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Abstract

We use information-theoretic tools to derive a
novel analysis of Multi-source Domain Adap-
tation (MDA) from the representation learning
perspective. Concretely, we study joint dis-
tribution alignment for supervised MDA with
few target labels and unsupervised MDA with
pseudo labels, where the latter is relatively hard
and less commonly studied. We further pro-
vide algorithm-dependent generalization bounds
for these two settings, where the generalization
is characterized by the mutual information be-
tween the parameters and the data. Then we
propose a novel deep MDA algorithm, implic-
itly addressing the target shift through joint align-
ment. Finally, the mutual information bounds
are extended to this algorithm providing a non-
vacuous gradient-norm estimation. The pro-
posed algorithm has comparable performance to
the state-of-the-art on target-shifted MDA bench-
mark with improved memory efficiency.

1 INTRODUCTION

The usual machine learning theories assume the test data
follows the same distribution as the train data, which is of-
ten violated in real-world applications. Such a distribution
(domain) shift degrades the algorithm’s performance. So,
various methods have been proposed to address this prob-
lem through Domain Adaptation (DA) or transfer learning
(Huang et al., 2007; Ben-David et al., 2010a; Pan & Yang,
2009). Domain adaptation aims to learn a well-generalized
predictor for the target domain T with data sampled from
the source domain S, where S ≠ T . As deep learning be-
comes increasingly popular with its superior performance
in many complex tasks such as computer vision (Csurka,
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2017) and natural language processing (Blitzer, 2008), a
series of works on deep domain adaption (Ganin et al.,
2016; Tzeng et al., 2017) have gained tremendous success
in practice.

The works mentioned above are focused on single-source
domain adaptation. However, leveraging knowledge from
multiple sources (S1:N ) is more attractive in practice. Sim-
ply merging all the sources as one single source and then
applying the single-source domain adaptation algorithms is
obviously suboptimal since some source distributions will
generally be more similar to the target than others. In that
case, a uniformly merged source can be extremely dissim-
ilar to the target distribution and violate the conditions for
successful domain adaptation, e.g., those proposed by Ben-
David et al. (2010b).

Hence, to learn from most related sources, many exist-
ing works in MDA (Zhao et al., 2018; Wen et al., 2020;
Peng et al., 2019; Li et al., 2018) use the divergences
between each source marginal and the target marginal
d(Si(X), T (X)),∀i ∈ [N ] for inferring the domain re-
lations. Such marginal alignment approaches have been
demonstrated to be problematic even in single-source DA
(Zhao et al., 2019) when the label distributions are differ-
ent T (Y ) ̸= S(Y ) — which we denote as the target shift1.
Recently, other approaches (Redko et al., 2019a; Shui et al.,
2021) have been proposed with an additional algorithmic
layer that estimates the label ratio to mitigate the target
shift. However, the estimation may be inaccurate in some
situations, consequently degrading the performance.

The aforementioned target shift correcting methods are
mathematically a special case of the joint distribution align-
ment. Moreover, when the number N of source domains
is very large, the previous pairwise alignment methods
will suffer from estimating numerous discriminators w.r.t
both memory and sample complexity. Therefore, we pro-
pose to learn a joint alignment between a convex combina-
tion of source distributions Sα =

∑N
i=1 αiSi,∀α ∈ ∆N

and the target distribution T , where the vector α of do-

1We use the terminology of target shift in the rest of the
paper to avoid confusion with the label shift assumption, where
S(X|Y ) = T (X|Y ),S(Y ) ̸= T (Y ).
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main weights is optimized by the learning algorithm. The
alignments are performed on a hidden-layer representation
space commonly used for deep learning, while the corre-
sponding analysis is rare. Moreover, the previous theo-
ries using Rademacher complexity or VC dimension are
not algorithm-dependent. In contrast, we use information-
theoretic tools to conduct the algorithm-specific general-
ization error analysis for representation learning of MDA.

Compared with previous works, the highlighted contribu-
tions of this paper are as follows:

Unified Approach We propose a unified approach for su-
pervised and unsupervised MDA that conducts joint align-
ment w.r.t the representation space, which is appropriate
for the target shift problem. The proposed algorithm si-
multaneously learns the domain weights, and the proposed
non-pairwise alignment is more memory efficient than the
previous works. Moreover, the proposed algorithm out-
performs the previous approaches under a significant tar-
get shift in the unsupervised scenario, which is relevant in
practice.

Algorithm-Dependent Generalization Bounds We first
provide algorithm-dependent generalization bounds for
MDA that depend on the mutual information between the
model parameters and the input data: the less the model
parameters depend on the data, the less the algorithm will
overfit. We further apply the bounds on the proposed deep
MDA algorithm and obtain a gradient norm estimation,
which is used as a regularization coefficient for optimizing
the domain weights.

2 RELATED WORK

Since domain adaptation has plenty of works in various set-
tings, we only discuss the most related approaches in this
section.

Metrics for Distribution Shift in DA Early theoretical
works on single-source DA are based on the H-divergence
(Ben-David et al., 2006, 2010a,b). Then there emerge ex-
tensions on exploring different metrics, e.g., discrepancy
(Mansour et al., 2009), Wasserstein distance (Courty et al.,
2014, 2017), Jensen-Shannon divergence (Shui et al., 2020,
2022b) and more general definitions of divergence like In-
tegral Probability Metrics (IPM) (Zhang et al., 2012) and
f -divergence (Acuna et al., 2021). For more comprehen-
sive discussions, please address to Redko et al. (2019b) and
Wang et al. (2023).

In this paper, we adopt Wasserstein distance for its numer-
ous nice properties. It’s tighter than the KL divergence un-
der the sub-Gaussian assumption through the transporta-
tion cost inequality and can capture the underlying geom-
etry of the data. Courty et al. (2017) first theoretically an-

alyzes joint alignment on example space in single-source
DA using Wasserstein distance. The algorithm based on
solving the optimal transport problem scales quadratically
in sample size, which is intractable on large datasets.
Hence, Damodaran et al. (2018) empirically addresses
this difficulty by alternately updating the mini-batch cou-
pling matrix and network parameters to approximate the
Wasserstein on the representation space. We theoretically
analyze the joint alignment on the representation space
w.r.t Wasserstein distance, providing algorithm-dependent
bounds.

Information-Theoretic Learning in DA Recently, the
information-theoretic analysis introduced by Xu & Ragin-
sky (2017) and Russo & Zou (2019) has been used to pro-
vide a rigorous understanding of the generalization capa-
bilities of deep learning models, such as complex meta-
learning algorithms (Chen et al., 2021; Jose & Simeone,
2020). In contrast with the conventional VC-dimension
and uniform stability bounds, it has the significant advan-
tage of incorporating the dependence on the data distribu-
tion, the hypothesis space, and the learning algorithm. Wu
et al. (2020, 2022) also use information-theoretic tools to
derive bounds for single-source supervised DA. However,
their bounds contain a non-optimizable term DKL(T ,S).
On the contrary, we first provide fully algorithm-dependent
bounds for both the unsupervised and supervised MDA,
without loss of generality for single-source DA.

Multi-Source DA Konstantinov & Lampert (2019) and
Shui et al. (2021) consider the supervised MDA case when
few target labels are available. Konstantinov & Lampert
(2019) estimates the domain relations with the pair-wise
discrepancy d(Si, T ). Shui et al. (2021) reweights the
losses and Wasserstein distances between domains with la-
bel ratio to mitigate the target shift, where the label ratio is
estimated with the statistics given the few target labels and
the source labels.

For unsupervised MDA, most existing approaches can be
divided into two categories w.r.t the target shift. Marginal
alignment methods make use of different divergences be-
tween each source marginal distribution and the target
marginal distribution (i.e., d(Si(X), T (X)),∀i ∈ [N ]) to
estimate the domain relations. E.g., Zhao et al. (2018) and
Li et al. (2018) use the H-divergence, which is only suit-
able for binary classification. Wen et al. (2020) and Peng
et al. (2019) adopt the discrepancy. The above methods
that conduct unsupervised marginal alignments are unsta-
ble w.r.t target shift (Zhao et al., 2019).

Redko et al. (2019a) and Shui et al. (2021) consider ad-
dressing target shift with special cases of the joint distri-
bution alignment. JCPOT (Redko et al., 2019a) assumes
Si(X|Y ) = T (X|Y ),∀i ∈ [N ] and uses iterative Bregman
projection to solve the constrained Wasserstein barycen-
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ter problem, optimizing the class proportion to correct the
target shift. However, the above label shift assumption
often does not hold, and similar to Courty et al. (2017),
the algorithm is intractable on large datasets. Shui et al.
(2021) assumes the Generalized Label Shift (GLS) condi-
tion (Combes et al., 2020) is satisfied and estimates the la-
bel ratio with a black box shift estimation (Lipton et al.,
2018). In addition, they minimize d(Si(X|Y ), T (X|Ŷ ))
on representation space using the Wasserstein distance and
the predicted pseudo labels. The theorems in Shui et al.
(2021) are proposed for supervised MDA, without formal
justification for unsupervised MDA using pseudo labels.
MOST (Nguyen et al., 2021) does not optimize the domain
relations and simply learns a source domain discriminator
to obtain a weighted ensemble expert (teacher). A student
classifier imitates the teacher by minimizing the Wasser-
stein distance between the pseudo source and pseudo target
joint distribution using predicted labels.

Our approach differs from all the above-mentioned meth-
ods. We do not conduct a pairwise alignment. We define
a combined source distribution and directly minimize the
Wasserstein distance between the combined source distri-
bution and the target distribution. We do not explicitly esti-
mate the label ratio, and the target shift is tackled implicitly
with the joint representation alignment. Moreover, we opti-
mize the task weights α w.r.t the target and source domain
shifts with an adaptive information-theoretical regulariza-
tion coefficient.

3 PROBLEM SETUP

Basic Notations Without specification, we use upper
case letters to denote random variables and the correspond-
ing calligraphic letters to denote the corresponding sets on
which they are defined, e.g., X,Y on X ,Y .

Let X be the input space. Let Y be the label space and
let Z def

= X × Y be the example space. Then a set of N
source distributions S1:N

def
= {S1, . . . ,SN} and the target

distribution T are defined on Z . Now we define a repre-
sentation learning function g : U ×X → X̃ that transforms
the inputs to feature representations, where g is parame-
terized by u defined on U . Consequently, the distribution
on the original example space has an induced distribution
on the new space Z̃ def

= X̃ × Y . Given the weight simplex
∆N

def
= {α : αi ≥ 0,

∑N
i=1 αi = 1}, we consider a mixture

of source distributions Sα def
=
∑N

i=1 αiSi as the combined
source distribution. The induced distributions on Z̃ are de-
termined by u and denoted as T̃u and S̃αu

def
=
∑N

i=1 αiS̃i,u.

Then given the parameterized hypothesis space V , we de-
fine a predictor h : V × X̃ → Y that predicts a label given
the feature representation. To measure the performance of
the predictor, let ℓ : Y ×Y → R+ be a positive-valued loss
function.

Hence, the population(true) risk of (u, v) ∈ U ×V on the
target distribution and the combined source distribution are
respectively defined as

RT (u, v)
def
= EZ∼T ℓ(h(v, g(u,X)), Y )

= EZ̃∼T̃u
ℓ(h(v, X̃), Y )

RSα(u, v)
def
=

N∑
i=1

αiEZ∼Si
ℓ(h(v, g(u,X)), Y )

= EZ̃∼S̃α
u
ℓ(h(v, X̃), Y ) ,

where Z def
= (X,Y ), Z̃

def
= (X̃, Y ).

Let the source datasets S1:N and the target dataset T be the
examples sampled from the corresponding distributions,
where Si = {Zs

i,j}
mi
j=1, Z

s
i,j = (Xs

i,j , Y
s
i,j) ∼ Si,∀i ∈ [N ]

and T = {Zt
j}

mt
j=1, Z

t
j = (Xt

j , Y
t
j ) ∼ T . We further de-

note the corresponding dataset for the combined source dis-
tribution as Sα. Consequently, the corresponding empiri-
cal risks are defined as:

R̂T (u, v)
def
= 1

mt

∑mt

j=1 ℓ(h(v, g(u,X
t
j)), Y

t
j )

R̂Sα(u, v)
def
=
∑N

i=1
αi

mi

∑mi

j=1 ℓ(h(v, g(u,X
s
i,j)), Y

s
i,j) .

The target labels are not accessible during the training
phase for unsupervised DA. Thus, several methods (Xie
et al., 2018; Courty et al., 2017) apply the predicted labels
of target inputs as pseudo labels. We formulate the corre-
sponding setting in MDA. Let fp : X → Y be a pseudo
labeling function that maps the target inputs to the label
space. In this paper, we set fp(x) = h(v, g(u, x)) focus-
ing on representation learning. Therefore, ∀u, v ∈ U × V ,
let Tu,v be the pseudo target distribution on Z = X × Y
induced by fp, and T̃u,v be the corresponding distribution
on Z̃ = X̃ × Y . So we have a random sample from the
pseudo distribution noted as Ẑ def

= (X, Ŷ ) = (X, fp(X)).
Finally, let us define the unlabeled target dataset as T ′

X =

{Xt
j}

m′
t

j=1, X
t
j ∼ T (X), where T (X) denotes the target

distribution T marginalized on X .

Now we introduce some common assumptions for deriving
the multi-source DA bounds in this paper.

Assumption 1. (a) The representation learning function
g : U × X → X̃ is K-Lipschitz 2 over X for any
u ∈ U w.r.t metrics ρx̃ and ρx, i.e., ρx̃(g(u, x), g(u, x′)) ≤
Kρx(x, x

′). (b) The predictor h : V × X̃ → Y is L-
Lipschitz over X̃ for any v ∈ V w.r.t metrics ρy and ρx̃,
i.e., ρy(h(v, x̃), h(v, x̃′)) ≤ Lρx̃(x̃, x̃

′). (c) The loss func-
tion ℓ : Y × Y → R+ is assumed to be symmetric, M -
Lipschitz w.r.t ρy in the first argument and satisfying the
triangle inequality.

2The general definition of Lipschitzness is provided in the Ap-
pendix A.2.
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4 SUPERVISED MDA

We first consider the supervised MDA regime. In most
case, only a few amounts of labeled target data is acces-
sible.

4.1 Population Risk Bound

Based on the optimal transport theory (Villani, 2009; Peyré
et al., 2017), we obtain the following population risk bound
using the Wasserstein distance (Definition A.6).
Theorem 4.1. ∀(u, v) ∈ U×V , and ∀α ∈ ∆N , if Assump-
tion 1 is satisfied, then

|RT (u, v)−RSα(u, v)| ≤W1(T̃u, S̃αu ) ≤W1(T ,Sα) ,

where the first W1 distance is defined on the metric space
(Z̃, ρz̃), for ρz̃(z̃, z̃

′) = ℓ(y, y′) + LMρx̃(x̃, x̃
′), and

the second one is defined on metric space (Z, ρz), for
ρz(z, z

′) = ℓ(y, y′) + LMKρx(x, x
′).

Theorem 4.1 illustrates the importance of learning the
transformation function g, where W1(T̃u, S̃αu ) is always
smaller than W1(T ,Sα). The latter is a fixed term that
characterizes the shift between the combined source and
the target distribution given α. More specifically, there
may not exist an α that gives W1(T ,Sα) = 0. On the
contrary, by optimizing the transformation parameter u, we
may obtain W1(T̃u, S̃αu ) = 0. Detailed proof is provided
in Appendix C.1.

4.2 Generalization Bound

From Theorem 4.1, the target population risk is bounded by
RSα(u, v) +W1(T̃u, S̃αu ). The estimation of the Wasser-
stein distance requires target data. Considering the extreme
case mt → +∞, minimizing the empirical estimation of
this upper bound will never be better than directly mini-
mizing the target empirical risk. So we propose to learn by
considering the following combined risk with parameter
0 ≤ ϵ ≤ 1:

Rϵ
Sα,T (u, v)

def
= (1−ϵ)RT (u, v)

+ ϵ(RSα(u, v) +W1(T̃u, S̃αu )) .

Thus, we have RT (u, v) ≤ Rϵ
Sα,T (u, v). Then, let us

denote the empirical combined risk as R̂ϵ
Sα,T (u, v) =

(1− ϵ)R̂T (u, v) + ϵR̂Sα(u, v) + ϵŴ1(T̃u, S̃αu ).

We consider a stochastic learning algorithm A for super-
vised MDA, which takes the N source datasets and the tar-
get dataset as input and then outputs the random parameters
(U, V ) = A(Sα, T ) ∼ PU,V |Sα,T , where PU,V |Sα,T is the
distribution on U × V induced by A, given (Sα, T ). The
expected generalization gap is then defined as

gen(T ,A) def
= EU,V,Sα,T [RT (U, V )− R̂ϵ

Sα,T (U, V )]

≤ EU,V,Sα,T [R
ϵ
Sα,T (U, V )− R̂ϵ

Sα,T (U, V )] .

To bound the generalization gap for the Wasserstein dis-
tance, traditional methods apply the triangle inequality of
the Wasserstein distance and then separately bound the gap
for the source domain and target domain (Courty et al.,
2017; Shui et al., 2021). The proofs are based on previous
concentration results (Weed & Bach, 2019) of the Wasser-
stein distance with the additional assumption of a bounded
loss. To obtain a non-vacuous algorithm-dependent bound,
we address the problem in a different way. According to the
Kantorovich-Rubinstein duality (Villani, 2009), we have

W1(T̃u, S̃αu ) = sup
f :∥f∥Lip≤1

Ez̃∼T̃u
f(z̃)− Ez̃′∼S̃α

u
f(z̃′) .

The supremum is over all the 1-Lipschitz functions F def
=

{f : Z̃ → R+, |f(z̃)−f(z̃′)| ≤ ρz̃(z̃, z̃′)}. Because of the
intractability of learning this class of functions (Arjovsky
et al., 2017), let us consider instead a parameterized class
of functions F̃ def

= {f̃ : Z̃ × V ′ → R+, ∥f̃∥Lip ≤ 1} with
the parameter set V ′. We assume the above supremum is
attained in F̃ ⊂ F . Under this assumption, we have

W1(T̃u, S̃αu ) = sup
v′∈V′

Ez̃∼T̃u
f̃(v′, z̃)− Ez̃′∼S̃α

u
f̃(v′, z̃′) .

Now we bring up the sub-Gaussian (Definition A.4) as-
sumptions and provide a mutual information (Defini-
tion A.5) bound for supervised MDA.
Assumption 2. ∀(u, v) ∈ U × V , ℓ(h(v, g(u,X)), Y ) is
σ-sub-Gaussian w.r.t Z ∼ T and Z ∼ Si,∀i ∈ [N ]. And
for any proper choice of F̃ with the supremum attained,
∀(u, v′) ∈ U × V ′, f̃(v′, (g(u,X), Y )) ∈ F̃ is σ′-sub-
Gaussian w.r.t Z ∼ T and Z ∼ Si,∀i ∈ [N ].
Theorem 4.2. If Assumption 1 and 2 are satisfied, then we
can bound the generalization gap of the supervised multi-
source domain adaptation algorithm A for any α ∈ ∆N

and 0 ≤ ϵ ≤ 1 with:

gen(T ,A) ≤ σ

√√√√2(
(1− ϵ)2
mt

+
N∑
i=1

ϵ2α2
i

mi
)I(U, V ;Sα, T )

+ σ′

√√√√2ϵ2(

N∑
i=1

α2
i

mi
+

1

mt
)I(U ;Sα, T ) .

The above bound on the generalization gap for supervised
MDA consists of two terms. The first term is character-
ized by the mutual information between the input datasets
Sα, T and the output hypothesis U, V . The second term,
which comes from the estimation of the Wasserstein dis-
tance on the representation space, depends on the mutual
information between the representation parameter U and
the input datasets. Notice that if we consider an arbitrar-
ily random representation learning function (i.e., U does
not depend on any data), the mutual information terms
are equal to zero. However, the empirical risk will be
very large. See detailed proof of Theorem 4.2 in the Ap-
pendix C.2.
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Exploit Target Data Let us first focus on the case with
few target data, i.e., mt is small. Usually, the number
of source data samples is much more significant than mt.
So when

∑N
i=1 α

2
i /mi ≪ 1/mt, the generalization gap

is dominated by the target data with rate O(
√
1/mt). In

this case, it’s preferable to use the target data for approx-
imating the Wasserstein distance (ϵ = 1) compared to
directly train on the target data, because I(U ;Sα, T ) ≤
I(U, V ;Sα, T ) assuming σ = σ′. On the contrary, when
1/mt ≪

∑N
i=1 α

2
i /mi, we prefer to directly train on the

target data (ϵ = 0). For other cases, there exists a non-
trivial value for ϵ that minimizes the generalization gap
w.r.t the algorithm.

5 UNSUPERVISED MDA

For unsupervised domain adaptation, the target labels are
not accessible during the training phase. So it’s hard to
guarantee a successful transfer without any precondition.
Ben-David et al. (2010a) identified a necessary condition
for successful unsupervised domain adaptation: the ideal
joint error must be small enough, otherwise, no classifier
can perform well on both the source and target domain.
Therefore, a small ideal joint error is commonly assumed
in the literature. Based on the same assumption, we provide
the theorems for unsupervised MDA with pseudo labels.

Definition 5.1. (Ideal joint error) Let the ideal joint hy-
pothesis be (u∗, v∗)

def
= argminu,v RSα(u, v) + RT (u, v),

then the ideal joint error is R∗ = RSα(u∗, v∗) +
RT (u

∗, v∗).

5.1 Population Risk Bound

Definition 5.2. (Joint Approximation Error) Let x̃ =
g(u, x), x̃′ = g(u, x′) and the optimal coupling on Z =
X × Y given the pseudo labeling function h(v, g(u, x)) be

γ∗u,v
def
= argmin

γ∈Π(Tu,v,Sα)

∫
[LMρx̃(x̃, x̃

′) + ℓ(ŷ, y′)] dγ(ẑ, z′)

Then the joint approximation error is

R∗
rep(u, v)

def
= LM

∫
Z×Z

[ρx̃(g(u
∗, x), g(u∗, x′))

−ρx̃(g(u, x), g(u, x′))] dγ∗u,v(ẑ, z′) ,

where R∗
rep(u, v) characterizes the approximation error

for the domain shift on the representation space of u∗ (the
representation counterpart of the ideal joint hypothesis).

Theorem 5.1. For any given α ∈ ∆N and ∀u, v ∈ U ×V ,
if Assumption 1 is satisfied, then the target population risk
can be bounded by:

RT (u, v) ≤W1(T̃u,v, S̃αu ) +R∗
rep(u, v) +R∗ .

See the detailed proof in Appendix D.1. From the above
theorem, we notice that if we minimize W1(T̃u,v, S̃αu ),
R∗

rep(u, v) may increase. Hence, for a successful unsuper-
vised MDA w.r.t joint representation alignment, the pro-
posed theory implies that it is sufficient to have a small
R∗

rep(u, v) for the (u, v) that minimizes W1(T̃u,v, S̃αu ).

Target Shift An important benefit of the joint alignment
methods is that it’s favorable compared to the marginal
alignment method when the target shift exists. Because
with the joint optimal transport, we can automatically cor-
rect the target shift by minimizing W1(T̃u,v, S̃αu ) w.r.t v.
While the traditional marginal alignment methods that min-
imize W1(S̃u(X), T̃u(X))+RSα(u, v) cannot correct this
shift since neither of the two terms in the objective are re-
lated to the divergence between the source and target label
distributions.

5.2 Generalization Bound

Similarly to the above supervised MDA method, we use
a stochastic algorithm Aun, which takes the N source
datasets and the unlabeled target dataset as input and then
outputs the random parameters (U, V ) = Aun(Sα, T ′

X) ∼
PU,V |Sα,T ′

X
. Combine with Theorem 5.1 , the expected

generalization gap for unsupervised MDA is defined as:

gen(T ,Aun)
def
= EU,V,Sα,T ′

X
[RT (U, V )−Ŵ1(T̃U,V , S̃αU )] ,

where Ŵ1(T̃U,V , S̃αU ) is the empirical estimation of
W1(T̃U,V , S̃αU ) that has different forms w.r.t the specific
choice of F̃ , as discussed in Sec. 6.1. The definition with-
out specification of F̃ is provided in the Appendix. Now,
consider the following sub-Gaussian assumption.

Assumption 3. For any proper choice of F̃ with
the supremum attained, ∀(u, v, v′) ∈ U × V × V ′,
f̃(v′, (g(u,X), Ŷ )) ∈ F̃ is σ′-sub-Gaussian w.r.t Ẑ ∼
Tu,v and ∀(u, v′) ∈ U × V ′, f̃(v′, (g(u,X), Y )) ∈ F̃ is
σ′-sub-Gaussian w.r.t Z ∼ Si,∀i ∈ [N ].

Then, we obtain the following algorithm-dependent bound
on the generalization gap for joint representation alignment
with pseudo labels.

Theorem 5.2. If Assumption 1 and 3 are satisfied, then we
have the following bound on the expected generalization
gap of the unsupervised multi-source domain adaptation
algorithm with pseudo label Aun for any α ∈ ∆N :

gen(T ,Aun) ≤

√√√√2σ′2(

N∑
i=1

α2
i

mi
+

1

m′
t

)I(U, V ;Sα, T ′
X)

+ EU,VR
∗
rep(U, V ) +R∗

Discussion The above bound contains the two terms
EU,VR

∗
rep(U, V ) and R∗, which are assumed to be small
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enough for successful unsupervised representation trans-
fer. Then the generalization gap of the joint representation
alignment algorithm is upper bounded by the mutual infor-
mation between (Sα, T ′

X) and the algorithm output (U, V ).
This is partly because the joint alignment also affects the
learning of the predictor parameter V through the pseudo-
label predictions. For unsupervised MDA, we often have
a large m′

t, where m′
t ≫ mi,∀i ∈ [N ]. So the sample

complexity is dominated by
∑N

i=1
α2

i

mi
. Consider the spe-

cial case where all the sources domains have equivalently
strong similarity with the target domain such that we have
αi = 1/N and

∑N
i=1

α2
i

mi
=

∑N
i=1 1/mi

N2 . In that case, the
generalization gap can be decreased by increasing the num-
ber of domains, i.e., N →∞. The detailed proof of Theo-
rem 5.2 is provided in Appendix D.2.

6 UNIFIED APPROACH FOR DEEP MDA

6.1 Information-Theoretic MDA (IMDA)

Combine Supervised and Unsupervised MDA The su-
pervised MDA algorithm does not exploit the information
conveyed in the unlabeled target data. At the same time,
the unsupervised MDA algorithms require a small ideal
joint error, which may not be satisfied in practice. Hence,
we consider combining the two methods that both conduct
joint representation alignment. Then we propose a general
approach by balancing the confidence of the two schemes
through a weighting parameter 0 ≤ τ ≤ 1. When τ is
neither 0 nor 1, the proposed algorithm becomes a semi-
supervised transfer learning algorithm. So we define the
following empirical risk:

R̂α
ϵ,τ (u, v)

def
= τ(1− ϵ)R̂T (u, v) + τϵR̂Sα(u, v)

+ τϵŴ1(T̃u, S̃αu ) + (1− τ)Ŵ1(T̃u,v, S̃αu )

Choice of F̃ Since ℓ(h(v, ·), ·),∀v ∈ V satisfies the Lip-
schitz condition with |ℓ(h(v, x̃), y) − ℓ(h(v, x̃′), y′)| ≤
ρz̃(z̃, z̃

′) for the ρz̃ used in the two Wasserstein distances,
we can choose F̃ = {f̃ = ℓ(h(v′, ·), ·) : v′ ∈ V ′ = V}.
As discussed in Section 4.2, We assume that the supremum
over the space of all the 1-Lipschitz functions F is attained
with some f̃ ∈ F̃ . Thus, the model contains two predic-
tors h(v, .) and h(v′, .) using the same network structure
(V ′ = V) that make predictions from the feature repre-
sentation g(u, x). The former minimize the empirical risk
τ(1 − ϵ)R̂T (u, v) + τϵR̂Sα(u, v) w.r.t v. The other aux-
iliary predictor maximizes the empirical estimation of the
two Wasserstein distances w.r.t v′. Then we minimize the
sum of these empirical estimates w.r.t u, v. The above ap-
proach is different from the marginal representation align-
ment method, where the W1 distance is defined on X̃ and
the corresponding f̃ is the domain discriminator adopted by
DANN-like methods (Wen et al., 2020; Shui et al., 2021).

Optimize the Wasserstein Distances With the choice of
f̃ described above, the empirical risk of the pseudo target
distribution is:

R̂Tu,v
(u, v, v′) =

1

m′
t

m′
t∑

j=1

ℓ(h(v′, g(u,Xt
j)), h(v, g(u,X

t
j)))

Therefore, we have the following approximation of the two
Wasserstein distances:

Ŵ1(T̃u, S̃αu ) = maxv′ [R̂T (u, v
′)− R̂Sα(u, v′)]

Ŵ1(T̃u,v, S̃αu ) = maxv′ [R̂Tu,v
(u, v, v′)− R̂Sα(u, v′)]

Then we get the two mini-max optimization objectives
minu Ŵ1(T̃u, S̃αu ) and minu,v Ŵ1(T̃u,v, S̃αu ), which can
be implemented with a gradient reversal layer (Ganin et al.,
2016).

Joint Optimization with Stochastic Gradient Algorithm
Pensia et al. (2018) provides methods bounding the mu-
tual information with gradient updates for noisy iterative
algorithms, which is especially suitable for deep learning,
where the Stochastic Gradient Descent (SGD) and its vari-
ants are often applied. We apply this technique to ana-
lyze the aforementioned multi-source transfer scheme us-
ing the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm (Welling & Teh, 2011) — a stochastic variant of
SGD with independent noise injection at each step.

At each iteration k, a batch of source data Sk
B1:N

is sampled
from the source datasets S1:N . Simultaneously, a batch of
labeled target data T k

B and a batch of unlabeled target data
T k
XB

are sampled from the corresponding target datasets.
Subsequently, we update the representation parameter U
and predictor parameter V with the following updates:

Uk = Uk−1 − ηkuGk
u + ξku; Vk = Vk−1 − ηkvGk

v + ξkv ,

where ξuk ∼ N(0, σ2
kIdu

) and ξvk ∼ N(0, σ2
kIdv

) are in-
jected isotropic Gaussian noise of variance σ2

k. Parameters
ηku and ηkv are, respectively, the learning rate for U and V at
each step. Gk

u andGk
v are, respectively, the gradient estima-

tion of ∇U R̂
α
ϵ,τ (U, V ) and ∇V R̂

α
ϵ,τ (U, V ) using the batch

datasets sampled at each iteration. Note that the sampling
strategy needs to be agnostic to the previous iterates of the
parameters.

6.2 Theoretical Guarantee via Gradient Norm Bound

We now present the gradient norm bound for the proposed
IMDA algorithm.

Theorem 6.1. Following Theorem 4.1, 5.1 4.2, 5.2, define
a weight parameter τ that balances the unsupervised and
supervised MDA. Adopt the aforementioned choice of F̃
with σ′ = σ and the SGLD updates described above. Then
we can obtain the gradient norm bound for the expected



Qi Chen, Mario Marchand

target risk, ∀α ∈ ∆N , τ, ϵ ∈ [0, 1], we have:

EU,V,Sα,T,T ′
X
RT (U, V ) ≤ EU,V,Sα,T,T ′

X
R̂α

ϵ,τ (U, V )

+ τσ

√√√√2(
(1− ϵ)2
mt

+ ϵ2
N∑
i=1

α2
i

mi
)(δu + δv)

+ τϵσ

√√√√2(

N∑
i=1

α2
i

mi
+

1

mt
)δu + (1− τ)EU,VR

∗
rep(U, V )

+ (1− τ)(σ

√√√√2(

N∑
i=1

α2
i

mi
+

1

m′
t

)(δu + δv) +R∗) ,

δu
def
=
∑K

k=1
(ηk

u)
2E∥Gk

u∥
2
2

2σ2
k

and δv
def
=
∑K

k=1
(ηk

v )
2E∥Gk

v∥
2
2

2σ2
k

are
the accumulated gradient norm for U and V , respectively.

Theorem 6.1 is quite general. When τ = 1, it covers the
supervised MDA. When τ = 0, it covers the unsupervised
setting. In other cases, it can be applied for semi-supervised
transfer learning. We can see that for semi-supervised
transfer, the assumption for a small R∗ +EU,VR

∗
rep(U, V )

is weakened. When we have many labeled target data (mt

large), we can choose a large τ . Moreover, if we have only
one source, α becomes a scalar and equals 1. Thus the
bound can also be applied to single-source domain adapta-
tion. See the proof in Appendix E.1.

6.3 Implementation and Discussion

Optimize the Domain Weights α From Theorem 6.1,
for given u, v, v′ and ϵ, τ , we can optimize α w.r.t the re-
lated term in the upper bound. So we get the following
optimization problem with constants C0, C1 > 0:

min
α

(
(ϵτ + C0(1− τ))R̂Sα(u, v)

− (ϵτ + 1− τ)R̂Sα(u, v′)

+C1((1− τ + τϵ)
√
δu + δv + τϵ

√
δu)R(α)

)
,

R(α) =

√√√√ N∑
i=1

α2
i

mi
, s.t.∀i ∈ [N ], αi ≥ 0,

N∑
i=1

αi = 1 ,

which can be solved with a standard convex optimization
toolbox. We fix α at each training epoch to optimize the
network parameters u, v, v′ by minimizing the empirical
risk R̂α

ϵ,τ (u, v). Then, at the end of each epoch, we opti-
mize α given the updated u, v, v′ with the above convex
optimization objective. We add C0R̂Sα(u, v) for unsuper-
vised MDA (τ = 0) as approximation of RSα(u∗, v∗) in
R∗ when optimizing α, which does not exist in the opti-
mization objective for u, v. Other higher order terms of α
in δu, δv are ignored.

We emphasize that the above objective is different from
Shui et al. (2021), which also optimizes the domain weights

α. The coefficient before the regularization term R(α)
adapts with the gradient steps, which has an interesting in-
terpretation. When the gradient step grows, both the model
parameters and the domain weights α may over-fit to the
existing datasets. Thus, the adaptive regularization coeffi-
cient of R(α) can gradually control the possibility of over-
fitting to specific source distributions.

Complexity Comparison For memory complexity, the
proposed method only requires one duplicate predictor. In
contrast, WADN (Shui et al., 2021) requiresN domain dis-
criminator and N |Y| class feature centroids. MDAN and
DARN (Wen et al., 2020) need N domain discriminators.
M3SDA (Peng et al., 2019) and MDMN (Li et al., 2018)
need N2 domain discriminators. For time complexity, the
proposed method needs to computeO(N) mini-batch risks
and the corresponding backward gradients at each batch for
optimizing the model parameters, which is the same as the
other methods. Moreover, after each epoch, we need to
optimize the domain weights with O(N) time complexity,
which is an improvement compared to the O(N |Y|) time
complexity of WADN, where the |Y| comes from estimat-
ing the label ratio.

7 EXPERIMENTS

In this section, we test IMDA (Sec. 6) on the target shift
MDA benchmark proposed by Shui et al. (2021). Exper-
imental details and additional results can be found in Ap-
pendix F and G.

7.1 Datasets and Baselines

Amazon Review Dataset Blitzer et al. (2007) consists of
positive and negative reviews from four domains: "Books",
"DVD", "Electronics" and "Kitchen". We use each domain
in turns as the target domain and the other three as the
source domains. The data are pre-processed with the same
approach as Chen et al. (2012), where the top-5000 fre-
quent unigrams/bigrams are used as the bag-of-words fea-
tures. The original Amazon Review data is label balanced.
To create the target shift data, we follow the strategy of
Shui et al. (2021) by randomly dropping 50% negative re-
views in the source domains while keeping the target do-
main unchanged.

Digits Dataset contains four different tasks for digit
recognition. MNIST (LeCun, 1998) and USPS (Hull,
1994) are standard handwriting digits datasets. Street View
House Number (SVHN) (Netzer et al., 2011) is a digits
dataset consisting of Google Street View images of house
numbers. SYNTH (Ganin & Lempitsky, 2015) is a syn-
thetic dataset applying various transformations on SVHN.
As Shui et al. (2021), we also drop 50% of the data on dig-
its 5-9 of all the sources with the target label distribution
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Table 1: Accuracy(%) of Unsupervised MDA on Target Shift Data (Drop Rate 50%): Amazon Review(Left), Digits(Right)

Target Domain
Method Books DVD Electronics Kitchen Average
Source 68.15±1.37 69.51±0.74 82.09±0.88 75.30±1.29 73.81
DANN 65.59±1.35 67.23±0.71 80.49±1.11 74.71±1.53 72.00
MDAN 68.77±2.31 67.81±2.46 80.96±0.77 75.67±1.96 73.30
MDMN 70.56±1.05 69.64±0.73 82.71±0.71 77.05±0.78 74.99
M3SDA 69.09±1.26 68.67±1.37 81.34±0.66 76.10±1.47 73.79
DARN 69.88±1.91 69.63±1.09 80.83±1.13 77.47±1.05 74.45
WADN 75.74±1.60 78.46±1.72 82.10±2.09 81.05±2.25 79.34

IMDA(Ours) 75.21±2.3 78.15±1.79 83.93±0.24 81.44±1.44 79.68

Target Domain
Method MNIST SVHN SYNTH USPS Average
Source 84.93±1.50 67.14±1.40 78.11±1.31 86.02±1.12 79.05
DANN 86.99±1.53 69.56±2.26 78.73±1.30 86.81±1.74 80.52
MDAN 87.86±2.24 69.13±1.56 79.77±1.69 86.50±1.59 80.81
MDMN 87.31±1.88 69.84±1.59 80.27±0.88 86.61±1.41 81.00
M3SDA 87.22±1.70 68.89±1.93 80.01±1.77 86.39±1.68 80.87
DARN 86.96±1.27 68.99±1.76 80.65±1.12 86.89±1.64 80.87
WADN 89.04±0.86 71.68±1.27 82.06±0.97 90.06±1.12 83.21

IMDA(Ours) 89.26±0.89 76.6±0.86 81.76±0.69 84.45±1.2 83.02

Table 2: Accuracy(%) of Supervised MDA on Target Shift Data (Drop Rate 50%): Amazon Review(Left), Digits(Right)

Target Domain
Method Books DVD Electronics Kitchen Average

Source + Tar 72.59±1.89 73.02±1.84 81.59±1.58 77.03±1.73 76.06
DANN 67.35±2.28 66.33±2.42 78.03±1.72 74.31±1.71 71.50
MDAN 68.70±2.99 69.30±2.21 78.78±2.21 74.07±1.89 72.71
MDMN 69.19±2.09 68.71±2.39 81.88±1.46 78.51±1.91 74.57
M3SDA 69.28±1.78 67.40±0.46 76.28±0.81 76.50±1.19 72.36
RLUS 71.83±1.71 69.64±2.39 81.98±1.04 78.69±1.15 75.54
MME 69.66±0.58 71.36±0.96 78.88±1.51 76.64±1.73 74.14
DARN 69.48±2.28 69.59±2.90 80.66±1.38 77.25±0.94 74.25
WADN 74.52±1.45 77.39±1.04 81.40±1.61 81.52±1.64 78.71

IMDA(Ours) 75.17±0.94 77.92±1.73 83.04±1.34 80.11±1.17 79.06

Target Domain
Method MNIST SVHN SYNTH USPS Average

Source + Tar 79.63±1.74 56.48±1.90 69.64±1.38 86.29±1.56 73.01
DANN 86.77±1.30 69.13±1.09 78.82±1.35 86.54±1.03 80.32
MDAN 86.93±1.05 68.25±1.53 79.80±1.17 86.23±1.41 80.30
MDMN 77.59±1.36 69.62±1.26 78.93±1.64 87.26±1.13 78.35
M3SDA 85.88±2.06 68.84±1.05 76.29±0.95 87.15±1.10 79.54
RLUS 87.61±1.08 70.50±0.94 79.52±1.30 86.70±1.13 81.08
MME 87.24±0.95 65.20±1.35 80.31±0.60 87.88±0.76 80.16
DARN 86.56±1.48 68.76±1.36 80.4±1.27 86.82±1.09 80.64
WADN 88.02±1.27 70.54±1.06 81.58±0.96 90.48±1.11 82.66

IMDA(Ours) 84.82±1.15 75.46±1.2 79.87±1.04 91.6±0.96 82.94

(a) Supervised MDA (b) Unsupervised MDA (c) Domain Weights and Regularization

Figure 1: Average Test Accuracy over All Domains w.r.t Different Levels of Target Shift on Amazon Dataset for (a)
Supervised MDA with Few Target Labels and (b) Unsupervised MDA with Pseudo Labels. (c) Visualization of Domain
Weights and Regularization Coefficients in Different Training Epochs on the Amazon Dataset for Supervised MDA with a
Drop Rate of 0.4.

unchanged to create the target shift data.

Baselines We first introduce the baselines for unsuper-
vised MDA. Source use all the labeled source datasets
to train the predictor without adaptation. DANN (Ganin
et al., 2016) is a single-source DA method, thus conduct-
ing marginal distribution matching between the merged
source data and the target data. MDAN (Zhao et al., 2018),
MDMN (Li et al., 2018), M3SDA (Peng et al., 2019) and
DARN (Wen et al., 2020) are marginal distribution match-
ing methods. WADN (Shui et al., 2021) first estimates
the label ratio for correcting the target shift, then align the
conditional distributions. Thus it also performs a (distinct)
joint distribution matching method. For supervised MDA,
Source + Tar is trained on merging the source data and the
few labeled target data. Two more baselines, RLUS (Kon-

stantinov & Lampert, 2019) and MME (Saito et al., 2019),
are also considered.

7.2 Results and Analysis

Results on Benchmark We compare our empirical re-
sults on the datasets mentioned above with the baselines
provided by Shui et al. (2021). For supervised MDA, we
consider the case where only a few labeled target samples
are accessible. So we randomly sample 10% labeled target
data as the training set, and the rest 90% are used as the test
set. For unsupervised MDA, the above target data without
labels are provided for training, and the results are tested
on another unseen target dataset. We have reproduced the
results of WADN and DARN using the code provided in
these two papers and directly used the results presented in
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Shui et al. (2021) for the other baselines. The comparison
is shown in Tab. 1 for unsupervised MDA and Tab. 2 for su-
pervised MDA. The reproduced results and those obtained
by the proposed approach (IMDA) are averaged over ten
runs. Each approach’s means and standard deviations are
reported with the best value shown in bold.

From the tables, we can see that IMDA has improved on
"Electronics" and "Kitchen" compared to the state-of-the-
art (WADN) while having a slight drop on "Books" and
"DVD" for unsupervised MDA. For supervised MDA, it
improves on "Electronics" and "Books." The average Ac-
curacy has a 0.3 − 0.4% improvement w.r.t the WADN.
For the Digits dataset, the proposed approach has signifi-
cant improvement on "SVHN" while a drop is shown on ei-
ther "MNIST" or "USPS" for supervised and unsupervised
MDA. W.r.t the average accuracy, we have comparable re-
sults to WADN with a slight improvement on supervised
MDA and a slight decrease on unsupervised MDA. In ad-
dition, the worse performance of Source + Tar compared
to all the divergence-based methods validates our statement
for exploiting the target data in Theorem 4.2.

Ablation Study for Target Shift We conduct the abla-
tion study on the Amazon dataset to show the effectiveness
of IMDA for mitigating the target shift. We adjust the drop
rate for negative reviews from 10%− 90%. The results are
shown in Fig. 1 (a) and (b) for supervised MDA with few
target labels and unsupervised MDA with pseudo labels,
respectively.

Fig 1 (b) illustrates that IMDA can tackle significant tar-
get shift for unsupervised MDA and outperforms WADN,
which needs, additionally, an estimate of the label ratio
with the pseudo labels. The performance of WADN drops
because the predictor is often inaccurate under a significant
target shift due to an incorrect label ratio estimate, which
in turn degrades the predictor’s performance.

For the supervised setting, only a few labeled target sam-
ples are provided. IMDA performs as well as WADN with
a drop rate smaller than 50%, while its performance de-
grades when the drop rate goes up. The result is consistent
with the proposed theory. When the source and target joint
distributions differ significantly w.r.t the label distribution,
correcting the target shift with simple statistics for the label
ratio given the true target labels is more efficient than min-
imizing the Wasserstein distance, which requires adequate
data.

Visualization of Domain Relations We show, in the
heat-map of Fig. 1(c), the evolution of domain weights and
the regularization coefficient w.r.t the training epoch, where
a darker color means a larger weight. Moreover, we can see
an adaptive effect of avoiding over-fitting to specific do-
mains, e.g., the weight of "DVD" was tuned down in some
epochs when estimating "Electronics."

8 DISCUSSION AND CONCLUSION

Limitation Kumar et al. (2020) and Wang et al. (2022)
conduct unsupervised DA with self-training when the tar-
get domain continuously shifts (gradual DA /continuous
test-time DA). In this scenario, there often exists the phe-
nomenon of error accumulation. IMDA also suffers from
this issue due to the utilization of pseudo labels. Wang et al.
(2022) proposes two methods to mitigate the error accu-
mulation – the weight-averaged and augmentation-average
pseudo labels. A similar weight-averaged approach can be
used in IMDA to improve the algorithm’s stability.

Future Application in High-level Computer Vision
Tasks Complex computer vision tasks like semantic seg-
mentation often require structural adaptation. So extend-
ing the traditional feature alignment methods needs a spe-
cific feature map design. E.g., ADVENT (Vu et al., 2019)
uses the weighted self-information space. However, IMDA
can be directly extended to the segmentation task using
the mini-max objective w.r.t the empirical risks, where the
structural information is contained in the definition of Y .

Future Application in Fairness Recently, the ethical
problems related to machine learning algorithms have
gained growing concern in the community, especially re-
garding how to avoid implicit discrimination. Since unfair
predictions are often associated with distribution shifts, do-
main adaptation methods are considered for improving fair-
ness in Zhao & Gordon (2019); Schumann et al. (2019).
The proposed approach can also be applied or incorpo-
rated with other fair learning algorithms (Hardt et al., 2016;
Barocas et al., 2017; Liu et al., 2019; Shui et al., 2022a,c).

To conclude, this paper conducts an information-theoretic
analysis of representation learning for both supervised
and unsupervised MDA. We first provide fully algorithm-
dependent bounds for MDA that apply to deep learning-
based algorithms. Then, we propose a novel algorithm
(IMDA) that mitigates the target shift and empirically
achieves comparable performance to the previous state-of-
the-art with improved memory efficiency. Notably, the pro-
posed algorithm outperforms the previous works w.r.t a sig-
nificant target shift in the more practically realistic unsu-
pervised learning scenario. Finally, the proposed approach
is fundamental and can be easily extended to other applica-
tions, e.g., complex cv tasks and fairness.

Acknowledgements

We appreciate constructive feedback from anonymous re-
viewers and meta-reviewers. This work is supported by
the Natural Sciences and Engineering Research Council of
Canada (NSERC) Discovery Grant, the Collaborative Re-
search and Development Grant from SSQ Assurances and
NSERC, and the China Scholarship Council.



Information-Theoretic Bounds for Multi-Source DA

References

David Acuna, Guojun Zhang, Marc T Law, and Sanja Fi-
dler. f-domain adversarial learning: Theory and algo-
rithms. In International Conference on Machine Learn-
ing, pp. 66–75. PMLR, 2021.

Martin Arjovsky, Soumith Chintala, and Léon Bottou.
Wasserstein gan. arXiv preprint arXiv:1701.07875,
2017.

Solon Barocas, Moritz Hardt, and Arvind Narayanan. Fair-
ness in machine learning. Nips tutorial, 1:2017, 2017.

Shai Ben-David, John Blitzer, Koby Crammer, and Fer-
nando Pereira. Analysis of representations for domain
adaptation. Advances in neural information processing
systems, 19, 2006.

Shai Ben-David, John Blitzer, Koby Crammer, Alex
Kulesza, Fernando Pereira, and Jennifer Wortman
Vaughan. A theory of learning from different domains.
Machine learning, 79(1):151–175, 2010a.

Shai Ben-David, Tyler Lu, Teresa Luu, and Dávid Pál. Im-
possibility theorems for domain adaptation. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pp. 129–136, 2010b.

John Blitzer. Domain adaptation of natural language pro-
cessing systems. PhD thesis, University of Pennsylvania,
2008.

John Blitzer, Mark Dredze, and Fernando Pereira. Biogra-
phies, bollywood, boom-boxes and blenders: Domain
adaptation for sentiment classification. In Proceedings
of the 45th annual meeting of the association of compu-
tational linguistics, pp. 440–447, 2007.

Stéphane Boucheron, Gábor Lugosi, and Pascal Massart.
Concentration inequalities: A nonasymptotic theory of
independence. Oxford university press, 2013.

Minmin Chen, Zhixiang Xu, Kilian Weinberger, and Fei
Sha. Marginalized denoising autoencoders for domain
adaptation. arXiv preprint arXiv:1206.4683, 2012.

Qi Chen, Changjian Shui, and Mario Marchand. Gen-
eralization bounds for meta-learning: An information-
theoretic analysis. Advances in Neural Information Pro-
cessing Systems, 34:25878–25890, 2021.

Remi Tachet des Combes, Han Zhao, Yu-Xiang Wang, and
Geoff Gordon. Domain adaptation with conditional dis-
tribution matching and generalized label shift. arXiv
preprint arXiv:2003.04475, 2020.

Nicolas Courty, Rémi Flamary, and Devis Tuia. Domain
adaptation with regularized optimal transport. In Ma-
chine Learning and Knowledge Discovery in Databases:
European Conference, ECML PKDD 2014, Nancy,
France, September 15-19, 2014. Proceedings, Part I 14,
pp. 274–289. Springer, 2014.

Nicolas Courty, Rémi Flamary, Amaury Habrard, and
Alain Rakotomamonjy. Joint distribution optimal trans-
portation for domain adaptation. Advances in Neural In-
formation Processing Systems, 30, 2017.

Gabriela Csurka. A comprehensive survey on domain
adaptation for visual applications. Domain adaptation
in computer vision applications, pp. 1–35, 2017.

Bharath Bhushan Damodaran, Benjamin Kellenberger,
Rémi Flamary, Devis Tuia, and Nicolas Courty. Deep-
jdot: Deep joint distribution optimal transport for unsu-
pervised domain adaptation. In Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), pp. 447–
463, 2018.

John Duchi. Lecture notes for statistics 311/elec-
trical engineering 377. URL: https://stanford.
edu/class/stats311/Lectures/full notes. pdf. Last vis-
ited on, 2:23, 2016.

Yaroslav Ganin and Victor Lempitsky. Unsupervised do-
main adaptation by backpropagation. In International
conference on machine learning, pp. 1180–1189. PMLR,
2015.

Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal
Germain, Hugo Larochelle, François Laviolette, Mario
Marchand, and Victor Lempitsky. Domain-adversarial
training of neural networks. The journal of machine
learning research, 17(1):2096–2030, 2016.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent
Dumoulin, and Aaron C Courville. Improved training of
wasserstein gans. Advances in neural information pro-
cessing systems, 30, 2017.

Moritz Hardt, Eric Price, and Nati Srebro. Equality of op-
portunity in supervised learning. Advances in neural in-
formation processing systems, 29, 2016.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bern-
hard Schölkopf, and Alex J Smola. Correcting sample
selection bias by unlabeled data. In Advances in neural
information processing systems, pp. 601–608, 2007.

Jonathan J. Hull. A database for handwritten text recog-
nition research. IEEE Transactions on pattern analysis
and machine intelligence, 16(5):550–554, 1994.

Sharu Theresa Jose and Osvaldo Simeone. Information-
theoretic generalization bounds for meta-learning and
applications. arXiv preprint arXiv:2005.04372, 2020.

Nikola Konstantinov and Christoph Lampert. Robust learn-
ing from untrusted sources. In International conference
on machine learning, pp. 3488–3498. PMLR, 2019.

Ananya Kumar, Tengyu Ma, and Percy Liang. Understand-
ing self-training for gradual domain adaptation. In Inter-
national Conference on Machine Learning, pp. 5468–
5479. PMLR, 2020.

Yann LeCun. The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/, 1998.



Qi Chen, Mario Marchand

Yitong Li, David E Carlson, et al. Extracting relationships
by multi-domain matching. Advances in Neural Infor-
mation Processing Systems, 31, 2018.

Zachary Lipton, Yu-Xiang Wang, and Alexander Smola.
Detecting and correcting for label shift with black box
predictors. In International conference on machine
learning, pp. 3122–3130. PMLR, 2018.

Lydia T Liu, Max Simchowitz, and Moritz Hardt. The im-
plicit fairness criterion of unconstrained learning. In In-
ternational Conference on Machine Learning, pp. 4051–
4060. PMLR, 2019.

Yishay Mansour, Mehryar Mohri, and Afshin Ros-
tamizadeh. Domain adaptation: Learning bounds and
algorithms. arXiv preprint arXiv:0902.3430, 2009.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bis-
sacco, Bo Wu, and Andrew Y Ng. Reading digits in nat-
ural images with unsupervised feature learning. 2011.

Tuan Nguyen, Trung Le, He Zhao, Quan Hung Tran,
Truyen Nguyen, and Dinh Phung. Most: Multi-source
domain adaptation via optimal transport for student-
teacher learning. In Uncertainty in Artificial Intelli-
gence, pp. 225–235. PMLR, 2021.

Sinno Jialin Pan and Qiang Yang. A survey on transfer
learning. IEEE Transactions on knowledge and data en-
gineering, 22(10):1345–1359, 2009.

Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang,
Kate Saenko, and Bo Wang. Moment matching for
multi-source domain adaptation. In Proceedings of the
IEEE/CVF international conference on computer vision,
pp. 1406–1415, 2019.

Ankit Pensia, Varun Jog, and Po-Ling Loh. Generaliza-
tion error bounds for noisy, iterative algorithms. In 2018
IEEE International Symposium on Information Theory
(ISIT), pp. 546–550. IEEE, 2018.

Gabriel Peyré, Marco Cuturi, et al. Computational optimal
transport. Center for Research in Economics and Statis-
tics Working Papers, (2017-86), 2017.

Ievgen Redko, Nicolas Courty, Rémi Flamary, and Devis
Tuia. Optimal transport for multi-source domain adap-
tation under target shift. In The 22nd International Con-
ference on Artificial Intelligence and Statistics, pp. 849–
858. PMLR, 2019a.

Ievgen Redko, Emilie Morvant, Amaury Habrard, Marc
Sebban, and Younes Bennani. Advances in domain
adaptation theory. Elsevier, 2019b.

Daniel Russo and James Zou. How much does your data
exploration overfit? controlling bias via information us-
age. IEEE Transactions on Information Theory, 66(1):
302–323, 2019.

Kuniaki Saito, Donghyun Kim, Stan Sclaroff, Trevor Dar-
rell, and Kate Saenko. Semi-supervised domain adap-
tation via minimax entropy. In Proceedings of the

IEEE/CVF International Conference on Computer Vi-
sion, pp. 8050–8058, 2019.

Candice Schumann, Xuezhi Wang, Alex Beutel, Jilin
Chen, Hai Qian, and Ed H Chi. Transfer of ma-
chine learning fairness across domains. arXiv preprint
arXiv:1906.09688, 2019.

Changjian Shui, Qi Chen, Jun Wen, Fan Zhou, Christian
Gagné, and Boyu Wang. Beyond h-divergence: Do-
main adaptation theory with jensen-shannon divergence.
arXiv preprint arXiv:2007.15567, 6, 2020.

Changjian Shui, Zijian Li, Jiaqi Li, Christian Gagné,
Charles X Ling, and Boyu Wang. Aggregating from mul-
tiple target-shifted sources. In International Conference
on Machine Learning, pp. 9638–9648. PMLR, 2021.

Changjian Shui, Qi Chen, Jiaqi Li, Boyu Wang, and Chris-
tian Gagné. Fair representation learning through implicit
path alignment. In International Conference on Machine
Learning, pp. 20156–20175. PMLR, 2022a.

Changjian Shui, Qi Chen, Jun Wen, Fan Zhou, Christian
Gagné, and Boyu Wang. A novel domain adaptation the-
ory with jensen–shannon divergence. Knowledge-Based
Systems, 257:109808, 2022b.

Changjian Shui, Gezheng Xu, Qi Chen, Jiaqi Li, Charles
Ling, Tal Arbel, Boyu Wang, and Christian Gagné. On
learning fairness and accuracy on multiple subgroups.
arXiv preprint arXiv:2210.10837, 2022c.

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Dar-
rell. Adversarial discriminative domain adaptation. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pp. 7167–7176, 2017.

Cédric Villani. Optimal transport: old and new, volume
338. Springer, 2009.

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu
Cord, and Patrick Pérez. Advent: Adversarial entropy
minimization for domain adaptation in semantic seg-
mentation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 2517–
2526, 2019.

Boyu Wang, Jorge A Mendez, Changjian Shui, Fan Zhou,
Gezheng Xu, Christian Gagné, and Eric Eaton. Gap min-
imization for knowledge sharing and transfer. Journal of
Machine Learning Research, 24(33):1–57, 2023.

Qin Wang, Olga Fink, Luc Van Gool, and Dengxin Dai.
Continual test-time domain adaptation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 7201–7211, 2022.

Jonathan Weed and Francis Bach. Sharp asymptotic and
finite-sample rates of convergence of empirical measures
in wasserstein distance. Bernoulli, 25(4A):2620–2648,
2019.

Max Welling and Yee W Teh. Bayesian learning via
stochastic gradient langevin dynamics. In Proceedings



Information-Theoretic Bounds for Multi-Source DA

of the 28th international conference on machine learn-
ing (ICML-11), pp. 681–688, 2011.

Junfeng Wen, Russell Greiner, and Dale Schuurmans.
Domain aggregation networks for multi-source domain
adaptation. In International Conference on Machine
Learning, pp. 10214–10224. PMLR, 2020.

Xuetong Wu, Jonathan H Manton, Uwe Aickelin, and
Jingge Zhu. Information-theoretic analysis for transfer
learning. In 2020 IEEE International Symposium on In-
formation Theory (ISIT), pp. 2819–2824. IEEE, 2020.

Xuetong Wu, Jonathan H Manton, Uwe Aickelin, and
Jingge Zhu. An information-theoretic analysis for trans-
fer learning: Error bounds and applications. arXiv
preprint arXiv:2207.05377, 2022.

Shaoan Xie, Zibin Zheng, Liang Chen, and Chuan Chen.
Learning semantic representations for unsupervised do-
main adaptation. In International Conference on Ma-
chine Learning, pp. 5423–5432, 2018.

Aolin Xu and Maxim Raginsky. Information-theoretic
analysis of generalization capability of learning algo-
rithms. In Advances in Neural Information Processing
Systems, pp. 2524–2533, 2017.

Chao Zhang, Lei Zhang, and Jieping Ye. Generalization
bounds for domain adaptation. Advances in neural in-
formation processing systems, 25, 2012.

Han Zhao and Geoff Gordon. Inherent tradeoffs in learn-
ing fair representations. Advances in neural information
processing systems, 32, 2019.

Han Zhao, Shanghang Zhang, Guanhang Wu, José MF
Moura, Joao P Costeira, and Geoffrey J Gordon. Ad-
versarial multiple source domain adaptation. Advances
in neural information processing systems, 31, 2018.

Han Zhao, Remi Tachet Des Combes, Kun Zhang, and Ge-
offrey Gordon. On learning invariant representations for
domain adaptation. In International Conference on Ma-
chine Learning, pp. 7523–7532. PMLR, 2019.



Qi Chen, Mario Marchand

A DEFINITIONS

Definition A.1. (Coupling). Let (X , µ) and (Y, ν) be two probability spaces. Coupling µ, ν means constructing two
random variablesX and Y on some probability space (Z, π), such that Z = X ×Y , (projX )#π = µ and (projY)#π = ν,
which means that π is the joint measure on X × Y with marginals µ, ν on X and Y respectively. The couple (X,Y ) is
called a coupling of (µ, ν).

Definition A.2. (Lipschitzness). Given two metric spaces (X , ρx), (Y, ρy), a function f : X → Y is L-Lipschitz w.r.t X if
∀x, x′ ∈ X , ρy(f(x), f(x′)) ≤ Lρx(x, x′). Specifically, if X ⊂ Rd1 ,Y ⊂ Rd2 , we often choose ρx(x, x′) = ∥x− x′∥ and
ρy(·, ·) = ∥y − y′∥ w.r.t norm ∥ · ∥.
Definition A.3. (Transportation Cost Inequality). A probability measure µ on (X , ρ) satisfies an Lp transportation in-
equality with constant c > 0, if for every probability ν ≪ µ, we have:

Wp(µ, ν) ≤
√

2cDKL(ν∥µ)

Definition A.4. (Sub-Gaussian). Define the cumulant generating function(CGF) of random variable X as ψX(λ)
def
=

logE[eλ(X−E[X])]. X is said to be σ-sub-Gaussian if

ψX(λ) ≤ λ2σ2

2
,∀λ ∈ R .

Definition A.5. (Mutual Information). Let X and Y be arbitrary random variables and DKL denote the KL divergence.
The mutual information between X and Y is defined as:

I(X;Y )
def
= DKL(P (X,Y )∥P (X)P (Y ))

Definition A.6. (Wasserstein-p Distance). Let the two distributions defined on the same Polish metric space (X , ρ), where
ρ(., .) is a metric and p ∈ [1,+∞), Π(µ, ν) is the set of all the couplings (see Definition A.1) of µ, ν. The Wasserstein
distance with order p between µ and ν is defined as:

Wp(µ, ν)
def
= inf

π∈Π(µ,ν)

[∫
X×X

ρ(x, x′)pdπ(x, x′)

]1/p
.

If ρ(x, x′) = ∥x− x′∥ and p = 1, the above definition is the Earth-Mover(EM) or Wasserstein-1 distance.
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B TECHNICAL LEMMAS

Lemma B.1. (Donsker-Varadhan representation) Let P and Q be two probability measures defined on a set X . Let
g : X → R be a measurable function, and let Ex∼Q[exp g(x)] ≤ ∞. Then we have

DKL(P ||Q) = sup
g
{Ex∼P [g(x)]− logEx∼Q[exp g(x)]}.

The proof of the above Lemma can be found in Corollary 4.15 (Boucheron et al., 2013) or Theorem 4.1 (Duchi, 2016).

Lemma B.2. Let X1, X2, ...Xn be independent σi-sub-Gaussian random variables. Then

E

[
exp

(
λ

n∑
i=1

(Xi − E[Xi])

)]
≤ exp

(
λ2
∑n

i=1 σ
2
i

2

)
,∀λ ∈ R

that is,
∑n

i=1Xi is
√∑n

i=1 σ
2
i -sub-Gaussian.

Proof. Xi,∀i = {1, 2, ..., n} is σi-sub-Gaussian, from Definition A.4, we have E[exp (λ(Xi − EXi))] ≤ exp (
λ2σ2

i

2 ).

Since the variables are independent, we have

E

[
exp

(
λ

n∑
i=1

(Xi − E[Xi])

)]
=

n∏
i=1

E[exp (λ(Xi − EXi))] ≤
n∏

i=1

exp (
λ2σ2

i

2
) = exp

(
λ2
∑n

i=1 σ
2
i

2

)

Lemma B.3. For independent variables X and Y , we have the following entropy inequality:

max{H(X), H(Y )} ≤ H(X + Y ) ≤ H(X,Y ) = H(X) +H(Y )

Proof. Let Z = X +Y , from the definition of mutual information, we can obtain the well-known result that "conditioning
reduces entropy". I(Z;X) = H(Z)−H(Z|X) ≥ 0, thenH(Z) ≥ H(Z|X). Similarly, we haveH(Z) ≥ H(Z|Y ). X,Y
are independent, so we can obtain H(Z|X) = H(Y |X) = H(Y ) and H(Z|Y ) = H(X|Y ) = H(Y ). Consequently, we
have proved that H(X + Y ) ≥ max{H(X), H(Y )}.

To prove the right-hand side, we need first prove that the entropy of a function of random variables is smaller than the joint
entropy of the random variables. Denote Z = f(X,Y ) = X + Y , we have

I((X,Y );Z) = H(Z)−H(Z|(X,Y )) = H(Z) = H(X,Y )−H((X,Y )|Z) ,

where the above equation is obtained with the fact that H(Z|(X,Y )) = 0.

From the definition of the entropy, we have H((X,Y )|Z) ≥ 0. Combine the independence of X,Y , so we can get
H(Z) ≤ H(X,Y ) = H(X) +H(Y ).
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C MISSING PROOFS IN SECTION 4

C.1 Proof of Theorem 4.1

Theorem. ∀(u, v) ∈ U × V , and ∀α ∈ ∆N , if Assumption 1 is satisfied, then

|RT (u, v)−RSα(u, v)| ≤W1(T̃u, S̃αu ) ≤W1(T ,Sα) ,

where the first W1 distance is defined on the metric space (Z̃, ρz̃), for ρz̃(z̃, z̃′) = ℓ(y, y′)+LMρx̃(x̃, x̃
′), and the second

one is defined on metric space (Z, ρz), for ρz(z, z′) = ℓ(y, y′) + LMKρx(x, x
′).

Proof. For any π ∈ Π(T̃u, S̃αu ), we have

|RT (u, v)−RSα(u, v)| = |EZ̃∼T̃u
ℓ(h(v, X̃), Y )− EZ̃′∼S̃α

u
ℓ(h(v, X̃ ′), Y ′)|

= |
∫
Z̃×Z̃

ℓ(h(v, x̃), y)− ℓ(h(v, x̃′), y′)dπ(z̃, z̃′)|

≤
∫
Z̃×Z̃

|ℓ(h(v, x̃), y)− ℓ(h(v, x̃′), y′)|dπ(z̃, z̃′)

=

∫
Z̃×Z̃

|ℓ(h(v, x̃), y)− ℓ(h(v, x̃), y′) + ℓ(h(v, x̃), y′)− ℓ(h(v, x̃′), y′)|dπ(z̃, z̃′)

≤
∫
Z̃×Z̃

|ℓ(h(v, x̃), y)− ℓ(h(v, x̃), y′)|+ |ℓ(h(v, x̃), y′)− ℓ(h(v, x̃′), y′)|dπ(z̃, z̃′)

≤
∫
Z̃×Z̃

(ℓ(y, y′) +Mρy(h(v, x̃), h(v, x̃
′))) dπ(z̃, z̃′)

≤
∫
Z̃×Z̃

(ℓ(y, y′) + LMρx̃(x̃, x̃
′)) dπ(z̃, z̃′)

The first two equalities hold with the definition of the population risk and Definition A.1 for coupling. The first inequality
is obtained with Jensen’s inequality for absolute function. And the second to last inequality is derived using the triangle
inequality of the loss function and the Lipchitzness in Assumption 1.

Let the metric on Z̃ be ρz̃(z̃, z̃′) = ℓ(y, y′) + LMρx̃(x̃, x̃
′).

∫
Z̃×Z̃

ρz̃(z̃, z̃
′)dπ(z̃, z̃′) =

∫
Z×Z

(ℓ(y, y′) + LMρx̃(x̃, x̃
′)) dπ(z̃, z̃′)

=

∫
Z×Z

(ℓ(y, y′) + LMρx̃(g(u, x), g(u, x
′))) dγ(z, z′)

≤
∫
Z×Z

(ℓ(y, y′) + LMKρx(x, x
′)) dγ(z, z′)

Let the metric on Z be ρz(z, z′) = ℓ(y, y′) + LMKρx(x, x
′).

Let the optimal coupling on the representation space be π∗
u = argmin

π∈Π(T̃u,S̃α
u )

∫
Z̃×Z̃ ρz̃(z̃, z̃

′)dπ(z̃, z̃′) and the corresponding

coupling on the original example space be γ∗u.

Let the optimal coupling on the original example space be γ∗ = argmin
γ∈Π(T ,Sα)

∫
Z×Z ρz(z, z

′)dγ(z, z′) and the corresponding

coupling on the representation space be πu. So we have:

|RT (u, v)−RSα(u, v)| ≤
∫
Z̃×Z̃

ρz̃(z̃, z̃
′)dπ∗

u(z̃, z̃
′) = W1(T̃u, S̃αu )

≤
∫
Z̃×Z̃

ρz̃(z̃, z̃
′)dπu(z̃, z̃

′) ≤
∫
Z×Z

ρz(z, z
′)dγ∗(z, z′) = W1(T ,Sα)

The last inequality is obtained since πu ̸= π∗
u may not be the optimal coupling on the representation space.
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C.2 Proof of Theorem 4.2

Theorem. If Assumption 1 and 2 are satisfied, then we can bound the generalization gap of the supervised multi-source
domain adaptation algorithm A for any α ∈ ∆N and 0 ≤ ϵ ≤ 1 with:

gen(T ,A) ≤ σ

√√√√2(
(1− ϵ)2
mt

+

N∑
i=1

ϵ2α2
i

mi
)I(U, V ;Sα, T ) + σ′

√√√√2ϵ2(

N∑
i=1

α2
i

mi
+

1

mt
)I(U ;Sα, T ) .

Proof.
gen(T ,A) ≤ EU,V,Sα,T [R

ϵ
Sα,T (U, V )− R̂ϵ

Sα,T (U, V )]

= EU,V,Sα,T [(1− ϵ)(RT (U, V )− R̂T (U, V )) + ϵ(RSα(U, V )− R̂Sα(U, V ))]

+ ϵEU,V,Sα,T [W1(T̃U , S̃αU )− Ŵ1(T̃U , S̃αU )]

Step 1 Bounding the Empirical Risks

Br = EU,V,Sα,T

[
(1− ϵ)[RT (U, V )− R̂T (U, V )] + ϵ[RSα(U, V )− R̂Sα(U, V )]

]
(U, V ) ∈ U ×V are random variables outputs by the supervised MDA algorithm, which depend on the input datasets S1:N ,
T and a fixed α (not random). Let (Ũ , Ṽ ) be an independent copy of (U, V ) such that (Ũ , Ṽ ) ⊥⊥ (S1:N , T ). Then let us
define

f(U, V, Sα, T )
def
= (1− ϵ)R̂T (U, V ) + ϵR̂Sα(U, V )

= (1− ϵ) 1

mt

mt∑
j=1

ℓ(h(V, g(U,Xt
j)), Y

t
j ) + ϵ

N∑
i=1

αi

mi

mi∑
j=1

ℓ(h(V, g(U,Xs
i,j)), Y

s
i,j)

Since the loss function is σ-sub-Gaussian (Assumption 2), applying Lemma B.2, we can obtain that f(Ũ , Ṽ , Sα, T ) is√
(1−ϵ)2

mt
+ ϵ2

∑N
i=1

α2
i

mi
σ-sub-Gaussian.

I(U, V ;Sα, T ) = DKL(PU,V,Sα,T ∥PU,V PSα,T )

= sup
g
{EU,V,Sα,T g(U, V, S

α, T )− logEŨ,Ṽ ,Sα,T [exp
g(Ũ,Ṽ ,Sα,T )]}

≥ λEU,V,Sα,T [f(U, V, S
α, T )]− λEŨ,Ṽ ,Sα,T [f(Ũ , Ṽ , S

α, T )]− ψŨ,Ṽ ,Sα,T (λ),∀λ ∈ R

≥ λEU,V,Sα,T [f(U, V, S
α, T )]− λEŨ,Ṽ ,Sα,T [f(Ũ , Ṽ , S

α, T )]−
λ2σ2( (1−ϵ)2

mt
+ ϵ2

∑N
i=1

α2
i

mi
)

2

We have:
EŨ,Ṽ ,Sα,T [f(Ũ , Ṽ , S

α, T )] = ϵEŨ,Ṽ ,SαR̂Sα(Ũ , Ṽ ) + (1− ϵ)EŨ,Ṽ ,T R̂T (Ũ , Ṽ )

= ϵEŨ,ṼRSα(Ũ , Ṽ ) + (1− ϵ)EŨ,ṼRT (Ũ , Ṽ )

= ϵEU,V,Sα,TRSα(U, V ) + (1− ϵ)EU,V,Sα,TRT (U, V )

Place the above term into the inequality, we get −λBr −
λ2σ2(

(1−ϵ)2

mt
+ϵ2

∑N
i=1

α2
i

mi
)

2 ≤ I(U, V ;Sα, T )

Consequently, we have |Br| ≤
√
2(σ2( (1−ϵ)2

mt
+ ϵ2

∑N
i=1

α2
i

mi
))I(U, V ;Sα, T ).

Step 2 Bounding the Wasserstein Distance

Bw = EU,V,Sα,T

[
ϵW1(T̃U , S̃αU )− ϵŴ1(T̃U , S̃αU )

]
= EU,Sα,T

[
ϵW1(T̃U , S̃αU )− ϵŴ1(T̃U , S̃αU )

]
Let

f ′(U, Sα, T ) = Ŵ1(T̃U , S̃αU ) = sup
v′

 1

mt

mt∑
j=1

f̃(v′, (g(U,Xt
j), Y

t
j ))−

N∑
i=1

αi

mi

mi∑
j=1

f̃(v′, (g(U,Xs
i,j), Y

s
i,j))

 ,
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I(U ;Sα, T ) = DKL(PU,Sα,T ∥PUPSα,T )

= sup
g
{EU,Sα,T g(U, S

α, T )− logEŨ,Sα,T [exp
g(Ũ,Sα,T )]}

≥ λEU,Sα,T [f
′(U, Sα, T )]− λEŨ,Sα,T [f

′(Ũ , Sα, T )]− ψŨ,Sα,T (λ),∀λ ∈ R

V ′ is assumed to be the subset that does not affect the supremum. So we have:

EŨ,Sα,T [f
′(Ũ , Sα, T )] = EŨ sup

v′
ESα,T

 1

mt

mt∑
j=1

f̃(v′, (g(Ũ ,Xt
j), Y

t
j ))−

N∑
i=1

αi

mi

mi∑
j=1

f̃(v′, (g(Ũ ,Xs
i,j), Y

s
i,j))


= EŨW1(T̃Ũ , S̃

α
Ũ
) = EU,Sα,TW1(T̃U , S̃αU )

From Assumption 2, f̃ is σ′-sub-Gaussian for any u and v′, so the supremum does not affect the sub-Gaussianity. Apply

Lemma B.2, we know that Ŵ1(T̃u, S̃αu ) is
√

1
mt

+
∑N

i=1
α2

i

mi
σ′-sub-Gaussian.

With the same proof process as bounding the empirical risks, we obtain that:

|Bw| ≤

√√√√2σ′2ϵ2(
1

mt
+

N∑
i=1

α2
i

mi
)I(U ;Sα, T )

Finally, we have:

gen(T ,A) ≤ Br +Bw

≤

√√√√2(σ2(
(1− ϵ)2
mt

+ ϵ2
N∑
i=1

α2
i

mi
))I(U, V ;Sα, T ) +

√√√√2σ′2ϵ2(
1

mt
+

N∑
i=1

α2
i

mi
)I(U ;Sα, T )

Conclude the proof.
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D MISSING PROOFS IN SECTION 5

D.1 Proof of Theorem 5.1

Definition D.1. (Joint Approximation Error) Let x̃ = g(u, x), x̃′ = g(u, x′), then let the optimal coupling on Z = X ×Y
given the pseudo labeling function h(v, g(u, x)) be

γ∗u,v
def
= argmin

γ∈Π(Tu,v,Sα)

∫
Z×Z

[LMρx̃(x̃, x̃
′) + ℓ(ŷ, y′)] dγ(ẑ, z′)

Then the joint approximation error is

R∗
rep(u, v)

def
= LM

∫
Z×Z

[ρx̃(g(u
∗, x), g(u∗, x′))− ρx̃(g(u, x), g(u, x′))] dγ∗u,v(ẑ, z′) ,

where R∗
rep(u, v) characterizes the approximation error for the domain shift on the representation space of u∗ (the repre-

sentation counterpart of the ideal joint hypothesis).

Theorem. For any given α ∈ ∆N and ∀u, v ∈ U × V , if Assumption 1 is satisfied, then the target population risk can be
bounded by:

RT (u, v) ≤W1(T̃u,v, S̃αu ) +R∗
rep(u, v) +R∗ .

Proof. Let u∗, v∗ = argminu,v RSα(u, v) +RT (u, v) be the ideal joint hypothesis, we have:

RT (u, v) = EZ∼T ℓ(h(v, g(u,X)), Y )

≤ EZ∼T ℓ(h(v, g(u,X)), h(v∗, g(u∗, X))) + EZ∼T ℓ(h(v
∗, g(u∗, X)), Y )

= EẐ∼Tu,v
ℓ(h(v∗, g(u∗, X)), Ŷ ) +RT (u

∗, v∗)

= EZ∼Tu,v
ℓ(h(v∗, g(u∗, X)), Y )− EZ′∼Sαℓ(h(v∗, g(u∗, X ′)), Y ′)

+ EZ′∼Sαℓ(h(v∗, g(u∗, X ′)), Y ′) +RT (u
∗, v∗)

≤ |EẐ∼Tu,v
ℓ(h(v∗, g(u∗, X)), Ŷ )− EZ′∼Sαℓ(h(v∗, g(u∗, X ′)), Y ′)|

+RSα(u∗, v∗) +RT (u
∗, v∗) .

For alignment on representation space, we have ∀γ ∈ Π(Tu,v,Sα) that:

|EZ∼Tu,v
ℓ(h(v∗, g(u∗, X)), Ŷ )− EZ′∼Sαℓ(h(v∗, g(u∗, X ′)), Y ′)|

≤
∫
Z×Z

|ℓ(h(v∗, g(u∗, x)), ŷ)− ℓ(h(v∗, g(u∗, x′)), y′)|dγ(ẑ, z′)

≤
∫
Z×Z

|ℓ(h(v∗, g(u∗, x)), y′)− ℓ(h(v∗, g(u∗, x′)), y′)|

+ |ℓ(h(v∗, g(u∗, x)), ŷ)− ℓ(h(v∗, g(u∗, x)), y′)|dγ(ẑ, z′)

≤
∫
Z×Z

LMρx̃(g(u
∗, x), g(u∗, x′)) + ℓ(ŷ, y′)dγ(ẑ, z′)

=

∫
Z×Z

LMρx̃(g(u
∗, x), g(u∗, x′))− LMρx̃(g(u, x), g(u, x

′))dγ(ẑ, z′)

+

∫
Z×Z

LMρx̃(g(u, x), g(u, x
′)) + ℓ(ŷ, y′)dγ(ẑ, z′)

Let the metric on Z̃ be ρz̃(ˆ̃z, z̃′) = LMρx̃(x̃, x̃
′) + ℓ(ŷ, y′). Let the optimal coupling on the transformed joint space Z̃ be

π∗
u,v = argmin

π∈Π(T̃u,v,S̃α
u )

∫
Z̃×Z̃ ρz̃(

ˆ̃z, z̃′)dπ(ˆ̃z, z̃′), so the corresponding coupling on the original example space is:

γ∗u,v = argmin
γ∈Π(Tu,v,Sα)

∫
Z×Z

LMρx̃(g(u, x), g(u, x
′)) + ℓ(h(v, g(u, x′)), y′)dγ(ẑ, z′) .
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Hence,
RT (u, v) ≤W1(T̃u,v, S̃αu ) +R∗

rep(u, v) +R∗ .

where R∗
rep(u, v) =

∫
Z×Z LMρx̃(g(u

∗, x), g(u∗, x′)) − LMρx̃(g(u, x), g(u, x
′))dγ∗u,v(ẑ, z

′) is the joint approxima-
tion error (Definition D.1), which is controlled by the representation learning function g(u, x) and the optimal coupling
γ∗u,v(ẑ, z

′).

D.2 Proof of Theorem 5.2

Theorem. If Assumption 1 and 3 are satisfied, then we have the following bound on the expected generalization gap of the
unsupervised multi-source domain adaptation algorithm with pseudo label Aun for any α ∈ ∆N :

gen(T ,Aun) ≤

√√√√2σ′2(

N∑
i=1

α2
i

mi
+

1

m′
t

)I(U, V ;Sα, T ′
X) + EU,VR

∗
rep(U, V ) +R∗

Proof. By definition:
gen(T ,Aun)

def
= EU,V,Sα,T ′

X
[RT (U, V )− Ŵ1(T̃U,V , S̃αU )]

Combine Theorem 5.1, we have

gen(T ,Aun) ≤ EU,V,Sα,T ′
X
[W1(T̃U,V , S̃αU )− Ŵ1(T̃U,V , S̃αU )] + EU,VR

∗
rep(U, V ) +R∗

Let

f ′(U, V, Sα, T ′
X) = Ŵ1(T̃U,V , S̃αU )

= sup
v′

 1

m′
t

m′
t∑

j=1

f̃(v′, (g(U,Xt
j), h(V, g(U,X

t
j))))−

N∑
i=1

αi

mi

mi∑
j=1

f̃(v′, (g(U,Xs
i,j), Y

s
i,j))


I(U, V ;Sα, T ′

X) = DKL(PU,V,Sα,T ∥PU,V PSα,T ′
X
)

= sup
g
{EU,V,Sα,T ′

X
g(U, V, Sα, T ′

X)− logEŨ,Ṽ ,Sα,T ′
X
[expg(Ũ,Ṽ ,Sα,T ′

X)]}

≥ λEU,V,Sα,T ′
X
[f(U, V, Sα, T ′

X)]− λEŨ,Ṽ ,Sα,T ′
X
[f(Ũ , Ṽ , Sα, T ′

X)]− ψŨ,Ṽ ,Sα,T ′
X
(λ),∀λ ∈ R

V ′ is assumed to be the set that does not affect the supremum, so we have:

EŨ,Ṽ ,Sα,T ′
X
[f ′(Ũ , Ṽ , Sα, T ′

X)] = EŨ,Ṽ sup
v′

EẐ∼TŨ,Ṽ
f̃(v′, (g(Ũ ,X), Ŷ ))− EZ′∼Sα f̃(v′, (g(Ũ ,X ′), Y ′))

= EŨ,Ṽ W1(T̃Ũ,Ṽ , S̃
α
Ũ
) = EU,V,Sα,T ′

X
W1(T̃U,V , S̃αU )

Then from Assumption 3, f̃ is σ′-sub-Gaussian for any u, v, v′ under Ẑ ∼ Tu,v , and σ′-sub-Gaussian for any u, v′ under

Z ∼ Si,∀i ∈ [N ]. Apply Lemma B.2, we have Ŵ1(T̃U,V , S̃αU ) is
√

1
m′

t
+
∑N

i=1
α2

i

mi
σ′-sub-Gaussian. So we can obtain

−λEU,V,Sα,T ′
X

(
W1(T̃U,V , S̃αU )− Ŵ1(T̃U,V , S̃αU )

)
− λ2σ′2( 1

m′
t
+
∑N

i=1
α2

i

mi
)/2 ≤ I(U, V ;Sα, T ′

X).

Consequently, we have:

|EU,V,Sα,T ′
X

(
W1(T̃U,V , S̃αU )− Ŵ1(T̃U,V , S̃αU )

)
| ≤

√√√√2σ′2(
1

m′
t

+

N∑
i=1

α2
i

mi
)I(U, V ;Sα, T ′

X)

Thus,
gen(T ,Aun) ≤ EU,V,Sα,T ′

X
[W1(T̃U,V , S̃αU )− Ŵ1(T̃U,V , S̃αU )] + EU,VR

∗
rep(U, V ) +R∗

≤

√√√√2σ′2(

N∑
i=1

α2
i

mi
+

1

m′
t

)I(U, V ;Sα, T ′
X) + EU,VR

∗
rep(U, V ) +R∗

Conclude the proof.
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E MISSING PROOFS IN SECTION 6

E.1 Proof of Theorem 6.1

Theorem. Following Theorem 4.1, 5.1 4.2, 5.2, define a weight parameter τ that balances the unsupervised and supervised
MDA. Adopt the aforementioned choice of F̃ with σ′ = σ and the SGLD updates described above. Then we can obtain the
gradient norm bound for the expected target risk, ∀α ∈ ∆N , τ, ϵ ∈ [0, 1], we have:

EU,V,Sα,T,T ′
X
RT (U, V ) ≤ EU,V,Sα,T,T ′

X
R̂α

ϵ,τ (U, V ) + τσ

√√√√2(
(1− ϵ)2
mt

+ ϵ2
N∑
i=1

α2
i

mi
)(δu + δv)

+ τϵσ

√√√√2(

N∑
i=1

α2
i

mi
+

1

mt
)δu + (1− τ)EU,VR

∗
rep(U, V )

+ (1− τ)(σ

√√√√2(

N∑
i=1

α2
i

mi
+

1

m′
t

)(δu + δv) +R∗) ,

δu
def
=
∑K

k=1
(ηk

u)
2E∥Gk

u∥
2
2

2σ2
k

and δv
def
=
∑K

k=1
(ηk

v )
2E∥Gk

v∥
2
2

2σ2
k

are the accumulated gradient norm for U and V , respectively.

Proof. Combine Theorem 4.1, 4.2, 5.1 and 5.2 we have:

EU,V,Sα,T,TX
RT (U, V ) ≤ EU,V,Sα,T,TX

R̂α
ϵ,τ (U, V ) + τ

√√√√2ϵ2σ2(

N∑
i=1

α2
i

mi
+

1

mt
)I(U ;Sα, T )

+ τ

√√√√2σ2(
(1− ϵ)2
mt

+ ϵ2
N∑
i=1

α2
i

mi
)I(U, V ;Sα, T ) + (1− τ)(R∗ + EU,VR

∗
rep(U, V ))

+ (1− τ)

√√√√2σ2(

N∑
i=1

α2
i

mi
+

1

m′
t

)I(U, V ;Sα, T ′
X) ,

We use SGLD to optimize the empirical risk:

R̂α
ϵ,τ (u, v)

def
= τ(1− ϵ)R̂T (u, v) + τϵR̂Sα(u, v)

+ τϵŴ1(T̃u, S̃αu )) + (1− τ)Ŵ1(T̃u,v, S̃αu )

Since we jointly minimize the objective function w.r.t u, v and maximize w.r.t v′ by definition of the Wasserstein distances,
we analyze U, V given a fixed v′ updated from previous steps. Given the batch size |B|, let the batch estimation of the
empirical risks be:

R̂Tk
B
(U, V ) = 1

|B|
∑|B|

j=1 ℓ(h(V, g(U,X
t
j)), Y

t
j )

R̂α
Sk
B1:N

(U, V ) =
∑N

i=1
αi

|B|
∑|B|

j=1 ℓ(h(V, (g(U,X
s
i,j)), Y

s
i,j))

R̂Tk
XB

(U, V, v′) = 1
|B|
∑|B|

j=1 ℓ(h(v
′, g(U,Xt

j)), h(V, g(U,X
t
j)))

Ŵk
1(T̃U , S̃αU )) = R̂Tk

B
(U, v′)− R̂α

Sk
B1:N

(U, v′)

Ŵk
1(T̃U,V , S̃αU ) = R̂Tk

XB

(U, V, v′)− R̂α
Sk
B1:N

(U, v′)

For updating U , note the gradients w.r.t three data batches as:

Gu(Uk−1, Vk−1, T
k
B) = τ(1− ϵ)∇U R̂Tk

B
(Uk−1, Vk−1) + τϵ∇U R̂Tk

B
(U, v′)
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Gu(Uk−1, Vk−1, T
k
XB

) = (1− τ)∇U R̂Tk
XB

(Uk−1, Vk−1, v
′)

Gu(Uk−1, Vk−1, S
k
B1:N

) = τϵ∇U R̂
α
Sk
B1:N

(Uk−1, Vk−1)− (1− τ + ϵτ)∇U R̂
α
Sk
B1:N

(Uk−1, v
′)

Similarly, for updating V , we have:

Gv(Uk−1, Vk−1, T
k
B) = τ(1− ϵ)∇V R̂Tk

B
(Uk−1, Vk−1)

Gv(Uk−1, Vk−1, T
k
XB

) = (1− τ)∇V R̂Tk
XB

(Uk−1, Vk−1, v
′)

Gv(Uk−1, Vk−1, S
k
B1:N

) = τϵ∇V R̂
α
Sk
B1:N

(Uk−1, Vk−1)

Denote the overall gradient updates for U and V respectively as:

Gk
u = Gu(Uk−1, Vk−1, T

k
B) +Gu(Uk−1, Vk−1, T

k
XB

) +Gu(Uk−1, Vk−1, S
k
B1:N

)

Gk
v = Gv(Uk−1, Vk−1, T

k
B) +Gv(Uk−1, Vk−1, T

k
XB

) +Gv(Uk−1, Vk−1, S
k
B1:N

)

Then the updates with noise injected:

Uk = Uk−1 − ηukGk
u + ξuk

Vk = Vk−1 − ηvkGk
v + ξvk ,

where ξuk ∼ N(0, σ2
kIdu

) and ξvk ∼ N(0, σ2
kIdv

).

Define the sequence of representation parameter and the predictor parameter for K iterations as (U, V )[K] =

(U [K], V [K]) = ((U1, V1), (U2, V2), ..., (UK , VK)). The sequence of samplings for each dataset are defined as T [K]
B =

(T 1
B , ..., T

K
B ), S[K]

B1:N
= (S1

B1:N
, ..., SK

B1:N
) and T [K]

XB
= (T 1

XB
, ..., TK

XB
). The final output of the joint optimization algo-

rithm (U, V ) = f((U, V )[K]).

T → T
[K]
B

↓

S1:N → S
[K]
B1:N

→ (U,V )[K] → (U, V )

↑

T ′
X → T

[K]
XB

Given specific α, let us apply the data processing inequality and the chain rule, then we have

I(U, V ;Sα, T ) = I(U, V ;S1:N , T ) ≤ I((U [K], V [K]);S
[K]
B1:N

, T
[K]
B ) =

K∑
k=1

I(Uk, Vk;S
[K]
B1:N

, T
[K]
B |U [k−1], V [k−1])

Moreover, since the sampling strategy is agnostic to the previous iterates of the parameters and previous samplings, so we
can obtain:

I(Uk, Vk;S
[K]
B1:N

, T
[K]
B |U [k−1], V [k−1]) = I(Uk, Vk;S

k
B1:N

, T k
B |Uk−1, V k−1)

= H(Uk, Vk|Uk−1, Vk−1)−H(Uk, Vk|Uk−1, Vk−1, S
k
B1:N

, T k
B)

For any (Uk−1, Vk−1) = (uk−1, vk−1), since the joint entropy of a set of variables is less than or equal to the sum of the
individual entropies of the variables in the set, we have

H(Uk, Vk|Uk−1 = uk−1, Vk−1 = vk−1) ≤ H(−ηukGk
u + ξku) +H(−ηvkGk

v + ξkv ))
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Apply Lemma B.3, we can obtain

H(Uk, Vk|Uk−1 = uk−1, Vk−1 = vk−1,S
k
B1:N

, T k
B)

= H(−ηukGu(uk−1, vk−1, T
k
XB

) + ξku,−ηvkGv(uk−1, vk−1, T
k
XB

) + ξkv )

≥ H(−ηukGu(uk−1, vk−1, T
k
XB

)− ηvkGv(uk−1, vk−1, T
k
XB

) + ξku + ξkv )

≥ H(ξku) +H(ξkv ) =
du
2

log(2πeσ2
k) +

dv
2

log(2πeσ2
k) .

The first inequality is obtained because the entropy of a function of random variables is smaller than the entropy of the
random variables (See proof in Lemma B.3). The second inequality comes from the independence between the gradients
and the injected noise.

Moreover, we can obtain E(∥−ηukGk
u+ξ

k
u∥22) = E(∥ηkuGk

u∥22+∥ξku∥22) = (ηku)
2E∥Gk

u∥22+duσ2
k and E(∥−ηvkGk

v+ξ
k
v∥22) =

E(∥ηkvGk
v∥22 + ∥ξkv∥22) = (ηkv )

2E∥Gk
v∥22 + dvσ

2
k with the independence. Since Gaussian distribution has the largest entropy

among the variables with the same second order moment, so we can further get:

H(Uk, Vk|Uk−1 = uk−1, Vk−1 = vk−1)−H(Uk, Vk|Uk−1 = uk−1, Vk−1 = vk−1, S
K
B1:N

, T k
B)

≤ H(−ηukGk
u + ξku) +H(−ηvkGk

v + ξkv ))− (H(ξku) +H(ξkv ))

≤ du
2

log(2πe
(ηku)

2E∥Gk
u∥22 + duσ

2
k

du
) +

dv
2

log(2πe
(ηkv )

2E∥Gk
v∥22 + dvσ

2
k

dv
)

− du
2

log(2πeσ2
k)−

dv
2

log(2πeσ2
k)

≤ (ηku)
2E∥Gk

u∥22 + (ηkv )
2E∥Gk

v∥2

2σ2
k

The above bound holds for all uk−1, vk−1, thus we can integrate the bound to conclude that

H(Uk, Vk|Uk−1, Vk−1)−H(Uk, Vk|Uk−1, Vk−1, S
K
B1:N

, T k
B) ≤

(ηku)
2E∥Gk

u∥22 + (ηkv )
2E∥Gk

v∥2

2σ2
k

,

So we get I(U, V ;Sα, T ) ≤
∑K

k=1
(ηk

u)
2E∥Gk

u∥
2
2+(ηk

v )
2E∥Gk

v∥
2

2σ2
k

= δu + δv

Similarly, we can obtain the following results with the same proof process:

I(U ;Sα, T ) ≤
K∑

k=1

(ηku)
2E∥Gk

u∥22
2σ2

k

= δu

I(U, V ;Sα, T ′
X) ≤

K∑
k=1

(ηku)
2E∥Gk

u∥22 + (ηkv )
2E∥Gk

v∥2

2σ2
k

= δu + δv

Place the above terms into the inequality presented at the beginning of this section, we can conclude the proof.
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F EXPERIMENTAL DETAILS

We provide the experimental details and some additional results in this section. The pseudo code 3 for the proposed IMDA
algorithm is presented in Sec. H.

F.1 Amazon Review

As presented in the main paper, the original dataset is pre-processed to 5000-dimension bag-of words features following
Chen et al. (2012). And the target shift data is created by randomly dropping 50% negative reviews.

Model Structure Representation learner: [5000, 1000, 500, 100] MLP net using 0.7 dropout rate with Relu activation
added after each hidden layer and finally output a 100-dimension feature representation.

Predictor and duplicate predictor: [100, 2] linear transformation followed by a log softmax layer transforming the 100-
dimension feature to 2-class log probabilities.

Loss function: we choose the "negative log-likelihood loss" as the loss function.

Computing Resources The experiments were run on a server with 6 CPUs and 1 GPU of 32GB memory.

Experimental Setting The Amazon review dataset contains 6465 samples for "books", 5586 samples for "dvd", 7681
samples for "electronics" and 7945 samples for "kitchen". We randomly sample 2000 examples for each domain. In
unsupervised MDA, the 2000 target samples without labels are applied in the training phase, and the rest samples are used
as the test set. For supervised MDA with few target labels, we randomly sample 10% examples from the 2000 target
samples using as the train data, then the rest 90% are used as the test set.

We provide the main hyper-parameters for supervised and unsupervised settings, which are chosen based on cross-
validation. Other hyper-parameters are set as the default value provided in the code.

In the supervised MDA, we set l2_scale= 0.5 (theC1 constant in the convex optimization objective for α), and the learning
rate of a Adadelta optimizer is η = 0.5. The penalty for the W1 distance is set to W1_sup_coef= 0.01. Finally, the network
is trained for 40 epochs with a mini-batch size of 20.

In the unsupervised MDA, as presented in the main paper, the empirical risk of the pseudo target distribution is:
R̂Tu,v

(u, v, v′) = 1
m′

t

∑m′
t

j=1 ℓ(h(v
′, g(u,Xt

j)), h(v, g(u,X
t
j)). There does not exist a direct realization of the above loss.

So we implement it with ℓ(h(v′, g(U,Xt
j)), Ŷ

t
j ) + ℓ(h(V, g(U,Xt

j))), Ŷ
′t
j ), where the Ŷ t

j and Ŷ ′t
j are the predicted label

of corresponding predictor. Then we apply two different penalty weights W1_discri_coef1 and W1_discri_coef2 for the
two losses respectively. We set l2_scale= 1, learning rate η = 0.8, W1_discri_coef1= 0.06, C0=W1_discri_coef2= 1.2.
Finally, the network is trained for 50 epochs and the mini-batch size is 20.

For reproducing the results of WADN (Shui et al., 2021) and DARN (Wen et al., 2020), we used the code repos https:
//github.com/cjshui/WADN and https://github.com/junfengwen/DARN. The hyper-parameters are set
as provided in the respective paper.

F.2 Digits

Model Structure Representation learner is consisted of 3 stacked modules : ’conv’:[3, 3, 64], ’relu’, ’maxpool-
ing:’[2,2,0]; ’conv’:[3, 3, 128], ’relu’, ’maxpooling:’[2,2,0];’conv’:[3, 3, 256], ’relu’, ’maxpooling:’[2,2,0].

Predictor and duplicate predictor: [2304, 512, 100, 10] MLP net using "Relu" activation after each hidden layer is followed
by a log softmax layer. The predictors transform the 2304-dimension feature to 10-class log probabilities. There is no
dropout.

Loss function: we choose the "negative log-likelihood loss" as the loss function.

Computing Resources The experiments were run on a server with 6 CPUs and 1 GPU of 32GB memory.

3The code is released at https://github.com/livreQ/IMDA

https://github.com/cjshui/WADN
https://github.com/cjshui/WADN
https://github.com/junfengwen/DARN
https://github.com/livreQ/IMDA
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Experimental Setting Digits dataset has four domains: "MNIST," "USPS," "SVHN," and "SYNTH." "MNIST" and
"USPS" are handwriting datasets that are very close. "SYNTH" is transformed from "SVHN," so they are also more
similar to each other. Each domain has different train-test split when downloaded. The respective training sample sizes
are 60000, 7219, 73257, 479400, and the respective test sample sizes are 10000, 2017, 26032, 9553. Following the same
procedure of Shui et al. (2021), we randomly select 7000 samples for each domain, then create a target shifted distribution
for each source, making each source contain 5300 samples, and the target domain contains 7000 examples.

In unsupervised MDA, the 7000 target samples without labels are applied in the training phase, and the test set is an unseen
portion that contains 2000 samples. For supervised MDA with few target labels, we randomly sample 10% examples from
the 7000 target samples using as the train data, then the rest 90% are used as the test set.

We provide the main hyper-parameters for supervised and unsupervised settings, which are chosen based on cross-
validation. Other hyper-parameters are set as the default value provided in the code.

In the supervised MDA, we set l2_scale= 1.5, 1, and the learning rate of a Adadelta optimizer is η = 0.5, 0.2, The
penalty for the W1 distance is set to W1_sup_coef= 0.01, 0.03. Finally, the network is trained for 70 epochs with a
mini-batch size of 128. In the unsupervised MDA, we set l2_scale= 1.5, learning rate η = 0.4, W1_discri_coef1= 0.002,
C0=W1_discri_coef2= 0.9. Finally, the network is trained for 15 epochs and the mini-batch size is 128.

F.3 Gradient Penalty

We implemented two types of gradient penalties in the code. The first is to ensure the Lipschitzness of f̃ for the Wasserstein
distances. We adopt the method proposed by Gulrajani et al. (2017). For example, with (X̃, Y ) ∼ Tu and (X̃ ′, Y ′) ∼ Sαu ,
we generate the interpolated feature X̃int = λX̃ + (1 − λ)X̃ ′, λ ∼ Unif[0, 1]. The gradient penalty is implemented by
adding the regularization term ∥∇X̃int

h(v, X̃int)∥22. The second gradient penalty comes from the bound in Theorem 6.1.
We consider the gradient norm in each batch as a regularization term. Note this gradient is w.r.t the model parameters, not
the feature or input.



Qi Chen, Mario Marchand

G ADDITIONAL RESULTS

G.1 Amazon Review

Now we present some additional results. At first, we illustrate the ablation study w.r.t different drop rates on Amazon dataset
for each domain in unsupervised MDA. In Fig. 2, we can see the proposed IMDA algorithm consistently outperforms the
previous state-of-art on every single domain.

We further provide additional t_SNE visualization of amazon data in Fig. 3, where an illustration of target shift with drop
rate of 50% is also included. From the figure, we observe that the geometry information of the data is retained using the
Wasserstein distance, and the distribution shift is decreased after adaptation.

Figure 2: Test Accuracy for Each Domain w.r.t Different Levels of Target Shift on Amazon Review Dataset for Unsuper-
vised MDA

G.2 Digits

The Amazon review dataset’s four domains are homogeneous tasks with similar difficulty. Otherwise, the four digits
domains are heterogeneous, where the two handwriting digit recognition tasks are much easier than the two home number
recognition tasks. To learn more reliable relations, we set uniform weight at the beginning of the training process (5 epochs)
to make the complex tasks sufficiently learned, avoiding an unfair low weight due to the poor results.

From the dataset description, we know MNIST and USPS are handwriting digits and are more similar to each other than
other datasets. Moreover, SVHN and SYNTH are more correlated since SYNTH is obtained by adding transformation on
SVHN. We observe the apparent similarity in Fig. 4 (a). The algorithm gives high weight to USPS when learning MNIST
and high weight to SVHN when learning SYNTH, and vice versa. Fig. 4 illustrates the minimax optimization process for
the Wasserstein distance. In unsupervised MDA, we do not directly optimize the combined empirical risk R̂Sα(u, v), the
evolution of its estimation continuously decreases, which shows the effectiveness of minimizing W1(T̃u,v, S̃u).
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Figure 3: T_SNE & Target Shift on Amazon Review Dataset

We also test the single-source DA method DeepJDOT (Damodaran et al., 2018) (merging the sources as one) and MOST
(Nguyen et al., 2021) on the target shifted digits data. The result for the target domain MNIST is illustrated in Tab. 3.
We do not consider adding a more detailed comparison of these two methods for the following reasons. First, we have
already compared other similar single-source DA approaches that using the merged source data. Second, the original
MOST algorithm consist of a mixture of several optimization objectives, but the theoretical result is only related to one
objective. Therefore, adjusting hyper-parameters for these combinations is meaningless for this paper’s theoretical nature.

Table 3: Accuracy(%) on Digits Dataset with a Drop Rate of 50%

Method target: MNIST
MOST 88.23

DeepJDOT 87.5
IMDA 89.26

(a) Evolution of Domains Weights α (b) Evolution of R̂Sα(u, v) and Ŵ1(T̃u,v, S̃u)

Figure 4: Visualization of the Evolution of Different Terms w.r.t Training Epochs on Digits Dataset for Unsupervised MDA
with a Drop Rate of 0.5
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H ALGORITHM

Algorithm 1: Information-Theoretic Multi-Source Domain Adaptation (IMDA)
Input: Labeled source samples S1:N , few labeled target samples T , unlabeled target samples T ′

X , weights ϵ, τ ,
learning rate η, variance σ, batch size B, constants C0, C1, moving average weight 0 < C < 1;

Output: Representation parameter U , predictor parameter V , duplicate predictor parameter v′, domain weights α;
for t← 1 to T do

if t == 1 then
Initialize domain weights α = {1/N, ..., 1/N}, randomly initialize U0, V0, v

′
0;

δu = 0, δv = 0;
else

Initialize U0, V0, v
′
0 with last epoch outputs;

end
for k ← 1 to K do

Sample batch data T k
B , S

k
B1:N

, T k
XB

from the corresponding datasets;
Evaluate gradients:

Gk
u =τ(1− ϵ)∇U R̂Tk

B
(Uk−1, Vk−1)

+ τϵ∇U R̂Tk
B
(U, v′k−1) + (1− τ)∇U R̂Tk

XB

(Uk−1, Vk−1, v
′
k−1)

+ τϵ∇U R̂
α
Sk
B1:N

(Uk−1, Vk−1)− (1− τ + ϵτ)∇U R̂
α
Sk
B1:N

(Uk−1, v
′
k−1)

Gk
v =τ(1− ϵ)∇V R̂Tk

B
(Uk−1, Vk−1)

+ (1− τ)∇V R̂Tk
XB

(Uk−1, Vk−1, v
′
k−1) + τϵ∇V R̂

α
Sk
B1:N

(Uk−1, Vk−1)

Gk
v′ =τϵ[∇v′R̂Tk

B
(U, v′k−1)−∇v′R̂Sk

B1:N

(U, v′k−1)]

+ (1− τ)[∇v′R̂Tk
XB

(U, V, v′k−1)−∇v′R̂Sk
B1:N

(U, v′k−1)]

Update:
Uk = Uk−1 − ηGk

u + ξuk , Vk = Vk−1 − ηGk
v + ξvk , v

′
k = v′k−1 + ηGk

v′ ;

δu = δu +
η2E∥Gk

u∥
2
2

2σ2 , δv = δv +
η2E∥Gk

v∥
2
2

2σ2 ;
end
U = UK , V = VK , v

′ = v′K ;
Solve

α′ = min
α

(
(ϵτ + C0(1− τ))R̂α

Sk
B1:N

(U, V )− (ϵτ + 1− τ)R̂α
Sk
B1:N

(U, v′)

+C1((1− τ + τϵ)
√
δu + δv + τϵ

√
δu)R(α)

)
,

R(α) =

√√√√ N∑
i=1

α2
i

mi
, s.t.∀i ∈ [N ], αi ≥ 0,

N∑
i=1

αi = 1 ,

Update α = Cα+ (1− C)α′;
end
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