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Abstract

We propose a fast and low complexity anchor-
free instance segmentation approach BlitzMask.
For the first time, the approach achieves com-
petitive results for real-time inference on mobile
devices. The model architecture modifies Cen-
terNet by adding a new lite head to the Center-
Net architecture. The model contains only lay-
ers optimized for inference on mobile devices,
e.g. batch normalization, standard convolution,
depthwise convolution, and can be easily embed-
ded into a mobile device. The instance segmenta-
tion task requires finding an arbitrary (not a pri-
ori fixed) number of instance masks. The pro-
posed method predicts the number of instance
masks separately for each image using a pre-
dicted heatmap. Then, it decomposes each in-
stance mask over a predicted spanning set, which
is an output of the lite head. The approach uses
training from scratch with a new optimization
process and a new loss function. A model with
EfficientNet-Lite B4 backbone and 320×320 in-
put resolution achieves 28.9 mask AP at 29.2 fps
on Samsung S21 GPU and 28.0 mask AP at 39.4
fps on Samsung S21 DSP. This sets a new speed
benchmark for inference for instance segmenta-
tion on mobile devices.

1 INTRODUCTION

Several modern Computer Vision tasks have been ported to
mobile devices, such as Semantic Segmentation (Türkmen
and Heikkilä, 2019), (A. Howard et al., 2019), (Orsic et
al., 2019), Object Detection (Cai et al., 2020), (Vasu et al.,
2022), (A. Howard et al., 2019), and Human Pose Esti-
mation (Bazarevsky et al., 2020), by inventing new com-
putationally light methods for each task. To the best of
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our knowledge, Instance Segmentation tasks still remain
a challenge, and current methods do not achieve suffi-
cient accuracy on these tasks for real-time mobile applica-
tions (Minaee et al., 2021), (H. Liu et al., 2020), (Zeng and
Sabah, 2020). In the paper, we are addressing this gap with
an approach that operates on low-resolution input images
and uses layers well supported on mobile devices, e.g. no
Deformable Convolution (Dai et al., 2017), Dynamic Con-
volution (X. Wang, Zhang, et al., 2020), etc. In addition,
as it is hard to implement custom operations on mobile de-
vices, we use simple post-processing and only TFLite sup-
ported and optimized layers.

Adapting existing instance segmentation approaches to
mobile We were unable to find fully comparable bench-
marks with performance tested on regular mobile devices
for instance segmentation. Why is porting an instance seg-
mentation approach to mobile such a problem?

A naive solution is to simply use an existing instance seg-
mentation approach with light backbones, such as Mo-
bileNet, as well as low-resolution input to achieve real-time
speed on mobile. Suppose we are adapting well-known
SOLO (X. Wang, Kong, et al., 2020), or CenterMask (Y.
Wang et al., 2020), or a similar approach to mobile. A sin-
gle output from SOLO or CenterMask has size S ·S ·W ·H ,
where S = 32, W = H = 128. The corresponding back-
bones have 256 output channels, so that a final 3×3 convo-
lution requires N = 3 ·3 ·256 ·W ·H ·S ·S = 38.7 billion
multi-adds (MAdds) - this is only for a single layer. The
total number of operations for SOLO or CenterMask will
also include calculations by the backbone and remaining
head layers. Meanwhile, real-time computation for mo-
bile object detection MobileNetV2-SSDLite requires less
than 1 billion MAdds for 300 × 300 input size (Cai et al.,
2020), (Sandler et al., 2018a). This makes a single layer
in the SOLO or CenterMask head nearly 40 times heavier
than the entire MobileNetv2-SSDLite, and therefore it is
impractical to use such approaches on mobile. The authors
of SOLOv2 (X. Wang, Zhang, et al., 2020) greatly reduced
the computational complexity of the model head using dy-
namic convolution. However, this is a non-standard layer
and its adaption is currently not available for mobile; it is a
complex task to produce such an adaptation.
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YOLACT (Bolya et al., 2019a), YOLACT++ (Bolya et al.,
2019b) and similar anchor-based instance segmentation ap-
proaches have two main problems: 1) Non-maximum Sup-
pression (NMS), and 2) resolution-specific anchor parame-
ters at each pyramid level. The former has been addressed
by GPU-optimized fast-NMS (Bolya et al., 2019a), but it
is not available for mobile. The latter brings up a non-
trivial task to change input resolution in YOLACT, which
can dramatically decrease accuracy. For example, the au-
thors Bolya et al. (2019a) report APmask = 29.8 for
550 × 550, and APmask = 24.9 for 400 × 400 input,
both with ResNet-101 backbone; our own YOLACT train-
ing for 320 × 320 input size gives only APmask = 20.1
with ResNet-101 backbone. The lightweight YOLACT
modification named mobileYOLACT (J. Lee, S. Lee, and
Ko, 2021) has low input resolution 320 × 320 and is de-
signed for mobile environments. However, the best result
of the mobileYOLACT (J. Lee, S. Lee, and Ko, 2021) is
APmask

50 = 23.0, which is too low, because APmask is
usually near twice smaller than APmask

50 and as we show
below our approach is more than twice more accurate than
mobileYOLACT and has even faster speed on the mobile
device considered in the paper (J. Lee, S. Lee, and Ko,
2021). All these facts prove that using a lightweight back-
bone and low input resolution for YOLACT approach leads
to too low accuracy. Furthermore, YolactEdge (H. Liu et
al., 2020) uses TensorRT optimization for 550× 550 input
with MobileNetV2 backbone to achieve real-time calcula-
tion on Jetson AGX Xavier with accuracy APmask = 20.8.
However, this model is still too heavy for mobile devices,
and we show better accuracy for real-time applications on
mobile using the method described below.

In contrast to semantic segmentation, the instance segmen-
tation task has a variable number of instance masks that
have to be presented by an output tensor with a fixed size.
To resolve this problem we express instance masks as lin-
ear combinations of fixed size spanning set with instance-
specific coefficients. Our proposed method extends Cen-
terNet by adding instance masks head in a similar way as
YOLACT (H. Liu et al., 2020) extends YOLOv3 (Red-
mon and Farhadi, 2018), so that its numerical complex-
ity is comparable with CenterNet (Zhou, D. Wang, and
Krähenbühl, 2019). In contrast to the YOLACT (H. Liu
et al., 2020), our output head is less computationally ex-
pensive and anchor-free, and our post-processing does not
require Non-Maximum Suppression (NMS).

The main contributions of our work are as follows:

• We propose a novel single-stage anchor-free instance
segmentation method for real-time execution on mo-
bile devices

• In our approach, CenterNet (Zhou, D. Wang, and
Krähenbühl, 2019) object detector is just comple-
mented by a lightweight instance mask head, which

requires significantly fewer resources than the entire
model.

• We implement a new loss function to train anchor-free
single-stage model for instance segmentation

• We propose a simple architecture for porting to mobile
devices. It achieves satisfactory accuracy for real-time
applications on mobile devices.

• We develop a new training process with learning rate
and stochastic gradient momentum schedules that are
dependent on current loss function values.

• Our method even with input resolution 320 × 320
achieves better accuracy and speed then Yolact-
Edge (H. Liu et al., 2020) with the same backbone
and input resolution 550× 550.

The paper is organized as follows. Section 2 reviews re-
lated work. In Section 3 describes the BlitzMask approach.
Section 4 describes our new model training process and
demonstrates results from our modeling approach.

2 RELATED WORK

Recently, real-time instance segmentation approaches have
achieved great speed and accuracy on a desktop GPU such
as GTX 2080 TI, Tesla V100, or Titan XP (Bolya et al.,
2019a), (Y. Wang et al., 2020), (X. Wang, Kong, et al.,
2020), (H. Chen et al., 2020), (Xie et al., 2020), (X. Wang,
Zhang, et al., 2020), (Bolya et al., 2019b), but its accu-
rate and fast implementation still remains a challenge for
mobile devices. An anchor-based single-stage approach
YOLACT (Bolya et al., 2019a) is one of the first real-time
instance segmentation methods. It extends the object de-
tector YOLOv3 (Redmon and Farhadi, 2018) by adding
two heads for prototype masks and mask coefficients, so
that instance masks are computed as linear combinations
of the prototype masks with the normalized coefficients
for each anchor box. The method achieves 29.8 mAP on
MS COCO (T.-Y. Lin, Maire, et al., 2014) at 33.5 fps on
NVIDIA’s Titan Xp graphics card.

A follow-up approach YOLACT++ (Bolya et al., 2019b)
uses deformable convolutions (Dai et al., 2017), optimized
prediction heads and a fast mask re-scoring head. These
optimizations improve mask performance to 34.4 mAP on
MS COCO, but reduce speed to 27.3 fps on Titan Xp.

In contrast to the YOLACT approaches, SOLO (X. Wang,
Kong, et al., 2020) implements instance segmentation di-
rectly, without any dependence on box detection. It divides
a picture into an S×S grid and decouples the original mask
prediction into semantic category prediction and instance
mask prediction. The former indicates semantic class prob-
abilities for each cell and has S×S×C values, where C is
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the number of object classes. While the latter has H ×W
values for each cell and S × S × H × W values in total,
where H is the output height, W is the output width. Each
category prediction cell (i, j), i, j = 0, 1, . . . , S−1 is asso-
ciated with the kth channel of the instance mask prediction,
where k = i·S+j. This structure allows SOLO to predict a
variable number of instances using a fixed number of chan-
nels. However, convolution layers with S2×H×W output
make SOLO head computationally expensive. This slows
down processing to 22.5 fps on NVIDIA’s Tesla V100 with
34.2 mAP on MS COCO.

A greatly accelerated SOLOv2 (in comparison to
SOLO) (X. Wang, Zhang, et al., 2020) splits the mask pre-
diction into mask kernel and mask feature map prediction,
so that the output size decreases from S2 × H × W to
2S ×H ×W . Each mask kernel is convolved with a fea-
ture map to get an instance mask. The performance speed
improves to 46.5 fps on Tesla V100 with 34.0 mAP on MS
COCO.

Another approach CenterMask (Y. Wang et al., 2020) is
an anchor-free method that adds two heads to Center-
Net (Zhou, D. Wang, and Krähenbühl, 2019): 1) a head for
local instance information with output size S2 × H × W ,
and 2) a head for semantic segmentation on the whole im-
age with output size H ×W . The two outputs are assem-
bled together to produce final instance masks. Similarly to
SOLO approach, the first head is computationally expen-
sive, resulting in only 25.2 fps with 32.5 mAP (the Center-
Mask authors do not report computational machine specifi-
cations in their paper).

PolarMask approach (Xie et al., 2020) approximates in-
stance mask contours using 36 points derived intersecting
36 uniformly emitted rays from the object center with the
instance mask contour. This method is a generalization
of the FCOS object detection (Tian et al., 2019), where
bounding boxes are presented as simplest masks with only
4 directions. The contour approximation in PolarMask can
be rough, and increasing the count of emitted rays does
not always converge to the exact instance mask contour.
While PolarMask is a simple and flexible framework, it
only achieves 22.9 mAP on MS COCO at 26.3 fps on Tesla
V100, which is worse than SOLO (X. Wang, Kong, et al.,
2020), YOLACT (Bolya et al., 2019a), CenterMask (Y.
Wang et al., 2020) and other modern one-stage instance
segmentation approaches.

There are a few studies focusing on real-time in-
stance segmentation methods for mobile devices. For
example, YolactEdge (H. Liu et al., 2020) improves
YOLACT (Bolya et al., 2019a) by applying TensorRT op-
timization and using MobilenetV2 (Sandler et al., 2018b)
architecture. It achieves 20.8 mAP on MS COCO at 35.7
fps on Jetson AGX Xavier. However, Jetson AGX Xavier
device is much faster than regular mobile GPUs, e.g. it is

about several times faster than Samsung Adreno 660 GPU
S21 (see (Ignatov et al., n.d.), NVIDIA specification web-
site (Jetson benchmarks 2022), (Mobile Ranking 2022)).

The instance segmentation approach mobileYOLACT (J.
Lee, S. Lee, and Ko, 2021) is designed for mobile environ-
ments. It modifies YOLACT (Bolya et al., 2019a) by using
a lightweight backbone, depthwise separable convolution,
a simplified prototype mask generation branch and UINT8
quantization. The mobileYOLACT (J. Lee, S. Lee, and Ko,
2021) has a speed of 21 FPS on Samsung Galaxy S20 with
APmask

50 = 23.0 (authors do not present APmask values
in (J. Lee, S. Lee, and Ko, 2021)).

The lightweight approach EOLO (Zeng and Sabah, 2020)
is an anchor-free instance segmentation that works at 16 fps
on Raspberry Pi4 with Google Coral USB Accelerator with
11.7 mAP accuracy on MS COCO.

Lastly, we wanted to mention a real-time portrait instance
segmentation approach for mobiles (L. Zhu et al., 2019)
that generates three outputs: person semantic segmenta-
tion, person bounding boxes and superpixels. When there
is no overlap among the bounding boxes, the first and sec-
ond outputs are sufficient for instance segmentation. Oth-
erwise, the method utilizes the third output to resolve oc-
clusions or overlapping regions. It is a challenging task to
extend this approach to 80 MS COCO classes or similar
datasets with a large number of classes.

3 BLITZMASK

3.1 Model architecture

We propose a new single-stage anchor-free instance seg-
mentation method named BlitzMask. Its architecture is
based on CenterNet (Zhou, D. Wang, and Krähenbühl,
2019) and FPN (T.-Y. Lin, Dollár, et al., 2017) (Fig. 1).
When implemented for real-time inference on mobile de-
vices, the architecture uses separable convolution (A. G.
Howard et al., 2017) with bilinear upsampling instead of
a combination of deformable (Dai et al., 2017) and trans-
pose convolutions as described by Zhou, D. Wang, and
Krähenbühl, 2019. The reason is that, deformable convo-
lution is not supported, and transpose convolution has high
latency on mobile devices (Chiang et al., 2020).

Note that we use only well-known layers optimized for mo-
bile devices on TFlite such as Batch Normalization (Ioffe
and Szegedy, 2015), depthwise convolution (A. G. Howard
et al., 2017) and convolutional layer (LeCun et al., 1998)
. Model output consists of Spanning Set B, Coefficients
Λ, Heatmap Y and Size D. The output spatial dimensions
are four times less than the input spatial dimensions, chan-
nel number K = 32 (Fig. 1); we found that this selection
provides the best trade off between speed and accuracy in a
series of experiments on MS COCO dataset. Furthermore,
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Figure 1: BlitzMask architecture. W and H are input width
and height, respectively, C is a number of classes, K is
number of channels for both Spanning Set and Coefficients.
The solid lines denote 3 × 3 depthwise separable convolu-
tion (A. G. Howard et al., 2017).

⊕
symbol stands for

element-wise summation. The dashed line is bi-linear up-
sampling by a factor of 2. The labels inside rectangles de-
note the corresponding stride and number of channels.

we do not use any activation functions for the outputs, ex-
cept for the sigmoid function for Heatmap Y .

Each channel c of the ground truth for Heatmap Y contains
probability density-like function for bounding box center
locations for objects of class c (see Fig. 2). So that if a
ground truth bounding box center for an object of class c is
located at i0, j0, then the cth channel of Heatmap ground
truth contains scaled Gaussian distribution with maximum
value 1 at its center i0, j0 with object size-adaptive stan-
dard deviation σ defined as described by Law and Deng
(2018), Zhou, D. Wang, and Krähenbühl (2019).

Ground truth for Size D contains distances from the ob-
ject bounding box centers to its four sides [wl, ht, wr, hb]
similarly to Liu et al. (Z. Liu et al., 2020). Then, given a
Gaussian center in row i, column j for channel c from the
Heatmap Y , a bounding box for an object of class c can be
computed as follows:

[x, y, w, h] = [4 · j−wl, 4 · i−ht, wl +wr, ht +hb], (1)

Figure 2: Left is the original image resized to the model
input size W , H , right is the single channel of the ground
truth for the output Heatmap Y of size W/4, H/4 (shown
not to scale). The Heatmap contains scaled Gaussian dis-
tributions centered at the object bounding box center loca-
tions (i1, j1), (i2, j2), (i3, j3)

.

where (x, y) is the box left top point, (w, h) are the box
width, height, [wl, ht, wr, hb] = Di,j . As Heatmap Y has
four times lower resolution than model input size, we scale
its Gaussian peak locations by a factor of 4 above. Further-
more, due to the lower resolution of the Heatmap, bound-
ing boxes require specifying four sides, instead of two (i.e.
width and height), to account for possible offsets. This
representation allows placing Gaussian center location ev-
erywhere inside bounding box (not only in the box center)
and helps in our experiments with modification of Gaussian
center location in Section 4.

We express an instance mask as a linear combination of
Spanning Set B with corresponding Coefficients Λ (more
details are provided in the following sections). We only
define ground truth for instance mask, and do not require
ground truths for its components used in the derivation, i.e.
Spanning Set and Coefficients.

3.2 Loss function

3.2.1 Object detection loss

The Heatmap Y and Size D outputs (Fig. 1) are com-
pared to the corresponding ground truths using object de-
tection loss function Lbox that consists of focal loss Lfoc

for Heatmap and Lsize for Size. The focal loss Lfoc is
a penalty-reduced pixelwise logistic regression loss (T.-Y.
Lin, Goyal, et al., 2017), (Y. Wang et al., 2020) with pertur-
bation of the first polynomial coefficient of Taylor expan-
sion similar to (Leng et al., 2022) defined below as follows:
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Lfoc =
−1

N
·
H/4∑
i=1

W/4∑
j=1

C∑
c=1

{
Ac

i,j if Y̆ c
i,j = 1

Bc
i,j otherwise

,

Ac
i,j =

(
1− Y c

i,j

)2 · (log (Y c
i,j

)
+ ϵ1 ·

(
1− Y c

i,j

))
Bc

i,j =
(
1− Y̆ c

i,j

)4 (
Y c
i,j

)2 (
log
(
1− Y c

i,j

)
+ ϵ2Y

c
i,j

)
(2)

where Y =
{
Y c
i,j

}H/4,W/4,C

i=1,j=1,c=1
is the predicted Heatmap

and Y̆ c
i,j is the ground truth Heatmap values, N is the num-

ber of objects in the input image, ϵ1 is perturbation coef-
ficient for the first polynomial coefficient of Taylor expan-
sion of the case Y̆ c

i,j = 1, ϵ2 is perturbation coefficient for
the first coefficient for Y̆ c

i,j ̸= 1. If ϵ1 = ϵ2 = 0 then (2)
is penalty-reduced pixelwise logistic regression loss (T.-Y.
Lin, Goyal, et al., 2017), however optimal choice of these
coefficients improves accuracy as it will be shown below.
For each nth ground truth box center for some class cn at
row in, column jn, n = 1, . . . , N we take prediction values
from the Size output [wn

l , h
n
t , w

n
r , h

n
b ] = Dcn

in,jn and com-
pute bounding box bn = [xn, yn, wn, hn] using (1). We de-
fine the following combination of l1-type loss and UnitBox
loss (Yu et al., 2016) penalizes bounding box predictions:

Lsize =
1

N
·

N∑
n=1

α1 ·
∣∣∣bn − b̆n

∣∣∣−
α2 · log

(
bn ∩ b̆n

bn ∪ b̆n

)
= α1 · Ll1 + α2 · LUnitBox,

(3)

where the ground truth bounding box b̆n =
[x̆n, y̆n, w̆n, h̆n], intersection bn ∩ b̆n and union bn ∪ b̆n as
described by Yu et al. (2016)

Then, the object detection loss can be expressed as a lin-
ear combination of (2) and (3) averaged over a batch of
images:

Lbox =
1

b

b∑
i=1

(Li
foc + α1 · Li

l1 + α2 · Li
UnitBox), (4)

where Li
foc and Li

size = α1 · Li
l1
+ α2 · Li

UnitBox are loss
functions (2) and (3), respectively, for ith image in a batch.
The authors Zhou, D. Wang, and Krähenbühl (2019) use
the case ϵ1 = ϵ2 = α2 = 0, α1 = 0.1 which we call below
as ’default OD loss’

3.2.2 Mask loss

We estimate instance masks using Coefficients Λ and Span-
ning Set B as described below. For each ground truth box

center in, jn, n = 1, . . . , N , we fix λn,k = Λk
in,jn

, k =
1, . . . ,K, where N is the number of instances and K is the
number of channels in both Coefficients and Heatmap out-
puts. Then, an instance mask is predicted as a linear com-
bination of the Spanning Set channels Bk, k = 1, . . . ,K
with coefficients λn,k (also see Fig. 3):

Mn =

K∑
k=1

λn,k ·Bk (5)

We use bi-linear upsampling of M by a factor of 3 and
denote the result as M̂ ∈ RH/2,W/2. While the bi-
linear resizing is not required, it notably improved accu-
racy in our experiments. Then, to define loss function
for instance masks as combination of Cross-Entropy loss
(Jadon, 2020) and Dice loss (Milletari, Navab, and Ah-
madi, 2016). Firstly, let define Cross-Entropy loss matrix
Ln =

{
Ln
i,j

}H/2,W/2

i=1,j=1
∈ RH/2,W/2:

Ln = −M̆n · log
(
σ
(
M̂n

))
−(

1− M̆n
)
log
(
1− σ

(
M̂n

))
,

(6)

where σ is a sigmoid function; M̆n, n = 1, . . . , N are
ground truth instance masks; N is a number of instances
in the ground truth. The ground truth mask equals 0 every-
where, except for instance location, where it equals 1.

We use values of Ln only inside the nth ground truth
bounding box [in1 , i

n
2 ] × [jn1 , j

n
2 ] to define loss function for

a single mask:

Ln
maskCE

=
1

(in2 − in1 ) · (jn2 − jn1 )
·

in2∑
i=in1

jn2∑
j=jn1

Ln
i,j (7)

The normalization coefficient
1

(in2 − in1 ) · (jn2 − jn1 )
allows

small and large objects contributing equally to the loss
function. The second step is defining the Dice loss (Mil-
letari, Navab, and Ahmadi, 2016)

Ln
maskDice

=

1−
2 ·
∑

M̆n
i,j · σ

(
M̂n

i,j

)
+ 1∑(

M̆n
i,j

)2
+
∑(

σ
(
M̂n

i,j

))2
+ 1

,
(8)

where summarizing indices are as in (7) i = in1 · · · in2 , j =
jn1 · · · jn2 Then, the loss function for a batch with b images,
where ith image has Ni ground truth instance masks, is
defined as follows:
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Table 1: Brute-forcing loss function parameters using backbone ResNet18**, width α = 0.5

Table A: Accuracy of object detector for different values of parameters ϵ2, α1, α2

ϵ2 0.0 0.0 0.0 0.0 0.0 0.0 -0.05 -0.05 -0.1 0.05 0.1 -0.05 0.05 -0.05
α1 0.1 0.0 0.1 0.2 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.1 0.1 0.1
α2 0.0 1.0 1.0 1.0 1.0 2.0 1.0 1.5 1.0 1.0 1.0 0.0 0.0 1.5

AP box 26.1 26.3 26.3 26.2 26.4 26.3 26.6 26.7 26.5 26.2 26.0 26.2 25.8 26.6

Table B: Accuracy of BlitzMask for different values of parameters β1, β2

β1 1.0 0.0 2.0 0.0 3.0 0.0 4.0 0.0 1.0 2.0 0.5 3.0
β2 0.0 1.0 0.0 2.0 0.0 3.0 0.0 4.0 2.0 1.0 2.5 1.0

APmask 21.8 22.2 21.9 22.3 21.9 22.4 21.7 22.4 22.5 22.3 22.6 22.3

Lmask =

1

b

b∑
i=1

1

Ni
·

Ni∑
ni=1

(
β1 · Li,ni

maskCE
+ β2 · Li,ni

maskDice

) (9)

Let the case of β1 = 1, β2 = 0 is called as ’default mask
loss’. Difference between ’default mask loss’ and segmen-
tation part of YOLACT loss (Bolya et al., 2019a) is in us-
ing the normalization coefficient in (7) and bi-linear up-
sampling of predicted and ground truth masks inside loss
function that improve accuracy essentially.

3.2.3 Overall loss

Finally, an overall loss function for a batch of images
is defined as a linear combination of box (4) and mask
losses (9):

Lall = Lbox + Lmask = Lfoc + α1 · Ll1+

α2 · LUnitBox + β1 · LmaskCE
+ β2 · LmaskDice

(10)

Taking into account (2) we have 6 unknown parameters
ϵ1, ϵ2, α1, α2, β1, β2. The ’default loss’ is the case of ϵ1 =
ϵ2 = α2 = 0, α1 = 0.1 , β1 = 1, β2 = 0. It contains
loss described by Zhou, D. Wang, and Krähenbühl (2019)
and our modification of the loss described by Bolya et al.
(2019a). Below, we obtain optimal parameters using brute-
force.

3.3 Post-processing

The instance segmentation masks are expressed using
model outputs - Spanning Set B, Coefficients Λ, Heatmap
Y and Size D (see Fig.1 and Fig. 3 for post-processing
a single class ”person”). First, we compute object cen-
ters in, jn, n = 1, 2, . . . , N by using 3 × 3 maximum
pooling on the heatmap Y as described by Law and Deng
(2018), Zhou, D. Wang, and Krähenbühl (2019). We only
retain N object centers with scores Yin,jn greater than a

Spanning 
Set 

Coeffi
cients 

Size

Heatmap 

resize,
threshold

Figure 3: Instance mask reconstruction using Spanning Set
B, Coefficients Λ, Heatmap Y and Size D for the case of
N = 3 instance masks, class number C = 1. Operation
”resize” means resize Mn, n = 1, . . . , N to original im-
ages size. The ”threshold” operation assigns 1 to pixels for
which σ(Mn) > 0.5 and 0, otherwise.
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chosen threshold. Then, for each object center in, jn,
we compute bounding boxes bn = [xn, yn, wn, hn] using
(1) and the corresponding instance mask heatmaps Mn,
n = 1, 2, . . . , N using (5); we bi-linearly resize both the
derived mask heatmaps Mn and the boxes bn to the origi-
nal image size. Lastly, we define the final instance masks
as consisting of pixels that are both within the bounding
boxes bn and for which σ(Mn) > 0.5 (Fig 3).

4 EXPERIMENTS

4.1 Training Details

The instance segmentation models are trained on MS
COCO (T.-Y. Lin, Maire, et al., 2014) train2017 dataset
and evaluated on val2017. We follow the recommenda-
tions of Izmailov et al. (2018) and Smith (2018) to search
for a flat (rather than sharp) minima on the loss surface,
as a sharp minima determined on train data could result
in a large loss function value on evaluation data. Our
training process is a modification of cyclical learning rates
approach (Smith, 2018), it uses Stochastic Gradient De-
scent (SGD) with momentum and has three phases: Ascent,
Plateau, and Descent. We will refer to the training process
as ’LRfinder’ below.

At the Accent phase, LRfinder uses momentum µ = 0.9
and linearly increases the learning rate as much as possible
until the training loss starts deteriorating. Then we reduce
the rate of the learning increasing twice and load previous
epoch weights and repeat this procedure three times. The
maximum achieved learning rate is then denoted as η. At
the Plateau phase, the learning rate is fixed to η and we
count ”Patience”, e.g. the number of epochs without train-
ing loss improvement. Each time the Patience increases by
5, the momentum value gets reduced to the following val-
ues µ = 0.63, µ = 0.44, µ = 0.3, and then the Descent
phase starts. At the Descent phase, the SGD momentum is
µ = 0.3, learning rate is reduced to 0.1·η , 0.01·η, 0.001·η
each time the Patience increases by 5. Training is finished
when learning rate becomes 0.001 · η. Notably that some-
times gradient explosion occurs in Plateau phase because
of high learning rate value. In such case, we load previous
epoch weights and switch to the next step (momentum re-
ducing or Descent phase) and it always fixes the gradient
explosion problem.

The method described by Smith (2018) gave us an idea how
to modify the training process, but our implementation is
conceptually different, specifically, we: 1) do not have any
Cyclical Learning rates like described by Smith (2018), 2)
have different rules for SGD momentum changing, and 3)
follow a different approach to decrease the learning rate.
In contrast to (Smith, 2018), we find the optimal learning
rate and SGD momentum only during the training by cre-
ating model backups and “look forwards” to what happens

if we change the learning rate or SGD momentum. More-
over, we use different learning rates ascent speeds and SGD
momentum descent to get the best validation loss. It essen-
tially differs from the method proposed by Smith (2018)
and any other training process published in the literature.

We use random flip, scaling (between 0.25 to 4.0), crop-
ping, photometric transformations and aspect ratio modifi-
cation (from 0.5 to 2.0 ) as train data augmentation. All
models are trained on a single Nvidia V100 GPU from
scratch, without any pretrained weights, with input reso-
lution 320 × 320 and batch size 64. Models are converted
to TFlite and tested on S21 with Snapdragon 888 system
on a chip with CPU Kryo 680, GPU Adreno 660. We use
FLOAT16 quantization for S21 GPU and UINT8 for S21
DSP. To save training time, first, we train without mask up-
sampling in (9) and then tune with mask upsampling by a
factor of 3.

4.2 Loss function parameters

To brute force parameters ϵ1, ϵ2, α1, α2, β1, β2 we use ’fast
training’ with modified backbone ResNet18, without seg-
mentation mask upsampling by a factor of 3 in (9), a short
”Patience” = 2 and switching of Accent phase to Plateau
phase just after training loss starts deteriorating (i.e. with-
out using different learning rates ascent speeds). The mod-
ified backbone is denoted as ResNet18** and does not con-
tain first stride 2 and 3×3 MaxPool and has width α = 0.5
, i.e. only half of the convolution layer filter number. We
found that BlitzMask with such backbone required only
120-140 epochs to train, and each epoch is near 11 min-
utes on a single Nvidia V100 GPU in contrast to near 350
epochs of full training with MobileNetV2 or EfficientNet-
Lite backbone with near 50 minutes per epoch. Firstly, we
get parameters ϵ1, ϵ2, α1, α2 used in loss functions Lfoc (2)
and Lsize (3) for object detection (i.e. without Coefficients
and Spanning Set outputs in Fig. 1) and then add additional
head for Instance Segmentation to obtain parameters β1, β2

used in Lmask (9).

Our experiments show that parameter ϵ1 has negligible in-
fluence on accuracy, therefore we fix ϵ1 = 0 and show
some of our results for ϵ2, α1, α2 in Table A of Table 1
for object detection case only (i.e. only Heatmap and Size
outputs in Fig. 1). The second column in Table A of Table 1
is object detection ’default case’ which use the same loss as
described by Zhou, D. Wang, and Krähenbühl (2019) and
the best accuracy is reached with ϵ2 = −0.05, α1 = 0.05,
α2 = 1.5. Chosen parameters give +0.6AP box in compar-
ison to ’default case’. Then the best parameters for object
detection case are fixed and β1, β2 are varying in Table B
of Table 1. Then we add segmentation head (Spanning Set
and Coefficients outputs in Fig. 1), use obtained parameters
of the object detection loss and vary β1, β2 inside mask loss
in Table B of Table 1
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Table 2: BlitzMask speed and accuracy of the instance segmentation on Samsung S21 Snapdragon 888 GPU (FLOAT16
quantization) and DSP (UINT8 quantization) for input resolution 320×320, backbones MobileNetV1 (A. G. Howard et al.,
2017), MobileNetV2 (Sandler et al., 2018a), EfficientNet-Lite B0-B4 (M. Tan and Le, 2019), (EfficientNet-Lite 2022) and
modified ResNet-18 (He et al., 2015)

GPU DSP
Backbone Time(ms) APmask APmask

50 Time(ms) APmask APmask
50

MobileNetV1 21.3 21.0 34.3 10.4 20.2 33.1
MobileNetV2 21.8 21.9 35.8 9.2 21.0 34.7

EfficientNet-Lite B0 22.3 25.2 43.4 14.1 24.3 41.8
EfficientNet-Lite B1 24.3 26.2 45.0 16.0 25.4 43.5
EfficientNet-Lite B2 25.2 27.0 45.9 15.7 26.2 44.6
EfficientNet-Lite B3 28.2 27.9 47.3 18.1 27.0 45.9
EfficientNet-Lite B4 34.2 28.9 48.7 25.4 28.0 47.1

ResNet-18* 88.2 29.6 50.1 52.6 29.3 49.4

umbrella

center of box 

center of mass

Figure 4: Difference between center of mass and center of
box position

As shown in Table A of Table 1 mixing of Cross Entropy
and Dice loss with β1 = 0.5, β2 = 2.5 gives +0.8APmask

in comparison with ’default case’ which is segmentation
part of YOLACT loss (Bolya et al., 2019a).

4.3 Impact of our improvements

Sometimes, the box center lies outsides the object, as
shown in Fig. 4). We try to use mass center of instance
mask as object centers for Heatmap and Coefficients in-
stead of box center, and it improves accuracy a bit (see Ta-
ble 3)

In Table 3 we show influence of our modification of ”de-
fault” learning rate schedule, ”default” loss functions and
’default’ object centers position on Heatmap for the case
of MobileNetV2 backbone. The best results for piece-wise
constant learning rate schedule (which we called ”default”)
we obtain using SGD with momentum µ= 0.9, learning rate
η = 0.02 and standard ”ReduceOnPlateau” technique, i.e.
by 10x reducing learning rate each time ”Patience” = 5

Table 3: Instance segmentation accuracy for cases 1) Piece-
wise constant learning rate schedule, 2) LRfinder, 3) 3x
mask upsampling Lmask, 4) perturbation of the first poly-
nomial coefficient of the Taylor’s expansion ϵ2 = −0.05,
5) l1 loss and UnitBox loss (Yu et al., 2016) with α1 =
0.05, β1 = 1.5, 6) Cross Entropy loss and Dice loss (Mil-
letari, Navab, and Ahmadi, 2016) with β1 = 0.5, β2 = 2.5,
and 7) using mass center instead of box center.

1) 2) 3) 4) 5) 6) 7) APmask

✓ 18.7
✓ 19.8
✓ ✓ 20.7
✓ ✓ ✓ 20.9
✓ ✓ ✓ ✓ 21.2
✓ ✓ ✓ ✓ ✓ 21.6
✓ ✓ ✓ ✓ ✓ ✓ 21.9

epochs without accuracy improvement. The cases 1) and
2) in Table 3 shows that LRfinder attains 1.1 AP gains in
comparison to piece-wise constant learning rate. Then the
mask upsampling in (9) (case 3) in Table 3) gives +0.9
AP, perturbation of the first polynomial coefficient of the
Taylor’s expansion (case 4)) adds 0.2 AP, mixing l1 and
UnitBox (Yu et al., 2016) losses with obtained coefficients
in Table A of Table 1 instead of ”default OD loss” adds
0.3 AP. Modification of ”default” mask loss with β1 = 1,
β2 = 0 by using obtained in Table B of Table 1 param-
eters achieved +0.4 AP improvement and using another
Gaussian peak location in Ground Truth Heatmap adds 0.3
AP additionally. The whole improvement package achieves
significant 3.2 AP instant segmentation accuracy improve-
ment.
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4.4 Results

As discussed in the Related work section, there are no pub-
lished results for real-time instance segmentation on smart-
phones with adequate accuracy, and hence Table 2 sets a
new benchmark for speed and accuracy on smartphones.
As elaborated earlier, YolactEdge (H. Liu et al., 2020)
when used with the lowest computing capability available
in the literature - Jetson AGX Xavier - achieves APmask =
20.8 on MS COCO val2017 dataset with 35.7 FPS. How-
ever, AGX Xavier cannot be used in smartphones, and is
superior to Samsung S21 GPUs (Ignatov et al., n.d.). Fur-
ther, given that YolactEdge input resolution is 550 × 550,
we achieve better accuracy of 21.9 with a smaller input res-
olution 320 × 320, but the same backbone MobileNetV2
(see Table 2). Our results could be compared with mobi-
leYOLACT (J. Lee, S. Lee, and Ko, 2021) which achieves
APmask

50 = 23.0 at the speed of 21 fps on Samsung Galaxy
S20. In contrast, our accuracy for the case of EfficientNet-
Lite B4 backbone is APmask

50 = 47.1 at the speed of
39.4 fps(see Table 2) on Samsung Galaxy S21. To allow
comparison with mobile YOLACT, we additionally ran our
method on Samsung S20 and achieved 36.8 fps (the same
accuracy as on S21). This shows that our model has 2x bet-
ter accuracy and 1.75x faster inference speed than mobileY-
OLACT (J. Lee, S. Lee, and Ko, 2021). Moreover, another
approach EOLO (Zeng and Sabah, 2020) on Raspberry
Pi4 with Google Coral USB, comparable with smartphone
computing capability, achieves only APmask = 11.7.

Furthermore, we compare our box detection accuracy with
state-of-the-art object detection on mobile YOLObite (Cai
et al., 2020). In the case of EfficientNet-Lite B4 backbone,
our approach achieves APmask = 28.9 and AP box = 31.4
at 29.2 fps on Samsung S21 Adreno 660 GPU whereas
YOLObile reaches AP box = 31.6 at 19.1 fps on Samsung
S20 Adreno 650 GPU. Mobile ranking (Mobile Ranking
2022) shows that S21 GPU speed is similar to S20 GPU
speed, so that our approach reaches state-of-the-art in Ob-
ject Detection on mobile (note, we did not target this capa-
bility). To utilize BlitzMask just for box detection, one can
cut segmentation head (i.e. layers related to Spanning Set
and Coefficient outputs in Fig. 1) from the model and get
AP box = 31.4 at 30.4 fps. Table 2) shows BlitzMask speed
and accuracy on MobileNetV1 (A. G. Howard et al., 2017),
MobileNetV2 (Sandler et al., 2018a) and EfficientNet-Lite
B0-B4 (M. Tan and Le, 2019), (EfficientNet-Lite 2022). We
found EfficientNet-Lite backbones are very efficient, and
they reach 24.9 AP on 44.8 fps (B0 case) and 28.9 AP
on 29.2 fps (B4 case) that is significantly better than Mo-
bileNet backbones. Lastly, Table 2) shows results for our
heavier and more precise model with ResNet-18 backbone
operating at 11.2 FPS on Samsung S21. While not suffi-
cient for real-time instance segmentation, it still could be
used for ”near real-time” tasks. ResNet18* in Table 2) de-
notes ResNet-18 without 3 × 3, stride 2 MaxPool. This

backbone is significantly heavier than the original ResNet-
18 (He et al., 2015), but in our experiments, it has a better
accuracy/speed trade-off.

5 CONCLUSIONS

We propose a new fast anchor-free instance segmenta-
tion approach BlitzMask whose mask head requires sig-
nificantly less resources than the entire model. We use a
modified YOLACT (Bolya et al., 2019a) loss function and
a special training process to increase model accuracy. One
of the main BlitzMask advantages is its simplicity, which is
very important for a further method development or/and re-
implementation from scratch. Our experiments show that
mixing of l1 and UnitBox losses for the box regression part
and Cross-Entropy and Dice losses for the segmentation
part improves model performance. In addition, using center
mass of masks as location of Gaussian peaks in Heatmap
improves model accuracy. Simple and fast post-processing
allows achieving real-time speed on mobile devices with
sufficient accuracy. BlitzMask achieves APmask = 28.9
at 29.2 fps on Samsung S21 GPU. This sets a new speed
and accuracy benchmark for instance segmentation infer-
ence on mobile devices. In addition, BlitzMask reaches
state-of-the-art object detection accuracy for real-time mo-
bile applications.
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A TRAINING DETAILS

Here, we describe the training details of how we achieved APmask = 24.9 with backbone EfficientNet-Lite B0. We use
ϵ1 = 0, ϵ2 = −0.05, α1 = 0.05, β1 = 1.5 inside loss function Lbox and β1 = 0.5, β2 = 2.5 inside loss function
Lmask, train without predicted mask upsampling using LRfinder and then tune with mask upsampling. These values are
obtained by brute-forcing loss function parameters in ’fast training’ described in Section 4.2. Other backbones show a
similar training process, but for larger EfficientNet-Lite number (B0 > B1 > B2 > · · · ) training process is a bit longer.
In the Accent phase (see Section 4) we use momentum µ = 0.9 and the learning rate is increased each epoch on value
0.0025 linearly. After 49 epochs training loss starts deteriorating. Therefore, previous epoch weights are loaded, and
increasing step is set to 0.00125. Analogically, the learning rate increasing step is reduced after 57 and 65 epoch and at
78 epoch the Plateau phase us started with learning rate η = 0.1403125, APmask = 17.8. The Plateau phase is continued
till 261 epoch, e.g. it takes 183 epochs. The SGD momentum is reduced to µ = 0.63 at 120 epoch, to µ = 0.44 at
202 epoch, to µ = 0.3 at 223 epoch. The criteria of momentum reducing or switching to Descent phase (if µ = 0.3) is
absence of training loss improvement till Patience = 5 epochs. The Descent phase begins with 10 time reduced learning
rate η = 0.01403125, µ = 0.3 and due to above-mentioned criteria learning rate becomes equal to 0.01 · η at 282 epoch
and to 0.001 · η at 301 epoch. The training process is finished after 312 epoch and accuracy APmask = 23.7. Then we
use upsampling by a factor of 3 for predicted and Ground Truth masks as it is described in Section 3.2.2 and tune trained
model with momentum µ = 0.9, learning rate eta = 0.0001 for 30 epoch and finally achieve APmask = 24.9. We just
mention that EfficientNet-Lite B1 requires 332 epochs, B2 - 334 epochs, B3 - 358 epochs, B4 - 391 epochs. In each case,
the model is tuned for a 30 epoch with learning rate eta = 0.0001 using predicted mask 3x upsampling in loss function.

B TRAINING FROM SCRATCH

Each type of mobile devices has its own computational specifics, e.g. some operations have either no or poor support,
requiring model architecture modifications. Traditionally, each such model modification is pre-trained on ImageNet or
another large dataset, making the model development process much more complex. To account for this, we train from
scratch similarly to ScratchDet.

Using pre-trained weight such as ImageNet is not a big problem for research purposes only. But it could be a problem
in the industry where a license for a large dataset may be too expensive and hence training from scratch using a smaller
private dataset is in demand. Moreover, if one has a many configurations and backbones and needs to train many models
“on the conveyor” then pretraining step makes the whole process more complex

C VISUALIZATION OF INSTANCE SEGMENTATION RESULTS

In Fig.5 we show inference of BlitzMask, input resolution 320 × 320 on 20 random images of MS COCO val2017 for
MobileNetV2 backbone and EfficientNet-Lite B4. One can see that B4 backbone gives much better accuracy than Mo-
bileNetV2 backbone.
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BlitzMask + MobileNetV2 BlitzMask + EfficientNet-Lite B4

Figure 5: BlitzMask output with backbones MobileNetV2 (left) and EfficientNet-Lite B4(right) for input resolution 320×
320, output resolution 80 × 80. Red rectangles denote predicted bounding boxes, the corresponding object type and
confidence score are shown at the top of each box, different instance masks are shown by different colors on each image.
All images have the confidence threshold at 0.3.
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