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Abstract

We study reinforcement learning (RL) for deci-
sion processes with non-Markovian reward, in
which high-level knowledge in the form of re-
ward machines is available to the learner. Specifi-
cally, we investigate the efficiency of RL under the
average-reward criterion, in the regret minimiza-
tion setting. We propose two model-based RL
algorithms that each exploits the structure of the
reward machines, and show that our algorithms
achieve regret bounds that improve over those of
baselines by a multiplicative factor proportional
to the number of states in the underlying reward
machine. To the best of our knowledge, the pro-
posed algorithms and associated regret bounds
are the first to tailor the analysis specifically to
reward machines, either in the episodic or average-
reward settings. We also present a regret lower
bound for the studied setting, which indicates that
the proposed algorithms achieve a near-optimal
regret. Finally, we report numerical experiments
that demonstrate the superiority of the proposed
algorithms over existing baselines in practice.

1 INTRODUCTION

Most state-of-the-art reinforcement learning (RL) algo-
rithms assume that the underlying decision process has
Markovian reward and dynamics, i.e. that future observa-
tions depend only on the current state-action of the system.
In this case, the Markov Decision Process (MDP) is a suit-
able mathematical model for representing the task to be
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solved (Puterman, 2014). However, there are many applica-
tion scenarios with non-Markovian reward and/or dynam-
ics (Bacchus et al., 1996; Brafman and De Giacomo, 2019;
Littman et al., 2017) that are more appropriately modeled
as Non-Markovian Decision Processes (NMDPs). NMDPs
capture environments in which the optimal action depends
on events that occurred in the past, implying that the learn-
ing agent has to remember parts of the history. For example,
a robot may receive a reward for delivering an item only if
the item was previously requested, and a self-driving car is
more likely to skid and lose control if it previously rained.
Consider a mobile robot that has to track an object which
is no longer in the robot’s field of view. By remembering
where the object was last seen, the robot has a better chance
of discovering the object again. An even more precise esti-
mation is given by the sequence of last observations (which
also capture direction of movement). This can be formal-
ized by defining high-level events that correspond to past
observations.

In general, the future observations of an NMDP can de-
pend on an infinite history or trace, preventing efficient
learning. Consequently, recent research has focused on
tractable sub-classes of NMDPs. In Regular Decision Pro-
cesses (RDPs) (Brafman and De Giacomo, 2019), the re-
ward function and next state distribution are conditioned on
logical formulas, making RDPs fully observable. Another
popular formalism is the Reward Machine (RM) (Toro Icarte
et al., 2018, 2022), which is a Deterministic Finite-State
Automaton (DFA) providing a compact representation of
history that compresses the entire sequence of past events
into a single state, which can be combined with the current
observation to determine the best action. Hence, the current
state of the reward machine is sufficient to fully specify the
reward function.

In this paper, we investigate RL in Markov decision pro-
cesses with reward machines (MDPRMs) under the average-
reward criterion, where the agent performance is measured
through the notion of regret with respect to an oracle aware
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of the transition dynamics and associated reward functions.
The goal of the agent is to minimize its regret, which entails
balancing exploration and exploitation. We focus on an
intermediate setting where the underlying a DFA is known,
while the actual transition distributions are unknown. For
a given MDPRM, it is possible to formulate an equivalent
cross-product MDP (adhering to the Markov property) as
discussed in the literature (Toro Icarte et al., 2018) – see
Lemma 1 here – and apply provably efficient off-the-shelf
algorithms obliviously to the structure induced by the MD-
PRM. However, this would lead to large regret, both em-
pirically and theoretically, as the associated cross-product
MDP usually has a large state-space. Therefore, sample-
efficient learning of near-optimal policies entails exploiting
the intrinsic structure of MDPRMs in an efficient manner.

1.1 Outline and Contributions

We formalize regret minimization in average-reward MD-
PRMs (Section 2), and establish a first, to the best of
our knowledge, regret lower bound for MDPRMs (Sec-
tion 5). We introduce two algorithms, UCRL-RM-L1 and
UCRL-RM-B, whose designs are inspired by the celebrated
UCRL2 algorithm (Jaksch et al., 2010) and its variants (e.g.,
(Fruit et al., 2018b, 2020; Zhang and Ji, 2019)), but they
are tailored to leverage the structure in MDPRMs; see Sec-
tion 3. The two algorithms admit a similar design and
mainly differ in the choice of confidence sets used. Nonethe-
less, they attain different performance in terms of empir-
ical and theoretical regret. We present numerical experi-
ments (in Section 6) demonstrating that both UCRL-RM-L1
and UCRL-RM-B significantly improve over existing tab-
ular RL baselines when directly applied to the associated
cross-product MDP. They also attain smaller regret bounds
than these baselines as detailed in Section 4. Specifically,
UCRL-RM-L1 (resp. UCRL-RM-B) achieves a regret grow-
ing as Õ(

√
cMOAT ) (resp. Õ(

√
c′MOAT )) in an MD-

PRM M , where OA is the size of its observation-action
space, T is the number of time steps, and Õ(·) hides logarith-
mic and constant terms (Section 4). Furthermore, cM and
c′M are MDP-dependent quantities. Specifically, cM and
c′M are defined in terms of a novel notion of connectivity in
MDPRMs, which we call the RM-restricted diameter, that is
a problem-dependent refinement of the diameter Dcp of the
cross-product MDP associated to M . 1 The RM-restricted
diameter of M reflects the connectivity in M jointly de-
termined by the dynamics and the sparsity structure of the
reward machine, and we believe it could be of interest in
other settings of reward machines. The RM-restricted di-
ameter is always smaller than Dcp, and in some MDPRM
instances, it is proportional to Dcp/Q, where Q denotes
the number of states of the reward machine. The presented

1The diameter of a finite MDP M is defined as D =
maxs ̸=s′ minπ E[Tπ(s, s′)], where Tπ(s, s′) is the number of
steps it takes to reach s′ starting from s and following policy π
(Jaksch et al., 2010). For an MDPRM M , we denote its associated
cross-product MDP by Mcp, and its diameter by Dcp.

regret bounds exhibit a two-fold improvement over those
of baselines: (i) They are independent of Q, whereas the
existing bounds depend on

√
Q; and (ii) existing bound nec-

essarily depend on Dcp or
√
Dcp, whereas ours depend (via

cM ) on RM-restricted diameters of the various states. In
summary, our regret bounds improve over the state-of-the-
art by a factor between Q1/2 and Q3/2, depending on how
large T is and on the sparsity in RM (Section 4). To the best
of our knowledge, this work is the first studying regret min-
imization in average-reward MDPRMs, and the proposed
algorithms constitute the first attempt to tailor and analyse
regret specifically for MDPRMs or MDPs with associated
DFAs.

Regarding the assumption of known RM, we note that in
most practical applications of RL, a human expert speci-
fies the reward. RMs provide an intuitive way to specify
reward in terms of high-level events without knowledge of
the task dynamics. Labels enable a human expert to express
precedence, e.g., that event A should take place before B.
Such precedence information exists in many applications
of RL, and we therefore believe that prior knowledge of
the RM is not an unreasonable assumption. The case of
unknown RM, while admitting broader applications, turns
the problem into a POMDP which admits weaker learning
guarantees. Achieving a sublinear regret in such POMDPs
may require additional assumptions (e.g., uniqueness of
RM) that render strong in some applications.

1.2 Related Work

In the case of Markovian rewards and dynamics, there is a
rich and growing literature on average-reward RL, where
several algorithms with theoretical regret guarantees are pre-
sented; see, e.g., (Bartlett and Tewari, 2009; Burnetas and
Katehakis, 1997; Jaksch et al., 2010; Ouyang et al., 2017;
Fruit et al., 2018a; Talebi and Maillard, 2018; Tossou et al.,
2019; Wei et al., 2020; Bourel et al., 2020; QIAN et al.,
2019; Zhang and Ji, 2019; Pesquerel and Maillard, 2022)).
In the absence of structure assumptions, as established by
Jaksch et al. (2010), no algorithm can have a regret lower
than Ω(

√
DSAT ) in a communicating MDP with S states,

A actions, diameter D, and after T steps of interactions. The
best available regret bounds, achievable by computationally
implementable algorithms, grow as O(

√
DSAKT log(T ))

(Fruit et al., 2020) or as O(D
√
KSAT log(T )) (Fruit et al.,

2018a), where K denotes the maximal number of next-states
under any state-action pair in the MDP. (We note that Zhang
and Ji (2019) report a regret of O(

√
DSAT log(T )), but

the presented algorithm does not admit a computationally
efficient implementation.) Besides this growing line of re-
search, there is a rich literature on RL in episodic MDPs;
see, e.g., (Dann et al., 2017; Gheshlaghi Azar et al., 2017).

The focus of this paper is RL for the class of MDPRMs un-
der the average-reward criterion, in an intermediate setting
where the underlying RM is known. Several authors propose
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algorithms with polynomial sample complexity or sublinear
regret for different classes of NMDPs (Lattimore et al., 2013;
Maillard et al., 2013; Sunehag and Hutter, 2015). Although
these algorithms could be applied to MDPRMs, they do not
exploit the particular structure of the DFAs, and hence the
resulting theoretical bounds are not as tight as ours. The
S3M algorithm of Abadi and Brafman (2020) integrates
RL with the logical formulas of RDPs, but does not admit
polynomial sample complexity in the PAC setting. Ronca
and De Giacomo (2021) present the first RL algorithm for
RDPs whose PAC sample complexity grows polynomially
in terms of the underlying parameters, though the sample
complexity bound is not very tight and could not be used to
derive a high-probability regret bound.

Research on reward machines is relatively recent, but has
grown quickly in popularity and already attracted many re-
searchers to the field. Initial research focused on proving
convergence guarantees for RL algorithms specifically de-
vised for RMs (Toro Icarte et al., 2018, 2022). There is
also a rich literature on RL with temporal specifications
expressed in Linear Temporal Logic (LTL) (Cai et al., 2022;
Camacho et al., 2019; Hamilton et al., 2022; Kazemi et al.,
2022; Xu and Fekri, 2022). Because of the equivalence
between LTL and Büchi automata, LTL specifications are
often translated to DFAs similar to RMs, and sometimes
combined with hierarchical RL (den Hengst et al., 2022).
More recently, many researchers have investigated how to
learn RMs or similar DFAs from experience in the form of
traces (Abate et al., 2022; De Giacomo et al., 2020; Furelos-
Blanco et al., 2021; Gaon and Brafman, 2020; Hasanbeig
et al., 2021; Saqur, 2022; Toro Icarte et al., 2019; Verginis
et al., 2022; Xu et al., 2020), and extensions to stochastic
and probabilistic RMs in which either the rewards or the
transitions are non-deterministic exist (Corazza et al., 2022;
Dohmen et al., 2022). Another recent extension is to learn
entire hierarchies of RMs (Furelos-Blanco et al., 2022).

RL with RMs or LTL specifications has been successfully
applied to complex robotic tasks with non-Markovian re-
wards (Camacho et al., 2021; Mo et al., 2022; Shah et al.,
2020). RMs have also been used in combination with mul-
tiagent RL (Dann et al., 2022; Neary et al., 2021) and
approaches for zero-shot learning based on composition-
ality (Tasse et al., 2022; Zheng et al., 2022). Clark and
Thollard (2004) study the learnability of Probabilistic DFAs
in the PAC setting. However, we are not aware of any pre-
vious work involving RMs that report regret bounds in the
episodic or average-reward setting.

NMDPs are related to Partially-Observable Markov Deci-
sion Processes (POMDPs) (Kaelbling et al., 1998; Sondik,
1971), in which the current agent observation is not suffi-
cient to predict the future. Two common approaches for
POMDPs are 1) maintaining a finite history of observations;
or 2) maintaining a belief state. However, a finite history of
observations yields a history space whose size is exponential
in the history length, while maintaining and updating a be-

lief state is worst-case exponential in the size of the original
observation space. The relationship between Probabilistic
DFAs, hidden Markov models (HMMs) and POMDPs has
been previously studied by Dupont et al. (2005).

Finally, we mention that MDPRMs might be viewed as non-
stationary MDPs, where rewards vary over time. Algorithms
for non-stationary MDPs (e.g., (Wei and Luo, 2021) and
references therein) crucially rely on the number of reward
changes to be sublinear (in T ) in order to achieve a sublinear
regret. However, the number of changes in MDPRMs could
grow linearly in T . As a result, directly applying such
algorithms may yield a linear regret in MDPRMs.

Notations. Given a set A, ∆A denotes the simplex of
probability distributions over A. With a slight abuse of
notation, we use ∆X,A to denote the set of mappings of the
form X → ∆A. A∗ denotes (possibly empty) sequences
of elements from A, and A+ denotes non-empty sequences.
IA denotes the indicator function of event A.

2 PROBLEM FORMULATION

2.1 MDPRMs: Average-Reward Markov Decision
Processes with Reward Machines

We begin with introducing some necessary background.

Labeled Markov Decision Processes. A labeled average-
reward MDP (Xu et al., 2020) is a tuple M =
(O,A, p,R,P, L), where O is a finite set of (observation)
states with cardinality O, A is a finite set of actions avail-
able at each state with cardinality A, p : O×A → ∆O
is the transition function such that p(o′|o, a) denotes the
probability of transiting to state o′ ∈ O, when executing
action a ∈ A in state o ∈ O. R : (O×A)+ → ∆[0,1]

denotes a history-dependent reward function such that for
every history h ∈ (O×A)∗ ×O and action a ∈ A, R(h, a)
defines a reward distribution.2 P denotes a set of atomic
propositions and L :O×A×O→2P denotes a labeling func-
tion assigning a subset of P to each (o, a, o′). These labels
describe high-level events associated to (o, a, o′) triplets
that can be detected from the environment. The agent in-
teracts with M as follows. At each time step t ∈ N, the
agent is in state ot ∈ O and chooses an action at∈A based
on ht :=(o1, a1, . . . , ot−1, at−1, ot). Upon executing at in
ot, M generates a next-state ot+1 ∼ p(·|ot, at) and assigns
a label σt=L(ot, at, ot+1). Then, the agent receives a re-
ward rt ∼ R(ht, at). Then, the state transits to ot+1 and
a new decision step begins. As in MDPs, after T steps of
interactions, the agent’s cumulative reward is

∑T
t=1 rt.

Reward Machines (RMs). We restrict attention to a class
of non-Markovian reward functions that are encoded by

2This can be straightforwardly extended to σ-sub-Gaussian
reward distributions with unbounded supports.
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RMs (Toro Icarte et al., 2018, 2022), whose definition
coincides with conventional DFAs. An RM is a tuple
R = (Q, 2P , τ, ν), where Q is a finite set of states and 2P

is an input alphabet. τ : Q×2P →Q denotes a deterministic
transition function such that q′ = τ(q, σ) denotes the next-
state of R when an input σ is received in state q, with the
convention that τ(q, ∅)=q. Finally, ν :Q×2P →∆O×A,[0,1]

denotes the output function of R, which returns a reward
function r : O×A→∆[0,1].3 In words, the RM R con-
verts a (sequentially received) sequence of labels to a se-
quence of Markovian reward functions such that the out-
put reward function at time t is rt = ν(qt, σt), where
rt : O×A → ∆[0,1] only depends on the current state
qt and current label σt. Conditioned on (qt, σt), rt is inde-
pendent of (q1, σ1, . . . , qt−1, σt−1). Thus, RMs provide a
compact representation for a class of non-Markovian reward
functions that can depend on the entire history.

Average-Reward MDPs with Reward Machines. Re-
stricting the generic history-dependent reward function
R to RMs leads to MDPs with RMs. Formally, an
average-reward MDP with RM (MDPRM) is a tuple M=
(O,A, p,R,P, L), where O,A, p,P , and L are defined as
in (labeled) average-reward MDPs, and where R is an RM,
which generates reward functions. The agent’s interaction
with an MDPRM M proceeds as follows. At each time
t ∈ N, the agent observes ot ∈ O and qt ∈ Q, and chooses
an action at ∈ A based on ot and qt as well as (potentially)
her past decisions and observations. The environment gen-
erates a next-state ot+1 ∼ p(·|ot, at) and reveals an event
σt = L(ot, at, ot+1). The RM R, being in state qt, receives
σt and outputs a reward function rt = ν(qt, σt) which is a
mapping rt : O×A → ∆[0,1]. Then, the agent receives a
reward rt∼ rt(ot, at) (at the end of the current time step).
Then, the environment and RM states transit to their next
states ot+1 and qt+1 = τ(qt, σt), and a new step begins.

An example MDPRM is illustrated in Figure 1, which con-

3This is very similar to the standard definition of RM by
Toro Icarte et al. (2022), though in our case the set of terminal
states is empty. It is worth noting that DFAs and RMs admit
identical definitions except that RMs output reward functions.
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Figure 1: An MDPRM consisting of a 4-room gridworld
and an RM, corresponding to a patrolling task

sists of a labeled 4-room gridworld (Figure 1(a)) and an
RM with 4 states (Figure 1(b)). It corresponds to a pa-
trolling task in a gridworld consisting in repeatedly visiting
the specific locations A, B, C, and D, in that order, similar
to OfficeWorld (Toro Icarte et al., 2018). The agent has
4 actions in each location (observation state) of the grid-
world, corresponding to going up, down, right, and left.
(We assume that walls act as reflectors.) All actions lead
to stochastic transitions: A given action moves the agent
in the intended direction with probability (w.p.) 0.7, and
in each perpendicular direction w.p. 0.15. When visiting
a corner of the gridworld and performing any action, the
agent observes the respective events A, B, C, or D. Hence,
we set P = {A,B,C,D}.4 The RM requires observing
these events in the fixed order (A→B→C→D) to produce
a fixed reward of 1. We remark that the current MDP obser-
vation (i.e., location) is not sufficient to predict what to do
next, and therefore has to be combined with the current RM
state. However, the task can be represented by a Markovian
reward using the cross-product MDP shown in Figure 1(c).

For a given MDPRM, one can derive an equivalent tabular
MDP (with a Markovian reward function), whose state-
space is S :=Q×O. Hence, this associated MDP is often
called the cross-product MDP of M . We shall use Mcp
to denote the associated cross-product MDP to M . The
following lemma characterizes Mcp. Variants of this re-
sult appeared in, e.g., (Toro Icarte et al., 2022); we state it
for completeness and slightly extend it to hold for reward
distributions. Proof is in Appendix A.

Lemma 1 Let M = (O,A, p,R,P, L) be a finite MD-
PRM. Then, an associated cross-product MDP to M is
Mcp = (S,A, P,R), where S = Q × O, and where for
s=(q, o), s′=(q′, o′)∈S and a∈A,

P (s′|s, a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} , (1)

R(s, a) =
∑
o′∈O

p(o′|o, a)ν(q, L(o, a, o′)). (2)

The equivalence between M and Mcp implies that one could
apply any off-the-shelf algorithm to Mcp, as it perfectly
adheres to the Markovian property. In fact, Mcp can be used
as a proxy to develop learning algorithms for MDPRM.

2.2 Regret Minimization in MDPRMs

We are now ready to formalize RL in MDPRMs in the re-
gret minimization setting, which is the main focus of this
paper. As in tabular RL, it involves an agent who is seeking
to maximize its cumulative reward, and its performance is
measured in terms of regret with respect to an oracle algo-
rithm who knows and always applies a gain-optimal policy.

4P could be extended, e.g., by adding F (denoting a hypotheti-
cal ‘furniture’) so that one can introduce logical formulas using F
with office locations to indicate whether the furniture is broken.
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To formally define regret, we introduce some necessary con-
cepts. A stationary deterministic policy in an MDPRM M is
a mapping π : Q×O→A prescribing an action π(q, o)∈A
for all (q, o)∈Q×O. Let Π be the set of all such policies
in M . The long-term average-reward (or gain) of policy
π ∈ Π, when starting in (q, o), is defined as:

gπ(q, o) = lim inf
T→∞

1

T
Eπ

[ T∑
t=1

rt

∣∣∣q1 = q, o1 = o
]

where rt∼ rt(ot, at) and rt= ν(qt, L(ot, π(qt, ot), ot+1)
)

for all t. Here the expectation is taken with respect to ran-
domness in rt and over all possible histories ht (which im-
plicitly depend on generated events too). Let g⋆ = maxπ g

π

denote the optimal gain over all (possibly history dependent)
policies. Any policy achieving g⋆ is an optimal policy. Fol-
lowing the same arguments as in tabular MDPs together with
the equivalence between M and its Mcp (Lemma 1), it is
guaranteed that there exists at least one optimal policy in Π.
We assume that the transition function p is initially unknown,
but that the RM R is known. The agent interacts with M for
T steps according to the protocol specified in the previous
subsection (i.e., observing (ot, qt), choosing at based on
past experience, observing the event σt = L(ot, at, ot+1)
and receiving the reward rt ∼ rt(ot, at)). We define the
regret of an agent (or learning algorithm) A as

R(A, T ) := Tg⋆ −
T∑

t=1

rt.

Alternatively, the agent’s objective is to minimize regret,
which entails balancing exploration and exploitation. We
stress that regret R(A, T ) compares the T -step reward col-
lected by A against an oracle that uses the same reward
machine R as the agent.5 In order to achieve a regret sublin-
early growing with T , we need some notion of connectivity
in the MDPRM, as in tabular MDPs. We first recall that a
tabular MDP is communicating if it is possible to reach any
state from any other state under some stationary determinis-
tic policy. Alternatively, an MDP is communicating if and
only if its diameter is finite (Jaksch et al., 2010) (see the
footnote on page 2). In summary, we impose the following
assumptions:

Assumption 1 We assume: (i) the RM R is known, and (ii)
the associated MDP Mcp is communicating. 6

5Our regret bounds can be extended straightforwardly to hold
for regret defined as

∑T
t=1(r

⋆
t − rt), where r⋆t denotes the reward

obtained by the oracle at time t. In fact, by applying Azuma-
Hoeffding, the two notions of regret are related at the expense of
an additive term B

√
T log(T/δ) with B denoting the span of the

optimal bias function in Mcp, which always satisfies B ≤ Dcp;
we refer to a more thorough discussion in (Talebi and Maillard,
2018).

6Assuming that R and M are both communicating is not suf-
ficient to guarantee that Mcp is communicating. We demonstrate
this using a simple (albeit pathological) example in Appendix E.

3 LEARNING ALGORITHMS FOR
MDPRMS

In this section, we present algorithms for learning in MD-
PRMs, which follow a model-based approach, similar to
UCRL2 (Jaksch et al., 2010) and its variants (Bourel et al.,
2020; Fruit et al., 2020, 2018b; QIAN et al., 2019; Zhang
and Ji, 2019). To simplify exposition, we assume that the
reward distributions ν(·, ·) of the RM are known. This as-
sumption can be easily relaxed at the expense of a slightly
increased regret. We discuss in Appendix B how to tailor
the algorithms to the case of unknown rewards.

3.1 Confidence Sets

We begin with introducing empirical estimates and confi-
dence sets used by the algorithms. We first present confi-
dence sets for the observation dynamics p, and then show
how they yield confidence sets for the transition and reward
functions of the cross-product MDP Mcp.

Confidence Sets for Observation Dynamics p. Formally,
under a given algorithm, let Nt(o, a, o

′) denote the num-
ber of times a visit to (o, a) was followed by a visit to o′,
up to time t: Nt(o, a, o

′) :=
∑t−1

i=1 I{(oi,ai,o′i+1)=(o,a,o′)}.
Further, Nt(o, a) := max{1,

∑
o′ Nt(o, a, o

′)}. Using the
observations collected up to t ≥ 1, we define the empiri-
cal estimate p̂t(o

′|o, a) = Nt(o,a,o
′)

Nt(o,a)
for p(o′|o, a), for any

o, o′ ∈ O and a ∈ A. We consider two confidence sets for p.
The first one uses a time-uniform variant of Weissman’s con-
centration inequality (Weissman et al., 2003) and is defined
as follows (Asadi et al., 2019):

C1
t,δ(o, a) =

{
p′ ∈ ∆O : ∥p̂t(·|o, a)−p′∥1 ≤ βNt(o,a)(δ)

}
and C1

t,δ = ∩o,aC
1
t,δ(o, a), where for n∈N,

βn(δ) :=

√
2
n

(
1 + 1

n

)
log
(√

n+ 1 2O−2
δ

)
.

By construction, it guarantees that uniformly for all t, p ∈
C1

t,δ/OA, with probability at least 1− δ, that is, P(∃t ∈ N :

p /∈ C1
t,δ/OA) ≤ δ.

The second confidence set is based on Bernstein’s inequal-
ity (combined with a peeling technique) and is defined as
follows (Maillard, 2019):

C2
t,δ(o, a, o

′) =

{
u ∈ [0, 1] : |p̂t(o′|o, a)− u|

≤
√

2u(1−u)
Nt(o,a)

β′
Nt(o,a)

(δ) +
β′
Nt(o,a)(δ)

3Nt(o,a)

}
,

and C2
t,δ = ∩o,a,o′C

2
t,δ(o, a, o

′), where for n ∈N and δ ∈
(0, 1), β′

n(δ) := η log
(

log(n+1) log(nη)
δ log2(η)

)
, where η>1 is an

arbitrary choice. (We set η=1.12, as suggested by Maillard
(2019), to get a small bound.) By construction, C2

t,δ traps p
with high probability, uniformly for all t: P(∃t ∈ N : p /∈
C2

t,δ/2O2A)≤δ.
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Confidence Sets for Mcp. We show that C1
t,δ and C2

t,δ

yield confidence sets for the transition function P and re-
ward function R of Mcp. To this effect, let us define the
empirical estimates for P and R as follows. By a slight
abuse of notation, let R̂ denote the empirical mean of distri-
bution R, and let ν denote the mean of the reward function
r = ν(q, σ).7 For all s = (q, o), s′ = (q′, o′), and a,

P̂t

(
s′|s, a

)
= p̂t(o

′|o, a)I{q′=τ(q,L(o,a,o′))},

R̂t

(
s, a
)
=
∑
o′

p̂t(o
′|o, a)ν

(
q, L(o, a, o′)

)
.

Now, the collection of all p ∈ C1
t,δ (resp. p ∈ C2

t,δ) defines
a confidence set for P (centered at P̂t) and for R (cen-
tered at R̂t) with similar probabilistic guarantees as for C1

t,δ

(resp. C2
t,δ). More concretely, we leverage this observation

to introduce the following set of MDPRMs, which are plau-
sible with the collected data up to time t ≥ 1 and for a
confidence parameter δ ∈ (0, 1):

Mt,δ := {M ′ = (O,A, p′,R,P, L) : p′ ∈ C} ,

where C = C1
t,δ/OA or C = C2

t,δ/2O2A. This construction
ensures that the true MDPRM M belongs to Mt,δ with
high probability, uniformly for all t. More precisely, for all
δ ∈ (0, 1), and for either choice of C,

P(∃t ∈ N : M /∈ Mt,δ) ≤ δ,

as formalized in Lemma 2 in Appendix C. This relies on the
equivalence between any candidate MDPRM M ′ ∈ Mt,δ

and its associated cross-product MDP M ′
cp = (S,A, P ′, R′)

where P ′ and R′ are defined similarly to (1), but with the
true p replaced by p′ ∈ C1

t,δ/OA or p′ ∈ C2
t,δ/2O2A.

3.2 From Confidence Sets to Algorithms:
UCRL-RM-L1 and UCRL-RM-B

We present an algorithm, called UCRL-RM, using the con-
fidence sets presented above. We consider two variants
of UCRL-RM depending on which confidence set is used:
The variant using C1

t,δ, called UCRL-RM-L1, can be seen
as an extension of UCRL2 (Jaksch et al., 2010) to MD-
PRMs. Whereas the one built using C2

t,δ, which we call
UCRL-RM-B, extends UCRL2-style algorithms with Bern-
stein’s confidence sets (in, e.g., (Bourel et al., 2020; Fruit
et al., 2020, 2018b)) to MDPRMs. Both variants have a
very similar design, and differ only in the choice of the
confidence sets and an internal procedure used in the pol-
icy computation —however, they achieve different regret
bounds and empirical performance. In the sequel, we shall
use UCRL-RM to refer to both variants, but will make spe-
cific pointers to each when necessary.

7We recall that ν is assumed known to the agent as mentioned
earlier. This will be relaxed in Appendix B.2.

UCRL-RM implements a form of the optimism in the face
of uncertainty principle, but in an efficient manner for MD-
PRMs. Similarly to many model-based approaches de-
veloped based on this principle, they proceed in internal
episodes (indexed by k ∈ N) of varying lengths, where
within each episode the policy is kept unchanged. Specifi-
cally, letting tk denote the first step of episode k, UCRL-RM
considers the set of plausible MDPs, Mtk,δ, built us-
ing C1

t,δ/OA (UCRL-RM-L1) or C2
t,δ/2O2A (UCRL-RM-B),

and seeks a policy πk : S → A that has the largest gain over
all possible deterministic policies in all MDPRMs in Mtk,δ .
Practically, as in UCRL2, it suffices to find any 1√

tk
-optimal

solution to the following optimization problem:

max
M ′∈Mt,δ,π∈ΠM′

gπ(M ′),

where gπ(M ′) denotes the gain of policy π in MDPRM M ′.
This optimization problem can be efficiently solved via a
variant of the EVI algorithm of Jaksch et al. (2010). (Due to
space constraints, we present it in Algorithm 2 in Appendix
B.) In the case of MDPRMs, each iteration of EVI involves
solving, for each (q, o, a):

max
z∈C(o,a)

∑
(q′,o′)∈S

[
ν
(
q, L(o, a, o′)

)
+ u(q′, o′)

]
× I{q′=τ(q,L(o,a,o′))}z(o

′),

where u is the value function at the current iteration of
EVI, and where C(o, a) = C1

t,δ/OA(o, a) or C(o, a) =

∩o′C
2
t,δ/2O2A(o, a, o

′). EVI returns a policy πk, which is
guaranteed to be 1√

tk
-optimal. UCRL-RM commits to πk

for t ≥ tk until the number of observations on some pair
(o, a) is doubled.8 More precisely, the sequence (tk)k≥1

satisfies: t1=1, and for k ≥ 1,

tk=min
{
t > tk−1 :max

o,a

∑t
t′=tk−1

I{(ot′ ,at′ )=(o,a)}

Ntk−1
(o, a)

≥ 1
}
.

The pseudo-code of UCRL-RM is presented in Algorithm 1.
We recover UCRL-RM-L1 (resp. UCRL-RM-B) if Mt,δ is
constructed using C1 (resp. C2). Both algorithms receive
the RM R as well as a confidence parameter δ ∈ (0, 1) as
input. Despite their similar design, they achieve different
performance both theoretically and empirically.

4 REGRET BOUNDS

In this section, we present finite-time regret bounds for the
two variants of UCRL-RM that hold with high probability.
Both regret bounds depend on a problem-dependent quantity
that, just as the diameter in tabular MDPs, reflects a measure
of connectivity in MDPRMs.

8This is quite similar to the stopping criterion in UCRL2.



Bourel, Jonsson, Maillard, Talebi

Algorithm 1 UCRL-RM
Require: O,A,R, δ

Initialize: For all (o, a, o′), set N0(o, a) = 0, N0(o, a, o
′) = 0

and v0(o, a) = 0. Set t0 = 0, t = 1, k = 1, and observe the
initial state s1 = (q1, o1)
for episodes k ≥ 1 do

Set tk = t
Set Ntk (o, a) = Ntk−1(o, a) + vk(o, a) for all (o, a)
Set vk(o, a) = 0 for all (o, a);
Compute empirical estimates p̂tk (·|o, a) for all (o, a)
Compute πk = EVI

(
C, 1√

tk

)
—see Algorithm 2 in Ap-

pendix B.
(Set C = C1

tk,δ/OA for UCRL-RM-L1, and C =

C2
tk,δ/O

2A for UCRL-RM-B.)
while vk(ot, πk(qt, ot)) < max{1, Ntk (ot, πk(qt, ot))}
do

Play action at = πk(qt, ot)
Receive next-state ot+1 ∼ p(·|ot, at)
Receive reward rt ∼ ν(qt, L(ot, at, ot+1))
Set Nt+1(ot, at, ot+1) = Nt(ot, at, ot+1) + 1
Set vk(ot, at) = vk(ot, at) + 1
Set t = t+ 1

end while
end for

We begin with formalizing this notion of connectivity. For
s = (q, o) ∈ S, define

Bs :=
⋃
a,o′

{
q′ ∈ Q : q′ = τ

(
q, L(o, a, o′)

)}
.

Intuitively, for a given s = (q, o), Bs ⊆ Q collects all
possible next-states of the RM that can be reached from q
via the detectable events in o. In the worst-case Bs = Q
for some state s ∈ S. However, many high-level tasks in
practice often admit RMs with sparse structures, where for
some s, Bs is a small subset of Q. Using Bs, we define a
notion of RM-restricted diameter for s, which, as we shall
see, proves relevant for MDPRMs:

Definition 1 (RM-Restricted Diameter) Consider state
s = (q, o) ∈ S. For s1, s2 ∈ Bs×O with s1 ̸= s2, let
Tπ(s1, s2) denote the number of steps it takes to get to s2
starting from s1 and following policy π. Then, we define the
RM-restricted diameter of MDPRM M for state s as

Ds := max
s1,s2∈Bs×O

min
π

E[Tπ(s1, s2)].

Replacing Bs with Q in Definition 1, one recovers Dcp, the
diameter of Mcp. In view of Bs⊆Q, Ds≤Dcp for all s∈S .
Since Bs could be a proper (and possibly cardinality-wise
small) subset of Q, Ds is therefore a problem-dependent
refinement of Dcp. We remark that a small Bs does not nec-
essarily imply that Ds≪Dcp as Ds is determined by both
Bs and the transition function P of Mcp. Interestingly, how-
ever, there exist cases where Ds ≲ Dcp/Q, as we illustrate
below.

Consider the MDPRM shown in Figure 2, where there are
two observation states o0 and o1, with identical transition

q0

q1

q2

qQ−2

qQ−1

σB

σB

σB

σB

σB

σB

σA

σA
σA

σA

σA

σA

o0 o1

δ

1 − δ

δ
σA|a0

σB |a1

1 − δ

Figure 2: An example where RM-restricted diameter Ds ≲
Dcp/Q. The labeled MDP in left, and the RM in right.

probabilities parameterized by δ ∈ (0, 1
2 ). In o0, there is one

action, but no event. In o1, there are two actions: a0 (that
results in detecting σA) and a1 (which leads to detecting
σB). The RM has Q states arranged in a cycle, such that
σA and σB yield transitions in the clockwise and counter-
clockwise directions, respectively. As detailed in Appendix
E, we can show that: For all q ∈ Q, Do1,q = 2

δ + 1 + δ
1−δ

and Do0,q = 1
δ , whereas Dcp = ⌊Q/2⌋

δ +1+ δ
1−δ . So, while

Dcp grows as Q
δ , Ds for all s∈S will be 1

δ . In summary,
we have Ds ≲ Dcp/Q. Another example with numerically
computed Ds is provided in Appendix F.

Regret Bounds. We are now ready to present the regret
bounds. The following theorem provides a regret bound for
UCRL-RM-L1, which was constructed using C1:

Theorem 1 Under UCRL-RM-L1, uniformly over all T ≥
2, with probability higher than 1− 5δ,

R(T ) ≤ O
(√

cMAT
(
O + log(

√
T/δ)

)
+Dcp

√
T log(

√
T/δ)

)
,

where cM =
∑
o∈O

max
q∈Q

D2
q,o.

To present a regret bound for UCRL-RM-B (constructed
using C2), for (o, a) ∈ S we let Ko,a be the number of pos-
sible next-states in O under (o, a), that is, Ko,a := |{o′ ∈
O : p(o′|o, a) > 0}|.

Theorem 2 Under UCRL-RM-B, uniformly over all T ≥ 2,
with probability higher than 1− 5δ,

R(T ) ≤ O
(√

c′MT log(log(T )/δ) +Dcp
√

T log(log(T )/δ)
)
,

where c′M =
∑

o∈O,a∈A
Ko,a max

q∈Q
D2

q,o.

The problem-dependent quantities cM and c′M reflect the
(weighted) contribution of RM-restricted diameters to the
regret. In the worst-case, cM ≤ OD2

cp and c′M =

D2
cp
∑

o,a Ko,a, but in view of the example earlier, there
are problem instances in which cM ≲ OD2

cp/Q
2 and

c′M ≲ D2
cp/Q

2
∑

o,a Ko,a.
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Comparison with Tabular RL Algorithms for Mcp.
Any algorithm available for tabular RL could be di-
rectly applied to Mcp, obliviously to the RM. In doing
so, UCRL2 (with improved confidence sets used here)
achieves a regret of O(Dcp

√
AOQT (OQ+ log T ))

whereas UCRL2-B achieves a regret of
O(Dcp

√
T log(log(T ))Q

∑
o,a Ko,a)).9 In compari-

son with these bounds, for moderate time-horizons T ,
we obtain an improvement in the regret bound by a
multiplicative factor of at least Q, but in some examples
this can be as large as Q2. For large horizons (relative to O),
the respective gains over UCRL2 are

√
Q and Q3/2. We

also achieve a similar gain over UCRL2-B —we present a
more detailed comparison in Appendix G.

5 REGRET LOWER BOUND

We also present a regret lower bound for learning MDPRMs.
For communicating tabular MDPs with S states, A actions,
and diameter D, a regret lower bound of Ω(

√
DSAT ) is

presented by Jaksch et al. (2010), which relies on a carefully
constructed family of worst-case MDPs. However, this
does not translate to a lower bound of Ω(

√
DcpQOAT )

for the cross-product Mcp associated to a given MDPRM
M . This is due to the fact that the transition function of
the aforementioned worst-case MDPs does not satisfy (1).
In other words, there exist no MDPRMs for which those
worst-case MDPs become their associated cross-product
MDPs. In the following theorem, we present a regret lower
bound that holds for any MDPRM M with a communicating
cross-product Mcp.

Theorem 3 For any O ≥ 3, A ≥ 2, Q ≥ 2, and Dcp ≥
Q(6 + 2 logA(O)), T ≥DcpOA and |P|≥2, there exists a
family of MDPRMs with O observations states, A actions,
Q RM states, and diameter Dcp of the associated Mcp, in
which the regret of any algorithm A satisfies

E[R(A, T )] ≥ c0
√
DcpOAT,

where c0 > 0 is a universal constant.

This theorem asserts a worst-case regret lower bound grow-
ing as Ω(

√
DcpOAT ) and is proven in Appendix D. To

establish this result, we carefully construct an instance of
MDPRM. In order to make it a worst-case instance, both
p and R have to be chosen in a way to challenge explo-
ration. To this end, we construct an RM with a non-trivial
structure, whereas for p, we take inspiration from the worst-
case MDPs presented by Jaksch et al. (2010), so that on
the resulting MDPRM, the regret of any algorithm grows

9A factor
√

Dcp/ log(T ) can be shaved off the regret of
UCRL2-B as reported by Fruit et al. (2020), and the same improve-
ment may carry over to UCRL-RM-B. We exclude comparisons to
EBF introduced by Zhang and Ji (2019) as it does not admit an
efficient implementation.

as Ω(
√
DcpOAT ) even when the RM and associated re-

wards are known to the learner. We finally remark that the
lower bound does not contradict our regret bounds, as for
the worst-case instances considered, maxq Dq,o ≃ Dcp.

6 EXPERIMENTS

In this section, we present a set of experiments com-
paring the empirical performance of our algorithms with
those of state-of-the-art baselines (applied to the cross-
product MDP). As baselines, we consider UCRL2 (Jaksch
et al., 2010), UCRL2B (Fruit et al., 2020), and TSDE
(Ouyang et al., 2017), all provided with the knowledge
of the reward function. To make the comparison fair, for
UCRL2 and UCRL2B we used improved confidence sets
defined similarly to C1 and C2, respectively. All codes
are made publicly available at https://github.com/
HippolyteBourel/UCRL-RM.

The presented experiments consider patrolling tasks, which
are motivated by the tasks that consist of repetitively visiting
multiple key locations in a given environment. Such tasks
arise in many applications in transportation and robotics.
Despite their concise definitions, they render challenging
when exploration of an unknown environment is required.
The considered MDPRMs are built using standard domains
RiverSwim and gridworlds. The RiverSwim domain, shown
in Figure 3, is combined with the patrol2 RM that requires
to patrol the two extreme locations in RiverSwim (i.e., o1
and oN ) to output a fixed reward. We consider two variants
of gridworlds: a 2-room with a task of patrolling 3 corners
(Figure 5) and a 4-room with a patrol of 4 corners presented
in Figure 1. In these gridworlds, the agent can perform 4 ac-
tions corresponding to going up, right, down, and left. Each
action leads to moving the agent in the intended direction
(w.p. 0.7), in each perpendicular direction (w.p. 0.1), or no
move (w.p. 0.1). Any transition going into a wall has the
effect of staying in place.

Figures 4(a)-4(c) show the regret over time together with
95% confidence intervals. Figure 4(a) depicts the results in a
6-state RiverSwim MDPRM, where all results are averaged
over 200 runs. (Note the logarithmic y-axis.) Figure 4(b)
shows the regret, averaged over 100 runs, for the MDPRM
with the 2-room domain. Finally, Figure 4(c) presents the
regret, averaged over 100 runs, in the MDPRM with the
4-room domain. As these figures reveal, both variants of
UCRL-RM significantly outperform all the baselines. Fur-
thermore, UCRL-RM-L1 yields better performance than
UCRL-RM-B in gridworlds. In view of the definition of
regret, these results corroborate that, in terms of collected
rewards, the benefit of exploiting the structure in MDPRMs
could be significant. This is further verified by the corre-
sponding empirical gain 1

t

∑t
t′=1 rt′ shown in Figure 6 for

various algorithms in the 4-room MDPRM, together with
95% confidence intervals. The horizontal line (in magenta)
shows the optimal gain g⋆ achieved by the oracle. In particu-

https://github.com/HippolyteBourel/UCRL-RM
https://github.com/HippolyteBourel/UCRL-RM
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Figure 3: The N -observation labeled RiverSwim MDP (Strehl and Littman, 2008), and the patrol2 RM
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Figure 6: Empirical gain in the 4-room with patrol4

lar, Figure 6 indicates that the empirical gain (i.e., empirical
per-step reward) under UCRL-RM-L1 quickly approaches
g⋆ compared to the rest. (The corresponding figures for
other environments are presented in Appendix F.)

Finally, we report the empirical running times of the
algorithms in Table 3 in Appendix F. We remark that
UCRL-RM-B is computationally more expensive than
UCRL-RM-L1 (the same comparison holds between
UCRL2 and UCRL2B in terms of involved computations).

The additional cost arises from the instability of the conver-
gence of EVI with element-wise confidence bounds. We
chose to arbitrarily stop EVI after 100 iterations (with the
exceptions of the results in Figure 4(a)) in order to impose a
computational cost of the same order of magnitude for all
algorithms. This has a slight negative impact on the results
of both UCRL-RM-B and UCRL2B.

7 CONCLUSION

We studied reinforcement learning in average-reward
Markov decision processes with reward machines (MD-
PRMs), in the regret minimization setting, under the as-
sumption of a known reward machine (RM) but unknown
dynamics. We introduced two algorithms tailored to lever-
age the structure of MDPRMs, and analysed their regret.
Both algorithms significantly outperform existing baselines,
both in theory and in practice. We also presented a regret
lower bound for MDPRMs, establishing that the reported re-
gret bounds are near-optimal. An interesting future work di-
rection is to devise efficient algorithms for MDPRMs when
the state of the RM is not observed. Another interesting
future work is to consider RMs with stochastic transitions,
where the resulting regret bounds may depend on Q. The
more interesting, yet very challenging, question is to im-
prove the lower bound (Theorem 3) to potentially make
appear such a dependence on Q.

Acknowledgements

The authors would like to thank anonymous reviewers for
their comments. Hippolyte Bourel and Mohammad Sadegh



Exploration in Reward Machines with Low Regret

Talebi are partially supported by the Independent Research
Fund Denmark, grant number 1026-00397B. Anders Jon-
sson is partially supported by the Spanish grant PID2019-
108141GB-I00 and the European project TAILOR (H2020,
GA 952215). Odalric-Ambrym Maillard is supported by the
French Ministry of Higher Education and Research, Inria,
Scool, the Hauts-de-France region, the MEL and the I-Site
ULNE regarding project R-PILOTE-19-004-APPRENF.

References

Eden Abadi and Ronen I Brafman. Learning and solving
regular decision processes. In International Joint Confer-
ence on Artificial Intelligence, 2020.

Alessandro Abate, Yousif Almulla, James Fox, David Hy-
land, and Michael Wooldridge. Learning task automata
for reinforcement learning using hidden Markov models.
arXiv preprint arXiv:2208.11838, 2022.

Mahsa Asadi, Mohammad Sadegh Talebi, Hippolyte Bourel,
and Odalric-Ambrym Maillard. Model-based reinforce-
ment learning exploiting state-action equivalence. arXiv
preprint arXiv:1910.04077, 2019.

Fahiem Bacchus, Craig Boutilier, and Adam Grove. Re-
warding behaviors. In National Conference on Artificial
Intelligence, 1996.

Peter L Bartlett and Ambuj Tewari. REGAL: A regulariza-
tion based algorithm for reinforcement learning in weakly
communicating MDPs. In Uncertainty in Artificial Intel-
ligence, 2009.

Hippolyte Bourel, Odalric-Ambrym Maillard, and Moham-
mad Sadegh Talebi. Tightening exploration in upper
confidence reinforcement learning. In International Con-
ference on Machine Learning, 2020.

Ronen I Brafman and Giuseppe De Giacomo. Regular deci-
sion processes: A model for non-Markovian domains. In
International Joint Conference on Artificial Intelligence,
2019.

Greg Brockman, Vicki Cheung, Ludwig Pettersson,
Jonas Schneider, John Schulman, Jie Tang, and Wo-
jciech Zaremba. OpenAI Gym. arXiv preprint
arXiv:1606.01540, 2016.

Apostolos N Burnetas and Michael N Katehakis. Optimal
adaptive policies for Markov decision processes. Mathe-
matics of Operations Research, 22(1):222–255, 1997.

Mingyu Cai, Erfan Aasi, Calin Belta, and Cristian-Ioan
Vasile. Overcoming exploration: Deep reinforcement
learning in complex environments from temporal logic
specifications. arXiv preprint arXiv:2201.12231, 2022.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen,
Richard Anthony Valenzano, and Sheila A McIlraith. LTL
and beyond: Formal languages for reward function speci-
fication in reinforcement learning. In International Joint
Conference on Artificial Intelligence, 2019.

Alberto Camacho, Jacob Varley, Andy Zeng, Deepali Jain,
Atil Iscen, and Dmitry Kalashnikov. Reward machines
for vision-based robotic manipulation. In International
Conference on Robotics and Automation, 2021.

Alexander Clark and Franck Thollard. PAC-learnability of
probabilistic deterministic finite state automata. Journal
of Machine Learning Research, 5(May):473–497, 2004.

Jan Corazza, Ivan Gavran, and Daniel Neider. Reinforce-
ment learning with stochastic reward machines. In AAAI
Conference on Artificial Intelligence, 2022.

Christoph Dann and Emma Brunskill. Sample complexity
of episodic fixed-horizon reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2015.

Christoph Dann, Tor Lattimore, and Emma Brunskill. Uni-
fying PAC and regret: Uniform PAC bounds for episodic
reinforcement learning. In Advances in Neural Informa-
tion Processing Systems 30, 2017.

Michael Dann, Yuan Yao, Natasha Alechina, Brian Logan,
and John Thangarajah. Multi-agent intention progression
with reward machines. In International Joint Conference
on Artificial Intelligence, 2022.

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, and
Fabio Patrizi. Imitation learning over heterogeneous
agents with restraining bolts. In International Confer-
ence on Automated Planning and Scheduling, 2020.

Floris den Hengst, Vincent Francois-Lavet, Mark Hoogen-
doorn, and Frank van Harmelen. Reinforcement learning
with option machines. In International Joint Conference
on Artificial Intelligence, 2022.

Taylor Dohmen, Noah Topper, George Atia, Andre Beckus,
Ashutosh Trivedi, and Alvaro Velasquez. Inferring prob-
abilistic reward machines from non-Markovian reward
signals for reinforcement learning. In International Con-
ference on Automated Planning and Scheduling, 2022.

Pierre Dupont, François Denis, and Yann Esposito. Links be-
tween probabilistic automata and hidden Markov models:
Probability distributions, learning models and induction
algorithms. Pattern Recognition, 38(9):1349–1371, 2005.

Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Near
optimal exploration-exploitation in non-communicating
Markov decision processes. In Advances in Neural Infor-
mation Processing Systems 31, 2018a.

Ronan Fruit, Matteo Pirotta, Alessandro Lazaric, and
Ronald Ortner. Efficient bias-span-constrained
exploration-exploitation in reinforcement learning. In
International Conference on Machine Learning, 2018b.

Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Im-
proved analysis of UCRL2 with empirical Bernstein in-
equality. arXiv preprint arXiv:2007.05456, 2020.

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia
Broda, and Alessandra Russo. Induction and exploitation
of subgoal automata for reinforcement learning. Journal
of Artificial Intelligence Research, 70:1031–1116, 2021.



Bourel, Jonsson, Maillard, Talebi

Daniel Furelos-Blanco, Mark Law, Anders Jonsson, Krysia
Broda, and Alessandra Russo. Hierarchies of reward
machines. arXiv preprint arXiv:2205.15752, 2022.

Maor Gaon and Ronen Brafman. Reinforcement learning
with non-Markovian rewards. In AAAI Conference on
Artificial Intelligence, 2020.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos.
Minimax regret bounds for reinforcement learning. In
International Conference on Machine Learning, 2017.

Nathaniel Hamilton, Preston K Robinette, and Taylor T
Johnson. Training agents to satisfy timed and untimed
signal temporal logic specifications with reinforcement
learning. In International Conference on Software Engi-
neering and Formal Methods, 2022.

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu,
Alessandro Abate, Tom Melham, and Daniel Kroening.
Deepsynth: Automata synthesis for automatic task seg-
mentation in deep reinforcement learning. In AAAI Con-
ference on Artificial Intelligence, 2021.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-
optimal regret bounds for reinforcement learning. Journal
of Machine Learning Research, 11:1563–1600, 2010.

Leslie Pack Kaelbling, Michael L Littman, and Anthony R
Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101(1-2):99–
134, 1998.

Milad Kazemi, Mateo Perez, Fabio Somenzi, Sadegh Soud-
jani, Ashutosh Trivedi, and Alvaro Velasquez. Translat-
ing omega-regular specifications to average objectives for
model-free reinforcement learning. In International Con-
ference on Autonomous Agents and Multiagent Systems,
2022.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
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A THE CROSS-PRODUCT MDP: PROOF OF LEMMA 1

Lemma 1 (restated) Let M =(O,A, p,R,P, L) be a finite MDPRM. Then, an associated cross-product MDP to M is
Mcp=(S,A, P,R), where S=Q×O, and where for s=(q, o), s′=(q′, o′)∈S, and a∈A,

P (s′|s, a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} , R(s, a) =
∑
o′∈O

p(o′|o, a)ν(q, L(o, a, o′)).

Proof. Let M = (O,A, p,R,P, L) and S = Q × O. For any t ∈ N, let ht := (s1, a1, . . . , st−1, at−1, st), where
st′ := (qt′ , ot′). We show that for any h ∈ (S ×A)t−1 × S , s′ = (q′, o′) ∈ S, a ∈ A, and B ⊆ [0, 1]:

P(st+1 = s′|ht = h, at = a) = p(o′|o, a)I{q′=τ(q,L(o,a,o′))} ,

P(rt ∈ B|ht = h, at = a) =
∑
o′∈O

p(o′|o, a)ν
(
q, L(o, a, o′)

)
(B) ,

thus implying that the state and reward dynamics are fully determined by (st, at). For any (q′, o′) ∈ S, we have

P
(
st+1 = (q′, o′)

∣∣∣ht = h, at = a
)
= P

(
ot+1 = o′

∣∣∣ht = h, at = a
)
P
(
qt+1 = q′

∣∣∣ht = h, ot+1 = o′, at = a
)

= P
(
ot+1 = o′

∣∣∣ot = o, at = a
)
P
(
qt+1 = q′

∣∣∣st = (q, o), ot+1 = o′, at = a
)

= p(o′|o, a)I{q′=τ(q,L(o,a,o′))} ,

where the second line follows from the fact that observation dynamics are Markovian and from the definition of RMs.

Moreover, for any set B ⊆ [0, 1], we have

P
(
rt ∈ B

∣∣∣ht = h, at = a
)
=
∑
o′∈O

P
(
ot+1 = o′

∣∣∣ht = h, at = a
)
P
(
rt = r

∣∣∣ht = h, ot+1 = o′, at = a
)

=
∑
o′∈O

p(o′|o, a)P
(
rt ∈ B

∣∣∣st = (q, o), ot+1 = o′, at = a
)

=
∑
o′∈O

p(o′|o, a)ν
(
q, L(o, a, o′)

)
(B) ,

thus verifying the two claims. Now letting P and R be defined as in the lemma, we have that (S,A, P,R) constitutes an
MDP. □

B FURTHER ALGORITHMIC DETAILS

B.1 Extended Value Iteration for MDPRMs

We present the complete specification of Extended Value Iteration (EVI) used as a subroutine in UCRL-RM. Algorithm 2
presents the pseudo-code of EVI, which closely follows the design of EVI of Jaksch et al. (2010).

EVI relies on solving the following maximization problem in each round, and for any (q, o, a):

max
z∈C(o,a)

∑
(q′,o′)∈S

[
ν
(
q, L(o, a, o′)

)
+ u(q′, o′)

]
I{q′=τ(q,L(o,a,o′))}z(o

′), (3)

where u is the value function at the current iteration of EVI, and where C(o, a) = C1
t,δ/OA(o, a) or C(o, a) =

∩o′C
2
t,δ/2O2A(o, a, o

′). Algorithm 3 finds a solution to problem (3) for C = C1 (i.e., for UCRL-RM-L1), whereas
Algorithm 4 does so for C = C2 (i.e., for UCRL-RM-B). Algorithm 3 is quite similar to the one used in UCRL2 (Jaksch
et al., 2010), whereas Algorithm 4 is used in UCRL2B and similar (e.g., in (Dann and Brunskill, 2015)).

For (q, o, a) ∈ Q × O × A, let p̃q(·|o, a) be any optimal solution to problem (3) —namely, we denote the optimal z by
p̃q(·|o, a). Here, the superscript q in p̃q(·|s, a) signifies that the optimistic transition probability depends on q.
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Algorithm 2 EVI(C, ε)
Initialize: u(0) ≡ 0, u(−1) ≡ −∞, n = 0

while maxs∈S(u
(n) − u(n−1))(s)−mins∈S(u

(n) − u(n−1))(s) > ε do
Get p̃q for all q ∈ Q using MAXP-L1 (Algorithm 3, for UCRL-RM-L1) or MAXP-B (Algorithm 4, for UCRL-RM-B)
For all (q, o) ∈ S, update:

u(n+1)(q, o) = max
a∈A

∑
(q′,o′)∈S

p̃q(o′|o, a)
[
ν
(
q, L(o, a, o′)

)
+ u(n)(q′, o′)

]
I{q′=τ(q,L(o,a,o′))}

Set n = n+ 1

end while
Output:

πn+1(s) = argmax
a∈A

∑
(q′,o′)∈S

p̃q(o′|o, a)
[
ν
(
q, L(o, a, o′)

)
+ u(n)(q′, o′)

]
I{q′=τ(q,L(o,a,o′))}

Algorithm 3 MAXP-L1
For all o′ ∈ O, set p(o′) = p̂(o′|o, a)

omax = argmaxo′∈O

{
ν
(
q, L(o, a, o′)

)
+ u(n)

(
τ(q, L(o, a, o′)), o′

)}
p(omax) = max

{
1, p(omax) +

1
2
βNt(o,a)(

δ
OA

)
}

L = argsorto′
{
ν
(
q, L(o, a, o′)

)
+ u(n)

(
τ(q, L(o, a, o′)), o′

)
, o′ ∈ O

}
ℓ = 0

while
∑

o′∈O p(o′) > 1 do

p(Lℓ) = max
{
0, p(Lℓ) + 1−

∑
o′∈O p(o′)

}
Set ℓ = ℓ+ 1

end while
Output: p̃q(·|o, a) = p

Algorithm 4 MAXP-B
For all o′ ∈ O, set p(o′) = min

{
p′ ∈ C2

t,δ/2O2A(o, a, o
′)
}

L = argsorto′
{
ν
(
q, L(o, a, o′)

)
+ u(n)

(
τ(q, L(o, a, o′)), o′

)
, o′ ∈ O

}
ℓ = OA− 1

while
∑

o′∈O p(o′) < 1 do
Set

p(Lℓ) = min

{
max

{
z ∈ C2

t,δ/2O2A

(
o, a,Lℓ

)}
, 1−

∑
o′∈O

p(o′)

}
ℓ = ℓ− 1

end while
Output: p̃q(·|o, a) = p
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B.2 Unknown Mean Rewards

Now we discuss the case of unknown mean rewards, i.e., when the agent has no prior knowledge about ν. To accommodate
this situation, the agent maintains confidence sets for the various mean rewards as follows. For (q, σ) ∈ Q× 2P , define

C reward
t,δ (q, σ) =

{
λ ∈ [0, 1] :

∣∣ν̂t(q, σ)− λ
∣∣ ≤ βNt(q,σ)(δ)

}
, C reward

t,δ = ∩q,σC
reward
t,δ (q, σ),

where ν̂t(q, σ) denotes the empirical mean reward built using Nt(q, σ) observations collected from the reward distribution

ν(q, σ). Here, for n∈N, βn(δ) =
√

1
2n

(
1 + 1

n

)
log
(√

n+ 1/δ
)
. Then, it suffices to replace ν with its upper confidence

set, that is, to replace ν(q, σ), in problem (3), with

ν̂t(q, σ) + βNt(q,σ)

(
δ

Q|2P |
)
.

The penalty due to this is an increase in the regret bound by an additive term that is independent of any diameter-like quantity
(i.e., Dcp or Dq,o). The regret bound will depend on

√
logQ, which will however be dominated by existing

√
log T terms.

C REGRET ANALYSIS OF UCRL-RM

In this section, we provide regret analyses of the two variants of UCRL-RM.

We first present a lemma, which formally states that the set of plausible MDPRMs maintained by UCRL-RM-L1 and
UCRL-RM-B contain the true MDPRM with high probability and uniformly over time:

Lemma 2 For all δ ∈ (0, 1), we have:

(i) P(∃t ∈ N : M /∈ Mt,δ(C
1)
)
≤ δ ,

(ii) P(∃t ∈ N : M /∈ Mt,δ(C
2)
)
≤ δ ,

where Mt,δ(C
1) and Mt,δ(C

1) denote the set of MDPRMs built using C1
t,δ/OA and C2

t,δ/2O2A, respectively.

A proof of Lemma 2, presented below, builds on the concentration inequalities collected in Section C.4.

Proof (of Lemma 2). Part (i). Using Lemma 8, we have for any (o, a),

P
(
∃t ∈ N, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)
≤ δ

OA
.

For Mt,δ(C
1), we thus have

P
(
∃t ∈ N, M /∈ Mt,δ(C

1)
)
= P

(
∃t ∈ N,∃p /∈ C1

t,δ/OA

)
= P

(
∃t ∈ N,∃(o, a) ∈ O ×A, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)

≤
∑

o∈O,a∈A
P
(
∃t ∈ N, p(·|o, a) /∈ C1

t,δ/OA(o, a)
)

≤
∑

o∈O,a∈A

δ

OA
= δ .

Part (ii). Lemma 9 ensures that for any (o, a, o′),

P
(
∃t ∈ N, p(o′|o, a) /∈ C2

t,δ/2O2A(o, a, o
′)
)
≤ δ

O2A
.
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Hence, for Mt,δ(C
2), we have

P
(
∃t ∈ N, M /∈ Mt,δ(C

2)
)
= P

(
∃t ∈ N,∃p /∈ C2

t,δ/2O2A

)
= P

(
∃t ∈ N,∃(o, a, o′) ∈ O ×A×O, p(o′|o, a) /∈ C2

t,δ/2O2A(o, a, o
′)
)

≤
∑

o,o′∈O,a∈A
P
(
∃t ∈ N, p(o′|o, a) /∈ C2

t,δ/2O2A(o, a, o
′)
)

≤
∑

o,o′∈O,a∈A

δ

O2A
= δ .

□

C.1 Proof of Theorem 1

As in most regret analyses for model-based algorithms that work based on the optimism principle, the proof builds on the
regret analysis by Jaksch et al. (2010), but it includes novel steps due to the structure of MDPRMs.

Let δ ∈ (0, 1). We closely follow the notations used by Jaksch et al. (2010). To simplify notations, we define the short-hand
Jk := Jtk for various random variables that are fixed within a given episode k and omit their dependence on δ (for example
Mk := Mtk,δ). We let m(T ) denote the number of episodes initiated by the algorithm up to time T .

Observe that E[rt|st, at] =
∑

o′ p(o
′|ot, at)ν(qt, L(ot, at, o′)). Hence, by applying Corollary 1, we deduce that

R(T ) =

T∑
t=1

g⋆ −
T∑

t=1

rt

≤
T∑

t=1

∑
o,q,a

(
g⋆ −

∑
o′

p(o′|o, a)ν(q, L(o, a, o′))
)
I{(qt,ot,at)=(q,o,a)} +

√
1
2 (T + 1) log(

√
T + 1/δ)

=
∑
o,q,a

(
g⋆ −

∑
o′

p(o′|o, a)ν(q, L(o, a, o′))
)
Nm(T )(q, o, a) +

√
1
2 (T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ.

For s = (q, o), define

µ(s, a) :=
∑
o′

p(o′|o, a)ν(q, L(o, a, o′)) =
∑
q′,o′

p(o′|o, a)ν(q, L(o, a, o′))I{q′=τ(q,L(o,a,o′))}

Hence, the first term in the previous inequality reads

∑
s,a

(g⋆ − µ(s, a))Nm(T )(s, a) =

m(T )∑
k=1

∑
s,a

tk+1−1∑
t=tk

I{st=s,at=a}︸ ︷︷ ︸
:=vk(s,a)

(
g⋆ − µ(s, a)

)

=

m(T )∑
k=1

∑
s,a

vk(s, a)
(
g⋆ − µ(s, a)

)
.

Introducing ∆k :=
∑

s,a vk(s, a)
(
g⋆ − µ(s, a)

)
for 1 ≤ k ≤ m(T ), we get

R(T ) ≤
m(T )∑
k=1

∆k +
√

1
2 (T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ.

A given episode k is called good if M ∈ Mk, and bad otherwise.
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Control of the regret due to bad episodes. By Lemma 2, the set Mk contains the true MDPRM with probability higher
than 1− δ uniformly for all T , and for all episodes k = 1, . . . ,m(T ). As a consequence, with probability at least 1− δ,∑m(T )

k=1 ∆kI{M/∈Mk} = 0.

Control of the regret due to good episodes. To upper bound regret in good episodes, we closely follow (Jaksch et al.,
2010) and decompose the regret to control the transition and reward functions. Consider a good episode k. Since M ∈ Mk,
the choice of πk and M̃k = (S,A, p̃,R,P, L) satisfy gk := gπk(M̃k) ≥ g⋆ − 1√

tk
. Hence, the regret accumulated in

episode k satisfies:

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

. (4)

It is a direct consequence of (Puterman, 2014, Theorem 8.5.6) that when the convergence criterion holds at iterate i in EVI,
then

|u(i+1)
k (s)− u

(i)
k (s)− gk| ≤

1√
tk

, ∀s ∈ S . (5)

By the design of EVI, note that for all s ∈ S,

u
(i+1)
k (s) =

∑
s′∈S

p̃qk(o
′|o, πk(s))

[
ν(q, L(o, πk(s), o

′)) + u
(i)
k (s′)

]
I{q′=τ(q,L(o,πk(s),o′))} ,

where we recall that p̃qk(·|o, πk(q, o)) is the transition probability distribution of the optimistic MDPRM M̃k in s = (q, o).
For s ∈ S and a ∈ A, define

µ̃k(s, a) :=
∑
q′,o′

p̃qk(o
′|o, a)ν(q, L(o, a, o′))I{q′=τ(q,L(o,πk(s),o′))} .

Then, (5) gives, for all s ∈ S,∣∣∣gk − µ̃k(s, πk(s))−
(∑

s′

p̃qk(o
′|o, πk(s))I{q′=τ(q,L(o,πk(s),o′))}u

(i)
k (s′)− u

(i)
k (s)

)∣∣∣ ≤ 1√
tk

.

Defining gk = gk1, µ̃k :=
(
µ̃k(s, πk(s))

)
s

, P̃k :=
(
p̃qk
(
o′|o, πk(s)

)
I{q′=τ(q,L(o,πk(s),o′))}

)
s,s′

and vk :=(
vk
(
s, πk(s)

))
s

, we can rewrite the above inequality as:∣∣∣gk − µ̃k − (P̃k − I)u
(i)
k

∣∣∣ ≤ 1√
tk
1 .

Also, we can rewrite (4) as

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ̃k(s, a)

)
+
∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

. (6)

The first term in the right-hand side of (6) is bounded by vk(P̃k − I)u
(i)
k +

∑
s,a

vk(s,a)√
tk

. The second term is bounded as
follows:∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
=
∑
s,a

vk(s, a)
∑
o′∈O

(
p̃qk(o

′|o, a)− p(o′|o, a)
)
ν(q, L(o, a, o′))

∑
q′

I{q′=τ(q,L(o,πk(s),o′))}︸ ︷︷ ︸
=1

≤
∑
s,a

vk(s, a)
∥∥p̃qk(·|o, a)− p(·|o, a)

∥∥
1

≤ 2
∑
s,a

vk(s, a)βNk(o,a)

(
δ

OA

)
= 2

∑
o,a

βNk(o,a)

(
δ

OA

)∑
q

vk(q, o, a)︸ ︷︷ ︸
=vk(o,a)

= 2
∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)
,
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where we used that ν(q, L(o, a, o′)) ≤ 1. Moreover, since tk ≥ maxo,a Nk(o, a), we can bound the third term in the
right-hand side of (6) as:

∑
s,a

vk(s, a)√
tk

≤
∑
o,a

1√
Nk(o, a)

∑
q

vk(q, o, a)=
∑
o,a

vk(o, a)√
Nk(o, a)

.

Putting these three bounds together, we thus get

∆k ≤ vk(P̃k − I)u
(i)
k + 2

∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)
+ 2

∑
o,a

vk(o, a)√
Nk(o, a)

.

Let us define, for all s ∈ S,

wk(s) := u
(i)
k (s)− 1

2

(
min

s′∈Bs×O
u
(i)
k (s′) + max

s′∈Bs×O
u
(i)
k (s′)

)
.

In view of the fact that P̃k is row-stochastic (i.e., its rows sum to one), we obtain

∆k ≤ vk(Pk − I)wk + vk(P̃k −Pk)wk︸ ︷︷ ︸
L1

+2
∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)
+ 2

∑
o,a

vk(o, a)√
Nk(o, a)

. (7)

Upper bound on L1. We have

vk(P̃k −Pk)wk =
∑
s∈S

∑
s′∈S

vk(s, πk(s))
(
P̃k(s

′|s, πk(s))− P (s′|s, πk(s))
)
wk(s

′)

=
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, πk(s))− p(o′|o, πk(s))
)
I{q′=τ(q,L(o,πk(s),o′))}wk(q

′, o′)

≤
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∣∣∣p̃qk(o′|o, πk(s))− p(o′|o, πk(s))
∣∣∣ · max

s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣ ∑
q′∈Q

I{q′=τ(q,L(o,πk(s),o′))}︸ ︷︷ ︸
=1

(8)

≤
∑
s∈S

vk(s, πk(s))
∥∥(p̃qk − p

)
(·|o, πk(s))

∥∥
1
· max
s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣
≤
∑
o∈O

∑
q∈Q

vk(q, o, πk(q, o))βNk(o,πk(q,o))

(
δ

OA

)
·Dq,o (9)

≤
∑
a∈A

∑
o∈O

∑
q∈Q

vk(q, o, a) · βNk(o,a)

(
δ

OA

)
·Dq,o

≤
∑
a∈A

∑
o∈O

βNk(o,a)

(
δ

OA

)
·max
q∈Q

Dq,o

∑
q∈Q

vk(q, o, a)

≤
∑
a∈A

∑
o∈O

βNk(o,a)

(
δ

OA

)
·max
q∈Q

Dq,o · vk(o, a) , (10)
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where (8) we used the definition of Bs, and where (9) follows from Lemma 3, stated and proven in Section C.3. Combining
(10) with (7) and summing over all good episodes, we obtain:

m(T )∑
k=1

∆kI{M∈Mk} ≤
m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk} + 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+

m(T )∑
k=1

∑
o,a

vk(o, a)βNk(o,a)

(
δ

OA

)(
2 + max

q∈Q
Dq,o

)

=

m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk} + 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+

m(T )∑
k=1

∑
o,a

vk(o, a)

√
2

Nk(o, a)

(
1+

1

Nk(o, a)

)
log
(

OA(2O−2)
δ

√
Nk(o, a)+1

)(
2 + max

q∈Q
Dq,o

)

=

m(T )∑
k=1

vk(Pk − I)wkI{M∈Mk}︸ ︷︷ ︸
L2

+2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+ 2
√

O + log
(
OA

√
T + 1/δ

)m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

(
max
q∈Q

Dq,o + 2
)
, (11)

where we use the trivial inequality 1 ≤ Nk(o, a) ≤ T .

Upper bound on L2. To upper bound L2, we define a martingale difference sequence similarly to the proof of Theorem 2
in (Jaksch et al., 2010). Let (Zt)t≥1 be a sequence with

Zt := (P (·|st, at)− est+1
)wk(t)I{M∈Mk(t)},

for all t, where k(t) denotes the episode containing time step t. For any good episode k, we have:

vk(Pk − I)wk =

tk+1−1∑
t=tk

(P (·|st, at)− est)wk

=

tk+1−1∑
t=tk

(
P (·|st, at)− est+1

+ est+1
− est

)
wk

=

tk+1−1∑
t=tk

Zt + wk(stk+1
)− wk(stk) ≤

tk+1−1∑
t=tk

Zt +Dcp ,

where ei denotes a vector with the i-th element being 1 and the others being zero. Hence, L2 ≤
∑T

t=1 Zt +m(T )Dcp. As
established in (Jaksch et al., 2010), |Zt| ≤ ∥P (·|st, at)− est+1

∥1∥wk(t)∥∞ ≤ Dcp and E[Zt|s1, a1, . . . , st, at] = 0, so that
(Zt)t≥1 is martingale difference sequence. Therefore, by Corollary 1, we get:

P
(
∃T :

T∑
t=1

Zt ≥ Dcp

√
1
2 (T + 1) log(

√
T + 1/δ)

)
≤ δ .

Thus, for all T , with probability at least 1− δ, it holds

L2 ≤ Dcp

√
1
2 (T + 1) log(

√
T + 1/δ) +m(T )Dcp

≤ Dcp

√
1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
, (12)

where we used Lemma 6 to upper bound m(T ).
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The Final Bound. For the regret built during the good episodes, we have

m(T )∑
k=1

∆kI{M∈Mk} ≤ 2
√

O + log
(
OA

√
T + 1/δ

)m(T )∑
k=1

∑
o,a

(
max
q∈Q

Dq,o + 2
) vk(o, a)√

Nk(o, a)

+ 2

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

+Dcp

√
1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
, (13)

with probability higher than 1 − δ and uniformly over all T ∈ N. Applying Lemma 5 and using the Cauchy-Schwarz
inequality:

m(T )∑
k=1

∑
o,a

max
q∈Q

Dq,o
vk(o, a)√
Nk(o, a)

≤ (
√
2 + 1)

∑
o,a

max
q∈Q

Dq,o

√
NT (o, a)

≤ (
√
2 + 1)

√∑
o,a

max
q∈Q

D2
q,o ·

∑
o,a

NT (o, a)

= (
√
2 + 1)

√
T
∑
o,a

max
q∈Q

D2
q,o = (

√
2 + 1)

√
cMAT ,

where, with a slight abuse of notation, we used NT (o, a) to denote the number of visits to (o, a) after T rounds. Similarly,
we have

m(T )∑
k=1

∑
o,a

vk(o, a)√
Nk(o, a)

≤ (
√
2 + 1)

∑
o,a

√
NT (o, a) ≤ (

√
2 + 1)

√
OA

∑
o,a

NT (o, a) = (
√
2 + 1)

√
OAT .

Combining this with (13), and putting together, we have that with probability at least 1− 4δ,

R(T ) ≤ 2(
√
2 + 1)

√
O + log

(
OA

√
T + 1/δ

)(√
cM + 2

)√
AT + 2(

√
2 + 1)

√
OAT

+ (Dcp + 1)
√

1
2 (T + 1) log(

√
T + 1/δ) +DcpOA log2

(
8T
OA

)
,

thus proving the theorem. □

C.2 Proof of Theorem 2

Let δ ∈ (0, 1). Following the same steps as in the proof of Theorem 1, we have

R(T ) ≤
m(T )∑
k=1

∆k +
√

1
2 (T + 1) log(

√
T + 1/δ) ,

with probability at least 1− δ, where ∆k is defined similarly to the proof of Theorem 1. Furthermore, By Lemma 2, with
probability at least 1− δ,

∑m(T )
k=1 ∆kI{M/∈Mk} = 0.

Let’s now focus on good episodes, i.e., episodes k where M ∈ Mk. Similarly to the proof of Theorem 1, we have that

∆k ≤
∑
s,a

vk(s, a)
(
gk − µ̃(s, a)

)
+
∑
s,a

vk(s, a)
(
µ̃k(s, a)− µ(s, a)

)
+
∑
s,a

vk(s, a)√
tk

.

The first and third terms are bounded as in the proof of Theorem 1. However, the second term in the right-hand side is
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bounded as follows:

µ̃k(s, a)− µ(s, a) =
∑
o′∈O

(
p̃qk(o

′|o, a)− p(o′|o, a)
)
ν(q, L(o, a, o′))

≤
∑
o′∈O

∣∣p̃qk(o′|o, a)− p(o′|o, a)
∣∣

≤
∑
o′∈O

√
2p̃qk(o

′|o, a)(1− p̃qk(o
′|o, a))

Nk(o, a)
β′
Nk(o,a)

(
δ

2O2A

)
+
∑
o′∈O

√
2p(o′|o, a)(1− p(o′|o, a))

Nk(o, a)
β′
Nk(o,a)

(
δ

2O2A

)
+

2

3Nk(o, a)
β′
Nk(o,a)

(
δ

2O2A

)
(a)
≤
√
β′
T

(
δ

2O2A

) ∑
o′∈O

√
2p̂k(o′|o, a)(1− p̂k(o′|o, a))

Nk(o, a)

+
√
β′
T

(
δ

2O2A

) ∑
o′∈O

√
2p(o′|o, a)(1− p(o′|o, a))

Nk(o, a)
+

4

Nk(o, a)
β′
T

(
δ

2O2A

)
(b)
≤

√
8β′

T

(
δ

2O2A

) Ko,a

Nk(o, a)
+

4

Nk(o, a)
β′
T

(
δ

2O2A

)
(14)

where (a) follows from Lemma 4, and where (b) uses the fact that for a distribution p ∈ ∆O with K non-zero elements, we
have ∑

o∈O

√
p(o)(1− p(o)) =

∑
o:p(o)>0

√
p(o)(1− p(o))

√ ∑
o:p(o)>0

p(o)
∑

o:p(o)>0

(1− p(o)) =
√
K − 1 .

Hence, using the bounds derived in the proof of Theorem 1, we have

∆k ≤ vk(Pk − I)wk + vk(P̃k −Pk)wk︸ ︷︷ ︸
L1

+
√
8β′

T

(
δ

2O2A

)∑
o,a

vk(o, a)

√
Ko,a

Nk(o, a)

+ 4β′
T

(
δ

2O2A

)∑
o,a

vk(o, a)

Nk(o, a)
+ 2

∑
o,a

vk(o, a)

Nk(o, a)
.

where wk is the same as in the proof of Theorem 1.

Upper Bound on L1. We have

vk(P̃k −Pk)wk

=
∑
s∈S

vk(s, πk(s))
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, πk(s))− p(o′|o, πk(s))
)
I{q′=τ(q,L(o,πk(s),o′))}wk(q

′, o′)

≤
∑
a∈A

∑
s∈S

vk(s, a)
∑
o′∈O

∑
q′∈Q

(
p̃qk(o

′|o, a)− p(o′|o, a)
)
I{q′=τ(q,L(o,a,o′))}wk(q

′, o′)

≤
∑
a∈A

∑
s∈S

vk(s, a)
∑
o′∈O

∣∣∣p̃qk(o′|o, a)− p(o′|o, a)
∣∣∣ · max

s′∈Bq,o×O

∣∣wk(q
′, o′)

∣∣ ∑
q′∈Q

I{q′=τ(q,L(o,a,o′))}︸ ︷︷ ︸
=1

≤ 1

2

∑
a∈A

∑
s∈S

Dsvk(s, a)
∑
o′∈O

∣∣∣p̃qk(o′|o, a)− p(o′|o, a)
∣∣∣ ,

where the last inequality follows from Lemma 3.
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Now plugging in the bound derived for
∑

o′∈O
∣∣p̃qk(o′|o, a)− p(o′|o, a)

∣∣ in (14), we obtain

vk(P̃k −Pk)wk

≤
√
8β′

T

(
δ

2O2A

)∑
a∈A

∑
o∈O

max
q∈Q

Dq,o · vk(o, a)

√
Ko,a

Nk(o, a)
+ 4Dcpβ

′
T

(
δ

2O2A

)∑
a∈A

∑
o∈O

vk(o, a)

Nk(o, a)
.

The rest of the proof follows similar lines as in the proof of Theorem 1. □

C.3 Technical Lemmas

Lemma 3 For all (s, a) ∈ S ×A, we have:

max
s′∈Bs×O

|wk(s
′)| ≤ Ds

2
, ∥wk∥∞ ≤

Dcp

2
.

Proof. The proof is quite similar to the one of Lemma 8 in (Bourel et al., 2020). We first show that for all s1, s2 ∈ Bs ×O,
we have u

(i)
k (s1)− u

(i)
k (s2) ≤ Ds, which further implies

max
x∈Bs×O

|wk(x)| ≤ Ds

2 .

To prove this, recall that similarly to (Jaksch et al., 2010), we can combine all MDPRMs in Mk to form a single MDPRM
M̃k with continuous action space A′. In this extended MDPRM, in any s = (q, o) ∈ S, and for each a ∈ A, there is an
action in A′ with mean µ̃k(s, a) and transition probability P̃k(·|s, a) (of the associated Mcp) belonging to the maintained
confidence sets. Similarly to (Jaksch et al., 2010), we note that u(i)

k (s) amounts to the total expected i-step reward of an
optimal non-stationary i-step policy starting in state s on the MDPRM M̃k with the extended action set. The RM-restricted
diameter of state s of this extended MDPRM is at most Ds, since by assumption k is a good episode and hence Mk contains
the true MDPRM M , and therefore, the actions of the true MDPRM are contained in the continuous action set of M̃k. Now,
if there were states s1, s2 ∈ Bs ×O with u

(i)
k (s1)− u

(i)
k (s2) > Ds, then an improved value for u(i)

k (s1) could be achieved
by the following non-stationary policy: First follow a policy that moves from s1 to s2 most quickly, which takes at most Ds

steps on average. Then follow the optimal i-step policy for s2. We thus have u(i)
k (s1) ≥ u

(i)
k (s2)−Ds, since at most Ds of

the i rewards of the policy for s2 are missed. This is a contradiction, and so the claim follows. The second bound directly
follows from the same arguments as in (Jaksch et al., 2010). □

Lemma 4 ((Bourel et al., 2020, Lemma 11)) Consider x and y satisfying |x− y| ≤
√

2y(1− y)ζ + ζ/3. Then,√
y(1− y) ≤

√
x(1− x) + 2.4

√
ζ .

Lemma 5 ((Jaksch et al., 2010, Lemma 19),(Talebi and Maillard, 2018, Lemma 24)) For any sequence of numbers
z1, z2, . . . , zn with 0 ≤ zk ≤ Zk−1 := max{1,

∑k−1
i=1 zi}, it holds

(i)

n∑
k=1

zk√
Zk−1

≤
(√

2 + 1
)√

Zn .

(ii)

n∑
k=1

zk
Zk−1

≤ 2 log(Zn) + 1 .

Lemma 6 ((Jaksch et al., 2010, Proposition 18)) The number m(T ) of episodes up to time T ≥ OA satisfies

m(T ) ≤ OA log2
(

8T
OA

)
.

C.4 Concentration Inequalities

In this subsection, we collect a few useful concentration inequalities. They can be found in, e.g., (Maillard, 2019; Lattimore
and Szepesvári, 2020; Dann et al., 2017; Bourel et al., 2020).

We begin with the following definition:
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Definition 2 (Sub-Gaussian Observation Noise) A sequence (Yt)t has conditionally σ-sub-Gaussian noise if

∀t, ∀λ ∈ R, logE[exp
(
λ(Yt − E[Yt|Ft−1])

)∣∣Ft−1] ≤
λ2σ2

2
,

where Ft−1 denotes the σ-algebra generated by Y1, . . . , Yt−1.

Lemma 7 (Time-Uniform Laplace Concentration for Sub-Gaussian Distributions) Let Y1, . . . , Yn be a sequence of n
i.i.d. real-valued random variables with mean µ, such that Yn−µ is σ-sub-Gaussian. Let µ̂n = 1

n

∑n
s=1 Ys be the empirical

mean estimate. Then, for all δ ∈ (0, 1), it holds

P
(
∃n ∈ N, |µ̂n − µ| ≥ σ

√(
1 +

1

n

)2 ln (√n+ 1/δ
)

n

)
≤ δ .

The “Laplace” method refers to using the Laplace method of integration for optimization. We recall that random variables
bounded in [0, 1] are 1

2 -sub-Gaussian. The following corollary is an immediate consequence of Lemma 7:

Corollary 1 (Time-Uniform Azuma-Hoeffding Concentration Using Laplace) Let (Xt)t≥1 be a martingale difference
sequence such that for all t, Xt ∈ [a, b] almost surely for some a, b ∈ R. Then, for all δ ∈ (0, 1), it holds

P
(
∃T ∈ N :

T∑
t=1

Xt ≥ (b− a)
√

1
2 (T + 1) log(

√
T + 1/δ)

)
≤ δ .

Lemma 7 can be used to provide a time-uniform variant of Weissman’s concentration inequality (Weissman et al., 2003)
using the method of mixture (a.k.a. the Laplace method):

Lemma 8 (Time-Uniform L1-Deviation Bound for Categorical Distributions Using Laplace) Consider a finite alpha-
bet X and let P be a probability distribution over X . Let (Xt)t≥1 be a sequence of i.i.d. random variables distributed
according to P , and let P̂n(x) =

1
n

∑n
i=1 I{Xi=x} for all x ∈ X . Then, for all δ ∈ (0, 1),

P

(
∃n ∈ N : ∥P − P̂n∥1 ≥

√
2

n

(
1 +

1

n

)
log

(√
n+ 1

2|X | − 2

δ

))
≤ δ .

The following lemma provides a time-uniform Bernstein-type concentration inequality for bounded random variables:

Lemma 9 (Time-Uniform Bernstein for Bounded Random Variables Using Peeling) Let Z = (Zt)t∈N be a sequence
of random variables generated by a predictable process, and F = (Ft)t be its natural filtration. Assume for all t ∈ N,
|Zt| ≤ b and E[Z2

s |Fs−1] ≤ v for some positive numbers v and b. Let n be an integer-valued (and possibly unbounded)
random variable that is F-measurable. Then, for all δ ∈ (0, 1),

P
(
∃n ∈ N,

1

n

n∑
t=1

Zt ≥
√

2ℓn(δ)v

n
+

ℓn(δ)b

3n

)
≤ δ ,

P
(
∃n ∈ N,

1

n

n∑
t=1

Zt ≤ −
√

2ℓn(δ)v

n
− ℓn(δ)b

3n

)
≤ δ ,

where ℓn(δ) := η log
(

log(n) log(ηn)
δ log2(η)

)
, with η > 1 being an arbitrary parameter.

Lemma 9 is derived from Lemma 2.4 in (Maillard, 2019). We note that any η > 1 is valid here, but numerically optimizing
the bound shows that η = 1.12 seems to be a good choice and yields a small bound. For example, when (Xt)t∈N is a
sequence of i.i.d. Bernoulli random variables with mean µ, we have, for all δ ∈ (0, 1),

P
(
∃n ∈ N, µ− 1

n

n∑
t=1

Xt ≥
√

2ℓn(δ)µ(1− µ)

n
+

ℓn(δ)

3n

)
≤ δ ,

P
(
∃n ∈ N, µ− 1

n

n∑
t=1

Xt ≤ −
√

2ℓn(δ)µ(1− µ)

n
− ℓn(δ)

3n

)
≤ δ ,
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D REGRET LOWER BOUND

In this section, we prove Theorem 3. Our proof uses the machinery of establishing a minimax regret lower bound in Jaksch
et al. (2010) for tabular MDPs. (We also refer to (Lattimore and Szepesvári, 2020, Chapter 38.7).) This machinery for tabular
MDPs consists in crafting a worst-case MDP and showing that the regret under any algorithm on the MDP is lower bounded.
We take a similar approach here but stress that constructing a worst-case MDPRM entails constructing a worst-case reward
machine and a labeled MDP simultaneously. In terms of notations and presentation, we closely follow (Lattimore and
Szepesvári, 2020, Chapter 38.7).

o0

o1 o2 o3

oA oB

1 − δ
σA∩B

1 − δ
σA∩B

δ, σB
δ, σA

Figure 7: Construction of the underlying labeled MDP for the LB with A = 2 and O = 8, based on the worst-case MDP in
(Lattimore and Szepesvári, 2020, Chapter 38.7).

Proof (of Theorem 3). To prove the theorem, we construct a worst-case MDPRM, which can be seen as an MDPRM that
models a bandit problem with approximately OA arms, such that obtaining the reward requires to pick the ‘good arm’ Q
times. Figures 8 and 7 show the construction, given O and A: We build a tree of minimum depth with at most A children
for each node using exactly O − 2 observations. The root of the tree is denoted o0 and transitions within the tree are
deterministic. So, in a node of the tree the agent can simply select the child to transition to. Let L be the number of leaves,
and let us index observations as o1, o2, . . . , oL. The last two observations are oA and oB where events are given as detailed
later. Then, for each i ∈ J1, LK the agent can choose any action a ∈ A and transitions to either oA or oB according to:

p(oA|oi, a) =
1

2
+ ε(a, i) and p(oB |oi, a) =

1

2
− ε(a, i),

where ε(a, i) = 0 for all (a, i) pairs except for one particular pair, for which ε(a, i) = ∆ > 0. (∆ will be chosen later in the
proof.) The transition probabilities at oA and oB under any a ∈ A satisfy:

p(o|o, a) = 1− δ, p(o0|o, a) = δ, o ∈ {oA, oB} .

Let us choose δ = 6Q
Dcp

. Note that by the assumptions of the theorem, δ ∈ (0, 1]. Furthermore, this choice ensures that the
diameter of the cross-product MDP associate to the described MDPRM is at most Dcp, regardless of the value of ∆. Also,
for the diameter of the labeled MDP, D, we will have D = 4

δ .

The labelling function is defined as follows. Since we assume |P| ≥ 2, we can consider three events σA, σB , σA∩B and
define labelling function as follows: For all action a ∈ A,

L(oA, a, o0) = σA, L(oA, a, oA) = σA∩B ,

L(oB , a, o0) = σB , L(oB , a, oB) = σA∩B .

To build the RM, we let N = ⌈(Q− 1)/2⌉ and N ′ = ⌊(Q− 1)/2⌋ so that N +N ′ = Q− 1. The idea is to arrange the Q
many nodes of the RM into 2 cycles of lengths N and N ′; see Figure 7. To this effect, we let q0 be the origin. Then, the set
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q2
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σA, σB

(r = 1)

σA∩B

(r = 1)

σA∩B

(r = 1)

σA∩B

(r = 1)

σA∩B

(r = 1)

σA, σB

(r = 1)

σA, σB

(r = 1)

σA, σB

(r = 1)

σA, σB

(r = 1)

q′1

q′2

q′
N′−1

q′
N′

σB

σA, σB

σA, σB

σA, σB

σA, σB

σA, σB

Figure 8: Construction of the underlying RM for the lower bound with a double-cyclic a ‘good’ cycle giving rewards and
‘bad’ cycle of similar length giving no reward.

{qi}Ni=0 of RM states defines the ‘good’ cycle, whereas the set {q′j}N
′

j=1 ∪ {q0} define the ‘bad’ cycle. Then, we build the
RM transition function τ and reward function r, for all i ∈ J1, NK and all j ∈ J1, N ′K:

τ(q0, σA) = q1, r(q0, σA) = 1,

τ(q0, σB) = q′1, r(q0, σB) = 0,

τ(qi, σA) = qi+1, r(qi, σA) = 1,

τ(qi, σB) = qi+1, r(qi, σB) = 1,

τ(qi, σA∩B) = qi, r(qi, σA∩B) = 1,

τ(qN , σA) = q0, r(qN , σA) = 1,

τ(qN , σB) = q0, r(qN , σB) = 1,

τ(qN , σA∩B) = qN , r(qN , σA∩B) = 1,

τ(q′j , σA) = q′j+1, r(q′j , σA) = 0,

τ(q′j , σB) = q′j+1, r(q′j , σB) = 0,

τ(q′N ′ , σA) = q0, r(q′N ′ , σA) = 0,

τ(q′N ′ , σB) = q0, r(q′N ′ , σB) = 0,

where all non-specified transitions imply no change of state, and where all non-specified rewards are zero. This means that
in q0, the agent needs to realize the event σA to initiate a rotation of the ‘good’ cycle, where in all states the agent will get a
reward when staying in either oA or oB and progresses one step forward in the cycle when leaving one of both RM-states.
On the other hand, if the agent is in q0, she receives the event σB and then initiates a rotation of the ‘bad’ cycle, without any
reward but similar length and transitions as for the ‘good’ cycle.

In summary, each time the agent arrives in s0 = (o0, q0), she selects which leaf to visit and then chooses an action from
that leaf. This corresponds to choosing one of k = LA = Ω(OA) meta actions. The optimal policy is to select the meta
action with the largest probability of transitioning to the observation oA. The choice of δ ensures that the agent expects
to stay at state oA or oB for approximately D rounds. Since all choices are equivalent when q ̸= q0, the agent expects to
make about 2T

DQ decisions and the rewards are roughly in [0, DQ
8 ], or 3DQ = 2Dcp, so we should expect the regret to be

Ω(Dcp
√
kT/Dcp) = Ω(

√
TDcpOA).
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Characterisation of the MDPRM. Using the introduced notations, we introduce L and LM :

L = {(q0, o, a) : a ∈ A and o is a leaf of the tree},
LM = {(o, a) : a ∈ A and o is a leaf of the tree}.

By definition, both have k elements. Then, let M0 be the MDPRM with ε(o, a) = 0 for all pairs in LM . Then let Mj be
the MDPRM with ε(o, a) = ∆ for the j-th observation-action pair in the set LM . Similarly to (Lattimore and Szepesvári,
2020), we define the stopping time Tstop as the first time when the number of visits of (q0, s0) is at least T/Dcp − 1, or T if
the state (q0, s0) is not visited enough:

Tstop = min

{
T,min

{
t :

t∑
t′=1

I{st′=(q0,o0)} ≥ T

Dcp
− 1
}}

.

Also, let Tj be the number of visits to the j-th triplet of L until Tstop and Ttot =
∑k

j=1 Tj . We also let Pj , 0 ≤ j ≤ k

denote the probability distribution of T1, . . . , Tk induced by the interaction of π and Mj and let Ej [·] be the expectation
with respect to Pj .

Now, we study the characteristics of the MDPRM. In doing so, we first build upon (Lattimore and Szepesvári, 2020,
Claim 38.9) that establishes that the diameter of the underlying MDP of Mj , denoted by D(Mj), is bounded by D for all
j ∈ J1, kK. Then, we have for Dcp(Mj) cross-product diameter of the MDPRM Mj :

Dcp(Mj) ≤ DN +DN

∞∑
i=1

1

2i
+DN ′ ≤ 3

2
QD = Dcp.

The first inequality can be interpreted as the fact that the cross-product diameter is smaller that completing the 2 loops of the
RM plus accounting the probability to have a transition to the “wrong” loop when in q0. The rest follows by construction
and we note that we can ignore ∆ due to the fact that it can only reduce the diameters.

Following the same arguments as in Claim 38.10 of (Lattimore and Szepesvári, 2020), there exist universal constants
0 < c1 < c2 < ∞ such that DcpE0[Tσ]/T ∈ [c1, c2]. By construction, we have

DcpE0[Ttot]

T
≤ E[Ttot]

OA
≤ T

DN ′OA
≤ c2

Similarly,

DcpE[Ttot]

T
≥ E0[Ttot]

OA
≥ T

DNOA
≥ c1.

Finally, we write E[Rj(T )] the expected regret of policy π in the MDPRM Mj over T steps and prove that there exists a
universal constant c3 > 0 such that:

E[Rj(T )] ≥ c3∆DcpE[Ttot − Tj ] .

To prove this result, we first write the definition of the expected regret:

E[Rj(T )] =

T∑
t=1

E⋆
j [rt]−

T∑
t=1

Ej [rt],

where E⋆
j is the expectation in MDPRM Mj when following the optimal policy, which mean always choosing the j-th

element of L when in (q0, o0). Now, we can decompose the cumulative reward by “episodes”, where a new episode start
whenever reaching (q0, o0). By construction and using our knowledge of the optimal policy, this yields:

E[Rj(T )] ≥ Ej [Ttot]
(1
2
+ ∆

)DN

4
− E[Ttot − Tj ]

DN

8
− Ej [Tj ]

(1
2
+ ∆)

DN

4

= Ej [Ttot − Tj ]∆
DN

4
,

or by definition of D and N there exists a universal constant c3 > 0 such that c3Dcp ≥ DN
4 , which allows us to conclude.
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The Final Lower Bound. Let D(P,Q) denote the Kullback-Leibler divergence between two probability distributions P
and Q. Similarly to (Lattimore and Szepesvári, 2020, Chapter 38.7) and (Jaksch et al., 2010) (as well as lower bound proofs
for bandit problems), we have D(P0, Pj) = E0[Tj ]d(1/2, 1/2+∆), where d(p, q) is the relative entropy between Bernoulli
distributions with respective means p and q. Now the conclusion of the proof is exactly the same as for MDPs (Jaksch
et al., 2010): We assume that the chosen ∆ will satisfy ∆ ≤ 1/4, then using the entropy inequalities from (Lattimore and
Szepesvári, 2020, Equation 14.16), we have:

D(P0, Pj) ≤ 4∆2E0[Tj ].

Then following the same steps as in (Lattimore and Szepesvári, 2020, Chapter 38.7) and using Pinsker’s inequality, and
using the fact that 0 ≤ Ttot − Tj ≤ Ttot ≤ T/Dcp, we have

Ej [Ttot − Tj ] ≥ E[Ttot − Tj ]−
T

Dcp

√
D(P0, Pj)

2
≥ E0[Ttot − Tj ]−

T∆

Dcp

√
2E0[Tj ].

Summing over j and applying Cauchy-Schwarz give us

k∑
j=1

Ej [Ttot − Tj ] ≥
k∑

j=1

E0[Ttot − Tj ]−
T∆

Dcp

k∑
j=1

√
2E0[Tj ]

≥ (k − 1)E0[Ttot]−
T∆

Dcp

√
2kE0[Ttot]

≥ c1T (k − 1)

Dcp
− T∆

Dcp

√
2c2Tk

Dcp
.

Now choosing ∆ = c1(k−1)
2

√
Dcp

2c2Tk yields

k∑
j=1

Ej [Ttot − Tj ] ≥
c1T (k − 1)

2kDcp
.

This implies that there exists j such that Ej [Ttot − Tj ] ≥ c1T (k−1)
2kDcp

, which leads to the final result using the previous lower
bound on the regret

E[Rj(T )] ≥ c3Dcp∆Ej [Ttot − Tj ] ≥
c21c3T (k − 1)2

4k

√
Dcp

2c2Tk
= c0

√
DcpOAT,

with c0 > 0 being a universal constant. □

E DETAILS OF DIAMETER COMPUTATIONS

Numerical Computation of Diameters. The RM-restricted diameter Ds can be numerically computed via solving the
corresponding reachability problems of conventional MDPs. The (global) diameter of a given tabular MDP M can be
computed as follows. For a given s, we modify M to another MDP M ′, where M ′ has zero rewards everywhere except for
s1 in which the reward is 1 under all actions. Also, M ′ has the same transition as M , except for s1 in which p(s1|s1, a) = 1
under all actions in s1, so as to make s1 absorbing. Now the optimal bias function in M ′, denoted by b⋆ (found via Value
Iteration), can be interpreted as follows: b⋆(s1)− b⋆(s2) denotes the amount of steps (in expectation) needed to reach s1
from s2. Hence, the farthest state from s1 has a path length of maxs2(b

⋆(s1)− b⋆(s2)), and hence, by definition of diameter,
D = maxs1,s2∈S(b

⋆(s1)− b⋆(s2)).

We modify the above procedure slightly to compute Ds as follows —the procedure is implemented in diameter.py, in
our uploaded codes. In view of the equivalence between an MDPRM and its associated cross-product MDP, we will be
working with the latter. To find Ds for a given s, we restrict to s1, s2 ∈ Bs ×O.

Diameters Computation for the MDPRM in Figure 2. In this MDPRM, we notice that for δ ∈ (0, 1
2 ), the RM restricted

diameter from o0 for any q ∈ Q coincides with the diameter of the underlying MDP. Hence, Do0,q = 1
δ for all q ∈ Q. Now,
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o0 o1

1 − δ
σB

1 − δ

δ
σA

δ
σB

(a) MDP

q0 q1 q2 qL

σA σA σA σA

σB

σA

(r = 1)

(b) RM

Figure 9: Example Dcp → ∞ when D → 1

observe that the diameter for both Dcp and the restricted diameters from o1 will be the expected number of steps for a
trajectory from (q, o0) and (q′, o0) where q and q′ are two RM-states with the maximum number of steps possible between
them. Let N denote this number of steps. Then, we give ourselves DN the diameter over a communicating subset of Q with
maximum number of steps between 2 steps being N , which yields:

D1 =
1

δ
+ (1− δ) + δ

(
1 +

1

1− δ

)
=

1

δ
+ 1 +

δ

1− δ
.

Then a simple recurrence shows that for all N :

DN =
N

δ
+ 1 +

δ

1− δ
,

or, we have N = 2 for Dq,o1 and N = ⌊Q/2⌋ for Dcp, which concludes the analysis.

Diameters Computation for the MDPRM in Figure 9. This additional example shows the absence of correlation in
general between the diameter D of the underlying MDP and the diameter Dcp of the cross product. Indeed, if assume
δ ∈ (0, 1) and L ≥ 2 then we immediately have D = 1

1−δ , and the construction of MDPRM ensures that Dcp > 1
δL

. Thus
when δ → 0 we can immediately conclude that D → 1 and Dcp → ∞.

This example illustrates the difficulty of MDPRM when the events are “dense”, which can lead in extreme cases to unsolvable
problems (non-communicating cross-product) despite a simple underlying MDP. Nonetheless, we remark that in a practical
use of MDPRM, events would be expected to be scarce thus leading to MDPRM where Dcp ≤ DN where N is the longest
path within the RM. The previous example represents such a case.

F DETAILS OF EXPERIMENTS AND FURTHER EXPERIMENTS

In this section, we provide further details about the experiments reported in Section 6 and present additional experimental
results. All our experiments are implemented in python3, the environments being based on a framework from the package
gym (see (Brockman et al., 2016)).

Figure 10 shows the cross-product MDP Mcp associated to RiverSwim-patrol2 MDPRM. In fact, this is the MDP to which the
baseline algorithms in the experiments are applied. We also present in Figure 12(a) the same results for the 6-state RiverSwim
MDPRM as in Section 6 but without the log-scale, and in Figure 12(b) results in a similar 20-state environment. The results
in the MDPRM based on the 20-state RiverSwim differ from the other environments due to the global under-performance of
the algorithms based on Bernstein-type confidence bounds. As explained in Section 6, Bernstein-type confidence sets lead
to excessive computational cost due to problems of convergence in EVI. Hence, for algorithms using such confidence sets,
we chose to limit the number of iterations in EVI to 100. This proved necessary for practical constraints. However, it results
in a fairer comparison between the algorithms as it ensures having similar computational cost for all tested algorithms (by
forcefully lowering the computational time of Bernstein variants). We remark that this limitation comes at the expense of
worsening the performance of the algorithms. The results in the 20-state RiverSwim MDPRM are an extreme example of the
consequences of this choice. This environment is indeed extremely challenging to any exploration strategy, a challenge that
may lead to longer burn-in phase in algorithms based on Bernstein-style confidence sets.

In Table 3, we report the realized running times (in seconds) of the various algorithms for a time horizon of 105 steps. Note
that the constraint in EVI for Bernstein-type algorithms is applied, implying that the running times are forcefully reduced for
these algorithms. To illustrate the consequences of this choice, we use TSDE, which also suffers occasionally from problems
of convergence in the VI. These problems are negligible in all environments except in the 6-state RiverSwim-patrol2 —in
our other experiments TSDE is loosely constrained to a maximum of 1000 iterations of VI, which in practice is almost never
necessary. We display the running time of TSDE for the 6-state RiverSwim-patrol2 with the constraint of 100 iterations
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and in parenthesis with a constraint of 1000 iterations. The resulting increase of a full order of magnitude is thus expected,
which is similar to the behaviour observed with the Bernstein-style algorithms. Finally, we stress that our implementations
are not optimised (even for python3). We believe more efficient implementations of these algorithms that would enjoy
significantly reduced running times are possible.

Figure 13 displays the empirical gain (defined as 1
t

∑t
t′=1 rt′) of the various algorithms in the RiverSwim domains and

2-room MDPRMs, together with 95% confidence intervals. The horizontal line (in magenta) shows the optimal gain g⋆

achieved by the oracle. Overall, Figure 13 shows that the empirical gain (i.e., empirical per-step reward) under UCRL-RM-L1
quickly approaches g⋆ compared to the rest in all environments. These figures propose alternative representations to the
various regret plots presented in this paper, but are based on the same experiments. Figure 13(a) demonstrates the superiority
of the approach and the limitation of the baselines that failed to exhibit any significant learning curve in the allotted time
horizon. Figure 13(b) shows once again the limitation of the Bernstein-type approach under practical constraints (as made
explicit in the previous paragraph), where it is worth noting that the UCRL2-B baseline fails to gather any considerable
reward until the end.

Through tables, we illustrate the practical values of the diameters and the associated leading terms of regret bounds of
UCRL-RM-L1, UCRL-RM-B, UCRL2, and UCRL2-B(excluding the exact universal constants). Table 1 presents these
values for different RiverSwim MDPRMs with progressive difficulty levels. As it shows, there is not a big difference between
the RM-restricted diameter and Dcp due to the specific structure of RiverSwim. On the other hand, Table 2 shows similar
values associated to the MDPRM shown in Figure 11 for various lengths N of the abnormal sub-task. Note that 2 actions
are available in this MDPRM, both with the same transitions but one yielding no event. It is a relevant example in matter of
diameters as it represents a simplification (for computational and illustrative purpose) of a situation where multiple sub-tasks
are part of the RM, each with their own rewards. To compute the diameters used in these tables, the procedure detailed in
Appendix E is applied.

We note that in all the reported experiments, we ran TSDE without using the knowledge of the mean rewards, contrary to
the other algorithms. This is because in the case of deterministic rewards, TSDE exhibits a very unstable behaviour, which
in turn would increase the realized regret significantly. In other words, ignoring the knowledge on mean reward rendered
more beneficial for TSDE and we did so to attain a better empirical regret for it.
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Figure 10: The cross-product MDP associated to the N -observation RiverSwim MDP with the patrol2 RM

G COMPARISON OF REGRET BOUNDS

In this section, we present a more detailed comparison between the regret bounds of UCRL-RM variants and those of UCRL2
and UCRL2-B applied to Mcp, obliviously to the structure of the MDPRM. We exclude comparison to EBF introduced by
Zhang and Ji (2019), whose regret matches the lower bound in tabular MDPs, as it does not admit an efficient implementation
to the best of our knowledge.
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O
√
OAcM

√
c′M Dcp

√∑
q,o,a K(q,o),a DcpQO

√
A

6 93.8 54.0 133.6 334.3
12 319.3 130.28 443.1 1551.1
20 726.0 229.6 1009.4 4542.5
40 2130.5 476.4 2978.0 18893.9
70 5005.4 846.1 7013.4 58783.2
100 8595.8 1215.6 12044.3 120745.6

Table 1: Various quantities related to the regret bounds for RiverSwim with patrol2 RM with various number of observation
states: Column 2 (UCRL-RM-L1), Column 3 (UCRL-RM-B), Column 4 (UCRL2B), Column 5 (UCRL2)

N
√
OAcM

√
c′M Dcp

√∑
q,o,a K(q,o),a DcpQO

√
A

4 468.0 272.4 3032.0 20339.3
5 468.1 272.4 3360.6 23100.5
6 468.2 272.5 3699.7 26029.4
8 504.2 293.2 4407.0 32384.4
10 550.1 319.5 5151.9 39404.6
12 600.2 348.3 5932.8 47090.0

Table 2: Various quantities related to the regret bounds for the Multitask MDPRM with various length N of the abnormal
sub-task: Column 2 (UCRL-RM-L1), Column 3 (UCRL-RM-B), Column 4 (UCRL2B), Column 5 (UCRL2)

Algorithm riverSwim6-patrol2 riverSwim20-patrol2
TSDE 3.9 (relaxed constraints: 113.1) 58.5

UCRL2 2.0 136.9
UCRL-RM-L1 1.7 48.05
UCRL-RM-B 1.8 39.8

UCRL2-B 3.0 45.6

Table 3: Empirical running times (in seconds) of various algorithms for a fixed time horizon of 105 steps

Regret Bounds of UCRL2 and UCRL2-B on the Cross-product MDP. UCRL2 (Jaksch et al., 2010) attains the following
regret bound on Mcp that holds with high probability:

R(UCRL2, T ) = O
(
DcpOQ

√
AT log T

)
.

One may use improved confidence sets in UCRL2, similar to those used in UCRL-RM-L1. This improved variant of UCRL2
achieves a regret bound growing as

R(UCRL2improved, T ) = O
(
Dcp

√
AOQT (OQ+ log T )

)
.

UCRL2-B achieves the following regret bound on Mcp:

R(UCRL2-B, T ) = O
(
Dcp

√
QT log T

∑
o,a

Ko,a

)
Regret under UCRL-RM-L1. By Theorem 1, UCRL-RM-L1 achieves the following regret bound on MDPRM M :

R(UCRL-RM-L1, T ) = O
(√

cMAT
(
O + log T

))
where cM =

∑
o∈O

max
q∈Q

D2
q,o. In view of Ds ≤ Dcp, cM ≤ OD2

cp, the regret of UCRL-RM-L1, in the worst case grows as:

R(UCRL-RM-L1, T ) = O
(
Dcp

√
OAT

(
O + log T

))
.
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Figure 11: The Multitask MDPRM
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Figure 12: Regret in 6-state and 20-state RiverSwim

However, in some specific instances, we have Ds ≲ Dcp/Q for all s, so that cM ∼ O(Dcp/Q)2 for such M . On such
MDPRMs, we have

R(UCRL-RM-L1, T ) = O
(

Dcp
Q

√
OAT

(
O + log T

))
.

In comparison with the improved regret bounds of UCRL2, UCRL-RM-L1 achieves a regret that is smaller by a factor of, at
least,

√
Q. However, in instances where Ds ≲ Dcp/Q, UCRL-RM-L1 improves the regret bound of UCRL2 by a factor of

Q3/2. (The improvements are higher had we used the classical regret bound of UCRL2.)

Regret under UCRL-RM-B. By Theorem 2, UCRL-RM-B achieves the following regret bound on MDPRM M :

R(UCRL-RM-B, T ) = O
(√

c′MT log log T
)
,

where c′M =
∑

o∈O,a∈A Ko,a max
q∈Q

D2
q,o. In view of Ds ≤ Dcp, c′M ≤ D2

cp
∑

o,a Ko,a. Hence, the regret of UCRL-RM-L1,

in the worst case grows as:

R(UCRL-RM-B, T ) = O
(
Dcp

√∑
o,a

Ko,aT log log T
)
.
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Figure 13: Empirical gain in 6-state and 20-state RiverSwim and the 2-room MDPRM

However, in some specific instances, we have Ds ≲ Dcp/Q for all s (e.g., the one in Section 4, Figure 2), so that
c′M ≲ (Dcp/Q)2

∑
o,a Ko,a for such M . On such MDPRMs, we have

R(UCRL-RM-B, T ) = O
(

Dcp
Q

√∑
o,a

Ko,aT log log T
)
.

In comparison with UCRL2-B, UCRL-RM-B achieves a regret that is smaller by a factor of, at least,
√
Q. Moreover, in

instances where Ds ≲ Dcp/Q, UCRL-RM-B achieves an improvement over UCRL2-B by a factor of Q3/2.
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