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Abstract

In this paper, we develop a statistical infer-
ence procedure using stochastic gradient de-
scent (SGD)-based confidence intervals. These
intervals are of the simplest possible form:
θN,j±2

√
γ/N , where θN is the SGD estimate of

model parameters θ over N data points, and γ is
the learning rate. This construction relies only on
a proper selection of the learning rate to ensure
the standard SGD conditions for O(1/n) conver-
gence. The procedure performs well in our em-
pirical evaluations, achieving near-nominal cov-
erage intervals scaling up to 20× as many param-
eters as other SGD-based inference methods. We
also demonstrate our method’s practical signifi-
cance on modeling adverse events in emergency
general surgery patients using a novel dataset
from the Hospital of the University of Pennsyl-
vania. Our code is available on GitHub.

1 Introduction

In recent years, there has been an explosion of interest
in large-scale data analysis in the fields of machine learn-
ing, statistics, and operations research. (National Research
Council, 2013). The method of stochastic gradient de-
scent (SGD) has emerged as the quintessential method in
this new domain due to its remarkable simplicity and per-
formance; see Bottou et al. (2018) for a recent review. At
the same time, it is increasingly understood that machine
learning models should not be employed as just “black
boxes” tuned only for prediction. Understanding the model
parameters becomes just as important for machine learn-
ing systems, which can have far-reaching impact either on
specific people or society in general.
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As a concrete example, in Section 5.2 we present a medical
application where the goal is to model adverse events (e.g.,
surgical complication) upon hospital admission. In this set-
ting, it is not enough to optimize prediction performance.
Understanding the model parameters, their signs and mag-
nitudes, gives valuable information about the physiologi-
cal and sociodemographic factors of the problem, which is
necessary to guide effective policies.

However, while optimization methods for machine learn-
ing models have made tremendous advances in recent
years (Sun et al., 2019), statistical inference methods on
model parameters have lagged behind. One key reason
for that is that standard techniques for statistical inference
do not scale well with large datasets or large models. Re-
cent proposals utilize SGD-based techniques for inference,
but are generally challenging to implement—see Section 2
for details. Here, we adopt the framework of likelihood-
based inference, where the probability of the data is ex-
pressed through a known function of the model parameters.
This framework is widely used in statistics (Lehmann and
Casella, 2006), and has strong theoretical foundations that
we build upon.

To be specific, consider data (Y,X) ∈ Rd × Rp, and a
model with negative log-likelihood function ℓ (loss). Let
θ⋆ be the model parameters minimizing:

θ⋆ = argmin
θ∈Θ

E[ℓ(θ;Y,X)], (1)

where Θ ⊂ Rp is a convex Euclidean space. Parameters θ⋆
are unknown and have to be estimated. Typically, the goal
of inference, based on i.i.d. data DN = {(Yi, Xi) : i =
1, . . . , N}, is to construct confidence intervals, CN,j(DN ),
such that for every j = 1, . . . , p,

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
= 1− α, (2)

for some desired significance level α ∈ (0, 1). In standard
settings, such construction relies on weak convergence re-
sults of the form

√
N(θ̂N − θ⋆)

d→ N(0, F−1
⋆ ), where θ̂N

is the empirical loss minimizer; i.e.,

θ̂N = argmin
θ∈Θ

N∑
i=1

ℓ(θ;Yi, Xi), (3)

https://github.com/jerry-chee/SGDInference
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and F⋆ = E[∇ℓ(θ⋆;Y,X)∇ℓ(θ⋆;Y,X)⊤] is the celebrated
Fisher information matrix.

The problem with this construction, however, is that θ̂N
cannot be efficiently computed in large data sets. Classi-
cal methods, such as Newton-Raphson, the EM algorithm,
or quasi-Newton methods scale at a rate of O(Np1+ϵ), at
best (Lange, 2010). Moreover, the estimation of p × p
covariance matrix is notoriously hard, especially for large
p (Cai et al., 2016; Fan et al., 2016). Standard estima-
tors of covariance matrices, for example, cannot scale par-
ticularly well and they are often ill-conditioned or non-
invertible (Ledoit and Wolf, 2004).

To address these issues, we could employ the SGD estima-
tor, which is iteratively defined as:

θn = θn−1 − γn∇ℓ(θn−1;YIn , XIn), (4)

where In ∼ U{1, . . . , N} is a random datapoint, γn is
the learning rate sequence (typically, γn = γ1/n), and
the gradient ∇ℓ is with respect to θ. Classical theory sug-
gests that, under mild conditions, SGD converges to θ̂N as
n → ∞ (Benveniste et al., 1990; Borkar, 2008; Robbins
and Monro, 1951). If n = kN , for k = 1, 2, . . ., then θn
corresponds to multipass SGD—that is, θN corresponds to
one-pass SGD, θ2N to two-pass SGD, and so on. It follows
that θkN is a viable estimator of θ⋆, for any k. However,
to perform inference on θ⋆ through θkN , we need to under-
stand the statistical properties of θkN , particularly its p× p
covariance matrix.

1.1 Contributions

In this paper, we propose an inference method based on θN ,
the one-pass SGD estimator. This proposal may be counter-
intuitive at first due to the apparent statistical inefficiency
of θN . The one-pass estimator, however, compensates by
two important properties. First, its asymptotic covariance
matrix is known in closed form. Second, its covariance
matrix can be bounded by a factor that depends only on
the learning rate, γ1. This allows us to construct SGD-
based confidence intervals for each component θ⋆,j of the
simplest possible form:

θN,j ± 2

√
γ∗
1

N
, j = 1, . . . , p. (5)

The key advantage of our proposed construction in Eq. (5)
compared to all other SGD-based methods is its simplicity,
since it avoids the precise estimation of a large p×p covari-
ance matrix. Other SGD-based methods also require heavy
data-dependent calibration—see Section 2.3 for a detailed
discussion. Our method, on the other hand, has a single
hyperparameter, γ∗

1 , which we can tune with simple data-
driven procedures. Importantly, proper selection of γ∗

1 re-
lies on conditions that are identical to the standard SGD
conditions for O(1/n) convergence.

As such, our method does not impose any new constraints.
The trade-off is that our confidence intervals are uniform
in length, and thus tend to overcover. This turns out not
to be a significant issue in the empirical settings we con-
sider. This is because overcoverage happens mainly in ill-
conditioned settings, which are problematic for other meth-
ods as well, including SGD-based methods and even max-
imum likelihood (MLE). Moreover, we present extensive
empirical evidence to suggest that our confidence intervals
remain informative, even in severely ill-conditioned prob-
lems. The extent of our empirical evaluations exceeds the
state-of-the-art in the existing SGD-based inference litera-
ture. We conduct joint inference for up to 4000 parameters
(N=1e5), 20×more than prior work. We also consider mul-
tiple covariate structures, including ill-conditioned cases,
whereas most other works mostly used well-conditioned,
independent covariate structures.

The rest of the paper is organized as follows. Section 2
serves as motivation, and discusses related work. Sec-
tion 3 presents our main analysis with results on asymp-
totic coverage. Section 4 presents our proposed method
described in Eq. (5) for constructing confidence intervals.
Section 5 presents empirical results on our inference pro-
cedure, including simulations and a novel dataset on outpa-
tient healthcare application.

Notation. We use
p→ and d→ to denote convergence in prob-

ability and distribution, respectively. For a square matrix A
we write A ⪰ 0 to denote that A is non-negative definite.
|| · || is understood as the Euclidean norm.

2 Setup and Related Work

2.1 Prediction vs. Inference: A motivating example

Why is statistical inference important for machine learn-
ing? Consider a stylized form of the medical application in
Section 5.2 on a population of patients. For each patient,
we measure comorbidities, X1, and age, X2. The outcome
model, Y ∼ logistic{θ⊤⋆ (1, X1, X2)} ∈ {0, 1}, captures
an adverse event given patient characteristics.

In such settings, it is not enough to optimize prediction
performance, e.g., as captured by E[(Ŷ − Y )2]. In par-
ticular, the signs of θ⋆ are important indicators of the ef-
fects of each factor, while their magnitudes may be im-
portant for policy decisions (e.g., triage, treatment alloca-
tion). Importantly, the prediction target E[(Ŷ − Y )2] of-
ten behaves very differently from the inferential target, say
E(||θ̂N − θ⋆||2). To illustrate, suppose X1, X2 ∼ N(0, 1)
marginally, such that cor(X1, X2) = ρ. The prediction
error, E[(Ŷ − Y )2], is completely unaffected by ρ. How-
ever, regular asymptotics imply that E(||θ̂N − θ⋆||2) =
O(||F−1

⋆ ||) = O(1/(1 − ρ2)). Thus, inference depends
heavily on this nuisance parameter.
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Figure 1: Prediction vs Inference: Multicollinearity de-
grades parameter estimation error but not prediction error.

See Figure 1 for a numerical simulation with N = 250.
We see that, as ρ approaches 1, estimating the sign of any
component of θ⋆ is essentially a coin flip. This distinc-
tion between prediction and inference is not frequently em-
phasized in the machine learning literature, which tends to
focus on the prediction task. A central goal of this pa-
per is to emphasize the inference counterpart, especially
in decision-critical applications, and also develop a simple
and scalable method for inference based on SGD.

2.2 Background theoretical results

To perform statistical inference using SGD-based estima-
tors, we need weak convergence results similar to the stan-
dard results for θ̂N . Arguably, the most well-known result
of this kind comes from the celebrated work of Ruppert
(1988); Bather (1989); Polyak and Juditsky (1992) who
showed that averaged SGD, namely θ̄N = 1

N

∑N
i=1 θi, sat-

isfies: √
N(θ̄N − θ⋆)→ Np(0, F

−1
⋆ ). (6)

Note that F−1
⋆ is the Cramér-Rao efficiency bound, which

is also attained by the empirical risk minimizer, θ̂N . This
efficiency bound cannot be improved by any asymptotically
unbiased estimator of θ⋆, which helps explain the popular-
ity of averaged SGD in practice.

On the other hand, standard stochastic approximation re-
sults (Ljung et al., 1992, II.8) imply that, under regularity
conditions (see Appendix), one-pass SGD satisfies:

√
N(θN − θ⋆)

d→ Np(0,Σ⋆),

where
Σ⋆ = γ2

1(2γ1F⋆ − I)−1F⋆. (7)

Here, it is assumed that γ1 is large enough such that
2γ1F⋆ − I ≻ 0. Then, positive-definiteness of Σ⋆ fol-
lows by a diagonalization argument on F∗—see Appendix.
A similar result in the context of generalized linear models

has been derived by Toulis et al. (2014). It is easy to see
that Σ⋆ ⪰ F−1

⋆ , implying that one-pass SGD is not statis-
tically efficient. In fact, the efficiency gap depends on the
condition number of F⋆, and can be large when the condi-
tion number is large.

While both results in Eqs. (6) and (7) can be used for in-
ference on θ⋆ as long as F⋆ can be consistently estimated,
the aforementioned inefficiency of θN has prompted re-
searchers to use averaging for SGD-based inference. In the
following section, we give more details on these methods.
In Section 3, we present our counter-argument advocating
the use of θN for inference. The key idea is that Σ⋆ can
easily be bounded above as Σ⋆ ⪯ γ∗

1I , for a proper selec-
tion of the learning rate. This results in a procedure that is
significantly simpler and more scalable than alternatives.

2.3 Related work

From the discussion in the previous section, it follows that
there are many possible options for inference with SGD-
based estimators. Toulis et al. (2017) made a similar point
by comparing the distribution of quadratic forms of SGD
estimators with their nominal asymptotic χ2 distribution.
Most recent work has exclusively focused on the averaged
SGD estimator, θ̄N , due to its appeal as a statistically opti-
mal estimator. The key idea is to estimate F−1

⋆ , either re-
cursively or through resampling, and then use this estimate
for inference (Anastasiou et al., 2019; Chen et al., 2020; Li
et al., 2018; Su and Zhu, 2018; Yang et al., 2018).

More specifically, to estimate F−1
⋆ , Chen et al. (2020) fol-

low a clever sub-sampling approach where data are split in
batches that are appropriately increased to ensure indepen-
dence between far apart batch-means. Su and Zhu (2018)
split the SGD iterates in a hierarchical tree structure. The
total depth of this tree, the number of splits at each junc-
tion, and the number of iterations between each split are all
parametrized. The covariance matrix is then estimated us-
ing the iterates on separate branches of this tree. Yang et al.
(2018) propose an online bootstrap resampling scheme. Li
et al. (2018) use the empirical covariance of the accumu-
lated averaged estimates. Anastasiou et al. (2019) develop a
non-asymptotic multivariate martingale Central Limit The-
orem, and use it to prove the rate of convergence of the
averaged SGD estimator to a normal random vector. Ne-
grea et al. (2021) show that many stochastic gradient esti-
mators converge weakly to an Ornstein-Uhlenbeck process
near local optimum, and with proper tuning the limiting sta-
tionary covariance can match the asymptotic distribution of
the MLE. Lee et al. (2022b) analyze proximal versions of
SGD and estimate the asymptotic covariance matrix in an
online fashion. Other works use random scaling methods
which can be implemented online as well (Lee et al., 2022a;
Li et al., 2022; Chen et al., 2021).
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2.4 The need for simple and scalable inference

Most existing SGD-based inference methods thus rely on
the averaged SGD estimator (Anastasiou et al., 2019; Chen
et al., 2020; Li et al., 2018; Su and Zhu, 2018; Yang et al.,
2018). While this estimator comes with elegant theoretical
guarantees of optimality (Ruppert, 1988; Polyak and Judit-
sky, 1992), estimating its p×p covariance matrix is a daunt-
ing task that typically requires heavy manual tuning. This
can be an exceptionally challenging task when p is even
moderately large, and standard procedures typically suffer
by numerical instability and slow convergence rates (Cai
et al., 2016; Fan et al., 2016; Ledoit and Wolf, 2004). As
such, existing methods of SGD-based inference have been
demonstrated on relatively small models and data sizes, in
which traditional estimators can scale as well.

As a specific point of comparison, the “batch-means”
method of Chen et al. (2020) has a complex set of hy-
perparameters relating to the convergence of its underlying
Markov chain, which includes the number of batches, mul-
tiple batch sizes, a decorrelation parameter, and the learn-
ing rate. All of these hyperparameters must be manually
tuned at costs that cannot be clearly specified. Such diffi-
culties in tuning hyperparameters may cause serious cov-
erage distortion (Lee et al., 2022a). Assuming that such
tuning is even possible, Chen et al. (2020) run SGD and
construct the full covariance matrix estimate over several
batch estimates with complexity O(N ϵp2 +Np).

In contrast, our method employs a single hyperparameter
(learning rate), and its selection is fully automatic with
small complexity at the order of O(Np). Our method then
just needs to run SGD, with the same total complexity
of O(Np). Our inference method also empirically scales
better than the state-of-the-art; in Section 5 we demon-
strate that our method can operate on 20× more model
parameters (4000 vs 200) with the same number of sam-
ples (N=1e5) compared to other SGD inference methods.

This comparison also extends to more traditional inference
procedures, such as the bootstrap (Efron and Tibshirani,
1985; Davison and Hinkley, 1997). Consider, for example,
a simplified form of the simulations in Section 5.1, with
Y ∼ N(X⊤θ⋆, 1). In Figure 2, we compare our method
(formally defined in Algorithm 1) with a procedure that
bootstraps the one-pass SGD estimator. In these results,
bootstrap appears to be more precise than our method, as
shown by the overcoverage rates in Figure 2(a), but quickly
becomes impractical as the problem size increases. Com-
pared to the bootstrap, our method overcovers only by a
reasonable amount (at most by 5%), and scales without
problems. Some recent attempts to scale up bootstrap in-
advertently sacrifice its simplicity. The “bag of little boot-
straps” (Kleiner et al., 2014), for instance, requires a del-
icate tuning of its batching and subsampling subroutines,
and thus cannot easily scale up to our settings.
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Figure 2: Coverage statistics from confidence intervals
generated by bootstrap and our method. Results averaged
over 100 replications, with 100 bootstrap samples each.

To address these challenges, our idea in this paper is to
trade theoretical optimality with practical simplicity in a
controlled manner. We leverage the scalable one-pass SGD
estimator, θN , and use a simple bound of its asymptotic
variance to construct confidence intervals that asymptoti-
cally achieve valid coverage. To tune this procedure we
only require an appropriate lower bound on the learning
rate of SGD. The resulting method is therefore simple and
scalable. To compensate for the unavoidable loss in effi-
ciency, we characterize the settings where this loss tends to
be worse (Theorem 3.3), and conduct extensive empirical
evaluations (Section 5.1) showing that the efficiency loss is
relatively small even in heavily ill-conditioned settings. We
present the details of our method in the next section.

3 Inference With One-Pass SGD Estimator

The idea to bound Σ⋆, the covariance matrix of θN , can be
described as follows. First, note that the eigenvalues of Σ⋆

in Eq. (7) can be derived in closed form:

eigen(Σ⋆) =

{
γ2
1λj

2γ1λj − 1
: j = 1, . . . , p

}
,

where λj is the j-th eigenvalue of F⋆. Note that λj > 0
since F⋆ is positive definite. By assumption, the learning
rate is large enough such that 2γ1λj − 1 > 0 for each com-
ponent j. Second, note that each eigenvalue of Σ⋆ asymp-
totes to γ1/2 for large enough γ1, in the sense that, as γ1
increases,

γ2
1λj

2γ1λj − 1
/
(γ1
2

)
→ 1. (8)

See Figure 3 for an illustration of the asymptote through
the quantity limγ1→∞ tr(Σ⋆)/γ1. Importantly, the limit in
Eq. (8) holds for each individual component. It thus implies
a uniform bound for Σ⋆, and, ultimately, a construction of
conservative confidence intervals at any desired level.
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Theorem 3.1. Let θN,j , denote the j-th component of θN in
Eq. (4), for j = 1, . . . , p. Suppose that γ∗

1 ≥ 1/minj{λj},
then γ∗

1I − Σ⋆ ≻ 0. Define the interval

CN,j(DN ) =

[
θN,j − zα

2

√
γ∗
1

N
, θN,j + zα

2

√
γ∗
1

N

]
, (9)

where zα
2
= Φ−1(1−α/2) is the critical value of the stan-

dard normal. Then, for every j = 1, . . . , p,

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
≥ 1− α. (10)

The result in Theorem 3.1 shows that we can construct
asymptotically valid confidence intervals, marginally for
every parameter component θ⋆,j . Below, we present an ad-
ditional result for joint inference on θ⋆.
Theorem 3.2. Let θN be the one-pass SGD in Eq. (4), and
suppose that γ∗

1 ≥ 1/minj{λj}. Define the following con-
fidence region:

Θ̂ =
{
θ ∈ Θ : (1/γ∗

1 ) ||θ − θN ||2 < χα,p

}
, (11)

where χα,p = sup{x ∈ R : P (χ2
p ≥ x) ≤ α} is the

α-critical value of a chi-squared random variable with p
degrees of freedom. Then,

lim inf
N→∞

P (θ⋆ ∈ Θ̂) ≥ 1− α. (12)

The resulting confidence region for θ⋆ according to Theo-
rem 3.2 is a hypersphere, and can thus be easily computed.

Remark 1 (Choosing γ∗
1 ). The confidence interval con-

struction in Theorems 3.1 and 3.2 is remarkably simple as
it only depends on a user-controlled learning rate (γ∗

1 ). This
avoids estimating Σ⋆, which is p×p, and only needs a lower
bound for its minimum eigenvalue. The resulting bound for
γ∗
1 is in fact standard for O(1/n) convergence of SGD; e.g.,

see (Moulines and Bach, 2011, Section 3.1). In Section 4.1,
we detail two data-driven procedures for selecting γ∗

1 that
work well across all our empirical settings.

Remark 2 (Conservativeness). Both our confidence in-
tervals in Eq. (10) and (12) are conservative, and will tend
to overcover. This is, unavoidably, the price we have to pay
for the computational simplicity of our method. We discuss
this issue from a theoretical perspective in the following
section. Moreover, in Section 5, we investigate overcover-
age through extensive empirical simulations.

Remark 3 (Asymptotics). Our coverage guarantees are
only asymptotic. Deriving nonasymptotic guarantees
would be challenging. Although non-asymptotic bounds
for SGD-based inference have been introduced in Moulines
and Bach (2011); Anastasiou et al. (2019), these bounds
rely on quantities—e.g., convexity parameters, Lipschitz
constants, or condition numbers—that are generally un-
known and hard to estimate from available data. We leave
this for future work.

Algorithm 1 Scalable inference with one-pass SGD, θN .

Input: Data DN , SGD procedure of Eq. (4), θ0, α ∈ (0, 1).
γ∗
1 ← select gamma(DN , θ0)

θN ← SGD(γ∗
1 , DN , θ0)

Output: Confidence interval for θ⋆,j from Theorem 3.1:(
θN,j ± zα

2

√
γ∗
1/N

)

3.1 Quantifying overcoverage

The following result shows that overcoverage in our
method depends on the condition number of F⋆.

Theorem 3.3. Let CN,j(DN ) be defined as in Eq. (9),
λmin = minj{λj}, λmax = maxj{λj}, and κ =
λmax/λmin ≥ 1. Define ρ = 1/γ∗

1λmin. Suppose that
the learning rate is well specified, such that ρ ≤ 1. Define

η = max
j=1,...,p

{
lim inf

N→∞
P
(
θ⋆,j ∈ CN,j(DN )

)
− (1− α)

}
,

the worst-case overcoverage across all θ⋆,j . Then,

α− 2Φ(−zα
2

√
2− ρ) ≤ η ≤ α− 2Φ(−zα

2

√
2− ρ/κ),

where zα
2
= Φ−1

(
1− α

2

)
is the critical value of the stan-

dard normal distribution.

Theorem 3.3 shows that the amount of overcoverage de-
pends on the condition number of F⋆, and the misspecifi-
cation of the learning rate (ρ). There is no overcoverage
when ρ = 1 (perfect specification) and κ = 1. At 5% level,
our method may overcover up to 99.4% in a worst-case sce-
nario of large κ (ill-conditioning).

4 Concrete Method and Implementation

Our proposed procedure is summarized in Algorithm 1.
The key component of the algorithm is function
“select gamma”, which chooses a learning rate so that
γ∗
1 ≥ 1/λmin, where λmin = minj{λj}. As discussed

before, this is actually the standard SGD condition for
O(1/n) convergence (Moulines and Bach, 2011, Section
3.1). So, our method does not introduce any new con-
straints to practitioners. Sometimes, a good estimate for
λmin may be easy to come up with (Cybenko and Van Loan,
1986; Mestre, 2008). In such cases the practitioner may
use their own estimate. Here, we contribute two ideas for
selecting γ∗

1 (Section 4.1). One idea uses an asymptotic re-
sult on the eigenvalues of Σ⋆, and the other idea involves
estimating the learning rate condition directly from a crude
estimate of F⋆. The rest of this section discusses these two
approaches, in addition to discussions on simplicity, nu-
merical stability and initialization.
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Figure 3: Selection of γ∗
1 based on asymptotic results on

eigen(Σ⋆). The red line is the line y = x/2, which is the
asymptote in Eq. (8). The blue line is a “confidence region”
for our selection (see Appendix D.1). The vertical purple
line marks the heuristically selected γ∗

1 .

4.1 Selecting γ∗
1

Linear asymptote in Σ⋆. At a high level, the variance
bound in Theorem 3.1 holds in the regime where the co-
variance matrix of θN is linear with respect to γ1. One idea
is therefore to try and estimate when such regime has been
reached. The idea is visualized in Figure 3. Recall from
Eq. (8) that the eigenvalues of Σ⋆ asymptote to γ1/2, and so
the trace of Σ⋆ should asymptote to pγ1/2, as shown in the
figure. The idea is then to slowly increase the learning rate
γ1 and at the same time monitor the trace of NVar(θN ).
When γ1 is large enough for Theorem 3.1 we expect that
a linear regression of trace(NVar(θN )) with respect to γ1
will give a coefficient around p/2 with high confidence.
Only a crude estimate of the variance trace is needed, which
can be done via bootstrap. See Appendix D.1 for more de-
tails, and a practical example.

An eigenvalue bound. In some settings, an estimate F̃
of F⋆ exists that may be too crude to be used directly for
inference, but may be acceptable for estimating a bound on
λmin. Then, an alternative way of selecting γ∗

1 is to numer-
ically find the maximum eigenvalue of F̃−1, which implies
the minimum eigenvalue of F⋆ To this end, we propose us-
ing inverse power iteration (Trefethen and Bau III, 1997),
which is a simple iterative algorithm. More details of this
algorithm and its implementation are in Appendix D.2.

4.2 Other implementation details

Numerical stability. The inference procedure in Algo-
rithm 1 depends on selecting a large enough learning rate
γ∗
1 . However, SGD can be sensitive to the learning rate, and

may even diverge if the rate is too large. To resolve such
issues, we use SGD with implicit updates (ISGD) (Bert-

sekas, 2011; Toulis et al., 2014, 2017), revising Eq. (4) as
follows:

θn = θn−1 −
γ1
n
∇ℓ(θn;YIn , XIn). (13)

Note that θn appears on both sides of the update, which
adds robustness. For instance, in the linear model, ISGD is
remarkably stable as it effectively normalizes the learning
rate by ||X||2; see also (Toulis et al., 2014, Algorithm 1)
for efficient computation of Eq. (13) for a large range of
models. Furthermore, robustness comes at no cost to effi-
ciency as ISGD has the same asymptotic properties as clas-
sical SGD (Toulis et al., 2014, 2016; Bianchi and Hachem,
2016; Asi and Duchi, 2019; Toulis et al., 2021; Lee et al.,
2022b). We thus have to use the one-pass ISGD estima-
tor in the numerical experiments that follow. Our inference
procedure would not be possible with classical SGD be-
cause selecting γ∗

1 requires us to explore potentially large
learning rates.

Initialization. Choosing θ0 is important because the one-
pass SGD estimator has a limited number of passes to reach
the asymptotic regime. Empirically, we have observed that
the initialization of θ0 may have some impact on the quality
of the confidence intervals. Several initialization methods
were tested: implicit SGD with constant learning rate, de-
creasing rate ∝ 1/n or 1/

√
n, and averaged iterates. The

best results were achieved by initializing θ0 with averaged
ISGD with a number of O(

√
p) passes over the data.

Other point estimates of θ⋆. It is possible to use other
point estimates of θ⋆ to center the confidence intervals in
Eq. (9) and (11), e.g., we could use the averaged SGD (θ̄N ),
or a multi-pass SGD (θkN ), instead of θN . However, the
coverage properties of our intervals would not change be-
cause we would still have to use our covariance upper
bound from Theorem 3.1. That is, despite the swap in
the point estimate, the interval length does not change, and
so our core asymptotic coverage statement in Theorem 3.1
would remain unchanged as well. While our results are re-
ported with θN , we do not observe a meaningful change in
the coverage rate when changing the point estimate.

5 Experiments

We have presented a procedure to conduct statistical infer-
ence with one-pass SGD. Our explicit design choice has
been to trade off theoretical efficiency for a much simpler
method. In the following experiments, we demonstrate that
we usually strike an effective trade-off. In summary, the
amount of overcoverage is mild, and we are able to provide
inference results at previously unreported scales. In all of
our empirical evaluations, our intervals are always informa-
tive and never too wide. Due to space constraints, we report
more detailed comparisons under the empirical settings of
other works in Appendix E.
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5.1 Simulations

Here, we present results from numerical simulations to
evaluate the inference procedure in Algorithm 1. Our gen-
eral approach is to use M = 500 confidence intervals
{CIj,m}Mm=1 computed from independently generated data
for each run. We evaluate the performance of our infer-
ence procedure based on the empirical coverage, defined
by 1

Mp

∑p
j=1

∑M
m=1 1(θ⋆,j ∈ CIj,m), and average interval

lengths; see also Chen et al. (2020); Dezeure et al. (2015)
for other uses of this metric.1 A salient subset of our re-
sults are given in Tables 1-2 below, with the full set of re-
sults in Appendix F.5. We also applied our method on a
real-world dataset, based on a preprocessed version of the
Adult dataset2 with 123 binary features and 32,561 sam-
ples. These results can be found in Appendix F.2.

Features are sampled as Xi ∼ Np(0,Σx) under four differ-
ent structures of the covariance matrix Σx ∈ Rp×p:

• Identity (Id): Σx = Ip.
• Toeplitz (T): Σx[i, j] = 0.5|i−j|.
• Equi-Correlation (EC): Σx[i, j] = 0.2 (i ̸= j),

and Σx[i, i] = 1.
• Ill-Conditioned (IC): Σx[i, j] = 0 (i ̸= j), and
Σx[i, i] = 0.1 + 100−0.1

p−1 (i− 1).

As a side note, to the best of our knowledge this is the first
paper to consider the challenging ill-conditioned setting.

Configurations of the true parameter θ⋆ include:

• Exponential (Exp): θ⋆,i = 2(−1)ie−.7i.
• Linear (Lin): θ⋆,i = (i− 1)/(p− 1).

We consider p ∈ {10, 20, 50, 100, 500, 1000, 2000, 4000},
and data sizes N ∈ {104, 105}. The model is ei-
ther a linear normal model or logistic regression; i.e.,
Yi|Xi ∼ N(X⊤

i θ⋆, 1) or Yi|Xi ∼ Bern(exp(X⊤
i θ⋆)/(1 +

exp(X⊤
i θ⋆))), respectively. Here, Bern(q) denotes a

Bernoulli random variable with mean q.

Table 1 presents “best-case results” as it assumes we know
the true value of λmin, and thus set γ∗

1 = 1/λmin. In Ta-
ble 2, there is no good estimate of λmin, and we employ
the methods of Section 4.1 to select γ∗

1 . We compare to the
MLE in Eq. (3), which is statistically optimal under reg-
ular conditions. Our implementation of one-pass SGD is
21× faster than the library procedure we use to compute the
MLE; e.g., in the R language, this amounts 0.006 seconds
(ours) vs 0.128 seconds (mle) for N=1e4, p=100. In Ap-
pendix F.4, we also compare to the SGD inference method
of (Chen et al., 2020) by referencing results in their paper.
In all experiments, the target coverage was set to 95%.

1Empirically the coverage rate across coordinates is relatively
stable. The component-wise standard deviation is 1.7% for our
method, and 2.3% for MLE (linear regression, N=1e4, p=100, Id
covariance, Exp θ⋆).

2https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

Known λmin. In Table 1, where λmin is assumed known,
our SGD inference procedure attains an empirical cover-
age of 96%-98% in the linear regression model, which is
close to nominal coverage. The average interval lengths are
typically no more than 1.5× the MLE benchmark interval
lengths, which indicates that we don’t pay a heavy price for
the method’s computational simplicity. Moreover, higher
correlation among X’s makes our intervals more conser-
vative. Higher correlation also affects the interval length.
For example, with a Toeplitz structure (T), the confidence
interval from our procedure almost doubles in length com-
pared to no correlation (Id). Similar patterns emerge from
Table 1 for logistic regression as well.

Unknown λmin. In, Table 2, λmin is not known, and so
we select γ∗

1 according the procedures of Section 4.1. We
use SGD-Asym to refer to the asymptote-based selection
procedure, and SGD-Eig for the power iteration proce-
dure. We see that SGD-Asym attains an empirical coverage
of 98%-99%, which is only slightly worse than before. The
average interval lengths are typically no more than 2.6× the
benchmark MLE interval lengths. Procedure SGD-Eig at-
tains the slightly better empirical coverage of 96%-98%,
with average interval lengths no more than 1.8× the MLE
intervals. These results indicate that improving the estima-
tion of λmin could further improve our method.

Ill-conditioned cases. Our method overcovers more sub-
stantially in these cases (∼99.9% in linear model, ∼96-
98% in logistic model). Interestingly, the interval lengths
increase but not substantially compared to other settings.
We emphasize that ill-conditioned settings are also chal-
lenging for MLE. Specifically, MLE coverage can even
drop to 11% in some ill-conditioned cases, indicating that
perhaps inference is just too hard in these particular cases.

Failures. Overall, the coverage results from SGD com-
pare remarkably well with MLE, given that our construc-
tion relies only on one single learning rate selection, γ∗

1 .
One notable failure, however, happens in the logistic model
with p = 500 and N = 105, and uncorrelated X’s (Id).
In Table 1 this setting results in 64% coverage, and in
Table 2 the corresponding number is 72%. We believe
that the data generating process contributes to this de-
graded performance, as there is not enough signal to es-
timate all 500 parameters well enough. This is tenta-
tively confirmed by looking at the empirical distribution
of exp(X⊤θ⋆)/(1 + exp(X⊤θ⋆)); see Appendix F.3 for
details. We obtain additional evidence by looking at the
coverage results for MLE, which for these settings are also
somewhat problematic (around 88%).

Large-scale settings. The simplicity of our inference
procedure allows us to scale to dimensions significantly
larger than any other SGD-based inference procedure that

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Linear Regression Logistic Regression
SGD MLE SGD MLE

θ⋆ Σx p, N CovRate AvgLen CovRate AvgLen CovRate AvgLen CovRate AvgLen
(%) (×10−2) (%) (×10−2) (%) (×10−2) (%) (×10−2)

Exp Id 50, 1e4 96.41 4.33 94.75 3.93 96.71 11.04 95.14 8.91
500, 1e5 96.95 1.40 95.07 1.24 97.17 3.53 94.92 2.80

EC 50, 1e4 96.88 4.80 94.86 4.22 96.64 11.56 94.81 9.49
500, 1e5 96.89 1.52 95.07 1.35 96.91 3.68 94.84 3.01

T 50, 1e4 98.20 7.08 95.16 5.05 97.54 15.53 95.38 11.00
500, 1e5 98.17 2.28 94.93 1.60 97.30 4.86 94.91 3.48

IC 100, 1e5 99.94 4.28 94.82 0.27 96.37 8.52 94.96 0.57
500, 1e5 99.97 4.89 95.01 0.25 98.78 8.23 94.89 0.50

Lin Id 50, 1e4 96.76 4.42 94.91 3.93 88.49 34.65 94.48 13.97
500, 1e5 96.85 1.40 95.01 1.24 63.77 55.77 88.09 7.65

EC 50, 1e4 96.98 4.79 95.03 4.23 89.56 54.93 94.50 23.19
500, 1e5 96.87 1.52 95.00 1.35 100.00 222.09 48.40 28.80

T 50, 1e4 98.17 7.28 95.08 5.05 87.51 42.14 94.58 22.40
500, 1e5 98.18 2.26 94.99 1.60 85.14 73.68 87.07 12.97

IC 100, 1e5 99.95 4.30 94.90 0.27 69.91 45.35 86.97 5.74
500, 1e5 100.00 4.89 94.97 0.25 100.00 249.43 11.00 12.93

Table 1: Linear and Logistic regression and learning rate γ∗
1 set to 1/λmin, where λmin is assumed to be known. The

average coverage rate and interval lengths are calculated for a target coverage probability of 95%.

we are aware of. To the best of our knowledge, the largest
empirically demonstrated dimension for another SGD-
based inference procedure is p = 200, N = 105 in Chen
et al. (2020). Here we consider p ∈ {1000, 2000, 4000}
and N = 105 over 100 replications. The results in Table 3
demonstrate the scalability of our method with respect to p.
Our method achieves near-nominal coverage (∼98%) even
in the largest instances.

Comparison to other SGD-based methods. Despite its
simplicity, our method compares favorably to other SGD-
based inference methods as well. One notable character-
istic is that our method does not suffer from undercover-
age, which is generally considered worse than overcover-
age from a statistical perspective. Undercoverage seems to
be common in methods that require extensive tuning, such
as Lee et al. (2022a) and Chen et al. (2020). For instance,
the method of Chen et al. (2020), following the implemen-
tation of Lee et al. (2022a), may undercover down to 64%
even in “easy” instances of logistic regression with N=1e5
and p < 200. See Appendix E for further discussion.

5.2 A novel healthcare application

In this section, we use our method to analyze a large med-
ical dataset from the University of Pennsylvania Perel-
man School of Medicine. In this application, medical re-
searchers want to model adverse events—death, surgical
complication, or prolonged hospital stay—among emer-
gency general surgery (EGS) patients. While prediction
is one goal, it is also important to understand the driving

physiological and sociodemographic factors in order to cre-
ate effective policies to reduce such adverse events. The
scale of this problem warrants the development of large-
scale inference methods. EGS medical conditions (Gale
and Crystal, 2014; Shafi, 2014) account for more than
800,000 operations in the United States and affect an es-
timated 3–4 million patients per year (Gale and Crystal,
2014; Havens and Salim, 2015; Ogola and Shafi, 2015;
Scott and Havens, 2016).

Our dataset includes patient sociodemographics, insurance
types, and comorbidities (Elixhauser and Coffey, 1998).
The data analyzed here consists of 22,000 rows and 83 fea-
tures (1-hot encoded). This scale allows us to compare the
confidence intervals generated by our inference procedure
with those generated by MLE. We provide both quantita-
tive and qualitative evidence that our inference procedure
generates informative confidence intervals. Our workhorse
model was logistic regression.

Quantitatively, 85.7% of the marginal intervals created
by our SGD-based procedure share non-zero overlap with
MLE. Moreover, 6 out of 8 significant features found by
MLE are also found by SGD, while there is only one con-
flict in coefficient sign. Qualitatively, the positive and neg-
ative significant features which SGD and MLE agree on
generally make medical sense. For example, both methods
agree that performing surgery or high risk conditions in-
creases the probability of an adverse event. Or that a lower
number of comorbidities indicates a higher probability of
not having an adverse event. We present the full results in
Appendix G.
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Linear Regression Logistic Regression
SGD-Asym SGD-Eig SGD-Asym SGD-Eig

θ⋆ Σx p, N CovRate AvgLen CovRate AvgLen CovRate AvgLen CovRate AvgLen
(%) (×10−2) (%) (×10−2) (%) (×10−2) (%) (×10−2)

Exp Id 50, 1e4 98.89 6.92 96.74 4.38 99.00 17.69 96.68 11.17
500, 1e5 98.86 2.14 96.81 1.40 99.02 5.84 97.31 3.55

EC 50, 1e4 98.75 6.73 96.98 4.75 98.84 18.58 96.98 11.61
500, 1e5 99.00 2.51 96.91 1.52 98.75 5.47 96.99 3.74

T 50, 1e4 99.18 11.77 97.96 7.09 98.98 23.87 97.30 15.30
500, 1e5 99.29 3.95 98.26 2.28 99.00 8.16 97.26 4.86

IC 100, 1e5 100.00 9.65 99.96 4.28 96.57 6.83 96.36 8.45
500, 1e5 100.00 10.61 100.00 4.95 99.05 16.49 98.77 8.13

Lin Id 50, 1e4 98.99 6.89 96.76 4.39 94.84 51.51 86.30 31.44
500, 1e5 98.98 2.31 96.91 1.40 71.83 110.39 64.10 54.57

EC 50, 1e4 98.94 7.87 96.44 4.74 93.09 79.9 89.64 49.49
500, 1e5 99.02 2.56 96.84 1.52 100.00 414.28 100.00 212.58

T 50, 1e4 99.14 10.29 97.74 7.08 90.48 51.52 87.34 40.68
500, 1e5 99.37 4.20 98.24 2.28 94.73 146.82 85.26 74.51

IC 100, 1e5 100.00 9.52 99.90 4.28 93.43 94.07 69.46 47.79
500, 1e5 100.00 10.72 100.00 4.95 100.00 567.26 100.00 236.25

Table 2: Linear and Logistic regression and SGD with the first γ∗
1 selection method (SGD-Asym) and second method

(SGD-Eig). The average coverage rate and interval lengths are calculated for a target coverage probability of 95%.

θ⋆ Σx p, N CovRate AvgLen
(%) (×10−2)

Exp Id 1e3, 1e5 97.18 1.47
2e3, 1e5 97.82 1.59
4e3, 1e5 98.36 1.78

Table 3: High dimensional linear regression with inverse
power method to select γ∗

1 . The average coverage rate and
interval lengths are calculated for a target coverage proba-
bility of 95%.

6 Concluding Remarks

We developed a statistical inference procedure using SGD-
based confidence intervals. These intervals are of the sim-
plest possible form as they depend only on a cautious selec-
tion of the learning rate. Through numerical experiments of
up to p = 4000, and N = 105 we demonstrated that our
intervals have good coverage properties even compared to
MLE. We also showed our method’s practical significance
on modeling adverse events in EGS. This example illus-
trated the practical need for scalable inference in modern
machine learning as prediction performance alone does not
capture how well models describe the real world. The key
idea in our method is to trade off statistical efficiency for
computational simplicity, and is guided by our belief that
simplicity trumps theoretical optimality in real-world ap-
plications. The resulting inference procedure is remarkably
simple, and achieves the desired coverage, albeit conserva-
tively, in a wide range of large-scale empirical evaluations.
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Appendix

A A general result on the sampling properties of SGD-based estimators.

Here, we present a general result on the asymptotic distribution of SGD-based estimators. This result is general enough to
apply to many variants, including mini-batch and variance-reduced SGD, which we discuss next. The result is stated on
the following general procedure:

θn = θn−1 −
γ1
n
Sn(θn−1). (14)

Here, Sn(θ) is a random function, and it is understood that there exists a non-decreasing sequence of σ-fields ,Fn, such
that Sn is measurable by Fn for every n. In practice, Sn(θ) will correspond to some form of stochastic gradient, so that it
is zero in expectation at θ⋆. For the asymptotic distribution of θn in Eq. (14) we will use the following assumptions.

Assumption A.1. There exists s : Rp → Rp such that s(θ) = E[Sn(θ)], for all n. The Jacobian, Js(θ), of s() exists and
is bounded for every θ. Also, define:

σ2
n,ϵ = E

(
I{||Sn(θ)− s(θ)||2 > ϵn}||Sn(θ)− s(θ)||2

)
.

The following conditions hold:

(i) There is a unique θ⋆ ∈ Θ for which E[Sn(θ⋆)] = 0;

(ii) Js(θ) is Lipschitz and s(θ) is smooth element-wise (with bounded high-order derivatives);

(iii) γ1J
⋆
s − I/2 ≻ 0, where J⋆

s = Js(θ⋆);

(iv) There exists V ⋆
s ≻ 0 such that

||E
(
Sn(θ⋆)Sn(θ⋆)

⊤)− V ⋆
s || → 0;

(v)
∑n

j=1 σ
2
j,ϵ = o(n), for every ϵ > 0.

Remarks. Assumption 1(i) is necessary for stochastic convergence of the iterations in Eq. (14). As mentioned earlier,
this holds when Sn(θ) is defined through the stochastic gradient (see following section). Assumptions 1(ii) and 1(iii) are
necessary for O(1/n) convergence. Assumption 1(v) is the classical Feller-Lindeberg condition for asymptotic normality.

Theorem A.2. For the procedure in Eq. (14), suppose that θn
p→ θ⋆, and all conditions in Assumption A.1 hold. Then,

√
n(θn − θ⋆)

d→ Np(0,Σ),

where γ2
1V

⋆
s = (γ1J

⋆
s − I/2)Σ + Σ(γ1J

⋆
s − I/2).

Proof. Define wn = θn − θ⋆ and rewrite the SGD iteration as follows:

wn = wn−1 −
γ1
n
[s(θn−1) + ϵn],

where ϵn = Sn(θn−1) − s(θn−1). Note that the definition of ϵ is possible by Assumption A.1. We make a Taylor
approximation on s(θ) around θ⋆: s(θ) = s(θ⋆) + Js(θ⋆)(θ − θ⋆) +O(||θ − θ⋆||2). We write the above iteration as:

wn = [I − γ1
n
Js(θ⋆)]wn−1 −

γ1
n
[ϵn + s(θ⋆) +O(||θn−1 − θ⋆||2)].

Then,

• O(||θn−1 − θ⋆||2)
p→ 0 since we assume consistency of θn, i.e., θn

p→ θ⋆.

• s(θ⋆) = 0 by Assumption 1(i);

• 2γ1Js(θ⋆)− I is positive definite by Assumption 1(iii);

• ||E(ϵnϵ⊤n − V ⋆
s )||

p→ 0 by the continuous mapping theorem and Assumption 1(iv);
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• The Lindenberg-Feller conditions hold for ϵn by definition of ϵ and Assumption 1(v);

The result then follows from Theorem 1 of Fabian (1968).

Remarks. Theorem A.2 requires that θn is consistent for θ⋆. The conditions for such form of convergence are, of course,
weaker than the conditions in Theorem A.2, and have been extensively studied. One classical set of assumptions, for
example, is strong convexity of s(θ) and uniformly bounded second moments, i.e., E(||Sn(θ)||2) = O(1) w.p. 1 for every
θ; see Moulines and Bach (2011) for more details. Almost sure consistency is also possible when Sn(θ) is uniformly
bounded; see, for example, Borkar (2008, Section 1).

We illustrate Theorem A.2 for the statistical model of Eq. (1), where a dataset, DN = {(xj , yj) : j = 1, . . . , N}, is given.
In this context, Theorem A.2 may be used under either a “fixed data” regime where N is finite, or a “streaming data”
regime where N = ∞. In the former regime, θ⋆ as defined in Assumption A.1 corresponds to θ̂N in Eq. (3), since all
probability statements in Assumption A.1 and Theorem A.2 are with respect to the empirical data distribution. In the latter
regime, θ⋆ as defined in Assumption A.1 corresponds to the population parameter θ⋆ as defined in Eq. (1). The streaming
regime is suitable for the statistical inference task of Eq. (2), which is the main goal of this paper, but below we will briefly
discuss both regimes.

We now illustrate how Theorem A.2 covers a variety of SGD procedures.

Example 1: SGD, fixed data (N <∞). Let GN (θ) be the p×N matrix where the j-th column is ∇ℓ(θ; yj , xj) and ZN

denotes a binary (column) vector of length N with only one nonzero element chosen at random. With these definitions, the
SGD procedure of Eq. (4) corresponds to procedure (14) with Sn(θ) = GN (θ)ZN . Since E(ZN ) = (1/N)1N , where 1N

is the vector of N ones, it follows that E(GN (θ)ZN ) = (1/N)
∑N

j=1∇ℓ(θ; yj , xj) is the full-data gradient. As mentioned

earlier, the minimizer θ̂N defined in Eq. (3) plays the role of θ⋆ (as defined in Assumption A.1 and Theorem A.2), and all
probability statements are with respect to the empirical data distribution. Specifically, Theorem A.2 shows that multi-pass
SGD, θkN , is asymptotically normal around θ̂N as k →∞.

Example 2: Mini-batch SGD, fixed data (N < ∞). Instead of sampling one datapoint per iteration, m data points can
be sampled and their gradients averaged. In this case, Sn(θ) = (1/m)GN (θ)ZN,m where ZN,m is a N -length binary
vector with only m nonzero elements chosen at random without replacement. Averaging the gradients does not change
their expectation, and so E(Sn(θ)) is the full gradient as in Example 1. The asymptotic variance of mini-batch SGD is
1/m as that of plain SGD, but this comes at a cost of processing m times more samples. It follows that mini-batch SGD is
statistically equivalent to plain SGD.

Example 3: Variance reduction, fixed data (N < ∞). For variance reduction methods (Johnson and Zhang, 2013,
SVRG) the procedure is typically defined as in Eq. (14) with

Sn(θ) = GN (θ)ZN −GN (θ̃)ZN + (1/N)GN (θ̃)1N ,

where θ̃ is an additional iterate obtained by periodically running SGD over all the data. By construction, E(Sn(θ)) is again
the same as in Example 1. However, the limit variance, V ⋆

s of Sn(θ) is vanishing at rate O(1/n) if both θn
p→ θ⋆ and

θ̃n
p→ θ⋆ (as before, θ⋆ ≡ θ̂N in this setting). This means that θn from the SVRG procedure is a super-efficient estimator

of θ̂N .

Example 4: One-pass SGD, streaming data (N = ∞). In this setting, we define Sn(θ) = ∇ℓ(θ;Yn, Xn), where
(Yn, Xn) is the n-th datapoint sampled independently from the population. As mentioned earlier, θ⋆ in Theorem A.2 now
corresponds to the target population parameter in Eq. (1).

An important and useful simplification happens if we assume that the loss in Eq. (1) and Eq. (3) is well-specified. We
introduce the following assumption.

Assumption A.3. For the statistical model of Eq. (1) let Y |X ∼ f(Y |X, θ⋆), where f is a known density family pa-
rameterized in Θ, but the model parameter θ⋆ is unknown. The loss function is well-specified when it corresponds to the
negative log-likelihood, i.e., ℓ(θ; y, x) = − log f(y|x, θ).

Under Assumption A.3 and typical regularity conditions on the model f and space Θ (Van der Vaart, 2000, Section 5) it
holds that E{∇ℓ(θ⋆;Y,X)} = 0, and the expected Hessian of the loss and its gradient variance are related:

E{∇2ℓ(θ⋆;Y,X)} = Var{∇ℓ(θ⋆;Y,X)} ≜ F⋆ ≻ 0. (15)
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Matrix F⋆ is known as the Fisher information matrix and plays a crucial role in statistical estimation (Casella and Berger,
2002, Section 7). The following result gives a more refined asymptotic variance under a well-specified loss.

Corollary A.4. In the streaming data regime, consider procedure Eq. (14) with Sn(θ) = ∇ℓ(θ;Yn, Xn) where (Yn, Xn)
is the n-th datapoint sampled i.i.d.. Suppose also that Assumption A.1, and the loss is well-specified as described in
Assumption A.3. Then, the one-pass SGD estimator satisfies

√
N(θN − θ⋆)

d→ Np(0,Σ⋆),

where Σ⋆ = γ2
1(2γ1F⋆ − I)−1F⋆.

Proof. In this case, by definition, J⋆
s = V ⋆

s = F⋆, where F⋆ is the Fisher information matrix. The variance formula of
Theorem A.2 can be written as:

γ2
1F⋆ = (γ1F⋆ − I/2)Σ + Σ(γ1F⋆ − I/2). (16)

This equation has a unique solution. To see this, consider two solutions, Σ1 and Σ2. Let ∆ = Σ1−Σ2 and γ1F⋆ = F ≻ 0
for simplicity. Then, by simple subtraction:

(F − I/2)∆ +∆(F − I/2) = 0

F∆+∆F = ∆.

Let λ be the minimum eigenvalue of F and v the corresponding eigenvector, such that Fv = λv, and λ > 0. Note that
2λ− 1 > 0 by Assumption 1. Multiply with ∆v from the left and with v from the right to obtain:

(∆v)⊤F∆v + (∆v)⊤∆(Fv) = (∆v)⊤∆v

(∆v)⊤F∆v + λ||∆v||2 = ||∆v||2

λ||∆v||2 + λ||∆v||2 ≤ ||∆v||2

(2λ− 1)||∆v||2 ≤ 0.

||∆v||2 ≤ 0.

Hence, ∆ = 0 and so the solution must be unique if it exists. Indeed, a solution exists since we can verify that Σ =
γ2
1(2γ1F⋆ − I)−1F⋆ satisfies Eq. (16).

Example 5: Adaptive methods, streaming data (N = ∞). In the streaming regime, define Sn(θ) = Γ∇ℓ(θ;Yn, Xn)
where Γ is a p × p positive definite matrix, and γ1 = 1 without loss of generality. Under well-specified loss, we can
use Eq. (15) to obtain J⋆

s = ΓE(∇2ℓ(θ;Y,X))Γ⊤ = ΓF⋆Γ
⊤. Also, Var(Sn(θ⋆)) = ΓF⋆Γ

⊤. If we choose Γ = F−1
⋆ ,

Corollary A.4 implies that the one-pass SGD estimator satisfies:

NVar(θN )→ F−1
⋆ .

Matrix F−1
⋆ is the celebrated Cramér-Rao bound in statistics, and is the fundamental estimation bound under regularity

conditions; that is, no other consistent estimator of θ⋆ can achieve smaller variance than F−1
⋆ /N in the limit (Casella and

Berger, 2002, Section 10.1).

Most adaptive methods therefore try to approximate F⋆, one way or another. For example, Sakrison (1966) shows that the
scheme Sn(θ) = F−1

n ∇ℓ(θ;Yn, Xn) is also efficient when Fn
p→ F⋆. Amari (1998) refers to such Sn(θ) as the “natural

gradient”, and makes a similar argument. Other adaptive procedures such as AdaGrad Duchi et al. (2011), Adam Kingma
and Ba (2014), or RMSProp, are variations of this idea.

B Details on Figure 2

We set θ⋆ to the “Linear” setting as described in the simulation results. We assume that we have a good estimate of λmin,
the minimum eigenvalue of the Fisher Information. Thus, the timing results are comparing the multiple SGD runs required
for the bootstrap estimate with our method which only needs to run SGD once to compute the confidence interval.



Jerry Chee, Hwanwoo Kim, Panos Toulis

C Results for Section 3

Theorem 3.1. Let θN,j , j = 1, . . . , p denote the j-th component of θN in Eq. (4). Suppose that γ∗
1 ≥ 1/minj{λj} so that

γ∗
1I − Σ⋆ ≻ 0. Define the interval

CN,j(DN ) =

[
θN,j − zα

2

√
γ∗
1

N
, θN,j + zα

2

√
γ∗
1

N

]
,

where zα
2
= Φ−1(1− α/2) is the critical value of the standard normal. Then, for any j = 1, . . . , p,

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
≥ 1− α.

Proof. Let Σ⋆ = QΛQ⊤ be the eigendecomposition of Σ⋆. The j-th diagonal element of Λ satisfies Λ[j, j] =
(γ∗

1 )
2λj/(2γ

∗
1λj − 1), with λj the j-th eigenvalue of F⋆. The eigenvalues of Σ⋆ can be decomposed as

(γ∗
1)

2λj

2γ∗
1λj − 1

=
γ∗
1

2
+

1

4λj
+

1

4λj(2γ∗
1λj − 1)

.

Since γ∗
1 ≥ 1/minj{λj}, it follows that for all j = 1, . . . , p,

γ∗
1 −

(γ∗
1)

2λj

2γ∗
1λj − 1

> 0⇒ γ∗
1I − Σ⋆ ≻ 0. (17)

This establishes the first claim in the theorem. Now, we prove the second claim. The technique is straightforward, and
follows the joint inference proof in Section A.1 Specifically, for j = 1, . . . , p let

C̃N,j(DN ) =

θN,j − zα
2

√
σ2
j

N
, θN,j + zα

2

√
σ2
j

N

 ,

where σ2
j is the j-the diagonal element of Σ⋆. By the asymptotic normality of θN in Corollary A.4, we obtain

lim inf
N→∞

P
(
θ⋆,j ∈ C̃N,j(DN )

)
= 1− α,

for a desired significance level α. By the previous bound in Eq. (17), diag(QΛQ⊤) = diag(ΛQQ⊤) ≤ γ∗
1I, where “≤”

here denotes element-wise comparison. Then, for any fixed j ∈ {1, . . . , p}, we have

C̃N,j(DN ) ⊆ CN,j(DN ).

This implies that CN are conservative confidence intervals, i.e.,

lim inf
N→∞

P
(
θ⋆,j ∈ CN,j(DN )

)
≥ 1− α,

Theorem 3.2. Let θN be the one-pass SGD in Eq. (4), and suppose that γ∗
1 ≥ 1/minj{λj}. Define the following

confidence region:
Θ̂ = {θ ∈ Θ : (1/γ∗

1 ) ||θ − θN ||2 < χα,p},

where χα,p = sup{x ∈ R : P (χ2
p ≥ x) ≤ α} is the α-critical value of a chi-squared random variable on p degrees of

freedom. Then,
lim inf
N→∞

P (θ⋆ ∈ Θ̂) ≥ 1− α.
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Proof. Note that by Corollary A.4, we have

(θN − θ⋆)
⊤Σ−1

⋆ (θN − θ⋆)
d→ χ2

p.

By Theorem 3.1, we get Σ−1
⋆ − (1/γ∗

1)I ⪰ 0, and so

(θN − θ⋆)
⊤Σ−1

⋆ (θN − θ⋆)− (1/γ∗
1)∥θN − θ⋆∥2 ≥ 0.

It follows that

P (θ⋆ ̸∈ Θ̂) = P{(1/γ∗
1)∥θN − θ⋆∥2 ≥ χα,p} ≤ P{(θN − θ⋆)

⊤Σ−1
⋆ (θN − θ⋆) ≥ χα,p} = α.

Thus, by the Portmanteau Theorem (Kallenberg, 1997), we get

lim inf
N→∞

P (θ⋆ ∈ Θ̂) ≥ 1− lim sup
N→∞

P (θ⋆ /∈ Θ̂) ≥ 1− α.

Theorem 3.3. Let CN,j(DN ) =

[
θN,j − zα

2

√
γ∗
1

N , θN,j + zα
2

√
γ∗
1

N

]
, for j = 1, . . . , p. Let λmin = minj λj and λmax =

maxj λj , and define ρ = 1/γ∗
1λmin. Suppose that the learning is well specified, such that ρ ≤ 1. Define

η = max
j=1,...,p

{
lim inf

N→∞
P
(
θ⋆,j ∈ CN,j(DN )

)
− (1− α)

}
as the worst-case overcoverage across all components of θ⋆. Let κ = λmax/λmin ≥ 1 be the condition number of F⋆.
Then,

α− 2Φ

(
− zα

2

√
2− ρ

)
≤ η ≤ α− 2Φ

(
− zα

2

√
2− ρ/κ

)
,

where zα
2
= Φ−1

(
1− α

2

)
is the critical value of standard normal.

Proof. Fix some component j. Denote σ2
j as the j-th diagonal element of Σ⋆. By Corollary A.4 the confidence interval[
θN,j − zα

2

√
σ2
j /N, θN,j + zα

2

√
σ2
j /N

]
has the nominal 100(1− α)% level in the limit. Our goal is to understand how much we overcover when we use the same
γ∗
1 on all coordinates. The coverage for component j in this case is:

P

(∣∣∣∣∣θN,j − θ⋆,j√
γ∗
1/N

∣∣∣∣∣ ≤ zα
2

)
= P

∣∣∣∣∣∣θN,j − θ⋆,j√
σ2
j /N

∣∣∣∣∣∣ ≤ zα
2

√
γ∗
1/σ

2
j

 = 1− 2Φ
(
−zα

2

√
γ∗
1/σ

2
j

)
.

The amount of overcoverage for component j is therefore equal to

1− 2Φ
(
−zα

2

√
γ∗
1/σ

2
j

)
− (1− α) = α− 2Φ

(
−zα

2

√
γ∗
1/σ

2
j

)
.

It follows that

η = max
j

{
α− 2Φ

(
−zα

2

√
γ∗
1/σ

2
j

)}
= α− 2Φ

(
−zα

2

√
max

j
γ∗
1/σ

2
j

)
.

By construction (see Theorem 3.1), and since σ2
j ≤ maxj

γ∗2
1 λj

2γ∗
1λj−1 , it follows that:

max
j

γ∗
1

σ2
j

≥ γ∗
1

1

maxj
γ∗2
1 λj

2γ∗
1λj−1

= γ∗
1 min

j

2γ∗
1λj − 1

γ∗2
1 λj

= 2−max
j

1

γ∗
1λj

= 2− 1

γ∗
1

1

λmin
= 2− ρ.

Therefore, η ≥ α− 2Φ(−zα
2

√
2− ρ).

For an upper bound, we can use the fact σ2
j ≥ minj

γ∗2
1 λj

2γ∗
1λj−1 and get

max
j

γ∗
1

σ2
j

≤ γ∗
1

1

minj
γ∗2
1 λj

2γ∗
1λj−1

= γ∗
1 max

j

2γ∗
1λj − 1

γ∗2
1 λj

= 2−min
j

1

γ∗
1λj

= 2− 1

γ∗
1

1

λmax
= 2− ρ/κ.

Therefore, we can upper bound η ≤ α− 2Φ(−zα
2

√
2− ρ/κ).
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Algorithm 2 lin asym: Selecting γ∗
1 based on the linear asytmptote in Σ⋆ (see Section 4.1)

Input: Data DN , SGD procedure of Eq. (4), θ0, (u, l) bounds on λmin, kReps, kGammas
1: g ← vector(0.5/u, . . . , 2/l, length = kGammas)
2: t← vector() {calculate empirical covariance}
3: for γ in g do
4: T ← matrix()
5: for i in 1 to kReps do
6: T.rowstack( SGD(γ, bootstrap(DN )) )
7: end for
8: t.append( tr(covar(T )) )
9: end for

10: l← 0
11: M ← matrix() {search for largest region matching expected linear fit}
12: for i in 1 to kGammas− 1 do
13: for j in (i+ 1) to kGammas do
14: if j − i > 4 then
15: f ← lm(t[i : j] ∼ g[i : j]) {linear regression trace vs gamma}
16: c← confint(f.slope)
17: if p/2 ∈ c and shapiro(res(f)) > 0.1) then
18: M.rowstack( vector(i, j, j − i) )
19: l← max(l, j − i)
20: end if
21: end if
22: end for
23: end for
24: if l < 5 then
25: [Warning]: There is no good learning rate for this problem.
26: end if
27: m← whichmax(M [:, 2]/

√
M [:, 0]) {select largest and lowest linear fit region}

28: i← int( median(M [m, 0],M [m, 1]) )
Output: γ∗

1 ← g[i]

D Full details on selection of γ∗
1

D.1 Linear asymptote in Σ⋆

Full details of this heuristic are shown in Algorithm 2. Lines 3 to 9 empirically estimate trace(NVar(θN )) for a range of
candidate learning rate values. In our experiments we set the number of candidate learning rate values to kGammas = 30
and ran SGD for each learning rate kReps = 100. From lines 11 to 23, we check for the correct slope and for linear fits on
all continuous subsets of the learning rate and covariance trace. We use the normality test by Shapiro and B. (1965) on the
linear regression residuals. The best subset region is selected by weighting the largest length, and inversely weighting the
square root of the leftmost point. The middle point of this “confidence region” is returned as the estimate for γ∗

1 .

To illustrate how this heuristic is expected to work in practice, we run a simulation with p = 20, N = 104, and X ∼
Np(0, I). The outcomes are generated as Yi = X⊤

i θ⋆ + εi, with εi ∼ N(0, 1). Figure 3 depicts trace(NVar(θN )) of the
one-pass SGD procedure as a function of the learning rate (x-axis). In this particular example, F⋆ = E(XX⊤) = I , and so
the optimal selection for the learning rate would be γ1 = 1 in terms of minimum asymptotic variance. Indeed, we see that
the trace is minimized around this value in Figure 3. Our heuristic procedure calculates γ∗

1 ≈ 2.6, which is when the trace
of NVar(θN ) appears to become linear to the learning rate. This is indicated by the vertical purple dashed line in Figure 3.

D.2 Selecting γ∗
1 from estimating an eigenvalue bound

Full details of the selection procedure of γ⋆ using the inverse power iteration is provided in Algorithm 3. Line 1 and
2, respectively, correspond to obtaining SGD estimate of θ⋆ and constructing a finite sample approximation of F⋆. The
subsequent procedures comprises the standard inverse power iteration given in Trefethen and Bau III (1997).
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Algorithm 3 eig bound: Selecting γ∗
1 by estimating an eigenvalue bound of F⋆ (see Section 4.1)

Input: Data DN , Error Threshold ϵ, θ0
1: θ1 ← SGD(0.01, DN , θ0)

2: Fn ← 1
N

∑N
i=1∇ℓ(θ1;Yi, Xi)∇ℓ(θ1;Yi, Xi)

T

3: Sample x0 ∼ N (0, I).
4: vc ← x0

||x0||
5: vp ← 0
6: ERR← ||vc − vp||
7: while ERR > ϵ do
8: vp = vc
9: Solve Fnq = vc

10: vc ← q
||q||

11: ERR← ||vc − vp||
12: end while
13: λ = (vc)

TFnvc
Output: 1

λ

E Comparing empirical settings to other SGD inference methods

Comparison to Chen et al. (2020)

• Our method can operate on 20X more model parameters (4000 vs 200) with the same number of samples (N = 1e5).
Standard MLE packages can mostly handle the data sizes of Chen et al. (2020) experiments.

• We can also see the practical difficulty of tuning the batch-means methods of Chen et al. (2020) (implemented in Lee
et al. (2022a)). Lee’s implementation under covers by about 20%, in part due to the difficulty of tuning the hyper-
parameters (k batch sizes) to ensure the weak correlation requirement.

Comparison to Lee et al. (2022a)

• Their experiments consider a parameter vector dimension of 800 for the inference of a single parameter. For joint
inference, their paper’s maximum parameter dimension is 200. In comparison we consider a dimension of 4000 for
all components of the parameter.

• Lee et al. (2022a).’s method still requires estimating the covariance matrix, albeit in an online manner. Our method
constructs confidence intervals with only the scalar learning rate.

• Lee et al. (2022a) only consider independent covariate structures, while we showcase our method for four different
scenarios including ill-conditioned cases.

F Supplemental experimental results

F.1 Simulation details

Our SGD-Asym heuristic for γ∗
1 described in Section 4.1 requires a search region, which we set to (0.5/λ̃, 2/λ̃), where λ̃

was a crude bound for λmin directly calculated from data, and using bounds from Yamamoto (2017).

Experiments were conducted on a university compute cluster and personal laptop. The cluster uses Intel E5-2680v4 2.4GHz
CPUs, and the laptop is an Apple 2020 Macbook Pro M1. For the SGD-Asym selection method: 30 learning rate values
were evaluated, and for each SGD was run 100 times to estimate the variance of the estimate. To initialize θ0, we run
10∗√p passes over averaged SGD with learning rate 1. The SGD-Eig selection method runs until the error is below 1e-3.
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Figure 4: One-pass SGD estimates θN with confidence intervals from our simple inference procedure on the UCI Adult
dataset. Statistically significant features marked with red circles.

F.2 Adult dataset

Real data experiments were performed on a preprocessed version of the Adult dataset3 which has 123 binary features
and 32,561 samples. One-pass SGD is used to fit logistic regression. In Figure 4 the estimates θN of one-pass SGD are
plotted along with their confidence intervals. There are several features marked in red circles which which are statistically
significant, in that their confidence intervals do not contain zero.

Bounds from Yamamoto (2017) were used to calculate bounds on the search region for the learning rate. The heuristic
learning rate selection method in Algorithm 2 chose γ∗

1 = 725.397. Here the numerical stability of implicit SGD plays an
important role, such a high learning rate would easily make SGD with classical updates diverge.

Interestingly, the glm() function in R which has been used to compute benchmark confidence intervals and which uses
iteratively re-weighted least squares was unable to converge, even when increasing the max number of iterations 4× past
the default setting, or when relaxing the convergence tolerance from 10−8 up to 10−3.

F.3 Logistic regression and Linear θ⋆ setting

We observed that for logistic regression and Linear configuration of θ⋆, both the SGD and benchmark MLE inference
procedures performed comparably worse than other experimental settings. We tentatively believe the data generating pro-
cess contributed to this decrease in performance. We observed a difference in distributions of expit(X⊤θ⋆) which we
believe affected the inference procedures due to an increase in the variance of Y |X ∼ Bern(expit(X⊤θ⋆)) based on the
data generating process X ∼ Np(0,Σx). In Figure 5a, the Exponential configuration of θ⋆ is used to plot histograms of
expit(X⊤θ⋆). Unimodal distributions are observed for all configurations X ∼ Np(0,Σx) of the data generating process.
However, in Figure 5b for the Linear configuration of θ⋆ we see a bimodal distribution with high concentration of prob-
ability at 0 and 1, for all configurations of Σx. We believe this increased variance in expit(X⊤θ⋆) adds additional noise
between the covariates X and the response Y .

F.4 Direct comparisons to Chen et al. (2020).

We include experimental results from Chen et al. (2020) to compare to another SGD-based inference procedure. Our
simulation setup is modified from theirs, and we include their results in experimental settings where we also have results.
We see that the confidence intervals of Chen et al. (2020) tend to under cover, whereas our intervals tend to over cover. In
addition, in the (p < N ) regime the largest problem they tackle is p = 200, N = 105. Empirically, we have demonstrated
in Section 5.1 the greater scalability of our method. With the same number of samples, our SGD-based inference procedure
has been shown to provide near-nominal confidence intervals for up to 20× more parameters. In addition, Section 2.4 also
highlights the extent of heavy manual tuning required to make this method work.

3https://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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(a) Exponential configuration of θ⋆.
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(b) Linear configuration of θ⋆.

Figure 5: Histograms of expit(X⊤θ⋆) for all four configurations of X ∼ Np(0,Σx) of the data generating process, with
N = 104, p = 100. Logistic regression model.

Plug-in Plug-in BM(n0.25) BM(n0.25)
θ⋆ Σx p, N CovRate(%) AvgLen(×10−2) CovRate(%) AvgLen(×10−2)

Lin Id 20, 1e5 94.99 1.44 93.92 1.41
100, 1e5 95.04 1.41 93.15 1.35

EC 20, 1e5 95.10 1.59 93.66 1.54
100, 1e5 94.93 1.56 93.19 1.52

T 20, 1e5 94.84 1.81 93.75 1.78
100, 1e5 95.01 1.77 91.83 1.67

Table 4: Linear regression results from Chen et al. (2020) with matching (p,N ), and nominal coverage probability 95%.
For brevity we include their plug-in and batch means (M = n0.25) estimators.

Plug-in Plug-in BM(n0.25) BM(n0.25)
θ⋆ Σx p, N CovRate(%) AvgLen(×10−2) CovRate(%) AvgLen(×10−2)

Lin Id 20, 1e5 95.00 3.79 90.22 3.46
100, 1e5 94.69 5.21 90.84 4.87

EC 20, 1e5 94.54 5.37 90.64 4.77
100, 1e5 94.79 10.24 90.27 9.75

T 20, 1e5 95.17 5.74 90.39 5.22
100, 1e5 94.91 8.47 90.83 7.71

Table 5: Logistic regression results from Chen et al. (2020) with matching (p,N ), and nominal coverage probability 95%.
For brevity we include their plug-in and batch means (M = n0.25) estimators.
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F.5 Full set of simulation results

Finally, we include a full set of simulation results, which we include a informative subset in the main paper.

SGD SGD MLE MLE
θ⋆ Σx p N Cov Rate Avg Len Cov Rate Avg Len

(%) (×10−2) (%) (×10−2)

Exponential Identity 10 1e4 95.82 4.16 94.46 3.92
Identity 20 1e4 96.13 4.21 94.62 3.92
Identity 50 1e4 96.41 4.33 94.75 3.93
Identity 100 1e5 96.01 1.31 95.05 1.24
Identity 500 1e5 96.95 1.40 95.07 1.24
Equi-Corr 10 1e4 96.60 4.46 95.38 4.11
Equi-Corr 20 1e4 96.23 4.47 95.10 4.17
Equi-Corr 50 1e4 96.88 4.80 94.86 4.22
Equi-Corr 100 1e5 96.12 1.42 94.97 1.34
Equi-Corr 500 1e5 96.89 1.52 95.07 1.35
Toeplitz 10 1e4 97.88 6.71 94.74 4.95
Toeplitz 20 1e4 97.95 6.87 94.88 5.01
Toeplitz 50 1e4 98.20 7.08 95.16 5.05
Toeplitz 100 1e5 98.02 2.18 95.02 1.60
Toeplitz 500 1e5 98.17 2.28 94.93 1.60
Ill-Cond 10 1e4 99.84 13.61 94.64 1.79
Ill-Cond 20 1e4 99.95 14.51 94.92 1.25
Ill-Cond 50 1e4 100.00 15.79 94.99 0.94
Ill-Cond 100 1e5 99.94 4.28 94.82 0.27
Ill-Cond 500 1e5 99.97 4.89 95.01 0.25

Linear Identity 10 1e4 96.68 4.18 95.46 3.92
Identity 20 1e4 96.18 4.18 95.00 3.93
Identity 50 1e4 96.76 4.42 94.91 3.93
Identity 100 1e5 96.04 1.31 95.08 1.24
Identity 500 1e5 96.85 1.40 95.01 1.24
Equi-Corr 10 1e4 96.36 4.45 95.06 4.12
Equi-Corr 20 1e4 96.85 4.66 95.36 4.17
Equi-Corr 50 1e4 96.98 4.79 95.03 4.23
Equi-Corr 100 1e5 95.98 1.42 94.92 1.34
Equi-Corr 500 1e5 96.87 1.52 95.00 1.35
Toeplitz 10 1e4 97.78 6.67 95.36 4.96
Toeplitz 20 1e4 98.10 6.87 95.23 5.01
Toeplitz 50 1e4 98.17 7.28 95.08 5.05
Toeplitz 100 1e5 98.04 2.19 95.08 1.60
Toeplitz 500 1e5 98.18 2.26 94.99 1.60
Ill-Cond 10 1e4 99.78 13.53 95.20 1.79
Ill-Cond 20 1e4 99.96 14.45 94.55 1.25
Ill-Cond 50 1e4 100.00 15.97 95.06 0.94
Ill-Cond 100 1e5 99.95 4.30 94.90 0.27
Ill-Cond 500 1e5 100.00 4.89 94.97 0.25

Table 6: Linear regression and learning rate γ∗
1 set to 1/λmin, where λmin is assumed to be known. The average coverage

rate and interval lengths are calculated for a target coverage probability of 1− α = .95.
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SGD SGD MLE MLE
θ⋆ Σx p N Cov Rate Avg Len Cov Rate Avg Len

(%) (×10−2) (%) (×10−2)

Exponential Identity 10 1e4 97.14 10.82 95.32 9.05
Identity 20 1e4 97.30 11.13 94.92 8.95
Identity 50 1e4 96.71 11.04 95.14 8.91
Identity 100 1e5 97.34 3.47 94.89 2.80
Identity 500 1e5 97.17 3.53 94.92 2.80
Equi-Corr 10 1e4 97.22 11.49 95.22 9.40
Equi-Corr 20 1e4 97.05 11.60 95.02 9.42
Equi-Corr 50 1e4 96.64 11.56 94.81 9.49
Equi-Corr 100 1e5 97.45 3.67 94.99 2.99
Equi-Corr 500 1e5 96.91 3.68 94.84 3.01
Toeplitz 10 1e4 97.64 14.88 94.72 10.93
Toeplitz 20 1e4 97.35 15.01 94.64 10.96
Toeplitz 50 1e4 97.54 15.53 95.38 11.00
Toeplitz 100 1e5 97.73 4.75 95.05 3.47
Toeplitz 500 1e5 97.30 4.86 94.91 3.48
Ill-Cond 10 1e4 86.80 33.11 94.68 5.01
Ill-Cond 20 1e4 89.84 30.27 94.66 3.10
Ill-Cond 50 1e4 93.78 27.85 94.68 2.10
Ill-Cond 100 1e5 96.37 8.52 94.96 0.57
Ill-Cond 500 1e5 98.78 8.23 94.89 0.50

Linear Identity 10 1e4 97.48 14.88 95.08 10.52
Identity 20 1e4 97.07 20.29 94.82 11.67
Identity 50 1e4 88.49 34.65 94.48 13.97
Identity 100 1e5 82.62 16.52 94.76 5.09
Identity 500 1e5 63.77 55.77 88.09 7.65
Equi-Corr 10 1e4 96.80 15.87 95.08 12.17
Equi-Corr 20 1e4 95.89 22.48 95.21 15.38
Equi-Corr 50 1e4 89.56 54.93 94.5.0 23.19
Equi-Corr 100 1e5 80.20 29.41 94.55 10.00
Equi-Corr 500 1e5 100.00 222.09 48.40 28.80
Toeplitz 10 1e4 98.26 20.31 95.82 14.99
Toeplitz 20 1e4 95.57 24.15 94.48 17.74
Toeplitz 50 1e4 87.51 42.14 94.58 22.40
Toeplitz 100 1e5 79.18 20.15 95.04 8.31
Toeplitz 500 1e5 85.14 73.68 87.07 12.97
Ill-Cond 10 1e4 50.70 84.39 94.74 16.61
Ill-Cond 20 1e4 58.44 92.99 94.32 15.49
Ill-Cond 50 1e4 100.00 130.84 81.35 17.82
Ill-Cond 100 1e5 69.91 45.35 86.97 5.74
Ill-Cond 500 1e5 100.00 249.43 11.00 12.93

Table 7: Logistic regression and learning rate γ∗
1 set to 1/λmin, where λmin is assumed to be known. The average coverage

rate and interval lengths are calculated for a target coverage probability of 1− α = .95.
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SGD-Asym SGD-Asym MLE MLE
θ⋆ Σx p N Cov Rate Avg Len Cov Rate Avg Len

(%) (×10−2) (%) (×10−2)

Exponential Identity 10 1e4 98.70 6.26 95.32 3.92
Identity 20 1e4 98.83 6.06 95.30 3.92
Identity 50 1e4 98.89 6.92 95.02 3.93
Identity 100 1e5 98.24 1.69 95.24 1.24
Identity 500 1e5 98.86 2.14 95.03 1.24
Equi-Corr 10 1e4 98.70 6.36 94.84 4.12
Equi-Corr 20 1e4 98.35 5.93 95.07 4.17
Equi-Corr 50 1e4 98.75 6.73 95.22 4.22
Equi-Corr 100 1e5 98.97 2.44 94.98 1.34
Equi-Corr 500 1e5 99.00 2.51 95.04 1.35
Toeplitz 10 1e4 99.02 10.04 94.78 4.96
Toeplitz 20 1e4 99.27 10.94 95.37 5.01
Toeplitz 50 1e4 99.18 11.77 94.93 5.05
Toeplitz 100 1e5 99.03 3.13 94.94 1.60
Toeplitz 500 1e5 99.29 3.95 94.97 1.60
Ill-Cond 10 1e4 99.98 29.91 94.86 1.79
Ill-Cond 20 1e4 100.00 31.42 95.11 1.25
Ill-Cond 50 1e4 100.00 34.63 94.95 0.94
Ill-Cond 100 1e5 100.00 9.65 95.03 0.27
Ill-Cond 500 1e5 100.00 10.61 94.98 0.25

Linear Identity 10 1e4 98.98 6.23 94.72 3.92
Identity 20 1e4 98.88 6.87 94.80 3.92
Identity 50 1e4 98.99 6.89 95.24 3.93
Identity 100 1e5 98.91 2.30 95.15 1.24
Identity 500 1e5 98.98 2.31 94.91 1.24
Equi-Corr 10 1e4 98.56 6.23 95.14 4.12
Equi-Corr 20 1e4 98.75 7.09 95.27 4.17
Equi-Corr 50 1e4 98.94 7.87 94.84 4.23
Equi-Corr 100 1e5 98.88 2.34 95.07 1.34
Equi-Corr 500 1e5 99.02 2.56 94.97 1.35
Toeplitz 10 1e4 99.12 10.37 95.66 4.96
Toeplitz 20 1e4 99.22 9.95 94.94 5.01
Toeplitz 50 1e4 99.14 10.29 94.98 5.05
Toeplitz 100 1e5 99.22 3.69 94.92 1.60
Toeplitz 500 1e5 99.37 4.20 95.13 1.60
Ill-Cond 10 1e4 100.00 30.82 95.06 1.79
Ill-Cond 20 1e4 100.00 33.00 94.68 1.25
Ill-Cond 50 1e4 100.00 32.78 94.90 0.94
Ill-Cond 100 1e5 100.00 9.52 94.91 0.27
Ill-Cond 500 1e5 100.00 10.72 94.96 0.25

Table 8: Linear regression and SGD-Asym γ∗
1 selection method (see Section 4.1, Appendix D.1). The average coverage

rate and interval lengths are calculated for a target coverage probability of 1− α = .95.
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SGD-Asym SGD-Asym MLE MLE
θ⋆ Σx p N Cov Rate Avg Len Cov Rate Avg Len

(%) (×10−2) (%) (×10−2)

Exponential Identity 10 1e4 98.92 17.60 95.04 9.05
Identity 20 1e4 98.93 17.41 94.87 8.95
Identity 50 1e4 99.00 17.69 94.94 8.91
Identity 100 1e5 99.07 5.90 95.07 2.80
Identity 500 1e5 99.02 5.84 95.00 2.80
Equi-Corr 10 1e4 98.96 17.62 94.70 9.40
Equi-Corr 20 1e4 99.15 17.88 95.48 9.41
Equi-Corr 50 1e4 98.84 18.58 94.86 9.48
Equi-Corr 100 1e5 98.98 5.65 94.95 2.99
Equi-Corr 500 1e5 98.75 5.47 94.85 3.01
Toeplitz 10 1e4 98.96 23.3 94.66 10.93
Toeplitz 20 1e4 99.01 22.89 94.92 10.96
Toeplitz 50 1e4 98.98 23.87 94.80 11.00
Toeplitz 100 1e5 99.10 7.42 94.78 3.47
Toeplitz 500 1e5 99.00 8.16 94.95 3.48
Ill-Cond 10 1e4 87.28 33.37 94.46 5.02
Ill-Cond 20 1e4 89.22 59.82 95.22 3.10
Ill-Cond 50 1e4 94.26 55.78 95.14 2.11
Ill-Cond 100 1e5 96.57 6.83 94.92 0.57
Ill-Cond 500 1e5 99.05 16.49 94.95 0.50

Linear Identity 10 1e4 98.92 20.12 95.50 10.52
Identity 20 1e4 99.04 30.35 95.36 11.67
Identity 50 1e4 94.84 51.51 94.77 13.97
Identity 100 1e5 95.51 23.66 94.81 5.09
Identity 500 1e5 71.83 110.39 88.52 7.65
Equi-Corr 10 1e4 99.18 24.62 95.02 12.16
Equi-Corr 20 1e4 98.92 35.03 95.00 15.35
Equi-Corr 50 1e4 93.09 79.90 94.25 23.19
Equi-Corr 100 1e5 89.88 43.19 94.79 10.00
Equi-Corr 500 1e5 100.00 414.28 47.88 28.88
Toeplitz 10 1e4 98.90 29.17 95.50 15.01
Toeplitz 20 1e4 98.86 36.97 95.13 17.74
Toeplitz 50 1e4 90.48 51.52 94.49 22.44
Toeplitz 100 1e5 92.88 29.40 94.85 8.31
Toeplitz 500 1e5 94.73 146.82 86.73 12.97
Ill-Cond 10 1e4 59.36 158.56 94.72 16.66
Ill-Cond 20 1e4 80.28 196.15 93.65 15.50
Ill-Cond 50 1e4 100.00 290.55 81.20 17.75
Ill-Cond 100 1e5 93.43 94.07 88.03 5.74
Ill-Cond 500 1e5 100.00 567.26 10.95 12.97

Table 9: Logistic regression and SGD-Asym γ∗
1 selection method (see Section 4.1, Appendix D.1). The average coverage

rate and interval lengths are calculated for a target coverage probability of 1− α = .95.
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G Results for medical application

Significant predictive features for an adverse EGS event

SGD Only Both MLE Only
+ 8 Elixhauser comorbidities

- Age
- {Commercial, Self Pay,

Other} insurance
- General abdominal
- Hepato-pancreatico-biliary
- Upper GI

+ {Emergency, Urgent} ad-
mission

+ Medicaid insurance
+ Surgery performed (Yes)
+ High risk disability score
+ High risk Angus sepsis score

- {0-4} Elixhauser comorbidi-
ties

- Other race (not w,b)
- 6 Elixhauser comorbidities

Table 10: Significant predictive features for adverse EGS events.
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