of Lemma 5 holds for some unknown δ
for all t, we must have 2−cr ≥ δ, and thus (1) follows.

Using these results, we can complete the proofs of Theo-
rems 2 and 1.

Proof of Theorem 2. The idea is to combine the bounds
from Lemma 4 and Theorem 7. We plug in α

rb+1
as the

unknown strong convexity parameter in Theorem 7 (this
follows from part (2) of Lemma 3). Since α can be as-
sumed to be > 1/T and rb+1 < T , we can use the value
∆ = T 2.3 Thus, we have that for xt output by Algorithm 1,

b∑
t=a

〈ct, xt − u〉 ≤ 2(rb+1 − ra) +O

(
rb+1 log2 T

α

)
.

3This assumes a knowledge of the time horizon, which can be
removed via the doubling trick.

The second term clearly dominates, and thus the theorem
follows.

Proof of Theorem 1. Suppose the optimal L-switching
strategy plays the vectors u1, u2, . . . , uL, uL+1 in the in-
tervals [1, A1), [A1, A2), . . . , [AL−1, AL), [AL, T ] respec-
tively, we can use the bound from Theorem 2 in each of the
intervals to obtain a total regret bound of

O

(
log2 T

α
· (rA1

+ · · ·+ rAL + rT )

)
.

Naı̈vely bounding each rAj by rT completes the proof.

4 Switching Regret for Experts via Sleeping
Experts

In this section, we will present a simple algorithm for sleep-
ing experts that incorporates hints. It generalizes the result
of [40] and yields an additional “gain” term in the regret
bound, analogous to [12]. We then show that it can be used
to obtain a switching regret guarantee.

Recall the sleeping experts problem from Section 2, where
the learner additionally has access to a hint or prediction
about the losses before playing. Let mt,i be the prediction
for `t,i, the loss of expert i at time t. Define the predic-
tion error as εt,i = `t,i − mt,i (which can be positive or
negative). Let yt denote the expected loss of the algorithm
in the tth round, i.e., yt =

∑
i∈At pt,i`t,i where pt is the

probability distribution over the awake arms at time t used
by the algorithm. Finally, define act(i) as {t : i ∈ At},
i.e., the rounds in which expert i is awake or active. Then
we have
Theorem 8. Suppose yt is the expected loss incurred by
Algorithm 3 at time t, and let pt be the sampling distribu-
tion defined in the algorithm. Then for all i ∈ [M ], we
have:∑

t∈act(i)

yt ≤
∑

t∈act(i)

`t,i +
logM

η
+ η

∑
t∈act(i)

ε2
t,i

− η

4

∑
t

(∑
i∈At

pt,iεt,i

)2

.

Remarks. Note that while our regret bound has an addi-
tional negative term similar to that of [12], their results do
not apply to the sleeping setting. This is because, while
their main algorithm MsMwC allows for the feasible do-
main (which they call Ωt) to vary at every time step, the
point they compare with when bounding the regret is as-
sumed to lie in

⋂
t Ωt. For our result, we need a bound that

only sums over the steps in which the expert being com-
pared to is awake.

On another note, our algorithm is parameterized by η,
which is given. The impossibility theorem of [12] can be
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Algorithm 3 Sleeping Experts with Hints
input Set of awake experts At, predictions mt,i for the

awake experts, followed by true losses `t,i; parameter
η
Maintain weights wt,i for expert i at time t; initialize
w1,i = 1 for all i
for t = 1 . . . T do

Receive set At, predictions mt,i for all i ∈ At.
Choose an expert i ∈ At with probability:

pt,i :=
wt,ie

−ηmt,i∑
j∈At wt,je

−ηmt,j

Observe the true losses `t,i and compute the prediction
errors εt,i
For all i ∈ At set weights for time (t+ 1) as:

wt+1,i = wt,i · e−ηmt,i(1− ηεt,i)
Define γt :=

∑
i∈At

wt+1,i∑
i∈At

wt,i

For all i 6∈ At, set weights for time (t+1) aswt+1,i =
wt,i · γt

end for

used to prove that automatically (and separately) tuning η
for each arm, which would let us obtain regret that only de-
pends on the `2 prediction error for that arm, is impossible.

In Section 4.2 (along with the Supplement), we show how
to use Theorem 8 to prove the following:
Theorem 9. Consider the experts with hints problem with
M experts, losses `t,i and predictions mt,i. There exists an
online algorithm with running time O(M log T ) per round
that achieves the following regret bound: for any sequence
i1, i2, . . . , iT of experts with at most L switches, we have

T∑
t=1

yt − `t,it ≤ O
(√

(L+ 1)E logM log T
)
,

where yt is the expected loss of the algorithm at time t and
E is the total squared prediction error along i1, . . . , iT , i.e.,
E =

∑T
t=1(`t,it −mt,it)

2.

We note that this theorem itself is not novel [12], but we
give an alternative proof starting with our result above for
sleeping experts.

4.1 Algorithm for sleeping experts with hints and its
analysis

Algorithm 3 consists of weights wt,i (for arm i at time t)
that are used to define the sampling probabilities. While the
update rule can be viewed as mirror descent with a correc-
tion term (as in [40]), we will state it simply as a hybrid be-
tween the hedge and the multiplicative weight update rules.
This view allows us to incorporate the fixed share idea [23]
for handling sleeping experts.

The analysis proceeds by considering the standard potential
Φt =

∑
i∈[M ] wt,i, and then showing the following lemma.

Lemma 10. Consider any time step t, and let δt :=∑
i∈At pt,iεt,i. Then we have the following two inequal-

ities

Φt+1

Φt
≤ e−ηyt−η

2δ2t , (2)

∀i ∈ At,
wt+1,i

wt,i
≥ e−η`t,i−η

2ε2t,i . (3)

The proof is via elementary calculation, but it is important
to note the additional quadratic term obtained in (2).

Proof. From the way wt+1,i are defined for i 6∈ At (see
Algorithm 3), we have that

Φt+1

Φt
= γt =

∑
i∈At wt+1,i∑
i∈At wt,i

.

Thus, using the definition of pt,i, we obtain

Φt+1

Φt
=

∑
i∈At pt,i(1− ηεt,i)∑
i∈At pt,ie

ηmt,i
.

Next, since the pt,i add up to 1 by definition, we have that
the numerator is equal to

1− η
∑
i∈At

pt,iεt,i = 1− ηδt ≤ e−ηδt−
η2

4 δ
2
t .

For the last inequality, we used the fact that for |t| < 1,
1 − t ≤ e−t−

t2

4 . The denominator can now be bounded
using the convexity of the exponential.∑

i∈At

pt,ie
ηmt,i ≥ eη

∑
i∈At

pt,imt,i .

Noting that `t,i = mt,i + εt,i, we have∑
i∈At wt+1,i∑
i∈At wt,i

≤ e−η
∑
i∈At

pt,i`t,i− η
2

4 δ
2
t ,

which completes the proof of (2).

To see (3), we simply use the fact that 1 − t ≥ e−t−t
2

for
|t| ≤ 1/2 to conclude that

wt+1

wt
= e−ηmt,i(1− ηεt,i) ≥ eηmt,i−ηεt,i−η

2ε2t,i .

This completes the proof, since mt,i + εt,i = `t,i.

Theorem 8 now follows from the Lemma as follows.

Proof of Theorem 8. Since all the wt,i are non-negative,
we have that for any i, wT+1,i ≤ ΦT+1. Thus, we can
write

w1,i

T∏
t=1

wt+1,i

wt,i
≤ Φ1

T∏
t=1

Φt+1

Φt
. (4)
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This is because the LHS simplifies to wT+1,i and the RHS
to ΦT+1. Now by construction, if t 6∈ act(i), we have
wt+1,i/wt,i = γt = Φt+1/Φt, and thus the terms cancel
out. Thus, using the initialization w1,i = 1 for all i, the
inequality above is equivalent to∏

t∈act(i)

wt+1,i

wt,i
≤M

∏
t∈act(i)

Φt+1

Φt

≤Me−
∑
t∈act(i)(ηyt+

η2

4 δ
2
t ),

where the last step uses (2). Now using (3), we have

e−
∑
t∈act(i)(η`t,i+η

2ε2t,i) ≤M · e−
∑
t∈act(i)(ηyt+

η2

4 δ
2
t ).

Simplifying this yields the theorem.

4.2 Switching regret

Using Theorem 8, we show the following lemma (proof in
Appendix B.1).

Lemma 11. Consider the experts with hints problem with
M,mt,i, `t,i and εt,i as defined in Theorem 9. There ex-
ists an online algorithm parameterized by η > 0 with run-
ning time per round O(M log T ), that at every step pro-
duces a probability distribution pt over experts and satis-
fies the following regret bound: for any L-switch sequence
i1, i2, . . . , iT ,

T∑
t=1

yt − `t,it ≤
(1 + L) logM log T

η
+ ηE

− η

4

∑
t

( ∑
i∈[M ]

pt,iεt,i

)2

,

where yt is the expected loss at time t and E is the total
squared prediction error along i1, . . . , iT .

This can then be combined with a multi-scale multiplicative
weight procedure from [9, 12] to obtain Theorem 9. The
details are deferred to Appendix B.2.

5 Lower Bounds for Bandits

Unlike the full information settings above, we show that
switching regret guarantees are impossible in an informa-
tion theoretical sense for the classical non-stochastic multi-
armed bandit problem.

We show two lower bounds. In the first, we show that ob-
taining a regret bound that only depends on the prediction
error “along the optimal path” as in Theorem 9 is impossi-
ble. More concretely, we show in Theorem 12 that in order
to compete with a strategy that (say) plays arm-1 for a cer-
tain time period and switches to arm-2 at time t, we need
good predictions for the loss of arm-2 at times< t. Second,

we show that obtaining a regret guarantee that only depends
on the “sum of squared prediction errors” is impossible if
we wish to obtain switching regret (Theorem 13). Note that
all the known optimism bounds [40, 41] are of this nature.
Our results may be viewed as saying that obtaining switch-
ing regret analogs of these results is impossible – even with
two switches! These results add to the existing negative re-
sults for bandits, including the impossibility of automatic
“learning rate tuning” [12] and multi-scale multiplicative
weights [9].

Theorem 12. There exists a distribution over instances for
the problem of bandits with hints with the following prop-
erties: (1) The prediction error along the best one-switch
strategy in hindsight is zero; and (2) Any online algorithm
has an expected regret Ω(

√
T ).

Proof. Consider a setting with two arms, denoted 1 and 2,
and suppose there are T rounds in total. Suppose for the
first arm, we have `t,1 = mt,1 = 1/2 for all t. For the
second arm, suppose that mt,2 = 0 for all t. For the true
loss, suppose that we choose a random t0 ∈ [T ], and we set
`t,2 = 1 for t < t0 and `t,2 = 0 for t ≥ t0.

This defines a distribution over instances, parameterized by
t0 (call this DI). For each instance in the distribution, the
best one-switch strategy in hindsight is to play arm-1 for
the first t0−1 steps, then switch to arm-2. Along this strat-
egy, the prediction error is zero.

Now, we claim that for any online algorithm A for solving
the problem, the expected regret on an instance sampled
from this distribution is Ω(

√
T ). Since we are giving an

explicit distribution over the instances, Yao’s minimax the-
orem lets us assume thatA is deterministic. Any such algo-
rithm can be viewed as a decision tree, where at each step
it pulls an arm, and branches based on the observed cost.
As the first arm is fixed as are the predictions for the sec-
ond arm, the only time the algorithm learns about t0 is by
pulling arm-2. Thus, we define Yt as a binary variable that
indicates if the algorithm pulls arm-2 at time t assuming
that it has not seen a cost of 0 on arm-2 so far. (If t0 > t,
this is guaranteed to be well defined.)

Case 1. We have
∑T/2
t=1 Yt ≥

√
T/2. In this case, in all the

instances in DI with t0 > T/2, the algorithm A ends up
pulling arm-2 at least

√
T/2 times (thus incurring a loss of

1 as opposed to 1/2 attainable by pulling arm-1). Thus the
regret is ≥

√
T/4. Since the case t0 ≥ T/2 occurs with

probability 1/2, the expected regret overall is ≥
√
T/8.

Case 2.
∑T/2
t=1 Yt <

√
T/2. Intuitively, in this case, arm-

2 is not pulled frequently enough, thus in the case when
t0 < T/2, there is a good chance of missing the switch to
zero loss for arm-2 by a length Ω(

√
T ). To formalize this,

let r =
√
T/2. Define si = Yi+Yi+1 + · · ·+Yi+r−1. Now

consider the sum A = s1 + s2 + · · · + sT/2−r. Each Yi
appears at most r times in this summation, and thus A ≤
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r(Y1 +Y2 + · · ·+YT/2) ≤ r
√
T/2. By our choice of r, the

RHS is < T/4. Thus, s1 + s2 + · · ·+ sT/2−r < T/4, and
thus for at least T/4−r indices i < T/2−r, the algorithm
does not play arm-2 in the interval [i, i+ r− 1] assuming it
has not seen a cost of 0 on arm-2 before i. Let us call such
an index i “good”. Thus, conditioned on t0 ∈ [i, i+ r− 1],
the expected regret for a good i is ≥ r/2. Since there are
T/4−r > T/6 good indices i, if we denote by Ei the event
that t0 ∈ [i, i + r − 1], the probability that Ei occurs for
some good i is Ω(1). Thus, the expected regret overall is
Ω(
√
T ).

The next theorem shows that even if the sum of squared
prediction errors is small (known to be bounded by 1) for
all the arms —not just for arms along the optimal path— a
poly(T ) regret is unavoidable.

Theorem 13. There exists a distribution over instances for
bandits with hints, such that: (a) the total squared predic-
tion error of each of the arms is bounded by 1, and (b) any
online algorithm has an expected regret Ω(T 1/10).

The proof uses a slightly more involved instance where the
optimum solution has L = 2 switches. We have two arms;
for arm-1, we have mt,1 = `t,1 = 1/

√
T for all t. For arm-

2, we set mt,2 = C/
√
T for all t, for a parameter C that we

will choose later. Then we pick a sub-interval J of length
T
C2 uniformly at random in the full interval [1, T ], and for
all t 6∈ J , we set `t,2 = C/

√
T (so the prediction is perfect),

and for t ∈ J , we set `t,2 = 0. Note that the total squared
prediction error is

∑
t∈J

C2

T = 1.

The analysis for this instance follows an argument simi-
lar to that for Theorem 12 and we defer the details to Ap-
pendix C. It is natural to ask if the lower bound in Theo-
rem 13 can be improved to Ω(

√
T ) using L = O(1). We

leave this as an interesting open question.

6 Conclusion

In summary, our main algorithmic contributions are the de-
sign of a new adaptive regret algorithm for online linear
optimization (Section 3) and a sleeping experts algorithm
(Section 4), both of which exploit hints about the loss vec-
tors. These algorithms are used to obtain switching regret
bounds. Conceptually, these results together with our lower
bounds help us conclude that for online learning problems,
obtaining “best of both worlds” guarantees that can exploit
hints against a non-stationary comparator crucially requires
the decision maker to have full information feedback. Our
results also raise the question of whether hints can similarly
improve regret bounds for other settings, such as that of dy-
namic regret, or for contextual variants of online learning.
These are interesting avenues for future research.
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A Missing Proofs from Section 3

Proof of Lemma 3. Part (1) is a straightforward computation which uses the fact that ‖ht‖ ≤ 1; see Lemma 3.2 of [5].

Part (2) follows from the fact that max(α ‖ct‖2 , 〈ct, ht〉) ≤ 1 (because α, ‖ct‖ , ‖ht‖ are all≤ 1), and the facts that rt ≥ 1

and ‖x‖2 is 2-Lipschitz on the unit ball.

To see part (3), we observe that if the hint ht is good, then the max() term equals 〈ct, ht〉, and thus (3) follows from the
definition of xt in the algorithm.

If the hint ht is good, then zt = 0, thus part (4) follows from part (3). If ht is bad, then the max() term becomes α ‖ct‖2,
thus

〈ct, xt〉 − `t(xt) =

(
‖xt‖2 − 1

2rt

)
(〈ct, ht〉 − α ‖ct‖2)

=
zt(1− ‖xt‖2)

2rt
≤ zt

2rt
.

This completes the proof of part (4).

Proof of Lemma 4. First, observe that because of the non-negativity of the max() term in the definition of `t, for all
u ∈ B(0, 1), we have `t(u) ≥ 〈ct, u〉. This means that we can use part (4) of Lemma 3 to conclude that for any round t,

〈ct, xt − u〉 ≤ `t(xt)− `t(u) +
zt
2rt

. (5)

We now use the definition of rt to observe that

zt
2rt

=
zt

2
√

1 + z1:t−1
.

Because each zt ∈ [0, 2), we have that 2
√

1 + z1:t−1 ≥
√

4 + z1:t−1 >
√

1 + z1:t. This lets us bound zt
2rt

as a telescoping
sum.

zt
2rt

<
zt√

1 + z1:t
≤ 2

(√
1 + z1:t −

√
1 + z1:t−1

)
= 2(rt+1 − rt).

The last equality uses the definition of rt from the algorithm. Thus, we can sum (5) over t ∈ [a, b] to obtain the conclusion
of the lemma.

B Missing Proofs from Section 4

B.1 Proof of Lemma 11

The proof follows along the lines of [32, 22], and additionally incorporates the negative term from Theorem 8.

Proof. Consider the following instance of the sleeping experts problem: there are MT experts, parameterized as (j, t),
where j ∈ [M ] and t ∈ [T ].4 The expert (j, t) becomes active in round t, and goes back to sleep at round γ(t), for a
carefully defined function γ. At all steps t′ in which (j, t) is active, we define the loss of this expert to be `t′,j and the
prediction is mt′,j . The following key properties are ensured for η:

• γ(t) depends only on t (and not on parameters like the time horizon). Indeed, the function used by [22] (attributed to
Woodruff) is simply γ(t) = t+ 2β(t) − 1, where 2β(t) is the largest power of 2 dividing t.

• At any time t, at most dlog te of the intervals [t′, γ(t′)] for t′ ≤ t contain t. (This ensures that onlyO(M log t) experts
are awake at any time t.)

• Finally, any interval [a, b] can be covered by a sequence of intervals of the form, [t1, γ(t1)], [t2, γ(t2)], . . . , [tr, γ(tr)],
where t1 = a, ti = γ(ti−1) + 1 (i.e., the union of the intervals is a contiguous interval in time), γ(tr) = b, and most
importantly, r = O(log b).

4We do not need to know T beforehand. As in the procedures of [22], weights of ‘incoming’ experts can be added as time progresses.
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Using γ(t) defined above, we run Algorithm 3 with the MT experts. Since only O(M log t) experts are awake at time
t, the algorithm can be implemented efficiently — in time O(M log T ) per step. At any step, the algorithm plays one of
the awake experts (j, t′). Since the losses and predictions only depend on j, we define pt,j to be the total probability of
Algorithm 3 playing an arm of the form (j, t′) at time t. For convenience, let us also define δt =

∑
i∈[M ] pt,iεt,i.

Then, we can apply the guarantee of Theorem 8 to conclude that for any interval [t′, γ(t′)] and for any expert i,∑
t∈[t′,γ(t′)]

yt − `t,i ≤
logM

η
+ η

∑
t∈[t′,γ(t′)]

(
ε2
t,i −

1

4
δ2
t

)
.

Thus, for any interval [a, b] ⊆ [1, T ], by partitioning [a, b] into O(log b) intervals as in the third bullet above, we have that
for any i ∈ [M ], ∑

t∈[a,b]

yt − `t,i ≤
log b logM

η
+ η

∑
t∈[a,b]

(
ε2
t,i −

1

4
δ2
t

)
. (6)

Thus, if we are to compare with a sequence of experts i1, i2, . . . , iT where the sequence has at most L switches, we can
sum up (6) over the (L+ 1) intervals that have the same it value, and thus the algorithm satisfies

T∑
t=1

yt − `t,it ≤
(1 + L) log T logM

η
+ η

∑
t

(
ε2
t,it −

1

4
δ2
t

)
.

This completes the proof. Note that the algorithm does not need to know the value of L, since we only used (6) which
holds for any interval. Thus the guarantee holds simultaneously for all L.

B.2 Multi-scale multiplicative weights with Hints

Multiscale MW. While Lemma 11 yields a switching regret guarantee for any given η, we need to tune η appropriately
(specifically, set it to (LE)−1/2) to obtain Theorem 9. Naı̈vely, this is impossible without knowing LE . The following
theorem was shown in [12], and it allows one to overcome the so-called impossible tuning problem. The idea is to use
a combination procedure reminiscent of several prior works. Specifically, it is a variant of the Multiscale Multiplicative
Weights (MSMW) procedure of [9] modified to incorporate hints as well as a hybrid update (similar to Algorithm 3).

Theorem 14. Given learning rates η1, η2, . . . , ηM and an initial pribability distribution p1 (in the M -dimensional prob-
ability simplex), there exists an algorithm for the experts problem with hints that has the following guarantee: for all
i ∈ [M ],

T∑
t=1

yt ≤
T∑
t=1

(
`t,i + ηiε

2
t,i

)
+

1

ηi
log

1

p1,i
+
∑
j

p1,j

ηj
,

where yt is the expected loss incurred by the algorithm at time t.

Lemma 11 then allows us to complete the proof of Theorem 9, as in [12]. The details of this step are presented in
Appendix B.3. We now proceed to prove Theorem 14.

Algorithm (Multi-scale MW with Hints). The algorithm performs a multiplicative weight style update, but using dif-
ferent learning rates for the different arms. The challenge turns out to be the normalization step (in order to obtain a
probability distribution from the weights). [9] introduced a novel approach, by defining a new projection step: given some
u ∈ RM with nonnegative entries and learning rates η1, η2, . . . , ηM , first they find a λ ∈ R such that

∑
i uie

ηiλ = 1. Then,
Π(u) is simply the vector whose ith coordinate is uieηiλ. As discussed in [9], the operation can be viewed as projection
onto the probability simplex with respect to a suitably defined divergence function. Note that if all the ηi are equal, Π(u)’s
ith coordinate is simply ui/(

∑
j uj), which is the classic normalization.

To incorporate hints and obtain the type of bound we desire, we perform a hybrid update analogous to Algorithm 3.
Formally, the algorithm is as follows.

• Initialize p0,i using the given values.

• For t = 1, 2, . . . , do the following:
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1. set q′t,i = pt,ie
−ηimt,i for all i

2. define qt = Π(q′t)

3. choose an arm according to qt, receive loss vector `t
4. set p′t+1,i = q′t,i(1− ηiεt,i)
5. define pt+1 = Π(p′t+1)

We now show a lemma that relates the variation in pt,i values to the losses.

Lemma 15. For any t, define λt = 1
ηi

log
pt+1,i

p′t+1,i
(note that this is independent of i by the definition of the projection). Then

we have the following inequalities:

1. The expected loss of the algorithm yt satisfies

yt ≤ λt +
∑
i

pt,i − pt+1,i

ηi
.

2. For any expert i and time t, we have

λt ≤
1

ηi
log

pt+1,i

pt,i
+ `t,i + ηiε

2
t,i.

Proof. Let us first show part (1). Recall that

λt =
1

ηi
log

pt+1,i

p′t+1,i

=
1

ηi
log

pt+1,i

qt,i(1− ηiεt,i)
+

1

ηi
log

qt,i
q′t,i

. (7)

Now, both the terms on the RHS are independent of i (since qt,i is also defined as a projection). This means that for any
probability distribution ρ over [M ], 1

ηi
log

qt,i
q′t,i

=
∑
j ρj

1
ηj

log
qt,j
q′t,j

. Choosing ρ to be qt itself,

1

ηi
log

qt,i
q′t,i

=
∑
j

qt,j
ηj

log
qt,j
q′t,j

=
∑
j

−qt,j
ηj

log
q′t,j
qt,j

.

Next, note that q′t,j = pt,je
−ηjmt,j , and thus

∑
j

−qt,j
ηj

log
q′t,j
qt,j

=
∑
j

−qt,j
ηj

log
pt,j
qt,j

+
∑
j

qt,jmt,j .

Next, using the inequality log x ≤ (x− 1), we obtain∑
j

−qt,j
ηj

log
pt,j
qt,j
≥
∑
j

−qt,j
ηj

(
pt,j
qt,j
− 1

)
=
∑
j

qt,j − pt,j
ηj

.

Similarly, we can manipulate the first term on the RHS of (7). We have

1

ηi
log

pt+1,i

qt,i(1− ηiεt,i)
=
∑
j

−pt+1,j

ηj
log

qt,j(1− ηjεt,j)
pt+1,j

.

Once again, using log x ≤ (x− 1), we have

1

ηi
log

pt+1,i

qt,i(1− ηiεt,i)
≥
∑
j

−qt,j(1− ηjεt,j)− pt+1,j

ηj
=
∑
j

qt,jεt,j +
pt+1,j − qt,j

ηj
.

Plugging these back into (7), we have

λt ≥
∑
j

qt,j(mt,j + εt,j) +
pt+1,j − pt,j

ηj
.



Aditya Bhaskara, Kamesh Munagala

Since `t,j = mt,j + εt,j and the algorithm plays experts using the distribution qt,j , this completes the proof of (1).

To see part (2) of the lemma, we simply note that by definition, for any i,

λt =
1

ηi
log

pt+1,i

p′t+1,i

=
1

ηi

(
log

pt+1,i

pt,i
+ log eηimt,i − log(1− ηiεt,i)

)
.

Using the inequality log(1− t) ≥ −t− t2 for |t| ≤ 1/2, we have

λt ≤
1

ηi
log

pt+1,i

pt,i
+mt,i + εt,i + ηiε

2
t,i.

Noticing that `t,i = mt,i + εt,i, this completes the proof.

The lemma implies Theorem 14 as follows.

Proof of Theorem 14. We can combine the two parts of Lemma 15 to conclude that at any time step t and for any expert i,

yt ≤ `t,i + ηiε
2
t,i +

1

ηi
log

pt+1,i

pt,i
+
∑
j∈[M ]

pt,j − pt+1,j

ηj
.

Summing this over t, we get
T∑
t=1

yt ≤
T∑
t=1

(`t,i + ηiε
2
t,i) +

1

ηi
log

pT+1,i

p1,i
+
∑
j∈[M ]

p1,j − pT+1,j

ηj
.

Since pT+1,i ∈ [0, 1], we have

T∑
t=1

yt ≤
T∑
t=1

(`t,i + ηiε
2
t,i) +

1

ηi
log

1

p1,i
+
∑
j∈[M ]

p1,j

ηj
.

This completes the proof of the theorem.

B.3 Proof of Theorem 9

The proof is overall similar to that of [12], except that we use Lemma 11 as the main subroutine.

Proof of Theorem 9. The idea is to run the algorithm from Theorem 14 using experts that correspond to running our “known
η” algorithm (from Lemma 11) with different values of η. Let us call these the outer and inner algorithms respectively.

Formally, the parameters of the outer algorithm are as follows: define ηk = 1
2k

, for k ∈ {1, 2, . . . , r}, where r = 2 log T .
The outer algorithm will be the one from Theorem 14, and will have r experts, with learning rate ηk for the kth expert. The
kth expert will correspond to an inner algorithm (from Theorem 11) with η = 4ηk. The initial probabilities will be set as
p1,k = cηk, where c = 1

η1+···+ηr . [Note that c ∈ [1/2, 1].]

We denote by p(k)
t the distribution over [M ] produced by the kth expert (i.e., the kth inner algorithm). The loss incurred

by this algorithm is thus 〈p(k)
t , `t〉 =: αt,k. The inner algorithms also receive the prediction vector mt before playing; we

define βt,k := 〈p(k)
t ,mt〉, which we give as the predicted loss for the kth expert to the outer algorithm.

From Theorem 14, we have that for every k, if γt denotes the expected loss of the outer algorithm, then for all k ∈ [r],∑
t

γt ≤
∑
t,k

αt,k +
1

ηk
log

1

p1,k
+
∑
j∈[r]

p1,j

ηj
+
∑
t

ηk(αt,k − βt,k)2. (8)

By our choice of parameters, the second term on the RHS is ≤ 2 log T
ηk

, and the third term is simply cr ≤ 2c log T ≤ log T
ηk

,
since c ≤ 1 and ηk ≥ 1/2 for all k. Now consider the first term. By the regret bound from Lemma 11, we have that for
any comparator sequence i1, i2, . . . , iT with at most L switches,∑

t

αt,k ≤
∑
t

`t,it +
(1 + L) log T logM

4ηk
+ 4ηk

∑
t

(
ε2
t,it −

1

4
δ2
t

)
,
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where δt is the expected prediction error, which is exactly 〈p(k)
t , `t −mt〉 = (αt,k − βt,k). Thus,∑

t

αt,k ≤
∑
t

`t,it +
(1 + L) log T logM

4ηk
+ 4ηkE − ηk

∑
t

(αt,k − βt,k)2.

(Where E is as defined in the statement of Theorem 9.) The key observation introduced in [12] is that the last term above
exactly cancels out the last term in (8). Thus, plugging all of these bounds into (8),∑

t

γt ≤ `t,it +
(1 + L) log T logM

4ηk
+ 4ηkE +

3 log T

ηk
.

By the guarantee of 14, this bound holds for all k ∈ [r], in particular, setting ηk as the inverse of the closest power of 2 to√
(1 + L)E log T logM (which lies in the range [1, T 2]), we obtain the desired result.

C Missing Proofs from Section 5

Proof of Theorem 13. Recall the lower bound example: we have two arms and L = 2. For arm-1, we have mt,1 = `t,1 =
1/
√
T for all t. For arm-2, we set mt,2 = C/

√
T for all t, for a parameter C that we will choose later. Then we pick a

sub-interval J of length T
C2 uniformly at random in the full interval [1, T ], and for all t 6∈ J , we set `t,2 = C/

√
T (so the

prediction is perfect), and for t ∈ J , we set `t,2 = 0. Note that the total squared prediction error is
∑
t∈J

C2

T = 1.

Because of the random choice of J , the above defines a distribution over instances, parametrized by the start of the interval
J , which we denote by t0 as in Theorem 12. For any such instance, the optimal two-switch strategy is to play arm-2 for
the rounds in J and arm-1 outside of it.

Now consider any deterministic algorithm A (by Yao’s theorem, this can be assumed w.l.o.g.). The predictions A sees for
arm-2 are fixed (and it knows the behavior of arm-1 fully), so it can only get information about J by pulling arm-2. Again,
we define pt to be the binary variable that indicates if arm-2 will be pulled at time t, assuming that the algorithm has not
observed a 0 cost on arm-2 so far. We consider the following two cases.

Case 1. p1 + p2 + · · ·+ pT/2 ≥ C2

8 .

In this case, in all the instances for which t0 ≥ T/2, we end up incurring a cost that is at least C
2

8 ·
(C−1)√

T
more than the

optimal 2-switch strategy in hindsight (which would have played arm-1 in all rounds ≤ T/2). Now for a random instance
in D we have t0 > T/2 with probability 1/2, thus the expected regret is Ω

(
C3
√
T

)
.

Case 2. p1 + p2 + · · ·+ pT/2 <
C2

8 .

Here we wish to show that we “miss” the entire interval J with a constant probability. Formally, let r = T/C2, the
length of J . As before, let si = pi + pi+1 + · · · + pi+r−1. Using an argument similar to that in Theorem 12, we have∑T/2−r
i=1 si ≤ r

∑T/2
i=1 pi < r · C

2

8 = T
8 . Thus, at least T/3− r of the si must be < 1 (as otherwise, T/6 of the si will be

≥ 1, contradicting the bound on the sum). Now if t0 = i for any i with si = 0, the algorithm will end up not pulling arm-2
in the entire interval [i, i+ r − 1], thus incurring a regret of 1√

T
· TC2 . Thus, in this case, the expected regret is Ω

(√
T

C2

)
.

Setting C. To get the bounds in the two cases to match, we set C = T 1/5, resulting in a regret bound of Ω(T 1/10), thereby
completing the proof of the theorem.


