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Abstract

The Frank-Wolfe algorithm is a popular method
in structurally constrained machine learning ap-
plications, due to its fast per-iteration complex-
ity. However, one major limitation of the method
is a slow rate of convergence that is difficult
to accelerate due to erratic, zig-zagging step di-
rections, even asymptotically close to the solu-
tion. We view this as an artifact of discretiza-
tion; that is to say, the Frank-Wolfe flow, which
is its trajectory at asymptotically small step sizes,
does not zig-zag, and reducing discretization er-
ror will go hand-in-hand in producing a more
stabilized method, with better convergence prop-
erties. We propose two improvements: a mul-
tistep Frank-Wolfe method that directly applies
optimized higher-order discretization schemes;
and an LMO-averaging scheme with reduced dis-
cretization error, and whose local convergence
rate over general convex sets accelerates from a
rate of O(1/k) to up to O(1/k3/2).

1 INTRODUCTION

The Frank Wolfe algorithm (FW) or the conditional gradient
algorithm (Levitin and Polyak, 1966) is a popular method
in constrained convex optimization. It was first developed
in Frank et al. (1956) for maximizing a concave quadratic
programming problem with linear inequality constraints,
and later extended in Dunn and Harshbarger (1978) to mini-
mizing more general smooth convex objective function on a
bounded convex set. More recently, Jaggi (2013) analyzed
(FW) over general convex and continuously differentiable
objective functions with convex and compact constraint
sets, and illustrates that when a sparse structural property
is desired, the per-iteration cost can be much cheaper than
computing projections. This has spurred a renewed interest
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of (FW) to broad applications in machine learning and sig-
nal processing (Lacoste-Julien et al., 2013; Krishnan et al.,
2015), recommender systems (Freund et al., 2017), image
and video co-localization (Joulin et al., 2014), etc.

Specifically, (FW) solves the constrained optimization

minimize
x∈D

f(x) (1)

via the repeated iterations

sk = argmin
s∈D

∇f(xk)
T s,

xk+1 = xk + γk(sk − xk).
(FW)

The first operation is often referred to as the linear mini-
mization oracle (LMO), and is the support function of D at
−∇f(x):

LMOD(x) := argmin
s∈D

∇f(x)T s.

The iterates sk are usually the vertices of D and are often
called atoms, as their convex combinations build xk ∈ D.

In particular, computing the LMO over D is often compu-
tationally cheap compared to the corresponding projection,
especially when D is the level set of a sparsifying norm, e.g.
the 1-norm or the nuclear norm. However, the tradeoff of
the cheap per-iteration rate is that the overall convergence
rate, in terms of number of iterations k, is often much slower
than that of projected gradient descent (Lacoste-Julien and
Jaggi, 2015; Freund and Grigas, 2016), and in particular
shows no signs of acceleration even when f is µ-strongly
convex or when momentum-based acceleration techniques
are employed. While various acceleration schemes (Lacoste-
Julien and Jaggi, 2015) have been proposed and several im-
proved rates given under specific problem geometry (Garber
and Hazan, 2015), by and large the “vanilla” Frank-Wolfe
method, using the “well-studied step size” γk = O(1/k),
can only be shown to reach O(1/k) convergence rate in
terms of objective value decrease (Canon and Cullum, 1968;
Jaggi, 2013; Freund and Grigas, 2016)

The Zig-Zagging phenomenon. The slowness of the
Frank-Wolfe method is often explained as a consequence of
a potential “zig-zagging” phenomenon. In particular, when
the true solution lies on a low dimensional facet and the
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incoming iterate is angled in a particular way, the method
will alternate picking up vertices of this facet, causing a
“zig-zagging” pattern; e.g. xk+1 − xk does not in general
point toward x∗. For this reason, techniques like line search
and momentum-based acceleration have little effect. In fact,
methods like the Away-Step Frank Wolfe (Lacoste-Julien
and Jaggi, 2015) are designed to counter exactly this, by
forcing the iterate to change its angle and approach more
directly.

Frank Wolfe flow. In this paper, we investigate the dynam-
ical systems interpretation of the Frank-Wolve method. In
particular, we study (FWFLOW), whose Euler discretization
is (FW):

s(t) = LMOD(x(t))

ẋ(t) = γ(t)(s(t)− x(t))
(FWFLOW)

In particular, (FWFLOW) is an example of Krasovskii regu-
larization (Sanfelice et al., 2008; Krasovskii, 1968) and thus
existance of solutions is ensured. This dynamical system
first studied in Jacimovic and Geary (1999), and is a part
of the construct presented in Diakonikolas and Orecchia
(2019). However, neither paper considered the effect of
using advanced discretization schemes to better imitate the
flow, as a way of improving the method. From an opti-
mization point of view, (FWFLOW) is important because,
under the family of decay sequences γ(t) = O(1/t), its
convergence rate is arbitrarily close to linear, under the
right parameter choices; in contrast, (FW) is upper bounded
by a sublinear O(1/k) convergence rate.

Viewing the excess error in (FW) compared to (FWFLOW)
as discretization error, this work looks at characterizing
and attacking this source of error, in efforts of proposing
an improved Frank-Wolfe method. In particular, we argue
that this discretization error is particularly detrimental in
almost all useful cases of FW applied to sparse optimization
applications, e.g. when D is the level-set of the one-norm
or another sparsifying penalty. In this case, improvements
found in related works may not apply.

• When the solution x∗ to (1) is in the interior of D, then
using line search, (FW) converges with a linear rate if f
is strongly-convex (Guélat and Marcotte, 1986). However,
this corresponds to a fully dense x∗, which is not desired
in sparse optimization.

• When the set D is strongly convex and x∗ is on the bound-
ary of D, or when x∗ is on a minimal facet of D, then
(FW) converges with an O(1/k2) rate (Garber and Hazan,
2015). However, the 1-norm ball (and other popular
choices of D) are not strongly convex, and the only time
when this scenario will apply is if x∗ has exactly one
nonzero.

For these reasons, this paper investigates the more general
case where x∗ is on a non-minimal facet or interior of a
non-strongly convex (but convex) set D.

Contributions. In this regime, we offer three main theo-
retical contributions.

• The continuous-time Frank-Wolfe method, e.g. the dynam-
ical system of whose explicit Euler discretization gives
(FW), has a fundamentally faster convergence rate, which
is arbitrarily close to linear convergence rate. This sug-
gests that the fundamental bottleneck in the convergence
speed is slowly decaying discretization error.

• While multistep methods reduce discretization error and
improve the quality of step directions, overall no finite-
window averaging method can fundamentally improve the
O(1/k) convergence rate.

• Finally, an infinite-window averaging method is intro-
duced, which aggressively attacks the discretization error,
and improves the local convergence rate of (FW) to up to
O(1/k3/2).

The differentiation between local and global convergence
is characterized by the identification of the sparse mani-
fold (k̄, where the LMOs of xk will always be contained
in the potential LMOs of x∗ for all k ≥ k̄); this follows
the local convergence analysis of Liang et al. (2014); Poon
et al. (2018); Liang et al. (2017); Nutini et al. (2022, 2019);
Hare and Lewis (2004); Sun et al. (2019) over general opti-
mization methods. Overall, these results suggest improved
behavior for sparse optimization applications, which is the
primary beneficiary of (FW).

1.1 Related works

Continuous-time optimization Recent years have wit-
nessed a surge of research papers connecting dynamical
systems with optimization algorithms, generating more intu-
itive analyses and proposing accelerations. For example, in
Su et al. (2016), the Nesterov accelerated gradient descent
and Polyak Heavy Ball schemes are shown to be discretiza-
tions of a certain second-order ordinary differential equation
(ODE), whose tunable vanishing friction pertains to specific
parameter choices in the methods.

Multistep discretization methods Inspired by this anal-
ysis, several papers (Zhang et al., 2018; Shi et al., 2019)
have proposed improvements using advanced discretization
schemes; Zhang et al. (2018) uses Runge-Kutta integration
methods to improve accelerated gradient methods, and Shi
et al. (2019) shows a generalized Leapfrog acceleration
scheme which uses a semi-implicit scheme to achieve a very
high resolution approximation of the ODE.
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Note that for gradient flow, which has the same order of
convergence rates as the gradient method, however, it is
not likely that multistep methods can offer rate improve-
ments. Thus, a unique angle of this work is that in the case
of Frank-Wolfe, we will show that indeed, (FWFLOW) has
a fundamentally faster convergence rate than (FW). How-
ever, with regards to higher order discretization approaches,
this work offers a negative result, in that no simple explicit
higher order discretization scheme fundamentally improves
the method’s overall convergence rate. In a way, this is a cau-
tionary tale, suggesting that even when discretization error
accounts for fundamentally slowness, simple discretization
improvements are usually not sufficient.

Accelerated FW. A notable work that highlights the noto-
rious zig-zagging phenomenon is Lacoste-Julien and Jaggi
(2015), where an Away-FW method is proposed that cleverly
removes offending atoms and improves the search direction.
Using this technique, the method is shown to achieve linear
convergence under strong convexity of the objective. The
tradeoff, however, is that this method requires keeping past
atoms, which may incur an undesired memory cost. A work
that is particularly complementary to ours is Garber and
Hazan (2015), which show an improved O(1/k2) rate when
the constraint set is strongly convex–this reduces zigzagging
since solutions cannot lie in low-dimensional “flat facets”.
Our work addresses the exact opposite regime, where we
take advantage of “flat facets” in sparsifying sets (1-norm
ball, simplex, etc). This allows the notion of manifold identi-
fication as determining when suddenly the method behavior
improves.

Averaged FW. Several previous works have investigated
gradient averaging (Zhang et al., 2021; Abernethy and
Wang, 2017). While performance seems promising, the
rate was not improved past O( 1k ). Ding et al. (2020) inves-
tigates oracle averaging by solving small subproblems at
each iteration to achieve optimal weights.

Sparse optimization. Other works that investigate local
convergence behavior include Liang et al. (2014, 2017);
Poon et al. (2018); Sun et al. (2019); Iutzeler and Malick
(2020); Nutini et al. (2019); Hare and Lewis (2004). Here,
problems which have these two-stage regimes are described
as having partial smoothness, which allows for the low-
dimensional solution manifold to have significance. In our
work, we differentiate a local convergence regime of when
this manifold is “identified”, e.g. all future LMOs are drawn
from vertices of this specific manifold. After this point,
we show that convergence of both the proposed flow and
method can be improved with a faster decaying discretiza-
tion error, which in practice may be fast.

2 THE PROBLEM WITH FRANK-WOLFE

2.1 Small examples

There are several different explanations as to why the con-
vergence rate of (FW) appears fundamentally slow, with
the predominant theories focused on the bad (zig-zagging)
step directions. Therefore we begin by evaluating the
vanilla (FW) with simple acceleration schemes: line search
(LS), Nesterov’s extrapolation applied to xk direction (Nest.
Acc.), and Nesterov’s 3-point acceleration as described in
Li et al. (2020) (Li Acc). We do this over 5 cases of D and
x∗, where f is a strongly convex quadratic.

• Case 1: D is a convex polytope, and x∗ is on a minimal
facet of D; in other words, x∗ is 1-sparse and contains a
mixture of exactly 1 atom. In this surprising case, vanilla
methods are at least O(1/k2), Nesterov’s acceleration
seems to achieve additional acceleration, and line search
works instantaneously. We emphasize that this is a delib-
erately trivial case.

• Case 2: D is a convex polytope, and x∗ is on a non-
minimal facet of D; here, x∗ contains a mixture of atoms,
more than 1 but less than n. This is the typical “hard” case
that we wish to investigate, where no simple acceleration
techniques seem to offer any improvement.

• Case 3: D is a convex polytope, and x∗ is in the relative
interior of D; x∗ contains a full nontrivial mixture of all
atoms in D. This case is covered by Guélat and Marcotte
(1986), which suggest linear convergence is possible, but
only when line search is used. In the absence of line
search, all methods still do poorly.

• Case 4: x∗ is on the boundary of D, which is a strongly
convex set. That is, there exists ϵ > 0 where, for all x and
y in D, any 0 ≤ θ ≤ 1, any z such that ∥z∥2 = 1,

θx+ (1− θ)y + θ(1− θ)
ϵ

2
∥x− y∥2z ∈ D.

(Vial, 1982). Here, as Garber and Hazan (2015) has
shown, the presence of a strongly convex D allows the
iterates to avoid zig-zagging, and in fact even the poorest
methods achive O(1/k2) without any special tricks, with
further acceleration possible via Nesterov’s extrapolation
or line search.

• Case 5: D is a strongly convex set, and x∗ is in the
relative interior of D. In fact, this is exactly the same as
Case 3: note that the acceleration due to strongly convex
D is also lost in this case, as the atoms acquired during
the local convergence phase do not converge to a small
neighborhood.

Figure 1 summarizes these observations visually; from the
performance plots, it is clear that the open areas (Case 2,
and Cases 3 and 5 without line search) indeed has limited
slow convergence.
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Figure 1: Small case study of 2-D quadratic problem, under different choices of D. The last 2 rows gives summarizing
gap convergence rates (as a function of iterations k) over usual acceleration approaches (upper) and our proposed methods
(lower).
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2.2 Two different convergence rates

We now investigate these problematic behaviors in terms
of the (FWFLOW) convergence behavior, as compared to
that of (FW). First, we derive the convergence rate of
(FWFLOW). We use the objective value suboptimality as
the Lyapunov function:

E(t) = f(x(t))− f∗, Ek = f(xk)− f∗

where f∗ = f(x∗) and x∗ minimizes (1). Then, using the
properties of the LMO and convexity of f ,

Ė(t) = ∇f(x)T ẋ(t)

= γ(t)∇f(x)T (s− x)︸ ︷︷ ︸
negative duality gap

≤ −γ(t)E(t) (2)

and taking γ(t) = c
c+t , we have the flow convergence rate

E(t)
E(0)

≤ cc

(c+ t)c
c→+∞
= exp(−t).

Note that this rate is arbitrarily close to a linear rate. In
contrast, using L-smoothness, the (FW) method satisfies
the recursion

f(xk+1)− f(xk) ≤

γk∇f(xk)
T (xk − sk) +

Lγ2
k

2

=(2D)2︷ ︸︸ ︷
∥xk − sk∥22︸ ︷︷ ︸

discretization term

where D = maxx∈D ∥x∥2. Note that following this line of
reasoning, we can at best bound the difference in Ek as

Ek+1 − Ek ≤ −γkEk + 2LDγ2
k (3)

which recursively gives a bound of Ek = O( c
c+k ) =

O(1/k). Importantly, this analysis is tight in general.

Note the key difference in (2) and its analogous terms in
(3) is the extra 2LD2γ2

k = O(1/k2) term, which throttles
the recursion from doing better than Ek = O(1/k). One
may ask if it is possible to bypass this problem by simply
picking γk decaying more aggressively; however, then such
a sequence becomes summable, and then convergence of
xk → x∗ will not be assured. Therefore, we must have
a sequence γk converging at least as slowly as O(1/k).
Thus, the primary culprit in this convergence rate tragedy
is the bound ∥sk − xk∥2 = O(D) (nondecaying), which
forces the discretization term to decay no faster than O(1/k).
As shown in our case studies, this is not a loose bound in
general.

In this paper, we investigate methods that push the (FW)
method more toward its (FWFLOW) trajectory, using some

form of averaging. First, we use the specific weight updates
offered by Runge-Kutta multistep schemes, which reduce
discretization errors by constant factors, and additionally
seem to improve step direction quality. Second, we propose
an averaged LMO method, which gives an overall improved
local convergence rate of up to O(1/k3/2).

3 RUNGE-KUTTA MULTISTEP METHOD

3.1 The generalized Runge-Kutta family

We now look into multistep methods that better imitate the
continuous flow by reducing discretization error. Observe
that the standard (FW) algorithm is equivalent to the dis-
cretization of (FWFLOW) by the explicit Euler’s method
with step size ∆ = 1. It is well known that the discretization
error associated with this scheme is O(∆q) with q = 1, e.g.
it is a method of order 1.

We now consider Runge-Kutta (RK) methods, a generalized
class of higher order methods (q ≥ 1). Many commonly-
used discretization schemes are of the Runge-Kutta fam-
ily; for example, Dormand–Prince (RK45) is the default
ode solver used by MATLAB. Other examples of RK-
methods include the Fehlberg (RK23) and Cash–Karp meth-
ods. These methods are fully parametrized by some choice
of A ∈ Rq×q, β ∈ Rq, and ω ∈ Rq and at step k can be
expressed as (for i = 1, ..., q)

ξi = ẋ
(
(k + ωi)∆, xk +

q∑
j=1

Aijξj
)
,

xk+1 = xk +
∑q

i=1 βiξi.

(4)

For consistency,
∑

i βi = 1, and to maintain explicit im-
plementations, A is always strictly lower triangular. As a
starting point, ω1 = 0. Referring to the description of ẋ(t)
as given in (FWFLOW), then given a matrix A ∈ Rq×q and
vectors β, ω ∈ Rq, the sequence described in (4) describes
the q-stage multistep Frank-Wolfe (MULTFW) method. (See
also Appendix C.) Figure 3 compares pictorially the trajec-
tory of the vanilla (FW) method with (MULTFW), which
after averaging has a far more controlled and less erratic
trajectory. We hope to leverage this into better convergence
behavior.

Proposition 3.1 (Feasibility). For a given q-stage multistep
method defined by A, β, and ω, for each given k ≥ 1, define

γ̄
(k)
i =

c

c+ k + ωi
, Γ(k) = diag(γ̄

(k)
i ),

P(k) = Γ(k)(I +ATΓ(k))−1, z(k) = qP(k)β.

Then if 0 ≤ z(k) ≤ 1 for all k ≥ 1, then

x0 ∈ D ⇒ xk ∈ D, ∀k ≥ 1.
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The proof is in Appendix D. This condition can be checked
explicitly and is true of almost all RK methods with a no-
table exception of the midpoint method, where z

(k)
i < 0 is

possible. A full table of weights for various RK methods is
in Appendix B.

3.2 Convergence of (MULTFW)

We first establish that using a generalized Runge-Kutta
method cannot hurt convergence, as compared to the usual
Frank-Wolfe method.

Proposition 3.2. All Runge-Kutta methods converge at
worst with rate f(xk)− f(x∗) ≤ O(1/k).

The proof is in Appendix D.2. That is to say, (MULTFW)
cannot be an order slower than vanilla (FW). 1

It is left to ask if (MULTFW) can improve upon (FW). Re-
call that (FWFLOW) achieves a rate of O(1/tc) rate, and
taking c → +∞ achieves a linear rate. This is also verified
numerically in Figure 2; larger c provides a sharper con-
vergence rate. It is hence tempting to think that increasing
c can help (FW) methods in general, and in particular by
adapting a higher order multistep method, we can overcome
the problems caused by discretization errors.

Lower bound derivation: a toy problem. Let us now
consider a simple bounded optimization problem over scalar
variables x ∈ R:

min
x

f(x) s. t. − 1 ≤ x ≤ 1 (5)

where

f(x) =


x2/2 if |x| < ε

εx− ε2/2 if x ≥ ε

−εx− ε2/2 if x ≤ −ε

which is a scaled version of the Huber norm applied to
scalars. By design, no matter how small ε is, f is L-
smooth and 1-Lipschitz. Additionally, LMO[−1,1](x) =
−sign(x).

Proposition 3.3. Assuming that 0 < qP(k)β < 1 for all k.
Start with x0 = 1. Suppose the choice of β ∈ Rp is not

“cancellable”; that is, there exist no partition S1 ∪ S2 =
{1, ..., p} where ∑

i∈S1

βi −
∑
j∈S2

βj = 0.

Then regardless of the order p and choice of A, β, and ω, as
long as

∑
i βi = 1, then

sup
k′>k

|xk| = Ω(1/k).

1It should be noted, however, that the convergence rate in terms
of k does not account for the extra factor of q gradient calls needed
for a q-stage method. While this may be burdensome, it does not
increase the order of convergence rate.

That is, the tightest upper bound is O(1/k).

The proof is in Appendix D.3. The assumption of a “non-
cancellable” choice of βi may seem strange, but in fact it
is true for most of the higher order Runge-Kutta methods.
More importantly, the assumption doesn’t matter in practice;
even if we force βi’s to be all equal, our numerical exper-
iments do not show much performance difference in this
toy problem. (Translation: do not design your Runge Kutta
method for the β’s to be cancel-able in hopes of achieving a
better rate!)

Proposition 3.3 implies a Ω(1/k) bound on |xk|. To extend
it to an Ω(1/k) bound on f(xk)− f∗, note that whenever
|x| ≥ ε,

f(xk)− f∗

f(x0)− f∗ ≥ |xk|
2|x0|

for ε arbitrarily small.

Corollary 3.4. Although higher order RK methods may
provide constant factor improvements, the worst best case
bound for (MULTFW), for any RK method, is of order
O(1/k).

Although this negative result is disappointing, it is valu-
able to know that simple multistep enhancements of tradi-
tional optimization methods may not single-handily produce
miraculously better convergence rates.

4 AVERAGED FRANK-WOLFE METHOD

We now propose an infinite-window LMO-averaging Frank-
Wolfe (AvgFW) method, by replacing sk with an averaged
version s̄k.

sk = LMOD(xk)

s̄k = s̄k−1 + βk(sk − s̄k−1)

xk+1 = xk + γk(s̄k − xk)

(AVGFW)

where βk = ( c
c+k )

p for c ≥ 0 and 0 < p ≤ 1. 2 Here,
the smoothing in s̄k has two roles. First, averaging reduces
zigzagging; at every k, s̄k is a convex combination of past
sk, and has a smoothing effect that qualitatively also reduces
zig-zagging; this is of importance should the user wish to use
line search or momentum-based acceleration. Second, this
forces the discretization term ∥xk− s̄k∥2 to decay, allowing
for faster numerical performance. Figure 3 shows a simple
2D example of our (AVGFW) method (right) compared to
the usual (FW) method (left) and the Runge-Kutta multistep
version (MULTFW) (center). Note that (AVGFWFLOW)
is fundamentally different than (FWFLOW), and is better
mirrored by (AVGFW).

2Recall that γk = c/(c + k). While it is possible to use
βk = b/(b + k) with b ̸= c in practice, our proofs considerably
simplify when the constants are the same.
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Figure 2: Continuous vs discrete. A comparison of the numerical error vs compared with derived rate. The black curve
shows the upper bound on the flow rate, compared against simulated method rates for smaller discretization units. The
two-stage behavior of the curves is intriguing, as it seems there is a fundamental point where discretization error takes over,
and forces the O(1/k) rate to manifest.

FW and FWFlow RK-FW and FWFlow AvgFW and AvgFWFlow

Figure 3: Panels showing trajectory behavior of (FW) (left),
(MULTFW) (center), and (AVGFW) (right). The method
trajectories (blue) and underlying flow (red) are both shown.

Using similar tricks as in Jacimovic and Geary (1999), we
may view (AVGFW) as an Euler discretization (with ∆ = 1)
of the following dynamical system

s(t) = LMOD(x(t))

˙̄s(t) = β(t)(s(t)− s̄(t))

ẋ(t) = γ(t)(s̄(t)− x(t))

, (AVGFWFLOW)

where γ(t), β(t) are such that γk = γ(k∆) and βk =
β(k∆).

4.1 Global convergence

We start by showing the method converges, with no assump-
tions on sparsity or manifold identification. We note that in
practice we see faster convergence of (AVGFW) compared
to (FW), despite weaker theoretical rates.
Theorem 4.1 (Global rates). Take 0 < p < 1, and assume
f is L-smooth and µ-strongly convex.

• For β(t) =
(

c
c+t

)p
, the flow (AVGFWFLOW) satisfies

f(x(t)) ≤ O
(

1
t1−p

)
.

• For βk =
(

c
c+k

)p
, the method (AVGFW) satisfies

f(xk) ≤ O
(

1
kp

)
.

The proofs are in Appendix E. Note that the rates are not
exactly reciprocal. In terms of analysis, the method is that

allows the term βkgap(xk) to take the weight of an entire
step, whereas in the flow, the corresponding term is infinites-
imally small. This is a curious disadvantage of the flow
analysis; since most of our progress is accumulated in the
last step, the method exploits this more readily than the flow,
where the step is infinitesimally small.

4.2 Manifold identification

Now that we know that the method converges, we may
discuss the local convergence regime, characterized by man-
ifold identification. Specifically, the manifold is identified at
k̄ if any k > k̄, any LMOD(xk) is also an LMOD(x

∗). For
example, when D is the one-norm ball, then the manifold
is identified when for all k ≥ k̄, sk are 1-hot vectors with
nonzero supports contained within the sparsity of x∗. This
is guaranteed to happen for some finite k̄ under mild degen-
eracy assumptions, and is the basis for gap-safe screening
procedures (Ndiaye et al., 2017; Sun and Bach, 2020).

4.3 Accelerated local convergence

Theorem 4.2 (Local rate). Assume f is L-smooth and µ-
strongly convex. After manifold identification, the flow
(AVGFWFLOW) satisfies

f(x(t))− f(x∗) ≤ log(t)

tc
.

The proof is in Appendix E.4.

Theorem 4.3 (Local rate). Assume that f is µ-strongly
convex, and pick c ≥ 3p/2+1. After manifold identification,
the method (AVGFW) satisfies

f(xk)− f(x∗) = O(1/k3p/2).

The proof is in Appendix E.3. Although the proof requires
p < 1, in practice, we often use p = 1 and observe about a
O(1/k3/2) rate, regardless of strong convexity.
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5 NUMERICAL EXPERIMENTS

We now compare the Frank-Wolfe method (FW), its mul-
tistep form (MULTFW), and its averaged form (AVGFW),
against two baseline methods:

• the averaged gradient method of Abernethy and Wang
(2017),

• and the away-step method of Lacoste-Julien and Jaggi
(2015).

In all cases, when appropriate, we also add line search (LS).
Note that while the away-step method is theoretically a
superior method to those we propose, it requires some com-
putational overhead in maintaining and readjusting a full
history of past atoms, and also always requires line search
to ensure feasiblity. Since MULTFW requires compute ad-
ditional gradients, our x-axis gives the number of gradient
calls, instead of iterations, to ensure fair comparison.

Simulated compressive sensing. In Figure 4 we simulate
compressive sensing using a ℓ1- norm ball constraint. Given
x0 ∈ Rm, a sparse ground truth vector with 10% nonzeros,
and given A ∈ Rn×m with entries i.i.d. Gaussian, we
generate y = Ax0 (noiseless observation). The problem
formulation is

min
x∈Rn

1
2∥Ax− y∥22 subject to ∥x∥1 ≤ α. (6)

Figure 4: Compressed sensing. n = m = 500, c = β = 2,
p = 1.

Signed compressive sensing. In Fig. 5, under the same
parameter distribution as in the previous example, we now
use a sampling model where yi = sign(aTi x0), and attempt
to recover the sparsity of x0 using sparse logistic regression

min
x∈Rn

1

m

m∑
i=1

log(1+exp(−yia
T
i x)) s.t. ∥x∥1 ≤ α. (7)

Because signed compressive sensing is a harder task, we
use a higher sampling ratio of 50x.

6 CONCLUSION

The main goal of this study is to see if the discretization
error, which seems to be the primary cause of slow (FW)

Figure 5: Signed compressed sensing. m = 5000, n =
100, c = β = 2, p = 1.

convergence, can be attacked directly in order to produce a
better method. First, we highlight the artifacts and pitfalls of
discretization error (largely, bad zig-zagging step directions
that are not amenable to momentum-based acceleration) and
the regimes where they are most prominent (on the non-
minimal boundary of a polytope, or in the interior of a set
when line search is not used).

Next, we explore the use of higher order discretization
methods, which has been used in the past in gradient flow
applications with observed success, and which has funda-
mentally better truncation errors with each growing order.
However, we show that though this method gives constant
factor improvements in practice, asymptotically the worst
case convergence rate does not improve beyond O(1/k).
This is consistent with simulations that show initially fast
convergence, but a “tapering off” once the residual con-
vergence error is below that of the truncation error order
guarantee. While this result is disappointing, it is important
to highlight the main flaw of directly adapting this popular
dynamical systems tool for optimization improvement.

Finally, we explore an LMO-averaging method, which pro-
duces a smoother convergence trajectory and a fundamen-
tally improved convergence rate (from O(1/k) to up to
O(1/k3/2)) with negligible computation and memory over-
head. This method is largely inspired from viewing the mul-
tistep method as a finite-window averaging method, which
achieves finite constant order rate improvement–thus, only
an infinite window seems to allow for non-constant order
improvement. Our numerical results show that, though our
theoretical improvements are only local, the effect of this
acceleration appears effective globally; moreover, manifold
identification (or at least reduction to a small working set of
nonzeros) appears almost immediately in many cases.

Use in gap-safe screening rules. An important related
application to these works is gap-safe convergence rates
Ndiaye et al. (2017); Sun and Bach (2020), which produce
sparsity guarantees given intermediate iterates xk, provided
the duality gap at xk is below some problem-dependent
constant. Typically, these guarantees are strong, but slow
to realize in practice, especially when gap convergence is
slow. In this, (AVGFW) offers a distinct advantage in its
faster gap convergence, in providing this guarantee.
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A ADDITIONAL EXPERIMENTS

We include a few more experiments to expand beyond Runge-Kutta family (see Figure 6). In general, we do not notice much
difference in MULTFW with different multistep methods. It is consistent with our theory, which states that MULTFW is still
Ω(1/k).
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Figure 6: Additional multistep methods

B EXTRA TABLEAUS OF HIGHER ORDER RUNGE KUTTA METHODS

• Midpoint method

A =

[
0 0
1/2 0

]
, β =

[
0
1

]
, ω =

[
0
1/2

]
, z(1) ≈

[
−0.3810
1.1429

]
, z(2) ≈

[
−0.2222
0.8889

]
• Runge Kutta 4th Order Tableau (44)

A =


0 0 0 0
1/2 0 0 0
0 1/2 0 0
0 0 1 0

 , β =


1/6
1/3
1/3
1/6

 , ω =


0
1/2
1/2
1

 , z(1) ≈


0.2449
0.5986
0.5714
0.3333


• Runge Kutta 3/8 Rule Tableau (4)

A =


0 0 0 0
1/3 0 0 0
−1/3 1 0 0
1 −1 1 0

 , β =


1/8
3/8
3/8
1/8

 , ω =


0

1/3
2/3
1

 , z(1) ≈


0.1758
0.6409
0.6818
0.2500


• Runge Kutta 5 Tableau

A =


0 0 0 0 0 0

1/4 0 0 0 0 0
1/8 1/8 0 0 0 0
0 −1/2 1 0 0 0

3/16 0 0 9/16 0 0
−3/7 2/7 12/7 −12/7 8/7 0

 , β =


7/90
0

32/90
12/90
32/90
7/90

 , ω =


0
1/4
1/4
1/2
3/4
1

 , z(1) ≈


0.1821
0.0068
0.8416
0.3657
0.9956
0.2333


In all examples, ∥z(k)∥∞ monotonically decays with k.
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Test set ∆ = 1 ∆ = 0.1 ∆ = 0.01
Sensing 105.90 / 140.29 10.49 / 13.86 1.05 / 1.39
Madelon 0.11 / 0.23 0.021 / 0.028 0.0021 / 0.0028
Gisette 1.08 / 1.74 0.21 / 0.28 0.021 / 0.028

Zigzagging in continuous flow

Test set FW FW-MID FW-RK4
Sensing 105.90 / 140.29 0.57 / 1.0018 0.015 / 0.033
Madelon 0.031 / 0.040 0.025 / 0.029 0.025 / 0.029
Gisette 0.30 / 0.40 0.25 / 0.11 0.22 / 0.20

Zigzagging in multistep methods

Figure 7: Zig-zagging on real datasets. Average deviation of different discretizations of FWFLOW. Top table uses different
∆s and uses the vanilla Euler’s discretization (FW). Bottom uses ∆ = 1 and different multistep methods. The two numbers
in each box correspond to window sizes 5 / 20.

C EXTRA EXPERIMENTS

Figure 7 quantifies this notion more concretely. We measure “zig-zagging energy” by averaging the deviation of each
iterate’s direction across k-step directions, for k = 1, ...,W , for some measurement window W :

Ezigzag(x(k+1), ...,x(k+W )) =
1

W − 1

k+W−1∑
i=k+1

∥∥∥(I − 1

∥d̄(k)∥2
d̄(k)(d̄(k))T

)
︸ ︷︷ ︸

Q

d(i)
∥∥∥
2
,

where d(i) = x(i+1)−x(i) is the current iterate direction and d̄(k) = x(k+W )−x(k) a “smoothed” direction. The projection
operator Q removes the component of the current direction in the direction of the smoothed direction, and we measure this
“average deviation energy.” We divide the trajectory into these window blocks, and report the average of these measurements
Ezigzag over T = 100 time steps (total iteration = T/∆). Figure 7 (top table) exactly shows this behavior, where the problem
is sparse constrained logistic regression minimization over several machine learning classification datasets (Guyon et al.,
2004) (Sensing (ours), Gisette 3 and Madelon 4) are shown in Fig. 7.

D MULTISTEP FRANK WOLFE PROOFS

D.1 Feasibility

Proposition D.1. For a given q-stage RK method defined by A, β, and ω, for each given k ≥ 1, define

γ̄
(k)
i =

c

c+ k + ωi
, Γ(k) = diag(γ̄

(k)
i ),

P(k) = Γ(k)(I +ATΓ(k))−1, z(k) = qP(k)β.

Then if 0 ≤ z(k) ≤ 1 for all k ≥ 1, then
x0 ∈ D ⇒ xk ∈ D, ∀k ≥ 1.

Proof of Prop. D.1.

Proof. For a given k, construct additionally

Z =
[
ξ1 ξ2 · · · ξq

]
,

3Full dataset available at https://archive.ics.uci.edu/ml/datasets/Gisette. We use a subsampling, as given in
https://github.com/cyrillewcombettes/boostfw.

4Dataset: https://archive.ics.uci.edu/ml/datasets/madelon

https://archive.ics.uci.edu/ml/datasets/Gisette
https://github.com/cyrillewcombettes/boostfw
https://archive.ics.uci.edu/ml/datasets/madelon


Zhaoyue Chen, Yifan Sun

X̄ =
[
x̄1 x̄2 · · · x̄q

]
, S̄ =

[
s̄1 s̄2 · · · s̄q

]
.

where

x̄i = xk +

q∑
j=1

Aijξj ,

s̄i = LMO(x̄i).

Then we can rewrite (4) as

Z = (S̄− X̄)Γ = (S̄− xk1
T − ZAT )Γ

= (S̄− xk1
T )P

for shorthand P = P(k) and Γ = Γ(k). Then

xk+1 = xk(1− 1TPβ) + S̄Pβ

=
1

q

q∑
i=1

(1− z
(k)
i )xk + z

(k)
i s̄i︸ ︷︷ ︸

ξ̂i

where z(k)i is the ith element of z(k), and β = (β1, ..., βq). Then if 0 ≤ z
(k)
i ≤ 1, then ξ̂i is a convex combination of xk and

s̄i, and ξ̂i ∈ D if xk ∈ D. Moreover, xk+1 is an average of ξ̂i, and thus xk+1 ∈ D. Thus we have recursively shown that
xk ∈ D for all k.

D.2 Positive Runge-Kutta convergence result

Lemma D.2. After one step, the generalized Runge-Kutta method satisfies

h(xk+1)− h(xk) ≤ −γk+1h(xk) +D4(γk+1)
2

where h(x) = f(x)− f(x∗) and

D4 =
LD2

2 + 2LD2D3 + 2D3

2
, D2 = c1D, D3 = c2c1D, c1 = qpmax, c2 = qmax

ij
|Aij |, D = diam(D).

Proof. For ease of notation, we write x = xk and x+ = xk+1. We will use γ = γk = c
c+k , and γ̄i = c

c+k+ωi
. Now

consider the generalized RK method

x̄i = x+

q∑
j=1

Aijξj

ξi =
c

c+ k + ωi︸ ︷︷ ︸
γ̃i

(si − x̄i)

x+ = x+

q∑
i=1

βiξi

where si = LMO(x̄i).

Define D = diam(D). We use the notation from section 3. Denote the 2,∞-norm as

∥A∥2,∞ = max
j

∥aj∥2
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where aj is the jth column of A. Note that all the element-wise elements in

P(k) = Γ(k)(I +ATΓ(k))−1

is a decaying function of k, and thus defining pmax = ∥P(1)∥2,∞ we see that

∥Z̄∥2,∞ = ∥(S̄− x(k)1)P(k)∥2,∞ ≤ qpmaxD.

Therefore, since Z̄ = (S̄− X̄)Γ, and all the diagonal elements of Γ are at most 1,

∥si − x̄i∥2 ≤ qpmaxD =: D2

and

∥x− x̄i∥2 = ∥
q∑

j=1

Aijγj(sj − x̄j)∥2 ≤ qmax
ij

|Aij |γD2 =: D3γ.

Then

f(x+)− f(x) ≤ ∇f(x)T (x+ − x) +
L

2
∥x+ − x∥22

=
∑
i

βiγ̃i∇f(x)T (si − x̄i) +
L

2
∥
∑
i

βiγ̃i(si − x̄i)∥22︸ ︷︷ ︸
≤γ2D2

2

=
∑
i

βiγ̃i(∇f(x)−∇f(x̄i))
T (si − x̄i) +

∑
i

βiγ̃i ∇f(x̄i)
T (si − x̄i)︸ ︷︷ ︸

−gap(x̄i)

+
Lγ2D2

2

2

≤
∑
i

βi γ̃i︸︷︷︸
≤γ

∥∇f(x)−∇f(x̄i)∥2︸ ︷︷ ︸
L∥x−x̄i∥2=LγD3

∥si − x̄i∥2︸ ︷︷ ︸
≤D2

−
∑
i

βiγ̃igap(x̄i) +
Lγ2D2

2

2

≤ −
∑
i

βiγ̃igap(x̄i) +
Lγ2D2

2

2
+

2Lγ2D2D3

2

≤ −γ+
∑
i

βih(x̄i) +
Lγ2D2(D2 + 2D3)

2

where γ = γk, and γ+ = γk+1. Now assume f is also L2-continuous, e.g. |f(x1)− f(x2)| ≤ L2∥x1 − x2∥2. Then, taking
h(x) = f(x)− f(x∗),

h(x+)− h(x) ≤ −γ+
∑
i

βi(h(x̄i)− h(x))− γ+
∑
i

βi︸ ︷︷ ︸
=1

h(x) +
Lγ2D2(D2 + 2D3)

2

≤ γ
∑
i

βiL2 ∥x̄i − x∥2︸ ︷︷ ︸
≤γD3

−γ+h(x) +
Lγ2D2(D2 + 2D3)

2

≤ −γ+h(x) +
γ2(LD2

2 + 2LD2D3 + 2D3)

2

≤ −γ+h(x) +D4(γ
+)2

where D4 =
LD2

2+2LD2D3+2D3

2 and we use 2 ≥ (γ/γ+)2 for all k ≥ 1.

Proof of Prop. 3.2
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Proof. After establishing Lemma D.2, the rest of the proof is a recursive argument, almost identical to that in Jaggi (2013).

At k = 0, we define h0 = max{h(x(0)), D4c
2

c−1 }, and it is clear that h(x(0)) ≤ h0.

Now suppose that for some k, h(x(k)) ≤ h0

k+1 . Then

h(xk+1) ≤ h(xk)− γk+1h(x
(k)) +D4γ

2
k+1

≤ h0

k + 1
· k + 1

c+ k + 1
+D4

c2

(c+ k + 1)2

=
h0

c+ k + 1
+D4

c2

(c+ k + 1)2

=

(
h0 +

D4c
2

c+ k + 1

)(
k + 2

c+ k + 1

)
1

k + 2

≤ h0

(
1 +

c− 1

c+ k + 1

)(
k + 2

c+ k + 1

)
1

k + 2

≤ h0

(
2c+ k

c+ k + 1

)(
k + 2

c+ k + 1

)
︸ ︷︷ ︸

≤1

1

k + 2
.

D.3 Negative Runge-Kutta convergence result

This section gives the proof for Proposition 3.3.
Lemma D.3 (O(1/k) rate). Start with x0 = 1. Then consider the sequence defined by

xk+1 = |xk − ck
k
|

where, no matter how large k is, there exist some constant where C1 < maxk′>k ck′ . (That is, although ck can be anything,
the smallest upper bound of ck does not decay.) Then

sup
k′≥k

|xk′ | = Ω(1/k).

That is, the smallest upper bound of |xk| at least of order 1/k.

Proof. We will show that the smallest upper bound of |xk| is larger than C1/(2k).

Proof by contradiction. Suppose that at some point K, for all k ≥ K, |xk| < C1/(2k). Then from that point forward,

sign(xk − ck
k
) = −sign(xk)

and there exists some k′ > k where ck′ > C1. Therefore, at that point,

|xk′+1| =
ck′

k′
− |xk′ | ≥ C1

2k′
>

C1

2(k′ + 1)
.

This immediately establishes a contradiction.

Now define the operator
T (xk) = xk+1 − xk

and note that
|xk+1| = |xk + T (xk)| = ||xk|+ sign(xk)T (xk)|.

Thus, if we can show that there exist some ϵ, agnostic to k (but possibly related to Runge Kutta design parameters), and

∃k′ ≥ k, −sign(xk′)T (xk′) >
ϵ

k′
, ∀k, (8)

then based on the previous lemma, this shows supk′>k |xk′ | = Ω(1/k) as the smallest possible upper bound.
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Lemma D.4. Assuming that 0 < qP(k)β < 1 then there exists a finite point k̃ where for all k > k̃,

|xk| ≤
C2

k

for some C2 ≥ 0.

Proof. We again use the block matrix notation

Z(k) = (S̄− xk⊮T )Γ(k)(I +ATΓ(k))−1

where Γ(k) = diag(γ̃
(k)
i ) and each element γ̃(k)

i ≤ γ(k).

First, note that by construction, since

∥S̄− xk⊮T ∥2,∞ ≤ D4, ∥(I +ATΓ(k))−1∥2 ≤ ∥(I +ATΓ(0))−1∥2

are bounded above by constants, then
∥Z(k)∥∞ ≤ c

c+ k
C1

for C1 = D4∥(I +ATΓ(0))−1∥2.

First find constants C3, C4, and k̄ such that

C3

k
≤ ⊮TP(k)β ≤ C4

k
, ∀k > k̄, (9)

and such constants always exist, since by assumption, there exists some amin > 0, amax < 1 and some k′ where

amin < qP(k′)β < amax ⇒ amin

qγmax
≤ (I +ATΓ(k′))−1β ≤ amax

qγmin

where
γmin = min

i

c

c+ k′ + ω
(k′)
i

, γmax =
c

c+ k′
.

Additionally, for all k > c+ 1,
c

2k
≤ c

c+ k + 1
≤ Γ

(k)
ii ≤ c

c+ k
≤ c

k
.

Therefore taking
C3 =

camin

2qγmax
, C4 =

camax

qγmin
, k̄ = max{k′, c+ 1}

satisfies (9).

Now define
C2 = max{|x1|, 4cqC1∥A∥∞, 4C3, 4C4}.

We will now inductively show that |xk| ≤ C2

k . From the definition of C2, we have the base case for k = 1:

|x1| ≤
|x1|
1

≤ C2

k
.

Now assume that |xk| ≤ C2

k . Recall that

xk+1 = xk(1− ⊮TP(k)β) + S̄P(k)β, S̄ = [s̄1, ..., s̄q], si = −sign(x̄i)

and we denote the composite mixing term γ̄(k) = ⊮TP(k)β. We now look at two cases separately.

• Suppose first that S̄ = −sign(xk⊮T ), e.g. sign(x̄i) = sign(xk) for all i. Then

S̄P(k)β = −sign(xk)γ̄k,
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and

|xk+1| = |xk(1− γ̄(k)) + S̄P(k)β|
= |xk(1− γ̄(k))− sign(xk)γ̄

(k)|
= | sign(xk)xk︸ ︷︷ ︸

|xk|

(1− γ̄(k))− sign(xk)sign(xk)︸ ︷︷ ︸
=1

γ̄(k)|

= ||xk|(1− γ̄(k))− γ̄(k)|
≤ max{|xk|(1− γ̄(k))− γ̄(k), γ̄(k) − |xk|(1− γ̄(k))}

≤ max

{
C2

k
(1− C3

k
)− C3

k︸ ︷︷ ︸
(∗)

,
C4

k

}

and when k ≥ C2

C3
⇐⇒ C3 ≥ C2

k ,

(∗) ≤ C2

(
1

k
− 1

k2

)
≤ C2

k + 1
.

Taking also C4 ≤ C2

4 ,

|xk+1| ≤ max

{
C2

k + 1
,
C2

4k

}
≤ C2

k + 1

for all k ≥ 1.

• Now suppose that there is some i where s̄i = sign(xk⊮T ). Now since

S̄ = −sign(xk⊮T + ZAT )

then this implies that |xk| < (ZAT )i. But since

|(ZAT )i| ≤ ∥Z∥∞∥A∥∞q ≤ c

c+ k
(C1∥A∥∞q) ≤ C2

4k
,

this implies that

|xk+1| ≤
C2

4k
(1− C3

k
) +

C2

4k
≤ C2

2k
≤ C2

k + 1
, ∀k > 1.

Thus we have shown the induction step, which completes the proof.

Lemma D.5. There exists a finite point k̃ where for all k > k̃,

c

c+ k
− C4

k2
< |ξi| <

c

c+ k
+

C4

k2

for some constant C4 > 0.

Proof. Our goal is to show that

γ(k) − C4

k2
≤ ∥Z∥∞ ≤ γ(k) +

C4

k2

for some C4 ≥ 0, and for all k ≥ k′ for some k′ ≥ 0. Using the Woodbury matrix identity,

Γ(I +ATΓ)−1 = Γ
(
I −AT (I + ΓAT )−1Γ

)
and thus

Z(k) = S̄Γ−
(
xk⊮TΓ + (S̄− xk⊮T )ΓAT (I + ΓAT )−1Γ

)︸ ︷︷ ︸
B

.
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and thus
|s̄iγ̃i| −

C3

k2
≤ |ξ(k)i | ≤ |s̄iγ̃i|+

C3

k2

where via triangle inequalities and norm decompositions,

C3

k2
= max

i
|Bi| ≤ |xk|︸︷︷︸

O(1/k)

γk +D4γ
2
k∥A∥∞(I + Γ(0)AT )−1 = O(1/k2).

Finally, since s̄i ∈ {−1, 1}, then |s̄iγ̃i| = γ̃i, and in particular,

c

c+ k + ωi
≤ c

c+ k

and
c

c+ k + ωi
≥ c

c+ k + ωmax
=

c

c+ k
− c

c+ k

ωmax

c+ k + ωmax
≥ c

c+ k
− cωmax

k2

Therefore, taking C4 = cωmax + C3 completes the proof.

Lemma D.6. There exists some large enough k̃ where for all k ≥ k̃, it must be that

∃k′ ≥ k, −sign(xk′)T (xk′) >
ϵ

k′
. (10)

Proof. Define a partitioning S1 ∪ S2 = {1, ..., q}, where

S1 = {i : ξi > 0}, S2 = {j : ξj ≤ 0}.

Defining ξ̄ = c
c+k ,

|
q∑

i=1

βiξi| = |
∑
i∈S1

βi|ξi| −
∑
j∈S2

βj |ξj || ≥
(
ξ̄ − C4

k2

)
·

∣∣∣∣∣∣
∑
i∈S1

βi −
∑
j∈S2

βj

∣∣∣∣∣∣ .
By assumption, there does not exist a combination of βi where a specific linear combination could cancel them out; that is,
suppose that there exists some constant β̄, where for every partition of sets S1,S2,

0 < β̄ := min
S1,S2

|
∑
i∈S1

βi −
∑
j∈S2

βj |.

Then

|
q∑

i=1

βiξi| ≥
(

c

c+ k
− C2

k2

)
β̄ ≥ β̄

max{C2, c}
k

.

Picking ϵ = max{C2, c} concludes the proof.

E AVERAGED FRANK WOLFE PROOFS

E.1 Accumulation terms

Lemma E.1. For an averaging term s̄(t) satisfying

˙̄s(t) = β(t)(s(t)− s̄(t)), s̄(0) = s(0) = 0

where β(t) = cp

(c+t)p , then

s̄(t) =


e−α(t)

∫ t

0

cpeα(τ)

(c+ τ)p
s(τ)dτ, p ̸= 1

c

(c+ t)c

∫ t

0

(c+ τ)c−1s(τ)dτ p = 1
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where α(t) = cp(c+t)1−p

1−p . If s(t) = 1 for all t, then we have an accumulation term

s̄(t) =

1− eα(0)

eα(t)
, p ̸= 1

1− (
c

c+ t
)c, p = 1

Proof. This can be done through simple verification.

• If p ̸= 1,

α′(t) =
cp

(c+ t)p
= β(t),

and via chain rule,

s̄′(t) = e−α(t) c
p exp(α(t))

(c+ t)p︸ ︷︷ ︸
=β(t)

s(t)− α′(t) exp(−α(t))

∫ t

0

cp exp(α(τ))

(c+ τ)p
s(τ)dτ︸ ︷︷ ︸

s̄(t)

.

The accumulation term can be verified if

e−α(t)

∫ t

0

cpeα(τ)

(c+ τ)p
dτ = 1− eα(0)

eα(t)

which is true since

e−α(t)

∫ t

0

cpeα(τ)

(c+ τ)p
dτ = e−α(t)

∫ t

0

(
d

dτ
eα(τ))dτ.

• If p = 1

s̄′(t) =
c

(c+ t)
s(t)− c2

(c+ t)c+1

∫ t

0

(c+ τ)c−1s(τ)dτ =
c

(c+ t)
(s(t)− s̄(t)).

For the accumulation term,

c

(c+ t)c

∫ t

0

(c+ τ)c−1dτ =
c

(c+ t)c

∫ t

0

(
∂

∂τ

(c+ τ)c

c
)dτ = 1− (

c

c+ t
)c.

For convenience, we define

βt,τ :=


cpeα(τ)−α(t)

(c+ τ)p
, p ̸= 1

c(c+ τ)c−1

(c+ t)b
, p = 1,

β̄t :=


1− exp(α(0))

exp(α(t))
, p ̸= 1

1− (
c

c+ t
)b p = 1

Lemma E.2. For the averaging sequence s̄k defined recursively as

s̄k+1 = s̄k + βk(sk − s̄k), s̄0 = 0.

Then

s̄k =

k∑
i=1

βk,isi, βk,i =
cp

(c+ i)p

k−i−1∏
j=0

(
1− cp

(c+ k − j)p

)
p=1
=

c

c+ i

c∏
j=0

i+ j + 1

c+ k − j

and moreover,
∑k

i=1 βk,i = 1.
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Proof.

s̄k+1 =
cp

(c+ k)p
sk +

(
1− cp

(c+ k)p

)
s̄k

=
cp

(c+ k)p
sk +

cp

(c+ k − 1)p

(
1− cp

(c+ k)p

)
sk−1 +

(
1− cp

(c+ k)p

)(
1− cp

(c+ k − 1)p

)
s̄k−1

=

k∑
i=0

cp

(c+ k − i)p

i−1∏
j=0

(
1− cp

(c+ k − j)p

)
sk−i

l=k−i
=

k∑
l=1

cp

(c+ l)p

k−l−1∏
j=0

(
1− cp

(c+ k − j)p

)
︸ ︷︷ ︸

βk,l

sl.

If p = 1, then

βk,i =
c

c+ i

k−i−1∏
l=0

k − l

c+ k − l
=

c

c+ i

k(k − 1)(k − 2) · · · (i+ 1)

(c+ k)(c+ k − 1) · · · (c+ i+ 1)
=

c

c+ i

c∏
j=0

i+ j + 1

c+ k − j

For all p, to show the sum is 1, we do so recursively. At k = 1, β1,1 = cp

(c+1)p . Now, if
∑k−1

i=0 βk−1,i = 1, then for i ≤ k− 1

βk,i =

(
1− cp

(c+ k)p

)
βk−1,i, i ≤ k − 1

and for i = k, βk,k = cp

(c+k)p . Then

k∑
i=1

βk,i = βk,k +

(
1− cp

(c+ k)p

) k−1∑
l=1

βk−1,i =
cp

(c+ k)p
+

(
1− cp

(c+ k)p

)
= 1.

E.2 Averaging

In the vanilla Frank-Wolfe method, we have two players s and x, and as x → x∗, s may oscillate around the solution fascet
however it would like, so that its average is x∗ but ∥s− x∗∥2 remains bounded away from 0. However, we now show that if
we replace s with s̄, whose velocity slows down, then it must be that ∥s− x∗∥2 decays.

Lemma E.3 (Continuous averaging). Consider some vector trajectory v(t) ∈ Rn, and suppose

• ∥v(t)∥2 ≤ D for arbitrarily large t

• ∥v′(t)∥2 = β(t)D

• 1
2∥
∫∞
t

γ(τ)v(τ)dτ∥22 = O(1/tq) for q > 0.

Then ∥v(t)∥22 ≤ O(tq/2+p−1).

Proof. We start with the orbiting property.

d

dt

(
1

2
∥
∫ ∞

t

γ(τ)v(τ)dτ∥22
)

= −
∫ ∞

t

γ(t)γ(τ)v(τ)T v(t)dτ ≤ 0.

Since this is happening asymptotically, then the negative derivative of the LHS must be upper bounded by the negative
derivative of the RHS. That is, if a function is decreasing asymptotically at a certain rate, then its negative derivative should
be decaying asymptotically at the negative derivative of this rate. So,
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∫ ∞

t

γ(τ)v(τ)T v(t)dτ ≤ O(1/tq).

This indicates either that ∥v(t)∥2 is getting smaller (converging) or v(t) and its average are becoming more and more
uncorrelated (orbiting).

Doing the same trick again with the negative derivative,

− d

dt

∫ ∞

t

γ(τ)v(τ)T v(t)dτ = γ(t)∥v(t)∥22 −
∫ ∞

t

γ(τ)v(τ)T v′(t)dτ

By similar logic, this guy should also be decaying at a rate O(1/tq+1), so

γ(t)∥v(t)∥22 ≤ C2

tq+1
+

∫ ∞

t

γ(τ)v(τ)T v′(t)dτ ≤ C2

tq+1
+ ∥

∫ ∞

t

γ(τ)v(τ)dτ∥2︸ ︷︷ ︸
≤O(1/tq/2)

Dβ(t) =
C2

tq+1
+

C3

tq/2+p

Therefore
∥v(t)∥22 ≤ C2

tq
+

C3

tq/2+p−1
= O(

1

tq/2+p−1
).

Corollary E.4. Suppose f is µ-strongly convex. Then

∥s̄(t)− x(t)∥22 ≤ Ct−(q/2+p−1)

for some constant C > 0.

Proof. Taking v(t) = s̄(t) − x(t), it is clear that if β(t) ≥ γ(t) then the first two conditions are satisfied. In the third
condition, note that ∫ ∞

t

γ(τ)(s̄(τ)− x(τ))dτ =

∫ ∞

t

ẋ(τ)dτ = x∗ − x(t)

and therefore
1

2
∥
∫ ∞

t

γ(τ)v(τ)dτ∥22 =
1

2
∥x∗ − x(t)∥22 ≤ µ(f(x)− f∗)

by strong convexity.

Lemma E.5 (Discrete averaging). Consider some vector trajectory vk ∈ Rn. Then the following properties cannot all be
true.

• ∥vk∥2 ≤ D for arbitrarily large k

• ∥vk+1 − vk∥2 ≤ βkD

• 1
2∥
∑∞

i=k γkvk∥22 ≤ C1

kq for q > 0.

Then ∥vk∥22 ≤ O(kq/2+p−1).

Proof. The idea is to recreate the same proof steps as in the previous lemma. Note that the claimis not that these inequalities
happen at each step, but that they must hold asymptotically in order for the asymptotic decay rates to hold. So

1

2
∥

∞∑
i=k

γivi∥22 −
1

2
∥

∞∑
i=k

γi+1vi+1∥22 =
γ2
k

2
∥vk∥22 + γkv

T
k

( ∞∑
i=k

γi+1vi+1

)
≤ C1

(k + 1)q
− C1

kq
=

C2

kq

and therefore
γk
2
∥vk∥22 + vT

k

( ∞∑
i=k

γi+1vi+1

)
≤ C1

(k + 1)q+1
− C1

kq+1
=

C2

kq+1
.
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Next,

vT
k

( ∞∑
i=k

γi+1vi+1

)
− vT

k+1

( ∞∑
i=k+1

γi+1vi+1

)
+ vT

k

( ∞∑
i=k+1

γi+1vi+1

)
− vT

k

( ∞∑
i=k+1

γi+1vi+1

)

= γk+1v
T
k vk+1 + (vk − vk+1)

T

( ∞∑
i=k+1

γi+1vi+1

)

γk
2
∥vk∥22 −

γk+1

2
∥vk+1∥22 + vT

k

( ∞∑
i=k

γi+1vi+1

)
− vT

k+1

( ∞∑
i=k+1

γi+1vi+1

)
=

γk
2
∥vk∥22 −

γk+1

2
∥vk+1∥22 + γk+1v

T
k vk+1︸ ︷︷ ︸

−
γk+1

2 ∥vk+1−vk∥2
2+

γk+1
2 ∥vk∥2

2

+(vk − vk+1)
T

( ∞∑
i=k+1

γi+1vi+1

)
≤ C3

kq+1

Therefore
γk + γk+1

2
∥vk∥22 ≤ C3

kq+1
+ (vk+1 − vk)

T

( ∞∑
i=k+1

γi+1vi+1

)
︸ ︷︷ ︸

O(βk/kq/2)

+
γk+1

2
∥vk+1 − vk∥22︸ ︷︷ ︸
O(γkβ2

k)

Finally,

∥vk∥22 ≤ C3

kq
+

C4

kq/2+p−1
+

C5

k2p
= O(1/kmin{q/2+p−1,2p}).

Corollary E.6. Suppose f is µ-strongly convex. Then if f(x)− f∗ = O(k−q)

∥s̄k − xk∥22 ≤ Cmax{k−(q/2+p−1), k−2p}

for some constant C > 0.

Proof. Taking vk = s̄k − xk, it is clear that if β(t) ≥ γ(t) then the first two conditions are satisfied. In the third condition,
note that

∞∑
i=k

γi(s̄i − xi) =

∞∑
i=k

xi+1 − xi = x∗ − xk

and therefore
1

2
∥

∞∑
i=k

γi(s̄i − xi)∥22 =
1

2
∥x∗ − xk∥22 ≤ µ(f(xk)− f∗)

by strong convexity.

E.3 Global rates

Lemma E.7 (Continuous energy function decay). Suppose c ≥ q − 1, and

g(t) ≤ −
∫ t

0

exp(α(τ))

exp(α(t))

(c+ τ)c

(c+ t)c
C1

(b+ τ)r
dτ

Then

g(t) ≤ −

(
1− α(1)

exp(α(1))

)
C1

α(t)(1− p)
(c+ t)1−r
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Proof.

g(t)

C1
exp(α(t))(c+ t)c ≤ −

∫ t

0

exp(α(τ))(c+ τ)c−rdτ

= −
∫ t

0

∞∑
k=1

α(τ)k

k!
(c+ τ)c−rdτ

= −
∫ t

0

∞∑
k=1

ckp

k!(1− p)k
(c+ τ)k−pk+c−rdτ

Fubini
= −

∞∑
k=1

ckp

(1− p)kk!

∫ t

0

(c+ τ)k−pk+c−rdτ

= −
∞∑
k=1

ckp

(1− p)kk!

(c+ t)k−pk+c−r+1 − ck−pk+c−r+1

k − pk + c− r + 1

= −
∞∑
k=1

1

(k + 1)!

(
cp

(c+ t)p−1(1− p)

)k

(c+ t)1+c−r 1

(1− p) + (c− r + 1)/k

k + 1

k︸ ︷︷ ︸
≥C2

≤ −C2

∞∑
k=1

(c+ t)1+c−r

(k + 1)!

α(t)k+1

α(t)

= −C2(c+ t)1+c−r

α(t)
(exp(α(t))− α(1))

Then

g(t) ≤ −C1C2

α(t)
(c+ t)1−r

(
1− α(1)

exp(α(t))

)
≤ −C1C2

α(t)
(c+ t)1−r

(
1− α(1)

exp(α(1))

)
≤ −C1C3

α(t)
(c+ t)1−r

where C3 = C2

(
1− α(1)

exp(α(1))

)
and C2 = 1

1−p satisfies the condition.

Theorem E.8 (Continuous global rate). Suppose 0 < p < 1. Then the averaged FW flow decays as O(1/t1−p).

Proof. Consider the error function

g(t) := ∇f(x(t))T (s̄(t)− x(t)), g(0) = 0.

ġ(t) =
∂

∂t
∇f(x)T (s̄− x)

=

(
∂

∂t
∇f(x)T

)
(s̄− x) +∇f(x)T

(
∂

∂t
(s̄− x)

)
=

(
∂

∂t
∇f(x)T

)
︸ ︷︷ ︸

=ẋT∇2f(x)

(s̄− x) +∇f(x)T (β(t)(s(t)− s̄(t))− γ(t)(s̄(t)− x(t)))

≤ γ (s̄− x)T∇2f(x)(s̄− x)︸ ︷︷ ︸
≤4LD2γ(t)

+β(t)∇f(x)T (s(t)− x(t))︸ ︷︷ ︸
−β(t)gap(x)

−(β(t) + γ(t))∇f(x)T (s̄(t)− x(t))︸ ︷︷ ︸
=g(t)
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g(t) ≤
∫ t

0

exp(α(τ))

exp(α(t))

(c+ τ)c

(c+ t)c

(
4LD2c

c+ τ
− bp

(b+ τ)p
gap(x(τ))

)
︸ ︷︷ ︸

A(τ)

dτ

ḣ(t) ≤ γ(t)g(t) ≤ γ(t)

∫ t

0

exp(α(τ))

exp(α(t))

(c+ τ)c

(c+ t)c︸ ︷︷ ︸
µ(τ)

A(τ)dτ

In order for h(t) to decrease, it must be that ḣ(t) ≤ 0. However, since µ(τ) ≥ 0 for all τ ≥ 0, it must be that A(τ) ≤ 0, e.g.

cp

(c+ τ)p
gap(x(τ)) ≥ 4LD2c

c+ τ
.

which would imply h(t) = O(1/(c+ t)1−p). Let us therefore test the candidate solution

h(t) =
C3

(c+ t)1−p
.

Additionally, from Lemma E.7, if

A(τ) ≤ − C1

(c+ t)
⇒ g(t) ≤ − C1

α(t)(1− p)

and therefore

ḣ(t) ≤ γ(t)g(t) ≤ − c

c+ t

C1

cp
· (c+ t)p−1∫ t

0

(̇h(τ))dτ ≤ C1c

(1− p)cp
(c+ t)p−1

which satisfies our candidate solution for C3 = C1c
(p−1)cp .

This term (s̄− x)T∇2f(x)(s̄− x) ≤ 4LD2γ(t) is an important one to consider when talking about local vs global distance.
The largest values of the Hessian will probably not correspond to the indices that are “active”, and thus this bound is very
loose near optimality.

Lemma E.9 (Discrete energy decay). Suppose 0 < p < 1. Consider the error function

gk := ∇f(xk)
T (s̄k − xt).

Then

gk ≤ −
k−1∑
i=0

βi,i(
i+ 1 + c

k + c
)cgap(xi)− βk,kgap(xk) +

4D2LC1

(k + c)p
+ (

c

k + c
)cg0.

where C1 = cp(1 + 1
(c+1)(1−p)−1 ).

Importantly, C1 is finite only if p < 1. When p = 1, the right hand side is at best bounded by a constant, and does not decay,
which makes it impossible to show method convergence.

Proof. Define zk = ∇f(xk), gk = zTk (s̄k − xk). Then
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gk = βk,kz
T
k (sk − xk)︸ ︷︷ ︸

−βk,kgap(xk)

+

k−1∑
i=0

βk,iz
T
k (si − xk)︸ ︷︷ ︸
A

A =

k−1∑
i=0

βk,i

βk−1,i︸ ︷︷ ︸
=(1− c

(c+i)p
)

βk−1,iz
T
k (si − xk) ≤ (1− cp

(c+ k)p
) zTk (s̄k−1 − xk)︸ ︷︷ ︸

=B

B = zTk (s̄k−1 − (xk−1 + γk−1(s̄k−1 − xk−1))︸ ︷︷ ︸
xk

)

= (1− γk−1)z
T
k (s̄k−1 − xk−1)

= (1− γk−1)(zk − zk−1)
T (s̄k−1 − xk−1)︸ ︷︷ ︸

(xk−xk−1)γ
−1
k−1

+(1− γk−1) z
T
k−1(s̄k−1 − xk−1)︸ ︷︷ ︸

gk−1

=
(1− γk−1)

γk−1
(zk − zk−1)

T (xk − xk−1)︸ ︷︷ ︸
≤L∥xk−xk−1∥2

2

+(1− γk−1)gk−1

≤ (1− γk−1)γk−1L ∥s̄k−1 − xk−1∥22︸ ︷︷ ︸
4D2

+(1− γk−1)gk−1

Overall,

gk ≤ −βk,kgap(xk) + 4D2Lγk−1(1− γk−1)(1− βk) + (1− βk)(1− γk−1)︸ ︷︷ ︸
µk

gk−1

= −βk,kgap(xk) + 4D2Lγk−1µk + µkgk−1

= −βk,kgap(xk) + 4D2Lγk−1µk − βk−1,k−1µkgap(xk−1) + 4D2Lγk−2µk−1µk + µkµk−1gk−2

= −
k−1∑
i=0

βi,igap(xi)

k∏
j=i+1

µj − βk,kgap(xk) + 4D2L

k∑
i=0

γk−i

k∏
j=i

µj +

k∏
j=1

µkg0

Now we compute
∏k

j=i µj

k∏
j=i

(1− γj−1) =

k∏
j=i

j − 1

c+ j − 1
=

c∏
j=0

i− 1 + j

k + j
≤ (

i+ c

k + c
)c

Using 1− cp

(c+k)p ≤ exp(−( c
c+k )

p),

log(

k∏
j=i

(1− cp

(c+ j)p
)) ≤ −

k∑
j=i

(
c

c+ j
)p ≤ −

∫ k

i

(
c

c+ j
)pdj =

cp

p+ 1
((c+ i)p+1 − (c+ k)p+1)

and therefore
k∏

j=i

(1− cp

(c+ k)p
) ≤

exp( cp

p+1 (c+ i)p+1)

exp( cp

p+1 (c+ k)p+1)

which means
k∏

j=i

µj ≤ (
i+ c

k + c
)c exp(

cp

p+ 1
((c+ i)p+1 − (c+ k)p+1)).
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Now we bound the constant term coefficient.

k∑
i=0

γi−1

k∏
j=i

µj ≤
k∑

i=0

c

(c+ i− 1)
(
i+ c

k + c
)c︸ ︷︷ ︸

max at i = 0

exp(
cp

p+ 1
((c+ i)p+1 − (c+ k)p+1))︸ ︷︷ ︸
≤ 1

(k−i)(c+1)(1−p)

C−S
≤ c

c− 1

cc

(k + c)c

k−1∑
i=0

1

(k − i)
(c+1)(1−p)

≤ c

c− 1

cc

(k + c)c
1

(c+ 1)(1− p)− 1

1

(1− k)(c+1)(1−p)−1

≤ C1

(k + c)p
1

(1− k)(c+1)(1−p)−1

where (∗) if c is chosen such that (c+ 1)(1− p) > 1 and C1 > 0 big enough. Note that necessarily, p < 1, and the size of
C1 depends on how close p is to 1.

Also, to simplify terms,

k∏
j=i

µj ≤ (
i+ c

k + c
)c exp(

cp

p+ 1
((c+ i)p+1 − (c+ k)p+1)).︸ ︷︷ ︸

≤1

Now, we can say

gk ≤ −
k−1∑
i=0

βi,i(
i+ 1 + c

k + c
)cgap(xi)− βk,kgap(xk) +

4D2LC1

(k + c)p
+ (

c

k + c
)cg0.

Theorem E.10 (Global rate, p < 1.). Suppose 0 < p < 1 and c ≥ c−1
cp . Then h(xk) =: hk = O( 1

(k+c)p ).

Proof. Start with

gk ≤ −
k−1∑
i=0

βi,i(
i+ 1 + c

k + c
)cgap(xi)− βk,kgap(xk) +

4D2LC1

(k + c)p
+ (

c

k + c
)cg0.

hk+1 − hk ≤ γkgk + 2γkLD
2

≤ − c

c+ k

1

(k + c)c

k−1∑
i=0

βi,i(i+ c+ 1)chi −
c

c+ k
βk,khk

+2D2Lγk(
2C1

(k + c)p
+ γk) +

c

c+ k

cc

(k + c)c
g0

≤ − cp+1

c+ k

1

(k + c)c

k−1∑
i=0

(i+ c)c−phi −
c

c+ k
βk,khk

+2D2Lγk(
2C1

(k + c)p
+ γk) +

c

c+ k

cc

(k + c)c
g0
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Suppose hk ≤ C2

(k+c)p . Then

hk+1 − hk ≤ − cp+1

c+ k

C2

(k + c)c

k−1∑
i=0

(c+ i)c−2p − cC2

c+ k

cp

(c+ k)2p︸ ︷︷ ︸
−AC2

+2D2L
c

c+ k

(
2C1

(k + c)p
+

c

c+ k

)
+

c

c+ k

cc

(k + c)c
g0︸ ︷︷ ︸

B

B =
c

c+ k

(
2D2L

(
2C1

(k + c)p
+

c

c+ k

)
+

cc

(k + c)c
g0

)
≤ 2cD2L(2C1 + c) + cc+1g0

(c+ k)p(c+ k)

=:
C3

(c+ k)p+1

where c > 1. Then,

(k + c)cA =
cp+1

c+ k

k−1∑
i=0

(c+ i)c−2p +
c

c+ k

cp

(c+ k)2p−1

≥ cp+1

c+ k

(c+ k − 1)c−2p+1 − (c+ 1)c−2p+1

c− 2p+ 1
+

c

c+ k

cp

(c+ k)2p−1

=
cp+1

c− 2p+ 1

(c+ k − 1)c−2p+1

c+ k
+O(1/k)

c≥2p+1

≥ cp+1

c− 2p+ 1
+O(1/k)

k big enough
≥ cp+1

c− 1

Therefore,

hk+1 ≤
C2(1− cp+1

c−1 )

(k + c)p
+

C3

(c+ k)p+1
.

Define ϵ = 2cp+1

cp+1+1−c and pick C2 > C3

cϵ . By assumption, ϵ > 0. Consider k > K such that for all k,

(k + c+ 1)p

(k + c)p
≤ 1 +

ϵ

2
,

C3

c+ k
≤ ϵ

2

(c+ k)p

(c+ k + 1)p
.

Then

hk+1 ≤
C2(1− ϵ

2 )

(k + c+ 1)p
+

ϵ
2

(k + c+ 1)p
≤ C2

(k + c+ 1)p
.

We have now proved the inductive step. Picking C2 ≥ h0 gives the starting condition, completing the proof.

E.4 Local rates

Lemma E.11 (Local convergence). Define, for all t,

s̃(t) = argmin
s̃∈conv(S(x∗))

∥s(t)− s̃∥2, ŝ(t) = β̄−1
t

∫ t

0

βt,τ s̃(τ)dτ. (11)
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e.g., ŝ(t) is the closest point in the convex hull of the support of x∗ to the the point s(t) = LMOD(x(t)).

Then,
∥s̄(t)− ŝ(t)∥2 ≤ c1

(c+ t)c
.

The proof of this theorem actually does not really depend on how well the FW method works inherently, but rather is
a consequence of the averaging. Intuitively, the proof states that after the manifold has been identified, all new support
components must also be in the convex hull of the support set of the optimal solution; thus, in fact s2(t)− ŝ(t) = 0. However,
because the accumulation term in the flow actually is not a true average until t → +∞, there is a pesky normalization term
which must be accounted for. Note, importantly, that this normalization term does not appear in the method, where the
accumulation weights always equal 1 (pure averaging).

Proof. First, note that

s̄(t)− ŝ(t) = s̄(t)− β̄−1
t

∫ t

0

βt,τ s̃(τ)dτ =

∫ t

0

βt,τ (s(τ)− β̄−1
t s̃(τ))dτ.

Using triangle inequality,

∥s̄(t)− ŝ(t)∥2 ≤ ∥
∫ t̄

0

βt,τ (s(τ)− β̄−1
t s̃(τ))dτ∥2︸ ︷︷ ︸

ϵ1

+ ∥
∫ t

t̄

βt,τ (s(τ)− β̄−1
t s̃(τ))dτ∥2︸ ︷︷ ︸

ϵ2

.

Expanding the first term, via Cauchy Scwhartz for integrals, we can write, elementwise,∫ t̄

0

βt,τ (s(τ)i − β̄−1
t s̃(τ)i)dτ ≤

∫ t̄

0

βt,τdτ

∫ t̄

0

|s(τ)i − β̄−1
t s̃(τ)i|dτ

and thus,

∥
∫ t

0

βt,τ (s(τ)− β̄−1
t s̃(τ))dτ∥ ≤

∫ t̄

0

βt,τdτ ∥
∫ t

0

s(τ)i − β̄−1
t s̃(τ)idτ∥2︸ ︷︷ ︸

≤2D(1+β̄−1
t )t̄

.

and moreover, ∫ t̄

0

βt,τdτ =

∫ t̄

0

c(c+ τ)c−1

(c+ t)c
dτ =

ĉ0
(c+ t)c

since
∫ t̄

0
b(b+ τ)b−1dτ does not depend on t. Thus the first error term

ϵ1 ≤ 2ĉ0Dt̄(1 + β̄−1
t )

(c+ t)c
≤ c0

(c+ t)c

where

ĉ0 := 2Dt̄

∫ t̄

0

c(c+ τ)c−1dτ.

In the second error term, because the manifold has now been identified, s(τ) = s̃(τ), and so∫ t

t̄

βt,τ (s(τ)− β̄−1
t s̃(τ))dτ =

∫ t

t̄

βt,τ (1− β̄−1
t )s(τ)dτ

and using the same Cauchy-Schwartz argument,∫ t

t̄

βt,τ (1− β̄−1
t )s(τ)dτ ≤ D

∫ t

t̄

βt,τ (1− β̄−1
t )dτ.

The term

1− β̄−1
t = |1− 1

1− ( c
c+t )

c
| = cc

(c+ t)c − cc
≤ 2c2

(c+ t)c
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and thus

ϵt ≤
∫ t

t̄

βt,τ (1− β̄−1
t )dτ ≤ 2c3

(c+ t)2c

∫ t

t̄

(c+ τ)c−1 =
2c2

(c+ t)2c
((c+ t)c − (c+ t̄)c) ≤ 2c2

(c+ t)c
.

Thus,

∥s̄(t)− ŝ(t)∥2 ≤ ĉ0 + 2c2

(c+ t)c
= O(

1

(c+ t)c
).

Corollary E.12 (Local flow rate). Suppose that for all x ∈ D, ∥∇f(x)∥2 ≤ G for some G large enough. Consider
γ(t) = β(t) = c

c+t . Then the ODE
ḣ(x(t)) = γ(t)∇f(x)T (s̄− x)

has solutions h(t) = O( log(t)
(c+t)c ) when t ≥ t̄.

Proof. First, we rewrite the ODE in a more familiar way, with an extra error term

ḣ(x(t)) = γ(t)∇f(x)T (s̄− ŝ) + γ(t)∇f(x)T (ŝ− x)

where ŝ is as defined in (11). By construction, ŝ is a convex combination of s̃ ∈ S(x∗). Moreover, after t ≥ t̄,
S(x̄(t)) = S(x∗), and thus

∇f(x)T (ŝ(t)− x) = ∇f(x)T (s(t)− x) = −gap(t) ≤ −h(t).

Then, using Cauchy-Schwartz, and piecing it together,

h(t) = ∇f(x)T (ŝ(t)− x) ≤ Gγ(t)∥s̄− ŝ∥2 − γ(t)h(t) ≤ Gγ(t)c1
(c+ t)c

− γ(t)h(t).

Let us therefore consider the system

ḣ(x(t)) =
2GDγ(t)

(c+ t)c
− γ(t)h(x(t)).

The solution to this ODE is

h(t) =
h(0)cc + 2GDc log(c+ t)− 2GDc log(c)

(c+ t)c
= O(

log(t)

(c+ t)c
).

Lemma E.13 (Local averaging error). Define, for all k,

s̃k = argmin
s̃∈conv(S(x∗))

∥sk − s̃∥2, ŝk = β̄−1
k

k∑
i=1

βk,is̃i.

e.g., s̃(k) is the closest point in the convex hull of the support of x∗ to the the point sk = LMOD(xk).

Then,
∥s̄k − ŝk∥2 ≤ c2

kc
.

Proof. First, note that

s̄k − ŝk = s̄k −
k∑

i=1

βk,is̃i =

k∑
i=1

βk,i(si − s̃i).

Using triangle inequality,

∥s̄k − ŝk∥2 ≤ ∥
k̄∑

i=1

βk,i(si − s̃i))∥2︸ ︷︷ ︸
ϵ

+ ∥
k∑

i=k̄

βk,i(si − s̃i)∥2︸ ︷︷ ︸
0

.
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where the second error term is 0 since the manifold has been identified, so s̃i = si for all i ≥ k̄.

Expanding the first term, using a Holder norm (1 and ∞ norm) argument,

∥
k̄∑

i=1

βk,i(si − s̃i)∥2 ≤ 2D

k̄∑
i=1

βk,i

= 2D

k̄∑
i=1

c

(c+ i)

k−i−1∏
j=0

(1− c

(c+ k − j)
)

= 2D

k̄∑
i=1

c

(c+ i)

c∏
j=0

i− 1 + j

c+ k − j

≤ 2D(
k̄ − 1 + c

k
)c

k̄∑
i=1

c

(c+ i)
= O(1/kc).

Corollary E.14 (Local convergence rate bounds). Suppose that for all x ∈ D, ∥∇f(x)∥2 ≤ G for some G large enough.
Define also r the decay constant of ∥s̄k − xk∥22 (= O(1/kr)). Consider γk = βk = c

c+k . Then the difference equation

h(xk+1)− h(xk) ≤ γk∇f(x)T (s̄k − xk) +
C

kr

is satisfied with candidate solution h(xk) = C4 max{ log(k)
(c+k)c ,

1
kr+1 } when k ≥ k̄.

Proof. First, we rewrite the ODE in a more familiar way, with an extra error term

h(xk+1)− h(xk) = γk ∇f(xk)
T (s̄k − ŝk)︸ ︷︷ ︸

≤γkG∥s̄k−ŝk∥2

+γk∇f(xk)
T (ŝk − xk) +

C

kr+2

where ŝk is as defined in (11). By construction, ŝk is a convex combination of s̃i ∈ S(x∗). Moreover, after k ≥ k̄,
S(x̄k) = S(x∗), and thus

∇f(xk)
T (ŝk − xk) = ∇f(xk)

T (sk − xk) = −gap(xk) ≤ −h(xk).

Then, piecing it together,

h(xk+1)− h(xk) ≤ γkG∥s̄− ŝ∥2 − γkh(xk) +
C

kr+2

Lemma E.13
≤ γk

GC2

kc︸ ︷︷ ︸
≤C3/kc+1

−γkh(xk) +
C

kr+2

Recursively, we can now show that for C4 ≥ C + C3, if

h(xk) ≤ C4 max{ log(k)

(c+ k)c
,

1

kr+1
}

then,

h(xk+1) ≤ C3

kc+1
+

C

kr+1
+ (1− γk)h(xk)

≤ C3

kc+1
+

C

kr+1
+

k

c+ k
C4 max{ log(k)

(c+ k)c
,

1

kr+1
}.

If c ≤ r + 1 then

h(xk+1) ≤ C + C3

kc
+

k

c+ k

C4 log(k)

(c+ k)c
≤ k

c+ k

C4 log(k)

(c+ k)c
≤ C4 log(k + 1)

(c+ k + 1)c
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for k large enough. Otherwise,

h(xk+1) ≤ C + C3

kr+2
+

k

c+ k

C4

kr+1
≤ C4

(k + 1)r+1
.

for k large enough.

Theorem E.15 (Local convergence rate). Picking c ≥ 3p/2 + 1, the proposed method AVGFW has an overall convergence
h(xk) = O(k−3p/2).

Proof. Putting together Theorem E.10, Lemma E.13, and Corollary E.14, we can resolve the constants

q = p, r = min{q/2 + p− 1, 2p} =
3p

2
− 1

and resolves an overall convergence bound of h(xk) = O(k−3p/2).
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