
Probabilistic Querying of Continuous-Time Event Sequences

Alex Boyd1 Yuxin Chang2 Stephan Mandt1,2 Padhraic Smyth1,2

1Department of Statistics 2Department of Computer Science
University of California, Irvine

Abstract

Continuous-time event sequences, i.e., sequences
consisting of continuous time stamps and associ-
ated event types (“marks”), are an important type
of sequential data with many applications, e.g.,
in clinical medicine or user behavior modeling.
Since these data are typically modeled in an au-
toregressive manner (e.g., using neural Hawkes
processes or their classical counterparts), it is nat-
ural to ask questions about future scenarios such
as “what kind of event will occur next” or “will an
event of type A occur before one of type B.” Ad-
dressing such queries with direct methods such as
naive simulation can be highly inefficient from a
computational perspective. This paper introduces
a new typology of query types and a framework
for addressing them using importance sampling.
Example queries include predicting the nth event
type in a sequence and the hitting time distribu-
tion of one or more event types. We also leverage
these findings further to be applicable for estimat-
ing general “A before B” type of queries. We
prove theoretically that our estimation method is
effectively always better than naive simulation
and demonstrate empirically based on three real-
world datasets that our approach can produce or-
ders of magnitude improvements in sampling effi-
ciency compared to naive methods.

1 Introduction

Continuous-time event data occurs across a wide range of ap-
plications and areas such as user behavior modeling (Mishra
et al., 2016; Kumar et al., 2019), finance (Bacry et al., 2012;
Hawkes, 2018), and healthcare (Nagpal et al., 2021; Chiang
et al., 2022). The data typically consists of sets of variable-
length sequences where each sequence is a set of ordered
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events, and each event is associated with a continuous time-
stamp and a categorical event type. Such data are often
modeled as marked temporal point processes (MTPPs), and
a broad variety of modeling frameworks have been success-
fully developed both in the statistical literature (e.g., Hawkes
processes (Hawkes, 1971)) and in the machine learning lit-
erature (e.g., neural MTPP models (Mei and Eisner, 2017)).
These MTPP modeling frameworks provide a general and
flexible setup for making one-step-ahead predictions such
as the timing and/or type of the next event time, conditioned
on a partial history of sequence.

In this paper we look beyond one-step ahead predictions
and instead investigate how to efficiently answer queries
that involve more complex statements about future events
and their timing. Such queries include hitting time queries
(“what is the probability that at least one event of type A
will occur before time t”), queries of the form “what is the
probability that A will occur before B,” as well as com-
puting the marginal distribution of event types for the nth

next event (irrespective of time). These types of queries
are useful across a variety of applications, such as making
predictions conditioned on a patient’s medical and treat-
ment history, or conditioned on a customer’s page view and
purchase history.

However, exact computation of such queries is intractable
in general except in the case of simple parametric models,
such as Poisson processes. For a standard MTPP model to
directly answer such queries requires that all intervening
events (from current time to the event(s) of interest in the
query) are marginalized over. In particular, this involves
marginalizing over both the combinatorially-large space of
possible event types as well as the uncountably infinite space
of possible event timings. While direct simulation of future
trajectories from a model provides one avenue for answering
such queries (e.g., see Daley and Vere-Jones (2003)) these
“naive” methods can be very inefficient (both statistically
and computationally), as we will demonstrate later in the
paper. More efficient alternative approaches (to the naive
simulation method) appear to be completely unexplored
(to our knowledge), for both neural and non-neural MTPP
models.

We develop a general query framework based on impor-
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tance sampling that enables efficient estimates of various
types of queries. In our approach, we first transform each
query into unified forms and then derive the distribution of
interest as functions of type-specific intensities (expected
instantaneous rates of occurrence). Our proposed novel
marginalization scheme empowers real-time computation
of probabilistic queries, with proven higher efficiency com-
pared to naive estimates. Furthermore, experiments on three
real-world datasets in different domains demonstrate that
our proposed estimation method is significantly more ef-
ficient than the naive estimate in practice. For example,
for hitting time queries with neural Hawkes processes, we
show an average magnitude of 103 reduction in estimator
variance.

Our approach for answering probabilistic queries is general-
purpose in the sense that it can be integrated with any
intensity-based black-box MTPP model, either parametric
or neural. To summarize, our main contributions are:

• We identify and formalize a general class of probabilistic
queries that cover a wide range of queries of interest,
such as the distribution of the first occurrence of certain
event types (hitting times), the nth occurring event type
irrespective of time (marginal mark queries), or queries
addressing the order of event types (“A before B” queries).

• Within this class of queries, we develop a novel proposal
distribution for importance sampling. This distribution is
easy to sample from, simple to evaluate likelihoods with,
and results in guaranteed increases in efficiency when
compared to existing estimation techniques.

• We evaluate our proposed estimation technique across
three real-world user behavior datasets, as well as on
simulated data. In all cases, we find dramatic reductions in
estimator variance compared to existing methods—often
times by several orders of magnitude.

2 Related Work

A large variety of MTPP models have been developed over
recent decades, aimed at modeling sequences of marked
event data with varying sorts of behaviors. This behavior
has been both explicitly modeled with parametric MTPP
models (Isham and Westcott, 1979; Daley and Vere-Jones,
2003), and implicitly modeled using neural network-based
methods (Du et al., 2016; Biloš et al., 2019; Shchur et al.,
2020; Enguehard et al., 2020; Zuo et al., 2020). Of particular
note in these categories are the self-exciting Hawkes process
(Hawkes, 1971; Liniger, 2009) and the neural Hawkes pro-
cess (Mei and Eisner, 2017). The majority of neural MTPP
models utilize some form or extension of recurrent neural
networks to model conditional intensity functions (or equiv-
alent transformations thereof). MTPP models have been
broadly applied to next event prediction across a number
of different application areas: seismology (Ogata, 1998),

finance (Bacry et al., 2012; Hawkes, 2018), social media be-
havior (Mishra et al., 2016; Rizoiu et al., 2017), and medical
outcomes (Cox, 1972; Andersen et al., 2012).1 Neural-based
methods have also been successful at additional tasks such
as imputing missing data (Shchur et al., 2020; Mei et al.,
2019; Gupta et al., 2021), sequential representation learn-
ing (Shchur et al., 2020; Boyd et al., 2020), and long-term
forecasting (Deshpande et al., 2021).

Answering probabilistic queries in some capacity has been
previously explored at a model-specific level. Primary ex-
amples include continuous-time Markov processes (Shel-
ton and Ciardo, 2014), continuous-time Bayesian networks
(Nodelman et al., 2002; Fan et al., 2010), and Markovian
self-exciting processes (Oakes, 1975). In this prior work,
the assumed parametric form of the model allows for ana-
lytic forms of specific queries under certain conditions. For
instance, the Markovian self-exciting process provides a
representation that makes estimating hitting time queries
directly tractable.

However, to the best of our knowledge, apart from the naive
sampling approach (e.g., Daley and Vere-Jones (2003)),
there is no existing work on answering general probabilistic
queries (such as hitting time of a collection of event types)
for black-box MTPP models, which is the focus of this
paper. For discrete-time models, estimating these queries
has been investigated in our prior work (Boyd et al., 2022),
and while there does not exist a direct mapping of those
techniques to continuous time, this previous work will serve
as a large source of inspiration for what we propose in this
paper.

3 Preliminaries

3.1 Notation for Event Sequences

Let τ1, τ2, · · · ∈ R≥0 be a sequence of continuous random
variables with the constraint that ∀i : τi < τi+1. These
represent the time of occurrence for events of interest. Each
event has an associated categorical value, such as a label
or a location, that is referred to as a mark. An event is
jointly represented as (i) a time of occurrence τi and (ii) an
associated mark random variable κi ∈ M. In this work we
will focus on the finite discrete setting of a fixed vocabulary
for marks: M = {1, 2, . . . ,K}, although more generally
the mark space M can be defined on a variety of different
domains.

Let the sequence of events over a specified time
range [a, b] ⊂ R≥0 be denoted as

S[a, b] = {(τi, κi) |τi ∈ [a, b] for i ∈ N}.

1Survival analysis is a special case of temporal point processes
where the event of interest can only occur once.
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with similar definitions for S(a, b] and S[a, b). For sim-
plicity, we will let S(t) be shorthand for S[0, t) such that
S(τi) = {(τ1, κ1), . . . , (τi−1, κi−1)}.2 We will use Sk to
refer to mark-specific sequences, i.e., Sk(t) = {(τi, κi) ∈
S(t) |κi = k}.

3.2 Marked Temporal Point Processes

The generative mechanism for these point patterns are
generally referred to as marked temporal point processes
(MTPPs). MTPP models are capable of approximating the
distribution of a given sequence of N events, p(S[0, τN ]).3

These models are typically constructed in an autoregressive
fashion,

p(S[0, τN ]) =

N∏
i=1

p(τi, κi |S[0, τi−1]),

where the distribution for the next event (τi, κi) conditioned
on the preceding terms is modeled with the expected instan-
taneous rate of change for each mark. This is referred to as
the marked intensity function and is defined formally as

λk(t |S(t))dt := Ep [1(|Sk[t, t+ dt)| = 1) |S(t)]

where 1(·) is the indicator function and Ep is the expected
value with respect to distribution p. For brevity, we typically
use the following ∗ convention to suppress the conditional:
λ∗
k(t) := λk(t | S(t)). Note that these functions not only

condition on the preceding events, but also on the fact that
no events have occurred since the last event up until time t,
i.e., p(· |S[0, t)) ̸= p(· |S[0, τi−1]).

The total intensity function, λ∗(t) :=
∑

k∈M λ∗
k(t), is suf-

ficient to describe the timing of the next event τi. The dis-
tribution of the mark conditioned on the timing of the next
event is naturally described as p(κi = k | τi = t) ≡ λ∗

k(t)
λ∗(t) .

We will be assuming that the native output of any model we
are working with will produce a vector of marked intensity
functions over the mark space M evaluated at time t. Any
MTPP with a defined set of marked intensity functions can
be easily sampled from by utilizing a thinning procedure
(Ogata, 1981), if not directly.

Lastly, the likelihood of a given sequence S of length N
over an observation window [0, T ] can be computed in terms
of intensity values:

p(S[0, T ]) =

(
N∏
i=1

λ∗
κi
(τi)

)
exp

(
−
∫ T

0

λ∗(s)ds

)
.

2Note that the majority of the point process literature refers to
this sequence as a history of events and is represented via H. We
forgo this traditional terminology and notation to emphasize that
our work is primarily about estimating queries for future events.

3For brevity and consistent notation, we will be using p(·) in
reference to both probability densities and masses when appropri-
ate.

Figure 1: Example query space Q for the hitting time (first
occurrence) of blue marks being greater than some time t.
Sequences shown, S(i), all belong to the query space as they
each do not contain a blue event occurring before time t.

4 Querying MTPPs

We are interested in evaluating probabilistic statements, or
rather queries, on any MTPP model p, e.g., a model trained
from data. Furthermore, we are interested in evaluating
queries that are conditioned on a partially observed sequence
(e.g., “what is the likelihood that at least one event of type
A will occur in the next year given a patient’s medical
history?”).

Formally, we define a probabilistic query as a probability
statement of the form

p(S ∈ Q) where Q ⊂ ΩS ≡ Sample Space of S,

where p is the model’s distribution over future event se-
quences. We refer to Q as the query space. The contents of
the query space naturally will vary depending on the query
at hand. An example query space and a subset of associated
valid sequences can be seen in Fig. 1. It is worth noting that
in most contexts, the cardinality of Q will be uncountably
infinite.

This section will begin by discussing what probabilistic
queries are readily available and tractable for a given model.
Following this, we will present a novel class of queries,
of which include hitting time and marginal mark queries,
as well as an importance sampling estimation procedure.
Finally, we will discuss “A before B” queries and how to ef-
ficiently estimate them under our novel framework. Without
loss of generality, we suppress the notation for conditioning
on partially observed sequences and present all derivations
and notations for unconditional queries.

4.1 Directly Tractable Queries

Due to the model’s autoregressive nature, queries about the
immediate next event of a sequence are the only types of
queries that can be directly evaluated without marginaliza-
tion. We will now present the two main types for MTPPs.

Marginal Distribution of Next Event Time In general,
it can be shown that λ∗(t) =

fτi (t |S[0,τi−1])

1−Fτi
(t |S[0,τi−1])

where
t ∈ (τi−1, τi], fτi is the probability density function (PDF)
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of τi, and Fτi is the and cumulative density function
(CDF) of τi. By recognizing that λ∗(t) = − d

dt log(1 −
Fτi(t |S[0, τi−1])), we find that the CDF of the next event
timing τ1 is

p(τ1 ≤ t) := Fτ1(t) = 1− exp

(
−
∫ t

0

λ∗(s)ds

)
.

Differentiating this result with respect to t yields the PDF:
fτ1(t) = λ∗(t) exp

(
−
∫ t

0
λ∗(s)ds

)
. Note that we only

immediately have access to the analytical form of the first
future event timing τ1. To achieve the same results for τi in
general would require marginalizing over all i − 1 events
which is rather cumbersome to do exactly.

Marginal Distribution of Next Mark Let A ⊂ M. It
follows then that the probability of the first event having a
mark in A is computed as follows:

p(κ1 ∈ A) =

∫ ∞

0

p(κ1 ∈ A |τ1 = t)fτ1(t)dt

=

∫ ∞

0

λ∗
A(t)

λ∗(t)
λ∗(t) exp

(
−
∫ t

0

λ∗(s)ds

)
dt

=

∫ ∞

0

λA(t) exp

(
−
∫ t

0

λ∗(s)ds

)
dt,

where λ∗
A(t) =

∑
k∈A λ∗

k(t). Replacing the outer inte-
gration bounds of [0,∞) with [a, b] gives the joint query
p(τ1 ∈ [a, b], κ1 ∈ A).

Both of these different queries can potentially be computed
analytically if the form of λ∗ permits, otherwise they can be
estimated using approximate integration techniques.

4.2 Naive Estimation of Queries

When considering more complex queries, for example those
that deal with sequences of events or those far in the future,
it becomes necessary to rely on simulating potential trajec-
tories in order to estimate their values. This is due to the
fact that exactly representing a probabilistic query in terms
of intensity values involves many nested integrals (for each
potential interim event), potentially an infinite amount of
them depending on the query.

The de facto method for approximating arbitrary probabilis-
tic queries involves generating sequences and computing the
relative frequency for which the query condition is met in
the sampled sequences (Daley and Vere-Jones, 2003). This
can be seen as a Monte Carlo estimate with the following
formulation:

p(S(T ) ∈ Q) = Ep [1(S(T ) ∈ Q)] ,

where 1(·) is the indicator function. We refer to this proce-
dure as “naive” estimation because this does not take into
account any information about the query when sampling.

Figure 2: Three potential sequences S(i) that satisfies the
condition of an example restricted-mark query. The mark
space M in this context is equivalent to that in Fig. 1.

4.3 General Restricted-Mark Queries

One way to improve upon the naive procedure is to leverage
information about the query in a proposal distribution in
conjunction with importance sampling. To do so though,
we must first constrain ourselves to a specific class of query
being considered. Additionally, this class of interest should
take into account different aspects of sampling sequences
using MTPPs for our proposal distribution. Namely, these
models can easily be forced to not sample events of spe-
cific types over a period of time (e.g., set λ∗

A(t) := 0 for
some time interval). Conversely, it is not immediately ob-
vious how to encourage or force an event to occur within a
specified time range.

As such, a natural class of queries can be seen in which over
one or more specified spans of time we restrict what types
of events are allowed and not allowed to occur. We term
this class as “general restricted-mark queries.”

We will now more formally define this class of queries. Con-
sider positive real values α1, . . . , αn such that αi < αi+1.
These values naturally split the timeline R≥0 into n + 1
spans: [0, α1], (α1, α2], . . . , (αn−1, αn], (αn,∞). Further-
more, let the subsets Mi ⊆ M for i = 1, . . . , n represent
restricted mark spaces for the first n spans. The class of
queries is concerned with how likely sequences spanning
[0, αn] respect the restricted mark spaces in each associated
interval:

p (∪n
i=1{No events with types Mi in t ∈ (αi−1, αi]})

= p
(
∧n
i=1∀(τ,κ)∈S(αi−1,αi]κ /∈ Mi

)
with α0 = 0. (1)

See Fig. 2 for an illustrated example query. This is a very
flexible class of queries that includes many meaningful in-
dividual queries, which will be further discussed in Sec-
tion 4.4.

Importance Sampling and Proposal Distribution Let
q be a proposal distribution with support over at least the
intersection of the support of p and the query space Q (i.e.,
supp(q) ⊇ supp(p) ∩Q). It then follows that

Ep [1(S(T ) ∈ Q)] = Eq

[
1(S(T ) ∈ Q)

p(S(T ))
q(S(T ))

]
. (2)
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It can be shown that the optimal proposal distribution
(i.e., lowest estimator variance) takes the form (Robert and
Casella, 2004):

qoptimal(S(T )) :=
|1(S(T ) ∈ Q)|p(S(T ))
Ep[|1(S(T ) ∈ Q)|]

= p(S(T ) |S(T ) ∈ Q),

however, this is not immediately usable since it involves
computing the exact query that we are trying to estimate in
the first place.

The more our actual proposal distribution q resembles
qoptimal, the more efficient our estimation procedure will
be. Since conditioning on future events is difficult for neural
autoregressive models, we can instead only apply immediate
“local” restrictions on the trajectory such that a sequence
will remain within Q. This can be accomplished by letting
q be a MTPP with intensity

µ∗
k(t) = 1(k /∈ Mi)λ

∗
k(t)

for k ∈ M and t ∈ (αi−1, αi]. Note that this can be seen
as the natural extension of the proposal distribution in Boyd
et al. (2022) to continuous time. This naturally leads to the
likelihood of any sequence generated under q as being

q(S[0, T ]) =

(
N∏
i=1

µ∗
κi
(τi)

)
exp

(
−
∫ T

0

µ∗(s)ds

)

=

(
N∏
i=1

λ∗
κi
(τi)

)
exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
M\Mi

(s)ds

)
where N = |S[0, T ]|. This proposal distribution was con-
structed so that every sample generated will always belong
to the query space. Applying this to Eq. (2) yields

p(S(T ) ∈ Q) = Eq

[
exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)]
. (3)

Any query in this class can now be estimated in an unbiased
fashion by using Monte Carlo estimation on Eq. (3).

Estimator Efficiency Since both the naive and impor-
tance sampled estimators are unbiased, whichever has lower
variance can be seen as the more efficient estimator.

Assume that Q belongs to a general restricted-mark query
and that π = p(S(T ) ∈ Q). Let

π̂Naive(S(T )) = 1(S(T ) ∈ Q),

π̂Imp.(S(T )) = exp

(
−

n∑
i=1

∫ αi

αi−1

λ∗
Mi

(s)ds

)
,

where both are unbiased estimators of π under p and q re-
spectively. Note that π̂Imp.(·) ∈ [0, 1] as λ∗

k(·) ≥ 0. Finally,
let relative efficiency of the two estimators be defined as

eff(π̂Imp., π̂Naive) :=
Varp [π̂Naive(S(T ))]
Varq [π̂Imp.(S(T ))]

.

Theorem 1. If π ∈ (0, 1) and λ∗(t) < ∞ for all t ∈ [0, T ],
then eff(π̂Imp., π̂Naive) > 1. In other words, under these
conditions π̂Imp. is always more efficient than π̂Naive.

Proof. Since the naive estimator is unbiased and binary,
then it follows that π̂Naive(S(T )) ∼ Bern(π). Thus,
Varp [π̂Naive(S(T ))] = π − π2.

To approach the variance of the importance sampling esti-
mator, we note that

Varp [π̂Imp.(S(T ))] = Eq

[
π̂2

Imp.

]
− Eq [π̂Imp.]

2

= Eq

[
π̂2

Imp.

]
− π2

≤ Eq [π̂Imp.]− π2 since π̂Imp. ∈ [0, 1]

= π − π2

The equality only holds if π ∈ {0, 1} or π̂Imp. ∼ Bern(π).
The latter condition is due to the fact that for [0, 1] bounded
random variables with mean π, if the variance is equal to
π − π2 then this implies it is Bernoulli (see Appendix for
proof). However, when π ∈ (0, 1) then unless λ∗(t) = ∞
for some subset of [0, T ] it is impossible for π̂Imp.(S(T )) to
equal 0. Thus, outside of those circumstances the inequality
is strict and eff(π̂Imp., π̂Naive) > 1.

4.4 Practical Estimation of Complex Queries

We will now apply our findings from Section 4.3 to produce
estimators for three different complex, probabilistic queries.

Marginal Distribution of Hitting Time Let A ⊂ M and
A ̸= ∅. The first occurrence of an event with type k ∈ A,
regardless of events of other types, is referred to as the
hitting time of A or hit(A). The probabilistic query of the
CDF of the hitting time of A at a specific time t can be seen
as a query under the general restricted-mark class:

p(hit(A) ≤ t) = 1− p(hit(A) > t)

= 1− p({No events of types A in [0, t]})
= 1− p(∀(τ,κ)∈S[0,t]κ /∈ A)

= 1− Eq

[
exp

(
−
∫ t

0

λ∗
A(s)ds

)]
.

Note that this derivation relies on this query being a special
case of the general framework outlined in Eq. (1) where
n = 1, α0 = 0, α1 = t, and M1 = A. Interestingly, the
importance sampled result of this query greatly resembles
the CDF of the general first event timing: Fτ1(t) = 1 −
exp

(
−
∫ t

0
λ∗(s)ds

)
.4 Furthermore, should A = M then

we recover Fτ1(t) as the estimator becomes deterministic
(due to µ∗(t) = 0 =⇒ q(S) ∝ 1(S = ∅)).

4It is important to remember that in the general case, we must
marginalize over possible trajectories for other types of events A′

as these can all either potentially influence the intensity of events
of type A.
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Marginal Distribution of nth Mark Let A ⊂ M and n ≥
1. The distribution of the marginal nth mark describes how
likely it is that the nth event has a mark k ∈ A, irrespective
of the timing of itself or of any of the n − 1 events that
occurred prior. In contrast to hitting time queries, we do
not fix the integration bounds but rather sample them to be
the timings of the τn−1 and τn. In doing so, this query falls
under the general mark-restricted framework:

p(κn ∈ A) = p({No events of types A′ in (τn−1, τn]})
= p(∀(τ,κ)∈S(τn−1,τn]κ /∈ A′)

= Eq

[
exp

(
−
∫ τn

τn−1

λ∗
A′(s)ds

)]
where A′ = M \ A. This can be seen as a special case
under Eq. (1) where α0 = 0, αi = τi for i = 1, . . . , n,
M1, . . . ,Mn−1 = ∅, and Mn = A′. Tying the values of
the boundaries αi to the random event times τi effectively
ensures that each span with a restricted vocabulary Mi only
pertains to the occurrence of one event. In doing so, we
actually recover the ability to estimate queries purely con-
cerning the marks, similar to the discrete sequence setting
(Boyd et al., 2022).

It is worth noting that, interestingly, we can also compute
the complement under the same framework as p(κn ∈ A) =

1− Eq

[
exp

(
−
∫ τn
τn−1

λ∗
A(s)ds

)]
.

“A before B” Queries The last class of queries we will
discuss are what we refer to as “A before B” queries. To be
precise, we are interested in the probability of an event with
some type k ∈ A occurring before an event with some type
k ∈ B where A ∩ B = ∅ and non-empty A,B ⊂ M. In
math, this is formally represented as p(hit(A) < hit(B)).

Surprisingly, with our previous developments we can ac-
tually estimate this query using importance sampling in
conjunction with proposal distribution q. For the proposal
distribution, let µ∗

k(t) = 1(k /∈ A ∪ B)λ∗
k(t). It then can

be shown that

p(hit(A) < hit(B))

= 1− Eq

[∫ ∞

0

λ∗
B(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
= Eq

[∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
(4)

with both expressions being equal due to the complement
1 − p(hit(A) > hit(B)) also being estimable under this
derivation. See the Appendix for derivations.

Interestingly, just like the parallels between the hitting
time CDF and the first event time CDF, there exist sim-
ilar comparisons for Eq. (4) and the analytical form of
the marginal distribution for the first mark p(κ1 ∈ A) =∫∞
0

λ∗
A(t) exp

(
−
∫ t

0
λ∗(s)

)
dt. Additionally, should B =

A′ then the estimator becomes deterministic and we recover
the form of p(κ1 ∈ A).

Note that the expectations in Eq. (4) are with respect to
S(∞) ∼ q, which is naturally not possible to evaluate; how-
ever, since the integrands are non-negative we can compute
natural lower and upper bounds by sampling S(T ) ∼ q
and integrating over [0, T ] instead of [0,∞). Lastly, since
these bounds utilize the same proposal distribution, we
can actually compute both at the same time for a little ex-
tra computation. It then follows that a good estimate for
p(hit(A) < hit(B)) would be an average of the upper and
lower bounds:

p(hit(A) < hit(B)) ≈ (5)

1

2
+ Eq

[∫ T

0

λ∗
A(t)− λ∗

B(t)

2
exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

]
,

where T > 0 can either be set as a constant or could be
dynamically determined on a per sequence basis based on
some precision threshold. Since T is truncated, this estimate
is no longer unbiased.

5 Experiments

We investigate the effectiveness of our novel importance
sampling regime in the context of estimating hitting time,
“A before B,” and marginal mark distribution queries, while
conditioning on partially observed sequences. We find that
across both synthetic and real settings as well as parametric
and neural-network-based models that our importance sam-
pling estimator dramatically reduces variance compared to
naive sampling and results in a much lower error on aver-
age. Furthermore, we demonstrate that, on average, these
gains in performance outweigh any potential increases in
computation time.

Ground Truth Computation of any arbitrary query
p(S(T ) ∈ Q) to arbitrary precision is intractable in the
general case. Given this, in our experiments we compute
our queries with an unbiased estimator to high precision
using a large amount of computation, with much higher
precision than any of the methods and scenarios evaluated
for a given experiment. We refer to the result of this high-
precision computation as “ground truth” below.

Metrics of Interest There are two primary metrics with
which we judge query estimation procedures: mean relative
absolute error and relative efficiency (or variance reduction
should one of the estimators be biased). The former is
defined as the mean of |π− π̂|/π, where π = p(S(T ) ∈ Q)
and π̂ is some estimator of π, over different queries (and
potentially models). This particular form of error is chosen
to offset the fact that π ∈ [0, 1], which can lead to naturally
closer estimates should π be close to 0 or 1. The latter metric
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Table 1: Real-world Dataset Summary Statistics

Dataset # Sequences Tmax # Marks

MovieLens 34,935 43,000 182
MOOC 6,863 715 97
Taobao 17,777 192 1,000

of interest is the relative efficiency (or variance reduction)
of importance sampling compared to naive sampling. This
is calculated by dividing the variance of the naive estimator
(calculated using ground truth: π(1− π)) by the variance of
the importance sampled estimator (calculated empirically).
As an example, a value of 5 for this metric indicates that,
on average, 5 times as many samples are needed for naive
estimation to achieve an estimator variance as low as that of
importance sampling.

5.1 Real-world Experiments

Datasets We conduct our real-world experiments on three
sequential user-behavior datasets. In all three, a sequence
is defined as the records generated by a single individual.
The MovieLens 25M dataset (Harper and Konstan, 2015)
contains records of user-generated movie reviews alongside
a rating. Marks represent the categories under which a re-
viewed movie can be classified as. The MOOC dataset (Ku-
mar et al., 2019) is a collection of online user-behaviors for
students taking an online course. Marks represent the type
interaction a student has performed. Lastly, the Taobao user
behavior dataset (Zhu et al., 2018) contains page-viewing
records from users on an e-commerce platform. Marks
are defined as the category of the item being viewed, with
categories outside of the top 1,000 most frequent being
discarded. All datasets were split into 75% training, 10%
validation, and 15% test splits for model fitting and experi-
ments. Summary statistics for these datasets can be found
in Table 1. All preprocessing details for these three datasets
can be found in the Appendix.

Models All real-world experiments use neural Hawkes
models (Mei and Eisner, 2017), one trained for each dataset.
Each model was trained to convergence on the training split
with stability/generality ensured via the validation split. All
training and model details can be found in the Appendix.

Hitting Time Queries: For each dataset, we randomly
sample 1,000 different sequences S(T ). For each sequence,
we condition on the first five events, S[0, τ5], and evaluate
a hitting time query for the remaining future.5 The specific
hitting time query asked is p(hit(k) ≤ t | S[0, τ5]) where
k := κ6 and t := 10× τ6 for (τ6, κ6) ∈ S(T ).

5All experiments evaluate necessary integrals with the trape-
zoidal rule. For more details, see Appendix.

We compared estimating this query with naive sampling
and importance sampling using varying amounts of sam-
ples: {2, 4, 10, 25, 50, 250, 1000}. Mean RAE compared
to ground truth (estimated using importance sampling with
5000 samples) can be seen in Fig. 3a. We witness roughly
an order of magnitude of improvement in performance for
the same amount of samples. Primarily, we attribute this
improvement to the fact that naive sampling only collects bi-
nary values, whereas our proposed procedure collects much
more dense information over the entire span [τ5, t].

We also analyze the relative efficiency of our estimator
compared to naive sampling. For each query asked, the
efficiency was estimated using 5000 importance samples.
The results can be seen in Fig. 3b. We achieve a dra-
matic decrease in variance by several orders of magnitude,
in the majority of contexts, across all datasets. Interest-
ingly, it appears that the efficiency is correlated with the
underlying ground truth value π. We believe this may
be due to the form of the importance sampling estimator:
1 − exp

(
−
∫ t

0
λ∗
k(s)ds

)
. Since the intensity function is

non-negative, it is simple for the model to produce estimates
close to 0; however, to producing values close to 1 requires
the integral to tend towards infinity.

“A before B” Queries: Similar to the hitting time ex-
periments, for “A before B” queries we similarly sample
1000 random test sequences and condition on the first five
events S[0, τ5]. Then, we estimate the query p(hit(A) <
hit(B) | S[0, τ5]) where A and B are randomly chosen to
contain one third of the mark space M.

We compared estimating this query with naive sampling
and importance sampling using varying amounts of sam-
ples: {2, 4, 10, 25, 50, 250}. We utilized the truncated im-
portance sampled estimator, Eq. (5), where T is chosen
dynamically for each sequence such that a maximum differ-
ence of 0.01 is allowed between the upper and lower bounds.
Mean RAE compared to ground truth (estimated using naive
sampling with 5,000 samples) can be seen in Fig. 4a.6 Like
the hitting time results, we can see roughly an order of mag-
nitude improvement in performance. Some results indicate
that the limiting factor is the precision threshold for choos-
ing T (e.g., see MovieLens results). We also see a similar
variance reduction relative to previous experiments, shown
in Fig. 4b. Here, the runtime cost is much greater as we have
to accumulate an integral over an indefinite amount of time;
however, we can see that on average it is still very much
“worth it” to utilize this framework over naive sampling as
evidenced by all of the blue dots above the red line.

Marginal Mark Distribution Queries: We additionally
performed nth marginal mark distribution queries in much

6Importance sampling would have been used for ground truth
here; however, it is more sound to use an unbiased estimator for
ground truth.
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Figure 3: Results from 1000 different hitting time queries
evaluated on models trained on three different datasets. (a)
Average relative absolute error for naive and importance
sampling shown in comparison to number of sampled se-
quences used. (b) Estimated relative efficiency values for
importance sampling compared to naive sampling plotted
against ground truth hitting time query values. Gray dashed
lines indicate an efficiency of 1. Red lines with associated
text box indicate the average multiplicative increase in com-
putation time for importance sampling.

the same vein as the hitting time queries. Due to space
limitations, the majority of the details and results can be
found in the Appendix. That being said, we found that
the resulting relative efficiencies for these queries to be
much less than those of the other queries, but still more
efficient than naive as Theorem 1 suggests. Across the
datasets, the median relative efficiency ranged from 1.9 to
2.7. We speculate this to be due to the fact that the bounds
of integration in the estimator are tied to sampled event
times rather than being static values, inducing quite a lot of
potential variance in the estimator.

5.2 Synthetic Experiments

For artificial experiments, we wanted to investigate the
trends of our estimation procedures for a variety of queries
over many different models—something that is difficult to
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Figure 4: Same setup as seen in Fig. 3 with the same models
and datasets only applied to “A before B” queries. Results
for (b) are presented as “variance reduction” instead of “rel-
ative efficiency” since our derived estimator for importance
sampling is biased due to truncating the integral in Eq. (5).

do with real-world data as we typically only have access
to one model trained on a given dataset. As such, we pri-
marily focus on randomly instantiated parametric Hawkes
processes with both exponential kernels and Gamma decay
kernels (see Appendix for details). Under this setting, we
were able to recreate similar findings in terms of estimation
error and efficiency for the types of queries evaluated with
real-world data. Due to space limitations these results can
be seen in the Appendix.

In addition to these expected results, we also sought to inves-
tigate how different aspects of the underlying model affect
the estimation procedure. In particular, we measured the
average wall-clock time taken to generate samples for naive
estimation and importance sampling as a function of how
much cross-mark interaction is present. We modulate the
interaction strength in these generated models by changing
the scale of the randomly generated mark-to-mark inten-
sity parameters. The results can be seen in Fig. 5 where
we evaluated both estimation procedures on random hitting
time queries for 1,000 different generated models with each
across a span of interaction strengths. As more cross-mark
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Figure 5: Average wall-clock time taken to generate a single
sample under naive and importance sampling for hitting
time queries with 1,000 randomly instantiated parametric
exponential-kernel Hawkes models with different scalings
of “interaction strength” (i.e., amount of modeled cross-
mark interaction).

excitement is encouraged by a model, the runtime it takes
to sample a sequence over the same observation window
becomes much longer in general; however, importance sam-
pling counters this trend due to zeroing out (potentially
several) marked intensities in q, thus barring events from
happening. From these results, we can see that our impor-
tance sampling procedure is more robust to the underlying
dynamics of a model over sampling windows fixed in time.

6 Conclusion

In this work, we proposed a general restricted-mark frame-
work that enables us to efficiently answer a range of in-
tractable probabilistic queries for continuous-time sequen-
tial event data. Experimental results show that we gain a
significant improvement in sampling efficiency, by several
orders of magnitude, from the use of importance sampling
compared to naive estimates. These improvements were
consistent across three real-world datasets in different appli-
cation domains with varying sequence lengths and numbers
of marks. The results can in principle be further improved
by producing more computationally efficient sampling pro-
cedures to use in conjunction with our proposed importance
sampling estimators.
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A Efficiency Proof Lemma

Lemma 2. If a bounded random variable X ∈ [0, 1], with mean π and CDF F , has Var [X] = π(1−π), then X ∼ Bern(π).

Proof. Let X be a random variable with support [0, 1], mean π, and variance π(1− π). It then follows that:

Var [X] = E
[
X2
]
− E [X]

2

=⇒ π(1− π) = E
[
X2
]
− π2

=⇒ π = E
[
X2
]

=

∫
[0,1]

x2dF (x)

=

∫
{0,1}

x2dF (x) +

∫
(0,1)

x2dF (x)

= p(X = 1) +

∫
(0,1)

x2dF (x)

∫
(0,1)

x2dF (x) > 0 if and only if p(X ∈ (0, 1)) > 0. If we assume that p(X ∈ (0, 1)) > 0, then it follows that:

π = p(X = 1) +

∫
(0,1)

x2dF (x)

< p(X = 1) +

∫
(0,1)

xdF (x)

= p(X = 1) + (π − p(X = 1))

= π,

however, π ≮ π. Hence, by contradiction p(X ∈ (0, 1)) = 0 which implies that p(X = 1) = π and p(X = 0) = 1 − π
since E [X] = π. Thus, it can be concluded that X ∼ Bern(π).

B Deriving “A before B” Estimator

Let A,B ⊂ M and A ∩B = ∅. Recall that SA[0, t] is the sequence of events over times [0, t] with the restriction that the
marks must all belong to A. Finally, let q describe a proposal distribution with µ∗

k(t) = 1(k /∈ A ∪B)λ∗
k(t). With this in

mind, we derive the expected value expression for the “A before B” queries:

p (hit(A) < hit(B)) =

∫ ∞

0

p (hit(A) < hit(B), hit(A) = t) dt

=

∫ ∞

0

∑
k∈A

p (S[t, t] = {(t, k)},SA(t) = ∅,SB(t) = ∅) dt

=

∫ ∞

0

∑
k∈A

p (S[t, t] = {(t, k)},SA∪B(t) = ∅) dt

=

∫ ∞

0

∑
k∈A

Ep [p (S[t, t] = {(t, k)},SA∪B(t) = ∅ |S(t))] dt
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=

∫ ∞

0

∑
k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|SA∪B(t) = ∅,S(t)) p (SA∪B(t) = ∅ |S(t))] dt

=

∫ ∞

0

∑
k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|S(t))1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

∑
k∈A

ES(t)∼p [p (S[t, t] = {(t, k)}|S(t))1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

∑
k∈A

ES(t)∼p [λ
∗
k(t)1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

ES(t)∼p [λ
∗
A(t)1 (SA∪B(t) = ∅)] dt

=

∫ ∞

0

ES(t)∼q

[
λ∗
A(t)1 (SA∪B(t) = ∅)

p (S(t))
q (S(t))

]
dt

=

∫ ∞

0

ES(t)∼q

[
λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

=

∫ ∞

0

ES(∞)∼q

[
λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

= ES(∞)∼q

[∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)]
dt

where the last line is justified due to the Dominated Convergence Theorem. The prerequisites for this theorem are satisfied
by noting that:∫ ∞

0

λ∗
A(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt ≤

∫ ∞

0

λ∗
A∪B(t) exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

= −
∫ ∞

0

d

dt
exp

(
−
∫ t

0

λ∗
A∪B(s)ds

)
dt

= exp

(
−
∫ 0

0

λ∗
A∪B(s)ds

)
− exp

(
−
∫ ∞

0

λ∗
A∪B(s)ds

)
= 1− exp

(
−
∫ ∞

0

λ∗
A∪B(s)ds

)
≤ 1.

C Further Experimental Details and Results

C.1 Dataset Preprocessing

We evaluate our methods for probabilistic querying on three real-world user-behavior datasets in different application
domains that are publicly available. All datasets do not include personally identifiable information, where users are identified
by unique integer IDs. For all our experiments, sequences are defined as the event histories of each user, where events
have timestamps in seconds. We changed the time resolution from seconds to hours for better interpretability of our query
implications. Additionally, we only consider sequences with at least 5 events and at most 200 events. We use 75% of the
sequences for training, 10% for validation, and 15% for testing.

MovieLens The MovieLens 25M dataset (Harper and Konstan, 2015) contains 25 million movie ratings by 162,000 users.
The movie category (genre) associated with each rating is modeled as marks, and the exact rating value is ignored.7 For

7A single movie in this dataset can possibly have multiple categories associated with it. To accommodate this, if a movie has multiple
categories we randomly select a subset of two categories to represent the movie. Note this highlights the benefits of formulating queries as
sets of marks instead of just singular marks. To evaluate the hitting time of the next “comedy” movie reviewed, then we would need
to evaluate the hitting time of the set of all pairs of categories where one element is the comedy genre. This is essentially describing
marginalizing over a hierarchical structure for the marks.
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Table 2: Model Hyperparameters for Real-World Datasets

Hyperparameter MovieLens MOOC Taobao

# Training Epochs 100 100 300
Mark Embedding Size 32 32 64
Recurrent Hidden State Size 64 64 128

each sequence, the start and the end time are defined as the first and the last event time of each user respectively, because the
time span for different users ranges from seconds to years. The first event is discarded in the sequence of history and is only
used to indicate t = 0. For consistent dynamics across the dataset, we filter the data to only contain reviews at or after the
year 2015. This leaves 34,935 remaining sequences, each from a unique user.

MOOC The MOOC user action dataset (Kumar et al., 2019) represents user activities on a massive open online course
(MOOC) platform. It consists of 411,749 course activities in 97 different types modeled as marks for 7,047 users, out of
which 4,066 users dropped out after an activity. Timestamps are standardized to start from timestamp 0. We use the last
event time for drop-out users as the end of their sequences, and the maximum timestamp for the other users.

Taobao The Taobao user behavior dataset (Zhu et al., 2018) was originally intended for recommendations for online
shopping, which includes four behaviors: page viewing, purchasing, adding items to the chart, and to wishlist. We focus on
page viewing of users as events, and model the item category as the event mark, which has marketing implications such as
click through rate of recommending some types of items. Due to the large scale of the dataset, we use a subset of 2,000,000
events on 8 consecutive calendar days inclusive (November 25th, 2017 - December 2nd, 2017), as well as the most frequent
1,000 marks (item categories) to demonstrate query answering. All user sequences have the same length.

C.2 Modeling Details

For each of the real-world datasets, a neural Hawkes process model (Mei and Eisner, 2017) was trained with a batch size of
128, a learning rate of 0.001, a linear warm-up learning rate schedule over the first 1% of training iterations, a max allowed
gradient norm of 104 for training stability, and the Adam stochastic gradient optimization algorithm (Kingma and Ba, 2015)
with default hyperparameters. Specific datasets had specific model hyperparameters due to differences in the amount of
data and total possible marks. The details for these can be found in Table 2. All models were trained for a fixed amount of
epochs; however, each one was confirmed to have converged based on average held-out validation log-likelihood.

C.3 Integration Approximation

For the real-world experiments, many integrals need to be evaluated in order to produce estimates for various queries. Since
we use essentially black-box MTPP models, we do not have access to an analytical form for integration. As such, we must
estimate every integral at play.

To do this, we utilize the trapezoidal rule. For reference, this involves estimating integrals with the following summation:

∫ b

a

f(x)dx ≈
N∑
i=1

(f(xi) + f(xi−1))
xi − xi−1

2

where the points xi−1 < xi span the interval [a, b] with x0 = a and xN = b. For hitting time queries and marginal mark
queries, we utilize N = 1000 integration points with equal spacing. It is likely that we could get by with much less for these
queries, however, for the sake of high precision for experimental results we utilized a large amount of sample points.

For the “A before B” queries, we found that the resolution at which the estimator is evaluated at is of much more importance
than the other queries. As such, for this query we estimate integrals in an online fashion during the sampling procedure for
each proposal distribution sample sequence in conjunction with a very high proposal dominating rate (see Ogata (1981) for
details). This allowed for a much more efficient procedure (in both computation and memory consumption) compared to
integrating results after sampling.
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Figure 6: Results from 1,000 different marginal mark queries evaluated on models trained on three different datasets. (a)
Average relative absolute error for naive and importance sampling shown in comparison to number of sampled sequences
used. (b) Estimated relative efficiency values for importance sampling compared to naive sampling plotted against ground
truth marginal mark query values. Gray dashed lines indicate an efficiency of 1. Red lines with associated text box indicate
the average multiplicative increase in computation time for importance sampling.

C.4 Marginal Mark Query Experiments

Similar to the hitting time experiments, for the marginal mark queries we similarly sample 1000 random test sequences and
condition on the first five events S[0, τ5]. Then, we estimate the query p(κ8 ∈ A |S[0, τ5]) where A is a randomly selected
subset of all of the unique marks that appear in the entire sequence S . This is done to ensure that A contains relevant marks
for the given sequence.

We compared estimating this query with naive sampling and importance sampling using varying amounts of samples:
{2, 4, 10, 25, 50, 250, 1000}. Mean RAE compared to ground truth (estimated using importance sampling with 5,000
samples) can be seen in Fig. 6a. We witness roughly 1.5 to 3 times improvement in performance for the same amount of
samples. Similar to hitting time query results, we attribute this improvement to the fact that naive sampling only collects
binary values, whereas our proposed procedure collects much more dense information over the entire span from τ5 to τ8 ∼ q.

We also analyze the relative efficiency of our estimator compared to naive sampling. For each query asked, the efficiency
was estimated using 5,000 importance samples. The results can be seen in Fig. 6b. We achieve a decent decrease in variance,
in the majority of contexts, across all datasets. Like the hitting time query results, we also note a pretty strong correlation
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between underlying ground truth values and the relative efficiency of this estimator.

Notably, these results do not appear to be as drastic as the hitting time query results. We believe this is due to the fact that the
estimator’s bounds of integration are sampled from the proposal distribution to be between τN−1 and τN for each sequence
(whereas the bounds for the hitting time query p(hit(k) ≤ t) is always the span of [0, t]). This added variability seems to
dampen the impact of the integration in the first place.

C.5 Synthetic Data Experiments

We also perform experiments on hitting time queries and “A before B” queries using self-exciting parametric Hawkes
processes (Hawkes, 1971). The intensity for Hawkes processes with exponential kernels has the explicit form:

λ∗
k(t) = µk +

K∑
κ=1

∫ t

0

ϕκk(t− u)dNκ(u)

= µk +

K∑
κ=1

∑
τκ,i<t

ϕκk(t− τκ,i), (6)

where τκ,i refers to the time when the ith event of type κ occurs, ϕ(x) = αe−βx with α,β > 0, and Equation 6 can be
expressed in matrix form. The first term µ is referred to as the base intensity or background intensity in literature. Each
event instantaneously increases the intensity by the corresponding value of α and its influence decays exponentially with β
and over time. Under this parametric form, the integrals for query estimates can be computed in closed forms.

We also conduct both experiments on hitting time and “A before B” queries using Hawkes processes with Gamma kernels.
The Gamma kernel has the form of ϕ(x) = xe−x, and the corresponding Hawkes processes do not have closed-form
solutions to these queries.

We evaluate our methods on (i) hitting time queries p(hit(k) ≤ t) and (ii) “A before B” queries p(hit(A) < hit(B)). All
results are averaged over 1,000 different randomly initiated parametric self-exciting Hawkes models that are not feasible for
real-world datasets. These random models have different total amounts of marks ranging from K = 3 to K = 10, and have
different inter-event effects as well as exponential rates of decay. We use 10 integration points for hitting time queries and
1,000 integration points for “A before B” queries. 8

For each hitting time query, we fix t = 1 and k = 0, because the model is randomly generated. For the “A before B” queries,
like the real-world experiments we let them be randomly sampled subsets of the vocabulary such |A| = |B| ≈ K/3. We
evaluate the hitting time queries using varying amounts of samples: {2, 4, 10, 25, 50, 250, 1000}. For “A before B” queries,
we only use {2, 4, 10, 25, 50, 250} number of samples because the query estimates take longer. Ground truth probabilities
are calculated using 5,000 samples with importance sampling for hitting time queries and with naive method for “A before
B” queries respectively.

The plots in Figs. 7 and 8 reveal similar patterns and illustrate that our method is more efficient than the naive estimates
averaged over a range of different model settings.

8For the “A before B” queries, using 1,000 integration points after sampled provided sufficient precision and we did not need to employ
the online integration approach used with the real-world experiments. This is most likely attributable to the well-behaved dynamics
exhibited by the parametric Hawkes intensity. This is also why we used a reduced amount of integration points for the synthetic hitting
time queries as well compared to the real-world experiments.
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Figure 7: Synthetic experiments for hitting time queries evaluated on parametric self-exciting Hawkes processes with both
exponential and Gamma kernels. (a) Average relative absolute error for naive and importance sampling shown in comparison
to number of sampled sequences used. (b) Estimated relative efficiency values for importance sampling compared to naive
sampling plotted against ground truth hitting time query values. Gray dashed lines indicate an efficiency of 1. Red lines with
associated text box indicate the average multiplicative increase in computation time for importance sampling.
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Figure 8: Synthetic experimental results evaluated on 1,000 different random models and “A before B” queries for parametric
self-exciting Hawkes processes with both exponential and Gamma kernels. (a) Average relative absolute error for naive
and importance sampling shown in comparison to number of sampled sequences used. (b) Estimated relative efficiency
values for importance sampling compared to naive sampling plotted against ground truth “A before B” query values. Gray
dashed lines indicate an efficiency of 1. Red lines with associated text box indicate the average multiplicative increase in
computation time for importance sampling.
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