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Abstract

Specifying reward functions for complex tasks
like object manipulation or driving is challeng-
ing to do by hand. Reward learning seeks to
address this by learning a reward model using
human feedback on selected query policies. This
shifts the burden of reward specification to the op-
timal design of the queries. We propose a theoret-
ical framework for studying reward learning and
the associated optimal experiment design prob-
lem. Our framework models rewards and policies
as nonparametric functions belonging to subsets
of Reproducing Kernel Hilbert Spaces (RKHSs).
The learner receives (noisy) oracle access to a
true reward and must output a policy that per-
forms well under the true reward. For this setting,
we first derive non-asymptotic excess risk bounds
for a simple plug-in estimator based on ridge re-
gression. We then solve the query design problem
by optimizing these risk bounds with respect to
the choice of query set and obtain a finite sample
statistical rate, which depends primarily on the
eigenvalue spectrum of a certain linear operator
on the RKHSs. Despite the generality of these
results, our bounds are stronger than previous
bounds developed for more specialized problems.
We specifically show that the well-studied prob-
lem of Gaussian process (GP) bandit optimization
is a special case of our framework, and that our
bounds either improve or are competitive with
known regret guarantees for the Matérn kernel.

1 Introduction

Specifying the reward function accurately for a desired ob-
jective, or reward engineering, is challenging to perform by
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hand, as the consequences of even small errors can be dras-
tic (Hadfield-Menell et al., 2017). To address this, reward
learning seeks to learn a predictive model of the reward func-
tion from data, which is obtained from carefully selected
queries to human annotators. The learned reward model
is then used as the optimization objective for policy learn-
ing. Reward learning has achieved significant empirical
success in domains such as text summarization (Stiennon
et al., 2020; Böhm et al., 2019), robot locomotion (Daniel
et al., 2014), predicting driving styles (Kuderer et al., 2015),
and Atari game playing (Christiano et al., 2017).

Despite their success, reward learning methods still lack
theoretical grounding. Moreover, their behavior can be
brittle even on simple tasks, due to the difficulty of choos-
ing appropriate queries and due to feedback loops from
adaptive querying (Freire et al., 2020). Indeed, an abla-
tion study in Christiano et al. (2017) suggests that random
queries can outperform or be competitive with adaptive
query procedures. To address these issues, we provide a
theoretical framework for analyzing reward learning, fram-
ing it as a doubly nonparametric experimental design prob-
lem. This framework helps elucidate the role of query se-
lection (Chaloner and Verdinelli, 1995) and also enables
us to derive scaling laws—how the sizes of the policy and
reward models affect the query complexity—for reward
learning (Kaplan et al., 2020).

Proposed framework. In our framework, we suppose we
are given a reward class Cr and policy class Cπ . Our goal is
to find a policy π̂ ∈ Cπ that performs well according to an
unknown true reward r∗ ∈ Cr. To do this, we query policies
π ∈ Cπ , observing noisy estimates of their true reward, and
use this information to choose the eventual policy π̂.

To be compatible with modern nonparametric learning meth-
ods (i.e. neural nets), we view Cr and Cπ as subsets of Re-
producing Kernel Hilbert Spaces (RKHS). A salient feature
of our proposed framework is that the learner therefore opti-
mizes a nonparametric reward function over a nonparametric
space of policies, making the task “doubly” nonparamet-
ric. In contrast, previous work considers a nonparametric
function class or reward class, but typically not both. For
instance, nonparametric zeroth order or bandit optimiza-
tion (Srinivas et al., 2010; Mockus, 2012; Wang et al., 2018)
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considers a nonparametric function on a finite-dimensional
input space. Conversely, nonparametric supervised learn-
ing (Wahba, 1990; Hofmann et al., 2008) minimizes a known
loss function over a nonparametric input space.

The doubly nonparametric nature of our task poses new chal-
lenges. The (possibly) infinite-dimensional RKHS requires
the learner to select which subspace to explore given a fi-
nite number of queries. Furthermore, the unknown reward
function makes it challenging for the learner to reason about
the information gained from the selected query policies. We
address these challenges by deriving a risk upper bound for
a family of plug-in estimators based on ridge regression,
and then optimizing this bound to solve the optimal design
task. Our results show that the quality of the output policy
depends on how well the query set Q is aligned with the
eigenfunctions of the policy space.

In addition to the optimal design problem, our framework
allows us to study scaling laws with respect to the reward
(or policy) class by varying the rate of decay of their cor-
responding eigenspectrum. This decay rate determines the
effective dimensionality of a RKHS (Zhang, 2002), and pro-
vides a natural proxy for varying the size of the reward or
policy class. Qualitatively, our main results show that the
excess risk asymptotically vanishes as long as the policy
class grows at a slower rate relative to the reward class.

Sharpness of analysis. Our risk bounds apply to reward
and policy classes of arbitrary or even infinite dimensional-
ity. Despite this generality, we show they provide stronger
guarantees than previous bounds for the specialized settings
of compact policy sets and kernel multi-armed bandits.

In Section 4.3, we look at a special case of our problem
when the policy set Cπ is a compact subspace and thus has
finite rank. For these instances, we show that our learning
algorithm obtains a better excess risk O(n− β

β+2 ) versus
a rate of O(n− β−1

2(β+1) ) obtained by the adaptive GP-UCB
algorithm (Srinivas et al., 2010), where β > 0 is a power
law decay rate.

In Section 5, we specialize our general results to the
well-studied problem of Gaussian process bandit opti-
mization (Williams and Rasmussen, 2006), also known
as kernel multi-armed bandit (MAB). Specifically, for
the class of Matérn kernels with parameter ν in d di-
mensions, we show that our algorithm achieves a regret

bound of Õ(T
4ν+d(4d+6)
6ν+d(4d+7) ) which is strictly better than those

achieved by the GP-UCB and GP-Thompson Sampling (GP-
TS) (Chowdhury and Gopalan, 2017) algorithms and com-
parable with π-GP UCB (Janz et al., 2020) and supKer-
nelUCB (Valko et al., 2013; Vakili et al., 2021); see Table 1
for details. GP-UCB and GP-TS only yield sub-linear regret
bounds when the smoothness of the kernel ν > d2—thus in
high dimensions, these bounds essentially become vacuous.
The π-GP UCB algorithm was designed specifically to over-

come this issue. Our proposed algorithm achieves sublinear
regret for all ν > 3/2.

Our Contributions. We propose doubly-nonparametric
bandits as a framework for theoretically studying the re-
ward learning problem. Within this framework, we obtain
finite sample risk bounds for a ridge regression based plug-
in estimator and derive scaling laws for reward learning.
From a technical standpoint, we study the optimal design
problem for our estimator to select informative query points
by showing that the excess risk depends only on the spec-
tral properties of a certain operator of the two RKHSs and
the empirical covariance matrix. As a corollary of our risk
bounds, we provide sharper regret bounds for a class of ker-
nel MAB problems compared to several existing algorithms,
showing that the doubly-nonparametric lens of reward learn-
ing is fruitful even for “singly-nonparametric” tasks. To
obtain these bounds, our reduction carefully constructs two
different RKHSs to embed the input space and reward func-
tion into a policy and reward class.

2 Framework: Doubly nonparametric
Bandits

Our framework considers non-parametric policy learning
with non-parametric reward models. We let π ∈ Hπ denote
an arbitrary policy and r ∈ Hr denote an arbitrary reward
function, where Hπ and Hr are Reproducing Kernel Hilbert
Spaces. For technical reasons, we assume the corresponding
kernel functions Kπ and Kr both satisfy the Hilbert-Schmidt
condition (see Appendix A for details).

We let F (π, r) ∈ R denote the reward obtained by se-
lecting policy π under reward function r and consider the
case where the evaluation functional F is linear in both
π and r. In other words, F (π, r) = ⟨r,Mπ⟩Hr where
M : Hπ 7→ Hr is a known linear mapping from the policy
space to the reward space. Since Hπ and Hr may be infinite-
dimensional, linearity is only a weak restriction–e.g. the
map f 7→ f(x) is linear in f for any RKHS.

To incorporate problem structure, we let r∗ denote the true
reward function and assume that r∗ ∈ Cr for some known
set Cr ⊆ Hr such that ∥r∗∥Hr

= 1. We further assume
that policies π are restricted to lie in some Cπ which is a
subset of the unit ball in Hπ (for instance, Cπ might incorpo-
rate physical constraints on implementable policies). Thus,
given the true reward r∗, the optimal policy (for a compact
Cπ) is π∗ ∈ argmaxπ∈Cπ

F (π, r∗). This proposed frame-
work, which allows for infinite-dimensional policy as well
as reward classes, allows us to study how both the policy
and reward space affect the difficulty of learning.

Query access to reward r∗. The true reward function r∗

is unknown to the learner but is accessible via queries to an
oracle (e.g. a human expert), which provide noisy zeroth-
order (or bandit) evaluations of the reward r∗. When queried
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with a policy π ∈ Cπ , the oracle provides a response

Oracle Or∗ : π 7→ F (π, r∗) + ϵ with ϵ ∼ N (0, τ2) , (1)

with τ2 denoting the variance of the response. There are
two possible query models: passive queries (Atkinson, 1996;
Sebastiani and Wynn, 2000), where the learner selects all
queries at the same time, and active queries (Bubeck et al.,
2011; Lattimore and Szepesvári, 2020), where the learner
is allowed to select queries sequentially. Our focus in this
work will be on the passive query model, but in many cases
we will outperform existing active query algorithms.

Problem statement. Given passive access to the oracle Or∗ ,
the objective of the learner is to output a policy π̂ ∈ Cπ that
has small excess risk ∆, defined as

∆(π̂; r∗) := F (π∗, r∗)− F (π̂, r∗) . (2)

We think of queries to the oracle as expensive, and are in-
terested in achieving low excess risk with as few queries as
possible. This notion of excess risk is also studied by the
term simple regret in pure exploration bandit problems (Lat-
timore and Szepesvári, 2020).

Representations in ℓ2(N). By Mercer’s theorem, we can
represent any RKHS as a subset of ℓ2(N). Formally, the pol-
icy and the reward spaces are isomorphic to the ellipsoids

Hπ : =

{
∞∑
j=1

κπ,jϕπ,j

∣∣∣ (κπ,j)
∞
j=1 ∈ ℓ2(N) with

∞∑
j=1

κ2
π,j

µ2
π,j

< ∞

}

Hr : =

{
∞∑
j=1

κr,jϕr,j

∣∣∣ (κr,j)
∞
j=1 ∈ ℓ2(N) with

∞∑
j=1

κ2
r,j

µ2
r,j

< ∞

}
,

for appropriately chosen eigenfunctions ϕπ,j and ϕr,j ,
and corresponding eigenvalues µπ,j and µr,j (Wainwright,
2019). These are defined with respect to a base measure P
over the input domain; see Appendix A for details. With a
slight abuse of notation, going forward, we will use π and
r to denote the corresponding coefficients (κπ,j) and (κr,j)
in the expansion above. 1 With this, the inner products
associated with Hπ and Hr simplify

⟨π1, π2⟩Hπ
: =

∞∑
j=1

π1,jπ2,j

µπ,j
, ⟨r1, r2⟩Hr

: =

∞∑
j=1

r1,jr2,j
µr,j

.

(3)

Also let Sr : = diag(µ−1
r,j ) and Sπ : = diag(µ−1

π,j) be diag-
onal matrices comprising the inverse of the eigenvalues of
Hr and Hπ . With this notation, if we view the map M as a
(infinite-dimensional) matrix, its Hermitian adjoint2 is equal
to M∗ = S−1

π M⊤Sr.

1While the eigenfunctions ϕπ and ϕr can be different, this rep-
resentation can still be used by modifying the map M appropriately.
This is detailed in Appendix A.

2Recall the Hermitian adjoint of M satisfies ⟨r,Mπ⟩Hr =
⟨M∗r, π⟩Hπ

Algorithm 1: Policy Learning via Reward Learning
Input: Number of queries n, policy set Cπ , oracle Or∗

Select n policies Q = {π1, . . . , πn} and receive noisy
reward evaluations yi = Or∗(πi).

Estimate r̂ using observed responses
{(π1, y1), . . . , (πn, yn)} using ridge regression (4).

Obtain plug-in policy π̂plug ∈ argmaxπ∈Cπ
F (π, r̂).

Output: Policy π̂plug

In order for the evaluation functional F (π, r∗) to be finite

for all π ∈ Hπ, the operator norm ∥S
1
2
r MS

− 1
2

π ∥op must be
bounded (see Appendix A). We will see later that the decay
of this operator’s singular values is closely related to the
difficulty of learning in our setting.

3 Algorithm: Policy Learning via Reward
Learning

Given the setup above, we now describe a meta-algorithm,
policy learning via reward learning (Algorithm 1), for the
non-parametric policy learning problem. The algorithm
is a three-stage procedure: it (i) selects a subset of poli-
cies Q to query for reward feedback, (ii) uses the re-
sponses to learn a reward estimate r̂, and (iii) optimizes
this learnt estimate to output the policy π̂plug, that is,
π̂plug ∈ argminπ∈Cπ

⟨r̂,Mπ⟩Hr . Such general plug-in pro-
cedure have been studied in the statistics (Van der Vaart,
2000) and the machine learning (Devroye et al., 2013) lit-
erature. We analyze the excess risk of this estimator for
our doubly-nonparametric setup and use this risk bound
to select our query set Q. We now discuss the two key
design choices in our algorithm: the choice of the reward
estimation procedure as well as the choice of query set Q.

Reward learning via ridge regression. We estimate the
reward r̂ via ridge regression in the RKHS Hr (Friedman
et al., 2001; Shawe-Taylor et al., 2004). Suppose that in
the first step of the algorithm, we have already queried
the oracle on n policies and let {(πi, yi)}ni=1 represent the
query-response pairs. For a regularization parameter λreg >
0, the ridge regression estimate of the reward function is

r̂ ∈ argmin
r∈Hr

1

n

n∑
i=1

(yi − ⟨r,Mπi⟩Hr )
2 + λreg∥r∥2Hr

. (4)

The parameter λreg, which is usually set as a function of
n, controls the bias-variance trade-off in estimating r∗—
smaller values of λreg reduce bias while larger values help
reduce variance.

Excess risk bound for fixed query set. Observe that the
plug-in estimator π̂plug(Q) is implicitly a function of the
query set Q. Ideally, we want to choose the set Q which
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minimizes the expected risk of the plugin estimator. This
requires us to solve the optimization problem

Q = argmin
S:|S|≤n

E[∆(π̂plug(S); r
∗)] . (5)

However, solving the above precisely requires knowledge
about the underlying reward function r∗, and the combinato-
rial nature of the optimization problem makes it hard to find
an exact solution. To address this, we first upper bound the
excess risk of the plug-in policy π̂plug in terms of the query
set Q = {π1, . . . , πn}. The following theorem3 bounds the
excess risk in terms of the spectrum of the spaces Hr and
Hπ , as well as the covariance matrix of the queried policies
ΣQ : = 1

n

∑
π∈Q ππ⊤.

Theorem 1 (Excess risk of plug-in). For any query set
Q consisting of n policies and regularization parameter
λreg > 0, the excess risk of the plug-in estimator π̂plug is
upper bounded as

E[∆(π̂plug; r
∗)] ≤ 2E[∥M∗(r∗ − r̂)∥Hπ

] . (6)

In addition, letting A = MΣQM
⊤Sr +λregI , the expected

squared distance is equal to

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ∥M∗A−1r∗∥2Hπ

+
τ2

n
· tr
[
Sπ(M

∗A−1M)ΣQ(M
∗A−1M)⊤

]
. (7)

The proof follows a standard analysis of ridge regression
and is deferred to Appendix B. Observe that in the above
theorem, the query set π ∈ Q participates in the excess risk
only via the covariance ΣQ. The risk bound is the sum of
two term: the first corresponding to the bias and the second
corresponding to the variance. In both these terms, ΣQ
appears as part of A−1—thus query sets Q which induce a
larger correlation with the map M will generally have lower
excess risk. Choices of queries which are orthogonal to the
right singular vectors of M will have a constant excess risk,
since for those directions the matrix A ≈ λregI .

As shown later in the appendix, in the special case when
the policy set consists of the entire unit ball Cπ = {π ∈
Hπ | ∥π∥Hπ

≤ 1}, the excess risk bound can be improved
by a quadratic factor

E[∆(π̂plug; r
∗)] ≤ O

(
∥M∗(r∗ − r̂)∥2Hπ

)
.

Such an improvement in the excess risk when the underlying
query set is the complete unit ball in a finite-dimensional
space was also observed by Rusmevichientong and Tsitsik-
lis (Rusmevichientong and Tsitsiklis, 2010). However, the
gains in the specific linearly parameterized bandit setup that
they considered was logarithmic in nature as compared to
our quadratic ones.

3Throughout the paper, for clarity purposes, we denote by c
a universal constant whose value changes across lines. All our
proofs in the appendices explicitly track this constant.

4 Query selection and statistical guarantees

We now show how to select the query set Q effectively and
study the excess risk of the corresponding plug-in estimator
π̂plug obtained via this query set. We will start with the
special case where the policy set Cπ is the unit ball in Hπ

and the map M is diagonal, and then generalize to arbitrary
policy sets. In both cases, low excess risk can be achieved
by repeatedly querying (approximations of) the projections
of top eigenvectors of M∗M onto the Hπ space. For the
special case when the map M is diagonal, this reduces to
querying the top eigenvectors of Hπ .

The excess risk will ultimately depend on the the eigenspec-
trum of the operator S− 1

2
π M⊤SrMS

− 1
2

π , which is similar
to the operator M∗M . Additionally, to interpret our results,
we instantiate them for a power law spectrum with exponent
β > 0, that is,

σj(S
− 1

2
π M⊤SrMS

− 1
2

π ) ≍ j−β , (8)

where σj corresponds to the jth singular value of the corre-
sponding operator.

4.1 Warm-up: Cπ = unit ball, M = diagonal

In order to get some intuition, we study the special case
where the policy set Cπ consists of the entire unit ball in the
space Hπ and the map M is diagonal with M = diag(νj).
Further, let us denote the operator M̃ = S

1/2
r MS

−1/2
π .

For this special case, our sampling algorithm (Algorithm 2)
simply selects the top J eigenvectors of the space Hπ to
query, for some value J which depends on the decay ex-
ponent β. To see why, observe that for a diagonal map M ,
the right singular vectors of the operator M̃ are the same
as the eigenvectors of the policy space Hπ. Therefore, the
choice of policy πj in our algorithm is simply the scaled
eigenfunction √

µπ,j ·ϕπ,j . Having selected these J queries,
the algorithm queries each one of the n

J times and uses this
as query set Q.

The intuition for this choice of query set Q is that since
we are in the passive setup with no knowledge of r∗, any
policy π ∈ Cπ can be an optimal policy. By querying
the top J ones out of these, we can obtain a good enough
approximation to the performance of any policy in the unit
ball. The particular choice of the parameter J depends
on the number of queries n available. Since the oracle
responses are noisy, to reduce variance in the responses
along those directions, our algorithm performs multiple
queries along the same direction.

If we further consider the special case when the policies
and rewards correspond to the unit balls in the finite dimen-
sional spaces Rdπ and Rdr respectively, our choice of query
set queries the directions {ei}dπ

i=1, each for J = n
dπ

num-
ber of times. Intuitively, this strategy works well because
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without any prior over the unknown reward function, the
optimal strategy in the passive setup is to explore all direc-
tions equally and this is precisely our set of chosen queries.
This simple query strategy enjoys the following excess risk
bound.
Proposition 1 (Risk bound for Cπ = unit ball.). For any
J ≤ n and regularization parameter λreg > 0, consider
the plug-in estimator obtained via the passive sampling
algorithm which explores the first J eigenfunctions of Hπ.
The excess risk satisfies

E[∆(π̂plug; r
∗)] ≤ c ·

(
1 +

τ2

nλ2
reg

)
·max

{
sup
j≤J

λ2
regJ

2ζj

ζ2j + λ2
regJ

2
, sup
j>J

ζj

}
,

where the quantity ζj =
ν2
jµπ,j

µr,j
and c > 0 is some universal

constant.

We defer the proof of the above proposition to Appendix B.
The choice of the exploration parameter J allows us to trade-
off between the two terms inside the maximum. Typically,
the second term will be maximized at j = J + 1. For the
first term, the supremum depends on the choice of λreg —
for small values of λreg, the sup is achieved at j = 1 while
for larger values, it is achieved at j = J . In order to gain
more intuition about this bound, we instantiate this for the
power law decay.
Corollary 1 (Risk bound for power-law decay). Suppose
that eigenvalues of the policy space Hπ decay as j−βπ ,
reward space Hr as j−βr and the singular values of map
M as j−βM . This satisfies the power law assumption with
exponent β = βπ + βM − βr. The plug-in estimator with
exploration parameter J = n

1
β+2 and regularization λreg =

n− β+1
β+2 satisfies

E[∆(π̂plug; r
∗)] ≤ cn− β

β+2 .

The proof of the corollary upper bounds the risk bound with
the specific choices of J and λreg. The above bound shows
that our algorithm can learn in the framework as long as
β > 0 or equivalently βπ + βM > βr, with better rates for
larger values of β. Thus, for a fixed size of reward class βr,
the learning rate improves as the policy class grows smaller
(βπ increases) – this is intuitive since we are required to
search over a smaller policy space. On the other hand, for a
fixed policy class βπ, our excess risk rate gets better as the
reward class grows in size (βr increases) – this is because a
larger set of reward functions have similar optimal policies
and hence learning gets easier.

4.2 General policy sets

We now describe our choice of query sets Q for general
policy sets Cπ. Our strategy, described in Algorithm 2,

Algorithm 2: Passive querying strategy
Input: Number of queries n, map M , policy set Cπ ,

exploration parameter J
Construct linear map M̃ = S

1
2
r MS

− 1
2

π and compute
eigenvectors {ϕM̃,j}j of M̃⊤M̃

Set policy πj = ΦπS
− 1

2
π Φ⊤

π ϕM̃,j for all j ≤ J

Obtain policy π̃j ∈ Cπ such that π̃j π̃
⊤
j ⪰ cππjπ

⊤
j

Form query set Q = {π̃(n/J)
1 , . . . , π̃

(n/J)
nα } where

a(b) = {a, . . . , a}} repeated b times
Output: Query set Q

differs from the above special case in that we need to take
into account the interaction of the policy space Hπ with the
map M . Specifically, we show in Appendix B that the upper
bound in Theorem 1 can be diagonalized for this general
case via a transformation.

Let us denote the operator M̃ = S
1/2
r MS

−1/2
π . Our transfor-

mation reveals that the relevant directions to query for this
general case corresponds to the columns of ΦπS

−1/2
π Φ⊤

π VM

where , then VM are the eigenvectors of the self-adjoint oper-
ator M̃⊤M̃ – and it is precisely a subset of these directions
that our algorithm queries.

In order to be able to query these policies, we require the
set Cπ to contain some policies which align well with them.
We formally state this regularity assumption below.

Assumption 1 (Regularity assumption on Cπ). For any
eigenfunction ϕM̃,j of the operator M̃⊤M̃ , consider the

policy πj = ΦπS
−1/2
π Φ⊤

π ϕM̃,j . There exists a policy π̃j in
policy set Cπ such that for some constant cπ > 0, we have
π̃j π̃

⊤
j ⪰ cππjπ

⊤
j .

The above assumption requires that for every choice of
the policy πj in Algorithm 2, the set Cπ has the another
policy π̃j which is collinear with it. This assumption can
be relaxed in various ways (for instance via convexification)
but we omit this as it is not needed for our results. Given
this assumption, the following theorem, a generalization of
Proposition 1, provides a bound on the excess risk for the
plug-in estimate for general policy sets Cπ .

Theorem 2 (Risk bound for general policy sets Cπ.). For
any J ≤ n, regularization parameter λreg > 0 and set Cπ

satisfying Assumption 1, let π̂plug be the estimator output by
Algorithm 1. The squared excess risk satisfies

(E[∆(π̂plug; r
∗)])2 ≤ c ·

(
1 +

τ2

nλ2
reg

)
·max

{
sup
j≤J

λ2
regJ

2ζj

ζ2j + λ2
regJ

2
, sup
j>J

ζj

}
,

where the values ζj correspond to the jth eigen values of

the operator M̃∗M̃ with M̃ = S
1
2
r MS

1
2
π .
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We defer the proof of this theorem to Appendix B. The proof
of this theorem goes via a transformation which diagonalizes
the excess risk bound and reduces the problem to a similar
setup as that of Proposition 1. Additionally, Assumption 1
allows us to generalize the results to arbitrary policy sets Cπ .
Note that the above upper bounds the square of the excess
risk. As discussed in Section 3, one can obtain a quadratic
improvement in this rate if the set Cπ is the entire unit ball
in Hπ. We specialize the above bound for the power law
decay assumption in the following corollary.

Corollary 2 (Risk bound for power-law decay). Suppose

that eigenspectrum of the operator S− 1
2

π M⊤SrMS
− 1

2
π sat-

isfy the power law assumption with exponent β > 0, that
is, σj(S

− 1
2

π M⊤SrMS
− 1

2
π ) ≍ j−β . The plug-in estima-

tor π̂plug with parameter J = n
1

β+2 and regularization

λreg = n− β+1
β+2 satisfies

E[∆(π̂plug; r
∗)] ≤ cn− β

2(β+2) .

for some universal constant c > 0.

The above bound indicates that for the general case, learning
is possible if the spectrum decay has parameter β > 0. To
get such a spectrum decay with the operator defined in the
above corollary, one sufficient condition is that the map
M does not flip the larger eigenvectors of Hπ towards the
smaller eigenvectors of Hr, that is, the map M preserves
the ordering of the eigenvectors of Hπ when transformed
to the space Hr. Such a misaligned scenario would require
learning a very accurate representation of the reward to learn
a good policy and will make learning harder. It is worth
highlighting that while we discuss our bounds with such a
power law assumption on the relevant eigenvalues, one can
also obtain similar rates for singular values with exponential
decay, by optimizing the value of J to trade off the bias and
variance terms.

4.3 Comparison with UCB-style adaptive algorithms

We next turn to evaluating the sharpness of Theorem 2.
Existing frameworks for studying “singly"-nonparametric
setups require the input domain to be compact. In our
doubly-nonparametric setup, the input space is the policy
set Cπ which is often non-compact (i.e. the unit ball is not
compact in infinite dimensions). We address this for singly-
nonparametrics algorithm by taking a finite-dimensional
approximation.

Even though our proposed method is passive, it achieves
better rates than well-known adaptive sampling algorithms.
Specifically, in the power law setting of Section 4.1, the
analysis of GP-UCB algorithm (Srinivas et al., 2010) pro-
vides a rate of O(n− β−1

2(β+1) ), which is strictly worse than
the O(n− β

β+1 ) obtained by our analysis in Corollary 1. We
refer the reader to Proposition 2 in Appendix D for an exact

statement. The proof adapts the analysis from Srinivas et al.
(2010), which hinges on a quantity called the information
gain, which we bound for our setup. While we are compar-
ing upper bounds for the two algorithms, we believe that
our improved bound is due to a better algorithm and not
an analysis gap. While we expect adaptive algorithms to
perform better than passive ones in general (Lattimore and
Hao, 2021), UCB style algorithms require the construction
of confidence intervals around input points, which crucially
dictate the regret bounds of such algorithms. In the frequen-
tist setup, the best known such bounds (Vakili et al., 2021)
are known to yield suboptimal regret rates and it is an open
question as to whether these can be improved.

5 Bounds for kernel multi-armed bandits

In the previous subsection, we saw that our passive sampling
algorithm actually outperforms existing adaptive sampling
algorithms for the reward learning task we care about. Here
we take this a step further—we specialize our algorithm
to the case of kernel MABs, and show that it outperforms
standard algorithms for that setting and is competitive with
a specialized algorithm for Matérn kernels.

We consider the task of maximizing an unknown function
f∗ : X 7→ R over its domain X ⊂ Rd. In the kernel multi-
armed bandit (MAB) setup, this unknown function f be-
longs to an RKHS H, equipped with a positive-definite ker-
nel4 K, such that ∥f∗∥H = 1. Let us further restrict our at-
tention to the space of input points X = {x ∈ Rd | ∥x∥2 ≤
1}. The learner is allowed to access this function via a noisy
zeroth-order oracle

Of∗ : x 7→ f∗(x) + η where η ∼ N (0, τ2) . (9)

Going forward we will assume that τ = 1. The above oracle
is similar to the reward oracle Or∗ , except that the query
points x belong to a finite dimensional space and f∗ is a
non-linear function of the query point x. The goal in MAB
is to minimize the T -step regret

RT : = max
x∈X

f∗(x)−
T∑

t=1

f∗(xt) , (10)

where xt is the datapoint queried in the tth round. There
have been several algorithms proposed to solve this problem
including general purpose UCB algorithms (Srinivas et al.,
2010; Chowdhury and Gopalan, 2017), Thompson sampling
approaches (Chowdhury and Gopalan, 2017), and special-
purpose algorithms for specific kernels (Janz et al., 2020).

We next show that kernel MAB can be cast as a special
case of our non-parametric policy learning framework. The
resulting regret bounds, derived from an application of The-
orem 3, are better than several general purpose algorithms

4We require that the kernel K be a Mercer’s kernel satisfying
K(x, x) = c for all x ∈ X .
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Algorithm Regret RT Non-vacuous regime

GP-UCB (Srinivas et al., 2010) Õ(T
2ν+d(3d+3)
4ν+d(2d+2) ) ν > d2+d

2

GP-TS (Chowdhury and Gopalan, 2017) Õ(T
2ν+d(3d+3)
4ν+d(2d+2) ) ν > d2+d

2

Our work Õ(T
4ν+d(4d+6)
6ν+d(4d+7) ) ν > 3

2

π-GP-UCB (Janz et al., 2020) Õ(T
2ν+d(2d+3)
4ν+d(2d+4) ) ν > 1

SupKernelUCB (Vakili et al., 2021) Õ(T
ν+d
2ν+d ) ν > 1

Table 1. Our algorithm specializes to the case of kernel multi-armed bandits and yields strong bounds. For a d-dimensional Matérn
kernel with smoothness ν, we outperform both GP-UCB and GP-TS unless ν ≳ d2. The only works to achieve better bounds for
small ν are π-GP UCB, which was designed specifically for the Matérn kernel and a recent analysis of the SupKernelUCB which
achieves near minimax rates.

(GP-UCB, IGP-UCB, GP-TS) and comparable to those spe-
cialized for the Matérn kernel (π-GP-UCB) and SupKer-
nelUCB.

In order to reduce kernel MAB to our framework, we need to
introduce three elements – the policy space Hπ , the reward
space Hr and the map M . We would like spaces Hr and
Hπ such that (1) the resulting objective F (r, π) is linear
in this space, (2) the resulting rewards and policies have
unit norm in their respective space, and (3) we have a good
understanding of the eigenvalues of the resulting operator.
This last point ensures that we can employ our upper bounds
from Section 4.

Before we define these, we let Cϵ denote an ϵ-net of the
input space X under the ℓ2 norm and denote its size by
Ncov(ϵ). We define the kernel matrix K ∈ RNcov×Ncov on
points selected in the cover as K(i, j) = K(xi, xj) for all
(xi, xj) ∈ Cϵ × Cϵ.

Reward space Hr. Given the RKHS H as well as the
elements of the cover Cϵ, we view the reward function as
a map from Cϵ to R, or equivalently as a vector in RNcov(ϵ).
More precisely, letting f̃ = [f(x1), . . . , f(xNcov)] denote
the vector of evaluations of a function f , we define

Hr : = span{f̃ | f ∈ H}
with ⟨f̃1, f̃2⟩Hr

: = f̃⊤
1 K−1f̃2.

. (11)

With this notation, we define the true reward r∗ : = f̃∗ =
[f∗(x1), . . . , f

∗(xNcov)].

Policy Space Hπ. Similarly to rewards, we will em-
bed policies in RNcov . For any point x ∈ Cϵ, let kx =
[K(x, x1), . . . ,K(x, xNcov)] denote the corresponding vec-
tor in RNcov obtained by evaluating the kernel K over the
cover. Then, the space

Hπ : = span{kx | x ∈ Cϵ}
with ⟨k1, k2⟩Hπ

: = ⟨k1,K−2k2⟩ .
(12)

The choice of the above norm ensures that

⟨ki, kj⟩Hπ
= ⟨K−1ki,K

−1kj⟩ = δi,j

for all (xi, xj) ∈ Cϵ × Cϵ .

Thus in particular, Hπ contains an orthonormal embedding
of the set of vectors {kx}x∈Cϵ .

Map M . Both the reward space Hr and policy space Hπ

can be associated with RNcov . Under this transformation, the
evaluation f∗(x) for any x ∈ Cϵ corresponds to the standard
inner product with

F (r∗, πx) = f∗(x) = (f̃∗)⊤K−1kx = ⟨r∗, kx⟩Hr
.

This indicates that we should take the map M to be the
identity. Furthermore, as a simple application of Mercer’s
theorem it follows that this map M is a bounded linear
operator.

We make an additional assumption on the kernel function
K, requiring it to be Lipschitz in its input arguments. This
assumption is often satisfied, in particular for the Matérn
kernel when ν > 3/2.

Assumption 2 (Lipschitz Kernel K). The Kernel K associ-
ated with the Hilbert space H is LK-Lipschitz with respect
to the ℓ2-norm for some LK > 0:

|K(x, y)−K(x, x)| ≤ LK∥x− y∥2 for all x ∈ X , y ∈ X .

Furthermore, the kernel satisfies K(x, x) = 1 for all points
x ∈ X .

Applying Theorem 2 under the above assumption, we obtain
the following excess risk bound for the plug-in estimator
evaluated on the unknown function f∗.

Theorem 3 (Excess risk for Kernel MAB). Suppose that the
eigenvalues of a LK-Lipschitz kernel K satisfy the power-
law decay µj ≍ j−β . Let x̂plug be the output of Algorithm 1
using n queries to the oracle Of∗ . Then, for any value of
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Figure 1. (a) Corroborating upper bound from Corollary 1. Our theoretical bounds predict a rate of n−0.27 and the experiment
shows an almost matching rate of n−0.28. (b) As the dimension d is increased, the excess risk curves asymptote at different
levels for different n. This shows that our algorithm achieves non-vacuous error for the doubly-nonparametric set in the regime
d → ∞.

β > 1 + 2
d + log(1δ ) and ϵ ∈ (0, 1), the excess risk satisfies

max
x:∥x∥2≤1

f∗(x)− f∗(x̂plug) ≲ N
1

β+2
cov (ϵ) · n

−β
2(β+2)

+N
1−β
2

cov (ϵ) +
√
LKϵ ,

with probability at least 1− δ.

For Matérn kernels, it is known that the eigenvalues de-
cay with parameter β = 1 + 2ν

d (Janz et al., 2020). Sub-
stituting this along with a bound on the covering number
Ncov(ϵ) ≍

(
1
ϵ

)d
, we obtain the following corollary.

Corollary 3 (Regret bound for Matérn Kernel). Consider
the family of Matérn kernels with parameter ν > 3

2 defined
with the Euclidean norm over Rd. The T -step regret of our
algorithm is

Rmat,T = Õ
(
T

4ν+d(6+4d)
6ν+d(7+4d)

)
.

We defer all the proofs as well as a detailed introduction
to the family of Matérn kernels to Appendix C. Note that
the above bound is for regret, which is an online notion,
while our previous results are offline notions. We get from
one to the other using a standard batch-to-online conversion
bound based on an explore-then-commit strategy. Table 1
compares the above bound to the existing literature.

6 Experimental evaluation

We experimentally evaluate our algorithm via a simulation
study. We use these experiments to establish the dimension
free nature of our results as well as to conjecture optimality
of our bounds.

Setup. In the simulation study, we work with d dimensional
RKHSs Hr and Hπ . In order to simulate the nonparametric
regime, we typically use value of n which are less or at

most a constant times the dimension d. We set the matrices
Sπ = diag(j−1.75), Sr = diag(j−1) and the map M = I .
With this, the effective decay parameter β = βπ−βr = 0.75.
We further sampled the oracle noise ϵ ∼ N (0, 0.01). All
plots were averaged over 10 runs.

Observations. Figure 1(a) shows the variation of excess risk
as the number of queries n are varied from 256 to 4096 on a
log-log plot. Our bounds in Corollary 1 for this setup predict
that the excess risk should decay at a rate O(n−0.27). By
fitting a linear line through the plot, we found that observed
risk to vary as O(n−0.28). This plot is suggestive of the
fact that our theoretical upper bounds might be tight in
a minimax way over choices of decay parameter β. In
Figure 1(b), we plot the excess risk as we vary the dimension
d from 32 to 8192 for four different choices of sample size,
again, on a log-log scale. Increasing the number of queries
decreases the excess risk for all dimensions consistently.
The risk curves tend to asymptote at different error levels
for different values of n. This corroborates our theoretical
findings that our proposed algorithm provides non-vacuous
bounds for the doubly-nonparametric setup when d → ∞.

7 Discussion

In this work, we proposed a new theoretical framework,
Doubly Nonparametric Bandits, for studying the reward
learning problem. We derived non-asymptotic bounds on
the excess risk of a ridge regression based plug-in estimator
and showed how the well studied GP bandit optimization
problem can be cast as a special case of our rich framework.
Our current analysis relies on a regularity assumption on
the policy space Cπ; can we obtain bounds on the excess
risk in the absence of this assumption?

Going forward, it would be interesting to study the closed
loop dynamics between the reward and the policy learning
algorithm when the learner actively queries for feedback.
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A Technical details for proposed framework

A.1 RKHS assumption

The Hilbert spaces Hπ and Hr are Reproducing Kernel Hilbert Spaces defined by kernel functions Kπ,Kr : X ×X 7→ [0, 1]
respectively defined over a compact instance space X . Further, the kernels Kπ and Kr satisfy the Hilbert-Schmidt condition∫

X×X
Ki(x, z)

2dP(x)dP(z) ≤ ∞ for i = {π, r} , (13)

for some distribution P over space X . Mercer’s theorem (Mercer, 1909) implies that such kernel functions have an associated
set of eigenfunctions (with corresponding eigenvalues) that form an orthonormal basis for L2(X ,P). We restate a version of
this theorem below (Wainwright, 2019).

Theorem 4 (Mercer’s theorem). Suppose that the space X is compact and the positive semi-definite kernel K satisfies the
Hilbert-Schmidt condition (13). Then there exists a sequence of eigenfunctions (ϕj)

∞
j=1 that form an orthonormal basis of

L2(X ,P) and non-negative eigenvalues (µj)
∞
j=1 such that∫

X
K(x, z)ϕj(z)dP(z) = µjϕj(x) for all j = 1, 2, . . . . (14)

Furthermore, the kernel function has the expansion

K(x, z) =

∞∑
j=1

µjϕj(x)ϕj(z) , (15)

where the convergence of the sequence holds absolutely and uniformly.

A.2 Conditions for reward boundedness

For learning to be feasible in the proposed framework, we would require that the evaluation functional F (π, r∗) is bounded
for any policy π ∈ Hπ . Using the fact that ∥r∗∥Hr

≤ 1 and ∥π∥Hπ
≤ 1, we have

F (π, r∗) = ⟨r∗,Mπ⟩Hr
= (r∗)⊤SrMπ ≤ ∥S

1
2
r MS

− 1
2

π ∥op . (16)

Thus one sufficient condition for the reward functional to be bounded is to ensure that the operator norm ∥S
1
2
r MS

− 1
2

π ∥op is
finite. In the special case when the map is diagonal with M = diag(νj), the above condition simplifies to

F (π, r∗) ≤ sup
j≥1

νjµ 1
2
π,j

µ
1
2
r,j

 . (17)

A.3 Regularity assumptions on map M

We assume that the map M is a compact bounded operator from the policy space Hπ to the reward space Hr. By Schauder’s
theorem, the adjoint M∗ is also a compact operator. Thus, the map M∗M : Hπ → Hπ is a compact self-adjoint operator.
This allows us to use the spectral theorem for compact self-adjoint operators which guarantees the existence of eignevalues
and eignefunctions for the operator M∗M and a corresponding singular value decomposition for the map M (Kreyszig,
1978).

A.4 Non-aligned RKHSs

As mentioned in the Section 2, if the eigenvectors of the spaces Hr and Hπ are not aligned, one can consider the following
simple transformation which resolves this. Let Φπ and Φr represent the eigenvectors.

r̃ = Φrr, π̃ = Φ⊤
π π, and M̃ = Φ⊤

r MΦπ . (18)

The above transformation implies that ∥r̃∥Hr
≤ 1 and ∥π̃∥Hπ

≤ 1.
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B Proof of main results

In this section we provide the proofs for the main results of this work. Appendix D to follow contains the proofs for the
other results.

B.1 Proof of Theorem 1

We begin by proving the result for the special case when the policy set Cπ consists of the entire unit ball and then generalize
the analysis to arbitrary policy sets.

Case 1: Cπ is unit ball in Hπ . For this special case, observe that the the optimal policy π∗ and the plug-in policy π̂plug for
any reward estimate r̂ can be written as

π∗ =
M∗r∗

∥M∗r∗∥Hπ

and π̂plug =
M∗r̂

∥M∗r̂∥Hπ

, (19)

where the operator M∗ is the adjoint of of the map M . To prove a bound on the excess risk using the plug-in estimate, we
use the following lemma which bounds this error in terms of deviation of the estimated and true rewards.
Lemma 1. Consider any vectors x and y with finite non-zero norm under some inner product ⟨·, ·⟩. Then, we have

⟨x, x

∥x∥
− y

∥y∥
⟩ ≤ ∥x− y∥2

2∥y∥
. (20)

The proof of the above lemma is presented in Section B.1.1. Taking the above as given, we can upper bound the excess risk

∆(π̂; r∗) = ⟨M∗r∗,
M∗r∗

∥M∗r∗∥Hπ

− M∗r̂

∥M∗r̂∥Hπ

⟩Hπ

≤
∥M∗(r∗ − r̂)∥2Hπ

2∥M∗r̂∥Hπ

. (21)

Case 2: Arbitrary set Cπ. For this case, consider the excess risk of plug-in estimator π̂plug obtained by maximizing
reward estimate r̂

∆(π̂; r∗) = ⟨M∗r∗, π∗ − π̂plug⟩Hπ

= ⟨M∗(r∗ − r̂), π∗⟩Hπ
+ ⟨M∗r̂, π∗ − π̂plug⟩Hπ

+ ⟨M∗(r̂ − r∗), π̂plug⟩Hπ

(i)

≤ 2∥M∗(r∗ − r̂)∥Hπ
, (22)

where the final inequality follows from the fact that π̂plug maximizes F (π; r̂) over the set Cπ .

Thus, we see that for both the cases above, we can upper bound the excess risk of the plug-in estimator in terms of the
norm ∥M∗(r∗ − r̂)∥Hπ

. Next, we evaluate this for the ridge regression based reward estimator for any set of n queries
Q = {π1, . . . , πn} with covariance matrix Σ = 1

n

∑
i πiπ

⊤
i . For any regularization parameter λreg > 0, we have,

r̂ = arg min
r∈Hr

1

n

n∑
i=1

(yi − ⟨r,Mπi⟩Hr
)2 + λreg∥r∥2Hr

(i)
= (MΣM⊤Sr + λregI)

−1 · 1
n

n∑
i=1

yiMπi

= r∗ − λreg(MΣM⊤Sr + λregI)
−1r∗ + (MΣM⊤Sr + λregI)

−1

(
M

n

n∑
i=1

ϵiπi

)
, (23)

where and equality (i) follows by substituting the value of yi = F (πi, r
∗) + ϵi. Let us denote by matrix A = MΣM⊤Sr +

λregI . Therefore, the error in reward estimation

r̂ − r∗ = λregA
−1r∗ +A−1

(
M

n

n∑
i=1

ϵiπi

)

∼ N
(
λregA

−1r∗,
τ2

n
A−1MΣM⊤A−⊤

)
, (24)
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where the final distribution follows from our assumption on the noise variables ϵi ∼ N (0, τ2). Using this above distributional
form, we have

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ⟨M∗A−1r∗,M∗A−1r∗⟩Hπ +
τ2

n
· tr
[
SπM

∗A−1MΣnM
⊤A−⊤(M∗)⊤

]
= λ2

reg · tr
[
(r∗)⊤A−⊤(M∗)⊤SπM

∗A−1r∗
]
+

τ2

n
· tr
[
SπM

∗A−1MΣM⊤A−⊤(M∗)⊤
]
. (25)

The final bound for the general policy set Cπ follows from using the above bound with a an application of Jensen’s
inequality. In order to convert the above bound to a high probability bound, we require an infinite dimensional analog of the
Hanson-Wright concentration inequality. Using Theorem 2.6 from Chen and Yang (2021) along with equation (24), we
obtain

Pr(∆(π̂; r∗) ≥ E[∆(π̂; r∗)] + t) ≤ 2 exp

(
−Cmin

(
t2

∥Γ∥2HS
,

t

Γ∥op

))

where the covariance matrix Γ = S
1
2
π M∗A−1MΣM⊤A−⊤(M∗)⊤S

1
2
π .

B.1.1 Proof of Lemma 1

Let the vector y = x+ δx for some difference vector δx. Using this, we have

⟨x, x

∥x∥
− y

∥y∥
⟩ = ⟨x, x

∥x∥
− x+ δx

∥x+ δx∥
⟩

=
∥x∥

∥x+ δx∥

(
∥x+ δx∥ − ∥x∥ − ⟨x, δx⟩

∥x∥

)
(i)

≤ ∥x∥
∥x+ δx∥

(
∥x∥+ ⟨x, δx⟩

∥x∥
+

∥δ2x∥
2∥x∥

− ∥x∥ − ⟨x, δx⟩
∥x∥

)
=

δ2x
2∥x+ δx∥

, (26)

where (i) follows from using the inequality
√
a2 + z ≤ a+ z

2a . This establishes the result.

B.2 Proof of Proposition 1

Let us denote the the map M = diag(νj) and the covariance matrix Σ = diag(σj). From the upper bound obtained in
Theorem 1, we have,

E[∥M∗(r∗ − r̂)∥2Hπ
] = λ2

reg · ∥M∗A−1r∗∥2Hπ
+

τ2

n2
·

n∑
i=1

∥M∗A−1Mπi∥2Hπ

(i)

≤ λ2
reg · ∥S

1
2
π M

∗A−1S
− 1

2
r ∥2op +

τ2

n
· tr
[
SπM

∗A−1MΣM⊤A−⊤(M∗)⊤
]

(ii)

≤ λ2
reg · sup

j≥1

[
ν2j µr,jµπ,j

ν4j σ
2
j + λ2

regµ
2
r,j

]
+

τ2

n
· sup
j≥1

[
ν4j µ

2
π,j

ν4j σ
2
j + λ2

regµ
2
r,j

]
, (27)

where inequality (i) follows from using the fact that ∥r∗∥Hr
≤ 1 and inequality (ii) uses the diagonal structure of the map

M as well as the fact that each policy πi ∈ Q has unit Hπ-norm.

Recall that the choice of querying strategy queries each scaled eigenfunction √
µπ,jϕπ,j of the policy space n1−α times.

Therefore the jth entry of the covariance matrix Σ is given by

σj =

{
µπ,j

nα for j ≤ nα

0 otherwise
. (28)
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Plugging the above value of σj into equation (27), we obtain

E[∥M∗(r∗ − r̂)∥2Hπ
] ≤ max

{
sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
, sup
j>nα

ζj

}

+
τ2

n
·max

{
sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α

, sup
j>nα

ζ2j
λ2
reg

}
(29)

This concludes the proof of the proposition.

B.3 Proof of Corollary 1

We now derive explicit finial sample rates for the case when the spectrum of the map M⊤SrMS−1
π satisfies a power law

decay for some parameter β > 0. In the notation used in Proposition 1, we have the quantity

ζj ≍ j−β . (30)

Our proof strategy will be to instantiate the bias and variance terms for this setting of ζj and finally select a setting for the
exploration parameter α and regularization parameter λreg.

Bounding Bias. The bias term in the proposition is a max over two terms

Bias2 = max

{
sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
, sup
j>nα

ζj

}
. (31)

We consider the two terms in the analysis here separately. For the first term,

sup
j≤nα

λ2
regn

2αζj

ζ2j + λ2
regn

2α
= λ2

reg sup
j≤nα

[
1

j−β

n2α + λ2
regj

β

]
≤ λregn

α , (32)

where the final inequality follows from using a2 + b2 ≥ 2ab. For the second term, we have

sup
j≥nα

ζj = sup
j≥nα

j−β = n−αβ . (33)

Bounding Variance. Recall that the variance term (assuming τ = 1) is given by

Variance =
1

n
·max

{
sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α

, sup
j>nα

ζ2j
λ2
reg

}
. (34)

We again consider both terms of the maximum separately. For the first term,

1

n
· sup
j≤nα

n2αζ2j
ζ2j + λ2

regn
2α

≤ n2α−1 , (35)

where the inequality follows from ignoring the term λ2
regn

2α in the denominator. For the second variance term,

sup
j>nα

ζ2j
nλ2

reg

=
n−2αβ

λ2
regn

. (36)

Setting regularization parameter. By setting λreg > n−αβ−α, we can have that the bias term is dominated by λregn
α.

Similarly, the above setting also implies that the variance term is dominated by n2α−1. Combing these observations, we
have that the expected error is upper bounded by

∆(π̂plug; r
∗) ≤ λregn

α + n2α−1 where λreg > n−αβ−α. (37)

Setting λreg = n−α(β+1) and then α = 1
β+2 , we get that

∆(π̂plug; r
∗) ≤ n− β

β+2 . (38)

This completes the proof of the corollary.
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B.4 Proof of Theorem 2

In order to prove the general theorem, we exhibit a transformation which allows us to reduce the problem to that with the
diagonal structure described in Proposition 1.

We will consider orthogonally diagonalizable matrices Sr and Sπ which represent the eigenvectors and eigenvalues of the
Hilbert spaces Hr and Hπ . Consider the following set of transformations for any reward r ∈ Cr and policy π ∈ Cπ .

r̃ = S
1
2
r r, π̃ = S

1
2
π π, M̃ = S

1
2
r MS

− 1
2

π . (39)

With this transformation, we can rewrite the objective function above

max
π̃

⟨r̃, M̃ π̃⟩ s.t. ⟨π̃, π̃⟩ = 1 and ⟨r̃, r̃⟩ = 1 ,

where the inner product ⟨·, ·⟩ denotes the standard ℓ2 inner product. Observe that we have overloaded notation to denote by
r̃∗ = r̃. Further, using these above transformations, we can rewrite the adjoint operator

M∗ = S−1
π M⊤Sr = S

− 1
2

π (S
1
2
r MS

− 1
2

π )⊤S
1
2
r = S

− 1
2

π M̃⊤S
1
2
r . (40)

Recall from Theorem 1, the matrix

A = MΣM⊤Sr + λregI = S
− 1

2
r

[
M̃ Σ̃M̃⊤ + λregI

]
S

1
2
r , (41)

where the covariance matrix Σ̃ = 1
n

∑
i π̃π̃

⊤. We have used the fact here that the matrices Sπ and Sr are orthogonally
diagonalizable and hence symmetric. Finally, we will denote the singular value decomposition of the compact map M in the
matrix form as

M̃ = UM̃ΛM̃V ⊤
M̃

.

The existence of such a decomposition is guaranteed by the regularity assumptions we consider on the map M in Appendix A.
We will now analyze the bias and the variance terms from the upper bound on E[∥M∗(r∗ − r̂∥2Hπ

] from Theorem 1.

Bound on bias. The squared bias term is given by

λ−2
reg · Bias2 = r⊤A−⊤(M∗)⊤SπM

∗A−1r

= r⊤S
1
2
r S

− 1
2

r · S
1
2
r (M̃ Σ̃M̃⊤ + λregI)

−1S
− 1

2
r · S

1
2
r M̃S

− 1
2

π · Sπ ·M∗A−1r

= r̃⊤(M̃ Σ̃M̃⊤ + λregI)
−1M̃ · S

1
2
π S

− 1
2

π M̃⊤S
1
2
r · S− 1

2
r (M̃ Σ̃M̃⊤ + λregI)

−1S
1
2
r r

= r̃⊤(M̃ Σ̃M̃⊤ + λregI)
−1M̃ · M̃⊤(M̃ Σ̃M̃⊤ + λregI)

−1r̃

= r̃⊤UM̃ (ΛM̃V ⊤
M̃
Σ̃VM̃ΛM̃ + λregI)

−1Λ2
M̃
(ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1U⊤
M̃
r̃ , (42)

where we have used the SVD decomposition for the matrix M̃ in the last step.

Bound on variance. The variance term is given by

Var =
τ2

n
· tr
[
SπM

∗A−1MΣnM
⊤A−⊤(M∗)⊤

]
=

τ2

n
· tr
[
M̃⊤(M̃ Σ̃M̃⊤ + λregI)

−1M̃ Σ̃M̃⊤(M̃ Σ̃M̃⊤ + λregI)
−1M̃

]
=

τ2

n
· tr
[
ΛM̃ (ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1ΛM̃V ⊤
M̃
Σ̃VM̃ΛM̃ (ΛM̃V ⊤

M̃
Σ̃VM̃ΛM̃ + λregI)

−1ΛM̃

]
. (43)

Finally, by making a substitution for reward r̃ = U⊤
M̃
r̃ and policy π̃ = V ⊤

M̃
π̃ in equations (42) and (43), we recover back the

bias variance expressions used in the analysis for Proposition 1. What remains to be shown is that our particular choice of
query policies correspond to basis vectors in this transformed space. For this, observe that the sampling policies

πj =

∞∑
i=1

√
µπ,i · ⟨ϕM̃,j , ϕπ,i⟩ϕπ,i for j ≤ nα ,
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is such that the transformed policies

π̃j = V ⊤
M̃
S

1
2
π πj = V ⊤

M̃
S

1
2
π · S− 1

2
π VM̃ej = ej , (44)

indeed correspond to the basis vector. This finishes the proof of the desired claim.

B.5 Proof of Corollary 2

The proof of this corollary follows similar to that of Corollary 1 in terms of bounding the bias and the variance. The final
rate follows by an application of Jensen’s inequality to conclude

E[∥M∗(r∗ − r̂)∥Hπ
] ≤ (E[∥M∗(r∗ − r̂)∥2Hπ

])
1
2 . (45)

The final rate that we get in this case is thus upper bounded by the square root of the rate observed in Corollary 1. This
concludes the proof.

C Gaussian process bandit optimization

In this section, we discuss in detail the application of our framework to the problem of frequentist Gaussian process bandit
optimization, also known as Kernelized multi-armed bandits (MAB) problem. Recall the reduction of the Kernel MAB
problem to our setup required us to define three elements.

Reward space Hr. Given the RKHS H as well as the elements of the cover Cϵ, we view the reward function as a map
from Cϵ to R, or equivalently as a vector in RNcov(ϵ). More precisely, letting f̃ = [f(x1), . . . , f(xNcov)] denote the vector of
evaluations of a function f , we define

Hr : = span{f̃ | f ∈ H}
with ⟨f̃1, f̃2⟩Hr : = f̃⊤

1 K−1f̃2
, (46)

where ⟨·, ·⟩ represents the standard ℓ2 inner product. With this notation, let us define the true reward r∗ : = f̃∗ =
[f∗(x1), . . . , f

∗(xNcov)].

Policy Space Hπ . For the policy space Hπ in our setup, we let

Hπ : = span{kx = [K(x, x1), . . . ,K(x, xNcov)] ∈ RNcov | x ∈ Cϵ}
with ⟨k1, k2⟩Hπ

: = ⟨k1,K−2k2⟩ .
(47)

The choice of the above norm ensures that

⟨ki, kj⟩Hπ
= ⟨K−1ki,K

−1kj⟩ = ⟨ei, ej⟩ = δi,j for all (xi, xj) ∈ Cϵ × Cϵ .

For the policy space Hπ , we have created an orthonormal embedding of the set of vectors {kx}x∈C . Observe that this policy
set that we construct satisfies the regularity Assumption 1 because each vector k is an eigenvector of the space Hπ .

Map M . By our assumption that the kernel K is a Mercer’s kernel, we have that Hπ ⊆ Hr, that is, for all x ∈ C, the
vector kx ∈ Hr. Furthermore, both Hr and Hπ are sub-spaces of RNcov and we can take the map M = INcov .

With these definitions, we now explicitly establish a correspondence between our doubly nonparameteric bandit problem
and the Kernel MAB problem.

C.1 Connecting the problems

Given an RKHS H with an associated Mercer’s kernel K, the objective of the zeroth-order bandit optimization problem is

max
x∈X

f∗(x) such that ∥f∗∥H ≤ 1 , (P1)
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with access to oracle
Of∗ : x 7→ f∗(x) + η where η ∼ N (0, τ2) .

Equivalently, the objective in our reward learning framework is

max
π∈Hπ

⟨r∗, π⟩Hr
such that ∥r∗∥Hr

≤ 1 and ∥π∥Hπ
≤ 1 , (P2)

with the corresponding spaces and inner products are defined in the previous section. The oracle required in our setup
responds with

Or∗ : π 7→ ⟨r∗, π⟩Hr
+ η where η ∼ N (0, τ2) ,

for any policy π ∈ Hπ such that ∥π∥Hπ
≤ 1. Our first lemma below states that obtaining such a n oracle is indeed feasible if

we are able to restrict our queries π to include only points kx for which the vector kx ∈ Cϵ.
Lemma 2. Given access to oracle Of∗ for a function f∗, the corresponding oracle Or∗ can be implemented when the
query set consists of {kx}x∈Cϵ

.

Proof. For any query point k, the oracle Or∗ needs to compute the value ⟨r∗, k⟩Hr = f∗(x). Thus, these two oracles on the
provided query set are exactly identical.

Lemma 3. For any f∗ ∈ H satisfying ∥f∗∥H ≤ 1, we have that ∥r∗∥Hr ≤ 1.

Proof. Observe that an alternate way to define the RKHS norm is given by

∥f∥H : = sup
S⊆X ;|S|≤∞

f |SK−1
S f |S .

The fact that ∥r∗∥Hr is computed on Cϵ ⊂ X establishes the desired claim.

Finally, we turn to establishing a relation between the solutions obtained from solving the relaxed problem (P2) as compared
to solving the original problem (P1). We denote the corresponding maximizers for both problems

x∗ ∈ argmax
x∈X

f∗(x) and x∗
π ∈ argmax

x∈Cϵ

⟨r∗, kx⟩Hr
, (48)

The following lemma now relates both these maximizers together.

Lemma 4. For an RKHS H with kernel K satisfying Assumption 2 with constant LK > 0 and any function f∗ ∈ H, let
x∗ ∈ X and x∗

π ∈ Cϵ be the maximizers as defined in equation (48), we have

f∗(x∗
π) ≥ f∗(x∗)−

√
2cLKϵ . (49)

Proof. Denote by ΠCϵ
(x∗) := argminx∈Cϵ

∥x∗ − x∥2 the projection of the point x∗ onto the set Cϵ. Then, we have

f∗(x∗)− f∗(x∗
π) = f∗(x∗)− f∗(ΠCϵ(x

∗)) + f∗(ΠCϵ(x
∗))− f∗(x∗

π)

≤
√

2cLKϵ .

This completes the proof of the lemma.

The above lemma shows that solving Problem P2 is equivalent to solving Problem P1 up to an additive factor of
√
2cLKϵ

when we are working with an ϵ-cover over the domain space.

C.2 Analysis for bandit optimization

Recall from the previous section that the quantity which determines the rate of decay is the ratio of eigenvalues

ζj =
µ̂π,j

µ̂r,j
=

µ̂2
r,j

µ̂r,j
= µ̂r,j ,

where µ̂r,j is the jth eigenvalue of the kernel matrix K. Let us denote by P denote the uniform distribution over the input
space X and let us suppose that the cover Ncov is formed using random samples from this distribution. Let us denote by
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{µj} the eigenvalues and by ϕj the corresponding eigen vectors of the Mercer kernel K. For every point x ∈ X , let us
denote by

Φ(x) :=
(√

µjϕj(x)
)∞
j=1

,

the corresponding featurization of the point x. Then, for S : = Ex∼P[Φ(x)Φ(x)
⊤], we have

[S]j,k = [Ex∼P[Φ(x)Φ(x)
⊤]]j,k = Ex∼P[

√
µj

√
µkϕj(x)ϕk(x)] = µjδj,k . (50)

Observe that the kernel matrix K and the (scaled) sample covariance matrix Ncov · Ŝ =
∑

x∈C Φ(x)Φ(x)
⊤ are similar

matrices and thus have the same eigenvalues. The following lemma, adapted from Koltchinskii and Lounici (2017, Theorem
9) relates the eigenvalues of the sample covariance matrix Ŝ to those of the underlying kernel K.

Lemma 5. For any λS > 0 and size of the cover satisfying Ncov(ϵ) > c · tr(S(S+λSI)−1)
ϵ2S

+ 1
ϵ2S

log
(
1
δ

)
, we have,

µ̂j ≤ (1 + ϵS)µj + λSϵS for all j , (51)

with probability at least 1− δ.

The following corollary of Lemma 5 provides us with a way to control the deviation of the eigenvalues µ̂j from the
corresponding µj in a multiplicative manner.
Corollary 4. For any value of decay parameter β > 1 and γ < β, we have, for all j, the eigenvalues

µ̂j ≤
3

2
µj +

N−γ
cov

2
, (52)

with high probability.

Proof. Let us understand the condition Ncov(ϵ) ≫ tr(S(S+λSI)−1)
ϵ2S

and see what restrictions it puts on the value of the

covering number. Lets suppose that the true eigen values µj ≍ j−β and we set the value of λS ≍ N−γ
cov . Therefore, the sum∑

j

j−β

j−β + λS
≲ N

γ
β
cov +

1

N−γ
cov

∑
j>N

γ
β
cov

j−β

≲ N
γ
β
cov +

N
γ
β
cov

β − 1
.

Thus, if we set ϵS = 1
2 , then for any β > 1 and γ < β, the above condition on the covering number will be satisfied and we

get desired bound on the deviation of the empirical eigenvalues from population eigenvalues.

The above corollary is essential to our argument because often times we have a good understanding of the decay of the
eigenvalues of the kernel K associated with the RKHS and this allows us to relate the set of empirical eigenvalues to these.

We now present a proof of Theorem 3, restated below, which upper bounds the excess risk for this setup. We will then use a
batch to online conversion bound to convert this to a regret bound and specialize to the Matérn kernel later.
Theorem 5 (Restated Theorem 3). Suppose that the eigenvalues of a LK-Lipschitz kernel K with respect to a distribution P
over X satisfy the power-law decay µj ≍ j−β . Let x̂plug be the output of Algorithm 1 using n queries to the oracle Of∗ .
Then, for any value of γ ∈ (1 + 1

d
log(1/ϵ)

log(LK/ϵ2) , β) and ϵ ∈ (0, 1), the excess risk

max
x

f∗(x)− f∗(x̂plug) ≲ N
1

β+2
cov (ϵ) · n

−β
2(β+2) +N

1−γ
2

cov (ϵ) +
√
LKϵ ,

with high probability.

Proof. Our strategy, as before, will be to explore nα directions and assume τ2 = 1. Recall, that for symmetric matrices,
Theorem 2, the excess error of the plug-in estimator can be upper bounded as

E[∆(π̂plug; r
∗)]2 ≤ λ2

reg sup
j≥1

 1
ν2
j σ

2
j

µπ,jµr,j
+

λ2
regµr,j

µπ,jν2
j

+
1

n
sup
j≥1

[
ν4j µ

2
π,j

ν4j σ
2
j + λ2

regµ
2
r,j

]
.
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Bounding Bias. We will split the analysis into two cases.

Case 1: j > nα. For this case, we have that σj = 0 and therefore

λ2
reg sup

j>nα

µ̂π,j

λ2
regµ̂r,j

= sup
j>nα

Ncovµ̂j ≲ sup
j>nα

Ncov(µj +N−γ
cov ) ≤ Ncovn

−αβ +N1−γ
cov , (53)

with the above holding with high probability from an application of Corollary 4 for any 1 < γ < β.

Case 2: j ≤ nα. For this case, we have σj =
µπ,j

nα . The bias can then be upper bounded as

λ2
reg sup

j≤nα

 1
ν2
jµπ,j

n2αµr,j
+

λ2
regµr,j

µπ,jν2
j

 ≤ λregn
α , (54)

where the final inequality follows from using a2 + b2 ≥ 2ab.

Bounding variance. As we did in the section above, let us split the analysis into two cases.

Case 1: j > nα. For this case, the variance term simplifies to

1

n
sup
j>nα

[
µ2
π,j

λ2
regµ

2
r,j

]
=

1

λ2
regn

sup
j>nα

[
N2

covµ̂
2
j

]
≤ N2

cov

λ2
regn

sup
j>nα

[
µ̂2
j

]
≲

N2
covn

−2αβ +N
2(1−γ)
cov

λ2
regn

. (55)

Case 2: j ≤ nα. For the second case, we can upper bound the variance term

1

n
sup
j≤nα

 ν4j µ
2
π,j

ν4
jµ

2
π,j

n2α + λ2
regµ

2
r,j

 ≤ n2α

n
, (56)

where the last inequality follows from ignoring the second term in the denominator.

Setting regularization parameter. From the analysis in the above paragraphs, we have

Bias2 ≤ max{Ncovn
−αβ +N1−γ

cov , λregn
α} ≤ max{Ncovn

−αβ , λregn
α}+N1−γ

cov , (57)

Variance ≤ max{N
2
covn

−2αβ +N
2(1−γ)
cov

λ2
regn

,
n2α

n
} ≤ max{N

2
covn

−2αβ

λ2
regn

,
n2α

n
}+ N

2(1−γ)
cov

λ2
regn

. (58)

For regularization parameter λreg > Ncovn
−αβ−α and γ > αβ

logn Ncov
, we have

Bias2 ≤ λregn
α +N1−γ

cov ,

Variance ≤ n2α

n
.

Excess risk bound. To obtain the final excess risk bound, we set α = 1+logn Ncov

β+2

E[∆(π̂plug; r
∗)]2 ≤ λregn

α +
n2α

n
+N1−γ

cov

≤ Ncovn
−αβ + n2α−1 +N1−γ

cov

(i)

≲ N
2

β+2
cov n

−β
β+2 +N1−γ

cov , (59)

where inequality (i) follows from our particular choice of α. Combining the above bound with Lemma 4 completes the
proof.

The following corollary instantiates the above theorem for the case when the input space is the unit ball, that is, X = Bd(1).
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Corollary 5. Let the input space X = Bd(1) and the kernel K satisfy Assumption 2. Then, for any β > 1 + 2
d , we have

max
x

f∗(x)− Ex∼π̂plug
f∗(x) ≲ L

d
β+2+2d

K n
−β

2(β+2+2d) . (60)

Proof. From the bound in Theorem 3, we have,

max
x

f∗(x)− Ex∼π̂plug
f∗(x) ≲ N

1
β+2
cov (ϵ) · n

−β
2(β+2) +N

1−γ
2

cov (ϵ) +
√

LKϵ

(i)

≤ N
1

β+2
cov (

ϵ2

LK
) · n

−β
2(β+2) +N

1−γ
2

cov (
ϵ2

LK
) + ϵ

(ii)

≤ L
d

β+2

K ·
(
1

ϵ

) 2d
β+2

· n
−β

2(β+2) +

(
LK

ϵ2

) d(1−γ)
2

+ ϵ

(iii)

≤ L
d

β+2

K ·
(
1

ϵ

) 2d
β+2

· n
−β

2(β+2) + 2ϵ , (61)

where inequality (i) follows from substituting ϵ → ϵ2/LK, (ii) follows from the fact that Ncov(ϵ) ≍
(
1
ϵ

)d
, and (iii) follows

from using the assumption that β > γ > 1 + 2
d

log(1/ϵ)
log(LK/ϵ2) .

Finally, setting ϵ ≍ L
d

β+2+2d

K n
−β

2(β+2+2d) , we get

max
x

f∗(x)− Ex∼π̂plug
f∗(x) ≲ L

d
β+2+2d

K n
−β

2(β+2+2d) .

This establishes the desired claim.

C.3 Regret bound for Matérn Kernel

In this section, we specialize the bound from Theorem 3 for the special class of Matérn kernels. Recall that the Matern
kernel is a distanced based kernel with K(x, y) = f(∥x − y∥). Denote by r = ∥x − y∥, the exact form for the kernel is
given by

KMatern,ν(r) =
21−ν

Γ(ν)

(√
2νr

l

)ν

Kν

(√
2νr

l

)
, (62)

with parameters ν and l and where Kν is the modified Bessel function of the second kind. Going forward, lets fix the scale
parameter l = 1 without loss of generality.

The following lemma then bounds the Lipschitz constant for this class of kernels when the distance function is the ℓ2 norm.

Lemma 6 (Lipschitz Matérn Kernel). Consider the Matérn kernel with parameter ν > 3
2 . The Lipschitz constant of this

kernel is bounded by

LK ≤ sup
r∈(0,1)

[
e22−ννKν−1(1)

Γ(ν)
· re−

√
2νr]. (63)

Proof. The approach will be to show that the kernel function KMatern,ν is a Lipschitz function of the distance r and then
cover the ℓ2 ball in the d dimensional space appropriately. We now look at the derivative of the function KMatern,ν(r) with
respect to r.

∂KMatern,ν(r) =
21−ν(

√
2ν)ν

Γ(v)

(
νrν−1Kν(

√
2νr∂r + rν∂Kν(

√
2νr
)

(i)
=

21−ν(
√
2ν)ν

Γ(v)

(
νrν−1Kν(

√
2νr)− rν

(
√
2νKν−1(

√
2νr) +

ν
√
2ν√

2νr
Kν(

√
2νr)

))
∂r

= −21−ν(
√
2ν)ν

Γ(v)

(
rν
√
2νKν−1(

√
2νr)

)
∂r , (64)
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where (i) follows from the identity ∂Kν(z) = (−Kν−1(z)− ν
zKν(z))∂z.

For any ν > 1
2 , we have the inequality

Kν(x)

Kν(y)
< expy−x

(y
x

)ν
for 0 < x < y. (65)

Instantiating the above with y = 1 and ν > 3
2 , we have

|∂KMatern,ν(r)| ≤
21−ν(

√
2ν)ν

Γ(v)

(
rν
√
2ν · e−

√
2νr

(
√
2νr)ν−1

· eKν−1(1)

)

≤ e22−ννKν−1(1)

Γ(ν)
· re−

√
2νr . (66)

The Lipschitz constant for this case can now be obtained by taking a sup over r ∈ (0, 1).

While our upper bound was in terms of sample complexity, in order to compete with the cumulative regret formulation, we
adapt an explore-then-commit strategy. The following lemma relates the sample complexity bound to a cumulative regret
bound.

Lemma 7 (Batch to online conversion). Suppose an algorithm has sample complexity O(n−α) in the passive learning setup,
the explore then commit strategy based on this learning algorithm would have regret O(T

1
1+α ).

Proof. For some parameter γ > 0, let the explore then commit algorithm explore for T γ steps and the commit to the strategy
obtained post this exploration for the remaining T − T γ time steps. The cumulative regret for such an algorithm is

RT = T γ + T−αγ(T − T γ) ≤ T γ + T 1−αγ . (67)

Setting γ = 1
1+α finishes the proof.

We now proceed to prove Corollary 3 which instantiates the bound in Theorem 3 for the class of Matérn kernels.

Corollary 6 (Restated Corollary 3). Consider the family of Matérn kernels with parameter ν > 3
2 defined with the euclidean

norm over Rd. The T -step regret of the explore-then-commit algorithm is

RMat,T ≲ O

(
L

d2

2ν+d(3+2d)

K · T
4ν+d(6+4d)
6ν+d(7+4d)

)
.

with high probability.

Proof. First, observe that excess risk bound in Corollary 5 can be converted to a corresponding T -step regret bound by an
application of Lemma 7 such that

RT ≲ O

(
L

d
β+2+2d

K · T
2β+4+4d
3β+4+4d

)
. (68)

For the class of Matérn kernels, the decay parameter β = 1 + 2ν
d (Janz et al., 2020, Theorem 9). Using this wit the above

regret bound, we get,

RMat,T ≲ O

(
L

d2

2ν+d(3+2d)

K · T
4ν+d(6+4d)
6ν+d(7+4d)

)
.

This completes the proof.
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D Adaptive sampling via GP-UCB

In this section, we prove an upper bound on the expected risk of the Gaussian process upper confidence bound algorithm
(GP-UCB) algorithm of Srinivas et al. (2010). In order to adapt their algorithm for our setup, consider the function

fr(x) := ⟨r,Mx⟩Hr such that D = {x | ∥x∥Hπ ≤ 1}. (69)

We have used x to denote policies in this setup to be consistent with the notation in Srinivas et al. (2010). Observe that the
domain defined above is not compact – a necessary condition for the algorithm to work. One work around this is to truncate
the unit ball after a finite number of dimensions and bound this truncation error. The excess risk incurred by this truncation
can be made arbitrary small. Going forward, we ignore this truncation. The regret for the UCB algorithm is shown to be
upper bounded by Õ(γT

√
T ) where γT is the information gain with

γT : = max
x1,...,xT∈D

1

2
log det(I + [K(xi, xj)]

T
i,j=1) , (70)

where we have assumed without loss of generality that the noise variance τ = 1. For our setup, the kernel function
K(xi, xj) = ⟨Mxi,Mxj⟩Hr

. We additionally require that the reward function r belongs to the RKHS spanned by the

set {Mx | x ∈ D}. Denote by S = S
1
2
π M⊤S−1

r S
1
2
π and suppose that its eigenvalues satisfy a power law decay with

σj(S) = ζj = j−β . The following lemma upper bounds the information gain for this setup in terms of the power law
parameter β > 0.
Lemma 8 (Information Gain.). The information gain γT for the above setup is bounded as

γT = O(log(T ) · T
1

β+1 ) . (71)

Proof. The quantity of interest here is the information gain

γT : = max
x1,...,xT

1

2
log det(I +XSX⊤) such that ∀j ∥xj∥2 ≤ 1 , (72)

where the matrix X = [x⊤
1 ; . . . ;x

⊤
T ] and we have assumed that the noise variance is 1. From the setup described above, we

have that the eigen values of S decay as λj ≍ j−β . It is easy to see that

Fig({xt}) :=
1

2
log det(I +XSX⊤) (73)

is a monotonic sub-modular function. Thus, the value of γT can be upper bounded by (1− 1/e)−1 times the value of the
greedy maximization algorithm. The greedy maximization algorithm is equivalent to picking

xt = argmax
x

Fig(Xt−1 ∪ {x}) .

It is easy to see that at each time t, the unit vector xt will be an eigen vector of the matrix S. Given this observation, we can
finally upper bound the value of the info gain

γT ≤ c · max
m1,...,mT

T∑
j=1

log(1 +mjλj) such that mj ≥ 0 and
∑
j

mj = T.

Solving the above optimization problem, the optimal choice of the variables

mj = max

{
1

λ
− 1

λj
, 0

}
and

∑
j

mj = T . (74)

Setting λ = T− β
β+1 ensures that there are T

1
β+1 active directions. Substituting the above values of mj in the expression for

γT , we get

γT ≤ c ·
∞∑
j=1

log(1 + max(
λj

λ
− 1, 0))

≤ c · log
(
λ1

λ

)
·

∞∑
j=1

I[λj > λ]

(i)
= O(log(T ) · T

1
β+1 ) ,
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where (i) follows from setting λ = T− β
β+1 . This establishes the required claim.

We are now ready to state this our sample complexity bound for GP-UCB for this subclass of problems.

Proposition 2 (Sample complexity for GP-UCB). Suppose that the police space Hπ, reward space Hr and the map M
satisfy the power law decay assumption with exponent β > 0. The estimator π̂ucb output by the GP-UCB algorithm satisfies

E[∆(π̂ucb; r
∗)] ≤ Õ(n− β−1

2(β+1) ) . (75)

The proof of the sample complexity bound in Proposition 2 now follows the regret bound of Õ(γT
√
T ) along with using the

upper bound on the information gain from Lemma 8.

E[∆(π̂plug; r
∗)] = Õ(n

1
β+1−

1
2 ) = Õ(n− β−1

2(β+1) ) . (76)

More recently, Cai and Scarlett (2021) extended the analysis of Valko et al. (2013) to show that the SupKernelUCB algorithm
achieves a regret bound Õ(

√
γTT ). Using this modified bound, one can improve the above analysis to obtain excess risk

E[∆(π̂plug; r
∗)] = Õ(n

1
2(β+1)

− 1
2 ) = Õ(n− β

2(β+1) ) , (77)

which is still worse than those obtained by the bounds by our proposed ridge regression estimator.

E Further details on experimental evaluation

In the simulation study, we work with d dimensional RKHSs Hr and Hπ . In order to simulate the nonparmeteric regime, we
typically use value of n which are less or at most a constant times the dimension d. We set the matrices Sπ = diag(j−1.75),
Sr = diag(j−1) and the map M = I . This is allowed since the policy space is smaller than the reward space. With this, the
effective decay parameter β = βπ − βr = 0.75. We sampled the true reward r∗ uniformly at random from the unit ball in
Hr. We further sampled the oracle noise ϵ ∼ N (0, 0.01). All plots were averaged over 10 runs.


