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Abstract

Data is the foundation of most science. Unfor-
tunately, sharing data can be obstructed by the
risk of violating data privacy, impeding research
in fields like healthcare. Synthetic data is a po-
tential solution. It aims to generate data that
has the same distribution as the original data, but
that does not disclose information about individ-
uals. Membership Inference Attacks (MIAs) are
a common privacy attack, in which the attacker
attempts to determine whether a particular real
sample was used for training of the model. Pre-
vious works that propose MIAs against gener-
ative models either display low performance—
giving the false impression that data is highly
private—or need to assume access to internal
generative model parameters—a relatively low-
risk scenario, as the data publisher often only
releases synthetic data, not the model. In this
work we argue for a realistic MIA setting that
assumes the attacker has some knowledge of the
underlying data distribution. We propose DO-
MIAS, a density-based MIA model that aims to
infer membership by targeting local overfitting of
the generative model. Experimentally we show
that DOMIAS is significantly more successful at
MIA than previous work, especially at attack-
ing uncommon samples. The latter is discon-
certing since these samples may correspond to
underrepresented groups. We also demonstrate
how DOMIAS’ MIA performance score provides
an interpretable metric for privacy, giving data
publishers a new tool for achieving the desired
privacy-utility trade-off in their synthetic data.
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1 INTRODUCTION

Real data may be privacy-sensitive, prohibiting open shar-
ing of data and in turn hindering new scientific research,
reproducibility, and the development of machine learning
itself. Recent advances in generative modelling provide
a promising solution, by replacing the real dataset with a
synthetic dataset—which retains most of the distributional
information, but does not violate privacy requirements.

Motivation The motivation behind synthetic data is that
data is generated from scratch, such that no synthetic sam-
ple can be linked back to any single real sample. How-
ever, how do we verify that samples indeed cannot be traced
back to a single individual? Some generative methods have
been shown to memorise samples during the training pro-
cedure, which means the synthetic data samples—which
are thought to be genuine—may actually reveal highly pri-
vate information (Carlini et al., 2018). To mitigate this, we
require good metrics for evaluating privacy, and this is cur-
rently one of the major challenges in synthetic data (Jordon
et al., 2021; Alaa et al., 2022). Differential privacy (DP)
(Dwork and Roth, 2014) is a popular privacy definition
and used in several generative modelling works (Ho et al.,
2021; Torkzadehmahani et al., 2020; Chen et al., 2020; Jor-
don et al., 2019; Long et al., 2019; Wang et al., 2021; Cao
et al., 2021). However, even though DP is theoretically
sound, its guarantees are difficult to interpret and many
works (Rahman et al., 2018; Jayaraman and Evans, 2019;
Jordon et al., 2019; Ho et al., 2021) reveal that for many
settings, either the theoretical privacy constraint becomes
meaningless (ϵ becomes too big), or utility is severely im-
pacted. This has motivated more lenient privacy defini-
tions for synthetic data, e.g. see (Yoon et al., 2020). We
take an adversarial approach by developing a privacy at-
tacker model—usable as synthetic data evaluation metric
that quantifies the practical privacy risk.

Aim Developing and understanding privacy attacks against
generative models are essential steps in creating better pri-
vate synthetic data. There exist different privacy attacks
in machine learning literature—see e.g. (Rigaki and Gar-
cia, 2020)—but in this work we focus on Membership In-
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ference Attacks (MIAs) (Shokri et al., 2017). The general
idea is that the attacker aims to determine whether a partic-
ular sample they possess was used for training the machine
learning model. Successful MIA poses a privacy breach,
since mere membership to a dataset can be highly informa-
tive. For example, an insurance company may possess a
local hospital’s synthetic cancer dataset, and be interested
to know whether some applicant was used for generating
this dataset—disclosing that this person likely has cancer
(Hu et al., 2022). Additionally, MIAs can be a first step
towards other privacy breaches, like profiling or property
inference (De Cristofaro, 2021).

Previous work in MIA attacks against generative models is
inadequate, conveying a false pretense of privacy. In the
NeurIPS 2020 Synthetic Data competition (Jordon et al.,
2021), none of the attackers were successful at MIA.1 Sim-
ilar negative results were found in the black-box results of
(Liu et al., 2019; Hayes et al., 2019; Hilprecht et al., 2019;
Chen et al., 2019), where additional assumptions were ex-
plored to create more successful MIAs. Most of these as-
sumptions (see Sec. 4) rely on some access to the genera-
tor, which we deem relatively risk-less since direct access
is often avoidable in practice. Nonetheless, we show that
even in the black-box setting—in which we only have ac-
cess to the synthetic data—MIA can be significantly more
successful than appears in previous work, when we assume
the attacker has some independent data from the underly-
ing distribution. In Sec. 2 we elaborate further on why this
is a realistic assumption. Notably, it also allows an attacker
to perform significantly better attacks against underrepre-
sented groups in the population (Sec. 5.3).

Contributions This paper’s main contributions are the fol-
lowing.

1. We propose DOMIAS: a membership inference at-
tacker model against synthetic data, that incorporates
density estimation to detect generative model overfit-
ting. DOMIAS improves upon prior MIA work by i)
leveraging access to an independent reference dataset
and ii) incorporating recent advances in deep density
estimation.

2. We compare the MIA vulnerability of a range of gen-
erative models, showcasing how DOMIAS can be
used as a metric that enables generative model design
choices

3. We find that DOMIAS is more successful than previ-
ous MIA works at attacking underrepresented groups
in synthetic data. This is disconcerting and strongly
motivates further research into the privacy protection
of these groups when generating synthetic data.

1Specifically, none performed better than random guessing in
at least half of the datasets.

2 MEMBERSHIP INFERENCE:
FORMALISM AND ASSUMPTIONS

Formalism for synthetic data MIA Membership infer-
ence aims to determine whether a given sample comes from
the training data of some model (Shokri et al., 2017). Let
us formalise this for the generative setting. Let random
variable X be defined on X , with distribution pR(X). Let
Dmem

iid∼ pR(X) be a training set of independently sam-
pled points from distribution pR(X). Now let G : Z → X
be a generator that generates data given some random (e.g.
Gaussian) noise Z. Generator G is trained on Dmem, and is
subsequently used to generate synthetic dataset Dsyn. Fi-
nally, let A : X → [0, 1] be the attacker model, that pos-
sesses the synthetic dataset Dsyn, some test point x∗, with
X∗ ∼ pR(X), and possibly other knowledge—see below.
Attacker A aims to determine whether some x∗ ∼ pR(X)
they possess, belonged to Dmem, hence the perfect attacker
outputs A(x∗) = 1[x∗ ∈ Dmem]. The MIA performance
of an attacker can be measured using any classification met-
ric.

Assumptions on attacker access The strictest black-box
MI setting assumes the attacker only has access to the syn-
thetic dataset Dsyn and test point x∗. In this work we as-
sume access to a real data set that is independently sampled
from pR(X), which we will call the reference dataset and
denote by Dref . The main motivation of this assumption
is that an attacker needs some understanding of what real
data looks like to infer MI—in Sec. 3 we will elaborate
further on this assumption’s benefits. Similar assumptions
have been made in the supervised learning MI literature,
see e.g. (Shokri et al., 2017; Ye et al., 2021). This is a re-
alistic scenario to consider for data publishers: though they
can control the sharing of their own data, they cannot con-
trol whether attackers acquires similar data from the gen-
eral population. A cautious data publisher would assume
the attacker has access to a sufficiently large Dref to ap-
proximate pR(X) accurately, since this informally bounds
the MIA risk from above. Related MI works (Liu et al.,
2019; Hayes et al., 2019; Hilprecht et al., 2019; Chen et al.,
2019) consider other assumptions that all require access to
the synthetic data’s generative model.2 These settings are
much less dangerous to the data publisher, since these can
be avoided by only publishing the synthetic data. Individ-
ual assumptions of related works are discussed further in
Sec. 4.

2Though with varying extents, see (Chen et al., 2019)
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(a) Generative distribution in original space (b) Distribution in log-transformed space

Figure 1: Should we infer membership m = 1 for point A? Consider the generative distribution for two representations of
X , optimal methods based on Eq. 1 will infer m = 1 for green and m = 0 for red areas. This is problematic; it implies
inference of these methods is dependent on the (possibly arbitrary) representation of variable X . Conclusion: it does not
make sense to focus on mere density, MIA needs to target local overfitting directly. This requires data from (or assumptions
on) the underlying distribution.

3 DOMIAS

3.1 Rethinking the black-box setting: why Dsyn alone
is insufficient

The most popular black-box setting assumes only access to
Dsyn. This gives little information, which is why previous
black-box works (Hayes et al., 2019; Hilprecht et al., 2019;
Chen et al., 2019) implicitly assume:

Aprev(x
∗) = f(pG(x

∗)), (1)

where A indicates the attacker’s MIA scoring function,
pG(·) indicates the generator’s output distribution and f :
R → [0, 1] is some monotonically increasing function.
There are two reasons why Eq. 1 is insufficient. First, the
score does not account for the intrinsic distribution of the
data. Consider the toy example in Figure 2a. There is a
local density peak at x = 4, but without further knowledge
we cannot determine whether this corresponds to an over-
fitted example or a genuine peak in the real distribution. It
is thus naive to think we can do MI without background
knowledge.

Second, the RHS of Eq. 1 is not invariant w.r.t. bijec-
tive transformations of the domain. Consider the left and
right plot in Figure 1. Given the original representation, we
would infer M = 0 for any point around x = 4, whereas in
the right plot we would infer M = 1 for the same points.
This dependence on the representation is highly undesir-
able, as any invertible transformation of the representation
should contain the same information.

How do we fix this? We create the following two desider-
ata: i) the MI score should target overfitting w.r.t. the real
distribution, and ii) it should be independent of representa-
tion.

3.2 DOMIAS: adding knowledge of the real data.

We need to target overfitting directly. We propose the DO-
MIAS framework: Detecting Overfitting for Membership
Inference Attacks against Synthetic Data.

Let us assume we know the true data distribution pR(X).
We change Eq. 1 to:

ADOMIAS(x
∗) = f(

pG(x
∗)

pR(x∗)
), (2)

that is, we weight Eq. 1 by the real data distribution
pR(X).3 Figure 2 shows the difference between DOMIAS
and previous work using Eq. 1, by considering the same
toy example as in Figure 1. Effectively, Eq. 2 distinguishes
between the real and generative distribution, similar in vain
to global two-sample tests (e.g. see Gretton et al. (2012);
Arora et al. (2019); Gulrajani et al. (2019)). The probability
ratio has the advantage that (cf. e.g. probability difference)
it is independent of the specific representation of the data:

Theorem 1. Let XG and XR be two random variables
defined on X , with distributions pG(X) and pR(X), s.t.
pG ≪ pR, i.e. pR dominates pG. Let g : X → X̃ , x 7→
g(x) be some invertible function, and define representa-
tions X̃G = g(XG) and X̃R = g(XR) with respective
distribution p̃G(X̃) and p̃R(X̃). Then pG(X)

pR(X) = p̃G(g(X))
p̃R(g(X)) ,

i.e. the same score is obtained for either data representa-
tions.

Proof. Without loss of generalisation let us assume contin-
uous variables and almost everywhere continuous g. Using
the chain rule, we have p̃·(g(x)) = p·(x)

|J(x)| with Jacobian

3This work focuses on relative scores, hence we ignore choos-
ing f—see Sec. 6.
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(a) Original space (b) Log-transformed space

Figure 2: DOMIAS scores are not dependent on the feature representation. This is the same toy example as in Figure
1, where we now assume the bump at x = 4 has been caused by overfitting in the generator, s.t. this part of the space
has become overrepresented w.r.t. the original distribution. DOMIAS infers MI by weighting the generative and real
distribution, inferring m = 1 (m = 0) for green (red) areas. Note the difference with Figure 1: whereas MI predictions
of previous works that use Eq. 2 are dependent on the representation, DOMIAS scores are the same in both domains
(Theorem 1).

J(x) = dg
dx (x). Hence we see:

p̃G(g(x))

p̃R(g(x))
=

pG(x)/|J(x)|
pR(x)/|J(x)|

=
pG(x)

pR(x)
, a.e.

as desired.

DOMIAS does not purport false privacy safety for un-
derrepresented groups Figure 1a pinpoints a problem
with previous works: methods that rely on assumption Eq.
1 cannot attack low-density regions. As a result, one might
conclude that samples in these regions are safer. Exactly
the opposite is true: in Figure 2 we see DOMIAS infers
MI successfully for these samples, whatever the represen-
tation. This is distressing, as low-density regions may cor-
respond to underrepresented groups in the population, e.g.
ethnic minorities. We will explore this further in the exper-
imental section.

3.3 Illustrative attacker examples

Any density estimator can be used for approximating
pG(X) and pR(X)—e.g. fitting of some parametric fam-
ily, training a generative model with Monte Carlo Integra-
tion, or a deep density estimator. The choice of density
estimator should largely depend whether prior knowledge
is available—e.g. pR falls in some parametric family—
and on the size of the datasets—for a large dataset a more
powerful and more flexible density estimator can be used,
whereas for little data this is not suitable as it might lead to
overfitting. In the experimental section, we illustrate DO-
MIAS using the flow-based BNAF (de Cao et al., 2019)
density estimator, chosen for its training efficiency. For the
ablation study in Sec. 5.2 we also include a Gaussian KDE-
based method as a non-parametric alternative.

4 RELATED WORK

MIAs against generative models Most of the literature
on privacy attacks is focused on discriminative models,
not generative models. The few works that are concerned
with generative models all focus on membership inference
(MIA) (Shokri et al., 2017). Here we focus on works that
can be applied to our attacker setting, see Table 1.

Hayes et al. (2019) propose LOGAN, a range of MIA at-
tacks for both white-box and black-box access to the gener-
ative model, including possible auxiliary information. Two
attacks can be applied to our setting. They propose a full
black-box attack without auxiliary knowledge (i.e. no ref-
erence dataset). This model trains a GAN model on the
synthetic data, after which the GAN’s discriminator is used
to compute the score for test examples. They also propose
an attack that assumes an independent test set, similar to
DOMIAS’ Dref—see Section 4.1 (Hayes et al., 2019), dis-
criminative setting 1 (D1). Their attacker is a simple clas-
sifier that is trained to distinguish between synthetic and
test samples. Hilprecht et al. (2019) introduce a number of
attacks that focus on approximating the generator distribu-
tion at each test point. Implicitly, they make assumption 1,
and approximate the probability by using Monte Carlo in-
tegration, i.e. counting the proportion of generated points
that fall in a given neighbourhood. They do not consider
the possible attacker access to a reference dataset. Choos-
ing a suitable distance metric for determining neighbour-
hoods is non-trivial, however this is somewhat alleviated
by choosing a better space in which to compute metrics,
e.g. Hilprecht et al. show that using the Euclidean distance
is much more effective when used in conjunction with Prin-
cipal Component Analysis (PCA). We refer to their method
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as MC, for Monte Carlo integration.

Chen et al. (2019) give a taxonomy of MIAs against GANs
and propose new MIA method GAN-leaks that relies on
Eq. 1. For each test point x∗ and some k ∈ N, they
sample Sk

G = {xi}ki=1 from generator G and use score
A(x∗;G) = minxi∈Sk

G
L2(x

∗, xi) as an unnormalised sur-
rogate for pG(x∗). They also introduce a calibrated method
that uses a reference dataset Dref to train a generative ref-
erence model Gref , giving calibrated score A(x∗;G, k) −
A(x∗;Gref , k). This can be interpreted as a special case
of DOMIAS—Eq. 2—that approximates pR and pG with
Gaussian KDEs with infinitesimal kernel width, trained on
a random subset of k samples from Dref and Dsyn. At last,
we emphasise that though (Hayes et al., 2019; Chen et al.,
2019) consider Dref too, they (i) assume this implicitly and
just for one of their many models, (ii) do not properly mo-
tivate or explain the need for having Dref , nor explore the
effect of nref , and (iii) their MIAs are technically weak and
perform poorly as a result, leading to incorrect conclusions
on the danger of this scenario (e.g. Hayes et al. (2019) note
in their experiments that their D1 model performs no better
than random guessing).

Stronger attacker access assumptions Other methods in
(Hayes et al., 2019; Hilprecht et al., 2019; Chen et al.,
2019) make much stronger assumptions on attacker access.
(Hayes et al., 2019) propose multiple attacks with a subset
of the training set known, which implies that there has al-
ready been a privacy breach—this is beyond the scope of
this work. They also propose an attack against GANs that
uses the GANs discriminator to directly compute the MIA
score, but discriminators are usually not published. Chen
et al. (2019) propose attacks with white-box access to the
generator or its latent code, but this scenario too can be
easily avoided by not publishing the generative model it-
self. All methods in (Hilprecht et al., 2019; Chen et al.,
2019) assume unlimited generation access to the genera-
tor (i.e. infinitely-sized Dsyn), which is unrealistic for a
real attacker—either on-demand generation is unavailable
or there is a cost associated to it that effectively limits the
generation size (De Cristofaro, 2021). These methods can
still be applied to our setting by sampling from the syn-
thetic data directly.

Tangential work The following MIA work is not com-
pared against. Liu et al. (2019); Hilprecht et al. (2019)
introduce co-membership (Liu et al., 2019) or set MIA (Hil-
precht et al., 2019) attacks, in which the aim is to determine
for a whole set of examples whether either all or none is
used for training. Generally, this is an easier attack and
subsumes the task of single attacks (by letting the set size
be 1). Webster et al. (2021) define the identity member-
ship inference attack against face generation models, which
aims to infer whether some person was used in the gener-
ative model (but not necessarily a specific picture of that
person). This requires additional knowledge for identify-

ing people in the first place, and does not apply to our tab-
ular data setting. Hu and Pang (2021) focus on performing
high-precision attacks, i.e. determining MIA for a small
number of samples with high confidence. Similar to us
they look at overrepresented regions in the generator out-
put space, but their work assumes full model access (gen-
erator and discriminator) and requires a preset partitioning
of the input space into regions. (Zhang et al., 2022) is sim-
ilar to (Hilprecht et al., 2019), but uses contrastive learning
to embed data prior to computing distances. In higher di-
mensions, this can be an improvement over plain data or
simpler embeddings like PCA—something already consid-
ered by (Hilprecht et al., 2019). However, the application
of contrastive learning is limited when there is no a pri-
ori knowledge for performing augmentations, e.g. in the
unstructured tabular domain.

On a final note, we like to highlight the relation between
MIA and the evaluation of overfitting, memorisation and
generalisation of generative models. The latter is a non-
trivial task, e.g. see (Gretton et al., 2012; Lopez-Paz and
Oquab, 2016; Arora et al., 2017; Webster et al., 2019; Gul-
rajani et al., 2019). DOMIAS targets overfitting directly
and locally through Eq. 2, a high score indicating local
overfitting. DOMIAS differs from this line of work by fo-
cusing on MIA, requiring sample-based scores. DOMIAS
scores can be used for interpreting overfitting of generative
models, especially in the non-image domain where visual
evaluation does not work.

5 EXPERIMENTS

We perform experiments showing DOMIAS’ value and use
cases. In Sec. 5.1 we show how DOMIAS outperforms
prior work, in Sec. 5.2 we explore why. Sec. 5.3 demon-
strates how underrepresented groups in the population are
most vulnerable to DOMIAS attack, whilst Sec. 5.4 ex-
plores the vulnerability of different generative models—
showcasing how DOMIAS can be used as a metric to in-
form synthetic data generation. For fair evaluation, the
same experimental settings are used across MIA models
(including nref ). Details on experimental settings can be
found in Appendix A.4

5.1 DOMIAS outperforms prior MIA methods

Set-up We use the California Housing Dataset (Pace and
Barry, 1997) and use TVAE (Xu et al., 2019a) to gener-
ate synthetic data. In this experiment we vary the num-
ber of TVAE training samples |Dmem| and TVAE number
of training epochs. We compare DOMIAS against LO-
GAN 0 and LOGAN D1 (Hayes et al., 2019), MC (Hil-
precht et al., 2019), and GAN-Leaks 0 and GAN-Leaks

4Code is available at
https://github.com/vanderschaarlab/DOMIAS

https://github.com/vanderschaarlab/DOMIAS
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Table 1: Membership Inference attacks on generative models. (1) Underlying ML method (GAN: generative adversarial
network, NN: (weighted) Nearest neighbour, KDE: kernel density estimation, MLP: multi-layer perceptron, DE: density
estimator); (2) uses Dref ; (3) approximates Eq. 1 or 2; (4) by default does not need generation access to generative
model—only synthetic data itself. †GAN-leaks calibrated is a heuristic correction to GAN-leaks, but implicitly a special
case of Eq. 2.

Name (1) (2) (3) (4)

LOGAN 0(Hayes et al., 2019) GAN × Eq. 1 ✓
LOGAN D1 (Hayes et al., 2019) MLP ✓ N/A (heuristic) ✓
MC (Hilprecht et al., 2019) NN/KDE × Eq. 1 ×
GAN-leaks 0 (Chen et al., 2019) NN/KDE × Eq. 1 ×
GAN-leaks CAL (Chen et al., 2019) NN/KDE ✓ Eq. 2† ×
DOMIAS (Us) any DE ✓ Eq. 2 ✓

Figure 3: DOMIAS outperforms baselines. MIA performance of DOMIAS and baselines versus the generative model
training set size |Dmem| and training time tepochs on the California Housing dataset. We observe how MIA AUC goes up
for fewer training samples and long generative model training time, as both promote overfitting.

CAL (Chen et al., 2019)—see Table 1.

DOMIAS consistently outperforms baselines Figure 3(a)
shows the MIA accuracy of DOMIAS and baselines against
TVAE’s synthetic dataset, as a function of the number of
training samples TVAE nmem. For small nmem TVAE is
more likely to overfit to the data, which is reflected in the
overall higher MIA accuracy. Figure 3(b) shows the MIA
accuracy as a function of TVAE training epochs. Again,
we see TVAE starts overfitting, leading to higher MIA for
large number of epochs.

In both plots, we see DOMIAS consistently outperforms
baseline methods. Similar results are seen on other datasets
and generative models, see Appendix B. Trivially, DO-
MIAS should be expected to do better than GAN-Leaks
0 and LOGAN 0, since these baseline methods do not
have access to the reference dataset and are founded on the
flawed assumption of Eq. 1—which exposes the privacy
risk of attacker access to a reference dataset.

5.2 Source of gain

Using the same set-up as before, we perform an ablation
study on the value of i) DOMIAS’ use of the reference set,
and ii) the deep density estimator. For the first, we compare
using the DOMIAS assumption (Eq. 2) vs the assumption
employed in many previous works (Eq. 1). For the latter,
we compare the results for density estimation based on the
flow-based BNAF (de Cao et al., 2019) versus a Gaussian
kernel density estimator—kernel width given by the heuris-
tic from (Scott, 1992).

Figure 4 shows the MIA performance as a function of nsyn

and nref . Evidently, the source of the largest gain is the
use of Eq. 2 over Eq. 1. As expected, the deep density es-
timator gives further gains when enough data is available.
For lower amounts of data, the KDE approach is more suit-
able. This is especially true for the approximation of pR
(the denominator of Eq. 2)—small noise in the approxi-
mated pR can lead to large noise in MIA scores. Also note
in the right plot that MIA performance goes up with |Dsyn|
across methods due to the better pG approximation; this
motivates careful consideration for the amount of synthetic
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Figure 4: DOMIAS source of gain. Ablation study of DOMIAS on the California Housing dataset, with attack performance
as a function of the reference dataset size (left) and the synthetic dataset size (right). We see that the MIA performance of
DOMIAS is largely due to assumption Eq. 2 vs. Eq. 1, i.e. the value of the reference dataset. The deep flow-based density
estimator delivers gains over the simpler KDE approach when enough samples are available.

data published.

5.3 Underrepresented group MIA vulnerability

Set-up We use a private medical dataset on heart failure,
containing around 40, 000 samples with 35 mixed-type fea-
tures (see Appendix A). We generate synthetic data using
TVAE (Xu et al., 2019a).

Minority groups are most vulnerable to DOMIAS at-
tack As seen in Sec. 3, the assumption underlying previous
work (Eq. 1) will cause these methods to never infer mem-
bership for low-density regions. This is problematic, as it
gives a false sense of security for these groups—which are
likely to correspond to underrepresented groups.

The left side of Figure 5 displays a T-SNE embedding
of the Heart Failure dataset, showing one clear minority
group, drawn in blue, which corresponds to patients that
are on high-blood pressure medication—specifically, An-
giotensin II receptor blockers. The right side of Figure 5
shows the performance of different MIA models. DOMIAS
is significantly better at attacking this vulnerable group
compared to the overall population, as well as compared
to other baselines. This is not entirely surprising; genera-
tive models are prone to overfitting regions with few sam-
ples. Moreover, this aligns well with supervised learning
literature that finds additional vulnerability of low-density
regions, e.g. (Kulynych et al., 2019; Bagdasaryan et al.,
2019). Importantly, most MIA baselines give the false pre-
tense that this minority group is less vulnerable. Due to
the correspondence of low-density regions and underrepre-
sented groups, these results strongly urge further research
into privacy protection of low-density regions when gener-
ating synthetic data.

5.4 DOMIAS informs generative modelling decisions

Set-up Again we use the California Housing dataset, this
time generating synthetic data using different generative
models. We evaluate the quality and MIA vulnerability
of GAN, (Goodfellow et al., 2014), WGAN-GP (Arjovsky
et al., 2017; Gulrajani et al., 2017), CTGAN and TVAE (Xu
et al., 2019a), NFlow (Durkan et al., 2019), PATE-GAN
(Jordon et al., 2019), PrivBayes (Zhang et al., 2017), and
ADS-GAN (Yoon et al., 2020). As a baseline, we also in-
clude the anonymization method of sampling from training
data and adding Gaussian noise. For ADS-GAN and the
additive noise model, we vary the privacy level by raising
the hyperparameter λ and noise variance, respectively. Re-
sults for other attackers are found in Appendix B.

DOMIAS quantifies MIA vulnerability Figure 6 presents
the DOMIAS MIA AUC against the data quality (in terms
of Wasserstein Distance to an independent hold-out set),
averaged over eight runs. We see a clear privacy-utility
trade-off, with the additive noise model giving a clean base-
line. The NeurIPS 2020 Synthetic Data competition (Jor-
don et al., 2021) concluded that disappointingly, adding
noise usually outperformed generative models in terms of
the privacy-utility trade-off. Though we find this is true for
WGAN-GP, PATE-GAN and CTGAN—which fall on the
right side of the additive noise curve—other methods do
yield better synthetic datasets.

ADS-GAN is based on WGAN-GP, hence for small λ (the
privacy regularizer) it gets a similar score. Increasing λ
promotes a higher distance between generated and train-
ing data, hence this reduces vulnerability. At first, it also
leads to an increase in quality—raising λ leads to lower
overfitting—but when λ increases further the generative
distribution is distorted to the point that quality is signifi-
cantly reduced. In contrast to (Hilprecht et al., 2019), we do
not find evidence that VAEs are more vulnerable to MIAs
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Figure 5: DOMIAS is more successful at attacking patients taking high-blood pressure medication. (left) T-SNE plot
of Heart Failure test dataset. There is a cluster of points visible in the top right corner, which upon closer inspection
corresponds to subjects who take ARB medication. (right, bottom) Attacking accuracy of DOMIAS and baselines on
majority and minority group (averaged over 8 runs). DOMIAS is significantly better at attacking the minority group than
the general population. Except for GAN-leaks CAL, baselines fail to capture the excess privacy risk to the patients with
blood pressure medication. Comparing DOMIAS with Eq. 1 (BNAF) (see Sec. 5.2), we see that the minority vulnerability
is largely due to the availability of the reference data. (right, top) Single run attacking success of different MIA methods
on these underrepresented samples; correctly inferred membership in green, incorrectly inferred in red.

than GANs. The Pareto frontier is given by the additive
noise method, TVAE, NFlow and PrivBayes, hence the best
synthetic data model will be one of these, depending on the
privacy requirements.

6 DISCUSSION

DOMIAS use cases DOMIAS is primarily a tool for eval-
uating and interpreting generative model privacy. The
overall DOMIAS attacking success is a metric for MIA
vulnerability, and may hence guide generative model de-
sign choices—e.g. choosing privacy parameters—or aid
evaluation—including for competitions like (Jordon et al.,
2021). Since DOMIAS provides a sample-wise metric, its
scores can also provide insight into privacy and overfitting
of specific samples or regions in space—as seen in Sec. 5.3.
Future work may adopt DOMIAS for active privacy protec-
tion, e.g. as a loss during training or as an auditing method
post-training—removing samples that are likely overfitted.

Underrepresented groups are more vulnerable to MIA
attacks Generative models are more likely to overfit low-
density regions, and we have seen DOMIAS is indeed more
successful at attacking these samples. This is distress-
ing, since these regions can correspond to underrepresented
groups in the population. Similar results have been found in
supervised learning literature, e.g. (Kulynych et al., 2019;
Bagdasaryan et al., 2019). Protecting against this vulnera-
bility is a trade-off, as outliers in data can often be of inter-
est to downstream research. It is advisable data publishers
quantify the excess MIA risk to specific subgroups.

Attacker calibration In practice, it will often be unknown
how much of the test data was used for training. Just
like related works, we have ignored this. This challenge

is equivalent to choosing a suitable threshold, or suitable
f in Eq. 2 and relates closely to calibration of the at-
tacker model, which is challenging for MIA since—to an
attacker—usually no ground-truth labels are available. Fu-
ture work can explore assumptions or settings that could
enable calibrated attacks. In Appendix D we include re-
sults for high-precision attacks.

High-dimensionality and image data Traditional density
estimation methods (e.g. KDE) perform notoriously poorly
in high dimensions. Recent years have seen a rise in
density estimation methods that challenge this conception.
Domain-specific density estimators, e.g. that define den-
sity on lower-dimensional embeddings, can be readily used
in DOMIAS. We include preliminary results for the high-
dimensional CelebA image dataset in Appendix B.3.

Training data size We have seen that for large number
of training samples, the performance of all attackers goes
down to almost 0.5. The same is observed for large gener-
ative image models, Appendix B.3. This is reassuring for
synthetic data publishers, for whom this indicates a rela-
tively low privacy risk globally. However, global metrics
may hide potential high-precision attacks on a small num-
ber of individuals, see Appendix D.

Availability of reference dataset DOMIAS assumes the
presence of a reference dataset that enables approximating
the true distribution pR(X). In case there is not sufficient
data for the latter, more prior knowledge can be included
in the parametrisation of pR; e.g. choose pR(X) to lie in
a more restrictive parametric family. Even in the absence
of any data Dref , an informed prior (e.g. Gaussian) based
on high-level statistics can already improve upon related
works that rely on assumption Eq. 1—see Appendix C for
results. In Appendix E we include further experiments with
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Figure 6: DOMIAS can be used to quantify synthetic data
MIA vulnerability. We plot the synthetic data quality versus
DOMIAS AUC for different generative models on the Cal-
ifornia Housing dataset. There is a clear trade-off: depend-
ing on the tolerated MIA vulnerability, different synthetic
datasets are best.

distributional shifts between the Dref and Dmem, in which
we find that even with moderate shifts the use of a reference
dataset is beneficial.

Publishing guidelines Synthetic data does not guarantee
privacy, however the risk of MIA attacks can be lessened
when synthetic data is published considerately. Publishing
just the synthetic data—and not the generative model—
will in most cases be sufficient for downstream research,
while avoiding more specialised attacks that use additional
knowledge. Further consideration is required with the
amount of data published: increasing the amount of syn-
thetic data leads to higher privacy vulnerability (Figure 4b
and see (Gretton et al., 2012)). Though the amount of re-
quired synthetic data is entirely dependent on the applica-
tion, DOMIAS can aid in finding the right privacy-utility
trade-off.

Societal impact We believe DOMIAS can provide signifi-
cant benefits to the future privacy of synthetic data, and that
these benefits outweigh the risk DOMIAS poses as a more
successful MIA method. On a different note, we highlight
that success of DOMIAS implies privacy is not preserved,
but not vice versa. Specifically, DOMIAS should not be
used as a certificate for data privacy. Finally, we hope the
availability of a reference dataset is a setting that will be
considered in more ML privacy work, as we believe this
is more realistic in practice than many more popular MIA
assumptions (e.g. white-box generator), yet still poses sig-

nificant privacy risks.
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A EXPERIMENTAL DETAILS

A.1 Workflow

Input: Reference data Dref , synthetic data Dsyn and test data Dtest.
Output: m̂ for all x ∈ Dtest.
Steps:

1. Train density model pR(X) on Dref .

2. Train density model pG(X) on Dsyn.

3. Compute ADOMIAS(x) =
pG(x)
pR(x) for all x ∈ Dtest

4. Choose threshold τ , e.g. τ = median{ADOMIAS(x)|x ∈ Dtest}

5. Infer

m̂ =

{
1, if ADOMIAS(x) > τ,

0, otherwise,

for all x ∈ Dtest.

A.2 Data

We use the California housing (Pace and Barry, 1997) (license: CC0 public domain) and Heart Failure (private) datasets,
see Table 2 and Figure 7 for statistics. All data is standardised.

Table 2: Dataset statistics

California Housing Heart Failure

Number of samples 20640 40300
Number of features 8 35
- binary 0 25
- continuous 8 10

(a) Housing (b) Heart Failure

Figure 7: Correlation matrices of features within Housing and Heart Failure datasets. The first feature of the Heart Failure
dataset is used for defining the minority group in Section 5.3.

A.3 Experimental settings

All results reported in our paper are based on 8 repeated runs, with shaded area denoting standard deviations. We exper-
iment on a machine with 8 Tesla K80 GPUs and 32 Intel(R) E5-2640 CPUs. We shuffle the dataset and split the dataset
into training set, test set, and reference set. The attack performance is computed over a test set consisting of 50% training
data (i.e. samples from Dmem) and 50% non-training data. Choices of sizes for those sets are elaborated below.



Membership Inference Attacks against Synthetic Data through Overfitting Detection

Experimental Details for Section 5.1 In this section, we experimented on the California Housing Dataset to compare
different MIA performance with DOMIAS. For the experiment varying the number of members in the training dataset (i.e.
left panel of Figure 3), we use a fixed training epoch 2000, a fixed number of reference example |Dref | = 10000 and a
fixed number of generated example |Dsyn| = 10000. For the experiment varying the number of training epochs of TVAE
(i.e. the right panel of Figure 3), we use a fixed training set size |Dmem| = 500, a fixed number of reference example
|Dref | = 10000 and a fixed number of generated example |Dsyn| = 10000. Training with a single seed takes 2 hours to
run in our machine with BNAF as the density estimator.

In BNAF density estimation, the hyper-parameters we use are listed in Table 3. Our implementation of TVAE is based on
the source code provided by (Xu et al., 2019a).

Table 3: Hyperparameters for BNAF

batch-dim 50
n-layer 3

hidden-dim 32
flows 5

learning rate 0.01
epochs 50

Experimental Details for Section 5.2 In our experiments varying the number of reference data nref , i.e. results reported
in the left panel of Figure 4, we fix the training epoch to be 2000, set nsyn = 10000 and nM = 500. In the experiments
varying the number of generated data nsyn, i.e. results reported in the right panel of Figure 4, we set nref = 10000,
training epoch to be 2000, and nmem = 500. Our implementation of the kernel density estimation is based on sklearn
with an automated adjusted bandwidth. Training with a single seed takes 0.5 hours to finish in our machine with the kernel
density estimator.

Experimental Details for Section 5.3 Based on results of Section 5.2, the attacking performance on different subgroups
can be immediately calculated by adopting appropriate sample weights.

Experimental Details for Section 5.4 In the Additive-Noise baseline curve, results are generated with the following
noise values: [0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9, 2.3, 2.5, 2.9, 3.5, 3.9]. In the ADS-GAN curve, results are generated with the
following privacy parameter λ = [0.2, 0.5, 0.7, 1.0, 1.1, 1.3, 1.5]. In the WGAN-GP we use a gradient penalty coefficient
10.0. All the other methods are implemented with recommended hyper-parameter settings. Training different generative
models are not computational expensive and take no more than 10 minutes to finish in our machine. Using a kernel density
estimator and evaluating all baseline methods take another 20 minutes, while using a BNAF estimator takes around 1.5
more hours.

B ADDITIONAL EXPERIMENTS

B.1 Experiment 5.1 and 5.2 on Heart Failure dataset

We repeat the experiments of Section 5.1 and 5.2 on the Heart Failure dataset, see Figures 8 and 9. Results are noisier, but
we observe the same trends as in Sections 5.1 and 5.2

B.2 Experiment 5.4: Results other attackers

In Figure 10 we include the results of experiment 5.4 for all attacks, including error bars. Indeed, we see that DOMIAS
outperforms all baselines against most generative models. This motivates using DOMIAS for quantifying worst-case MIA
vulnerability.

B.3 CelebA image data

We include additional results for membership inference attacks against the image dataset CelebA. Results indicate DO-
MIAS is significantly better at attacking this high-dimensional data than baseline methods.
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Figure 8: DOMIAS outperforms baselines on Heart Failure dataset. MIA performance of DOMIAS and baselines versus
the generative model training set size |Dmem| and training time tepochs, evaluated on Heart Failure datasets. The same
trends are observed as in Section 5.1.

Figure 9: DOMIAS source of gain. Ablation study of DOMIAS on Heart Failure dataset, with attack performance as a
function of the reference dataset size (left) and the synthetic dataset size (right). Similar to Section 5.2, we see that the
MIA performance of DOMIAS is largely due to assumption Eq.2 vs Eq. 1, i.e. the value of the reference dataset.

Set-up We use CelebA (Liu et al., 2015), a large-scale face attributes dataset with more than 200K celebrity images.
We generate a synthetic dataset with 10k examples using a convolutional VAE with a training set containing the first 1k
examples, and use the following 1k examples as test set. Then the following 10k examples are used as reference dataset.
As training the BNAF density estimator is computational expensive (especially when using deeper models), we conduct
dimensionality reduction with a convolutional auto-encoder with 128 hidden units in the latent representation space (i.e.
output of the encoder) and apply BNAF in such a representation space. The hyper-parameters and network details we use
in VAE are listed in Table 4 and Table 5.

Table 4: Hyperparameters for VAE

batch size 128
n-layer 5

Optimizer Adam
learning rate 0.002

Results Figure 11 includes the attacking AUC of DOMIAS and baselines of 8 runs. DOMIAS consistently outperforms
other MIA methods, most of which score not much better than random guessing. These methods fail to attack the 128-
dimensional representations of the data (originally 64× 64 pixel images), due to most of them using nearest neighbour or
KDE-based approaches. On the other hand, DOMIAS is based on the flow-based density estimator BNAF (de Cao et al.,
2019), which is a deeper model that is more apt at handling the high-dimensional data.

https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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Figure 10: DOMIAS consistently outperforms baseline attackers at attacking the different generative models.

C HIGH-LEVEL PRIOR KNOWLEDGE

If we have no reference data at all, we can still perform more successful attacks compared to baselines if we have high-
level statistics of the underlying distribution. Effectively, any informed prior can improve upon methods that use Eq. 1;
this being a special case of Eq. 2, where one assumes a uniform prior on pR. In this Appendix, we use the Housing dataset
and we assume that we only know the mean and standard deviation of the first variable, median income. This is a very
realistic setting in practice, since an adversary can relatively easily acquire population statistics for individual features. We
subsequently model the reference dataset distribution pref as a normal distribution of only the age higher-level statistics—
i.e. not making any assumptions on any of the other variables, implicitly putting a uniform prior on these when modelling
pref . Otherwise, we use the same training settings as in Experiment 5.1 (left panel Figure 3). In Figure 12. We see that
even with this minimal assumption, we still outperform its ablated versions. These results indicate that a relatively weak
prior on the underlying distribution without any reference data, can still provide a relatively good attacker model.

D HIGH-PRECISION ATTACKS

Hu and Pang (2021) focus on high-precision membership attacks, i.e. can we attack a small set of samples with high
certainty. This is an interesting question, since the risk of high-precision attacks may be hidden if one only looks at overall
attacking performance. Their work is not applicable to our setting, e.g. they assume full generator and discriminator access.
In this section, we show that even in the full black-box setting high-precision MIAs are a serious risk.

D.1 Tabular data

Set-up We assume the same dataset and generative model set-up as in Section 5.3. We study which samples the different
methods give the highest score, i.e. mark as most likely to be in Dmem. Let Dtest be a test set consisting for 50% of
samples xi in Dmem and 50% samples not in Dmem, respectively denoted by m = 1 and m = 0. Let m̂ = A(x) be the
attacker’s prediction, and let S(A,Dtest, q) = {x ∈ Dtest|m̂ > Quantile({m̂i}i, 1 − q)} be the set of samples that are
given the q-quantile’s highest score by attacker A. We are interested in the mean membership of this set, i.e. the precision
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Table 5: Architecture of VAE

(a) Network Structure for Encoder

Layer Params (PyTorch-Style)
Conv1 (3, 64, 4, 2, 1)
ReLU ·
Conv2 (64, 128, 4, 2, 1)
ReLU ·
Conv3 (128, 256, 4, 2, 1)
ReLU ·
Conv4 (256, 256, 4, 2, 1)
ReLU ·

Linear1 (256 ∗ 4 ∗ 4, 256)
ReLU ·

Linear2 (256, 256)
ReLU ·

Linear3 (256, 128 ∗ 2)

(b) Network Structure for Decoder

Layer Params (PyTorch-Style)
Linear1 (128, 256)
ReLU ·

Linear2 (256, 256)
ReLU ·

Linear3 (256, 256 ∗ 4 ∗ 4)
ReLU ·

ConvTranspose1 (256, 256, 4, 2, 1)
ReLU ·

ConvTranspose2 (256, 128, 4, 2, 1)
ReLU ·

ConvTranspose3 (128, 64, 4, 2, 1)
ReLU ·

ConvTranspose4 (64, 3, 4, 2, 1)
Tanh ·

Figure 11: Attacking performance on CelebA. DOMIAS scores significantly better at attacking image data compared to
baselines.

if threshold Quantile({m̂i|xi ∈ Dtest}, 1 − q) is chosen. We include results for DOMIAS and all baselines. Results are
averaged over 8 runs.

Results In Figure 13 we plot the top-score precision-quantile curve for each method for each MIA method, i.e.
P (A,Dtest, q) = mean({m|x ∈ S(A,Dtest, q)}) as a function of q. These figures show the accuracy of a high-precision
attacker, if this attacker would choose to attack only the top q-quantile of samples. We see that unlike other methods, the
precision of DOMIAS goes down almost linearly and more gradually. Though MC and GAN-Leaks are able to find the
most overfitted examples, they do not find all—resulting from their flawed underlying assumption Eq. 1 that prohibits them
from finding overfitted examples in low-density regions.

D.2 Image data

Let us run the same high-precision attack on the CelebA dataset—see Appendix B.3, including settings. Again, we see that
high-precision attacks are more successful when using DOMIAS, see Figure 14
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Figure 12: Using DOMIAS with no reference data but high-level statistics of the underlying data. Using just the mean and
standard deviation of the population’s median income, DOMIAS outperforms its ablated counterparts that are based on Eq.
1.

E DISTRIBUTION SHIFT Dref AND Dmem

There may exist a distributional shift between reference and training data. Because DOMIAS is primarily intended as a
tool for data publishers to test their own synthetic data vulnerability, it is recommended that testing is conducted with a
reference dataset from the same distribution (e.g. a hold-out set): this effectively tests the worst-case vulnerability. Hence,
our work focused on the case where there is no shift.

Nonetheless, reference data may not always come from the same target distribution. For example, reference data may come
from a different country, or synthetic data may be created by intentionally changing some part of the real data distribution,
e.g. to include fairness guarantees (Xu et al., 2019b; van Breugel et al., 2021). Thus, let us assume there is a shift and that
the reference data Dref comes from p̃R, a shifted version of pR (i.e. the distribution from which Dmem is drawn). We give
a specific example and run an experiment to explore how this could affect DOMIAS attacking performance.

Let us assume there is a healthcare provider that publishes Dsyn, a synthetic dataset of patients suffering from diabetes,
based on underlying data Dmem ∼ pR. Let us assume there is an attacker that has their own data Dref ∼ p̃R, for which
some samples have diabetes (A = 1), but others do not (A = 0). We assume that A itself is latent and unobserved (s.t. the
attacker cannot just train a classification model) and that there is a shift in the distribution of A (i.e. with a slight abuse of
notation p̃R(A = 1) < 1). Diabetes is strongly correlated with other features X in the data, additionally we assume the
actual condition distribution pR(X|A) is fixed across datasets. This implies the reference and membership set distributions
can be written respectively as:

p̃R(X) = p̃R(A = 1)p(X|A = 1) + p̃R(A = 0)p(X|A = 0) (3)
pR(X) = p(X|A = 1) (4)

Since pR(X|A = 1) ̸= pR(X|A = 0) and p̃R(A = 1) ̸= 1, there is a distributional shift between p̃R and pR.

Now let us see how different attackers perform in this setting as a function of the amount of shift. Evidently, since some of
the baselines do not use reference data, some attackers will be unaffected, but we should expect DOMIAS performance to
degrade. We take the Heart Failure dataset, which indeed has a feature denoting diabetes,. We vary the amount of shift of
p̃R w.r.t. pR, from p̃(A = 0) = 0 (no shift), to p̃(A = 0) = 0.8 (a large shift and the original Heart Failure non-diabetes
prevalence). Let us assume test data follows the attacker’s existing dataset, i.e. p̃R. This gives Figure 15.
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We see performance of DOMIAS degrades with increasing shift, due to it approximating pR with p̃R, affecting its scores
(Eq. 2). However, we see that for low amounts of shift this degradation is minimal and we still perform beter than not
using the reference dataset (baseline Eq. 1 (BNAF)). This aligns well with the results from 5.2, Figure 4, that showed that
an inaccurate approximation of pR due to few samples is still preferable over not using any reference data.



Membership Inference Attacks against Synthetic Data through Overfitting Detection

(a) DOMIAS (b) Eq. 1 (BNAF) (c) LOGAN 0

(d) LOGAN D1 (e) GAN-leaks 0 (f) GAN-leaks CAL

(g) MC

Figure 13: DOMIAS is better at high-precision attacks than baselines on heart failure dataset. Plotting the top-quantile
precision P (A,Dtest, q) versus q. For example, if the attacker decides to attack only the 20% highest samples, we get
DOMIAS is significantly more precise (86.2 ± 5.5%) compared to baselines—LOGAN D0 (51.0 ± 3.9%), LOGAN D1
(72.6 ± 5.3%), MC (74.2 ± 3.0%), GAN-leaks (74.9 ± 3.1%), GAN-Leaks CAL (57.0 ± 4.1%). Additionally included
is Eq. 1 (BNAF), the ablation attacker that does not make use of the reference data. We see that the reference data helps
DOMIAS attack a a larger group with high precision.
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(a) DOMIAS (b) Eq. 1 (BNAF) (c) LOGAN 0

(d) LOGAN D1 (e) GAN-leaks 0 (f) GAN-leaks CAL

(g) MC

Figure 14: DOMIAS is better at high-precision attacks than baselines on CelebA image data. For example, an attacker
could attack only the examples with top 2% scores, and get a precision of P = 65.7 ± 11.6%—much higher than the
second-best method LOGAN 0, scoring P = 54.8± 6.5%.
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Figure 15: Effect of distributional shift on DOMIAS performance. A distributional shift between Dmem and Dref degrades
attacking performance, but preliminary experiments show that for small to moderate shifts it is still preferable to use
reference data even though it is slightly shifted.
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