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Abstract

We study the problem of globally optimizing the
causal effect on a target variable of an unknown
causal graph in which interventions can be per-
formed. This problem arises in many areas of
science including biology, operations research
and healthcare. We propose Causal Entropy Opti-
mization (CEO), a framework which generalizes
Causal Bayesian Optimization (CBO)|Aglietti et al.
(2020b)) to account for all sources of uncertainty,
including the one arising from the causal graph
structure. CEO incorporates the causal structure
uncertainty both in the surrogate models for the
causal effects and in the mechanism used to se-
lect interventions via an information-theoretic ac-
quisition function. The resulting algorithm auto-
matically trades-off structure learning and causal
effect optimization, while naturally accounting
for observation noise. For various synthetic and
real-world structural causal models, CEO achieves
faster convergence to the global optimum com-
pared with CBO while also learning the graph. Fur-
thermore, our joint approach to structure learning
and causal optimization improves upon a sequen-
tial, structure-learning-first approach.

1 INTRODUCTION

Causal Bayesian Networks (CBNs) (Pearl, |2009)) offer a pow-
erful tool for formulating and testing causal relationships
among a set of random variables. Representing a system
with a CBN allows one to e.g. estimate causal effects or
find interventions optimizing a target node. These tasks of-
ten assume, either implicitly or explicitly, exact knowledge
of the underlying causal graph. Therefore, structure learn-
ing (also called “causal discovery”) from data (Glymour
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et al., 2019) has received increasing attention in the last few
years. In particular, several studies have taken a Bayesian
approach by formulating a prior over graphs and selecting
interventions to learn the structure via Bayesian Optimal Ex-
perimental Design (BOED, Murphyl 2001} [Tong and Koller,
2001; Masegosa and Moral, 2013} [Hauser and Bithlmann,
2014; Kocaoglu et al., [2017a; Ness et al., [2017; von Kiigel
gen et al., |2019; (Gamella and Heinze-Deml, |2020; [Vowels
et al., 2021). Among these studies, a Bayesian Optimiza-
tion (BO) -based algorithm, targeted at structure learning,
has been proposed by [von Kiigelgen et al.|(2019) with the
goal of reducing the cost of discovering the true graph. A
causal BO-based algorithm (Aglietti et al.,|2020b)) was also
recently developed to identify interventions maximizing a
target variable, given a known causal graph — a problem
named causal global optimization, which we refer to simply
as causal optimization. While the two works develop BO
algorithms tackling the tasks of structure learning and causal
optimization separately, the investigator is often interested
in learning optimal actions while not having exact knowl-
edge of the causal relationships among variables. This is the
challenging setting we consider in this paper which is the
first focusing on solving these two problems jointly.

Example Consider a setting where the investigator aims
at finding the level of statin drug or aspirin that should be
prescribed to a patient in order to minimize the level of
prostate specific antigen (PSA).

While the investigator might have a good understanding
of the variables affecting the level of PSA (see Fig. [I),
she might not know the exact causal relationships among
them. Therefore, multiple causal graphs might be consis-
tent with her domain knowledge. For instance, the causal
relationships between age, body mass index (BMI) and can-
cer might be known, but those among cancer, PSA and
different levels of medication administration might be un-
known. This is represented by the red edges in Fig. [T}
Identifying the optimal drug dosages with CBO would re-
quire knowledge of these edges. Indeed, CBO assumes
(Aglietti et al., |2020b, Appendix, Fig. 3) them to be ori-
ented as {Statin — Cancer, Statin — PSA, Aspirin —
Cancer, Aspirin — PSA}. We propose Causal Entropy Op-
timization (CEO), a framework which, instead of assuming
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a specific causal graph for the data generating process, ac-
counts for the structure uncertainty by employing a Bayesian
prior. CEO considers the causal graph prior both in the sur-
rogate models and the acquisition function used within the
BO algorithm.

Contributions We make the following contributions:

e We generalize the causal global optimization problem
to settings where the graph structure is fully or partially
unknown.

e We offer the first solution to this problem which we call
Causal Entropy Optimization (CEO). CEO models the causal
effects via a set of surrogate models that account for both
graph and observation uncertainty.

e We introduce an information-theoretic acquisition func-
tion, which we call causal entropy search (CES) that ad-
dresses the trade-off between learning the causal graph and
identifying the best intervention. CES encompasses exist-
ing acquisitions used for BO and experimental design for
structure learning as special cases. It is the first information-
theoretic acquisition used in the causal optimization setting.

e We demonstrate across synthetic and real-world causal
graphs how accounting for uncertainty leads to faster conver-
gence to the global optimum compared to CBO. In addition,
we show how exact knowledge of the causal structure is not
always needed for finding the optimal intervention thus a
sequential approach learning the causal graph first and then
optimizing the target variable might lead to inefficiencies.

2 BACKGROUND AND PROBLEM
STATEMENT

We consider a probabilistic causal model (Pearl, 2009) con-
sisting of a directed acyclic graph G (DAG) and a four-
tuple (U, V, F, p(U)), where U is a set of exogenous back-
ground variables distributed according to p(U), V is a set
of observed endogenous variables and F' = {f1,..., fjv|}
is a set of functions constituting the structural causal model
(scMm) such that v; = f;(pa;,u;) with pa, denoting the
parents of V;. Within V, we distinguish between non-
manipulative variables C that cannot be intervened on,
continuous treatment variables X that can be set to spe-
cific values and a single output variable Y representing
the agent’s outcome of interest — see Fig. [I] for an ex-
ample. Under the Markov Assumption, each variable V;
is conditionally independent of its non-descendants given
its parents, such that the joint distribution factorises as:
p(V | G) = Iy, v p(V; | Paj,G). Denote by P(X) the
power set of X giving all possible interventions we can per-
form in the graph. The set X; € P(X) represents one such
intervention set with V; = V'\ X being the corresponding
set of non-intervened variables. We assume causal suffi-
ciency (Sgouritsa, [2015) and perfect interventions (Peters

Figure 1: Causal DAG with unoriented edges in red. Shaded
and crossed nodes represent manipulative and non-manipulative
variables respectively. PSA is the outcome of interest.

et al.} 2017) so that, for any set X, the interventional distri-
bution p(V; | do(X; = x7)) resulting from setting X; to
a value x; obeys the following truncated factorization

p(Vi|do(X; =x,),G) = [[ p(V;|Paf)

Xr=x
VIEV) I=XJ

where the vertical line represents evaluation of the expres-
sion at X; = xj.

Notation Note that, throughout, lowercase denotes re-
alizations of random variables (r.v.), while uppercase
denotes the r.v. We denote collected data by D =
{{(xy), vy)) N }x,ems where the exploration set (ES)
is ES = P(X) or ES C P(X) if only a subset of inter-
ventions can be implemented in the system (e.g. if P(X)
is too large). Here, ng) represents one set of values of the
non-intervened variables Vi in a mutilated graph where
X is set to x\"). Further, v\") includes both a value for the
target variable y(*) and a value for the remaining variables,
denoted by VYY) = v\ 4. The dataset D includes all
data, that is observational data (D) which correspond to
I = @ and interventional data (DY). Every time we inter-
vene in the system we collect N > 1 samples from each
interventional distribution, but the framework equally han-
dles N = 1. See Appendix [A]for a table describing the full
notation.

Problem statement We consider the causal global optimiza-
tion problem introduced by |Aglietti et al.| (2020b) and gen-
eralize it to settings with an unknown causal graph. Given
D, we seek to identify the interventional set X ; and corre-
sponding values x; optimizing the causal effect in the frue
causal graph G
X7,x7 = argmin E[Y | do(X; =x7),G], (1)
X €P(X)
xr€D(X7)
where D (X;) denotes the interventional domain of X;
and the causal effect depends on the true graph G. Solving
the problem in Eq. (1)) is challenging as evaluating E[Y" |
do(X; = x7), G] requires intervening in the real system at
a cost, which we assume to be given by Co(X, xy). While
Egq. is the objective of CBO, since the graph is unknown
the problem becomes more challenging.
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Remark: Notice that, when the graph is known, one can
solve the problem in Eq. (I)) resorting to CBO. When the
graph is unknown, there is no existing unified solution for
the problem. This paper offers such a solution and shows
how, accounting for graph uncertainty, one can match the
performance of CBO, which requires knowledge of the true
graph, in terms of convergence speed to the optimum.

3 METHODOLOGY

There are three main ingredients to our solution to the prob-
lem in Eq. (I): a set of surrogate models for the causal
effects on the target node (§3.1)) accounting for different
sources of uncertainty, a posterior over the graph struc-
ture (§3.2)), computed exploiting observational and interven-
tional data, and an information-theoretic acquisition func-
tion (§3.3) balancing the trade-off between optimization
and structure learning. We now detail each ingredient and
provide the pseudocode for CEO in Algorithm [I]

3.1 Inference on the causal effects

Prior Surrogate Models For each set X; € ES we place a
Gaussian process (GP, [Williams and Rasmussen, |2006)
prior on g;(x;) = E[Y | do(X; = xy),G] and con-
struct a prior mean and kernel function that incorporates
our current belief about the graph together with the obser-
vational and interventional data. Specifically, we define
gI(X]) ~ gp(m](X]), k[(XI, X/I)), with

mr(x;) L E[Y | do(X; = x/)] )

kr(xr, X)) € k(xp, %)) + V[Y [ do(X; =x/)], (3)

where k(-,-) is a problem-dependent kernel function of
choice. We incorporate the uncertainty over the graph by
introducing latent variable GG, by defining

ElY | do(X; =x,)]| ¥E [Emdo(xl = x1), G]} @)
VY | do(X; = x/)] ¥ E [@[Y | do(X; = x7), G]}
+V[E[Y | do(X; = x1), G,

where outer expectations/variances are w.r.t a probabil-
ity mass function on the r.v. G, i.e. P(G), whereas
inner expectations/variances are w.r.t the approximation
p(Y | do(X; = x1),G = g), a Monte Carlo estimate of
an interventional distribution computed via the do-calculus
with only observational data [ﬂ Note that, when collect-
ing data, P(G) will be replaced by P(G | D), which also
includes interventions. Therefore, our surrogate models
combine observational and interventional data. Computing
the posterior P(G|D) will be discussed in detail in

!This can be computed when the causal effect is identifiable
(Pearl, [2009). See Appendix@for a discussion of the conditions
under which Eqs. ] converge to the true E[Y" | do(X; = x1), G]
and V[Y | do(X; = x7), G] respectively.

Surrogate Model Likelihood For each intervention set

X7 € ES and value XY), the output y is a noisy realisation

of the objective function y = ¢g;(x;) + v at xgi) where

v ~ N(0, s%). Every time we perform do(X; = xgi)), we

obtain a single sample VY) from the resulting interventional

distribution p(Vy|do(X; = X(Ii)), G). Noisy observations
were not considered by CBO, which made a simplifying
assumption, and complicate the identification of the optimal

intervention.

Posterior Surrogate Models Given the Gaussian likelihood,
the posterior distribution p(g; | D) can be derived analyt-
ically and will also be a GP with mean m;(X | D) and
covariance functions kj(xy,x} | D) computed by standard
GP updates (Williams and Rasmussen, 2006, p. 19).

3.2 Inference on the causal graph

Given D, we update the prior distribution on G to get
P(G | D). Our updated uncertainty on the graph struc-
ture is then reflected in the surrogate models. We follow the
setting of [von Kiigelgen et al.[{(2019) and consider a discrete
uniform prior distribution on G with P(G = g) = ﬁ.
Notice that, given this prior formulation, we assume to be
able to enumerate all potential causal graphs. This is appro-
priate for intended applications of CBO, where a manageable
number of graphs representing alternative causal hypothe-
ses is maintained. This allows us to compute expectations
under P(G|D) without approximations. However, in our
framework only expectations w.r.t. the graph posterior are
required, and can thus in principle be approximated.

Graph Likelihood In order to define the graph likelihood,
we assume an additive noise model with i.i.d. Gaussian
noise termﬂ For every g and X; € X, we have

X; = f(Pai™) +u;, 5)
fi | (Paf=9 =x,0;) ~ GP(0,k;(x,%;0;))  (6)

with u; ~ N(0, 0]2-) and where ; represents a set of hyper-
parameters. Here, x and x’ are two values for the parents of
V;j in G = g and k; is a kernel function of choice. We as-
sume parameter modularity (Friedman and Nachman, 2000),
i.e. the conditionals in Eq. (6) depend on the choice of G
only through the choice of parents, not on other aspects
of GG. Exploiting the available data we can then compute
p(f5 | PajG, D?) in closed form, due to the additive noise.
The graph likelihood is given by the product of GP marginal
likelihoods, corresponding to the truncated factorization of
§2] (details on likelihood computation in Appendix [B])

Graph Posterior Given the prior distribution on G and the
likelihood, we can compute the posterior distribution on G
in closed form as P(G | D) «x p(D|G)P(G) due to the

This is a common assumption, see e.g. von Kiigelgen et al.
(2019) or|Silva and Gramacy| (2010).
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Figure 2: Each figure plots the true underlying causal effect function E[Y | do(Z = z),G = G] in red, while showing
different surrogate models arising from Eqs. f] when assuming each of the graphs of top of the plot is the correct one. The
surrogate models share hyper-parameters so the differences only stems from alternative causal assumptions. The true DAG G
is shown inside the dashed box in Fig.[2a] Vertical dashed line indicates the global optimum. Note that both the true graph
and the second DAG above (a) result in the same surrogate model.

tractability of GPs. Importantly, this also allows us to com-
pute the expectations w.r.t. P(G|D) without approximations
in Eqs. dand later in the acquisition function.

Convergence Under some conditions, convergence to dg—g
can be guaranteed asymptotically (in the number of inter-
ventional and observational samples). The key requirements
needed are: causal sufficiency; R including G; all vari-
ables can be manipulated; infinite samples can be obtained
from each node; causal minimality. See Appendix [B] for
details.

Effect of graph knowledge on optimization It is important
to emphasize that while computing P(G | D) and using it
in the surrogate model provides proper uncertainty quantifi-
cation, exact knowledge of the causal structure is not always
needed for more efficient causal optimization.

Indeed, different graphs may lead to equivalent surrogate
models. For instance, consider the example in Fig. [2] show-
ing different causal graphs and the associated surrogate
models, when three interventions are collected. Here the
true DAG is given in Fig. 2a] (green dashed box) alongside an
alternate causal DAG. The surrogate models for these struc-
tures are equivalent, and shown in the plot below. Indeed,
the do-calculus for the left DAG and right DAG of Fig. [24]
gives the same result, even if the latter DAG is wrong. Given
our surrogate model construction in (Eq. (2)), this implies
the same prior mean and covariance for the causal effects
associated with both graphs. Therefore, for the purpose of
causal optimization, the DAGs in Fig. 2a|are the same.

As demonstrated experimentally in §5| it is thus wasteful to
intervene to find the true graph first, and only after perform
causal optimization. This motivates our joint approach,
which automatically balances structure learning and op-
timization by picking interventions that are reducing the
uncertainty of P(G | D) when doing so enables faster iden-

tification of the optimum. Next, we describe how to achieve
this balance by proposing a new acquisition function.

3.3 Acquisition function: Causal Entropy Search

We propose an acquisition function that combines Bayesian
structure learning and causal optimization into a single ob-
jective in order to balance the two tasks. To do so, we
start by framing the tasks of causal optimization and struc-
ture learning, respectively, as gaining information about
the global optimum value y* = min(or max);y7 and about
G. This information gain can be quantified by consider-
ing the reduction in uncertainty in an appropriately defined
joint distribution on y* and G. A distribution on the graph,
P(G | D), was defined in and the distribution on y* is
implicitly induced by the surrogate models in El Ex-
ploiting the distribution on y7j (i.e. within a single surrogate
model) has precedents in BO with output-space entropy
search methods (Garnett, 2022, Chapter 8, Section 8.9).

Our acquisition is thereby defined as the conditional mutual
information (MI) denoted by I(-; - | -) between the random
variables (y*, G) and the outcome of the experiment (vy ,y),
given data D. An experiment in the context of a causal
DAG consists of performing do(X; = x;) and observing
a sample v; = (y,vy) from the resulting interventional
distribution. Therefore, in CEO we seek an intervention set
X%t gnd corresponding value x5 such that

X?esl’ X?est _

arg max oces (X7, X7)

Xr€ES, x;€D(Xr)
I [(y*7 G) ; (XI7XI7VY7y) ‘ D]
CO(XI,X])

(N

QcEs (Xla XI) =

3This is because the distribution on each y¥, induced by the
prior on fr, implies a distribution on the global optimum value
achieved y*. Formally, each y; has the distribution of a mini-
mum/maximum of a Gaussian process, which has been studied
(Adler et al.} 2007).
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Algorithm 1 CES

: Input: D, P(G), H (N. of iterations)

: Output: X%, x%, P(G | Dg).

: Initialise: Set Dy = D.

: Compute p(Dy | G = g) foreach g € Rg.

: Compute P(G | Dy).

: Compute m(xy) and ky(xy,x’) using the do-calculus
for each X; € ES (Egs. []).

:forh=1,...,H do
Compute acgs (X, x7) for each X; € ES and each

x in the acquisition points with CES (Algorithm 2]

9:  Obtain the optimal set-value pair (X", x?).

10:  Intervene on the system and augment the dataset

Dy, =Dy_1 U (X?,Vh).

11:  Compute P(G | Dy,) and every p(gr | Dy).

12: end for

13: Return (X}%,x%), P(G|Dy)

AN B W N =

oo

where the denominator CO(X 7, x7) provides the MI per unit
of cost. We call the acquisition function in Eq. (7) Causal
Entropy Search (CES).

Assume, for the moment, that we have access to p(y*, G)
and the associated posterior. We write its joint entropy
Hlp(y*,G | D)] as

=3 [arplG | D)ossGy D). ®
G

The work in (Marx et al., 2021, Lemma 2.3 and Eq. 2.2)
shows that conditional MI and joint entropies can be rig-
orously defined in an analogue way to their fully continu-
ous/discrete counterparts. We can then use Eq. (8] to evalu-
ate the numerator of CES, i.e. Eq. , which can be written

E[Hlp(y*,G | D))~ Hlp(y", G | DU (x1,vv, )],

where the expectation is w.r.t p(vy,y | do(X; = x1), D).
This is the reduction in entropy observed on average in the
joint distribution on (y*, G) when performing do(X; = xr)
and observing vy = (vy,y). We note that computing this
term does not require intervening in the real system. For a
given intervention we “fantasize” (a concept and terminol-
ogy often used in BO (Wilson et al.| [2018))) about the out-
comes vy we would get by simulating what would happen
in the system under do(X; = x;). This can be done in CEO
by using the surrogate models and the fitted SCM functions.
Note that this formulation automatically takes into account
noisy observations, which often motivates entropy-based
acquisitions in BO (Frazier, [2018). We now discuss how to
define and obtain p(y*, G), and approximate H[p(y*, G)].

Joint posterior over y* and G  Computing CES re-
quires defining p(y*, G), obtaining its posterior given D

and computing Eq. (§). We model the joint distribution as
p(y*,G | D) = P(G | y*,D)p(y*| D] We can thus write
Eq. (8) as the sum of: — Y, [dy*P(G | y*,D)p(y* |
D)log P(G | y*,D) and H(p(y* | D)). In turn, evaluating
these two terms require computing P(G | y*, D) and sam-
pling from p(y* | D). The former can be achieved by updat-
ing the posterior on G to get P(G | D U (x*, v}, y*)) and
marginalizing over x* and v}.. However, since p(y* | D)
is not in available closed form, and a Monte Carlo approx-
imation is computationally expensive, we propose a sim-
ple approximation that works in practice. Specifically, we
approximate the distribution of y* to be a mixture of the
intervention-specific distributions on the optimal targets,
where the weights are given by the probability of each inter-
vention set being optimal

Py D)= Y

y7: X1€ES

PX;=X")p(yi D), )

where X* is the intervention set in ES which yields the
global optimum. For example, if we have three surrogate
models corresponding to ES = {{ X}, {Z},{X, Z}}, and
the the global minimum can be found within the causal ef-
fect of Z, i.e. E[Y|do(Z = z)], then X* = {Z}.

We can thus sample from Eq. (9) combining standard mix-
ture sampling techniques (Owen, 2013) with sampling from
each p(y7 | D) as in output-space ES methods (Wang and
Jegelkal 2017). Notice that Eq. (9) is accounting for the
fact that we do not know which intervention set and thus
surrogate model is associated with the global optimunﬂ
See Table [Tl for connections between the CES and related
existing objectives in experimental design and Bayesian
optimimization.

Motivation behind posterior approximation Notice that
as we collect data and get closer to the optimum, we expect
the weights of the mixture distribution of Eq. (9) to gradu-
ally concentrate around the optimal intervention set X*, and
p(y* | D) to turn into p(y7 | D) for the X s.t. X = X*.
To model the belief over the optimal set P(X; = X*), we
employ a multi-armed bandit (Lattimore and Szepesvari,
2020) perspective and define the weights via an upper confi-
dence bound (UCB) policy; see Appendix |G| for details.

Computational complexity Let NV be the number of acqui-
sition points i.c., given X7, we will consider {x\"”}"_ as
candidate values to compare with CES. The total complex-
ity of CES can be written: O(N - CES(X) - ) x, cgs |X1])-
Here, CES(x) denotes the time needed to compute CES for
a specific value x, regardless of its corresponding X ;. Note
this is valid for CBO also, replacing CES(x) with CEI(x),
i.e. the acquisition used by CBO (Aglietti et al., [2020b).

“The alternative model p(y*|G, D) P(G|D) could also be con-
sidered. We discuss this in Appendix@

STherefore, this formulation provides a useful acquisition that
could be used not only for causal optimization, but also in a-causal
settings.



Causal Entropy Optimization

Here, CES(x) involves approximating univariate marginals
p(y} | D) and the mixture in Eq. (9). We do this with Kernel
Density Estimation (KDE) whose complexity depends on
the accuracy needed to estimate these marginals. Finally,
since the number of graphs in our setting is tractable, we can
compute expectations w.r.t P(G) without approximations
and with negligible cost w.r.t to the rest.

4 RELATED WORK

Causal Effect Estimation. Many approaches to estimate
causal effects from observational data have been proposed,
including those based on propensity scores (Rosenbaum and!
Rubinl [1983)), instrumental variables (Angrist and Imbens),
1995)) or scMs (Pearl, [2009)). Instead, there have been few
methods combining interventional and observational data
(Silva, 2016). Focusing on SCM methods, apart from a
few exceptions (Hyttinen et al., 2015; |Horii, [2021)), causal
effects are estimated assuming exact knowledge of G.

Causal Discovery. The majority of causal discovery (CD)
methods focus on learning G using only observational data
thus restricting the identification to the Markov equivalence
class (MEC) (Verma and Pearl, {1991} /Andersson et al., [1997;
Spirtes et al., 2000a};|Chickering, 2002} |[Friedman and Koller,
2003; [Shimizu et al.| 2006; Janzing et al., 2012; [Zhang
et al.,[2015). The seminal work by |Cooper and Yool (1999)
first showed how experimental design can improve causal
structure learning (which in general is known to be NP-hard
(Chickering| |1996)). Since this study, several papers have
focused on learning G from a combination of interventional
and observational data (Tong and Koller, 2001; [Murphy,
2001} |[Eaton and Murphyl [2007b; [Hauser and Bithlmann),
2012, 2014, 2015} Wang et al.l [2017; Ness et al., 2017
Yang et al., 2018}, |Ghassami et al., 2018; Agrawal et al.,
2019; [Faria et al., 2022). However, all of these focus on
finding the true graph by selecting the intervention set only.
Our work additionally selects intervention values. Recently,
von Kiigelgen et al.|(2019) developed a BO framework for
CD where variables are continuous and follow flexible non-
linear relationships.

Optimal Causal Decision Making. The literature on causal
decision making has mainly focused on finding the optimal
treatment regime using observational data (Zhang et al.
2012} |Atan et al., |2018; Hakansson et al., [2020). The idea
of identifying the optimal action or policy by performing
interventions in a causal system has been explored in causal
bandits (Lattimore et al.l [2016), causal reinforcement learn-
ing|[Zhang| (2020) and, more recently, in BO (Aglietti et al.,
2020bjal 2021)). Importantly, all these approaches assume
exact knowledge of the causal relationships beforehand, an
assumption that is often not met in practice. Recent work
attempts to relax this for causal bandits (Lu et al.|, [2021}
Wang and Zhou, [2021]).

Additional related works. Toth et al.|(2022)) recently pro-

Table 1: Causal Entropy Search compared to related objectives
in BOED for structure learning and BO algorithms. Entropy Search
(ES) and Max-value ES are used within the standard a-causal BO
problem. Multi-Task BO is also used for a-causal optimization with
multiple functions, but when the function containing the optimum
is known. The objective in (von Kiigelgen et al.l |2019) is also
based on MI, but only targets the graph structure. CES considers
intervention sets, intervention values and the graph structure when
the function containing the optimum is unknown.

Acquisition Objective

CES (ours) H[(ll*,G)c;E))((i,;fi}V)y,ll)\D]
Entropy Search (Hennig| I[(x,y);x*|D]

and Schuler, 2012)

Max-value Entropy Search  1[(x,y);y*| D]

(Wang et al.| 2017)

Multi-Task BO (Swersky
et al.,[2013)

Causal discovery via BO
(von Kiigelgen et al.,[2019)

1[4 ) x* D)
Co(task)

I[G; (X1,%x1,vr) | D]

posed a framework where posterior distributions over both
the causal graph and the interventional distributions are
learned, with the goal of solving an “integrated causal dis-
covery and reasoning” task. A similar task is solved by
Tigas et al.|(2022) which exploits submodularity to obtain
theoretical guarantees in terms of convergence to the true
interventional distributions. Differently, in this paper, we
learn a joint posterior over the graph and the optimal inter-
vention, as opposed to learning the full set of interventional
distributions. A similar difference between finding the op-
timum function value or learning the full function exists
between Bayesian quadrature and Bayesian optimization
(Garnett, [2022} [Hennig et al., 2022).

S EXPERIMENTS

We demonstrate CEO on a benchmark synthetic example
used in (Aglietti et al., [2020b) as well as real-world appli-
cations for which a DAG is available and can be used as a
simulator. Without loss of generality, we always minimize
causal effects rather than maximize. Results are averaged
over 12 replicates of different initial D7, while D is fixed.
We set |Df| = 2 and |D§| = 200 (initial data) unless oth-
erwise specified”| Full experimental details including SCM
details, kernel functions used, hyper-parameter optimization
can be found in Section K of the Appendix. As a reminder
on notation, recall G denotes the true causal graph; y* de-
notes the best value of the causal effect across ES.

®Code  available at:
nicolal4d4/CEO

https://github.com/
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Table 2: Average GAP = one standard error computed across 12 replicates initialized with different D. Higher values are
better, and 0 < GAP < 1. The best result for each experiment in bold.

Method Synthetic (Fig. Health (Fig. Epi (Fig. (Epi™ Fig.[9)
CEO 0.75 + 0.03 0.624+0.07  0.59+0.06 0.65+ 0.03
cBOW.G =G 0.66 + 0.04 0.71£0.05 0.5040.05 0.50 £ 0.03
cBow. G#G 0.59 + 0.03 0.62+0.06 0.5040.06 0.53+0.03

Experiments Roadmap & Baselines We compare the per-
formance of CEO against CBO which is the state-of-the-art
algorithm addressing the causal global optimization prob-
lem. However, as CBO assumes knowledge of the graph,
we run it first assuming the true graph G and then assuming
each of the wrong graphs. In general, CBO with G is ex-
pected to perform better, especially when the graph structure
is particularly informative for the CBO prior. However, this
need not be the case in all experiments. Indeed, in one of our
real examples, CBO equipped with G performs worse than
CEO. To further highlight the benefit of our joint method,
in §5.2] we compare against an algorithm that first identifies
the causal graph by optimizing the M]ﬂ as considered by
von Kiigelgen et al.| (2019)), and then runs CBO to select the
optimal action retaining the interventional data collected
when learning about the graph. This is to show that jointly
considering structure learning and causal optimization leads
to better performance than a sequential approach. We refer
to this method as CD-CBO. Notice that we cannot compare
directly to|von Kiigelgen et al.|(2019)) as in their work the
MI is optimized via BO rather than computed as in CEO.
Finally, notice also that causal discovery methods which do
not (1) collect interventions with active learning (2) select
both intervention sets and values and (3) assume continuous
variables, are not applicable to the problem setting thus we
do not consider them as an alternative to|von Kiigelgen et al.
(2019) for cb-CBO.

Performance measures We evaluate performance by as-
sessing the convergence speed to the optimum value of Y
as measured by the total cumulative cost of interventions
taken where the cost of a single intervention is given by the
number of variables in the intervened set. Further, we also
evaluate our approach using the GAP metric introduced in
Aglietti et al.[ (2021}, Eq. (4)), which is defined by

yCer) = ylotm) | H - H(Xl}w)} / (1 ; H—1> .
Yy _y(xinit) H H

Here, y* is the true global optimum, y(x5*") is the best value
achieved by the algorithm, y(Xi,;) is the value obtained at
the beginning of the optimization, H is the total number of

"We note also note that (Agrawal et al.,[2019) use a MI criteria
for causal discovery via experimentation. However, this work only
selects intervention set and not values and it is not not applicable
to our continuous variables setting.

iterations, H (x5) is the number of iterations to reach the
best value achieved. Note that 0 < GAP < 1 and that higher
values are better.

5.1 Synthetic example

We start by considering data generated by the chain graph
X — Z — Y as per Fig. |22a] (green dashed box). We
consider all possible alternative DAGs with three nodes as
alternative causal hypotheses, except for those which do
not make sense for causal optimization: graphs with any
isolated nodes or where the target Y is not a sink. See
Appendix [H|for the full list of graphs and the true SCM.

Convergence results are given in Fig. 4] while we show
the evolution of the posterior on the true graph over itera-
tions in Appendix [D| Note how CBO run under incorrect
causal assumptions does not converge to the global optimum,
whereas CEO matches the performance of CBO run with the
true graph even if the graph posterior has not converged.
This is confirmed by the GAP values in Table 2 where CEO
outperforms both CBO algorithms across 12 replicates.

5.2 Comparison with learning the structure first, then
performing CBO (CD-CBO)

We now study how CEO compares against an algorithm that
first performs causal discovery and, once the graph has been
identified, solves the optimization problem via CBO. We
refer to this as CD-CBO. We consider the graph learned
once it has more than 90% of posterior mass. In Fig. a) ,
notice the significantly worse performance at optimization
of CD-CBO. This is due to the fact that, while the MI cor-
rectly identifies G after a few samples for most graphs, the
graph in Fig. 2dis very hard to distinguish from G (for the
given SCM) as the terms in the truncated factorization give
similar likelihood values. Therefore, the posterior never
gets concentrated around a single graph despite the high
number of selected interventions, and the optimization task
is never solved. This reflects the benefit of a joint approach,
where the graph is learned along optimization of the effect,
and only to the extent to which it is useful for optimization.
Additional results are presented in Appendix [M]
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Figure 3: True DAG used for the epidemiology experiment.
For the full support of P(G), and SCM equations, see Ap-
pendix E] Crossed variables are non-manipulative.

5.3 Real examples

We now study the performance of CEO with causal DAGs
used in two real-world settings: one in healthcare to model
the level of Prostate Specific Antigen (PSA) and one in
epidemiology to model the level of HIV virus load. These
graphs exhibit a significantly more complex dependency
structure than the chain graph of the synthetic example.
For the graphs considered here, we found our posterior to
converge immediately as soon as initial data D is provided,
or after one/two interventions. CEO can take advantage of
this, and simply optimize the MI for y*.

Healthcare The SCM for this real-world application results
in causal effects that are linear functions of their inputs,
observed with standard white Gaussian noise. We designed
four incorrect graphs which represent plausible hypotheses
a doctor may have in this context Appendix [J} Due to the
simplicity of the underlying true functions, one can see
that the greediness of EI (used by CBO) grants it better
performance on average. CEO still consistently outperforms
CBO on the wrong graphs. This also shows evidence that
while exact knowledge of the graph is not always required
for efficient optimization, it can be better on average than
incorrect knowledge of it.

Epidemiology In this example, adapted from (Havercroft
and Didelez, [2012)), the goal is to subministrate doses for
two potential treatments, which we denote as T" and R, (see
(Havercroft and Didelez, 2012)) for details) to minimize HIV
viral load. The associated DAG is shown in Fig. 3] Fig. @)
shows how, in this more challenging scenario, both competi-
tor methods perform worse. Indeed, the multimodal nature
of the causal effects and the high observation noise charac-
terizing this example penalise CBO and its EI acquisition
function. While this has been observed in a-causal BO, it
is even more problematic when exploring and comparing
multiple functions as in CBO.

Extended Epidemiology: To conclude, we test the algo-
rithm on a larger graph obtained by adding confounders
to the Epidemiology DAG. The resulting DAG includes 10
nodes, and the associated wrong graphs are created by re-
moving the same edges from the original graph as in the
Epidemiology experiment. Even under this situation, as in
the previous Epidemiology experiment, we find that CEO
generally performs better than CBO (with both wrong and
true). Indeed, a larger graph implies a larger product in the
truncated factorization term: this can imply further overcon-
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Figure 4: Convergence plot for CEO and competitor meth-
ods across replicates. In the Healthcare and Epidemiology
related examples, the graph is found immediately by the
posterior with the initial DO and D!; therefore CD-CBO
simply reduces to CBO. Shaded areas are 4+ one standard
error. Vertical axis shows best value of the causal effect
achieved, horizontal shows cumulative intervention cost.

fidence in the CBO surrogate model, whereas CEO averages
over multiple plausible hypotheses.

6 DISCUSSION & CONCLUSIONS

We proposed CEO, a framework that allows an experimenter
to efficiently solve the causal global optimization problem
when the graph is unknown. CEO handles continuous vari-
ables with flexible nonparametric relationships, while still
allowing for a closed-form posterior over graphs that com-
bines observational and interventional data. Our experi-
ments with synthetic and real-world DAGs show that CEO
allows the experimenter to reach the global optimum with
significantly reduced cost compared to CBO when the graph
is unknown, and sometimes even when the graph is known.
Our acquisition, CES, allows to learn the graph only to the
extent to which it is useful for optimization, and it is robust
to observation noise.

Limitations. A limitation of CEO is its restriction to contin-
uous variables, inherited from CBO. Further, a significant
computational effort is required to efficiently approximate
the CES objective. In real examples this computational cost
may be accepted because the interventions represent a costly
experiment (such as administering a drug to a patient).

The formulation of CES can be seen as an active-learning
objective of independent interest, and thus opens promising
avenues for future work (e.g. joint causal effect estima-
tion and structure learning). Further, our surrogate model
definition could also allow for approximating expectations
over the graph (e.g. exploiting the rich literature on MCMC

with dynamic programming for structure learning (Eaton
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and Murphy| 2007a; [Zemplenyi and Miller, |2021))) to help
scalability of posterior inference in very large graphs. Some
form of parameter sharing between surrogate models corre-
sponding to nested sets of variables could be used to reduce
cost, as suggested by a reviewer.

Acknowledgements

NB acknowledges support from the Alan Turing Institute via
the Enrichment Scheme. TD acknowledges support from a
UKRI Turing AI Acceleration Fellowship [EP/V02678X/1].

References

R. J. Adler, J. E. Taylor, et al. Random fields and geometry,
volume 80. Springer, 2007.

V. Aglietti, T. Damoulas, M. Alvarez, and J. Gonzilez.
Multi-task causal learning with gaussian processes. In

Advances in Neural Information Processing Systems, vol-
ume 33, 2020a.

V. Aglietti, X. Lu, A. Paleyes, and J. Gonzdlez. Causal
bayesian optimization. In International Conference on
Artificial Intelligence and Statistics, pages 3155-3164.
PMLR, 2020b.

V. Aglietti, N. Dhir, J. Gonzéalez, and T. Damoulas. Dy-
namic causal bayesian optimization. Advances in Neural
Information Processing Systems, 34, 2021.

R. Agrawal, C. Squires, K. Yang, K. Shanmugam, and
C. Uhler. Abcd-strategy: Budgeted experimental design
for targeted causal structure discovery. In K. Chaud-
huri and M. Sugiyama, editors, Proceedings of Machine
Learning Research, volume 89 of Proceedings of Ma-
chine Learning Research, pages 3400-3409. PMLR, 16—
18 Apr 2019.

S. A. Andersson, D. Madigan, M. D. Perlman, et al. A
characterization of markov equivalence classes for acyclic
digraphs. Annals of statistics, 25(2):505-541, 1997.

J. Angrist and G. Imbens. Identification and estimation of
local average treatment effects, 1995.

O. Atan, J. Jordon, and M. van der Schaar. Deep-treat:
Learning optimal personalized treatments from observa-
tional data using neural networks. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 32,
2018.

D. M. Chickering. Learning bayesian networks is np-
complete. In Learning from data, pages 121-130.
Springer, 1996.

D. M. Chickering. Optimal structure identification with
greedy search. Journal of machine learning research, 3
(Nov):507-554, 2002.

G. F. Cooper and C. Yoo. Causal discovery from a mixture
of experimental and observational data. In Proceedings
of the Fifteenth Conference on Uncertainty in Artificial

Intelligence, UAT’99, page 116-125, San Francisco, CA,
USA, 1999. Morgan Kaufmann Publishers Inc. ISBN
1558606149.

C. C. Drovandi, C. Holmes, J. M. McGree, K. Mengersen,
S. Richardson, and E. G. Ryan. Principles of experimental
design for big data analysis. Statistical science: a review
Jjournal of the Institute of Mathematical Statistics, 32(3):
385, 2017.

D. Eaton and K. Murphy. Bayesian structure learning us-
ing dynamic programming and mcmc. Uncertainty in
Artificial Intelligence, 2007a.

D. Eaton and K. Murphy. Exact bayesian structure learning
from uncertain interventions. In Artificial intelligence
and statistics, pages 107-114. PMLR, 2007b.

G. R. A. Faria, A. Martins, and M. A. Figueiredo. Differ-
entiable causal discovery under latent interventions. In
Conference on Causal Learning and Reasoning, pages

253-274. PMLR, 2022.

P. I. Frazier. Bayesian optimization. In Recent Advances in
Optimization and Modeling of Contemporary Problems,
pages 255-278. INFORMS, 2018.

N. Friedman and D. Koller. Being Bayesian about network
structure; a Bayesian approach to structure discovery in
Bayesian networks. Machine learning, 50(1):95-125,
2003.

N. Friedman and I. Nachman. Gaussian process networks.
In Proceedings of the Sixteenth Conference on Uncer-
tainty in Artificial Intelligence, UAT’00, page 211-219,
San Francisco, CA, USA, 2000. Morgan Kaufmann Pub-
lishers Inc. ISBN 1558607099.

J. L. Gamella and C. Heinze-Deml. Active invariant causal
prediction: Experiment selection through stability. arXiv
preprint arXiv:2006.05690, 2020.

R. Garnett. Bayesian Optimization. Cambridge University
Press, 2022. in preparation.

A. Ghassami, S. Salehkaleybar, N. Kiyavash, and E. Barein-
boim. Budgeted experiment design for causal structure
learning. In International Conference on Machine Learn-
ing, pages 1724-1733. PMLR, 2018.

C. Glymour, K. Zhang, and P. Spirtes. Review of causal
discovery methods based on graphical models. Frontiers
in genetics, 10:524, 2019.

P. J. Green. Reversible jump markov chain monte carlo com-
putation and bayesian model determination. Biometrika,
82(4):711-732, 1995.

S. Hakansson, V. Lindblom, O. Gottesman, and F. D. Jo-
hansson. Learning to search efficiently for causally near-

optimal treatments. arXiv preprint arXiv:2007.00973,
2020.

A. Hauser and P. Bithlmann. Characterization and greedy
learning of interventional markov equivalence classes of



Causal Entropy Optimization

directed acyclic graphs. The Journal of Machine Learning
Research, 13(1):2409-2464, 2012.

A. Hauser and P. Bithlmann. Two optimal strategies for
active learning of causal models from interventional data.
International Journal of Approximate Reasoning, 55(4):
926-939, 2014.

A. Hauser and P. Bithlmann. Jointly interventional and
observational data: estimation of interventional markov
equivalence classes of directed acyclic graphs. Journal of
the Royal Statistical Society: Series B (Statistical Method-
ology), 77(1):291-318, 2015.

W. Havercroft and V. Didelez. Simulating from marginal
structural models with time-dependent confounding.
Statistics in medicine, 31(30):4190-4206, 2012.

P. Hennig and C. J. Schuler. Entropy search for information-
efficient global optimization. Journal of Machine Learn-
ing Research, 13(6), 2012.

P. Hennig, M. A. Osborne, and H. P. Kersting. Probabilistic
Numerics. Cambridge University Press, 2022.

S. Horii. Bayesian model averaging for causality estimation
and its approximation based on gaussian scale mixture
distributions. In International Conference on Artificial
Intelligence and Statistics, pages 955-963. PMLR, 2021.

A. Hyttinen, F. Eberhardt, and M. Jarvisalo. Do-calculus
when the true graph is unknown. In UAI, pages 395-404.
Citeseer, 2015.

D. Janzing, J. Mooij, K. Zhang, J. Lemeire, J. Zscheischler,
P. Daniusis, B. Steudel, and B. Scholkopf. Information-
geometric approach to inferring causal directions. Artifi-
cial Intelligence, 182:1-31, 2012.

M. Kocaoglu, A. Dimakis, and S. Vishwanath. Cost-optimal
learning of causal graphs. In International Conference
on Machine Learning, pages 1875-1884. PMLR, 2017a.

M. Kocaoglu, A. G. Dimakis, S. Vishwanath, and B. Has-
sibi. Entropic causal inference. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017b.

J. Kuipers and G. Moffa. Partition mcmc for inference on
acyclic digraphs. Journal of the American Statistical
Association, 112(517):282-299, 2017.

F. Lattimore, T. Lattimore, and M. D. Reid. Causal bandits:
Learning good interventions via causal inference. arXiv
preprint arXiv:1606.03203, 2016.

T. Lattimore and C. Szepesvdri. Bandit algorithms. Cam-
bridge University Press, 2020.

Y. Lu, A. Meisami, and A. Tewari. Causal bandits with un-
known graph structure. Advances in Neural Information
Processing Systems, 34, 2021.

D. J. MacKay. Information-based objective functions for
active data selection. Neural computation, 4(4):590-604,
1992.

D. Madigan, J. York, and D. Allard. Bayesian graphical
models for discrete data. International Statistical Re-
view/Revue Internationale de Statistique, pages 215-232,
1995.

A. Marx, L. Yang, and M. van Leeuwen. Estimating con-
ditional mutual information for discrete-continuous mix-
tures using multi-dimensional adaptive histograms. In
Proceedings of the 2021 SIAM International Conference
on Data Mining (SDM), pages 387-395. SIAM, 2021.

A. R. Masegosa and S. Moral. An interactive approach for
bayesian network learning using domain/expert knowl-
edge. International Journal of Approximate Reasoning,

54(8):1168-1181, 2013.

N. Miklin, A. A. Abbott, C. Branciard, R. Chaves, and
C. Budroni. The entropic approach to causal correlations.
New Journal of Physics, 19(11):113041, 2017.

H. Moss. General-purpose Information-theoretical
Bayesian Optimisation: A thesis by acronyms. PhD thesis,
Lancaster University, 2021.

K. P. Murphy. Active learning of causal bayes net structure.
Technical report, 2001.

R. O. Ness, K. Sachs, P. Mallick, and O. Vitek. A bayesian
active learning experimental design for inferring signal-
ing networks. In International Conference on Research
in Computational Molecular Biology, pages 134—-156.
Springer, 2017.

A. B. Owen. Monte Carlo theory, methods and examples.
2013.

J. Pearl. Causality. Cambridge university press, 2009.

J. Peters, D. Janzing, and B. Scholkopf. Elements of causal
inference: foundations and learning algorithms. The
MIT Press, 2017.

P. R. Rosenbaum and D. B. Rubin. The central role of
the propensity score in observational studies for causal
effects. Biometrika, 70(1):41-55, 1983.

E. Sgouritsa. Causal Discovery Beyond Conditional Inde-
pendencies. PhD thesis, University of Tubingen, 2015.

S. Shimizu, P. O. Hoyer, A. Hyvirinen, A. Kerminen, and
M. Jordan. A linear non-gaussian acyclic model for causal
discovery. Journal of Machine Learning Research, 7(10),
2006.

R. Silva. Observational-interventional priors for dose-
response learning. arXiv preprint arXiv:1605.01573,
2016.

R. Silva and R. B. Gramacy. Gaussian process structural
equation models with latent variables. arXiv preprint
arXiv:1002.4802, 2010.

P. Spirtes, C. Glymour, R. Scheines, S. Kauffman,
V. Aimale, and F. Wimberly. Constructing bayesian net-
work models of gene expression networks from microar-
ray data. 2000a.



Nicola Branchini, Virginia Aglietti, Neil Dhir, Theodoros Damoulas

P. Spirtes, C. N. Glymour, R. Scheines, and D. Heckerman.
Causation, prediction, and search. MIT press, 2000b.

K. Swersky, J. Snoek, and R. P. Adams. Multi-task bayesian
optimization. In C. J. C. Burges, L. Bottou, M. Welling,
Z. Ghahramani, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 26.
Curran Associates, Inc., 2013.

P. Tigas, Y. Annadani, A. Jesson, B. Scholkopf, Y. Gal,
and S. Bauer. Interventions, where and how? experi-
mental design for causal models at scale. arXiv preprint
arXiv:2203.02016, 2022.

S. Tong and D. Koller. Active learning for structure in
bayesian networks. In International joint conference on
artificial intelligence, volume 17, pages 863—869. Cite-
seer, 2001.

C. Toth, L. Lorch, C. Knoll, A. Krause, F. Pernkopf, R. Pe-
harz, and J. von Kiigelgen. Active bayesian causal infer-
ence. arXiv preprint arXiv:2206.02063, 2022.

T. Verma and J. Pearl. Equivalence and synthesis of causal
models. UCLA, Computer Science Department, 1991.

J. Viinikka and M. Koivisto. Layering-mcmc for structure
learning in bayesian networks. In J. Peters and D. Sontag,
editors, Proceedings of the 36th Conference on Uncer-
tainty in Artificial Intelligence (UAI), volume 124 of Pro-
ceedings of Machine Learning Research, pages 839-848.
PMLR, 03-06 Aug 2020.

J. von Kiigelgen, P. K. Rubenstein, B. Scholkopf, and
A. Weller. Optimal experimental design via bayesian
optimization: active causal structure learning for gaus-
sian process networks. In NeurIPS 2019 Workshop Do
the right thing: machine learning and causal inference
for improved decision making. NeurIPS, Dec. 2019.

M. J. Vowels, N. C. Camgoz, and R. Bowden. D’ya like
dags? a survey on structure learning and causal discovery.
arXiv preprint arXiv:2103.02582, 2021.

T.-Z. Wang and Z.-H. Zhou. Actively identifying causal
effects with latent variables given only response variable
observable. Advances in Neural Information Processing
Systems, 34, 2021.

Y. Wang, L. Solus, K. D. Yang, and C. Uhler. Permutation-
based causal inference algorithms with interventions.
arXiv preprint arXiv:1705.10220, 2017.

Z. Wang and S. Jegelka. Max-value entropy search for effi-
cient bayesian optimization. In International Conference
on Machine Learning, pages 3627-3635. PMLR, 2017.

C. K. Williams and C. E. Rasmussen. Gaussian processes
for machine learning, volume 2. MIT press Cambridge,
MA, 2006.

J. Wilson, F. Hutter, and M. Deisenroth. Maximizing acqui-
sition functions for bayesian optimization. Advances in
neural information processing systems, 31, 2018.

K. Yang, A. Katcoff, and C. Uhler. Characterizing and learn-
ing equivalence classes of causal dags under interventions.

In International Conference on Machine Learning, pages
5541-5550. PMLR, 2018.

M. Zemplenyi and J. W. Miller. Bayesian optimal ex-
perimental design for inferring causal structure. arXiv
preprint arXiv:2103.15229, 2021.

B. Zhang, A. A. Tsiatis, E. B. Laber, and M. Davidian. A
robust method for estimating optimal treatment regimes.
Biometrics, 68(4):1010-1018, 2012.

J. Zhang. Designing optimal dynamic treatment regimes: A
causal reinforcement learning approach. In International
Conference on Machine Learning, pages 11012—-11022.
PMLR, 2020.

K. Zhang, Z. Wang, J. Zhang, and B. Scholkopf. On estima-
tion of functional causal models: general results and ap-
plication to the post-nonlinear causal model. ACM Trans-
actions on Intelligent Systems and Technology (TIST), 7
(2):1-22, 2015.



Causal Entropy Optimization

A NOMENCLATURE

Symbol Description
\% Observed endogenous variables
U Set of exogenous background variables
F Set of deterministic functions
C Non-manipulative variables
X Manipulative variables
Y Output variable
P(X) Set of all possible interventions which can be performed in the graph
Pajg Parents of each variable V; € V given by G
N Number of samples collected from each interventional distribution
pa; Denotes the parents of V;
X One possible intervention set out of a total |P(X)]
X Corresponding values of intervened set of variables X
Vi Corresponding set of non-intervened variables following intervention X ;
Vy Denotes V7 \ 'Y
D(X;) Intervention domain
ES Exploration set, equivalent to or subset of P(X)
D Samples of manifestations of variables in G following intervention X
X7 Optimal intervention set
X7 Optimal intervention level(s)
g True causal graph
G Graph latent random variable
P(G) Discrete prior over causal graphs
Rg Support of graph distribution
g One of the possible graphs in P(G)
my(xr) Mean function used in GP prior on E[Y | do(X = x;), G]
I(A;B|C) Conditional mutual information between sets A and B on C
H(p(x)) Entropy if x is discrete, differential entropy if « is continuous
Co(Xy,xy) Cost of performing intervention do(X; = x;)
N;(0,1) . Evaluate expression (e.g. NV (0,1))at X =z

B FURTHER DISCUSSION ON GRAPH POSTERIOR AND LIKELIHOOD

Egs. (14) and (15) can also be seen as estimators of the true average causal effect E[Y | do(X; = x;), G] and the variance
of the interventional distribution VY | do(X; = x;),G]. Unsurprisingly, the mean estimator minimizes the error for
a risk function with MSE loss in this context (Horii, 2021). Both estimators are consistent, in the sense that: (1) as
P(G) = dg=g and as p(Y | do(X; = x1),G = g) — p(Y | do(X| = x1),G = g) (ensured by do-calculus, when the
effect is identifiable). Further, as P(G) — dg—g (a Dirac mass at G), the first term in ?? converges to V(v |ao(X; =x,),G) Y],
while the second term vanishes.

Posterior convergence There are standard conditions in our setting that ensure that the graph is identified. The following
assumptions in our setting:

1. Causal sufficiency (i.e. no hidden confounders)
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2. All variables (except the target) can be manipulated (i.e. intervened on)
3. Infinite samples (observational and interventional) can be obtained from each node
4. Causal minimality; i.e. the joint in line 74 does not Markov-factorize w.r.t. to any sub-graph of G

5. The support of P(G) includes G

are sufficient to guarantee convergence of the posterior to a Dirac mass on the true graph, in the limit as interventions are
performed. This is independent of how interventions are collected. That we can intervene on all nodes also guarantees us
identifiability of the interventional Markov-equivalence classes (Hauser and Biithlmann, 2015). Finally, we are not aware of
finite sample guarantees that apply to our specific setting.

Graph likelihood full expression Denote by X© and y© the observational inputs and outputs in D and by pa?ﬁ ; the
values for the parents of V; in G = g resulting from an intervention on X; = xy). We can write the likelihood evaluated at

a single interventional point (xy), vy)) as:

| | Ny, (m;, %) o with Aj = kj(pa? [, XO)[k;(X2, X9) + 071] 7" (10)
V=0
V;eVy J
m; = A;y°, % = kj(paf ;,paf ;) — Ajkj(XOmag,I) (11)

where k; represent the prior kernel functions of f; and m, 3; correspond to the standard posterior predictive GP parameters
(Williams and Rasmussen, 2006, p.17). Note that, when the intervened variables are parents of V;, the values of pa? ;are

replaced by the X(Ii) values.

Exploring the full space of DAGs Methodologies for exploring the full space of DAGs are well-studied (i.e. defining a
posterior over a very large space), and return an approximate solution employing sophisticated MCMC schemes (e.g. over
the space of node orderings) in the context of Bayesian structure learning (Madigan et al.,[1995; [Friedman and Koller, [2003};
Kuipers and Moffa, 2017; [Viinikka and Koivistol |2020). Our setting is complementary to this research: once a sophisticated
approximate posterior is provided via representative samples, this can be incorporated in our framework without adjustments.
Therefore, on the structure learning side our work is more related to (von Kiigelgen et al., 2019), where also a small number
of DAGs, continuous X and flexible nonparametric priors for SEMs are considered; however, they are not interested in causal
optimization.

C CAUSAL ENTROPY SEARCH ACQUISITION COMPUTATION

C.1 Joint entropy details

For simplicity we omit conditioning on D on all terms, and write the joint entropy as:

Hp(y*, G)] = *Z/dy*p(G, y*)log p(G,y") (12)
G
= —Z/dy*p(G\y*)p(y*)logp(G\y*) - Z/p(GIy*)p(y*)logp(y*) (13)
G G
= —Z/dy*p(G\y*)p(y*)10gp(G\y*) - /p(y*)logp(y*) (14)
G

We approximate the challenging term (the first) with Monte Carlo samples from our mixture distribution p(y*|D) (Eq. @)
and keep track of the x* associated with each sample of y* to update the graph posterior. More accurate approximations
could be considered in future work. The second term we approximate as described in Algorithm [2} which details the
complete algorithm for CES.
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Figure 5: Evolution of P(G = G) across iterations in the experiment using the synthetic graph. (a) is the posterior as given
by CD-CBO, whereas (b) is that given by CEO. As discussed in §5] we found this an interesting example where the true
graph is hard to distinguish from an alternative one, but causal optimization can still proceed efficiently. Note that in both
healthcare and epidemiology examples we found the graph to be identified easily by our posterior.

D GRAPH POSTERIOR EVOLUTION PLOTS

E FURTHER DISCUSSION ON GRAPH POSTERIOR AND LIKELIHOOD

Compared to acquisition functions in prior related works (Aglietti et al.,2020b; [Wang and Jegelka, [2017} [Swersky et al.|
2013), several important challenges arise specific to our goals as specified by Eq. (1): to start with, the acquisition used
in CBO cannot be straightforwardly extended to our setting. Firstly, because it is not clear how to incorporate our graph
prior in a principled manner. Secondly, as explained in Section 3.1, we cannot assume that we can observe the causal
effect exactly, since observations from the SEM are noisy, and the family of expected-improvement (EI) acquisitions are
known to be inappropriate in this setting (Frazier, 2018; |Garnett, 2022). We addressed these challenges by introducing
an information-theoretic acquisition function. These types of objectives are widely used in BOED (Drovandi et al., [2017),
active learning (MacKayl [1992) as well as many BO approaches (Hennig and Schuler} 2012; Wang and Jegelka, 2017} Moss|
2021). The information-theoretic approach is often advocated in BO because, contrasted to approaches like EI that largely
judge optimization performance based solely on having found high objective function values, it seeks data that is maximally
informative about a variable of interest (Garnett, 2022). In practice, these approaches can be better suited to challenging
noisy problems, multimodal and non-smooth functions, or optimization with multiple information sources (Frazier, |2018]). It
is worth keeping in mind that there is no uniformly best acquisition across all settings.

Output space vs input space ES We decided to frame causal optimization as learning about y* rather than x*. The
question of whether to perform output-space ES (what we do) versus input-space ES has been studied before in BO; see
(Garnett, 2022, §6) and (Mossl |2021). However, a crucial difficulty is added in causal optimization: there are multiple
surrogate models, each with different input space and dimensionality; one for each intervention set X; € ES we want to
consider. Having multiple surrogates is similar to the setting of multi-task BO (Swersky et al.| 2013)); however (1) our tasks
do not share input space and (2) we do not know which task actually contains the global optimum. Therefore, while in
principle learning about x* could be done, it would be computationally expensive and inference-wise challenging to define a
distribution over a variable with varying (and potentially large) dimensionality. On the other hand, all causal effects share
Y, which is one dimensional. Future work could consider inference techniques for dimension-varying parameters like
reversible-jump MCMC (Green, |1995).

F FURTHER DISCUSSION ON SURROGATE MODELS

A surrogate model for each graph? Notice that one can think of a very different way to incorporate uncertainty: we
could define distinct surrogate models for each g in the support R of P(G). We do not take this approach for several
reasons: (1) it would not extend to a setting where we need to approximate expectations under P(G) with sampling (hence
it is not scalable in this sense); (2) it would require | R¢| - |ES| kernel hyperparameters to store and update at every iteration;
(3) finally, modelling the true causal effect by marginalizing the graph in this approach would lead to a weighted mixture of
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GPs, rendering inference and BO complicated.

G BELIEF OVER THE OPTIMAL SET

We compute P(X; = X7) as:
P(X; = X% i ot 15
(X =X7) = SR s)
when maximizing a causal effect, with signs reversed when minimizing. Here, ;7 is the minimum of the mean function of
surrogate model f7, and o7 the standard deviation of the univariate Gaussian with mean at that point. We did not explore
adaptive tuning of 5 which we fixed to 0.1. Guarantees for UCB can be found in e.g. (Garnett, [2022).

G.1 Parametric assumptions

Firstly, the additive Gaussian noise assumption (let us call it AGN- additive Gaussian noise) combined with GPs on the
structural equations allows us to define the graph likelihood in closed form. This also implies that GP posteriors on the
structural functions are available in closed form. When AGN does not hold, one would need to resort to the literature on
Variational GPs, which allows one to perform inference with GPs with non-Gaussian likelihoods. Secondly, the AGN
assumption also allows us to deal with noisy Bayesian optimization (Garnett, 2022). Recall that, even if we knew the
graph, we do not get to observe E[Y" | do(X; = x;), G, but can only get samples from p(Y | do(X; = x1),G). BO
with non-Gaussian noise is an active area of research, see e.g. [16] who allow for sub-Gaussian likelihood noises. The
optimization becomes more sophisticated, and note that CEO (and CBO) needs to deal with multiple surrogate models (one
for each X). Therefore, extending these methods from the BO setting to CBO and CEO is a future area of research.
Finally, beyond the previously discussed additive Gaussian noise assumption, in our experiments we used radial basis
function kernels, consistently with previous works on CBO. These were appropriate kernels for the SCMs we studied in the
experiments; however, for nonstationary causal effect functions one could use nonstationary GP kernels.

H SYNTHETIC: GRAPHS AND TRUE SEM

For the SEM of the synthetic graph, see the Supplementary material of (Aglietti et al.| 2020b)). For all experiments, we used
standard radial basis function (RBF) kernels, and optimized hyperparameters with type /I maximum likelihood.
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Figure 6: Graph prior P(G) used for the synthetic experiment s.t. | Rg| = 6. The true DAG is shown in Fig.
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Algorithm 2 CES

1:

17:
18:

19:
20:
21:
22:
23:
24:

25:
26:

Inputs:
* Initial data D = (D°, D)
* Surrogate models: f;(x;) for X; € ES, which have been fitted on D
* Current graph posterior: P(G|D)
* Intervention sets ES

* Corresponding acquisition points {X(IS)}SSZ1 (using S acquisition points per set).

: Outputs: X%, x%' maximizers of Eq.
: for all X; € ES do

o )}3]:1 approximately distributed from p(y|D) using Thompson sampling: (x}'7), 3%
arg min(arg max)x, I(j)(XI), min(max)y, I(j)(xl) with fl(j) ~ GP(my(xr), kr(xr,x7)) as per Eq. . Store each

x?(j ), associated to each y;’(j )

Get samples {y; Uy =

J

Fit a KDE estimate p(y}|D) to the samples {y;’(j) =1

Compute P(X; = X7) as in Appendix|[G]|

: end for

: Obtain samples {y; }2 | from p(y*|D) by sampling from the mixture in Eq. (@); keeping track of each associated x***
. Fit KDE estimate p(y*|D) to the samples {y**} 1

: Note: up to here, computations do not depend on acquisition points.

. if H[p(G|D)] is =~ 0 (i.e. CEO is sure that it has found the graph) then

Approximate H(p(y*|D)) with the entropy of the KDE estimate H(p(y*|D)) via quadrature
for all X; € ES do
for all x\*) € {x{V15_, do
Update (a copy of) the surrogate model f7(x;) with ng)

Generate fantasy observation by performing do(X; = xf,s)): sample v} ~ p(v§/|d0(xgs))) using ancestor

sampling with SEM functions estimated on D , whereas ' ~ p(Y|do(xgs)), D) is given by the surrogate model on V",
fori=1,...,L.
Repeat steps 3 to 9 to get an updated set {p(y*|D U (xgs), vioyE,
Compute the average change in entropy, conditioned on fantasy observations: + Zlel H(p(y*|D)) —
H(p(y* DU (x), v 91)
end for
end for
Return ng) maximizing its change in entropy as computed in step 18
else if H[p(G|D)] is not ~ 0 then
Compute joint entropies H[p(y*, G|D)] as in Eq. and y* samples obtained in step 8
Do steps 13 - 20, but for these joint entropies, for all xgs), X + Zlel Hp(y*, G|D)] — Hlp(y*,G|D U

(x, v, yh))]
end if
S

Return: x** as the one associate with larger entropy reduction among the {X(IS) }5_,, and its associated X"
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I EPIDEMIOLOGY: GRAPHS AND TRUE SEM

We use a modified (more challenging and nonliner) version of the SEM only partially specified in (Havercroft and Didelez,
2012):

B=u[-1,1] (16)
T = U4,8 17)
L = expit(0.5-T 4+ U) (18)
R=4+L-T (19)
Y=05+cos(4-T)+sin(—-L+2-R)+U+e  with e ~N(0,1) (20)

Figure 7: Graph prior P(G) used for the epidemiology experiment s.t. | R¢;| = 3. The true DAG is shown in Fig.

J HEALTHCARE: GRAPHS AND TRUE SEM

For the SEM see the Supplementary material of (Aglietti et al., 2020b). In this example, we had initial points |D!| = 2.
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Figure 8: Graph prior P(G) used for the health experiment s.t. | Rg| = 4. The true DAG is shown in Fig.

K ENTROPY IN CAUSALITY

There is a large literature on the use of information theoretic concepts with applications to causal inference, discovery and
counterfactual reasoning. The information-geometric approach to causal discovery (Janzing et al.l 2012) attempts to lift the
strict conditional independence requirement of classical algorithms like PC (Spirtes et al., |2000b), by defining independence
as orthogonality in information space. They find that in important examples this induces a desirable asymmetry between
cause and effect. Miklin et al.| (2017) find use in entropies between variables of a causal Bayesian network in deriving
so-called causal inequalities, which are bounds on certain quantities that characterize the behaviour of the underlying system
represented by the CBN. Recently, Kocaoglu et al.|(2017b)) introduced a framework, “Entropic Causal Inference”, where the
causal direction between two categorical variable can be discerned from observational data based on an interesting condition
on the entropy of the exogenous variable.
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Table 3: Average GAP = one standard error computed across 12 replicates initialized with different D. Higher values are
better, and 0 < GAP < 1. The best result for each experiment in bold.

Method Synthetic Epidemiology (Fig.
CEO 0.75 +0.03 0.58 £ 0.05
CBOw.G =G 0.66+0.04 0.62+0.02
CBOw.G#G 0.5940.035 0.46 £+ 0.05
CD — CBO 0.39 £ 0.04 0.52 £0.04

L COMPUTATIONAL COMPLEXITY

The complexity of CEQ is driven by the computation of CES. The parameters influencing these are: |ES|, max; |X;|, the
number of acquisition points N (i.e., how many values of the intervened variable to consider, assuming the same number for
all X ). Therefore, the total complexity of the acquisition is O(N - CES(x) - > x ,¢gs |X1]). Here, CES(x) denotes the
time needed to compute CES for a specific value x, regardless of its corresponding X ;. Note this is valid for CBO also,
replacing CES(x) with CEI(x), the acquisition used by CBO. However,CEI(x) is cheaper than CES(x). In practice, CEI
operations can be more easily vectorized. CES operations however can be parallelized over both ES and values of x;. Our
implementation uses KDEs to estimate univariate marginal distributions, while conditionals are estimated with Gps. Graph
sizes: Since in our setting the number of nodes is not too large, there is a tractable number of graphs that can be enumerated,
therefore omitted in the above Big-O notation. As mentioned in Appendix [B] larger spaces of graphs could be explored
in future work by e.g. sampling with MCMC, as common in the structure learning literature. Work that explores the full
space of DAGs with many nodes will necessarily introduce additional approximations. We further discuss scalability in the
limitations in Section 6. It is a general limitation currently in causal global optimization problems that one needs to train
|ES| GPs (in general |[ES| will scale as 2/%/), which does not scale with large graphs (here, exact GP inference is cubic in
the number of collected interventions).

M FURTHER EXPERIMENTAL DETAILS AND ADDITIONAL RESULTS

We provide here additional experimental results. In Table[3|and Fig.[9]we show that, as in our previous experiment, CD-CBO
performs worse than CEO, and in this case slightly better than CBO on the true graph. Since as we mentioned in §3] in this
example we initially found that our acquisition finds the graph too fast (i.e., at initialization), and therefore it would not be
possible to compare to CD-CBO, to provide this additional comparison we updated all graph posteriors (of all methods) only
with interventions and not with observational data. This only amplifies the signal between the difference among CD-CBO
and CBO, and has no other side-effects on the performance comparison; note that if the graph is found immediately, then
CD-CBO is CBO.
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Figure 9: Additional results for a comparision with CD-CBO on the Epidemiology example.
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