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Abstract

One implicit assumption in current stochastic
gradient descent (SGD) algorithms is the iden-
tical cost for sampling each component function
of the finite-sum objective. However, there are
applications where the costs differ substantially,
for which SGD schemes with uniform sampling
invoke a high sampling load. We investigate the
use of importance sampling (IS) as a cost saver
in this setting, in contrast to its traditional use
for variance reduction. The key ingredient is
a novel efficiency metric for IS that advocates
low sampling costs while penalizing high gra-
dient variances. We then propose HeteRSGD,
an SGD scheme that performs gradient sampling
according to optimal probability weights stipu-
lated by the metric, and establish theories on its
optimal asymptotic and finite-time convergence
rates among all possible IS-based SGD schemes.
We show that the relative efficiency gain of Het-
eRSGD can be arbitrarily large regardless of the
problem dimension and number of components.
Our theoretical results are validated numerically
for both convex and nonconvex problems.

1 INTRODUCTION

We consider the finite-sum optimization problem

min f(x) := %Zfz(x), (1.1)
i=1

z€RC
where each f; itself can be in the form of a finite sum.
Such problems are ubiquitous in machine learning (Bishop
and Nasrabadi, 2006), operations research (Birge and Lou-
veaux, 2011), and statistics (Box and Tiao, 2011). Unlike
most works that implicitly assume the identical cost for
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sampling each component f;, we consider the case of het-
erogeneous sampling costs, i.e., some components can be
considerably more costly to sample than others. Such sam-
pling cost heterogeneity arises in various applications. In
automated algorithm configuration (e.g., Hoos, 2011), pa-
rameters of an algorithm are optimized on a set of problem
instances that are of different difficulty levels and hence in-
cur highly varying time or resource costs when fed to the al-
gorithm. In stochastic programming (Birge and Louveaux,
2011), the evaluation of the components requires solving
subproblems among which some can be harder to solve
than others. Lastly, in federated learning (Diao et al., 2020;
Luo et al., 2022), the components can represent clients with
varying model architectures, data sizes, and computation
and communication capabilities.

In the case of homogeneous sampling costs, when the full
gradient is expensive to evaluate, the preferred optimiza-
tion method is stochastic gradient descent (SGD) (Robbins
and Monro, 1951) that samples one or several functions
uniformly at random to approximate the full gradient at
each iteration. In the heterogeneous setting, however, SGD
can be inefficient because it can sample costly components
with a substantial chance at each iteration and thus incur
high sampling costs and consequently slow convergence,
or even become impractical when the sampling costs differ
drastically. This paper thus aims to address the problem:

How do we design gradient-based schemes
with a much lighter sampling burden than SGD  (P)

under heterogeneous sampling costs?

We attempt to tackle (P) using importance sampling (IS),
a technique from Monte Carlo computation (Rubinstein
and Kroese, 2016, Chapter 5) that samples from a differ-
ent distribution than the original one and then corrects bi-
ases by reweighting. In contrast to the typical use of IS
as a variance reducer, we use IS as a cost saver by sam-
pling costly components less frequently. To explain, in our
finite-sum setting, IS samples the components according
to possibly non-uniform probability weights {p;}?_; and
then reweights the samples with factors {% }7_,. In order
to achieve the least average cost per gradient evaluation, a
naive scheme is to use p; ~ 1 for the cheapest component



HeteRSGD: Tackling Heterogeneous Sampling Costs via Optimal Reweighted Stochastic Gradient Descent

and p; =~ 0 otherwise; however, this will blow up the gradi-
ent variance and hinder convergence. Relatedly, IS has tra-
ditionally been used in SGD to reduce gradient estimation
variance in order to accelerate convergence (Needell et al.,
2016; Papa et al., 2015; El Hanchi et al., 2022, etc.). De-
spite their better control of the variance and consequently
faster convergence than standard SGD, these IS schemes
are designed based on only the magnitude of the gradients
or smoothness constants of the components, but not their
sampling costs, and thus can still be inefficient under het-
erogeneous sampling costs.

Our main contribution thus lies in a novel IS scheme for
(P) that directly reduces sampling costs using as small sam-
pling weights on costly components as possible while con-
trolling the variance. The key ingredient is a judiciously
designed efficiency metric that, for a given sampling dis-
tribution, balances the impacts of the average cost in sam-
pling a component and the gradient estimation variance on
the overall sampling requirement. Specifically, it takes the
the form of the product of the cost and the variance, and
hence penalizes both high costs and variances. This partic-
ular form is motivated from an estimation of the sampling
effort needed to achieve a certain amount of error reduc-
tion over a single SGD iteration. Our importance sampler
is then obtained by optimizing the metric, for which we
provide efficient routines.

Based on the proposed efficiency metric, we design Het-
eRSGD, a new SGD algorithm that adaptively estimates the
optimal sampling weights in each iteration and performs
gradient sampling according to the estimated weights. To
properly characterize its convergence in our heterogeneous
setting, we establish novel central limit theorems (CLTs)
that scale the solution error with the (random) cumula-
tive sampling cost instead of the number of iterations in
previous CLTs. It turns out that the asymptotic errors of
the Polyak-Ruppert (Polyak and Juditsky, 1992; Ruppert,
1988) and the a-suffix (Rakhlin et al., 2012) averaged solu-
tions exactly match our efficiency metric, implying the op-
timality of HeteRSGD among all IS-based SGD schemes in
the sense that it achieves the least asymptotic solution error
under a given sampling budget. Moreover, the efficiency
gain relative to the standard and other IS-based SGD can
be arbitrarily large, regardless of the dimension d and the
number of components n.

Lastly, we further generalize our efficiency metric to a para-
metric family with varying preferences between cost reduc-
tion and variance reduction, and each of them matches the
asymptotic error of an individual SGD iterate under a cor-
responding decay rate in the step size. This gives rise to a
family of HeteRSGD variants with each being optimal for
individual SGD iterates instead of averaged ones.

We summarize our main contributions in this paper:

1. We propose a novel family of efficiency metrics for

IS that balance sampling cost reduction and variance
reduction under sampling cost heterogeneity.

2. We design a family of IS-based SGD algorithms,
called HeteRSGD, and develop novel asymptotic
CLTs and finite-time convergence bounds in the
strongly convex and smooth case that reveal the op-
timality of HeteRSGD in attaining the least sampling
complexity among all possible IS-based schemes.

3. We conduct experiments on both convex and non-
convex examples that demonstrate a 40-70% reduc-
tion in sampling cost compared to existing SGD meth-
ods in order to achieve similar solution accuracy.

Related Work There have been extensive studies on in-
tegrating IS into SGD for variance reduction. Needell
et al. (2016); Zhao and Zhang (2015); Gower et al.
(2019); Csiba and Richtarik (2018); Katharopoulos and
Fleuret (2018) design importance samplers based on global
smoothness information such as Lipschitz constants and
bounds of gradient norms to obtain improved convergence
rates. El Hanchi et al. (2022); Papa et al. (2015); Yuan
et al. (2016); He et al. (2021); Liu et al. (2021); Gopal
(2016); Alain et al. (2015); Stich et al. (2017); Johnson and
Guestrin (2018) develop sampling methods that adaptively
approximate the ideal sampler (2.3) as the iteration pro-
gresses to further reduce the gradient estimation variance
and sampling complexities. Another orthogonal line of
works (Borsos et al., 2018; El Hanchi and Stephens, 2020;
Namkoong et al., 2017; Salehi et al., 2017) pose the search
of optimal sampling weights as an online learning problem
and provide regret bounds with respect to the best weights
in hindsight. However, these works assume homogeneous
sampling costs and thus can be inefficient in our heteroge-
neous setting. Recently, An and Ying (2021) also utilizes
IS to balance the gradient variance across solutions in order
to escape from flat local optima in non-convex settings.

Apart from using IS, a large family of variance-reduced
SGD algorithms (e.g, Defazio et al., 2014; Schmidt et al.,
2017; Johnson and Zhang, 2013; Allen-Zhu, 2017) build
on the idea of control variates. Besides the assumed ho-
mogeneity in sampling costs, these methods also incur a
significant overhead for either storing gradients of all com-
ponents or periodic evaluation of the full gradient, whereas
our approach only needs to maintain norms of gradients
and possibly an estimated full gradient. Other works (e.g.,
Horvath and Richtarik, 2019; Qian et al., 2021; Shen et al.,
2016) combine IS with variance-reduced SGD to further
speed up convergence.

Lastly, similar sampling heterogeneity also arises in fed-
erated learning (e.g, Diao et al., 2020; Shen et al., 2022;
Cho et al., 2022). In particular, Luo et al. (2022) considers
system and statistical heterogeneity among clients and pro-
poses adaptive sampling to minimize global convergence
time. Their sampling designs are specialized to federated
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learning rather than general finite-sum optimization.

Organization The rest of this paper will be organized as
follows. Section 2 discusses our novel IS efficiency metric
under sampling heterogeneity and the corresponding im-
portance sampler. Section 3 presents our SGD algorithm,
with theories on its asymptotic optimality and finite-time
convergence rates in Section 4, and Section 5 further dis-
cusses extensions to a family of importance samplers and
their optimality theories. Section 6 contains experimental
results, and Section 7 concludes the paper.

2 IS UNDER HETEROGENEOUS COSTS

We first introduce the design rationale of importance sam-
plers in the homogeneous setting and then present our
novel sampling efficiency metric and the associated opti-
mal weights for heterogeneous sampling costs.

Notations Throughout this paper, we use || - || as the {5-
norm on R? and (-, -) as the associated inner product. De-
note by A,, = {(p1,p2,...,pn) €[0,1]" : >0 p; =1}
the probability simplex in R™. We always set 0/0 = 0.

Given the k-th SGD iterate zj,, we choose a probability dis-
tribution p* = (p¥, p5, ... pF) € A, and sample a multi-
set Z;, in which each index is i.i.d. drawn with replacement
from {1,2,...,n} with probability P(- = i) = pk V.
Then the gradient V f (xk) can be estimated using

9= |zk| Z

gk 18 an unbaised estimator of Vf(xk), i.e., Elgi| Fr—1] =
Vf(x), where Fi_; is the o-algebra generated by
I1,Zs,...,Zx—1. We summarize the general framework
for SGD with adaptive sampling in Algorithm 1. A natu-

sz (k) 2.1)

Algorithm 1 SGD with adaptive sampling

Require: initial point z; and stepsize {a }52 ;.
1. fork=1,2,... do
2: Choose pk € A, and sample the index set Z.

3: Compute the gradient estimate g5 via (2.1).
4: Update the iterate xx4+1 = T — QG-
5: end for

ral idea for finding the optimal weights p* is to minimize
the variance of the gradient estimator (2.1), which can be
computed as

E [llge — V(@)% Fr-1]

1 -1 1
=72 — IV fi(@) > — =V £ ()|
e 2 IVl = 197 o)

2.2)

The minimizing weights can then be shown to be (Zhao and
Zhang, 2015):

o [V fi(ze)ll, (2.3)
which have been extensively studied to improve conver-
gence rates (e.g., El Hanchi et al., 2022; Papa et al., 2015).

Note that computing such ideal weights requires knowl-
edge of the gradient of every single component and hence
SGD algorithms that use IS for variance reduction rely on
approximations of (2.3).

The derivation of (2.3) implicitly assumes the identical cost
in sampling each component gradient. In our setting with
heterogeneous sampling costs, however, the cost of eval-
vating V f;(x) varies in ¢. Thus, minimizing the variance
solely does not necessarily lead to less sampling effort, e.g.,
when components with large gradient norms happen to be
costly to sample, and one has to jointly consider the gradi-
ent variance and the incurred sampling costs. To proceed,
we consider the following cost model:

Assumption 2.1. The cost for evaluating each V f;, i =
1,...,n, is a random variable ¢; > 0 with ¢; := E[¢;] <
oo, and the total sampling cost is cumulative.

To find a metric that can meaningfully measure the effi-
ciency of a given sampling distribution p; under Assump-
tion 2.1, we examine the solution error reduction in a single
SGD step, as done in earlier works (e.g., Papa et al., 2015;
Johnson and Guestrin, 2018)

Efl|lzks1 — &*[|*|Fre-1] = lox — 2 — axV f(ar)
+aiElllgr — V£ (@r) 1?1 Fe-al,
where x* is an optimum, and only the last term, with the
gradient variance given by (2.2), depends on p*. The aV-
erage cost of sampling a single gradient according to p*
is Y1 | p¥c;. We aim to minimize the average cost while
ensuring a certain amount of reduction, or formally

n
min |Ik| Z pfci,
i=1

P*,| Tk |

I?

ot CE Z LIV Al — V@02 <
Tl n2pk ! g ; ©

for a fixed € > 0. By relaxing the integrality constraint on
|Z| and optimizing out |Z|, we see immediately that the
above is equivalent to minimizing

n v ) 2
(Sosker) (3 Iz
i=1

after dropping the constants € and . Compared to the
homogeneous case, our new efficiency metric (2.4) penal-
izes both high variance and high sampling cost, and thus
balances their impacts on the overall sampling efficiency.
(2.4) is computationally more challenging though due to
its non-convexity. Fortunately it turns out readily solvable:

HVf@wW>,(2®

Proposition 2.2. Let ¢; > 0,b; > 0 foralli =1,...,n,
0 <by < (>, Vbi/n)? and consider

) LI
prglAr}? <Zplcl> <z 1 p ) .

If at least one b; > 0, then there exists a unique minimizer

2.5)
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p* for (2.5) and is given by

bi/nz
’52“7 =1,2,... 2.6
b; K*e; —‘y—bo, ? ) 4y z (2.6)

. 2
where k* > 0 uniquely solves ZZL:l Kf"c/ibo = 1. Oth-

erwise if all b; = 0, then (2.5) is constantly 0.

. n b, 2
Since the >, K*C{ibo
desired k* can be computed by bisection, and then the op-
timal weights under the metric (2.4) can be computed from
(2.6) with b; = ||V fi(zx)||? and by = ||V f(zx)||?>. The

proof of Proposition 2.2 is deferred to Appendix F.

is strictly monotonic in «*, the

3 THE HeteRSGD ALGORITHM

The oracle efficiency metric (2.4) that guides the choice
of pF is constructed with perfect knowledge about
ci, IVfi(zi)l|l, 1 <i<mn,and |V f(xr)|, which may not
be available in practice. Therefore, we propose a practical
approximation of the oracle metric from which the sam-
pling distribution pF is then derived.

Estimation of c;: The estimated cost vector & =

(é%,...,&), where each & is the average cost incurred
by all the sampled gradients from f;. Specifically, let
sk i =1,...,n be the number of times that each V f; has
been sampled so far at the beginning of the k-th iteration.
Let é; ; be the random cost of the j-th sample taken for
V f; throughout the algorithm. The cost vector is updated

via s = sk + ez, 1(j = i) and
k+1
1
Skl _ k
C; = F S; C; + Z Czj (31)
i Jj= sf+1

Estimation of |V f;(xy)||: Each ||V f;(x)]| is estimated
with the most recently sampled gradient from f;. We use
a vector gF = (g¥,..., gk) to store the estimates which is
updated via

1~ {nwz(xk)u T, o,

! ar, otherwise.

Estimation of |V f(z): We estimate V f(z)) with the

averaged gradient G = 25 (g1 + g2 + -+ gr—1) € R
To avoid the storage of past gradients, we update G, via

~ k— 1

Grt1 = —Gk + 20 (3.3)

Now one can construct an empirical version of (2.4):

n nsky2 nop\ 2
p%’-“) (gi), —min( Grll, gi) )
(Sostet) (325 - (16032
(3.4)
where the minimum of |G| and 37, §¥/n instead of
simply ||G|| ensures non-negativeness of the variance

term. By minimizing (3.4) as stated in Proposition 2.2,
we obtain the estimated optimal sampling distribution. In
addition, to ensure a sufficient chance for each compo-
nent to be sampled and a controlled gradient variance,
we slightly mix the estimated weights with the uniform
weights to keep them away from zero as in some earlier
works (e.g., El Hanchi et al., 2022; Papa et al., 2015; De-
lyon and Portier, 2021). We summarize our SGD algorithm
in Algorithm 2, which is an implementation of the template
Algorithm 1.

Algorithm 2 HeteRSGD: SGD under heterogeneous costs

Require: initial point z1, initial estimates &, §*, G1 = 0,
stepsizes {a } 52, and mixing weight {wy }72 .
1: fork=1,2,. do
2: Compute the P € A, minimizing (3.4).
3 Set p* = (1 — wy)p* + wr(1/n,...,1/n).
4 Sample the index set Z;, and incur sampling costs.
5 Compute the gradient estimate gy, via (2.1).
6 Update the iterate xy41 = T — Qg Gk
7. Update &1, g1 and Gy, according to (3.1),
(3.2), and (3.3).
8: end for

4 CONVERGENCE ANALYSIS

In this section, we provide convergence analysis for Algo-
rithms 1 and 2, and demonstrate the optimal convergence
rate and sampling complexity of HeteRSGD among all IS-
based schemes. We first present our asymptotic analysis
(Subsections 4.1-4.2) on exact convergence rates of the
template Algorithm 1, and specialize the result to differ-
ent IS-based algorithms to illustrate the optimality of Het-
eRSGD (Subsection 4.3). We then investigate the non-
asymptotic behavior of HeteRSGD and compare it with
that of the standard SGD (Section 4.4). We assume that
the objective function is p-strongly convex and L-smooth:

Assumption 4.1. We assume

(i) f is p-strongly convex, i.e, it holds that f(y)
(Vf(x),y—=)+

> fx)+

Blly — «||? for any z,y € R

(ii) fi is L-smooth for any i € {1,2,...,n}, ie
IV fi(z) = Vi)l z — yl| holds for any
z,y € R As a consequence, f is also L-smooth.

4.1 Global Convergence

We state the result of global convergence in this subsection.
Denote by

& = gr — Vf(xp),

the noise or error in the gradient estimator. If &, satisfies
some summable property, then one can show that Algo-
rithm 1 converges to the global minimum z*, both in L2
and almost surely, with proper diminishing stepsizes:
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Theorem 4.2. Suppose that Assumption 4.1, > 7~ | oy, =
oo, and Y ;- | a3E[||&k %] < oc hold. Then the solution
x, from Algorithm 1 satisfies limy,_, o E [ka - ac*||2] =
0 and x), — =¥ a.s..

A key condition in Theorem 4.2 is Y ;- | o E[[|&]?] <
oo. Although this is not easy to verify in general, we pro-
vide transparent sufficient conditions in the lemma below.

Lemma 4.3. Suppose that Assumption 4.1 holds. If there
exists a sequence {wy}e, C (0,1 satisfying pf >
wi/n, Vi€ {1,2,....n}, k> 1, and Y} af/wy <
oo, then it holds that ", | aiE[|[&k]]?] < oo for Algo-
rithm 1.

Thanks to the mixing weight wy, with the uniform sampling
weights in Algorithm 2, we immediately see that our Het-
eRSGD converges globally as long as wy, is chosen to de-
cay sufficiently slowly as described in Lemma 4.3. Proofs
of Theorem 4.2 and Lemma 4.3 are left to Appendix A.

4.2 Local Convergence

In this subsection, we investigate exact local/asymptotic
convergence rates of Algorithm 1 for averaged SGD so-
lutions, which lay the foundation for comparing different
IS-based SGD algorithms in next subsection. Before pro-
ceeding, let us introduce some notations:

k
Si

* costy, := )i, DL, ¢ j is the cumulative sampling
cost of the first k—1 iterations, i.e., the cost to generate
{z1,29,..., 21}

* ¢(p) := D1, pici is the expected sampling cost of a
single gradient evaluation for a distribution p € A,,.

* The covariance matrix of an importance sampled gra-
dient at x* according to a distribution p € A,, is:

G) =3 —

2
n2p,
im VP

Vfi(@*)V fi(a*)".

* The averaged iterate of T(yg) 41, Tiyk]41; - - -, Tk 18!

1
oS T 2
J=[vk]+1
where v € [0,1) and [yk] is the largest integer that
is smaller than or equal to vk. v = 0 corresponds to
the Polyak-Ruppert averaging, and v € (0, 1) corre-
sponds to the a-suffix averaging.

e H = V?f(z*) is the Hessian matrix of f at z*.

We make two more assumptions. The first is on the non-
degeneracy of the gradient noise at the optimum x*:

Assumption 4.4. There exists at least one 1 €
{1,2,...,n} such that V f;(z*) # 0.

The second assumption is the convergence of the sampling
distribution p*:

Assumption 4.5. The sequence {p*}°, C A,, converges
almost surely to some fixed p* € Ay, and p} > 0 for every
i such that V f;(x*) # 0.

The positiveness condition on the limit weights ensures that
the limit is an eligible importance sampler at x*. This
assumption trivially holds for the standard SGD that per-
forms uniform sampling throughout, as well as for many
SGD variants that adaptively approximate the optimal im-
portance weights (2.3) at x*, e.g., those proposed in Papa
et al. (2015); El Hanchi et al. (2022). It also holds for our
HeteRSGD:

Proposition 4.6. Assume the same conditions in
Lemma 4.3, limg_oowy, = 0, Yo wp = o0
infy>1 ko, > 0, and Assumption 4.4 holds. Then
Pk — ply.. a.s. for Algorithm 2, where

IO B 4 1S VNG
Hete * Z;‘Lzl ||Vf](-r*)H/\/@ -

minimizes the sampling efficiency metric at x*

p(p) = (qu) (Z n21pi||vfi(x*)”2> . @D

i=1

Proposition 4.6 can be shown by proving limy_; o, ¢¥ —
(c1,.-sen)s limpsoo gl = |Vfila®)], V i €
{1,2,...,n}, and limy_, o, Gk = 0, almost surely, with
the details deferred to Appendix C.

An immediate consequence of Assumption 4.5 is the con-
vergence of the average cost per gradient sample (with
proof in Appendix C):

Proposition 4.7. If Assumptions 2.1 and 4.5 hold, then
Costk/(Z;:ll |Z;]) = c(p*) a.s. for Algorithm 1.

We then have the following asymptotic convergence rate
for Algorithm 1:

Theorem 4.8. Suppose Assumptions 2.1, 4.1, 4.4 and 4.5
hold. Suppose in addition that oy, = a1 /kP, where 3 €
(1/2,1), |Zi| = |Z| is fixed for any k > 1, and f is twice
continuously differentiable in a neighbourhood of z*. If
there exists a non-increasing sequence {wy}72, C (0,1]
satisfying p¥ > wyi/n, Vi € {1,2,...,n} and k > 1,
limg o0 g /w? = 0 and >0 | ap./(wpVk) < oo, then
for Algorithm 1 the following holds

Veosty - (T — ") = N (0, ;(p ,)yHlG(p*)Hl) ,
c(P) qpos
’1—7G@))’

Veosty - Vf(Zgy) =N (0
cost - (f(Zry) — f(z7)) =
N <07 c(p*)
2(1 =)
where N(0, -) denotes the multivariate Gaussian distribu-

tion with mean zero and covariance matrix -, and = de-
notes convergence in distribution.

2
H—%G(p*)H—%>

)
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Theorem 4.8 states that the solution error (in terms of dif-
ference with the optimum, gradient norm, or optimality
gap) scaled by the cumulative sampling cost converges in
distribution to a multivariate Gaussian whose covariance
depends on the limit sampling distribution p*. The sam-
pling efficiencies of different IS schemes thus are deter-
mined by their respective limit sampling distributions. Re-
sults of such type allow asymptotically exact quantification
of the solution error under a pre-specified sampling bud-
get, and subsequently transparent comparisons of sampling
efficiencies of different SGD algorithms. Notably, the mix-
ing weight wy, is allowed to approach zero at a sufficiently
slow rate via a delicate control of the gradient variance near
the optimum, and hence the limit p* does not need to be re-
stricted to the interior of A,, (Papa et al., 2015).

Theorem 4.8 is established by proving a CLT for the so-
lution error T, — =™ followed by an application of the
Slutsky’s theorem. Compared to the analysis of clas-
sical SGD CLTs, one additional challenge here is that
not only the solution but also the sampling distribution
keeps changing over iterations. To simultaneously han-
dle the non-stationarity in the solution and sampling dis-
tribution we use a probabilistic coupling argument, instead
of uniform-integrability-type assumptions or the i.i.d as-
sumption (Polyak and Juditsky, 1992, Assumption 3.3 and
Assumption 4.2), that explicitly links the gradient noise
{&k 172, at each iterate to an oracle noise incurred when
sampling at the optimum according to the limit distribution
p*. The full proof is deferred to Appendix B.

4.3 Comparison with Existing SGD Variants

This subsection utilizes Theorem 4.8 to compare our Het-
eRSGD with existing SGD algorithms including the stan-
dard SGD and the stochastic reweighted gradient descent
(SRG) (El Hanchi et al., 2022), and thereby establishes the
asymptotic optimality of HeteRSGD among all IS-based
SGD schemes encompassed by Algorithm 1.

Since the asymptotic efficiency is determined by the limit
sampling weights p* as Theorem 4.8 suggests, we now
quantify the efficiency realized by an arbitrary limit, and
specialize to different algorithms with distinct limits later.
With the limit p*, we consider running Algorithm 1 for
C/(|Z|e(p*)) iterations, with a fixed minibatch size |Zj| =
|Z|, to approximately reach a fixed sampling budget C (see
Proposition 4.7). Let Z¢ be the Polyak-Ruppert or a-suffix
average, then Theorem 4.8 entails that OV f(Z¢) is ap-
proximately N'(0, ¢(p*)G(p*)/(1 — 7)), therefore

E[||V f(zc)|*] = c(p)Te(G(p"))

C(l—7)
1

=P,

C(l—7)

where Tr(-) denotes the trace, and p is the efficiency met-

ric from (4.1), therefore the asymptotic solution error of an

4.2)

SGD algorithm boils down to the metric value p(p*) real-
ized by its limit sampling distribution.

We then compare the asymptotic error (4.2) realized by dif-
ferent SGD algorithms. As special cases of Algorithm 1,
the standard SGD with uniform sampling and the SRG have
limit sampling distributions

Psap = (1/n,...,1/n), and

. IV f; (@)
SRG Z?:l IV fi(x*)|l ie1

respectively. The limit sampling distribution of HeteRSGD
iS Pirese as given in Proposition 4.6. Since p7;.;. opti-
mizes the efficiency metric p(-), we immediately see that
HeteRSGD achieves the minimum asymptotic error (4.2).
Therefore HeteRSGD is optimal in the sense that, with a
fixed sampling budget, it achieves the least asymptotic error
in the gradient of the averaged solution among all possible
IS-based SGD schemes. The standard SGD and SRG are
in general suboptimal. The following result (with proof in
Appendix C) shows that the efficiency gain of HeteRSGD
can be arbitrarily large relative to both SGD and SRG.

Proposition 4.9. For any dimension d > 1, number of
components n. > 3, and € > 0, there exist examples with

P(Pirere)/ PPsap) < € and p(pirere)/ P(Psra) < €

Lastly, we briefly compare the asymptotic errors in terms
of Tc —z* and f(Z¢) — f(2*). From Theorem 4.8 we can
obtain the following characterizations similar to (4.2):

]E[H'fc - 33*H2} ~ C‘f](_p_*),y)Tr(HlG(p*)Hl),
Bl o))~ Ja%) = gy UG

The errors now depend on the Hessian H, in addition to p*,
and hence HeteRSGD may not be optimal. However, Het-
eRSGD is still optimal in following minmax sense. Con-
sider all Hessian such that H—! < p~'1,, and calculate
the worst errors
sup  c(p*)Te(H G (p*)H ™)
H-1=2p=11,

= sup
H=12p" 14

c(p*) o\ by Lo

=z Tr(G(p*)2 LG (p™)2) = Ep(p ),

and similarly supz—1,,-1, c(p)Tr(H™2G(p*)H™2) =
p(p*)/u. HeteRSGD therefore achieves the least worst-
case asymptotic errors in Zc — z* and f(Z¢) — f(x*).

c(p")Te(G(p*) 2 H2G (p")?)

4.4 Finite-Time Bounds and Comparison

This subsection complements the asymptotic theories on
HeteRSGD with non-asymptotic convergence bounds and
a finite-time comparison with the standard SGD.

We need two more assumptions stated as follows.
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Assumption 4.10. Each f;,i = 1,...,n is twice differen-
tiable with Lipschitz continuous second-order derivatives,
file) = V2 fi(y)|| < Loz —y| for any z,y € R?
for some Lo < 00.

Assumption 4.11. Each sampling cost ¢; has a finite sec-
ond moment Var(¢;) < oo, and there exists a constant
¢ > 0 such that each ¢; > c almost surely.

Our main finite-time result is the following theorem.

Theorem 4.12 (Finite-time bounds). Suppose Assumptions
2.1, 4.1, 4.4, 4.10 and 4.11 hold. Suppose that in Algo-
rithm 2 ay, = a1 /kP, where 8 € (1/2,1) and 0 < a; <
min (1/p, p/L?), wy = wi/k" with wy € (0,1] and
0 <n<min(8/7,1—0,8—1/2), and that |Ii;| = |Z|
is fixed for all k. Then for every v € [0, 1), we have for
HeteRSGD that

x*)m < p(p*Hete)
> 1 —

o (Y no N n\*
+ ¢ kcs.n + |I|]€176n + |I|k172n ’

(4.3)

E [costy] - E[||H(Zk,y —

)1/(1 67)

whenever k > (\II , where

- 1—-B—n
4 7 2

ﬂ,l, B—3n n
b) 2 777 8 32 b

Cam = min <

and C\(1 = 01(77051’11}1767777%17fi7éiagilaézl7i =
1,...,n) does not explicitly depend on n.

Under the same conditions, for the standard SGD we have
forall k > 1 that

E [costy]-E

_ . p(Psap) VIZ|
[I1H (Zk,, — )] < 1iG7D tC

where the constant cg = min(1/2 — 8/2,8 — 1/2) and
Cy := Co(v,a1, 8,1, fi,éii = 1,...,n) does not ex-
plicitly depend on n.

The key step of the proof of Theorem 4.12 is to control the
error of the estimated sampling weights p* in approximat-
ing the limit p%; .., which is carried out by first bounding
the estimation errors of the quantities &, jy, Gy needed in
the efficiency metric (2.4) and then propagating the errors
to the sampling weights via a novel sensitivity analysis of
the mapping from these quantities to the resulting sampling
weights. The details can be found in Appendix D.

The finite-time bound (4.3) for the cost-scaled error con-
sists of a constant term \/p(p};.,.)/(1 — ) that matches
the asymptotic size of +/costyV f(Zy,) given in Theo-
rem 4.8 and several polynomially decaying high-order
terms. To compare the finite-time behavior of Het-
eRSGD with the standard SGD, suppose the constant term

dominates the bound (4.3), i.e., E[|H(Zp~ — 2*)]|]

VP(Pirere)/ (1 —7)E[costy])  approximately — holds,
and for the standard SGD we approximately have
E(|H (@~ 2] < /psep)/ (L~ 1E [costy]).
By the optimality of p};,,., HeteRSGD achieves lower
solution errors than the standard SGD under the same
sampling budget in this regime. It can be verified that
the depicted condition k& > (n/|Z|)*/(*=6") is sufficient
for making the high-order terms negligible in (4.3). Note
that this is roughly & > n/|Z| when 7 is chosen small,
therefore HeteRSGD outperforms the standard SGD after
each f; has been sampled at least once on average and has
a reasonable estimate for its sampling cost.

S EXTENSION

The previous section shows the optimal sampling complex-
ity of HeteRSGD for averaged solutions, and this section
extends HeteRSGD to a family of algorithms that are opti-
mal for individual SGD iterates.

We begin with designing a new family of efficiency met-
rics. One crucial fact that makes the sampling weights de-
termined by (2.4) optimal for averaged solutions is that the
cost term Y1 p¥e; in (2.4) comes with an exponent of 1
that matches the k' convergence rate of the error of an
averaged solution. In the strongly convex and smooth case,
the error of the final iterate is of order k7 (e.g., Papa et al.,
2015) if the step size a, = a1 /k?, 3 € (1/2,1) is used,
which motivates the following counterpart of (2.4)

(prcz) (Z Al ||Vf<xk>||2). 6.0
i=1

Compared to (2.4), (5.1) is slightly less sensitive to surges
in sampling costs due to the smaller exponent 3. The
family of efficiency metrics (5.1) parameterized by 8 €
(1/2,1) therefore induce a family of importance samplers
with varying levels of awareness of cost heterogeneity.

Our HeteRSGD variant using the new sampling metric
(5.1), called HeteRSGDyg, is the same as Algorithm 2 ex-
cept that ¥ is now calculated by minimizing

n B[ n
(ZM) > —mm<|ak|| Zgl> ,

i=1
in place of (3.4). The optimal weights here can be com-
puted efficiently via a nested bisection, the details of which
are left to Appendix F. We have the following counterpart
of Theorem 4.8 for individual SGD iterates:

Theorem 5.1. Assume all the conditions in Theorem 4.8.
Assume further that f is thrice continuously differentiable
in a neighborhood of ©*, and that the sequence {wy}7°
satisfies sup, ak/w3+5 < oo for some § > 0, and

limy oo O ijl a; /wj2 = 0. Then it holds for Algorithm
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1 that
cost? - (T —2") =N (0 o C(P*)Bz(p*)>
: S |
where X(p*) satisfies ©(p*)H + HX(p*) = G(p*), and

cost,? Vf(zk) =N <0, |I(|)il_BC(P*)BH2(p*)H> ,
costf (flag) = f(z7)) =
2
a B S
aPE—

The proof of Theorem 5.1 builds on a general CLT from
Fort (2015) for controlled Markov chains and can be found
in Appendix E.

To demonstrate the applicability of Theorem 5.1 to
HeteRSGDg, we need to verify Assumption 4.5. Denote
by

n ﬁ n
pp(p) == (ZPM) (Z TL;,lpiHVfi(iﬂ*)Hz) (5.2)

i=1
the counterpart of (4.1), i.e., the metric (5.1) at the opti-
mum. Then the sampling distribution in HeteRSGDg con-
verges to the optimal one stipulated by (5.2) (see proof in
Appendix E):

Proposition 5.2. Let pj,,, = argmin,ca pg(p). Un-

der the same conditions of Proposition 4.6, we have p* —
p}:,e,eﬁ almost surely for HeteRSGDyg.

We demonstrate the optimality of HeteRSGD g for individ-
ual iterates based on Theorem 5.1. For an SGD scheme
with limit sampling weights p*, a similar analysis as in Sec-
tion 4.3 leads to the following asymptotic error of its last
iterate z when a fixed sampling budget C' is consumed
*\ aq *\ 3 % * %
o
= ————C
208|711 -8
aq
=———"—cC
ACB|T|1—B

(p")° Te(HE(p"))

(")’ Te(G(p"))

J— al *
= Wﬁﬁ@ ),

where the second equality follows from X(p*)H +
HY(p*) = G(p*). Since pjj., minimizes the efficiency
metric pg, by Proposition 5.2 HeteRSGDg with 3 match-
ing the decay rate of the step size ; /k? achieves the least
asymptotic error in the objective of the last (and hence
each individual) SGD iterate among all possible IS-based
schemes. Similarly, one can argue similar minmax opti-
mality as in Section 4.3 for the errors z¢c —z* and V f (z¢).

Besides the type of solution (averaged versus individual
ones) that is concerned for optimality, another notable
distinction between HeteRSGDg and HeteRSGD is that
HeteRSGDg becomes optimal only if the step size decays
as 1/k® so that the order of the solution error matches the

exponent 3 in the efficiency metric. Averaged solutions al-
ways have errors of order 1/k, and thus optimality of Het-
eRSGD holds regardless of the step size choice.

6 NUMERICAL EXPERIMENTS

We present the numerical results in this section. In each
experiment, we compare HeteRSGD (Algorithm 2) and
HeteRSGDg with several baselines:

* SGD: The standard stochastic gradient descent with
uniform sampling.

* SRG: The stochastic reweighted gradient descent
(El Hanchi et al., 2022, Algorithm 1) that switches
between the uniform distribution and an IS distribu-
tion induced from estimates of gradient norms, and
updates gradient norm estimates only if the uniform
distribution is used.

* SRG-m: A modified version of SRG that draws sam-
ples according to a weighted average of the two prob-
ability distributions used in SRG, and updates gradi-
ent norm estimates in each iteration. We consider this
version because the original SRG seldom updates the
gradient norms.

The problems we test on are all in the form of (1.1). For
each problem, we run the algorithms until some pre-fixed
sampling cost budget is reached. To mitigate the effect
of algorithmic randomness, we run each algorithm for 10
times and report the average error of the Polyak-Ruppert
averaged solution. More precisely, we report the average
of the error ||+ Z?Zl z; — z*||? for convex problems or
IVf( 2521 z;)||? for non-convex problems. Other im-
plementation details can be found in Appendix G. We use
the following test problems.

A synthetic example: We consider a finite-sum of n =
100 components, and each
filw1,x9) = %(m +a;)* + %(562 +b;)°.

Let §;,1 < 5 < n/2 be independently drawn from
Uniform(0,2m). For each 1 < j < n/4, let —ag; =
a25—-1 = sin(9j), —ij = b2j71 = COS(QJ‘), and Coj =
coj—1 = € fore € {0.01,0.3}. Foreachn/4+1 < j <
n/2, let —Q2; = A2j—1 = 0.01 sin(ﬂj),—bgj = bgj_l =
0.01cos(d;), and co; = c95—1 = 1. The optimal solu-
tion is 7 = x5 = 0. € controls the degree of hetero-
geneity in sampling costs for this example, and a smaller
€ induces higher heterogeneity. When ¢ = 0.01, the esti-
mated speedup from using HeteRSGD compared to SGD
and SRG can be calculated to be p(pj;...)/P(P5ap) =
4 x 107 and p(Pirere)/P(PERe) = 0.039. Results are
shown in Figure 2.

{5-regularized logistic regression: The ¢5-regularized lo-
gistic regression is a strongly convex binary classification
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Figure 1: Results on real data sets.
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Figure 2: Results on the synthetic example.

problem with
fi(z) =log (1 + exp(—biaiTx)) + %HCBHQ,

where a; € R?% and b; € {-1,1}. Each q; is normal-
ized such that ||a;|| = 1 and ¢ = 0.001. Each cost ¢;
is drawn i.i.d. from Lognormal(0, 1). We use the dataset
CcINA! (n = 16033, d = 132) and gisette? (n =
6000, d = 5000). The relative efficiency is calculated
t0 be p(Piiere)/P(Pscp) = 028, p(Phrere)/P(PSRG) =
0.78 for CINA, and p(pjee)/P(Pscp) = 0.53,
P(Pirere)/P(PERe) = 0.78 for gisette. Results are
shown in Figure 1a and Figure 1b, respectively.

A non-convex example: Although our theory focuses on
the convex setting, we also test a nonconvex binary clas-

"http://www.causality.inf.ethz.ch/data/
CINA.html

https://archive.ics.uci.edu/ml/datasets/
Gisette

sification problem (Mason et al., 1999; Wang et al., 2017)
with f; being

fi(x) =1 - tanh(b,a 2) + £ ] %,

and all other settings being the same as the logistic regres-
sion problem. Results on CINA are in Figure lc.

Figures 1 and 2 show that the two proposed methods,
especially HeteRSGD, outperform the three baselines by
achieving the same level of solution error as the best base-
line with roughly 40% less sampling cost in all convex
cases and 70% less in the nonconvex example. Notably,
Figure 2b shows almost an order-of-magnitude improve-
ment from SGD/SRG to HeteRSGDg and an even more
significant speedup when HeteRSGD is used. Specifi-
cally, HeteRSGD and HeteRSGDg achieve the same ac-
curacy as SGD/SRG/SRG-m with roughly 95% and 70%
less sampling costs respectively, consolidating the advan-
tage of our methods in the presence of high sampling het-
erogeneity. As a side note, the relative ranking among
HeteRSGD, SGD and SRG-m at the largest sampling cost
roughly match their theoretical efficiencies in each case.
For example, in Figure la the ranking of the solution er-
ror HeteRSGD < SRG-m < SGD matches that of their

efficiency metrics p(pj;.i.) < P(PSRa) < PPEGD)-

Comparing HeteRSGD and HeteRSGDg, we see that in
all the cases the sampling cost reduced by HeteRSGDg
is not as significant as HeteRSGD. This is consistent with
the theories that HeteRSGD is optimal for averaged iterates
whereas HeteRSGDg is optimal for individual iterates.

7 CONCLUSION

In this work, we investigate the use of importance sampling
(IS) as a cost saver to accelerate stochastic gradient descent
(SGD) under heterogeneous sampling costs. We propose a
novel family of sampling efficiency metrics for IS design
that balance cost reduction and variance reduction. Our
proposed algorithm HeteRSGD draws samples according
to probability weights derived from an empirical version of
the efficiency metric in each iteration, and is provably more
efficient than any other IS-based SGD scheme. Encourag-
ing numerical results are discussed.
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A PROOFS FOR RESULTS IN SECTION 4.1

Proof of Theorem 4.2. 1t follows from Y .- ; a? < oo that limy_, ap = 0. Without loss of generality, we assume that
ar < min{l/p, u/L?}, ¥ k > 1. It can be computed that

lzpr1 = 2*)1? = ||z — 2* — anV f(zx) — andll?
= |lar — 2 — arV f(z)|1? — 2an(ze — 2* — V[ k), &) + ailléel?,
which combined with E[§|Fj—1] = 0 yields that
E [|eh41 — a*[P[Fi-1] = llox — 2" — arV fzp)|* + aRE [[|€: )11 Fr-1] -
By strong convexity, one has that
o — " =V fzp)||* = ok — 2*|1* = 20u({V f (wp), 2 — 27) + Z [V f () ||
* * /’1/ *
< flaw = "+ 201 (£G7) = flon) = Ellon — 2°) + @IV ()
< (1= app)ller — 2|* = 200 (f () = f(2")) + IV f(zx)lI?,

and that "
flae) = 1) 2 Gl =o' 2 551V @0l 2 VSl

where the last inequality is guaranteed by oy, < 11/ L?. Therefore, combining the above calculations, one obtains that
E [lorrs — 2P Fr-1] < (1= awp)llee — 2*|* + oRE [[|&:]1%1Fr-1] , (A.1)
which then implies that

(1= arp)E [[lag — =*|?] + oK [||€]1°]

E [z — 2*[17] <
< (1 - )1 — ap-1E [lawos — @2 + (1 - awp)ad_E [[[6e-1]2] + oFE [I&]°]

k k k
< TTO=am) | Efllzn =P+ > T[T =) | SE[IG]]-
=1 i=1 \u=j+1

It follows from Y ;- ; oy, = oo that []p2 (1 — ayep) = 0. For any € > 0, since >, ar E[[|€x]|?] < oo, there exists

ko € Ny such that Y77 ofE[|[6x]] < €, and k1 € Ny with k; > ko such that Hﬁ;ko(l — agp) < €. Then for any
k > kq, it holds that

kl ko*l kl
& o — a7 < ( T] (1= E[xl—x*||2]+Z<H<1—am>> I6I7+ 3 o2& [l
j=ko Jj=1 \i=ko j=ko
ko—1

<e -Elllzy—2*|?] +e- Z OZ?E [11€;117] +

j=1
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(oo}
<e [ Eflar - IP) + DB [l + 1],
j=1

which proves that limy,_,o E ||z — 2*[|?] = 0, i.e., zx — «* in L2.

Then we consider the almost sure convergence. According to (A.1), it holds that

S E[E [llzkss — a1 = llan — o |21 Fe-1], ] <D 02 [llenll?] < oo
k=1 k=1

Then using the martingale convergence theorem (Blum, 1954, Corollary in Section 3), one can conclude that ||z}, — x*||?
converges almost surely to a random variable Z. It follows from limy o E [[|lz), — *(|?] = 0 that {||z), — z*|?}72, has
a subsequence that converges to 0 almost surely. Therefore, — 0, a.s., which leads to zj, — x*, a.s.. U

Proof of Lemma 4.3. Similarly, we can assume that a, < min{1/u, u/L?}, ¥V k > 1. It follows from

& = mJZj Vka — Vf(ar) = |§j( =V filar) — Vﬂmo,

that
5 1 (11 5 5
E [l6el*1Fems] = 27 | 72 2o p VA = IV F @)l
i=1 "1

1 n
=1

n

1
\V/ : * L kN2
< —m‘.nwk Z(H fila) | + Lz - 271
212
\va'2 2 ¥ |2
where we used the L-smoothness of f; and p¥ > wy, /n. Therefore, one has that
Cy
Eflignl®] < 1z (4 E llax =), (A2)

with Cy = max {2 3" | |V f;(z*)||>,2L? }, which combined with (A.1) yields that

. azC . aiC azC . aiC
B floxs =1} < (1= aun+ GHEL VBl o)+ 0 < (14 G0 )Rl —o'P] + GEEL

ie.,

2C
E [||xk+1 —m*HQ} +1< (1 + |;k| ! ) (E [ka — sc*||2] + 1).

It follows from >_ -, % < oo that [T, (1 e ) < 00. Then it holds that

[T |we

sup E [||z), — 2*[|?] < ooc. (A3)
k>1

Combining (A.2) and (A.3), one can conclude that

o0 20
HAAEEDS f”’“ L. (1+supE[xk —x*nﬂ) < o0,
k=1 k= k21

1 Ik|wk

where we used Y7, = a" < 00. O
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B PROOF FOR THEOREM 4.8

This section is for the proof of Theorem 4.8. We use similar framework and techniques as in Polyak and Juditsky (1992):
we first establish in Theorem B.1 a central limit theorem for the linearized system {yk}k“;l defined via y; = x1, and
Yer1 — 2" = (yp — 07) — o H(yp — ) — aply, k> 1,
where H = V2 f(z*), and then prove in Theorem B.2 that the Polyak-Ruppert averaging or a-suffix averaging of
op =T —yr, k>1,

converges to 0 in probability.
Theorem B.1. Suppose Assumptions 4.1, 4.4 and 4.5 hold. Suppose in addition that oy, = a1 /k®, where 8 € (1/2,1)
and that |I| = |Z| is fixed for any k > 1. If there exists a non-increasing sequence {wy}7°, C (0, 1] satisfying
pE > wy/n, Vie {1,2,...,n}and k > 1, limy 00 /i = 0, and Yo, a3 Jwy, < o0, then the sequence {yx}32,
generated by the linearized system satisfies

1

(1 =)k (G, — %) :N(o, I|H_1G(p*)H_1>, (B.1)

_ k

where §i, , = ﬁ 2 j—iykj+1Yj and v € [0,1).

Theorem B.2. Suppose Assumptions 4.1, 4.4 and 4.5 hold. Suppose in addition that oy, = oy /kP, where 3 € (1/2,1), and

[ is twice continuously differentiable in a neighbourhood of x*. If there exists a non-increasing sequence {wy 13>, C (0, 1]

satisfying pf > wy/n, Vi € {1,2,...,n} and k > 1, limy_o0 ap/w? = 0and > 3o, ap/(wpVk) < oco. Then
< . s < k

V(1 =)k - 6x — 0 in probability, where 0y, ,, = ﬁ 2 j=yk)+1 0 and v € [0,1).

The proof of Theorem 4.8 can now be presented based on Theorem B.1 and Theorem B.2 whose proofs can be found in
Subsection B.1 and Subsection B.2, respectively.

Proof of Theorem 4.8. Combining Theorem B.1 and Theorem B.2, we have that
1
1=z

Note that |Zj;| = |Z| is a constant for any k& € N . Proposition 4.7 yields that

VE - (T, — %) = N (0, H1G(p*)H1) .

costy,
k

According to Slutsky’s theorem, the above two convergence results immediately imply that

= |Z| - ¢(p*), almost surely.

Veosty, - (T — 27) = N <0, ') HlG(p*)H1> .

-~
Therefore, it holds that

VEoSTs - H(@h — ") = N (o p") G(p*>) ,

717’_)/

and that )

1 *
costy - = (Tpy — ) H (T — %) = HN (0, mHéG(p*)Hé)
2 2(1 =)
Note also that x; — «* a.s. by Theorem 4.2 and that Vf(x) = H(x — z*) + o(||lz — z*||) and f(z) — f(z*) =

1z —2")TH(z — 2*) 4 o(||z — z*||*) as  — z*. We can thus conclude that

VeSS Vf(En) = N (o, p") G(p*>) ,

1—v
and that

costy - (f(Zr4) — f(2")) = HN (0» 21—
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B.1 Proof of Theorem B.1

To present the proof of Theorem B.1, we need the following lemma and the notations therein.

Lemma B.3 (Lemma 1 from Polyak and Juditsky (1992)). Suppose that H € R4*? is a symmetric matrix with H = I,
1> 0. Define { A¥}p>;>1 € R via

A§ =1, and A?Jrl = (I—akH)Afa k>j+1.

Set
k
1 .
=Z_Aj, k>j>1

If the stepsize satisfies a, — 0, kay, 1 0o, and M 1 0, as k — oo, then the followings hold:

QRO
(i) There exists some constant C's > 0, such that HH‘l — aijHH <Cg,Vk>j+1,57 €N,
e k=11 17—
(i) limp_oo %ijl HH 1 aijl?+1|| =0.

Proof of Theorem B.1. The proof uses techniques from Polyak and Juditsky (1992), with some new technical lemmas. For
any k > ko > 1, it can be computed that

yp — 2" = (I —op—1H)(yp—1 — %) — 181
= —oap_1H)I —ap—oH)(yr—2 —2") — (I — cp—1H)op_28k—2 — j—1&k—1

k—ko - k—j—1
= H(I*ak—jH) (Yko — 27) Z ( H (I — - 1H>aj§j
j=1 j=ko =1
= A%y (Yko — Z AJ+1%§J-
Jj=ko
Therefore, it holds that
gk,'y - x* Z yj
J [yk]+1

1 k

= (1 — v)k Z [fyk]+1(y[7k]+1 —a* Z Al+1al§l
J=[vk]+1 I=[vyk]+1

1 1 k—1

- (1-9)k Z A[vk]ﬂ Wk — ") — m Z Q Z Al+1 &
=[vk]+1 I=[vk]+1 J=l+1

1 1 k—1

S Y R N S S TS
1 — g R+ vkl 11—k 3R95+183
(=) A=k, (Ha

1 1 k—1 1 k—1
— k * —1 X - _1_ ) k )
= 7(1 — 7)kS[A,k]+1(i‘/[wk]+1 —xz¥) — 7(1 k- Z H ¢+ = Z (H a]Sj_H) &5,

Jj=[vk]+1 J=[vk]+1

ie.,

A=k Gy — ") =

1
—S (y —z") - Z H™' + Z —a;S¥ )&
[vE]+1\Y[vk]+1 it 35741
(1 =)k v 1_ J [vk]+1 v 1_ J [’Yk]""l
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The limiting behaviour of the three terms in /(1 — v)k - (g, — x*) are established in the Lemma B.4, Lemma B.6, and
Lemma B.7, respectively. Then one can conclude (B.1). O

Lemma B.4. Suppose that Assumption 4.1, Assumption 4.4, and Assumption 4.5 holds and that o, = a1 /kP for B €
(1/2,1). Suppose further that there exists a sequence {wy, }32; C (0, 1] satisfying p¥ > wy/n, Vi € {1,2,...,n}, k > 1,
Srey @i Jwy < oo, and limy,_ oo a Jwi = 0. Then

1 *
ﬁs[kvk]ﬂ(y[vk]ﬂ —z") =0,

in probability.

We need another lemma for proving Lemma B.4.

Lemma B.5. Suppose that Assumption 4.1 holds. If there exists a sequence {wy}5>, C (0,1] satisfying pf >

we/n, Vi€ {1,2,...,n}, k > 1, 307 ai/wr < oo, and limy_, o =5 = 0, then there exists Cy > 0, such
k

that E [||zx, — 2%]1?] < Cpap/wy.

Proof. The proof of Lemma 4.3 implies that E [||&[?] < Ce/(|Zi|wk), ¥V k € Ny holds for some constant C¢ > 0.
There exists kg € N, such that o, — agpy1 < %ai, vV k > ko. Choose Cp > 0 such that C¢/C,; < p/2 and
E [||:ck — x*||2] < Cpap/wg, ¥V k < ko. We then prove by induction that E [||xk — :c*||2] < Cypayp/wy holds for all
k € Ny. Assume that E [||z, — 2%||?] < Cypay/wy, for some k, then by (A.1), one has that

C 1
¢ < — (C’xak — Cmuozi + Cx%ai)

E i — 2] < (1 0w [Jox - "] + o ot <
Cy (a’ i 2) < C’ggOékH7
2 W41

which completes the proof. O

.
Yk 41T

. k . . Yr . P
Proof of Lemma B.4. Since o, Shk] 1 1s bounded by Lemma B.3, it suffices to show that Vhapo — 0 in probability,

which is equivalent to 3:’}% — 0 in probability. Note that
o

k—1
1 1
—z* Ak z* A%«
T e —a7) = A — ) - g Tt
Therefore, it suffices to prove that
1 *
mAlf(yl —a") =0, (B.2)
k
and that
=
N A;?Hajfj — 0, in probability. (B.3)
j=1
We first prove (B.2). Let H = UXU " be the singular value decomposition of H > ul, where U € O(d) and & =
diag(oy,09,...,04) satisfies 01 > 09 > -+ > 04 > p. Without loss of generality, we can assume that oy < 1/07. Then
it holds that
1 = = =
0= AY = Udia 1—ao1),...,.— | [(1—aj0q) | UT < 1—agp)- 1.
- \/%Oék 1 g \/EOék Jl;[l( J 1) \/EO[]C E( J d) - \/EOlk j];[l( JM)
Since

k—1 k—1
1 jB—1/2 kA-1/2 k
— Q=) < exp | —pu ) a; | < exp —ual/ t=Pdt
VEkay H ! Qi = ! 1

(0%
j=1 !
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kﬂfl/Z
= a exp( 1”316(15 B _ )) —0, ask — oo,

we get 2 Ak — 0 which implies (B.2).

We then consider (B.3). Let 2% = {i : pj > 0} and 0* = min{p; /2 : i € T} }. By Assumption 4.4, we know that Z* # ()
and 6* > 0. Define
Q= {pf > 6", VieIt} (B.4)

which is Fj,_1-measurable, and

sz _ {pz > 6*7 Vi EI_T_, ] > k} = m Qj’ and QT:k = ﬂ Qj.
>k T<j<k

Assumption 4.5 and the continuity of probability guarantee that

kIEEOP (Qsp) = U Qsp | =1 (B.5)
k>0

Even if we do not assume the L?-boundedness of {5 }7° ,, {&x1a, } 72, can be proved as bounded in the L? sense:

E [[16x]1°Te, | = E [E [|16:]I°Ta, | Fr-1] ]

1 1
(W;p?”vfi(wk)”z i |||Vf(xk)\| )an]

! VA | 5~ VAL
2B 2 2

= ] Py

A
|
s

1 IV fi(@*)]| + Ll|g — 2*])? [l — a*|]?
< —E g E LB
= ‘ 5 + ‘ o
_ZEIi liIi

1
< CéQ (1 +E [||xk — x*||2] + w—kE [||xk — Jc*||2])

Cy Cy
<Clg <1+ LA 2"“)
Wg Wy
< C¢ 0,
ie.,
E [||&:]1°La,] < Ceq, (B.6)

for some constant Cé q:Ce,0 > 0, where we used Lemma B.5 and limy,_, oo ak/wi =0.

Consider any k > T'. It holds that

k—1 2 [ k—1 2
E 1Y A agTon, || | <E Y AN 010,
j=1 j=1
r 2
k—2
=K |E ZA_I;'FlOéjéjHQT:k—I + Azak—lfk—l]IQT:k71 Fr—2
j=1
r 2
k—
=E Z j+1a]§]HQT k—1 +E [”Azak_lgk_l]IQT:k—l ”2]
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2
k—2

<E ZA‘];+1aj§j]IQT:k—2 +ai71HAII:”2E [”51@71“2}1(%_1]
=1

T—1
<E|[|Y Ab08 +Z a2)| Ak |IPE [|I€;]1%Tg, ]
j=1

k—1
< Za2\\A FlPE L& + Cea Y afllAza
=T
ie.,
1 = 2 G
Q
E | i 2 Afnasbilaz, | | < 22a2|\A lE [Ig1F] + 255 Z oGlATal B
j=1

Recall that from the singular value decomposition of H, one can compute that

k—1 k—1
Ak, = Udiag (H(l —Qo1),..., H(l - alad)> UT.

=T =T

Thus, for any fixed T" with ar < 1/07, we have for

k—1 k
||A I < H 1—ayp) <exp< HZW) <exp< ,uozl/ tﬁdt) §exp< 1ua15 (kl p T15)>, (B.3)
I=T
which implies that
;| Tl T—1 1
7a? Za,?||A§+1||2E [lg511°] < Z o AT IPE (€17 @H%Hz
=t =t (B.9)
k2P-1 2uo 1 _
<Z AT PE [l - Sy enp (225 0 ) )
o I}
as k — oo. Consider h(z) = x'~#, which is increasing and concave. So h(k — kﬁH) < h(k) — W (k) =

hk) — (1— Bk =" =%, which implies

B

P — (k= k") P > (1- k="

For any fixed T with ar < 1/07 and any j > T, it can be estimated in a way similar to (B.8) that

14541l < eXp< 1“_0% (K77 = (G + 1)1—B)> < exp <1M_0415(T+ 1)1_5) .

Thus, one has that

k— 2
1 aj o . _
w7 Z Bkl X e (- (- G+ ))

= B+1 k
T<j<k—k 2
2
Hay 1-8 1 @
T+1 . —
+exp(1_6( +1) > A E o2
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+exp<1_ﬁ(T+1) );1c > (klli‘*il)m

B+1
k—k 2 <j<k

<k?f exp < 1Mflﬁ S(1- B)klgﬁ>

o 2\ kS k 28
Jre}<p<1/“L_1ﬁ(T+1)1 ﬁ>~ ? <I€—k6§l> — 0,

which combined with (B.7) and (B.9) yields that

2

lim E fa ZAJ+1%§JHQ>T — 0.

k— o0

Then we are ready to prove (B.3). For any €, > 0, according to (B.5), there exists T" such that P(Q>7) > 1 — §. We can
further require that ap < 1/07. Thus,

P

fakZA &l > €| < |f ZAJHanjHQn >e| +P(QYr)
2

H \[Oé ZA]+104353HQ>T + 6 < 246,

for sufficiently large k, which implies that

k—1
1

lim P |||— Ak okl > el =0,

k—o00 \/Eak ]z:; i i
and hence the convergence in probability (B.3). The proof is completed. O
Lemma B.6. Suppose Assumptions 4.1, 4.4 and 4.5 hold, and the minibatch size |I;| = || is fixed for any k > 1.
If there exists a non-increasing sequence {wy}3>, C (0,1] satisfying pf > wy/n, Vi € {1,2,...,n}and k > 1,
S Jwy < 00, limpyoo %;702;’““ =0, and limy_, oo o /w3 = 0, then

Ji] %fﬁw( me)

Proof. At the j-th iteration, we consider sampling the gradients in the following way: We generate |Z| independent
Uniform(0, 1) variables, U, ,, s = 1,...,|Z|. Let P} = Zl 1 p{ be the sum of the sampling weights of the first

components, and form
IZl n 1
ZZH i v, ept | =5V ilE) = V@) |, (B.10)
s=11i=1 s an

/

1 k—1
T ik & and Jar 2=k 16

following counterpart at the optimum z*

then

are equal in distribution for any k. We couple (B.10) with the

IZl n

&= 2> Tn,

s=11i=1

(2%), (B.11)

where each P = Z;Zl p; is the sum of the limit sampling weights p* of the first 2 components.
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Since & j* ,j > 1arei.i.d., by the standard multivariate central limit theorem we have

WD Z G =8 (0.7607)

=[yk]+1

therefore it suffices to show that

/7 f_f = op(1).
]%4‘1

Recall the event €y, Q2> from the proof of Lemma B.4, and using the same argument therein we see that the above is
equivalent to

Z =& )a., = 0,(1) for each fixed T.

v J [vk]+1

By the expressions (B.10) and (B.11) for £ ; and &7, both in the form of finite sum, it suffices to show

1 1 .
Z pi<v,.<pi | —5VSilzi) = V(@) | =1 <v, . <pr =V fi(z") | Iasr = 0p(1),
v 1 - =[vk]+1 Piastie<h np; np;

for each fixed T, ¢ and s. To show this, we write

2

1 1 .
\/7 Z < P} <U; <P} <jvfi<xj) Vf(mi)) *EPLlSU;»,foﬁvfi(x )> lo.,
=[vk]+1 P Pi

1 1 .
Ips <u,.<pr | =5 VSilz) = V(@) | =Lpr <v,.<pr — Vfi(a")
’Yk e\ T P

k—1 2
1 1
+ I J ) j —V i\Tj) — Vf(x; —1I * - * " ; x* Io. |I -7
; ( P! | <Uj,s<P] <7lp§ fi(z;) f( J)) Py <Uj s <P; np? ( )) gz]> Qs ]
< E[ Ti (H ( LV fi(a) - Vi )) I L vy (x*))
= 1 _ A\ PL7 1<UjWS<Pij i i\vg) J TP SU <P ¢
(1 =)k b1 np; np;
k—1 1 L 2
+ Z Ipi <u,.<pi —5 Vfilz;) =V f(@;) | =1Ipr <v,.<pr —V/fi(z") | Lg,
j=r \ T 7 T \" np;
1 1 ?
= E J . j 7VZ$U —Vf(x; _]If" s fi*vix*
( ’Y »kaJﬂ [ P} <U; s<Pj (npz f( J) f( J)) P <Uj s<P; np; f( ) ]

7

2

1 — 1 1
4+ E I.; _ i | —=Vfi(x;) = Vf(z;) | —Ipr <v, ,<pr— )
(1 —"/)k; l| ( P]_ <Uj; s<P; (npz f( J) f( J)> 15U, <0 np ]
where the last equality follows from the martingale increment property of the gradient errors. Since the first sum above

eventually becomes 0 as k — oo for a fixed 7', we focus on the second sum. To show that the second sum approaches 0 as
k — o0, it suffices to show that

2

ar :=E ‘ — 0, ask — oc.

1 1 .
(HPiklgUk,5<Pf (wvfi(xk) - Vf(xk)> - ]IPI-*_lgUk,s<Pi*TLT)*Vfi(ﬂlj )) Io,

(B.12)
We consider two cases:
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(i) p; > 0. In this case, by Minkowski inequality we can bound ay, as

2
1 1
Var < [E [pr <y, <pk (vai(xk) = V() - ot 1€ )) Lo,
1 2
+ |E | (HP.’ZlﬁUk.s<ka 7]IP1*71§Uk«S<P:) * (x*) ]IQ’C
% ’ K an
2
_ E 1 \v4 v * \V4 1 ! Vv I I
= Tf( filwr) = Vfi(a*)) = V flar) + gk npr fil@)|| Lpy , <v . <pplon
1 2
+ |E | (]IPf;lSUk,KP;“—HPL-*fléUk,KP:) vafi(x*) Io,
Lz~ °| AN ICRIAY
Tk — 2~ . Pi —P; iz
< E [(né* + L||lwg — o*|| + o2 ) Ipr <, .<prlos
1 2
+4|E (HPJiléUk,s<Pf —HPi*,lka,s<P:) Tﬁvfi(m*) ]
L ? (®F —pp)?|V fi(z*)]?
_ ex||2 (2 ?
< 5| (3 +2) low- o] + | m| L2 .13
2

(B.14)

b

1
(]Ipf_lgUk,s<Pf - ]IPitlgUk,S<Pi*) nfp*vfi(ff*)

%

+ E’

where the second inequality follows the definition of ) and Assumption 4.1. The first term in (B.13) converges to
0 since E[||lzx — z*||?] < Crax/wr — 0 by Lemma B.5. The second term in (B.13) and the term in (B.14) both
converge to 0 by that p¥ — p? and P¥ — P a.s. for each i and the bounded convergence theorem. Therefore, we
have a;, — 0.

(i) pf = 0. In this case, V f;(z*) = 0 by Assumption 4.5, and we can bound ay, as follows
2

1
ag = E|Wpr <, <pr (vai(xk) - Vf($k)> Io,

[ ( Lljzx — 27| ?
E (W + L|zg — o™ || ]IPZ.ﬁlgUk,S<PZ.k

i

IN

= T + Lz — 2" Pk <Uy <P}

Foronofe]
_® (””k +me—xw) ]

L? >
ZE[ Ika 2| }+2E [lzx — 2*||] by Young’s inequality

IN

Q

2L2 2
w< e ak ak) by Lemma B.5. (B.15)

The assumed condition a; /wi — 0 then immediately implies that (B.15), hence ay, approaches 0 as k — oo.



HeteRSGD: Tackling Heterogeneous Sampling Costs via Optimal Reweighted Stochastic Gradient Descent

This concludes (B.12), and hence completes the proof. O

Lemma B.7. Under the same assumptions as in Lemma B.4, it holds that

k—1
1
\/* E (Hil _ajsjl'ile) gj _>07
J=[vkl+1

in probability.

Proof. Similarly to (B.7), one has for k,T € N with [yk] + 1 > T that

2

k— k-1
1 _ Cen _
Ellz > (H'-aSiu)gln,| | <=2 30 1H T —aSil®
¥ j—ion j=lrk]+1
Then using Lemma B.3, one has that
k ? k—1
L - K CeoCls | - :
Ell= > (H'=aSi)&lo, | | =723 1H T —aiSial =0,
k j=1
as k — oco. The rest of the proof is similar to the last part in the proof of Lemma B.4. O

B.2 Proof of Theorem B.2

We present the proof of Theorem B.2 in this subsection.

Proof of Theorem B.2. This proof also uses some techniques from Polyak and Juditsky (1992) with some new technical
lemmas. It can be computed that

Ok+1 = Tht1 — Yht1
= (zk — axV f(zk) — arér) — (yr — anH (yp — 27) — )
= (zr — ) — aH(zp — yr) — ap(Vf(zg) — H(xp — 27))
= —agH)(zr —yr) — ap(Vf(zr) — H(xp — %))
= (I —apH)o, — ax(Vf(zg) — H(zp — z%)).

Using the same techniques in the calculation of g, — =™, one obtains that

k—1

) 1 .
V(A =7)k by = Wsﬁyk]-&-lé[vk]-&-l \/7 > S (V(xy) — H(z; —2%).  (B.16)
J=[vk]+1

The first part in (B.16) converges to 0 in probability by Lemma B.4 and Lemma B.8. Then we estimate the second part.
By Fatou’s lemma and Lemma B.5, it holds that

oS lcat] S Bl o & o
Pt Vk N — wkf

=1 =

which implies that

almost surely. Since f is twice continuously differentiable in a neighbourhood of z*, it holds that

V() = H(z — 2")|| < Culle — 2™||%,
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for some constant Czy > 0 and all x in some neighbourhood of z*. According to Theorem 4.2, almost surely, the sequence
x; converges to x* and always stays in the neighbourhood after some finite time. Then for sufficiently large £, one can
conclude that

k—1 k—1
1 . _ 1 N
T2 2 StV — Hiay = a)| < Cu(Cs +[H) = 30 g =P =0,
j=lvkl+1 J=lkl+1
where we used the Kronecker’s lemma and Lemma B.3. This proves that the second part in (B.16) almost surely converges
to 0. O

Lemma B.8. Suppose that Assumption 4.1, Assumption 4.4, and Assumption 4.5 hold and that oy, = a1 /kP for 3 €
(1/2,1). Suppose further that there exists a sequence {wy, }32; C (0, 1] satisfying p¥ > wy./n, Vi € {1,2,...,n}, k > 1,
Yoo af Jwy < 00, and limg_yo0 oy /wi = 0. Then

1

ﬁs[kyk]ﬂ(xhk]ﬂ — %) =0,

in probability.

Proof. Similar to Lemma B.4, it suffices to show that w\%_ 22 5 0in probability. Consider any fixed 7' € Ny with
o
ar < min{1/u, p/L?}. Similar to (A.1), it holds for k > T that

E [[|#xs1 — 2*I"Tas, [ Feo1] = E [[lar — 2* — axV f (@r) — 0wl *Tag, | Fr-1]
= o — 2" — arV f (@) |I"Tay,, + RE [[1€ 1P Toy, | Fi-1]
< (1= app)|lze — 2P Iag, + okE [[166]P Loy, | Fr-1] ,

which implies that

E [[#rs1 — %I Ia,, ] < (1= ap)E [[lox — 2L, ] + oRE (1€ oy, ]
(1= apw)E [[|zx — 2**las, ] + Ceaof

(1 — app)(1 = ap pE [[loe—1 — 2 *Tor. ] + Ceoai_1 (1 — app) + Caj
k k

S_Hl—aau llzr = 2*°] + Ceo Y af T (1 —asm),

Jj=T I=j+1

VANRRVANRRVAN

where we used (B.6). Therefore, using similar arguments as in the proof of Lemma B.4, one can establish that

. 1 *
lim E |:04]C\/E”mk+1 - ||2]IQT:I€:| =0,

k—o0

and hence that the convergence in probability x\"f 2= 0. O

C PROOFS FOR PROPOSITIONS 4.6, 4.7, AND 4.9

Proof of Proposition 4.6. According to Proposition 2.2, the optimal solution to the subproblem (2.5) is continuous in its
coefficients. Note also that limy_,, wg = 0. Therefore, it suffices to show that the followings hold almost surely:

* limk_mc 5k — (01,. .. 7Cn).
o limyo0 G = ||V fi(z*)|, Vi€ {1,2,...,n}.

b limk_,oo é’k = 0.

(i) Since p¥ > wy, and 220:1 wy, = 00, every index ¢ will be sampled for infinitely many times almost surely, which leads
to limg o0 ¢ — (c1,...,cn) by (C.2).
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(ii) Tt follows from Theorem 4.2 that 2, — z* almost surely. Then for any ¢ € {1,2,...,n}, one has limy_, gf =
IV fi(x*)]| a.s. since 4 will be sampled for infinitely many times.

(iii) One has that

_ 1 k—1 1 k—1 1 k—1
Gk:ikflj;gj:ﬁ;@—i—m;vﬂ%)- C.DH

Set Yy, = |+ Z?Zl &;||*. Then one can compute that

k
1 k 1 1 k2
EYisr)lFul =E | | ——=&+1+ —— - 7 >_&| | Fe| = 5Bl |1 Fk] + -—=Y)
(Yit1|F%] Hk+1§k+1+ ] k;ﬁg k hr1)? ([1€k+1lI*[Fx] + G
which implies that
1
E[Yit1 — Yi|Fil+ < WE[H&HHQ\}H,
and hence that
Z]E[IE[YkH Yil| Frls Z Elllée1 %] <
- prfl

where we use Y o | a?E[||&; %] from Lemma 4.3 and infy>1 kay > 0. Therefore, by martingale convergence theorem
(Blum, 1954, Corollary in Section 3), Y}, converges almost surely to some random variable Y. On the other hand, it follows
from "7, 7 E[[|€x]/?] < oo and the Kronecker’s lemma that

1 k
= 72 [11&11°)

which guarantees that {Y}; }7° | has a subsequence that converges to 0 almost surely. Therefore, Y3, = || + 2521 &2 =0
a.s., which implies that the first part in (C.1) converges to 0 almost surely. In addition, since x;, — x* a.s., we immediately
have that 1+ Zf;ll V f(x;) — 0 a.s.. Thus, it holds that limy_,~, G) = 0 almost surely. O

Proof for Proposition 4.7. Define n; s = 1 if the s-th sampled gradient throughout the algorithm is from f;, and 0 other-
wise. Note that the index s does not necessarily correspond to the iteration index as multiple samples can be drawn in each
iteration (i.e., Z 1 |I | be the total number of gradient samples, and s¥ = >~ n;
be the total number of samples from fl at the beglnnlng of the k-th iteration. Let ¢; ; be the random cost of the j-th sample
collected from f; throughout the algorithm. Then we can express

cost;c
LI 2 gzl

To proceed, note that by Assumption 2.1 and the strong law of large numbers we have for each &

k
S;

1

- g ij = Ci, ifsi-C — oo as k — oo. (C.2)
i o
Now suppose we can show that
k
S‘ .
—+ — pf, as.foreachi=1,... ,n. (C.3)
Sk

k
Then if p; > 0, we have sk — 00, and hence i Z? 1 Gi,j — pic; by (C.2). Otherwise, if p; = 0, then no matter whether

sk

i — 00 or not, k Z j=1 Ci,j converges to some finite number a.s., and hence - ZJ 16i.; — 0 = pic;. Therefore

k
i Z j=1 Ci,j = p;c; in either case, and the desired conclusion immediately follows.
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It remains to prove (C.3). We prove its stronger version

s
ZS:l 777;’5
S

where S denotes the total number of sampled gradients so far. (C.3) is a subsequence of (C.4) with the index S restricted to
Zf;ll |Z;|, k > 1. We slightly abuse the notation to denote by p° the sampling weights according to which the s-th sample
is drawn, and by F, s > 0 the filtration generated by n; j,i = 1,...,n,j = 1,...,s, then P(1; s = 1|Fs_1) = p{ and
p; — pras.ass —ooforall¢=1,...,n. We now show (C.4) by martingale convergence. Set Yg := (2521(771‘,3 —
p3))?/S2,8 > 1 with Yy = 0, then

—p;, as.asS —ooforeachi=1,...,n, (C4)

s
E[Ys] Z (n:.s —p5)?] by martingale increment property

< -0,

| = CO‘»—!

therefore Ys = 0,(1). On the other hand, we have

2
E[Ysi1|Fs] = (Zss_(g(zz_sl)_zpf)) n E [(n,, SJE;_’_U 1)2 | Fs]
2 S+1 S+1
B (Silﬁyﬁpl (éi 1 2
and hence N N
ZE Yo - Vil Fl4 Z pi) 22812@0.

Therefore, by martingale convergence theorem (Blum, 1954, Corollary in Section 3), there exists some finite random
variable Y., such that Ys — Y a.s.. Since Yg = op( ), there must exist a subsequence converging to 0 a.s., which entails

that Yoo = 0,1i.e., Y5 — 0 as.. NowwehaveZ 1 Mi,s/S = \/Ys+2 1 Di/S, andz _,p;/S — p; as., and hence
conclude (C.4). This completes the proof. O

Proof of Proposition 4.9. When n > 3, for any € > 0 we argue that there exist f;,7 = 1,...,n such that

IV fu@®)l = [V fa(e)| = Land [Vi@*)| = ¢, foralli=3,....n, and Vf(a") = 0.

Specifically, if n is even, we let V for(2*) = =V for_1(z*) for k = 1,...,n/2. If n is odd, we let V for(z*)
—V fog—1(x*) for k = 2,...,(n — 1)/2, and let V f1(x*) lie on the unit sphere near —V fo(z*) so that ||V f,, (z*)]]
IV f1(z*) + V fa(z*)|| = e. Correspondingly, we consider the cost

¢; =€, fori=1,...,n—1, ande, = 1.

Then we can calculate for small € and fixed n that

b —(Z |Vsie I\F> (Be+ (n—3))?  9¢

n? Y2
n n * 2 _ 2 _ 2
Srhen) = (Z )(Z va )l >:<<n 1)e +17>I<2<n 2)e +2>N%,
i=1 1=
v e Vfi(z €+ 2¢2 —3)ed —2)e+2 2¢
p(pgRG>(Z” iz ”C><Z” f )( +20+ (-9 (n=Derd) 2
=1
Therefore . .
p(pHete) —}07 p(pHete) _)0, as e — 0.
p(Pscp) P(PSRG)

This completes the proof. O
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D PROOF FOR THEOREM 4.12

This section presents the proof for Theorem 4.12. We first introduce a series of lemmas (Lemma D.1-D.4) that characterize
the approximation errors of the quantities in our sampling efficiency metric. We then propagate these errors to control the
approximation errors of the sampling weights (Proposition D.6) via a sensitivity result (Lemma D.5), and obtain the key
intermediate result Theorem D.7 on the finite-time bounds of the solution error. The main proof is presented based on
Theorem D.7 at the end of this section.

Lemma D.1 (An explicit version of Lemma B.5). Suppose that Assumption 4.1 holds and that o, = o /kP with
a1 < min{1/p, u/L?*} and B € (1/2,1). Suppose in addition that p¥ > wy/n with ax/wy | 0, o2 /wy | 0, and
e aiJwy < oo. Then E||zy, — 2*||?] < Cpay/wy, holds for all k € N with

5
c, Cgmax{ 2 kowk“}, (D.1)

Z|p” Cran

where Cy = max {2 Y " |Vfi(z*)|?2L%}, Ce = Crlli, (1+ gﬁi) - (L+E [[|lz1 — 2*|?]), and ko =

J21e 51

s
R 28 ) lﬁ—‘. In particular, if w, = w1 /k", we can let

M(H;) 2
Ce = Cpemm T m=mt) (14 E [Jlay — 2" |7])

Proof. According to the proof of Lemma 4.3, we have E [||z;, — 2*[|?] < C¢/Cy and E[||€:]|?] < C¢/(|Z|wg). For any
k > kg, it holds that

(k+1)% — k8 < 1B~ pa? pad

R =
Then by setting (D.1), we could have C¢ /(C,|Z|) < /2 and E [||zy — 2*[|?] < Cypa/wk, ¥ k < ko. Then by the proof
of Lemma B.5, E[||lz), — 2*||?] < Cray/wy, holds forall k € N, O
Lemma D.2. Under the same assumptions as in Lemma D.1, suppose further that |Ii,| = |Z| < n and wy, = wy/k" for

YV k > 1. It holds for all k that

ZL% IV £ ()]

«
< CinL, /Cx—é
wy P

where Cy,Co are universal constants, and C,, is the constant from Lemma D.]1.

ZII — Vi(z )1 -k (D.2)

Proof. In this proof, we slightly abuse the notation §¥ for convenience to represent the gradient used to update the gradient
norm estimate rather than the norm estimate itself. We then have

E[|g; " = V fi(a*) 1 Fi-1] P(i € To) |V fi(zx) = Vi(a")ll + P(i ¢ To) |37 — V fi(2")]

< (TP Vi) = Vi) + (1= ph)P|gE = Vi)

S kD=2 4 (0= p7E = A by Assumpion 1
< izl Lla o+ (1 )7 gk - V@) since pf > wy/m,
* |I|’lUk; ~k *

< ZlptLlan =t + (1= 520 ) 185 = VAG)I,

where the last inequality follows from the fact that (1 —z)¢ < 1 — %” holds for any ¢ € N and any « € [0, 1/¢]. Therefore

f“] TS Lo x||+(1—'1"”’“)2||* V)|
=1

. Zlwy, . .
= it —# 1+ (1- B 3 gt - Vsl
i=1

IN

Z g7+ =V fila™)|
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Taking full expectation on both sides of the above equation gives

> la - Vfi@c*)n]

|Z|wy, Qg
< (1-5 Zn V)| + 17 0 2
Wy
|Z]wy, |I|wk 1 ko1 |Z]wy, v
< 1—-— 1-— - Vfi( 1-— —
< (-2 Zn fal| + (1
< E Z” Vf )” f[ ( |I|wj> i I|L / aJ (1 |st)
>~ 7 ‘ m
1 =1 Jj=1 s=j+1
1 k k k
_ |Z|ws 1 |Z|wy
_E ZII V)] H( ) + 2Ty e j%,g (-5
1j=1 j=1 s=j+1
| \II k le% k _ 1zl k _,
< E ZH = Viat)|| e E T T (O ST e e B
] ] 2 2
[Z]wy _|Z|wy
< E Z” sz )” 674"(1*") _|_|I|L [Cy ﬂ Bn I’ >k 18" (D.3)
575
|Z|w ¢ -
To bound the sum 2?21 e P57 we write
j§_7
b _ 1zl k 1 1Z| k 1 |Z| k
Z B _n Tt TaisT < 5 1€ R s Z 5 o€ e Da=j1 S
im1J272 1<j<kJ? 7 s<j<kd? 7
_1Zwy 5~ —n 1 2 |Z|wy 5.~
PR R A PO
< 6_4’!‘),1(|1u7]1’!])(1_27]71)k17’” 1 k‘l_7 \I\wlk M (k—j)
- B
l-5+3 PR
_‘I‘chklfn 1 1—841 2 1
= 17ﬁ+ﬂk 2+k§7ﬂ1 [Zlwi .y
2 2 —€¢ 2n
_ 1zl ¢ iy 1 1-84n 2 2n
< n kT2 4+ 13
121 ki1 (- Dz
sincel —e * > (1—e ")z forz €[0,1]
1 _IZlwiCpi-n {_B . n n 1
= g kK'mater 4 (D.4)
_§+g (1—671)|I|U)1 kg Tn
where C := %(1 - %) is a universal constant. Substituting (D.4) back into (D.3) gives

«Q
legz Vii(x )ll]<0mL,/cxw§-
1

1
k2%
1
+ { 1Z1Ly [t ———k
w11—§+§

where C', C5 are universal constants. Note that

”’7

8
kl 7t3 n

- e

_ZIw1C2 g1

1
— — kl_ne_
k=2

[Z|wiC2 p1—n
- k

S

-supzre

ZH Vi >|D -

ne1

) |I|w102’

1

[Z|wy Co
n

ok

B __3n
2 2

x>0
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and that 1 — & + 2 > 1 hence we can further bound E[ 37" ||gF — V fi(z*)][] as

(6731 1
<CinL,[Ch— - ——— +E
< Gin w% kg*%+

where (' is properly enlarged if needed but still universal. The desired conclusion then follows immediately from an
application of the triangular inequality to |||g¥| — ||V f;(z*)]|| for each i. O

E

> Nk = Vi)
i=1

n

~ * _|Zlw1Co 11—
> g = Viile )||] em T K
i=1

Lemma D.3. Under the same assumptions as in Lemma D.1, suppose further that |Zi,| = |Z| < n and wy, = wy /K" for
V k > 1. It holds that

~ C LQC (6751 1
ElIGC. I <o 28 4 2 2= .
G < (5 + o) o
. . 0o a2cC * .
where C' is a universal constant, and Ce = [, (lJr#wfk) (E [[lzy — 2*|?] +1) with Cp =
max {2 31, [V fi(a*)|?, 2L2}.
Proof. On one hand we have
2 2
k—1 k—1
E ZVf(zj) < E ZHVf(xj)H by triangular inequality
Jj=1 j=1
k—1
< E[||Vf(x;)||?] by Minkowski inequality
j=1
k—1
< L E[||z; — *||?] by Assumption 4.1
j=1
k-1 5
< LZMCw—k by Lemma D.1
" Wi
Jj=1
k—1 = i
1
< LZ\/mej'W
Jj=1
1
< L,

e 1=B/24n/2

On the other hand, recall that £, = g, — V f(x1), and we can write

2

k—1
E|>. ¢
j=1

I
=

Fr—2

[ k—1 2
E > &
j=1

2

k—2
= E ij + E
=1

E [|£k—1||2

fk_Q] ] by conditional unbiasedness

IN
=

k-2 c
Z &l |+ m by the proof of Lemma 4.3
j=1 a

ngl — ._p ngl 1—
— < ————k "
1] 2 IZI(L —n)

IN

j=1
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From the above two bounds it follows that

2

k—1 k—1
- 1
E[IGR] < = (B[] +|[> v
j=1 j=1
2 2
1 k—1 k—1
< BRG] |+ B> V@)
j=1 j=1
1 ngl 1-n \/7041 1 1—8/2+4n/2
< k= +L,/Ch— ———— &k n/
- —1< ZI(1 =) wy 1-p/2+n/2
< 05“’1 @ j1—B/2+1/2
S ra\Wma—a Tty le 1—ﬁ/2+n/2

smcel—ﬁ/2+n/2>7>0

5 Cﬁwl A j—B/2+n/2,
IZ|(1 -7 lwl 1—ﬁ/2+77/2

Squaring both sides of the above bound and applying Young’s inequality give

- 2C w1 2L2C a1 _
E[[|Gy]?] < 4 ( s - ko,
e =N ma =g * w6 - wr
Noticing that 1/(1 —n) < 2,1/(1 — 3/2+n/2)? < 4, and w; < 1 completes the proof. O

Lemma D.4. Suppose that assumptions made in Lemma D.1 and Assumption 2.1 and 4.11 hold and suppose further that
|Z| = |Z| < nand wy, = w1 /k" forV k > 1. It holds that

n

> jek —cil

i=1

3/2 i Var(¢é; 1 - |Zlwy 1-n
n max; Var(¢;) LI nZ(]E[lézl_CiH)2e_C2i Lt 7

\I|w1 kz2—"m i1

E

<C

where C1, Cy are universal constants.

Proof. We define I; ; = 1if Vf; is the j-th sampled gradient and otherwise I; ; = 0. For each 7, let ¢; j,7 > 1 bea
sequence of i.i.d. random cost for the i-th function. Denote by

IZ|(k—-1)
Y, = Z I (D.5)
j=1
the cumulative number of samples from the i-th function at the beginning of the k-th iteration, and
IZ1(k—1)
Xk = Z ((A}Lj - Ci)H(Ii,j = 1) (D6)
j=1

Then we can represent

X,
E?—ci—7 I(Yy > 0) + (& —¢;) - 1(Yy = 0),
k

hence by triangular inequality and the independence between ¢} and Y}, we have

E[|éf —¢|] <E H)Y(': (Y > O)H + E[|é} — ¢i]] - P(Yz = 0). (D.7)
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The second term above can be handled by

[1Z1(k—1)
P(Y,=0) = E| [] 1(;=0)
- ]:1
|Z|(k—1)
= E|E H Lij = 0)|Frs
[ 7 TIk=2)
= E[1-2")" [ 1s=0)
L ‘7:1
w17l [T _
< -k - i k=15 761
< (1 " ) E jl;[l I(L;; =0) since p; > .
< 1:[( ) SIS < o TR (D.8)

where C'is a universal constant. To handle the first term in (D.7), we use Cauchy-Schwarz inequality to write

Xk 1
E||=2-1(Y, > 0)|| <4/E[X?]E -I(Y, >0
[ 10> 0 M X718 | 75 105> 0,
and analyze the two expectations on the right-hand side in the next two paragraphs.

Bound for E[X?]: By the independence between ¢; ; and I; ; we have that

\Z|(k—1) 2 ]
E[X?] = E|E (eij—c)l(Li;=1)| |Fr-a
j=1
[ 1210k -2) o WA=, 2
= E Z (éi,j — CZ')]I(IZ'J' = 1) + E[E Z (éi,j - Ci)]I(Iiyj = ].) ./_"k,Q
j=1 J=IZ|(k=2)+1
by martingale property
IZI(k—2) 2
= E|[ Y @y-el(i;=1) | | + Var()|Z[EpEY
j=1
k—1 )
< Var(&)|Z] Y Elp]). (D.9)

Bound for E[%H(Yk #0)]: LetlI/., 1<i<k—11<j<]|Z|beindependent random variables with distributions
k

2,7
P(I}; = 1) = wi/nand P(I; = 0) = 1 — w;/n. Define Z, = Y- 2 1! .. It follows from pl > wy/n that
P(Yy >y) > P(Zr > y), Yy € N. It holds that

BV > ElZi] = 3 3 Ell,) = 13w
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and that
k-1 1Z] !
E[|Zy —E[Z)|'] =E | DD (i, —E[I; ;)
i=1 j=1
k—1 |Z|
=Y D E[L, -EU '] +3 Y E[;-EL,P]-E[L,
=1 j=1 (4,5)#(,37)
k—1 |Z| k—1 |Z| 2
<D R - RN +3 | D0 B, — B
i=1 j=1 i=1 j=1
k—1 |Z| N ) 4
ZZZ(W (1= 9)" 4 (1= 20y () )
e £ n n n n
i=1 j=1
k-1 2l w; w; \ 2 w; w; \ 2 :
3 ZZ(n (=3 +0-3)-(5) )
=1 j=1
k-1 1 w; w; mi gl w w; i
< Wi (- J) Wi ( _ J)
- Z n ( n +3 ZZ n L n
i=1 j=1 i=1 j=1
k—1 k—1 2
|Z] |Z]
< — i +3 | — i
= ;w + - i:le
Thus, using Markov’s inequality we can estimate that
| k-1 7] k—1 | k-1
PlY; i | <Pl Zp < — i | <SP |Zy — E|Z,]| > i
E [|Z, — E[Z])* 16 48
[||zk k 1[ k]|4] = 17| k-1 5T 17 k=1, \?
<2n 2ic w1> (7 >ic1 wi) ( =D wz)

and that

1 7] = 1 7|
k Lt (% Sl 2) [t
16 52
= 17| —k-1_ \3 + 17| —k—1 2
(T Zi:l wi) (7 21:1 wi)

—E[L}, ;]P]

Since it must hold that E [Y%?]I(Yk # 0)} < 1, we can assume ‘I | ZZ 1 w; > 1in the above upper bound without loss of

generality, giving rise to

68

Cn? 1

B | a0 £0)] <

(F e

< )
1 ~|Z)2w? k22

2

where C'is a universal constant. Combining (D.9) and (D.10) gives

X, n?
EHYk-H(Yk>O)H < | Var(é) |I\Z]E[pf |I|2 A=

We now derive bounds for the aggregated error E[Y "7, [¢F —

(15er-a) <

1

2n "

¢i|]. We first note that by Jensen’s inequality

n

1

Tl

2
|c —cl|

(D.10)

(D.11)
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therefore we can write

(gE[Iéf—Ci]f nzn:(lE e - eil])’

i=1

IN

1 2|Z]wy 41—
2nz Var(é; |I|ZE I Can® T (BE — ¢))2e 22kt

< |I\2 Zrw?  k2-2n
by (D.7) and the bounds (D.8) and (D.11), where C, Cy are universal constants
A Can 1 - ~1 2 _Mklfn
< 2n (miaxVar(ci)k: T + Z(]EHQ —¢l])’e n

C1n? max; Var(¢é;) 1 2Cy|TIwy 1-n
< an (eI Sl el ).

=1

Taking the square root of the above bound then gives

n 3/2

SE[&—all <o [ B

i=1

max; Var(¢é;) 1 - _ _CalZlwy 1y
. +.,|n E[|c} — ¢;]])2e no K
T | R e

This completes the proof.

In the next lemma we consider the error bound of p; in terms of the errors in ¢;, b;, and by, i.e., perturbation analysis of

Proposition 2.2.

Lemma D.5. Let p} and k* be defined in Proposition 2.2 with c¢;, b;, and by. Let p} + Ap} be the new probability weights
when c¢;, b;, and by are perturbed to ¢; + Ac; > 0, b; + Ab; > 0, and by + Abg > 0. Suppose that min(c; + Ac;, ¢;) > ¢

for each i and some constant ¢ > 0, and by + Aby > %0, then

Ap“ S OmaX( Cmax) 1) ' cma):z : Abz + bi AC;‘ +n Ab )
; | \/7 \Ecmin Zi:l \/E ; \/ﬁ ; \/ ‘ ‘ \/| 0|

where cpax = MaXi<j<n Cj, Cmin = Mili<j<n ¢;, and C is a universal constant.

Proof. Let us denote q; = \/ — (Ci(figc?)ﬁ)(é:i K It can be computed that
“| = b; + Ab;)/n? 3 b;/n?
pl Cl + ACZ (bo —+ Abo) I{*Ci =+ bo
(bi + Abl)/TLQ bl/n2

KZ*(Ci + Acl) + (bo + Abo) H*Ci + bo

¢N’ A% (e, + bo) + 2 (k| Ay + | Abo])
( (Cz + Acz) (bO + Abo))("f ci + bO)

o | S et bo) + sl Aci] + [ Abo))
- e £ (k*¢; +b0)

\/ 2Cmax/c\/ |Ab ‘ b; H*|AC¢| n bz|Ab0‘

K*c; + bo (k*ci +bo)?  (k*c; + bp)?

S,/2cmax/g \/ |Ab,| +\/(bm*|Aci| +\/( bi| Abo|

n H*Ci —+ bo KZ*CZ’ —+ b0)2 KJ*Ci —+ b0)2
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n K*Cmin + bO cmin(ﬁ*cmin + bO) (K*cmin + b0)2

Vo] \/ Abl ¢ blAc] \/ bi| Al

It follows from

1_2 b/'n, zn: bi/n2 > 1 \/EZL\/E
K*ci +bo E*l¢lloo + b0 — vVE*Cmin + bo n/|[cllse

that

1 /Il
V ’i*cmin + bO o kY4 Cmin Z?:l \/E
Therefore, it holds that

« \/2cmax/g ‘Abz| bZ|ACZ| bl‘Ab0|
= Y Bk

4 —Pi| >
| ’ ! n R*Cmin + bO ’i*cmin + bO) H*Cmin + b0)2

o (Tl Bl el
=\ e (mz VTR AP S OV S A RPN S Y 5 e W)

which implies that

n n
1= | < g —
i=1 =1

2CInax ||C||Oo n \/W TL”C”OO
< n Ab;| + bi|Aci| + d AR
\/T <mzi_l \/E 1222 \/ﬁ Cmin E f Z \/|7 Cmin ZiZI \/Em

. . 2 . . . .
Note that p} + Ap} = \/ G AH*(;’('; Jffglc),/)z(bo Ab) where k = k* + Ak™ is the unique solution to the equation

Z (b + Dby
Cz + ACZ) (b() =+ Abo) o

We can thus know that pf + Ap? > ¢; forall i € {1,2,...,n}if Ax* < 0and that pf + Ap} < g; foralli € {1,2,...,n}
if Ax* > 0. In both cases, we have that

1- Z‘Ii
i=1

Combining all estimations above, we can conclude that
n n n
S IApI <> oy + Ap; —ail +lai —pi) < 1= @il + > lai — p}]
i=1 i=1 i1 i—

Cmax V ||C||oo " K V H || n”c”OO
=27 (.ﬁcminzy_lmEM+ P 1ﬁzvb'A " minzf_lmv'“‘)o

< C max (\/ 2Cmaxa 1) ' \/EC 'CTE); ] \/ZT ! (Z V |Abl| + Z \/bz|Acz| + n\/|Ab0> )
CCmin 2 _;— i i—1 i—1

which is the desired result. O

n
= Ip + Ap} — gl

=1

> (0; + Ap; — @)

i=1

n

Proposition D.6. Suppose that the assumptions made in Lemma D.1 and Assumption 2.1 and 4.11 hold and suppose
Surther that |Ii| = |Z| < n and wy, = w1 /k" with wy < 1 for V' k > 1. Denote by ¢ipax = max; ¢j, Cpin = Min; ¢;
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respectively the maximum and minimum sampling costs per gradient evaluation, and by G = (1/n) - 31" ||V fi(z*)|| the
averaged gradient norm at the optimum. Then we have the following error bound for the estimated sampling weights

* ] < Cma [(L oy
B[~ pireeli) < Crmax (Ve 1) 22 [(Z/Cog +1) - gy
1 <OJ% maxiVar(éi))i . (n/|Z))%

C2l|Z]wy p1-n

:|+C3(fi7§i1767,17c’£77;:17"'7”)'6_ n )

G w? e
where C1, Cy are universal constants, and Cs depends on fi, g}, ¢}, c;,i = 1,...,n only but does not explicitly depend on
n.

Proof. Substituting the true values b; = ||V f;(z*) = 0, and the estimates b; + Ab; = (gF)2, by + Aby =

min (||Gk|| PO )2, c¢i + Ac; = ¢ into Lemma D.5 gives

n

Cmax

/CCmin Z? IV fi(z*) |l
(Z @ = IV £ |+Z||sz E _cl+n||Gk||>

We bound the expectation of each term on the right-hand side.

Hf)k - p;{etenl Scmax(v Cmax» 1) !
(D.12)

Bound for & [ 1, /[(GF)? — [V /:(& )P ]: ~ Since |#2—9?['/2 < ((w—y)*+2la—ylly) /2 < |o—yl+/2z = gy,
we can write

Z\/\(éf)z—llvfi(w*)HQ\ < Zlgz IVfi(x IH+\/52\/|§5_IIsz-(x*)HI‘IIVfi(x*)H
1=1 i=1

IN

Zm—llm I+ v2 Zlgl—nwz |||Z||sz .,

where in the second inequality we use Cauchy-Schwarz inequality. Using Jensen’s inequality to swap the expectation and
square root operations we have

E|Y i@k - ||Vfi<x*>||2]

< B |gF = IVLE@)| + 2Z||Vfl E Zm;“—llwi(x*ﬂ]
=1 =1
T 1
1 1

< 1|n w% n ZH filz ( w%) k%_%

- _|Z|wi1Cg 1
anl VA + |22 IV @) zngz Vi >||] s

=1

<

&) n . 1
o (nL\/a—kZVfi(x )||> S
wy i=1 k171
3 _ CalTlwy 1y
2<E > gl = Vi) +ZHW; >.e LR
=1

where the second inequality follows from Lemma D.2 and the universal constants C', Cy are properly adjusted if needed.
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Bound for E Z IV @)/l — ci} Similar to the above bound, we use Cauchy-Schwarz inequality and
Jensen’s inequahty to write

E Z”vfz C C7|‘|
ZHVf * ||QZ\C —ail| < 4| D IVSia)|PE [ZW—CH]
i=1 i=1 i=1

IA
=

1

” n3/* max;(Var(¢é;))/4 1 " tCulTiuy i
s\ [12 i i . =1L 1)2 -1k
;:1 IV fi(z*)|| \Z|V/4 fay i3 + nE :(EHQ cil]) € )

where the last inequality follows from Lemma D.4 and C'3, Cy are universal constants.

IA

Bound for E {Hék ||} : It follows directly from Lemma D.3 and Jensen’s inequality that

|Ce
[”Gk” <C5< |Z| +1L ) k5%

Substituting all these bounds into (D.12) gives

Z\/l (G7)2 = IV fi(z*)||? |+ZHsz e —cil +n||@k||]
1
Ch (m,/c +Z||Vft ) —
. n3/4 max; (Var(¢;)) 1/4 1
\Y% i x* 2 + nL .
> oIV AP Rl e

C3|T|wy 31—
~1 ~1 . — =321 1
+nC4(fi7gi7Ci7Ci7Z:17""”).6 " ]

where Cj is a universal constant.

1
Z 1”sz .%'*
c -1
- X Vi)l

+Cs

e
[N

where the l/kﬁ/2 /2 term is absorbed since é — Q >

1.1
2 12
)

1
L a; 1 1 C’?nmaxiVar(éi o Ce 1
< C = Cmi 1 S T o C == == p— M
8 1(0\/ 1) e G< Zl? o\ e

C3lZlwy p1-n

1 1 - . _ CslTlwy
+EC4(fiagilac;'Lacivz:]-7"'7’”‘)'6 " 9

where Cy, Cy, Cs are universal constants, and Cy depends f;, g}, ¢}, ¢;,i = 1,...,n only but does not explicitly depend
on n. Since C¢ < Cy|Z|p/2, ay < p/L* and wy < 1, the coefficient %,/ 5] is no larger than £ el (O hence can be

absorbed into the first term. % can be absorbed into Cy. This completes the proof. O

Theorem D.7 (Finite-time bounds for Polyak-Ruppert and a-suffix averaging). Suppose Assumptions 2.1, 4.1, 4.4, 4.10
and 4.11 hold. Suppose that in Algorithm 2 oo, = aq/kP, where B € (1/2,1) and 0 < oy < min (1/p, p/L?),
wy, = wi /K" withwy € (0,1] and 0 < n < min (8/7,1 — 5,8 — 1/2), and that || = |Z| is fixed for all k. Then for
every «y € [0,1) and every non-singular matrix A € R4, we have the decomposition

A(@py — %) = Ligy + Ekyys
where Ly, is the leading error term that satisfies

E[Lk~] =0,
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1

E[llLeA )% = WTT(AHAG(PB&@)HAAT),

and the high-order error &y, - satisfies

E[HSIC,’YH] S Cl(A777a1aw1aBan7xlafiaéiagz’lvégvi:17"'7”)'

1+
1 1 n 1 1 n\71
. + . - - — .
(kmin(fl”m,éggﬁén) 1| <|I|> k%*% VIZ| <|I|> k>

The cumulative sampling cost satisfies

|E[C0Stk}_C(p?{ete)‘IKk_l” < 02(a17w17ﬂv777$1af’héiagilaézl7i:13-~'an)'|l-|k

1 L (n i L (n =
e \7) w2 \7) %)

Here the constants C1,Cy depend on the quantities specified respectively and do not explicitly depend on n.

Proof. We have g, = —( T — Try1) and
w1 E =i B e i S g ([ 00 o) (=)
= |I| 1§I:k sz +V2f( )(-Tk <|I| zgz: V2fz sz($*)> (xk —LL'*)

4| Z (/ (V2£i((1 = )™ + Oy, —Vin(x*))dQ) (2 — ).

1€Ly

Therefore summing up the above equality over k and rearranging terms give

(1- )sz( *)(-i'k,w_x*) (D.13)

-y Z

j= [’yk]+1 ZEI

k
+ Z Tj = Tj1) = '_Z (%Zivzﬁ( - v2f(x*))(xjfx*)

J= ["fk]+1 J j=[vkl+ i€, np;

S S ([ (e o o) - V) G2y )

j= ['yk]—H zeI np]

Next we bound each term on the right-hand side of the above representation.

Bound for Z (k41 ] I‘ Y ieT. LV fi(x*): Foran arbitrary given d x d matrix M, we can use the martingale property

an
to write
2 & 27
E Z Z—MV}Q N = X E |Z Msz ")
j= ['yk]—H zeI np; J=lrk]+1 i€T;

1 k n 1 i 2_
- @ Z Y5 ()] - (D.14)

~k]+ i=1 "VP; J

To further bound (D.14), we consider the perturbed optimal sampling weights p** := (1 — wy )%y, +wi(1/n, ..., 1/n)
and note that p* = (1 — wy)p" +wy - (1/n,...,1/n). Denote by Tt = {i : pj ., > 0} and 6* = min{pj;.,, ;/2: 0 €
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T% }. We then have

n

1 "1
Z o SIMY fi ()12 *Zn%*kIIMVﬁ( Bl

i=1 i=1

E

1 *
= |E ZWHMVﬁ(m)HQ - Qp*kHMsz( )2

1€LY i iez:
o man MVAGPy | 5~ ot =5
- 2 ek
" zEI* pfp;k
ma | M9 fi(a)]? W el
< ‘ né*w,: E Z P} —p; since pi > —= andp;" > §
=a
max; |[MV fi(z*)]|? N
= (1 —wg)E ok
a né*wy ( k) 1; |p1 pHete,z‘
+
max, [MV £
< LR [ — pireelh]

no*wy,

On the other hand, since both p:’k > 0% and pj;,,. ; > 0 for all i € Z7, by a similar argument as above we have

~ 1 ~ 1 . max; || MV fi(z*)||? .
ZTLQp*kHMVf'L( )HZ_anp* HMVfl(m ) 2 = (77,5*)2 ||p _pHeteHl
i=1 i=1 Hete,i

ma; [MY ()
= CRE

Combining the two error bounds we obtain the overall error

E Y 55 IMVfia))? Z IMY fi(z)|?
i—=1 n p — Hete i
max; | MV fi(z*)]? . 2wy,
< .
- no* W [||p —P ”1] + no*
Using this bound we can bound (D.14) as
2
7] -E Z Z Msz D) (1—v kZ 1MV fi(z)]?
j= ["/k]"rl zEI Hetez
k k
max; | MV f;(z*)| 1 DR 2 k)1 W
< —E — _— . D.1
—= no* ‘ Z wj [Hpj pHeteHl} + no* ( 5)
J=lvk]+1

Note that (D.14) also have the lower bound

n

2
= 1 . 1 .
()12 > 2@2; nQ—pillMVfi(x )|? > (nZIMVfi(x )II) :

n

>

=1

i=1
Therefore we also have the following lower bound

2

2
E Z HZ Luvie)| | = m <Z||sz ) (D.16)

j=[vk]+1 1€Z;
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k .
Bound for >-7_ ., 2 (25 —x;j41):  We can rearrange terms to write
- J

k

k
1 1 . 1 .
;(xj—xjﬂ) = E ;(Z‘]’—x ) — E (z; — %)
i J - J _ Jj—1
J=[vk]+1 J=lvk]+1 J=lvk]+2
k
1 1 1
= — - x;— ")+ x - Tht1 — T
(o~ o) o e =) = w0

therefore we can use Lemma D.1 to bound the first moment as

k
1
E > o (@5 = @j41)
=lrkl+1
< i (= — —LVE[lz; — " |] + Elllzpyir — ] + —Efzxsr — 2]
PR ITE A Akl+1 A
k
1 . _ . Akl 41 «
< —| X UG- Ol 4 (k417 o I e o, 2
U\ jih 42 j [vk]+1 k+1
< CC, Eat3
- QW

where C is a universal constant.

Bound for Zj (k] 1 (\%I iet, n; V2fl(x*)—V2f(x*))(:z:j—x*): Similar to the analysis of E[||¢;]|?], we can write

.
k
E Z ( Ziv2f1 f( ))(CEJ—:L‘*)
J=lvkl+1 zEI np
=
k
= ) E —| 3 —v% V2 f(a")) (@ o)
Jj=[vk]+1 i€Z;
k
< Z [ 3 Z —||V2f, — )2 = V2 f (") (z; — )|
=[vk]+
k n 1 -
< Z [ Z o x*)||2] since ||V2f1($*)|| < Land p] > e/l
=[vk]+ - Wi n
k
L *
= 7 2 Bl -l
J=[vk]+1 Wi
< % Z §7P*2" by Lemma D.1
| |w1 =[vk]+1
L2Cf0‘1 L j1-peam

Z[w? 1—-B+21

Bound for Z?:hk]ﬂ ﬁ Zielj n%nf (fol (V2fi(1 = 0)z* + 0z;) — szi(z*))zw) (x; —2*): By smoothness of the

second-order derivatives we have ||[V2 f;((1 — 0)z* + x;) — V2 f;(z*)|| < L2f||x; — x*||, hence we can write

E ZHZ

j=[vk]+1 1€ZL; npl

(/ (V2£:((1 - ):c*-l-ea?j)—Vin(x*))dH) (z; — x*)
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E Z Z Lz e — 27

j= [’yk]+1 zeI

k
= LE| Y |o-a?
’:[kal
LyC,
< 2=efl a Z §7Pt by LemmaD.1
j=lrk]+1
S LgC’wal ) 1 k.l—ﬁ‘i"].

w1 1-8+n

Then we combine all the above bounds to characterize (D.13). We consider multiplying both sides of (D.13) by AH !
(recall that H = V2 f(z*)) for some matrix A € R?*<, and get

1
A(Zpy —a*) = Z Z —AH IV fi(z*) + ﬁAH—1 - Remainder, (D.17)

g [k]+1 zEI (1=7)

C(1-k

where the remainder aggregates the remaining terms from (D.13), and has the following first order moment by aggregating
the bounds derived above

. pi+e Croq 1.8 LyCran 1 _
E < L2tz 5—5+n . 1-B+n
[IRemainder|]] < C o \/|I|w1 [ 277)k + o — 5+ nk‘
< o) Gopsep  LHL)Coan t VEa) gy (D.18)
awi wi(1=pB+mn)

We now deal with the leading term in (D.17) which we denote by

Lom = — Z Z—AH IV fi()

j [y k]+1 ZEI

for convenience. We also denote by

MHete = AH—lv ; *\ (|2
R e |I|k2n2 HWH £l

the target variance of the leading error. Note that M,fﬁte = mTr(AH’lG(p}yete)HflAT). Then by (D.15) Ekﬁ
satisfies

~ 2
‘]E U’Lm ] — Mfiete (D.19)
k k
max; |AH 'V f;(x*)[* 1 ~j 2Zj:[wk]+1 W
~EF —
(1 = ~)2k2|Z|no* Z [Hp p ||1] + ay

j=lkl+1 7

Cmax max; ||AH71vfl($*)”2 1 H 1
C m. X71 . . = 3 L) —F—
102X (Vema, 1) /CCmin (1 —v)?|Z|né*wy [(G T w? * ) ELHE -
+l(C]2c max; Var(éi)>% . (n/|I|)%}
G ki-%
k
max; |AH 1V f;(a*)|? oy —CalTlwy j1-n
(1 — 7)2k2[Z|né"w; Z J7€ '

IN

2
wi

+C3(fiagi17ézl7ciai = 17"'7”) :
J=lvkl+1

JrC4w1 max; [|AH IV f;(z*)|?* 1
no* (1 —)2|Z|nd* ki+n’
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where Cj is a universal constant and we used results from Proposition D.6. To handle the summation of the exponential
term, we can calculate that

k Co|Z| 1— o0 Co|Z| 1—
Z jle” A < 6’5/ e 2w T Ny where C5 is a universal constant
j=[vk]+1 0
1—n
= C’5-<> / yle ¥ dy withxz() y
CQ|I|’UJ1 0 CQ|I|’U.)1
n -n n -n
¢ o (o) o ()7, -
C’2|I|w1 |I\w1

where in the last inequality the integral is finite and continuous in 7 and hence is uniformly bounded for n € [0,1/2],
therefore the integral can be absorbed into the universal constant C5. The universal constant C'; is also absorbed into C's.
Substituting this bound back into (D.19) and rearranging the terms finally give

2
‘]E {H,c,w ] — Mt (D21)
o max; | AH 1V fi(z*)|)?
R (TR
max(\/@,l) cmax((l - ﬂ—i—l) 1 +l(C]2cmaxiVar(éi)>% (n/|I\)i>
V/CCminNO* w1 G\ Twl P e w? k3i-%
1 1 =
L P S SR T
Taa g T OURILE G = 1)y <z|) kQ]'
On the other hand, from (D.16) we have the lower bound
2 1 1 — ’
E HZ H SM = (ST AR > o, D.22
2|} 2 2, = iy (7 o am v 0.2

where the positiveness is due to Assumption 4.4. Therefore we can define

~ 2]~
then it is clear that E {Hﬁk,'yHQ} = M[** and E [L}, ] = \/M,fite/E {HE;WYH }E [Ek,,y} = 0. We also need to control

e A

=[]

~ 2
\/W —/E {Hﬁk'”” } ‘ by Jensen’s inequality

~ 2
’E |:H‘Ck7’YH :| _ MHete

the difference

Bl 2ol

IN

kyy

\JE [HZMHZ} + ) MHete
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1 - 2
_ ‘E M Con
2,/ M;; N

Finally we combine the error bounds in (D.18), (D.21), and (D.23) to conclude the moment bound for the high-order error.
Specifically, applying these error bounds and rearranging terms we obtain

] — M| by (D.22) (D.23)

EllA@ky —27) = Leall

~ 1
< E H,c A H . _||AH Y| -E i
< B ||[fny — Lua| + g5 14H - ElRemainder]
1 ~ 2 Hete 1 —1 :
< —~ _.E HL,MH — M| 4~ | AH™|| - E [|Remainder|]
2, /M ’ (1 =7k
max; | AH 1V fi(z*)]|?
< 1 pos — "
—NEVIZIE L, JAH Y fi(a) |
max (y/Cmax, 1) Cmax (l o £+1> 1 +l(C’J2¢maxiVar(éi)>% (n/|Z])7
V/CCminnd* w1 G\ Fw? k35— G w? ki
1 1 =
w1 n -n
) (2] 79 %59 % _1 T o/ (1) T3
+(n5*) 1 +n+C’3(f gl el e \n) n&*w J(1—n) (|I> kg}
+||AH71|| c Cx ) 1 (L+L2)(Cza1 + \/Cm()tl) ) 1
(1-7) w53 wi(1—B+n) kA=
S Cl(Aa’Y)5*agaCEaalaw17ﬁ7n7.fiaci7i = 1a""n) 'kj_min(%—‘r%_m 2+7I 1_7_7 A=)

@
N‘:

« R . 1 n % 34
+C5(A4,v,0%, ¢c,wn, fi ¢, Var(é),i=1,...,n) — - | —= | k™4

VIZI \IZ|
1dn

* ~1 1 1 no\tT
+CS(A7’Y75 7w17fi7ci7gi7ci’Z:17"'7”)'7. T k 2.

VIZI \IZ|

vl

It only remains to study the cumulative cost. By the conditional independence of the sampling cost ¢; ; given the sampling
weights, we have

E [costy] = Z |Z| Z Czpl )
1=

therefore we can write

[E [costi] = c(Phrere) IZI(k — 1)

k—1 n n
< DY E ]S S emin, ]
j=1 i=1 i=1
k—1 n )
< T _E |maxe; Y |pl - pEete,iI]
j=1 i=1
= |Zlemax Y B[P’ = Pirerell]
k—1 k—1 1 1
< |Z|emax ZE [Hﬁ] —pf{eteHl] + Z2wj using p’ = (1 — w;)p’ + w; (n’ PN n)
j=1 j=1
c 1 o _B43n
< | T)emax - C Vo, 1) - —max [(: o, 1)-k1 T+
= ‘ |Cma 1H13X( Cma, ) \/écmin G xwllg +
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()"

=
e

1 C,% max; Var(¢;) L . .
— <—) 2 } using results from Proposition D.6

€] w?
11
-n
+Co(fi, 05,6 cii=1,...,n) - |T|cmax - <|I7|:u> using a similar calculation as (D.20)
1
+C3|I|Cmax . wlklin
< Cule, Cpywn, fiyciyi=1,...,n) - |I|kmax(17§+%’1fn)

1

1
+C5(§, wl,fi,ci,Var(éi)J =1,.. .,n) . |I| <|;> /{3%+§]

1
f=r]
+06(wlafiagz'1’6}aciai:13"'an)'|z.| (|§|> .
This completes the proof. O

Now we can present the proof of Theorem 4.12.

Proof of Theorem 4.12. We first prove the bound for HeteRSGD. Theorem D.7 entails the following bounds for the solution
error and cumulative sampling cost

E[H(Zry —2)] < /EILkAI?] +ElllExA ] (D.24)

1 *
< \/(IWTT(G(PHete))

1 14+n
C 1 1 (n)“ 1 1 (n)1"1
VE (kcrﬁw VIZI \ZI) ki-% /7] \IZl k

where ¢g,, = min(g — %’,n,% — g - 9,6 % — 1), C1 depends on v, a1, w1, 3,1, 71 and f;, &, 35,60 =1,...,n,
and ) 1
1 n\* 1 n\71
E [costr] < c(p} Zk+ColZlk | ————+ | = | — + | = -
costi] < e(pirese) Zlk + ColT <kmm<m,m () =+ (31) k)
where the constant Cy depends on oy, wy, 3,0, 21, fi, ¢, §i, ¢t,i = 1, ..., n. Taking square root of both sides of the above

inequality and using the inequality v/a + b < \/a + /b for a, b > 0 give

1 I T
VE[coste] < 1/c(ptyo)| Tk + /CalZ]k ( + <|”> S <|;|> ) . (D26)

kmin(%— < ké7 k
Under the stated conditions on 7, we have ég, > 0 and min(% - %’7, 2) > 0, and hence —kéém < 1 in (D.25) and
1
m < 1in (D.26). When k > (%) " we have that
1 Lin _ 3450
n\* 1 / n\T71 n\ A= siey
I n Iy _ (n -
Zl) ki—F Z| k Z|
3460
( n )4(1671) 3461
> (= 2
1]
346n
S
= _ > 17
IZ|

and that

ool=

1
n 1 n \20-m 1 n\ 8a-m 349
n N e
(|I|> k§‘3/<|1|) k= (|I|>
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3+2n

n ~8(1—67) 3+2n
> — kT8
(III>

3+2n

_ (k/(%)llﬁ> 8 > 1.

Therefore, the second terms in (D.25) and (D.26) dominate the third terms respectively. One can further verify that
1 1
(%) "1 < 1land (m) k,% < 1 when k > (l) " Multiplying (D.24) with (D.26) and leaving out the
k4~ 2 872

IZ]
high-order terms, we obtain

VE [costy] - E[||H(Zr,y — x™)]]]

0ol

1 1

(Phrete) . A 1 n\* 1 n\® 1

< \/ R T (GPhrere)) +Ca | 155, + A= Ea) + 7)) I + 7)) el
1 1

(Phrete) Vv Iz n\* 1 n\® 1
< — 2T (G(pt C! — — ) —
- \/ Ty O + O | 3o+ ) ez \m) Wi )

WheI‘CCBn = mln(g_%’%_é_g7 _%_n’g_%7g) andC;; dependsonvaalawhﬁ 77»$1afz70u97» it =

1,...,n. The bound for HeteRSGD then follows by noticing that p(p) = c(p)Tr(G(p)).

We now prove the bound for the standard SGD. By following the proof of Theorem D.7 with straightforward modifications,
e.g., with pF = DPsap and wy, = 1, we can easily obtain the following counterpart of Theorem D.7 for the standard SGD

A(jk,v — x*) = ﬁkﬂ + 8;.377

where the leading term Ly, ., satisfies

E[Lk,] =0,
1
E[|Lx~|?] = ————=Tr(AH 'G(piop)H AT
[” k,’YH } (1—’7)]€|I| ( ( SGD) )
and the high-order error satisfies
: 1 1
E[Hgk,“/m S 04(14,770[1)671‘1’ f’hl = 17 e ,n) . ﬁ . kcs

with cg := min(3 — g, B — 1). Therefore, letting A = H, we obtain

_ . 1 . cy 1
E[|H (@, — 2] < \/EUILer 2]+ E[lEx 5] < \/ T O Een) +

On the other hand E[costy] = c¢(pSap) | ZI(k— 1) < c(ptap)

7]

c(p* N
Blcosta] - B[] ] < \/ 56D 1y G ) + Caclisan) ot

This completes the proof. O

E PROOFS FOR RESULTS IN SECTION 5

Proof of Theorem 5.1. We need the following result, which is a straightforward application of a central limit theorem for
controlled Markov chains from Fort (2015) and hence the proof is omitted.

Lemma E.1 (An application of Theorem 2.1 from Fort (2015)). Consider the R%-valued sequence x;, generated by Algo-
rithm 1
Tp1 = Tk + axV f () + aré.

If Assumptions 4.4 and 4.5 holds, xy, — ©* a.s.., and the following five conditions are satisfied:
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1. V f(x) is measurable and f(x) has continuous third-order derivatives in a neighborhood of x*,
The Hessian H := V2 f(x*) is positive definite,

Yok =00, and Y e i < oo, and limy,_, o log(ag—1 /o) /oy = 0,

L

There exists a sequence of events {Ay, € Fi,k > 0} and § > 0 such that supy, >, E[||&x]/2F0T 4, _,] < oo and
limg oo L4, =1as,

5. E[éx&F | Fr—1] = M (p*)+Dpg1+Dg 2, where M (p*) is a positive semidefinite matrix depending on the limit sampling
distribution p*. The matrices Dy, 1, Dy, o satisfy limy_,oc Di1 = 0 a.s. and limy,_, o . E[|| Zle Djs|] =0,

then 1
E(mk—x*) :>N(012(p*))7 (E.1)

where the covariance matrix X(p*) satisfies X(p*)H + HX(p*) = M (p*).

To use Lemma E.1, we first argue that x;, — z* a.s.. Since oy, = ay/k” with 8 € (1/2,1), we have 220:1 aijwy <
Yooy e/ wy - = S 2, ax/(wrVk) < oo, therefore the conditions of Lemma 4.3 are satisfied and by Theorem
4.2 we have x;, — ™ a.s..

We then verify the five conditions in Lemma E.1. Condition 1 is directly implied by Assumption 4.1 and the continuous
differentiability condition in Theorem 5.1. Condition 2 is a consequence of strong convexity from Assumption 4.1. Con-
dition 3 can be verified to be true for step sizes in the form of ay, = a1/k” for 3 € (1/2,1). To verify condition 4, we
consider

Ap = {21 — %[ <1} N Qkyr

where Q.1 is the event (B.4) defined in the Proof of Theorem 4.8, then by the almost sure convergence of x;, and p* we
have limy_,oc I 4, = 1 a.s.. We’ve assumed that sup,, ozk/wzJ”S < 00. We write

1 V fi(zi) 0
E[ll&:)* T4, ] < 7] E ‘k — Vf(xy) Ia,_,| byJensen’s inequality
, np}
i€Lk g
Y fi() "
“(x
= E nlk’“ V)|  La.|,

where §|]-'k_1 ~ pk . To further bound the above expectation, we consider two cases. If pg > 0, then by Assumption 4.1

3
Lf%(f’“) = V() N Ia, , < (IIsz(:c*)II + Ly — 27|
np:

249
-1 — no* +Ll|xk _x*”) ]I-Ak,—l'

Otherwise if p%“ =0, we have V f; (z*) = 0 by Assumption 4.5, and hence

245
Viilzs) Vf(wk)

4
Llzk — 2*| )T
: Ly < (FE st - a)) L
np;

Wk

So we can bound E[||&4]|?10T 4, _,] as

-

246 243
1 V ~(x
G V) R Pl 1 RGO o) I RN VoA
o - 2o ..
S E max; ||Vfl(x )” + Lka - || —|—L||xk—x*|| ]I.Ak_l
no* min(nd*, wy)

waxi VG (L
- no* min(nd*, wy)

_1
+ L) (E[”xk - x*H2+6H~Ak71D2+5
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by Minkowski inequality
max; ||V fi(z”)|| L
- no* min(nd*, wy)
since ||z — 2| < 1on Ax_q
i i(z* L 2
< mas VAR, o ( ¥ L> (a’“> by Lemma B.5. (E.2)
min( )

no* no*, wy Wy,

3446

Since supy, oy /wy, " ° < 0o, we see that (E.2) is bounded as £ — oco. Therefore condition 4 is satisfied.

We now verify condition 5 for M (p*) = il II G(p*). We decompose

nep;

i=1

_ G) _~_i 3 (vfi(xk)vf?(xk) _ Viia*) Vi (a

)
L 7} ) Ve | @9

i:pr >0

1 3 sz(l'k)va(xk)

— (E4)
n p

i:p; =0

Note that the remainder in (E.3) converges to 0 a.s. since each pf — p; > 0and x;, — 2™ a.s. and can be regarded as Dy, 1
in condition 5. We then let (E.4) be Dy, o and verify the condition for Dy, o. We write

k k
B |[|Y D) < Y E[ID;2l]
=1 j=1
< Z ZIE Vi) Vf (z;) by triangular inequality
n2p’
i:py=0j=1 P
L2z —
< ap— |I| Z ZE[ ”% 7| } by Assumptions 4.1 and 4.5

itpr=0j=1
k

CJ;L &7}
Zn Z akzﬁ by Lemma B.5
i:p; =0 j=1 7

k
— 0 by the assumed condition o, Z —;
j=1 ]

Therefore condition 5 is satisfied.

The above verification proves (E.1). Since costy/(|Z|k) — c(p*) a.s. by Proposition 4.7, then by Slutsky’s theorem we
can conclude

8
8 T
costg (xp — ) =+/|Z|Bay - (C&St;:) : 7@($k —a*) = N (0,1 2] c(p") P (p")) - (E.5)

Since V f(z*) = 0 and the Hessian H at «* is positive definite, the CLTs for V f(xy) and f(xg) — ( *) then follow from
the delta method. Specifically, V f(2x) = H (z1, — 2*) + 0, ||z, — 2*||) and f(zx) — f(z*) = $(zp — ") H(z, —2*) +
op(||zx — x*||?), hence the delta method implies that

=) = N O, HS () H),
L (fla) - fa) = HN (o, %H%Z(p*)H

Ak

2

[N

)
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A similar application of Slutsky’s theorem as in (E.5) then concludes

cost? V f(zx) = \/|T/Pay - (Eij) : \/;kw(xk) = N (0,01 |Z)Pc(p*)P HS(p*) H) ,

cos o) — £ = P (2) " L) g0 = [ (0, B e sy

2

Tk ) o

This completes the proof. O

Proof of Proposition 5.2. According to Proposition F.1 in Section F, the optimal sampling distribution that minimizes (E.5)
is continuous in the coefficients b;, c;, by. Therefore by the same argument in the proof of Proposition 4.6, p* converges to
the optimal weights p3;,, ey AS-e O

F EFFICIENT ROUTINES FOR OPTIMIZING (2.4) AND (5.1)

We first provide the proof for Proposition 2.2, and then present an efficient nested bisection approach (Proposition F.1
below) for optimizing efficiency metrics in the form of (5.1).

Proof of Proposition 2.2. The case that all b; = 0 is trivial, so we assume at least one b; > 0. Let p* be an optimal solution
to (2.5). If p; = 0 then the corresponding b; must be 0, since otherwise (2.5) becomes co. Therefore, if we only consider
the nonzero p;’s, then they sum up to 1 and minimize

b;
E pici E —— —bo |,
- Lo VD
itp; >0 i:p; >0

which is in the same form of (2.5). For this reason, we assume all p; > 0 without loss of generality.

Consider the Lagrangian

L(P1s--3Pn,A) = (Zcipi> (Z ng; - bo) +A (Zpi - 1) :

i=1 =1

Since all p; > 0 the following KKT condition is necessary

oL - bi .y ‘

=— eipl | ——= + ¢ ——by | + X" =0 fori=1,...,n, (E.1)
Opi lp=p* A=+ ; ) n2py? ; n?pj
> opi=1. (F2)
=1

where \* is the corresponding optimal dual variable associated with the constraint Z,?:l p; = 1. Therefore we have

n n n
oL b;
0=>_p =D P Y
; Opi lp=p* A=x+ P — np;
n

= —bo Zcip: + A%

i=1

n

n
b;
+ > cpr ——bo | + X"
- 179 <; n2pi

n

Denote by ¢ := Y., ¢;pf > 0, then \* = byc. Denoting by v := > " | ng—p* — by > minpea, Yoy # — by =
o> @)2 — by > 0 and plugging \*, ¢, v into (F.1) we get

i=1

b; .
C<b02>+vci0, fori=1,...,n.
n2p}
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We let k 1= %’ > (), and obtain

bi/nQ
Y=y ——, fori=1,...,n,
pl IiCi+bo ! "

and by the feasibility condition in (F.2), x must satisfy

" bz/n2 -

=1.
RC; =+ bo

i=1

(F.3)

(F4)

From the expression (F.3) we see that in fact p; = 0 if and only if b, = 0, therefore (F.3) holds true even without
assuming all p; > 0. Finally, the uniqueness of p* follows because the equation (F.4) has a unique root * due to the strict

monotonicity of its left-hand side in .

We can efficiently optimize (5.1) using a nested bisection described in the next result:
Proposition F.1. Let¢; > 0,b; > 0foralli=1,...,n,0<by < (>, Vbi/n)?, and consider

n B n
. b;
min <;pici> <Z e bo) :

i=1

where B € (0,1). If at least one b; > 0, then there exists a unique minimizer p* for (E.5) and is given by

bi/n2
. _ C i=1,2,....n,
bi \/(1 — B)r* + Beik* [c* + by ! "

where c* > 0 uniquely solves

b;/n? - c?

izzl (1= PB)r*(c*) + Beir*(c*)/c* + bg -

c*,

with k*(¢) > 0 for each fixed ¢ > 0 uniquely solving

- bz/n2 B
; (1 — B)k*(c) + Beik*(c)/c+by 1

and k* = k*(c*). Otherwise if all b; = 0, then (E.5) is constantly 0.

O

(E5)

(F.6)

We observe that the optimal weights (F.6) can be viewed as an interpolation between the variance-minimizing weights

p; o< v/b; (3 = 0) and the optimal weights (2.6) for 3 = 1. Here is the proof for Proposition F.1:

Proof. Similar to the proof of Proposition 2.2, we assume all p; > 0 without loss of generality. We consider the Lagrangian

n B n n
i=1 ¢

i=1 i=1
and following KKT condition is necessary

B B—1
n

oL

p=p* A=\* j=1 7j=1 J

n
> pi=1
i=1

—~ . b; —~ bj . .
. == | e | gt | 2 2 a | FAT=0. fori=1
=1 i

(E7)

(E8)
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Multiplying each side of (F.7) by p; and summing up gives rise to

L 0L . b; " b; *
0= Zpi s |y A—re = - (Z Cipi) (Z n2p,.ﬂ> +p (Z Cz‘]%) (Z 2p - b()) + AN

i=1 =1 i=1 =1 i=1

Again we denote by ¢ := Y ¢;pf > O0and v = > — by > 0, we have \* = ((1 — B)v + by)c’. Plugging

i=1 n2p* p
M\*, ¢, v into (F.7) and dividing each side by ¢®~! gives

b; '
_ngip*z—’_ﬁcw"‘c((l_ﬁ)v-f'bo):O, fori=1,...,n,

that is

bi/nQ .
= fori=1,... F9
pz \/(1 _5)U+50iv/0+b0’ or? ) an7 ( )

where the unknowns ¢, v must satisfy

bi/n
=1, by(F8 F.10
Z Bot Bonjeihe ~ b W ED, (F.10)
b /n? - c? .
Z Bt Benlei e = by the definition of c. (F.11)

Note that (F.9) entails that p; = 0 if and only if b; = 0, therefore (F.9) continues to hold even if some p; = 0 as in the
proof of Proposition 2.2. It remains to show uniqueness. For a given ¢ > 0, there exists a unique v*(c) that solves (F.10)
due to strict monotonicity in v, therefore it suffices to show that (F.11) is solved by a unique ¢* and the corresponding
v*(c*). Suppose that ¢, v*(c}) and ¢}, v*(c3) both solve (F.11). Suppose ¢5 = nc > ¢ > 0 with > 1 without loss
of generality, then we must have v*(c3) > v*(cf) > 0 since the left-hand side of (F.10) is increasing in ¢ and strictly
decreasing in v, therefore

¢ = Z {;inﬁcz “(c5)/c5 + by
< Z )Z/ﬂn VRS
< Z >/ni/§§f§c )/ (net) +bo/n
= \/ﬁ; (Lﬁ)w(qﬁﬁiéc e Vs

contradicting with the starting assumption that ¢5 = ncj. Hence the optimal p* must be unique. O

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

G.1 Implementation Details

This subsection contains some implementation details for numerical experiments in Section 6. In all experiments, the cost
for evaluating V f; is fixed as ¢;, not a random variable. In HeteRSGD and HeteRSGDg, we always set G = 0 which
makes the subproblem (3.4) (or the counterpart for HeteRSGDg) easier to solve. We use the following parameters when
implementing the algorithms:

* The synthetic example: We use 1 = (1,1), oy = 15 ko s, and |Z;| = 10 for all algorithms implemented. For SRG,

SRG-m, HeteRSGD and HeteRSGDg, we set wy, = W
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* {y-regularized logistic regression: We use 21 = (0,0,...,0), ap = %, and |Z| = 10 for all algorithms imple-
mented. For SRG, SRG-m, HeteRSGD and HeteRSGDg, we set wy, = 100 K02 -
* The nonconvex example: We use 1 = (0,0, ...,0), o = 0%, and |Z,| = 100 for all algorithms implemented. For

SRG, SRG-m, HeteRSGD and HeteRSGDg, we set wy, = 100702

For HeteRSGDg, we use 3 = 0.8 in the sampling efficiency metric (5.1) to match the decay rate of the step size used.

G.2 Additional Numerical Results

We present additional results in this subsection.

Efficiency gain under varying degrees of heterogeneity: We consider the same synthetic example from Section 6 but
study a wider range of degree of heterogeneity using € € {0.01,0.05,0.1,0.3,0.5,1}.

As in Section 6, Figure 3 shows the average error of the Polyak-Ruppert averaged solution over 10 independent runs versus
the sampling cost incurred, as the parameter e increases from 0.01 to 1 (the homogenenous setting). We see a strong

10' ——SGD

—SGD w ——SRG —sGD
e SRG-m 10 —SRG
SRG-m —— HeteRSGD SRG-m

—— HeteRSGD —— HeteRSGD, —— HeteRSGD
= """ ——HeteRSGD |

10° e HeteRSGD 8

average error
average error
average error
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cost cost cost
(@) e = 0.01. (b) € = 0.05. (©)e=0.1.
—sa R - —s@
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SRG-m SRG-m ] 10° SRG-m
—— HeteRSGD ——HeteRSGD |- —— HeteRSGD
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average error
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6 7 8 o 10

Figure 3: The synthetic example from Section 6 with varying degrees of heterogeneity in sampling costs.

correlation between the degree of heterogeneity and the efficiency gain from our HeteRSGD schemes. When € = 1, which
is essentially the homogeneous setting, all methods are indistinguishable. The efficiency gain of our HeteRSGD variants
over existing schemes immediately shows up as € decreases. In particular, in the case of highest heterogeneity e = 0.01, we
observe a speedup by an order of magnitude from our HeteRSGD algorithms, especially HeteRSGD, compared to existing
SGD schemes. Specifically, HeteRSGD and HeteRSGDg achieve the same accuracy as SGD/SRG/SRG-m with roughly
95% and 70% less sampling costs respectively. This further speedup from HeteRSGD compared to the synthetic case in
Section 6 is consistent with the changes in the relative efficiency from 0.96 to 4 x 10~* with respect to SGD and from 0.84
to 0.039 with respect to SRG. All these show that our HeteRSGD can reduce the required sampling cost by a significant
amount or even an order of magnitude depending on the degree of heterogeneity in the costs.

Robustness against random sampling costs: In order to test the methods in the case that the cost of sampling each
component is random rather than deterministic, we consider the same synthetic example from Section 6 but now let each
sample from f; incur a random cost é; ~ Uniform((1—r)c¢;, (147)c;) for a parameter € [0, 1]. Figure 4 shows the results
for r € {0.1,0.2,0.4,0.6,0.8,0.9}. HeteRSGD consistently outperforms existing methods for all the considered r values.
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HeteRSGDg and SGD perform similarly, with HeteRSGDg outperforming SGD for » = 0.1. The similarity between
HeteRSGDg and SGD is suggested by their similar asymptotic efficiencies for the averaged solution: p(pl;.;.)/P(Pscp) =
0.96 and p(Pirere)/P(Pirere,) = 0-98. Nevertheless, HeteRSGD robustly outperforms existing methods under different
levels of randomness in sampling costs.

——SGD | ——SGD ——SGD

——SRG X ——SRG o ——SRG

10 1 SRG-m { 1o SRG-m ] SRG-m
——HeteRSGD || —— HeteRSGD —— HeteRSGD
—— HeteRSGD | | ——HeteRSGD || —— HeteRSGD,,

average error
average error
average error

o 1 2 3 4 6 7 8 9 10 o

s
cost ot

(b)r =0.2.
—seD —sap —saD
—SsRG —SsRa —SsRa

101 SRG-m 10! SRG-m |7 107 SRG-m
—— HeteRSGD —— HeteRSGD | | —— HeteRSGD
——HeteRSGD, —— HeteRSGD | | ——HeteRSGD,,

average error
average error

6 7 8 9 10

s s 6 7 s s w0 o 1 2 s 4 s
cost et cost ot cost w0t

] 1 2 3 4 6 7 8 9 10 o 1 2 3 4

(d)r = 0.6. (e)r =0.8. (Hr=0.9.

Figure 4: The synthetic example from Section 6 under increasing randomness in sampling costs.

Comparing HeteRSGD and HeteRSGDg, we have the same observation as in Section 6, i.e., HeteRSGD outperforms
HeteRSGDg in almost all the cases in terms of the achieved accuracy of the averaged iterate. Having said that, we find
that even if we use errors of individual iterates in place of averaged ones for comparison, the results remain similar, i.e.,
HeteRSGD continues to outperform HeteRSGDg and both HeteRSGD variants outperform existing SGD schemes. This
suggests that it may take a large number of iterations in practice for the asymptotic errors of individual iterates to take effect
and hence the optimality of HeteRSGDg appears more of theoretical interest. Based on these observations, we recommend
HeteRSGD over HeteRSGDyg for better finite-sample performance.
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