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Abstract

One implicit assumption in current stochastic
gradient descent (SGD) algorithms is the iden-
tical cost for sampling each component function
of the finite-sum objective. However, there are
applications where the costs differ substantially,
for which SGD schemes with uniform sampling
invoke a high sampling load. We investigate the
use of importance sampling (IS) as a cost saver
in this setting, in contrast to its traditional use
for variance reduction. The key ingredient is
a novel efficiency metric for IS that advocates
low sampling costs while penalizing high gra-
dient variances. We then propose HeteRSGD,
an SGD scheme that performs gradient sampling
according to optimal probability weights stipu-
lated by the metric, and establish theories on its
optimal asymptotic and finite-time convergence
rates among all possible IS-based SGD schemes.
We show that the relative efficiency gain of Het-
eRSGD can be arbitrarily large regardless of the
problem dimension and number of components.
Our theoretical results are validated numerically
for both convex and nonconvex problems.

1 INTRODUCTION

We consider the finite-sum optimization problem

min
x∈Rd

f(x) :=
1

n

n∑
i=1

fi(x), (1.1)

where each fi itself can be in the form of a finite sum.
Such problems are ubiquitous in machine learning (Bishop
and Nasrabadi, 2006), operations research (Birge and Lou-
veaux, 2011), and statistics (Box and Tiao, 2011). Unlike
most works that implicitly assume the identical cost for
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sampling each component fi, we consider the case of het-
erogeneous sampling costs, i.e., some components can be
considerably more costly to sample than others. Such sam-
pling cost heterogeneity arises in various applications. In
automated algorithm configuration (e.g., Hoos, 2011), pa-
rameters of an algorithm are optimized on a set of problem
instances that are of different difficulty levels and hence in-
cur highly varying time or resource costs when fed to the al-
gorithm. In stochastic programming (Birge and Louveaux,
2011), the evaluation of the components requires solving
subproblems among which some can be harder to solve
than others. Lastly, in federated learning (Diao et al., 2020;
Luo et al., 2022), the components can represent clients with
varying model architectures, data sizes, and computation
and communication capabilities.

In the case of homogeneous sampling costs, when the full
gradient is expensive to evaluate, the preferred optimiza-
tion method is stochastic gradient descent (SGD) (Robbins
and Monro, 1951) that samples one or several functions
uniformly at random to approximate the full gradient at
each iteration. In the heterogeneous setting, however, SGD
can be inefficient because it can sample costly components
with a substantial chance at each iteration and thus incur
high sampling costs and consequently slow convergence,
or even become impractical when the sampling costs differ
drastically. This paper thus aims to address the problem:

How do we design gradient-based schemes

with a much lighter sampling burden than SGD

under heterogeneous sampling costs?
(P)

We attempt to tackle (P) using importance sampling (IS),
a technique from Monte Carlo computation (Rubinstein
and Kroese, 2016, Chapter 5) that samples from a differ-
ent distribution than the original one and then corrects bi-
ases by reweighting. In contrast to the typical use of IS
as a variance reducer, we use IS as a cost saver by sam-
pling costly components less frequently. To explain, in our
finite-sum setting, IS samples the components according
to possibly non-uniform probability weights {pi}ni=1 and
then reweights the samples with factors { 1

npi
}ni=1. In order

to achieve the least average cost per gradient evaluation, a
naive scheme is to use pi ≈ 1 for the cheapest component
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and pi ≈ 0 otherwise; however, this will blow up the gradi-
ent variance and hinder convergence. Relatedly, IS has tra-
ditionally been used in SGD to reduce gradient estimation
variance in order to accelerate convergence (Needell et al.,
2016; Papa et al., 2015; El Hanchi et al., 2022, etc.). De-
spite their better control of the variance and consequently
faster convergence than standard SGD, these IS schemes
are designed based on only the magnitude of the gradients
or smoothness constants of the components, but not their
sampling costs, and thus can still be inefficient under het-
erogeneous sampling costs.

Our main contribution thus lies in a novel IS scheme for
(P) that directly reduces sampling costs using as small sam-
pling weights on costly components as possible while con-
trolling the variance. The key ingredient is a judiciously
designed efficiency metric that, for a given sampling dis-
tribution, balances the impacts of the average cost in sam-
pling a component and the gradient estimation variance on
the overall sampling requirement. Specifically, it takes the
the form of the product of the cost and the variance, and
hence penalizes both high costs and variances. This partic-
ular form is motivated from an estimation of the sampling
effort needed to achieve a certain amount of error reduc-
tion over a single SGD iteration. Our importance sampler
is then obtained by optimizing the metric, for which we
provide efficient routines.

Based on the proposed efficiency metric, we design Het-
eRSGD, a new SGD algorithm that adaptively estimates the
optimal sampling weights in each iteration and performs
gradient sampling according to the estimated weights. To
properly characterize its convergence in our heterogeneous
setting, we establish novel central limit theorems (CLTs)
that scale the solution error with the (random) cumula-
tive sampling cost instead of the number of iterations in
previous CLTs. It turns out that the asymptotic errors of
the Polyak-Ruppert (Polyak and Juditsky, 1992; Ruppert,
1988) and the α-suffix (Rakhlin et al., 2012) averaged solu-
tions exactly match our efficiency metric, implying the op-
timality of HeteRSGD among all IS-based SGD schemes in
the sense that it achieves the least asymptotic solution error
under a given sampling budget. Moreover, the efficiency
gain relative to the standard and other IS-based SGD can
be arbitrarily large, regardless of the dimension d and the
number of components n.

Lastly, we further generalize our efficiency metric to a para-
metric family with varying preferences between cost reduc-
tion and variance reduction, and each of them matches the
asymptotic error of an individual SGD iterate under a cor-
responding decay rate in the step size. This gives rise to a
family of HeteRSGD variants with each being optimal for
individual SGD iterates instead of averaged ones.

We summarize our main contributions in this paper:

1. We propose a novel family of efficiency metrics for

IS that balance sampling cost reduction and variance
reduction under sampling cost heterogeneity.

2. We design a family of IS-based SGD algorithms,
called HeteRSGD, and develop novel asymptotic
CLTs and finite-time convergence bounds in the
strongly convex and smooth case that reveal the op-
timality of HeteRSGD in attaining the least sampling
complexity among all possible IS-based schemes.

3. We conduct experiments on both convex and non-
convex examples that demonstrate a 40-70% reduc-
tion in sampling cost compared to existing SGD meth-
ods in order to achieve similar solution accuracy.

Related Work There have been extensive studies on in-
tegrating IS into SGD for variance reduction. Needell
et al. (2016); Zhao and Zhang (2015); Gower et al.
(2019); Csiba and Richtárik (2018); Katharopoulos and
Fleuret (2018) design importance samplers based on global
smoothness information such as Lipschitz constants and
bounds of gradient norms to obtain improved convergence
rates. El Hanchi et al. (2022); Papa et al. (2015); Yuan
et al. (2016); He et al. (2021); Liu et al. (2021); Gopal
(2016); Alain et al. (2015); Stich et al. (2017); Johnson and
Guestrin (2018) develop sampling methods that adaptively
approximate the ideal sampler (2.3) as the iteration pro-
gresses to further reduce the gradient estimation variance
and sampling complexities. Another orthogonal line of
works (Borsos et al., 2018; El Hanchi and Stephens, 2020;
Namkoong et al., 2017; Salehi et al., 2017) pose the search
of optimal sampling weights as an online learning problem
and provide regret bounds with respect to the best weights
in hindsight. However, these works assume homogeneous
sampling costs and thus can be inefficient in our heteroge-
neous setting. Recently, An and Ying (2021) also utilizes
IS to balance the gradient variance across solutions in order
to escape from flat local optima in non-convex settings.

Apart from using IS, a large family of variance-reduced
SGD algorithms (e.g, Defazio et al., 2014; Schmidt et al.,
2017; Johnson and Zhang, 2013; Allen-Zhu, 2017) build
on the idea of control variates. Besides the assumed ho-
mogeneity in sampling costs, these methods also incur a
significant overhead for either storing gradients of all com-
ponents or periodic evaluation of the full gradient, whereas
our approach only needs to maintain norms of gradients
and possibly an estimated full gradient. Other works (e.g.,
Horváth and Richtárik, 2019; Qian et al., 2021; Shen et al.,
2016) combine IS with variance-reduced SGD to further
speed up convergence.

Lastly, similar sampling heterogeneity also arises in fed-
erated learning (e.g, Diao et al., 2020; Shen et al., 2022;
Cho et al., 2022). In particular, Luo et al. (2022) considers
system and statistical heterogeneity among clients and pro-
poses adaptive sampling to minimize global convergence
time. Their sampling designs are specialized to federated
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learning rather than general finite-sum optimization.

Organization The rest of this paper will be organized as
follows. Section 2 discusses our novel IS efficiency metric
under sampling heterogeneity and the corresponding im-
portance sampler. Section 3 presents our SGD algorithm,
with theories on its asymptotic optimality and finite-time
convergence rates in Section 4, and Section 5 further dis-
cusses extensions to a family of importance samplers and
their optimality theories. Section 6 contains experimental
results, and Section 7 concludes the paper.

2 IS UNDER HETEROGENEOUS COSTS

We first introduce the design rationale of importance sam-
plers in the homogeneous setting and then present our
novel sampling efficiency metric and the associated opti-
mal weights for heterogeneous sampling costs.

Notations Throughout this paper, we use ∥ · ∥ as the ℓ2-
norm on Rd and ⟨·, ·⟩ as the associated inner product. De-
note by ∆n = {(p1, p2, . . . , pn) ∈ [0, 1]n :

∑n
i=1 pi = 1}

the probability simplex in Rn. We always set 0/0 = 0.

Given the k-th SGD iterate xk, we choose a probability dis-
tribution pk = (pk1 , p

k
2 , . . . , p

k
n) ∈ ∆n, and sample a multi-

set Ik in which each index is i.i.d. drawn with replacement
from {1, 2, . . . , n} with probability P(· = i) = pki ,∀ i.
Then the gradient ∇f(xk) can be estimated using

gk =
1

|Ik|
∑
i∈Ik

1

npki
∇fi(xk). (2.1)

gk is an unbaised estimator of ∇f(xk), i.e., E[gk|Fk−1] =
∇f(xk), where Fk−1 is the σ-algebra generated by
I1, I2, . . . , Ik−1. We summarize the general framework
for SGD with adaptive sampling in Algorithm 1. A natu-

Algorithm 1 SGD with adaptive sampling

Require: initial point x1 and stepsize {αk}∞k=1.
1: for k = 1, 2, . . . do
2: Choose pk ∈ ∆n and sample the index set Ik.
3: Compute the gradient estimate gk via (2.1).
4: Update the iterate xk+1 = xk − αkgk.
5: end for

ral idea for finding the optimal weights pk is to minimize
the variance of the gradient estimator (2.1), which can be
computed as

E
[
∥gk −∇f(xk)∥2

∣∣Fk−1

]
=

1

|Ik|n2

n∑
i=1

1

pki
∥∇fi(xk)∥2 −

1

|Ik|
∥∇f(xk)∥2.

(2.2)

The minimizing weights can then be shown to be (Zhao and
Zhang, 2015):

pki ∝ ∥∇fi(xk)∥, (2.3)

which have been extensively studied to improve conver-
gence rates (e.g., El Hanchi et al., 2022; Papa et al., 2015).

Note that computing such ideal weights requires knowl-
edge of the gradient of every single component and hence
SGD algorithms that use IS for variance reduction rely on
approximations of (2.3).

The derivation of (2.3) implicitly assumes the identical cost
in sampling each component gradient. In our setting with
heterogeneous sampling costs, however, the cost of eval-
uating ∇fi(x) varies in i. Thus, minimizing the variance
solely does not necessarily lead to less sampling effort, e.g.,
when components with large gradient norms happen to be
costly to sample, and one has to jointly consider the gradi-
ent variance and the incurred sampling costs. To proceed,
we consider the following cost model:

Assumption 2.1. The cost for evaluating each ∇fi, i =
1, . . . , n, is a random variable ĉi > 0 with ci := E[ĉi] <
∞, and the total sampling cost is cumulative.

To find a metric that can meaningfully measure the effi-
ciency of a given sampling distribution pk under Assump-
tion 2.1, we examine the solution error reduction in a single
SGD step, as done in earlier works (e.g., Papa et al., 2015;
Johnson and Guestrin, 2018)

E[∥xk+1 − x∗∥2|Fk−1] = ∥xk − x∗ − αk∇f(xk)∥2

+ α2
kE[∥gk −∇f(xk)∥2|Fk−1],

where x∗ is an optimum, and only the last term, with the
gradient variance given by (2.2), depends on pk. The av-
erage cost of sampling a single gradient according to pk

is
∑n

i=1 p
k
i ci. We aim to minimize the average cost while

ensuring a certain amount of reduction, or formally

min
pk,|Ik|

|Ik|
n∑

i=1

pki ci,

s.t.
α2
k

|Ik|

(
n∑

i=1

1

n2pki
∥∇fi(xk)∥2 − ∥∇f(xk)∥2

)
≤ ϵ,

for a fixed ϵ > 0. By relaxing the integrality constraint on
|Ik| and optimizing out |Ik|, we see immediately that the
above is equivalent to minimizing(

n∑
i=1

pki ci

)(
n∑

i=1

∥∇fi(xk)∥2

n2pki
− ∥∇f(xk)∥2

)
, (2.4)

after dropping the constants ϵ and αk. Compared to the
homogeneous case, our new efficiency metric (2.4) penal-
izes both high variance and high sampling cost, and thus
balances their impacts on the overall sampling efficiency.
(2.4) is computationally more challenging though due to
its non-convexity. Fortunately it turns out readily solvable:

Proposition 2.2. Let ci > 0, bi ≥ 0 for all i = 1, . . . , n,
0 ≤ b0 ≤ (

∑n
i=1

√
bi/n)

2, and consider

min
p∈∆n

(
n∑

i=1

pici

)(
n∑

i=1

bi
n2pi

− b0

)
. (2.5)

If at least one bi > 0, then there exists a unique minimizer
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p∗ for (2.5) and is given by

p∗i =

√
bi/n2

κ∗ci + b0
, i = 1, 2, . . . , n, (2.6)

where κ∗ ≥ 0 uniquely solves
∑n

i=1

√
bi/n2

κ∗ci+b0
= 1. Oth-

erwise if all bi = 0, then (2.5) is constantly 0.

Since the
∑n

i=1

√
bi/n2

κ∗ci+b0
is strictly monotonic in κ∗, the

desired κ∗ can be computed by bisection, and then the op-
timal weights under the metric (2.4) can be computed from
(2.6) with bi = ∥∇fi(xk)∥2 and b0 = ∥∇f(xk)∥2. The
proof of Proposition 2.2 is deferred to Appendix F.

3 THE HeteRSGD ALGORITHM

The oracle efficiency metric (2.4) that guides the choice
of pk is constructed with perfect knowledge about
ci, ∥∇fi(xk)∥, 1 ≤ i ≤ n, and ∥∇f(xk)∥, which may not
be available in practice. Therefore, we propose a practical
approximation of the oracle metric from which the sam-
pling distribution pk is then derived.

Estimation of ci: The estimated cost vector c̃k =
(c̃k1 , . . . , c̃

k
n), where each c̃ki is the average cost incurred

by all the sampled gradients from fi. Specifically, let
ski , i = 1, . . . , n be the number of times that each ∇fi has
been sampled so far at the beginning of the k-th iteration.
Let ĉi,j be the random cost of the j-th sample taken for
∇fi throughout the algorithm. The cost vector is updated
via sk+1

i = ski +
∑

j∈Ik
1(j = i) and

c̃k+1
i =

1

sk+1
i

ski c̃
k
i +

sk+1
i∑

j=ski +1

ĉi,j

 . (3.1)

Estimation of ∥∇fi(xk)∥: Each ∥∇fi(xk)∥ is estimated
with the most recently sampled gradient from fi. We use
a vector g̃k = (g̃k1 , . . . , g̃

k
n) to store the estimates which is

updated via

g̃k+1
i =

{
∥∇fi(xk)∥, if i ∈ Ik,
g̃ki , otherwise.

(3.2)

Estimation of ∥∇f(xk)∥: We estimate ∇f(xk) with the
averaged gradient G̃k = 1

k−1 (g1 + g2 + · · ·+ gk−1) ∈ Rd.
To avoid the storage of past gradients, we update G̃k via

G̃k+1 =
k − 1

k
G̃k +

1

k
gk. (3.3)

Now one can construct an empirical version of (2.4):(
n∑

i=1

pki c̃
k
i

) n∑
i=1

(g̃ki )
2

n2pki
−min

(
∥G̃k∥,

n∑
i=1

g̃ki
n

)2
 ,

(3.4)
where the minimum of ∥G̃k∥ and

∑n
i=1 g̃

k
i /n instead of

simply ∥G̃k∥ ensures non-negativeness of the variance

term. By minimizing (3.4) as stated in Proposition 2.2,
we obtain the estimated optimal sampling distribution. In
addition, to ensure a sufficient chance for each compo-
nent to be sampled and a controlled gradient variance,
we slightly mix the estimated weights with the uniform
weights to keep them away from zero as in some earlier
works (e.g., El Hanchi et al., 2022; Papa et al., 2015; De-
lyon and Portier, 2021). We summarize our SGD algorithm
in Algorithm 2, which is an implementation of the template
Algorithm 1.

Algorithm 2 HeteRSGD: SGD under heterogeneous costs

Require: initial point x1, initial estimates c̃1, g̃1, G̃1 = 0,
stepsizes {αk}∞k=1, and mixing weight {wk}∞k=1.

1: for k = 1, 2, . . . do
2: Compute the p̃k ∈ ∆n minimizing (3.4).
3: Set pk = (1− wk)p̃

k + wk(1/n, . . . , 1/n).
4: Sample the index set Ik and incur sampling costs.
5: Compute the gradient estimate gk via (2.1).
6: Update the iterate xk+1 = xk − αkgk.
7: Update c̃k+1, g̃k+1, and G̃k+1 according to (3.1),

(3.2), and (3.3).
8: end for

4 CONVERGENCE ANALYSIS

In this section, we provide convergence analysis for Algo-
rithms 1 and 2, and demonstrate the optimal convergence
rate and sampling complexity of HeteRSGD among all IS-
based schemes. We first present our asymptotic analysis
(Subsections 4.1-4.2) on exact convergence rates of the
template Algorithm 1, and specialize the result to differ-
ent IS-based algorithms to illustrate the optimality of Het-
eRSGD (Subsection 4.3). We then investigate the non-
asymptotic behavior of HeteRSGD and compare it with
that of the standard SGD (Section 4.4). We assume that
the objective function is µ-strongly convex and L-smooth:

Assumption 4.1. We assume

(i) f is µ-strongly convex, i.e, it holds that f(y) ≥ f(x)+
⟨∇f(x), y − x⟩+ µ

2 ∥y − x∥2 for any x, y ∈ Rd.

(ii) fi is L-smooth for any i ∈ {1, 2, . . . , n}, i.e.,
∥∇fi(x) − ∇fi(y)∥ ≤ L∥x − y∥ holds for any
x, y ∈ Rd. As a consequence, f is also L-smooth.

4.1 Global Convergence

We state the result of global convergence in this subsection.
Denote by

ξk = gk −∇f(xk),

the noise or error in the gradient estimator. If ξk satisfies
some summable property, then one can show that Algo-
rithm 1 converges to the global minimum x∗, both in L2

and almost surely, with proper diminishing stepsizes:
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Theorem 4.2. Suppose that Assumption 4.1,
∑∞

k=1 αk =
∞, and

∑∞
k=1 α

2
kE[∥ξk∥2] < ∞ hold. Then the solution

xk from Algorithm 1 satisfies limk→∞ E
[
∥xk − x∗∥2

]
=

0 and xk → x∗ a.s..

A key condition in Theorem 4.2 is
∑∞

k=1 α
2
kE[∥ξk∥2] <

∞. Although this is not easy to verify in general, we pro-
vide transparent sufficient conditions in the lemma below.

Lemma 4.3. Suppose that Assumption 4.1 holds. If there
exists a sequence {wk}∞k=1 ⊂ (0, 1] satisfying pki ≥
wk/n, ∀ i ∈ {1, 2, . . . , n}, k ≥ 1, and

∑∞
k=1 α

2
k/wk <

∞, then it holds that
∑∞

k=1 α
2
kE[∥ξk∥2] < ∞ for Algo-

rithm 1.

Thanks to the mixing weight wk with the uniform sampling
weights in Algorithm 2, we immediately see that our Het-
eRSGD converges globally as long as wk is chosen to de-
cay sufficiently slowly as described in Lemma 4.3. Proofs
of Theorem 4.2 and Lemma 4.3 are left to Appendix A.

4.2 Local Convergence

In this subsection, we investigate exact local/asymptotic
convergence rates of Algorithm 1 for averaged SGD so-
lutions, which lay the foundation for comparing different
IS-based SGD algorithms in next subsection. Before pro-
ceeding, let us introduce some notations:

• costk :=
∑n

i=1

∑ski
j=1 ĉi,j is the cumulative sampling

cost of the first k−1 iterations, i.e., the cost to generate
{x1, x2, . . . , xk}.

• c(p) :=
∑n

i=1 pici is the expected sampling cost of a
single gradient evaluation for a distribution p ∈ ∆n.

• The covariance matrix of an importance sampled gra-
dient at x∗ according to a distribution p ∈ ∆n is:

G(p) :=

n∑
i=1

1

n2pi
∇fi(x

∗)∇fi(x
∗)T .

• The averaged iterate of x[γk]+1, x[γk]+1, . . . , xk is:

x̄k,γ =
1

(1− γ)k

k∑
j=[γk]+1

xj ,

where γ ∈ [0, 1) and [γk] is the largest integer that
is smaller than or equal to γk. γ = 0 corresponds to
the Polyak-Ruppert averaging, and γ ∈ (0, 1) corre-
sponds to the α-suffix averaging.

• H = ∇2f(x∗) is the Hessian matrix of f at x∗.

We make two more assumptions. The first is on the non-
degeneracy of the gradient noise at the optimum x∗:

Assumption 4.4. There exists at least one i ∈
{1, 2, . . . , n} such that ∇fi(x

∗) ̸= 0.

The second assumption is the convergence of the sampling
distribution pk:

Assumption 4.5. The sequence {pk}∞k=1 ⊂ ∆n converges
almost surely to some fixed p∗ ∈ ∆n, and p∗i > 0 for every
i such that ∇fi(x

∗) ̸= 0.

The positiveness condition on the limit weights ensures that
the limit is an eligible importance sampler at x∗. This
assumption trivially holds for the standard SGD that per-
forms uniform sampling throughout, as well as for many
SGD variants that adaptively approximate the optimal im-
portance weights (2.3) at x∗, e.g., those proposed in Papa
et al. (2015); El Hanchi et al. (2022). It also holds for our
HeteRSGD:
Proposition 4.6. Assume the same conditions in
Lemma 4.3, limk→∞ wk = 0,

∑∞
k=1 wk = ∞,

infk≥1 kαk > 0, and Assumption 4.4 holds. Then
pk → p∗Hete a.s. for Algorithm 2, where

p∗Hete :=

(
∥∇fi(x

∗)∥/√ci∑n
j=1 ∥∇fj(x∗)∥/√cj

)n

i=1

minimizes the sampling efficiency metric at x∗

ρ(p) :=

(
n∑

i=1

pici

)(
n∑

i=1

1

n2pi
∥∇fi(x

∗)∥2
)
. (4.1)

Proposition 4.6 can be shown by proving limk→∞ c̃k →
(c1, . . . , cn), limk→∞ g̃ki = ∥∇fi(x

∗)∥, ∀ i ∈
{1, 2, . . . , n}, and limk→∞ G̃k = 0, almost surely, with
the details deferred to Appendix C.

An immediate consequence of Assumption 4.5 is the con-
vergence of the average cost per gradient sample (with
proof in Appendix C):
Proposition 4.7. If Assumptions 2.1 and 4.5 hold, then
costk/(

∑k−1
j=1 |Ij |) → c(p∗) a.s. for Algorithm 1.

We then have the following asymptotic convergence rate
for Algorithm 1:
Theorem 4.8. Suppose Assumptions 2.1, 4.1, 4.4 and 4.5
hold. Suppose in addition that αk = α1/k

β , where β ∈
(1/2, 1), |Ik| = |I| is fixed for any k ≥ 1, and f is twice
continuously differentiable in a neighbourhood of x∗. If
there exists a non-increasing sequence {wk}∞k=1 ⊂ (0, 1]
satisfying pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n} and k ≥ 1,
limk→∞ αk/w

2
k = 0 and

∑∞
k=1 αk/(wk

√
k) < ∞, then

for Algorithm 1 the following holds
√
costk · (x̄k,γ − x∗) ⇒ N

(
0,

c(p∗)

1− γ
H−1G(p∗)H−1

)
,

√
costk · ∇f(x̄k,γ) ⇒ N

(
0,

c(p∗)

1− γ
G(p∗)

)
,

costk · (f(x̄k,γ)− f(x∗)) ⇒∥∥∥∥N (
0,

c(p∗)

2(1− γ)
H− 1

2G(p∗)H− 1
2

)∥∥∥∥2 ,
where N (0, ·) denotes the multivariate Gaussian distribu-
tion with mean zero and covariance matrix ·, and ⇒ de-
notes convergence in distribution.
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Theorem 4.8 states that the solution error (in terms of dif-
ference with the optimum, gradient norm, or optimality
gap) scaled by the cumulative sampling cost converges in
distribution to a multivariate Gaussian whose covariance
depends on the limit sampling distribution p∗. The sam-
pling efficiencies of different IS schemes thus are deter-
mined by their respective limit sampling distributions. Re-
sults of such type allow asymptotically exact quantification
of the solution error under a pre-specified sampling bud-
get, and subsequently transparent comparisons of sampling
efficiencies of different SGD algorithms. Notably, the mix-
ing weight wk is allowed to approach zero at a sufficiently
slow rate via a delicate control of the gradient variance near
the optimum, and hence the limit p∗ does not need to be re-
stricted to the interior of ∆n (Papa et al., 2015).

Theorem 4.8 is established by proving a CLT for the so-
lution error x̄k,γ − x∗ followed by an application of the
Slutsky’s theorem. Compared to the analysis of clas-
sical SGD CLTs, one additional challenge here is that
not only the solution but also the sampling distribution
keeps changing over iterations. To simultaneously han-
dle the non-stationarity in the solution and sampling dis-
tribution we use a probabilistic coupling argument, instead
of uniform-integrability-type assumptions or the i.i.d as-
sumption (Polyak and Juditsky, 1992, Assumption 3.3 and
Assumption 4.2), that explicitly links the gradient noise
{ξk}∞k=1 at each iterate to an oracle noise incurred when
sampling at the optimum according to the limit distribution
p∗. The full proof is deferred to Appendix B.

4.3 Comparison with Existing SGD Variants

This subsection utilizes Theorem 4.8 to compare our Het-
eRSGD with existing SGD algorithms including the stan-
dard SGD and the stochastic reweighted gradient descent
(SRG) (El Hanchi et al., 2022), and thereby establishes the
asymptotic optimality of HeteRSGD among all IS-based
SGD schemes encompassed by Algorithm 1.

Since the asymptotic efficiency is determined by the limit
sampling weights p∗ as Theorem 4.8 suggests, we now
quantify the efficiency realized by an arbitrary limit, and
specialize to different algorithms with distinct limits later.
With the limit p∗, we consider running Algorithm 1 for
C/(|I|c(p∗)) iterations, with a fixed minibatch size |Ik| =
|I|, to approximately reach a fixed sampling budget C (see
Proposition 4.7). Let x̄C be the Polyak-Ruppert or α-suffix
average, then Theorem 4.8 entails that

√
C∇f(x̄C) is ap-

proximately N (0, c(p∗)G(p∗)/(1− γ)), therefore

E[∥∇f(x̄C)∥2] ≈
1

C(1− γ)
c(p∗)Tr(G(p∗))

=
1

C(1− γ)
ρ(p∗),

(4.2)

where Tr(·) denotes the trace, and ρ is the efficiency met-
ric from (4.1), therefore the asymptotic solution error of an

SGD algorithm boils down to the metric value ρ(p∗) real-
ized by its limit sampling distribution.

We then compare the asymptotic error (4.2) realized by dif-
ferent SGD algorithms. As special cases of Algorithm 1,
the standard SGD with uniform sampling and the SRG have
limit sampling distributions

p∗SGD := (1/n, . . . , 1/n) , and

p∗SRG :=

(
∥∇fi(x

∗)∥∑n
j=1 ∥∇fj(x∗)∥

)n

i=1

respectively. The limit sampling distribution of HeteRSGD
is p∗Hete as given in Proposition 4.6. Since p∗Hete opti-
mizes the efficiency metric ρ(·), we immediately see that
HeteRSGD achieves the minimum asymptotic error (4.2).
Therefore HeteRSGD is optimal in the sense that, with a
fixed sampling budget, it achieves the least asymptotic error
in the gradient of the averaged solution among all possible
IS-based SGD schemes. The standard SGD and SRG are
in general suboptimal. The following result (with proof in
Appendix C) shows that the efficiency gain of HeteRSGD
can be arbitrarily large relative to both SGD and SRG.

Proposition 4.9. For any dimension d ≥ 1, number of
components n ≥ 3, and ϵ > 0, there exist examples with
ρ(p∗Hete)/ρ(p

∗
SGD) < ϵ and ρ(p∗Hete)/ρ(p

∗
SRG) < ϵ.

Lastly, we briefly compare the asymptotic errors in terms
of x̄C −x∗ and f(x̄C)− f(x∗). From Theorem 4.8 we can
obtain the following characterizations similar to (4.2):

E[∥x̄C − x∗∥2] ≈ c(p∗)

C(1− γ)
Tr(H−1G(p∗)H−1),

E[f(x̄C)]− f(x∗) ≈ c(p∗)

2C(1− γ)
Tr(H− 1

2G(p∗)H− 1
2 ).

The errors now depend on the Hessian H , in addition to p∗,
and hence HeteRSGD may not be optimal. However, Het-
eRSGD is still optimal in following minmax sense. Con-
sider all Hessian such that H−1 ⪯ µ−1Id, and calculate
the worst errors

sup
H−1⪯µ−1Id

c(p∗)Tr(H−1G(p∗)H−1)

= sup
H−1⪯µ−1Id

c(p∗)Tr(G(p∗)
1
2H−2G(p∗)

1
2 )

=
c(p∗)

µ2
Tr(G(p∗)

1
2 IdG(p∗)

1
2 ) =

1

µ2
ρ(p∗),

and similarly supH−1⪯µ−1Id
c(p∗)Tr(H− 1

2G(p∗)H− 1
2 ) =

ρ(p∗)/µ. HeteRSGD therefore achieves the least worst-
case asymptotic errors in x̄C − x∗ and f(x̄C)− f(x∗).

4.4 Finite-Time Bounds and Comparison

This subsection complements the asymptotic theories on
HeteRSGD with non-asymptotic convergence bounds and
a finite-time comparison with the standard SGD.

We need two more assumptions stated as follows.
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Assumption 4.10. Each fi, i = 1, . . . , n is twice differen-
tiable with Lipschitz continuous second-order derivatives,
i.e., ∥∇2fi(x)−∇2fi(y)∥ ≤ L2∥x−y∥ for any x, y ∈ Rd

for some L2 < ∞.

Assumption 4.11. Each sampling cost ĉi has a finite sec-
ond moment Var(ĉi) < ∞, and there exists a constant
c > 0 such that each ĉi ≥ c almost surely.

Our main finite-time result is the following theorem.

Theorem 4.12 (Finite-time bounds). Suppose Assumptions
2.1, 4.1, 4.4, 4.10 and 4.11 hold. Suppose that in Algo-
rithm 2 αk = α1/k

β , where β ∈ (1/2, 1) and 0 < α1 <
min

(
1/µ, µ/L2

)
, wk = w1/k

η with w1 ∈ (0, 1] and
0 < η < min (β/7, 1− β, β − 1/2), and that |Ik| = |I|
is fixed for all k. Then for every γ ∈ [0, 1), we have for
HeteRSGD that

√
E [costk] · E [∥H(x̄k,γ − x∗)∥] ≤

√
ρ(p∗Hete)

1− γ

+ C1

(√
|I|

kcβ,η
+

(
n

|I|k1−6η

) 1
4

+

(
n

|I|k1−2η

) 1
8

)
,

(4.3)

whenever k ≥
(

n
|I|
)1/(1−6η)

, where

cβ,η = min

(
β − 7η

4
,
1− β − η

2
, β− 1

2
−η,

β − 3η

8
,
η

2

)
,

and C1 := C1(γ, α1, w1, β, η, x1, fi, ĉi, g̃
1
i , c̃

1
i , i =

1, . . . , n) does not explicitly depend on n.

Under the same conditions, for the standard SGD we have
for all k ≥ 1 that

√
E [costk]·E [∥H(x̄k,γ − x∗)∥] ≤

√
ρ(p∗SGD)

1− γ
+C2

√
|I|

kcβ
,

where the constant cβ := min(1/2 − β/2, β − 1/2) and
C2 := C2(γ, α1, β, x1, fi, ĉi, i = 1, . . . , n) does not ex-
plicitly depend on n.

The key step of the proof of Theorem 4.12 is to control the
error of the estimated sampling weights pk in approximat-
ing the limit p∗Hete, which is carried out by first bounding
the estimation errors of the quantities c̃k, g̃k, G̃k needed in
the efficiency metric (2.4) and then propagating the errors
to the sampling weights via a novel sensitivity analysis of
the mapping from these quantities to the resulting sampling
weights. The details can be found in Appendix D.

The finite-time bound (4.3) for the cost-scaled error con-
sists of a constant term

√
ρ(p∗Hete)/(1− γ) that matches

the asymptotic size of
√
costk∇f(x̄k,γ) given in Theo-

rem 4.8 and several polynomially decaying high-order
terms. To compare the finite-time behavior of Het-
eRSGD with the standard SGD, suppose the constant term

dominates the bound (4.3), i.e., E [∥H(x̄k,γ − x∗)∥] ≤√
ρ(p∗Hete)/((1− γ)E [costk]) approximately holds,

and for the standard SGD we approximately have
E [∥H(x̄k,γ − x∗)∥] ≤

√
ρ(p∗SGD)/((1− γ)E [costk]).

By the optimality of p∗Hete, HeteRSGD achieves lower
solution errors than the standard SGD under the same
sampling budget in this regime. It can be verified that
the depicted condition k ≥ (n/|I|)1/(1−6η) is sufficient
for making the high-order terms negligible in (4.3). Note
that this is roughly k ≥ n/|I| when η is chosen small,
therefore HeteRSGD outperforms the standard SGD after
each fi has been sampled at least once on average and has
a reasonable estimate for its sampling cost.

5 EXTENSION

The previous section shows the optimal sampling complex-
ity of HeteRSGD for averaged solutions, and this section
extends HeteRSGD to a family of algorithms that are opti-
mal for individual SGD iterates.

We begin with designing a new family of efficiency met-
rics. One crucial fact that makes the sampling weights de-
termined by (2.4) optimal for averaged solutions is that the
cost term

∑n
i=1 p

k
i ci in (2.4) comes with an exponent of 1

that matches the k−1 convergence rate of the error of an
averaged solution. In the strongly convex and smooth case,
the error of the final iterate is of order k−β (e.g., Papa et al.,
2015) if the step size αk = α1/k

β , β ∈ (1/2, 1) is used,
which motivates the following counterpart of (2.4)(

n∑
i=1

pki ci

)β ( n∑
i=1

∥∇fi(xk)∥2

n2pki
− ∥∇f(xk)∥2

)
. (5.1)

Compared to (2.4), (5.1) is slightly less sensitive to surges
in sampling costs due to the smaller exponent β. The
family of efficiency metrics (5.1) parameterized by β ∈
(1/2, 1) therefore induce a family of importance samplers
with varying levels of awareness of cost heterogeneity.

Our HeteRSGD variant using the new sampling metric
(5.1), called HeteRSGDβ , is the same as Algorithm 2 ex-
cept that p̃k is now calculated by minimizing(

n∑
i=1

pki c̃
k
i

)β
 n∑

i=1

(g̃ki )
2

n2pki
−min

(
∥G̃k∥,

n∑
i=1

g̃ki
n

)2
 ,

in place of (3.4). The optimal weights here can be com-
puted efficiently via a nested bisection, the details of which
are left to Appendix F. We have the following counterpart
of Theorem 4.8 for individual SGD iterates:

Theorem 5.1. Assume all the conditions in Theorem 4.8.
Assume further that f is thrice continuously differentiable
in a neighborhood of x∗, and that the sequence {wk}∞k=1

satisfies supk αk/w
3+δ
k < ∞ for some δ > 0, and

limk→∞ αk

∑k
j=1 αj/w

2
j = 0. Then it holds for Algorithm
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1 that

cost
β
2

k · (xk − x∗) ⇒ N
(
0,

α1

|I|1−β
c(p∗)βΣ(p∗)

)
,

where Σ(p∗) satisfies Σ(p∗)H +HΣ(p∗) = G(p∗), and

cost
β
2

k · ∇f(xk) ⇒ N
(
0,

α1

|I|1−β
c(p∗)βHΣ(p∗)H

)
,

costβk · (f(xk)− f(x∗)) ⇒∥∥∥∥N (
0,

α1

2|I|1−β
c(p∗)βH

1
2Σ(p∗)H

1
2

)∥∥∥∥2 .
The proof of Theorem 5.1 builds on a general CLT from
Fort (2015) for controlled Markov chains and can be found
in Appendix E.

To demonstrate the applicability of Theorem 5.1 to
HeteRSGDβ , we need to verify Assumption 4.5. Denote
by

ρβ(p) :=

(
n∑

i=1

pici

)β ( n∑
i=1

1

n2pi
∥∇fi(x

∗)∥2
)

(5.2)

the counterpart of (4.1), i.e., the metric (5.1) at the opti-
mum. Then the sampling distribution in HeteRSGDβ con-
verges to the optimal one stipulated by (5.2) (see proof in
Appendix E):

Proposition 5.2. Let p∗Heteβ := argminp∈∆n
ρβ(p). Un-

der the same conditions of Proposition 4.6, we have pk →
p∗Heteβ almost surely for HeteRSGDβ .

We demonstrate the optimality of HeteRSGDβ for individ-
ual iterates based on Theorem 5.1. For an SGD scheme
with limit sampling weights p∗, a similar analysis as in Sec-
tion 4.3 leads to the following asymptotic error of its last
iterate xC when a fixed sampling budget C is consumed

E[f(xC)]− f(x∗) ≈ α1

2Cβ |I|1−β
c(p∗)βTr(H

1
2Σ(p∗)H

1
2 )

=
α1

2Cβ |I|1−β
c(p∗)βTr(HΣ(p∗))

=
α1

4Cβ |I|1−β
c(p∗)βTr(G(p∗))

=
α1

4Cβ |I|1−β
ρβ(p

∗),

where the second equality follows from Σ(p∗)H +
HΣ(p∗) = G(p∗). Since p∗Heteβ minimizes the efficiency
metric ρβ , by Proposition 5.2 HeteRSGDβ with β match-
ing the decay rate of the step size α1/k

β achieves the least
asymptotic error in the objective of the last (and hence
each individual) SGD iterate among all possible IS-based
schemes. Similarly, one can argue similar minmax opti-
mality as in Section 4.3 for the errors xC−x∗ and ∇f(xC).

Besides the type of solution (averaged versus individual
ones) that is concerned for optimality, another notable
distinction between HeteRSGDβ and HeteRSGD is that
HeteRSGDβ becomes optimal only if the step size decays
as 1/kβ so that the order of the solution error matches the

exponent β in the efficiency metric. Averaged solutions al-
ways have errors of order 1/k, and thus optimality of Het-
eRSGD holds regardless of the step size choice.

6 NUMERICAL EXPERIMENTS

We present the numerical results in this section. In each
experiment, we compare HeteRSGD (Algorithm 2) and
HeteRSGDβ with several baselines:

• SGD: The standard stochastic gradient descent with
uniform sampling.

• SRG: The stochastic reweighted gradient descent
(El Hanchi et al., 2022, Algorithm 1) that switches
between the uniform distribution and an IS distribu-
tion induced from estimates of gradient norms, and
updates gradient norm estimates only if the uniform
distribution is used.

• SRG-m: A modified version of SRG that draws sam-
ples according to a weighted average of the two prob-
ability distributions used in SRG, and updates gradi-
ent norm estimates in each iteration. We consider this
version because the original SRG seldom updates the
gradient norms.

The problems we test on are all in the form of (1.1). For
each problem, we run the algorithms until some pre-fixed
sampling cost budget is reached. To mitigate the effect
of algorithmic randomness, we run each algorithm for 10
times and report the average error of the Polyak-Ruppert
averaged solution. More precisely, we report the average
of the error ∥ 1

k

∑k
j=1 xj − x∗∥2 for convex problems or

∥∇f( 1k
∑k

j=1 xj)∥2 for non-convex problems. Other im-
plementation details can be found in Appendix G. We use
the following test problems.

A synthetic example: We consider a finite-sum of n =
100 components, and each

fi(x1, x2) =
1

2
(x1 + ai)

2 +
1

2
(x2 + bi)

2.

Let θj , 1 ≤ j ≤ n/2 be independently drawn from
Uniform(0, 2π). For each 1 ≤ j ≤ n/4, let −a2j =
a2j−1 = sin(θj), −b2j = b2j−1 = cos(θj), and c2j =
c2j−1 = ϵ2 for ϵ ∈ {0.01, 0.3}. For each n/4 + 1 ≤ j ≤
n/2, let −a2j = a2j−1 = 0.01 sin(θj),−b2j = b2j−1 =
0.01 cos(θj), and c2j = c2j−1 = 1. The optimal solu-
tion is x∗

1 = x∗
2 = 0. ϵ controls the degree of hetero-

geneity in sampling costs for this example, and a smaller
ϵ induces higher heterogeneity. When ϵ = 0.01, the esti-
mated speedup from using HeteRSGD compared to SGD
and SRG can be calculated to be ρ(p∗Hete)/ρ(p

∗
SGD) ≈

4 × 10−4 and ρ(p∗Hete)/ρ(p
∗
SRG) ≈ 0.039. Results are

shown in Figure 2.

ℓ2-regularized logistic regression: The ℓ2-regularized lo-
gistic regression is a strongly convex binary classification
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(a) Logistic regression on CINA. (b) Logistic regression on gisette. (c) Nonconvex classification on CINA.

Figure 1: Results on real data sets.

(a) ϵ = 0.3.

(b) ϵ = 0.01.
Figure 2: Results on the synthetic example.

problem with

fi(x) = log
(
1 + exp(−bia

T
i x)

)
+

µ

2
∥x∥2,

where ai ∈ Rd and bi ∈ {−1, 1}. Each ai is normal-
ized such that ∥ai∥ = 1 and µ = 0.001. Each cost ci
is drawn i.i.d. from Lognormal(0, 1). We use the dataset
CINA1 (n = 16033, d = 132) and gisette2 (n =
6000, d = 5000). The relative efficiency is calculated
to be ρ(p∗Hete)/ρ(p

∗
SGD) = 0.28, ρ(p∗Hete)/ρ(p

∗
SRG) =

0.78 for CINA, and ρ(p∗Hete)/ρ(p
∗
SGD) = 0.53,

ρ(p∗Hete)/ρ(p
∗
SRG) = 0.78 for gisette. Results are

shown in Figure 1a and Figure 1b, respectively.

A non-convex example: Although our theory focuses on
the convex setting, we also test a nonconvex binary clas-

1http://www.causality.inf.ethz.ch/data/
CINA.html

2https://archive.ics.uci.edu/ml/datasets/
Gisette

sification problem (Mason et al., 1999; Wang et al., 2017)
with fi being

fi(x) = 1− tanh(bia
T
i x) +

µ

2
∥x∥2,

and all other settings being the same as the logistic regres-
sion problem. Results on CINA are in Figure 1c.

Figures 1 and 2 show that the two proposed methods,
especially HeteRSGD, outperform the three baselines by
achieving the same level of solution error as the best base-
line with roughly 40% less sampling cost in all convex
cases and 70% less in the nonconvex example. Notably,
Figure 2b shows almost an order-of-magnitude improve-
ment from SGD/SRG to HeteRSGDβ and an even more
significant speedup when HeteRSGD is used. Specifi-
cally, HeteRSGD and HeteRSGDβ achieve the same ac-
curacy as SGD/SRG/SRG-m with roughly 95% and 70%
less sampling costs respectively, consolidating the advan-
tage of our methods in the presence of high sampling het-
erogeneity. As a side note, the relative ranking among
HeteRSGD, SGD and SRG-m at the largest sampling cost
roughly match their theoretical efficiencies in each case.
For example, in Figure 1a the ranking of the solution er-
ror HeteRSGD < SRG-m < SGD matches that of their
efficiency metrics ρ(p∗Hete) < ρ(p∗SRG) < ρ(p∗SGD).

Comparing HeteRSGD and HeteRSGDβ , we see that in
all the cases the sampling cost reduced by HeteRSGDβ

is not as significant as HeteRSGD. This is consistent with
the theories that HeteRSGD is optimal for averaged iterates
whereas HeteRSGDβ is optimal for individual iterates.

7 CONCLUSION

In this work, we investigate the use of importance sampling
(IS) as a cost saver to accelerate stochastic gradient descent
(SGD) under heterogeneous sampling costs. We propose a
novel family of sampling efficiency metrics for IS design
that balance cost reduction and variance reduction. Our
proposed algorithm HeteRSGD draws samples according
to probability weights derived from an empirical version of
the efficiency metric in each iteration, and is provably more
efficient than any other IS-based SGD scheme. Encourag-
ing numerical results are discussed.
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A PROOFS FOR RESULTS IN SECTION 4.1

Proof of Theorem 4.2. It follows from
∑∞

k=1 α
2
k < ∞ that limk→∞ αk = 0. Without loss of generality, we assume that

αk < min{1/µ, µ/L2}, ∀ k ≥ 1. It can be computed that

∥xk+1 − x∗∥2 = ∥xk − x∗ − αk∇f(xk)− αkξk∥2

= ∥xk − x∗ − αk∇f(xk)∥2 − 2αk⟨xk − x∗ − αk∇f(xk), ξk⟩+ α2
k∥ξk∥2,

which combined with E[ξk|Fk−1] = 0 yields that

E
[
∥xk+1 − x∗∥2|Fk−1

]
= ∥xk − x∗ − αk∇f(xk)∥2 + α2

kE
[
∥ξk∥2|Fk−1

]
.

By strong convexity, one has that

∥xk − x∗ − αk∇f(xk)∥2 = ∥xk − x∗∥2 − 2αk⟨∇f(xk), xk − x∗⟩+ α2
k∥∇f(xk)∥2

≤ ∥xk − x∗∥2 + 2αk

(
f(x∗)− f(xk)−

µ

2
∥xk − x∗∥2

)
+ α2

k∥∇f(xk)∥2

≤ (1− αkµ)∥xk − x∗∥2 − 2αk(f(xk)− f(x∗)) + α2
k∥∇f(xk)∥2,

and that
f(xk)− f(x∗) ≥ µ

2
∥xk − x∗∥2 ≥ µ

2L2
∥∇f(xk)∥2 ≥ αk

2
∥∇f(xk)∥2,

where the last inequality is guaranteed by αk ≤ µ/L2. Therefore, combining the above calculations, one obtains that

E
[
∥xk+1 − x∗∥2|Fk−1

]
≤ (1− αkµ)∥xk − x∗∥2 + α2

kE
[
∥ξk∥2|Fk−1

]
, (A.1)

which then implies that

E
[
∥xk+1 − x∗∥2

]
≤ (1− αkµ)E

[
∥xk − x∗∥2

]
+ α2

kE
[
∥ξk∥2

]
≤ (1− αkµ)(1− αk−1µ)E

[
∥xk−1 − x∗∥2

]
+ (1− αkµ)α

2
k−1E

[
∥ξk−1∥2

]
+ α2

kE
[
∥ξk∥2

]
≤ · · ·

≤

 k∏
j=1

(1− αjµ)

E
[
∥x1 − x∗∥2

]
+

k∑
j=1

 k∏
l=j+1

(1− αlµ)

α2
jE
[
∥ξj∥2

]
.

It follows from
∑∞

k=1 αk = ∞ that
∏∞

k=1(1 − αkµ) = 0. For any ϵ > 0, since
∑∞

k=1 α
2
kE[∥ξk∥2] < ∞, there exists

k0 ∈ N+ such that
∑∞

k=k0
α2
kE[∥ξk∥2] < ϵ, and k1 ∈ N+ with k1 > k0 such that

∏k1

k=k0
(1 − αkµ) < ϵ. Then for any

k ≥ k1, it holds that

E
[
∥xk+1 − x∗∥2

]
≤

 k1∏
j=k0

(1− αjµ)

E
[
∥x1 − x∗∥2

]
+

k0−1∑
j=1

(
k1∏

l=k0

(1− αlµ)

)
α2
jE
[
∥ξj∥2

]
+

k∑
j=k0

α2
jE
[
∥ξj∥2

]
≤ ϵ · E

[
∥x1 − x∗∥2

]
+ ϵ ·

k0−1∑
j=1

α2
jE
[
∥ξj∥2

]
+ ϵ
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≤ ϵ ·

E
[
∥x1 − x∗∥2

]
+

∞∑
j=1

α2
jE
[
∥ξj∥2

]
+ 1

 ,

which proves that limk→∞ E
[
∥xk − x∗∥2

]
= 0, i.e., xk → x∗ in L2.

Then we consider the almost sure convergence. According to (A.1), it holds that

∞∑
k=1

E
[
E
[
∥xk+1 − x∗∥2 − ∥xk − x∗∥2|Fk−1

]
+

]
≤

∞∑
k=1

α2
kE
[
∥ξk∥2

]
< ∞.

Then using the martingale convergence theorem (Blum, 1954, Corollary in Section 3), one can conclude that ∥xk − x∗∥2
converges almost surely to a random variable Z. It follows from limk→∞ E

[
∥xk − x∗∥2

]
= 0 that {∥xk − x∗∥2}∞k=1 has

a subsequence that converges to 0 almost surely. Therefore, ∥xk − x∗∥2 → 0, a.s., which leads to xk → x∗, a.s..

Proof of Lemma 4.3. Similarly, we can assume that αk < min{1/µ, µ/L2}, ∀ k ≥ 1. It follows from

ξk =
1

|Ik|
∑
i∈Ik

1

npki
∇fi(xk)−∇f(xk) =

1

|Ik|
∑
i∈Ik

(
1

npki
∇fi(xk)−∇f(xk)

)
,

that

E
[
∥ξk∥2|Fk−1

]
=

1

|Ik|

(
1

n2

n∑
i=1

1

pki
∥∇fi(xk)∥2 − ∥∇f(xk)∥2

)

≤ 1

|Ik| · nwk

n∑
i=1

∥∇fi(xk)∥2

≤ 1

|Ik| · nwk

n∑
i=1

(∥∇fi(x
∗)∥+ L∥xk − x∗∥)2

≤ 2

|Ik| · nwk

n∑
i=1

∥∇fi(x
∗)∥2 + 2L2

|Ik| · wk
∥xk − x∗∥2,

where we used the L-smoothness of fi and pki ≥ wk/n. Therefore, one has that

E
[
∥ξk∥2

]
≤ Cf

|Ik|wk

(
1 + E

[
∥xk − x∗∥2

])
, (A.2)

with Cf = max
{

2
n

∑n
i=1 ∥∇fi(x

∗)∥2, 2L2
}

, which combined with (A.1) yields that

E
[
∥xk+1 − x∗∥2

]
≤
(
1− αkµ+

α2
kCf

|Ik|wk

)
E
[
∥xk − x∗∥2

]
+

α2
kCf

|Ik|wk
≤
(
1 +

α2
kCf

|Ik|wk

)
E
[
∥xk − x∗∥2

]
+

α2
kCf

|Ik|wk
,

i.e.,

E
[
∥xk+1 − x∗∥2

]
+ 1 ≤

(
1 +

α2
kCf

|Ik|wk

)(
E
[
∥xk − x∗∥2

]
+ 1
)
.

It follows from
∑∞

k=1
α2

k

wk
< ∞ that

∏∞
k=1

(
1 +

α2
kCf

|Ik|wk

)
< ∞. Then it holds that

sup
k≥1

E
[
∥xk − x∗∥2

]
< ∞. (A.3)

Combining (A.2) and (A.3), one can conclude that

∞∑
k=1

α2
kE
[
∥ξk∥2

]
≤

∞∑
k=1

α2
kCf

|Ik|wk
·
(
1 + sup

k≥1
E
[
∥xk − x∗∥2

])
< ∞,

where we used
∑∞

k=1
α2

k

wk
< ∞.
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B PROOF FOR THEOREM 4.8

This section is for the proof of Theorem 4.8. We use similar framework and techniques as in Polyak and Juditsky (1992):
we first establish in Theorem B.1 a central limit theorem for the linearized system {yk}∞k=1 defined via y1 = x1, and

yk+1 − x∗ = (yk − x∗)− αkH(yk − x∗)− αkξk, k ≥ 1,

where H = ∇2f(x∗), and then prove in Theorem B.2 that the Polyak-Ruppert averaging or α-suffix averaging of

δk = xk − yk, k ≥ 1,

converges to 0 in probability.
Theorem B.1. Suppose Assumptions 4.1, 4.4 and 4.5 hold. Suppose in addition that αk = α1/k

β , where β ∈ (1/2, 1)
and that |Ik| = |I| is fixed for any k ≥ 1. If there exists a non-increasing sequence {wk}∞k=1 ⊂ (0, 1] satisfying
pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n} and k ≥ 1, limk→∞ αk/w

2
k = 0, and

∑∞
k=1 α

2
k/wk < ∞, then the sequence {yk}∞k=1

generated by the linearized system satisfies√
(1− γ)k · (ȳk,γ − x∗) ⇒ N

(
0,

1

|I|
H−1G(p∗)H−1

)
, (B.1)

where ȳk,γ = 1
(1−γ)k

∑k
j=[γk]+1 yj and γ ∈ [0, 1).

Theorem B.2. Suppose Assumptions 4.1, 4.4 and 4.5 hold. Suppose in addition that αk = α1/k
β , where β ∈ (1/2, 1), and

f is twice continuously differentiable in a neighbourhood of x∗. If there exists a non-increasing sequence {wk}∞k=1 ⊂ (0, 1]

satisfying pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n} and k ≥ 1, limk→∞ αk/w
2
k = 0 and

∑∞
k=1 αk/(wk

√
k) < ∞. Then√

(1− γ)k · δ̄k,γ → 0 in probability, where δ̄k,γ = 1
(1−γ)k

∑k
j=[γk]+1 δj and γ ∈ [0, 1).

The proof of Theorem 4.8 can now be presented based on Theorem B.1 and Theorem B.2 whose proofs can be found in
Subsection B.1 and Subsection B.2, respectively.

Proof of Theorem 4.8. Combining Theorem B.1 and Theorem B.2, we have that

√
k · (x̄k,γ − x∗) ⇒ N

(
0,

1

(1− γ)|I|
H−1G(p∗)H−1

)
.

Note that |Ik| = |I| is a constant for any k ∈ N+. Proposition 4.7 yields that

costk
k

→ |I| · c(p∗), almost surely.

According to Slutsky’s theorem, the above two convergence results immediately imply that

√
costk · (x̄k,γ − x∗) ⇒ N

(
0,

c(p∗)

1− γ
H−1G(p∗)H−1

)
.

Therefore, it holds that
√

costk ·H(x̄k,γ − x∗) ⇒ N
(
0,

c(p∗)

1− γ
G(p∗)

)
,

and that

costk · 1
2
(x̄k,γ − x∗)TH(x̄k,γ − x∗) ⇒

∥∥∥∥N (
0,

c(p∗)

2(1− γ)
H− 1

2G(p∗)H− 1
2

)∥∥∥∥2 .
Note also that xk → x∗ a.s. by Theorem 4.2 and that ∇f(x) = H(x − x∗) + o(∥x − x∗∥) and f(x) − f(x∗) =
1
2 (x− x∗)TH(x− x∗) + o(∥x− x∗∥2) as x → x∗. We can thus conclude that

√
costk · ∇f(x̄k,γ) ⇒ N

(
0,

c(p∗)

1− γ
G(p∗)

)
,

and that

costk · (f(x̄k,γ)− f(x∗)) ⇒
∥∥∥∥N (

0,
c(p∗)

2(1− γ)
H− 1

2G(p∗)H− 1
2

)∥∥∥∥2 .
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B.1 Proof of Theorem B.1

To present the proof of Theorem B.1, we need the following lemma and the notations therein.

Lemma B.3 (Lemma 1 from Polyak and Juditsky (1992)). Suppose that H ∈ Rd×d is a symmetric matrix with H ⪰ µI ,
µ > 0. Define {Ak

j }k≥j≥1 ⊂ Rd×d via:

Aj
j = I, and Ak+1

j = (I − αkH)Ak
j , k ≥ j + 1.

Set

Sk
j =

k∑
l=j

Al
j , k ≥ j ≥ 1.

If the stepsize satisfies αk → 0, kαk ↑ ∞, and αk−αk+1

αkαk+1
↓ 0, as k → ∞, then the followings hold:

(i) There exists some constant CS > 0, such that
∥∥H−1 − αjS

k
j+1

∥∥ ≤ CS , ∀ k ≥ j + 1, j ∈ N+.

(ii) limk→∞
1
k

∑k−1
j=1

∥∥H−1 − αjS
k
j+1

∥∥ = 0.

Proof of Theorem B.1. The proof uses techniques from Polyak and Juditsky (1992), with some new technical lemmas. For
any k ≥ k0 ≥ 1, it can be computed that

yk − x∗ = (I − αk−1H)(yk−1 − x∗)− αk−1ξk−1

= (I − αk−1H)(I − αk−2H)(yk−2 − x∗)− (I − αk−1H)αk−2ξk−2 − αk−1ξk−1

= · · ·

=

k−k0∏
j=1

(I − αk−jH)

 (yk0 − x∗)−
k−1∑
j=k0

(
k−j−1∏
l=1

(I − αk−lH)

)
αjξj

= Ak
k0
(yk0 − x∗)−

k−1∑
j=k0

Ak
j+1αjξj .

Therefore, it holds that

ȳk,γ − x∗ =
1

(1− γ)k

k∑
j=[γk]+1

yj

=
1

(1− γ)k

k∑
j=[γk]+1

Aj
[γk]+1(y[γk]+1 − x∗)−

j−1∑
l=[γk]+1

Aj
l+1αlξl


=

1

(1− γ)k

 k∑
j=[γk]+1

Aj
[γk]+1

 (y[γk]+1 − x∗)− 1

(1− γ)k

k−1∑
l=[γk]+1

αl

 k∑
j=l+1

Aj
l+1

 ξl

=
1

(1− γ)k
Sk
[γk]+1(y[γk]+1 − x∗)− 1

(1− γ)k

k−1∑
j=[γk]+1

αjS
k
j+1ξj

=
1

(1− γ)k
Sk
[γk]+1(y[γk]+1 − x∗)− 1

(1− γ)k

k−1∑
j=[γk]+1

H−1ξj +
1

(1− γ)k

k−1∑
j=[γk]+1

(
H−1 − αjS

k
j+1

)
ξj ,

i.e.,√
(1− γ)k · (ȳk,γ − x∗) =

1√
(1− γ)k

Sk
[γk]+1(y[γk]+1 − x∗)− 1√

(1− γ)k

k−1∑
j=[γk]+1

H−1ξj +
1√

(1− γ)k

k−1∑
j=[γk]+1

(
H−1 − αjS

k
j+1

)
ξj .
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The limiting behaviour of the three terms in
√

(1− γ)k · (ȳk,γ − x∗) are established in the Lemma B.4, Lemma B.6, and
Lemma B.7, respectively. Then one can conclude (B.1).

Lemma B.4. Suppose that Assumption 4.1, Assumption 4.4, and Assumption 4.5 holds and that αk = α1/k
β for β ∈

(1/2, 1). Suppose further that there exists a sequence {wk}∞k=1 ⊂ (0, 1] satisfying pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n}, k ≥ 1,∑∞
k=1 α

2
k/wk < ∞, and limk→∞ αk/w

2
k = 0. Then

1√
k
Sk
[γk]+1(y[γk]+1 − x∗) → 0,

in probability.

We need another lemma for proving Lemma B.4.

Lemma B.5. Suppose that Assumption 4.1 holds. If there exists a sequence {wk}∞k=1 ⊂ (0, 1] satisfying pki ≥
wk/n, ∀ i ∈ {1, 2, . . . , n}, k ≥ 1,

∑∞
k=1 α

2
k/wk < ∞, and limk→∞

αk−αk+1

α2
k

= 0, then there exists Cx > 0, such

that E
[
∥xk − x∗∥2

]
≤ Cxαk/wk.

Proof. The proof of Lemma 4.3 implies that E
[
∥ξk∥2

]
≤ Cξ/(|Ik|wk), ∀ k ∈ N+ holds for some constant Cξ > 0.

There exists k0 ∈ N+, such that αk − αk+1 ≤ µ
2α

2
k, ∀ k ≥ k0. Choose Cx > 0 such that Cξ/Cx < µ/2 and

E
[
∥xk − x∗∥2

]
≤ Cxαk/wk, ∀ k ≤ k0. We then prove by induction that E

[
∥xk − x∗∥2

]
≤ Cxαk/wk holds for all

k ∈ N+. Assume that E
[
∥xk − x∗∥2

]
≤ Cxαk/wk for some k, then by (A.1), one has that

E
[
∥xk+1 − x∗∥2

]
≤ (1− αkµ)E

[
∥xk − x∗∥2

]
+ α2

k

Cξ

|Ik|wk
≤ 1

wk

(
Cxαk − Cxµα

2
k + Cx

µ

2
α2
k

)
=

Cx

wk

(
αk − µ

2
α2
k

)
≤ Cxαk+1

wk+1
,

which completes the proof.

Proof of Lemma B.4. Since α[γk]S
k
[γk]+1 is bounded by Lemma B.3, it suffices to show that y[γk]+1−x∗

√
kα[γk]+1

→ 0 in probability,

which is equivalent to yk−x∗
√
kαk

→ 0 in probability. Note that

1√
kαk

(yk − x∗) =
1√
kαk

Ak
1(y1 − x∗)− 1√

kαk

k−1∑
j=1

Ak
j+1αjξj .

Therefore, it suffices to prove that
1√
kαk

Ak
1(y1 − x∗) → 0, (B.2)

and that
1√
kαk

k−1∑
j=1

Ak
j+1αjξj → 0, in probability. (B.3)

We first prove (B.2). Let H = UΣU⊤ be the singular value decomposition of H ⪰ µI , where U ∈ O(d) and Σ =
diag(σ1, σ2, . . . , σd) satisfies σ1 ≥ σ2 ≥ · · · ≥ σd ≥ µ. Without loss of generality, we can assume that α1 ≤ 1/σ1. Then
it holds that

0 ⪯ 1√
kαk

Ak
1 = Udiag

 1√
kαk

k−1∏
j=1

(1− αjσ1), . . . ,
1√
kαk

k−1∏
j=1

(1− αjσd)

UT ⪯ 1√
kαk

k−1∏
j=1

(1− αjµ) · I.

Since

1√
kαk

k−1∏
j=1

(1− αjµ) ≤
kβ−1/2

α1
exp

−µ

k−1∑
j=1

αj

 ≤ kβ−1/2

α1
exp

(
−µα1

∫ k

1

t−βdt

)
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=
kβ−1/2

α1
exp

(
− µα1

1− β
(k1−β − 1)

)
→ 0, as k → ∞,

we get 1√
kαk

Ak
1 → 0 which implies (B.2).

We then consider (B.3). Let I∗
+ = {i : p∗i > 0} and δ∗ = min{p∗i /2 : i ∈ I∗

+}. By Assumption 4.4, we know that I∗
+ ̸= ∅

and δ∗ > 0. Define
Ωk = {pki ≥ δ∗, ∀ i ∈ I∗

+}, (B.4)

which is Fk−1-measurable, and

Ω≥k = {pji ≥ δ∗, ∀ i ∈ I∗
+, j ≥ k} =

⋂
j≥k

Ωj , and ΩT :k =
⋂

T≤j≤k

Ωj .

Assumption 4.5 and the continuity of probability guarantee that

lim
k→∞

P(Ω≥k) = P

⋃
k≥0

Ω≥k

 = 1. (B.5)

Even if we do not assume the L2-boundedness of {ξk}∞k=1, {ξkIΩk
}∞k=1 can be proved as bounded in the L2 sense:

E
[
∥ξk∥2IΩk

]
= E

[
E
[
∥ξk∥2IΩk

|Fk−1

]]
= E

[(
1

|Ik|n2

n∑
i=1

1

pki
∥∇fi(xk)∥2 −

1

|Ik|
∥∇f(xk)∥2

)
IΩk

]

≤ 1

n2
E

∑
i∈I∗

+

∥∇fi(xk)∥2

δ∗
+
∑
i/∈I∗

+

∥∇fi(xk)∥2

pki


≤ 1

n2
E

∑
i∈I∗

+

(∥∇fi(x
∗)∥+ L∥xk − x∗∥)2

δ∗
+
∑
i/∈I∗

+

∥xk − x∗∥2

wk


≤ C ′

ξ,Ω

(
1 + E

[
∥xk − x∗∥2

]
+

1

wk
E
[
∥xk − x∗∥2

])
≤ C ′

ξ,Ω

(
1 +

Cxαk

wk
+

Cxαk

w2
k

)
≤ Cξ,Ω,

i.e.,
E
[
∥ξk∥2IΩk

]
≤ Cξ,Ω, (B.6)

for some constant C ′
ξ,Ω, Cξ,Ω > 0, where we used Lemma B.5 and limk→∞ αk/w

2
k = 0.

Consider any k ≥ T . It holds that

E


∥∥∥∥∥∥
k−1∑
j=1

Ak
j+1αjξjIΩ≥T

∥∥∥∥∥∥
2
 ≤ E


∥∥∥∥∥∥
k−1∑
j=1

Ak
j+1αjξjIΩT :k−1

∥∥∥∥∥∥
2


= E

E

∥∥∥∥∥∥
k−2∑
j=1

Ak
j+1αjξjIΩT :k−1

+Ak
kαk−1ξk−1IΩT :k−1

∥∥∥∥∥∥
2 ∣∣∣∣∣Fk−2




= E


∥∥∥∥∥∥
k−2∑
j=1

Ak
j+1αjξjIΩT :k−1

∥∥∥∥∥∥
2
+ E

[
∥Ak

kαk−1ξk−1IΩT :k−1
∥2
]
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≤ E


∥∥∥∥∥∥
k−2∑
j=1

Ak
j+1αjξjIΩT :k−2

∥∥∥∥∥∥
2
+ α2

k−1∥Ak
k∥2E

[
∥ξk−1∥2IΩk−1

]
≤ · · ·

≤ E


∥∥∥∥∥∥
T−1∑
j=1

Ak
j+1αjξj

∥∥∥∥∥∥
2
+

k−1∑
j=T

α2
j∥Ak

j+1∥2E
[
∥ξj∥2IΩj

]

≤
T−1∑
j=1

α2
j∥Ak

j+1∥2E
[
∥ξj∥2

]
+ Cξ,Ω

k−1∑
j=T

α2
j∥Ak

j+1∥2,

i.e.,

E


∥∥∥∥∥∥ 1√

kαk

k−1∑
j=1

Ak
j+1αjξjIΩ≥T

∥∥∥∥∥∥
2
 ≤ 1

kα2
k

T−1∑
j=1

α2
j∥Ak

j+1∥2E
[
∥ξj∥2

]
+

Cξ,Ω

kα2
k

k−1∑
j=T

α2
j∥Ak

j+1∥2. (B.7)

Recall that from the singular value decomposition of H , one can compute that

Ak
T = Udiag

(
k−1∏
l=T

(1− αlσ1), . . . ,

k−1∏
l=T

(1− αlσd)

)
UT .

Thus, for any fixed T with αT < 1/σ1, we have for

∥Ak
T ∥ ≤

k−1∏
l=T

(1− αlµ) ≤ exp

(
−µ

k−1∑
l=T

αl

)
≤ exp

(
−µα1

∫ k

T

t−βdt

)
≤ exp

(
− µα1

1− β

(
k1−β − T 1−β

))
, (B.8)

which implies that

1

kα2
k

T−1∑
j=1

α2
j∥Ak

j+1∥2E
[
∥ξj∥2

]
≤

T−1∑
j=1

α2
j∥AT

j+1∥2E
[
∥ξj∥2

]
· 1

kα2
k

∥Ak
T ∥2

≤
T−1∑
j=1

α2
j∥AT

j+1∥2E
[
∥ξj∥2

]
· k

2β−1

α2
1

exp

(
− 2µα1

1− β
(k1−β − T 1−β)

)
→ 0,

(B.9)

as k → ∞. Consider h(x) = x1−β , which is increasing and concave. So h(k − k
β+1
2 ) ≤ h(k) − k

β+1
2 h′(k) =

h(k)− (1− β)k
1−β
2 , which implies

k1−β − (k − k
β+1
2 )1−β ≥ (1− β)k

1−β
2 .

For any fixed T with αT < 1/σ1 and any j ≥ T , it can be estimated in a way similar to (B.8) that

∥Ak
j+1∥ ≤ exp

(
− µα1

1− β

(
k1−β − (j + 1)1−β

))
≤ exp

(
µα1

1− β
(T + 1)1−β

)
.

Thus, one has that

1

kα2
k

k−1∑
j=T

α2
j∥Ak

j+1∥2 ≤
∑

T≤j<k−k
β+1
2

α2
j

kα2
k

exp

(
− µα1

1− β

(
k1−β − (j + 1)1−β

))

+ exp

(
µα1

1− β
(T + 1)1−β

)
· 1
k

∑
k−k

β+1
2 ≤j<k

α2
j

α2
k

≤
∑

T≤j<k−k
β+1
2

α2
j

kα2
k

exp

(
− µα1

1− β

(
k1−β − (k − k

β+1
2 )1−β

))
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+ exp

(
µα1

1− β
(T + 1)1−β

)
· 1
k

∑
k−k

β+1
2 ≤j<k

(
k

k − k
β+1
2

)2β

≤k2β exp

(
− µα1

1− β
· (1− β)k

1−β
2

)
+ exp

(
µα1

1− β
(T + 1)1−β

)
· k

β+1
2

k

(
k

k − k
β+1
2

)2β

→ 0,

which combined with (B.7) and (B.9) yields that

lim
k→∞

E


∥∥∥∥∥∥ 1√

kαk

k−1∑
j=1

Ak
j+1αjξjIΩ≥T

∥∥∥∥∥∥
2
→ 0.

Then we are ready to prove (B.3). For any ϵ, δ > 0, according to (B.5), there exists T such that P(Ω≥T ) ≥ 1− δ. We can
further require that αT < 1/σ1. Thus,

P

∥∥∥∥∥∥ 1√
kαk

k−1∑
j=1

Ak
j+1αjξj

∥∥∥∥∥∥ > ϵ

 ≤ P

∥∥∥∥∥∥ 1√
kαk

k−1∑
j=1

Ak
j+1αjξjIΩ≥T

∥∥∥∥∥∥ > ϵ

+ P(ΩC
≥T )

≤ 1

ϵ2
E


∥∥∥∥∥∥ 1√

kαk

k−1∑
j=1

Ak
j+1αjξjIΩ≥T

∥∥∥∥∥∥
2
+ δ < 2δ,

for sufficiently large k, which implies that

lim
k→∞

P

∥∥∥∥∥∥ 1√
kαk

k−1∑
j=1

Ak
j+1αjξj

∥∥∥∥∥∥ > ϵ

 = 0,

and hence the convergence in probability (B.3). The proof is completed.

Lemma B.6. Suppose Assumptions 4.1, 4.4 and 4.5 hold, and the minibatch size |Ik| = |I| is fixed for any k ≥ 1.
If there exists a non-increasing sequence {wk}∞k=1 ⊂ (0, 1] satisfying pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n} and k ≥ 1,∑∞

k=1 α
2
k/wk < ∞, limk→∞

αk−αk+1

α2
k

= 0, and limk→∞ αk/w
2
k = 0, then

1√
(1− γ)k

k−1∑
j=[γk]+1

ξj ⇒ N
(
0,

1

|I|
G(p∗)

)
.

Proof. At the j-th iteration, we consider sampling the gradients in the following way: We generate |I| independent
Uniform(0, 1) variables, Uj,s, s = 1, . . . , |I|. Let P j

i =
∑i

l=1 p
j
l be the sum of the sampling weights of the first i

components, and form

ξ′j =
1

|I|

|I|∑
s=1

n∑
i=1

IP j
i−1≤Uj,s<P j

i

(
1

npji
∇fi(xj)−∇f(xj)

)
, (B.10)

then 1√
(1−γ)k

∑k−1
j=[γk]+1 ξj and 1√

(1−γ)k

∑k−1
j=[γk]+1 ξ

′
j are equal in distribution for any k. We couple (B.10) with the

following counterpart at the optimum x∗

ξ∗j =
1

|I|

|I|∑
s=1

n∑
i=1

IP∗
i−1≤Uj,s<P∗

i

1

np∗i
∇fi(x

∗), (B.11)

where each P ∗
i =

∑i
l=1 p

∗
l is the sum of the limit sampling weights p∗ of the first i components.
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Since ξ∗j , j ≥ 1 are i.i.d., by the standard multivariate central limit theorem we have

1√
(1− γ)k

k−1∑
j=[γk]+1

ξ∗j ⇒ N
(
0,

1

|I|
G(p∗)

)
,

therefore it suffices to show that

1√
(1− γ)k

k−1∑
j=[γk]+1

(ξ′j − ξ∗j ) = op(1).

Recall the event Ωk,Ω≥k from the proof of Lemma B.4, and using the same argument therein we see that the above is
equivalent to

1√
(1− γ)k

k−1∑
j=[γk]+1

(ξ′j − ξ∗j )IΩ≥T
= op(1) for each fixed T.

By the expressions (B.10) and (B.11) for ξ′j and ξ∗j , both in the form of finite sum, it suffices to show

1√
(1− γ)k

k−1∑
j=[γk]+1

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩ≥T

= op(1),

for each fixed T, i and s. To show this, we write

E


∥∥∥∥∥∥ 1√

(1− γ)k

k−1∑
j=[γk]+1

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩ≥T

∥∥∥∥∥∥
2


=
1

(1− γ)k
E

[∥∥∥∥∥
(

T−1∑
j=[γk]+1

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)

+

k−1∑
j=T

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩj

)
IΩ≥T

∥∥∥∥∥
2]

≤ 1

(1− γ)k
E

[∥∥∥∥∥
T−1∑

j=[γk]+1

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)

+

k−1∑
j=T

(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩj

∥∥∥∥∥
2]

=
1

(1− γ)k

T−1∑
j=[γk]+1

E

[∥∥∥∥∥IP j
i−1≤Uj,s<P j

i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

∥∥∥∥∥
2]

+
1

(1− γ)k

k−1∑
j=T

E

[∥∥∥∥∥
(
IP j

i−1≤Uj,s<P j
i

(
1

npji
∇fi(xj)−∇f(xj)

)
− IP∗

i−1≤Uj,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩj

∥∥∥∥∥
2]

,

where the last equality follows from the martingale increment property of the gradient errors. Since the first sum above
eventually becomes 0 as k → ∞ for a fixed T , we focus on the second sum. To show that the second sum approaches 0 as
k → ∞, it suffices to show that

ak := E

∥∥∥∥∥
(
IPk

i−1≤Uk,s<Pk
i

(
1

npki
∇fi(xk)−∇f(xk)

)
− IP∗

i−1≤Uk,s<P∗
i

1

np∗i
∇fi(x

∗)

)
IΩk

∥∥∥∥∥
2
→ 0, as k → ∞.

(B.12)
We consider two cases:
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(i) p∗i > 0. In this case, by Minkowski inequality we can bound ak as

√
ak ≤

√√√√√E

∥∥∥∥∥IPk
i−1≤Uk,s<Pk

i

(
1

npki
∇fi(xk)−∇f(xk)−

1

np∗i
∇fi(x∗)

)∥∥∥∥∥
2

IΩk



+

√√√√√E

∥∥∥∥∥(IPk
i−1≤Uk,s<Pk

i
− IP∗

i−1≤Uk,s<P∗
i

) 1

np∗i
∇fi(x∗)

∥∥∥∥∥
2

IΩk



=

√√√√√E

∥∥∥∥∥ 1

npki

(
∇fi(xk)−∇fi(x∗)

)
−∇f(xk) +

(
1

npki
− 1

np∗i

)
∇fi(x∗)

∥∥∥∥∥
2

IPk
i−1≤Uk,s<Pk

i
IΩk



+

√√√√√E

∥∥∥∥∥(IPk
i−1≤Uk,s<Pk

i
− IP∗

i−1≤Uk,s<P∗
i

) 1

np∗i
∇fi(x∗)

∥∥∥∥∥
2

IΩk



≤

√√√√√E

(L∥xk − x∗∥
nδ∗

+ L∥xk − x∗∥+ |pki − p∗i |∥∇fi(x∗)∥
nδ∗2

)2

IPk
i−1≤Uk,s<Pk

i
IΩk


+

√√√√E

[∥∥∥∥∥(IPk
i−1≤Uk,s<Pk

i
− IP∗

i−1≤Uk,s<P∗
i

) 1

np∗i
∇fi(x∗)

∥∥∥∥∥
2]

≤

√√√√E

[(
L

nδ∗
+ L

)2

∥xk − x∗∥2
]
+

√√√√E

[
(pki − p∗i )

2∥∇fi(x∗)∥2

n2δ∗4

]
(B.13)

+

√√√√√E

∥∥∥∥∥(IPk
i−1≤Uk,s<Pk

i
− IP∗

i−1≤Uk,s<P∗
i

) 1

np∗i
∇fi(x∗)

∥∥∥∥∥
2
, (B.14)

where the second inequality follows the definition of Ωk and Assumption 4.1. The first term in (B.13) converges to
0 since E[∥xk − x∗∥2] ≤ Cxαk/wk → 0 by Lemma B.5. The second term in (B.13) and the term in (B.14) both
converge to 0 by that pki → p∗i and P k

i → P ∗
i a.s. for each i and the bounded convergence theorem. Therefore, we

have ak → 0.

(ii) p∗i = 0. In this case, ∇fi(x
∗) = 0 by Assumption 4.5, and we can bound ak as follows

ak = E

∥∥∥∥∥IPk
i−1≤Uk,s<Pk

i

(
1

npki
∇fi(xk)−∇f(xk)

)
IΩk

∥∥∥∥∥
2


≤ E

[(
L∥xk − x∗∥

npki
+ L∥xk − x∗∥

)2

IPk
i−1≤Uk,s<Pk

i

]

= E

[
E

[(
L∥xk − x∗∥

npki
+ L∥xk − x∗∥

)2

IPk
i−1≤Uk,s<Pk

i

∣∣∣∣∣Fk−1

]]

= E

[(
L∥xk − x∗∥

npki
+ L∥xk − x∗∥

)2

pki

]

≤ 2E
[
L2∥xk − x∗∥2

n2pki

]
+ 2E

[
∥xk − x∗∥2

]
by Young’s inequality

≤ Cx

(
2L2αk

nw2
k

+
2αk

wk

)
by Lemma B.5. (B.15)

The assumed condition αk/w
2
k → 0 then immediately implies that (B.15), hence ak, approaches 0 as k → ∞.
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This concludes (B.12), and hence completes the proof.

Lemma B.7. Under the same assumptions as in Lemma B.4, it holds that

1√
k

k−1∑
j=[γk]+1

(
H−1 − αjS

k
j+1

)
ξj → 0,

in probability.

Proof. Similarly to (B.7), one has for k, T ∈ N+ with [γk] + 1 ≥ T that

E


∥∥∥∥∥∥ 1√

k

k−1∑
j=[γk]+1

(
H−1 − αjS

k
j+1

)
ξjIΩ≥T

∥∥∥∥∥∥
2
 ≤ Cξ,Ω

k

k−1∑
j=[γk]+1

∥H−1 − αjS
k
j+1∥2.

Then using Lemma B.3, one has that

E


∥∥∥∥∥∥ 1√

k

k−1∑
j=[γk]+1

(
H−1 − αjS

k
j+1

)
ξjIΩ≥T

∥∥∥∥∥∥
2
 ≤ Cξ,ΩCS

k

k−1∑
j=1

∥H−1 − αjS
k
j+1∥ → 0,

as k → ∞. The rest of the proof is similar to the last part in the proof of Lemma B.4.

B.2 Proof of Theorem B.2

We present the proof of Theorem B.2 in this subsection.

Proof of Theorem B.2. This proof also uses some techniques from Polyak and Juditsky (1992) with some new technical
lemmas. It can be computed that

δk+1 = xk+1 − yk+1

= (xk − αk∇f(xk)− αkξk)− (yk − αkH(yk − x∗)− αkξk)

= (xk − yk)− αkH(xk − yk)− αk(∇f(xk)−H(xk − x∗))

= (I − αkH)(xk − yk)− αk(∇f(xk)−H(xk − x∗))

= (I − αkH)δk − αk(∇f(xk)−H(xk − x∗)).

Using the same techniques in the calculation of ȳk,γ − x∗, one obtains that

√
(1− γ)k · δ̄k,γ =

1√
(1− γ)k

Sk
[γk]+1δ[γk]+1 −

1√
(1− γ)k

k−1∑
j=[γk]+1

αjS
k
j+1(∇f(xj)−H(xj − x∗)). (B.16)

The first part in (B.16) converges to 0 in probability by Lemma B.4 and Lemma B.8. Then we estimate the second part.
By Fatou’s lemma and Lemma B.5, it holds that

E

[ ∞∑
k=1

∥xk − x∗∥2√
k

]
≤

∞∑
k=1

E
[
∥xk − x∗∥2

]
√
k

≤ Cx

∞∑
k=1

αk

wk

√
k
< ∞,

which implies that
∞∑
k=1

∥xk − x∗∥2√
k

< ∞, a.s..

almost surely. Since f is twice continuously differentiable in a neighbourhood of x∗, it holds that

∥∇f(x)−H(x− x∗)∥ ≤ CH∥x− x∗∥2,
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for some constant CH > 0 and all x in some neighbourhood of x∗. According to Theorem 4.2, almost surely, the sequence
xj converges to x∗ and always stays in the neighbourhood after some finite time. Then for sufficiently large k, one can
conclude that∥∥∥∥∥∥ 1√

k

k−1∑
j=[γk]+1

αjS
k
j+1(∇f(xj)−H(xj − x∗))

∥∥∥∥∥∥ ≤ CH(CS + ∥H−1∥) · 1√
k

k−1∑
j=[γk]+1

∥xj − x∗∥2 → 0,

where we used the Kronecker’s lemma and Lemma B.3. This proves that the second part in (B.16) almost surely converges
to 0.

Lemma B.8. Suppose that Assumption 4.1, Assumption 4.4, and Assumption 4.5 hold and that αk = α1/k
β for β ∈

(1/2, 1). Suppose further that there exists a sequence {wk}∞k=1 ⊂ (0, 1] satisfying pki ≥ wk/n, ∀ i ∈ {1, 2, . . . , n}, k ≥ 1,∑∞
k=1 α

2
k/wk < ∞, and limk→∞ αk/w

2
k = 0. Then

1√
k
Sk
[γk]+1(x[γk]+1 − x∗) → 0,

in probability.

Proof. Similar to Lemma B.4, it suffices to show that xk−x∗
√
kαk

→ 0 in probability. Consider any fixed T ∈ N+ with
αT < min{1/µ, µ/L2}. Similar to (A.1), it holds for k > T that

E
[
∥xk+1 − x∗∥2IΩT :k

|Fk−1

]
= E

[
∥xk − x∗ − αk∇f(xk)− αkξk∥2IΩT :k

|Fk−1

]
= ∥xk − x∗ − αk∇f(xk)∥2IΩT :k

+ α2
kE
[
∥ξk∥2IΩT :k

|Fk−1

]
≤ (1− αkµ)∥xk − x∗∥2IΩT :k

+ α2
kE
[
∥ξk∥2IΩT :k

|Fk−1

]
,

which implies that

E
[
∥xk+1 − x∗∥2IΩT :k

]
≤ (1− αkµ)E

[
∥xk − x∗∥2IΩT :k

]
+ α2

kE
[
∥ξk∥2IΩT :k

]
≤ (1− αkµ)E

[
∥xk − x∗∥2IΩT :k−1

]
+ Cξ,Ωα

2
k

≤ (1− αkµ)(1− αk−1µ)E
[
∥xk−1 − x∗∥2IΩT :k−2

]
+ Cξ,Ωα

2
k−1(1− αkµ) + Cα2

k

≤
k∏

j=T

(1− αjµ)E[∥xT − x∗∥2] + Cξ,Ω

k∑
j=T

α2
j

k∏
l=j+1

(1− αjµ),

where we used (B.6). Therefore, using similar arguments as in the proof of Lemma B.4, one can establish that

lim
k→∞

E
[

1

αk

√
k
∥xk+1 − x∗∥2IΩT :k

]
= 0,

and hence that the convergence in probability xk−x∗
√
kαk

→ 0.

C PROOFS FOR PROPOSITIONS 4.6, 4.7, AND 4.9

Proof of Proposition 4.6. According to Proposition 2.2, the optimal solution to the subproblem (2.5) is continuous in its
coefficients. Note also that limk→∞ wk = 0. Therefore, it suffices to show that the followings hold almost surely:

• limk→∞ c̃k → (c1, . . . , cn).

• limk→∞ g̃ki = ∥∇fi(x
∗)∥, ∀ i ∈ {1, 2, . . . , n}.

• limk→∞ G̃k = 0.

(i) Since pki ≥ wk and
∑∞

k=1 wk = ∞, every index i will be sampled for infinitely many times almost surely, which leads
to limk→∞ c̃k → (c1, . . . , cn) by (C.2).
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(ii) It follows from Theorem 4.2 that xk → x∗ almost surely. Then for any i ∈ {1, 2, . . . , n}, one has limk→∞ g̃ki =
∥∇fi(x

∗)∥ a.s. since i will be sampled for infinitely many times.

(iii) One has that

G̃k =
1

k − 1

k−1∑
j=1

gj =
1

k − 1

k−1∑
j=1

ξj +
1

k − 1

k−1∑
j=1

∇f(xj). (C.1)

Set Yk = ∥ 1
k

∑k
j=1 ξj∥2. Then one can compute that

E[Yk+1|Fk] = E


∥∥∥∥∥∥ 1

k + 1
ξk+1 +

k

k + 1
· 1
k

k∑
j=1

ξj

∥∥∥∥∥∥
2
∣∣∣∣∣∣∣Fk

 =
1

(k + 1)2
E[∥ξk+1∥2|Fk] +

k2

(k + 1)
Yk,

which implies that

E[Yk+1 − Yk|Fk]+ ≤ 1

(k + 1)2
E[∥ξk+1∥2|Fk],

and hence that
∞∑
k=1

E [E[Yk+1 − Yk|Fk]+] ≤
∞∑
k=1

1

(k + 1)2
E[∥ξk+1∥2] < ∞,

where we use
∑∞

k=1 α
2
kE[∥ξk∥2] from Lemma 4.3 and infk≥1 kαk > 0. Therefore, by martingale convergence theorem

(Blum, 1954, Corollary in Section 3), Yk converges almost surely to some random variable Y . On the other hand, it follows
from

∑∞
k=1

1
k2E[∥ξk∥2] < ∞ and the Kronecker’s lemma that

EYk =
1

k2

k∑
j=1

E[∥ξj∥2] → 0,

which guarantees that {Yk}∞k=1 has a subsequence that converges to 0 almost surely. Therefore, Yk = ∥ 1
k

∑k
j=1 ξj∥2 → 0

a.s., which implies that the first part in (C.1) converges to 0 almost surely. In addition, since xk → x∗ a.s., we immediately
have that 1

k−1

∑k−1
j=1 ∇f(xj) → 0 a.s.. Thus, it holds that limk→∞ G̃k = 0 almost surely.

Proof for Proposition 4.7. Define ηi,s = 1 if the s-th sampled gradient throughout the algorithm is from fi, and 0 other-
wise. Note that the index s does not necessarily correspond to the iteration index as multiple samples can be drawn in each
iteration (i.e., |Ik| > 1 in Algorithm 1). Let sk =

∑k−1
j=1 |Ij | be the total number of gradient samples, and ski =

∑sk
s=1 ηi,s

be the total number of samples from fi at the beginning of the k-th iteration. Let ĉi,j be the random cost of the j-th sample
collected from fi throughout the algorithm. Then we can express

costk∑k−1
j=1 |Ij |

=

n∑
i=1

1

sk

ski∑
j=1

ĉi,j .

To proceed, note that by Assumption 2.1 and the strong law of large numbers we have for each i

1

ski

ski∑
j=1

ĉi,j → ci, if ski → ∞ as k → ∞. (C.2)

Now suppose we can show that
ski
sk

→ p∗i , a.s. for each i = 1, . . . , n. (C.3)

Then if p∗i > 0, we have ski → ∞, and hence 1
sk

∑ski
j=1 ĉi,j → p∗i ci by (C.2). Otherwise, if p∗i = 0, then no matter whether

ski → ∞ or not, 1
ski

∑ski
j=1 ĉi,j converges to some finite number a.s., and hence 1

sk

∑ski
j=1 ĉi,j → 0 = p∗i ci. Therefore

1
sk

∑ski
j=1 ĉi,j → p∗i ci in either case, and the desired conclusion immediately follows.
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It remains to prove (C.3). We prove its stronger version∑S
s=1 ηi,s
S

→ p∗i , a.s. as S → ∞ for each i = 1, . . . , n, (C.4)

where S denotes the total number of sampled gradients so far. (C.3) is a subsequence of (C.4) with the index S restricted to∑k−1
j=1 |Ij |, k ≥ 1. We slightly abuse the notation to denote by ps the sampling weights according to which the s-th sample

is drawn, and by Fs, s ≥ 0 the filtration generated by ηi,j , i = 1, . . . , n, j = 1, . . . , s, then P(ηi,s = 1|Fs−1) = psi and
psi → p∗i a.s. as s → ∞ for all i = 1, . . . , n. We now show (C.4) by martingale convergence. Set YS :=

(∑S
s=1(ηi,s −

psi )
)2
/S2, S ≥ 1 with Y0 = 0, then

E[YS ] =
1

S2

S∑
s=1

E[(ηi,s − psi )
2] by martingale increment property

≤ 1

S
→ 0,

therefore YS = op(1). On the other hand, we have

E[YS+1|FS ] =

(∑S
s=1(ηi,s − psi )

)2
(S + 1)2

+
E
[
(ηi,S+1 − pS+1

i )2|FS

]
(S + 1)2

=
S2

(S + 1)2
YS +

pS+1
i (1− pS+1

i )

(S + 1)2
,

and hence
∞∑
s=0

E[E[Ys+1 − Ys|Fs]+] ≤
∞∑
s=1

psi (1− psi )

s2
≤

∞∑
s=1

1

s2
< ∞.

Therefore, by martingale convergence theorem (Blum, 1954, Corollary in Section 3), there exists some finite random
variable Y∞ such that YS → Y∞ a.s.. Since YS = op(1), there must exist a subsequence converging to 0 a.s., which entails
that Y∞ = 0, i.e., YS → 0 a.s.. Now we have

∑S
s=1 ηi,s/S =

√
YS +

∑S
s=1 p

s
i/S, and

∑S
s=1 p

s
i/S → p∗i a.s., and hence

conclude (C.4). This completes the proof.

Proof of Proposition 4.9. When n ≥ 3, for any ϵ > 0 we argue that there exist fi, i = 1, . . . , n such that

∥∇f1(x
∗)∥ = ∥∇f2(x

∗)∥ = 1 and ∥∇fi(x
∗)∥ = ϵ, for all i = 3, . . . , n, and ∇f(x∗) = 0.

Specifically, if n is even, we let ∇f2k(x
∗) = −∇f2k−1(x

∗) for k = 1, . . . , n/2. If n is odd, we let ∇f2k(x
∗) =

−∇f2k−1(x
∗) for k = 2, . . . , (n − 1)/2, and let ∇f1(x

∗) lie on the unit sphere near −∇f2(x
∗) so that ∥∇fn(x

∗)∥ =
∥∇f1(x

∗) +∇f2(x
∗)∥ = ϵ. Correspondingly, we consider the cost

ci = ϵ2, for i = 1, . . . , n− 1, and cn = 1.

Then we can calculate for small ϵ and fixed n that

ρ(p∗Hete) =

(
n∑

i=1

∥∇fi(x
∗)∥√ci
n

)2

=
(3ϵ+ (n− 3)ϵ2)2

n2
∼ 9ϵ2

n2
,

ρ(p∗SGD) =

(
n∑

i=1

ci
n

)(
n∑

i=1

∥∇fi(x
∗)∥2

n

)
=

((n− 1)ϵ2 + 1)((n− 2)ϵ2 + 2)

n2
∼ 2

n2
,

ρ(p∗SRG) =

(
n∑

i=1

∥∇fi(x
∗)∥ci

n

)(
n∑

i=1

∥∇fi(x
∗)∥

n

)
=

(ϵ+ 2ϵ2 + (n− 3)ϵ3)((n− 2)ϵ+ 2)

n2
∼ 2ϵ

n2
.

Therefore
ρ(p∗Hete)

ρ(p∗SGD)
→ 0,

ρ(p∗Hete)

ρ(p∗SRG)
→ 0, as ϵ → 0.

This completes the proof.
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D PROOF FOR THEOREM 4.12

This section presents the proof for Theorem 4.12. We first introduce a series of lemmas (Lemma D.1-D.4) that characterize
the approximation errors of the quantities in our sampling efficiency metric. We then propagate these errors to control the
approximation errors of the sampling weights (Proposition D.6) via a sensitivity result (Lemma D.5), and obtain the key
intermediate result Theorem D.7 on the finite-time bounds of the solution error. The main proof is presented based on
Theorem D.7 at the end of this section.

Lemma D.1 (An explicit version of Lemma B.5). Suppose that Assumption 4.1 holds and that αk = α1/k
β with

α1 < min{1/µ, µ/L2} and β ∈ (1/2, 1). Suppose in addition that pki ≥ wk/n with αk/wk ↓ 0, α2
k/wk ↓ 0, and∑∞

k=1 α
2
k/wk < ∞. Then E[∥xk − x∗∥2] ≤ Cxαk/wk holds for all k ∈ N+ with

Cx = Cξ max

{
2

|I|µ
,
kβ0wk0

Cfα1

}
, (D.1)

where Cf = max
{

2
n

∑n
i=1 ∥∇fi(x

∗)∥2, 2L2
}

, Cξ = Cf

∏∞
k=1

(
1 +

α2
kCf

|I|wk

)
·
(
1 + E

[
∥x1 − x∗∥2

])
, and k0 =⌈(

2β
µα1

) 1
1−β

⌉
. In particular, if wk = w1/k

η , we can let

Cξ = Cfe
Cfα2

1
|I|w1

(
1+ 1

2β−η−1

) (
1 + E

[
∥x1 − x∗∥2

])
.

Proof. According to the proof of Lemma 4.3, we have E
[
∥xk − x∗∥2

]
≤ Cξ/Cf and E[∥ξk∥2] ≤ Cξ/(|I|wk). For any

k ≥ k0, it holds that

αk − αk+1 = α1
(k + 1)β − kβ

kβ(k + 1)β
≤ α1βk

β−1

k2β
≤ µα2

1

2k2β
=

µα2
k

2
.

Then by setting (D.1), we could have Cξ/(Cx|I|) ≤ µ/2 and E
[
∥xk − x∗∥2

]
≤ Cxαk/wk, ∀ k ≤ k0. Then by the proof

of Lemma B.5, E[∥xk − x∗∥2] ≤ Cxαk/wk holds for all k ∈ N+.

Lemma D.2. Under the same assumptions as in Lemma D.1, suppose further that |Ik| = |I| ≤ n and wk = w1/k
η for

∀ k ≥ 1. It holds for all k that

E

[
n∑

i=1

|g̃ki − ∥∇fi(x
∗)∥|

]
≤ C1nL

√
Cx

α1

w3
1

· 1

k
β
2 − 3η

2

+ E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
· e−

|I|w1C2
n k1−η

, (D.2)

where C1, C2 are universal constants, and Cx is the constant from Lemma D.1.

Proof. In this proof, we slightly abuse the notation g̃ki for convenience to represent the gradient used to update the gradient
norm estimate rather than the norm estimate itself. We then have

E[∥g̃k+1
i −∇fi(x

∗)∥|Fk−1] = P(i ∈ Ik)∥∇fi(xk)−∇fi(x
∗)∥+ P(i /∈ Ik)∥g̃ki −∇fi(x

∗)∥
≤ |I|pki ∥∇fi(xk)−∇fi(x

∗)∥+ (1− pki )
|I|∥g̃ki −∇fi(x

∗)∥
≤ |I|pki L∥xk − x∗∥+ (1− pki )

|I|∥g̃ki −∇fi(x
∗)∥ by Assumption 4.1

≤ |I|pki L∥xk − x∗∥+
(
1− wk

n

)|I|
∥g̃ki −∇fi(x

∗)∥ since pki ≥ wk/n,

≤ |I|pki L∥xk − x∗∥+
(
1− |I|wk

2n

)
∥g̃ki −∇fi(x

∗)∥,

where the last inequality follows from the fact that (1−x)ℓ ≤ 1− ℓx
2 holds for any ℓ ∈ N+ and any x ∈ [0, 1/ℓ]. Therefore

E

[
n∑

i=1

∥g̃k+1
i −∇fi(x

∗)∥

∣∣∣∣∣Fk−1

]
≤ |I|

n∑
i=1

pki L∥xk − x∗∥+
(
1− |I|wk

2n

) n∑
i=1

∥g̃ki −∇fi(x
∗)∥

= |I|L∥xk − x∗∥+
(
1− |I|wk

2n

) n∑
i=1

∥g̃ki −∇fi(x
∗)∥.
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Taking full expectation on both sides of the above equation gives

E

[
n∑

i=1

∥g̃k+1
i −∇fi(x

∗)∥

]

≤
(
1− |I|wk

2n

)
E

[
n∑

i=1

∥g̃ki −∇fi(x
∗)∥

]
+ |I|L

√
Cx

αk

wk

≤
(
1− |I|wk

2n

)(
1− |I|wk−1

2n

)
E

[
n∑

i=1

∥g̃k−1
i −∇fi(x

∗)∥

]
+

(
1− |I|wk

2n

)
|I|L

√
Cx

αk−1

wk−1
+ |I|L

√
Cx

αk

wk

...

≤ E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
k∏

j=1

(
1− |I|wj

2n

)
+

k∑
j=1

|I|L
√
Cx

αj

wj

k∏
s=j+1

(
1− |I|ws

2n

)

= E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
k∏

j=1

(
1− |I|w1

2njη

)
+

k∑
j=1

|I|L
√
Cx

α1

w1

1

j
β
2 − η

2

k∏
s=j+1

(
1− |I|w1

2nsη

)

≤ E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
e−

|I|w1
2n

∑k
j=1 j−η

+ |I|L
√
Cx

α1

w1

k∑
j=1

1

j
β
2 − η

2

e−
|I|w1

2n

∑k
s=j+1 s−η

≤ E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
e−

|I|w1
4n(1−η)

k1−η

+ |I|L
√
Cx

α1

w1

k∑
j=1

1

j
β
2 − η

2

e−
|I|w1

2n

∑k
s=j+1 s−η

. (D.3)

To bound the sum
∑k

j=1
1

j
β
2

− η
2

e−
|I|w1

2n

∑k
s=j+1 s−η

we write

k∑
j=1

1

j
β
2 − η

2

e−
|I|w1

2n

∑k
s=j+1 s−η

≤
∑

1≤j≤ k
2

1

j
β
2 − η

2

e−
|I|w1

2n

∑k
s=j+1 s−η

+
∑

k
2<j≤k

1

j
β
2 − η

2

e−
|I|w1

2n

∑k
s=j+1 s−η

≤ e
− |I|w1

2n

∑
k
2
<s≤k

s−η ∑
1≤j≤ k

2

1

j
β
2 − η

2

+
2

k
β
2 − η

2

∑
k
2<j≤k

e−
|I|w1

2n k−η(k−j)

≤ e−
|I|w1

4n(1−η)
(1−2η−1)k1−η 1

1− β
2 + η

2

k1−
β
2 + η

2 +
2

k
β
2 − η

2

k∑
j=−∞

e−
|I|w1

2n k−η(k−j)

≤ e−
|I|w1C

n k1−η 1

1− β
2 + η

2

k1−
β
2 + η

2 +
2

k
β
2 − η

2

1

1− e−
|I|w1

2n k−η

≤ e−
|I|w1C

n k1−η 1

1− β
2 + η

2

k1−
β
2 + η

2 +
2

k
β
2 − η

2

· 2n

(1− e−1)|I|w1
kη

since 1− e−x ≥ (1− e−1)x for x ∈ [0, 1]

=
1

1− β
2 + η

2

e−
|I|w1C

n k1−η

k1−
β
2 + η

2 +
4n

(1− e−1)|I|w1
· 1

k
β
2 − 3η

2

(D.4)

where C := 1
4 (1−

1√
2
) is a universal constant. Substituting (D.4) back into (D.3) gives

E

[
n∑

i=1

∥g̃ki −∇fi(x
∗)∥

]
≤ C1nL

√
Cx

α1

w3
1

· 1

k
β
2 − 3η

2

+

(
|I|L

√
Cx

α1

w1

1

1− β
2 + η

2

k1−
β
2 + η

2 + E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

])
e−

|I|w1C2
n k1−η

,

where C1, C2 are universal constants. Note that

k1−
β
2 + η

2 · e−
|I|w1C2

n k1−η

=
1

k
β
2 − 3η

2

· k1−ηe−
|I|w1C2

n k1−η

≤ 1

k
β
2 − 3η

2

· sup
x>0

xe−
|I|w1C2

n x =
1

k
β
2 − 3η

2

· ne−1

|I|w1C2
,
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and that 1− β
2 + η

2 ≥ 1
2 , hence we can further bound E

[∑n
i=1 ∥g̃ki −∇fi(x

∗)∥
]

as

E

[
n∑

i=1

∥g̃ki −∇fi(x
∗)∥

]
≤ C1nL

√
Cx

α1

w3
1

· 1

k
β
2 − 3η

2

+ E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
· e−

|I|w1C2
n k1−η

where C1 is properly enlarged if needed but still universal. The desired conclusion then follows immediately from an
application of the triangular inequality to |∥g̃ki ∥ − ∥∇fi(x

∗)∥| for each i.

Lemma D.3. Under the same assumptions as in Lemma D.1, suppose further that |Ik| = |I| ≤ n and wk = w1/k
η for

∀ k ≥ 1. It holds that

E[∥G̃k∥2] ≤ C

(
Cξ

|I|
+

L2Cxα1

w1

)
1

kβ−η
,

where C is a universal constant, and Cξ =
∏∞

k=1

(
1 +

α2
kCf

|Ik|wk

) (
E
[
∥x1 − x∗∥2

]
+ 1
)

with Cf =

max
{

2
n

∑n
i=1 ∥∇fi(x

∗)∥2, 2L2
}

.

Proof. On one hand we have√√√√√√E


∥∥∥∥∥∥
k−1∑
j=1

∇f(xj)

∥∥∥∥∥∥
2
 ≤

√√√√√√E


k−1∑

j=1

∥∇f(xj)∥

2
 by triangular inequality

≤
k−1∑
j=1

√
E[∥∇f(xj)∥2] by Minkowski inequality

≤ L

k−1∑
j=1

√
E[∥xj − x∗∥2] by Assumption 4.1

≤ L

k−1∑
j=1

√
Cx

αk

wk
by Lemma D.1

≤ L

k−1∑
j=1

√
Cx

α1

w1
· 1

kβ−η

≤ L

√
Cx

α1

w1
· 1

1− β/2 + η/2
k1−β/2+η/2.

On the other hand, recall that ξk = gk −∇f(xk), and we can write

E


∥∥∥∥∥∥
k−1∑
j=1

ξj

∥∥∥∥∥∥
2
 = E

E

∥∥∥∥∥∥
k−1∑
j=1

ξj

∥∥∥∥∥∥
2 ∣∣∣∣∣Fk−2




= E


∥∥∥∥∥∥
k−2∑
j=1

ξj

∥∥∥∥∥∥
2
+ E

[
E

[
∥ξk−1∥2

∣∣∣∣∣Fk−2

]]
by conditional unbiasedness

≤ E


∥∥∥∥∥∥
k−2∑
j=1

ξj

∥∥∥∥∥∥
2
+

Cξ

|I|wk−1
by the proof of Lemma 4.3

...

≤ Cξw1

|I|

k−1∑
j=1

j−η ≤ Cξw1

|I|(1− η)
k1−η.



Ziang Chen, Jianfeng Lu, Huajie Qian, Xinshang Wang, Wotao Yin

From the above two bounds it follows that

√
E
[
∥G̃k∥2

]
≤ 1

k − 1

√√√√√√E


∥∥∥∥∥∥

k−1∑
j=1

ξj

∥∥∥∥∥∥+
∥∥∥∥∥∥
k−1∑
j=1

∇f(xj)

∥∥∥∥∥∥
2


≤ 1

k − 1


√√√√√√E


∥∥∥∥∥∥
k−1∑
j=1

ξj

∥∥∥∥∥∥
2
+

√√√√√√E


∥∥∥∥∥∥
k−1∑
j=1

∇f(xj)]

∥∥∥∥∥∥
2



≤ 1

k − 1

(√
Cξw1

|I|(1− η)
k

1−η
2 + L

√
Cx

α1

w1
· 1

1− β/2 + η/2
k1−β/2+η/2

)

≤ 1

k − 1

(√
Cξw1

|I|(1− η)
+ L

√
Cx

α1

w1
· 1

1− β/2 + η/2

)
k1−β/2+η/2

since 1− β/2 + η/2 >
1− η

2
> 0

= 2

(√
Cξw1

|I|(1− η)
+ L

√
Cx

α1

w1
· 1

1− β/2 + η/2

)
k−β/2+η/2.

Squaring both sides of the above bound and applying Young’s inequality give

E[∥G̃k∥2] ≤ 4

(
2Cξw1

|I|(1− η)
+

2L2Cxα1

w1(1− (β − η)/2)2

)
k−β+η.

Noticing that 1/(1− η) ≤ 2, 1/(1− β/2 + η/2)2 ≤ 4, and w1 ≤ 1 completes the proof.

Lemma D.4. Suppose that assumptions made in Lemma D.1 and Assumption 2.1 and 4.11 hold and suppose further that
|Ik| = |I| ≤ n and wk = w1/k

η for ∀ k ≥ 1. It holds that

E

[
n∑

i=1

|c̃ki − ci|

]
≤ C1

n3/2
√
maxi Var(ĉi)√
|I|w1

· 1

k
1
2−η

+

√√√√n

n∑
i=1

(E[|c̃1i − ci|])2e−
C2|I|w1

n k1−η

 ,

where C1, C2 are universal constants.

Proof. We define Ii,j = 1 if ∇fi is the j-th sampled gradient and otherwise Ii,j = 0. For each i, let ĉi,j , j ≥ 1 be a
sequence of i.i.d. random cost for the i-th function. Denote by

Yk :=

|I|(k−1)∑
j=1

Ii,j (D.5)

the cumulative number of samples from the i-th function at the beginning of the k-th iteration, and

Xk :=

|I|(k−1)∑
j=1

(ĉi,j − ci)I(Ii,j = 1). (D.6)

Then we can represent

c̃ki − ci =
Xk

Yk
· I(Yk > 0) + (c̃1i − ci) · I(Yk = 0),

hence by triangular inequality and the independence between c̃1i and Yk we have

E
[
|c̃ki − ci|

]
≤ E

[∣∣∣∣Xk

Yk
· I(Yk > 0)

∣∣∣∣]+ E[|c̃1i − ci|] · P(Yk = 0). (D.7)
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The second term above can be handled by

P(Yk = 0) = E

|I|(k−1)∏
j=1

I(Ii,j = 0)


= E

E
|I|(k−1)∏

j=1

I(Ii,j = 0)

∣∣∣∣∣Fk−2


= E

(1− pk−1
i

)|I| |I|(k−2)∏
j=1

I(Ii,j = 0)


≤

(
1− wk−1

n

)|I|
E

|I|(k−2)∏
j=1

I(Ii,j = 0)

 since pk−1
i ≥ wk−1

n

...

≤
k−1∏
j=1

(
1− wj

n

)|I|
≤ e−|I|

∑k−1
j=1

wj
n ≤ e−

C|I|w1
n k1−η

(D.8)

where C is a universal constant. To handle the first term in (D.7), we use Cauchy-Schwarz inequality to write

E
[∣∣∣∣Xk

Yk
· I(Yk > 0)

∣∣∣∣] ≤
√

E[X2
k ]E

[
1

Y 2
k

· I(Yk > 0)

]
,

and analyze the two expectations on the right-hand side in the next two paragraphs.

Bound for E[X2
k ]: By the independence between ĉi,j and Ii,j we have that

E[X2
k ] = E

E

|I|(k−1)∑

j=1

(ĉi,j − ci)I(Ii,j = 1)

2 ∣∣∣∣∣Fk−2




= E


|I|(k−2)∑

j=1

(ĉi,j − ci)I(Ii,j = 1)

2
+ E

E

 |I|(k−1)∑

j=|I|(k−2)+1

(ĉi,j − ci)I(Ii,j = 1)

2 ∣∣∣∣∣Fk−2




by martingale property

= E


|I|(k−2)∑

j=1

(ĉi,j − ci)I(Ii,j = 1)

2
+Var(ĉi)|I|E[pk−1

i ]

...

≤ Var(ĉi)|I|
k−1∑
j=1

E[pji ]. (D.9)

Bound for E[ 1
Y 2
k
I(Yk ̸= 0)]: Let I ′i,j , 1 ≤ i ≤ k − 1, 1 ≤ j ≤ |I| be independent random variables with distributions

P(I ′i,j = 1) = wi/n and P(I ′i,j = 0) = 1 − wi/n. Define Zk =
∑k−1

i=1

∑|I|
j=1 I

′
i,j . It follows from pki ≥ wk/n that

P(Yk ≥ y) ≥ P(Zk ≥ y), ∀ y ∈ N. It holds that

E[Yk] ≥ E[Zk] =

k−1∑
i=1

|I|∑
j=1

E[I ′i,j ] =
|I|
n

k−1∑
i=1

wi,
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and that

E
[
|Zk − E[Zk]|4

]
= E


∣∣∣∣∣∣
k−1∑
i=1

|I|∑
j=1

(I ′i,j − E[I ′i,j ])

∣∣∣∣∣∣
4


=

k−1∑
i=1

|I|∑
j=1

E
[
|I ′i,j − E[I ′i,j ]|4

]
+ 3

∑
(i,j) ̸=(i′,j′)

E
[
|I ′i,j − E[I ′i,j ]|2

]
· E
[
|I ′i′,j′ − E[I ′i′,j′ ]|2

]

≤
k−1∑
i=1

|I|∑
j=1

E
[
|I ′i,j − E[I ′i,j ]|4

]
+ 3

k−1∑
i=1

|I|∑
j=1

E
[
|I ′i,j − E[I ′i,j ]|2

]2

=

k−1∑
i=1

|I|∑
j=1

(
wi

n
·
(
1− wi

n

)4
+
(
1− wi

n

)
·
(wi

n

)4)

+ 3

k−1∑
i=1

|I|∑
j=1

(
wi

n
·
(
1− wi

n

)2
+
(
1− wi

n

)
·
(wi

n

)2)2

≤
k−1∑
i=1

|I|∑
j=1

wi

n
·
(
1− wi

n

)
+ 3

k−1∑
i=1

|I|∑
j=1

wi

n
·
(
1− wi

n

)2

≤ |I|
n

k−1∑
i=1

wi + 3

(
|I|
n

k−1∑
i=1

wi

)2

.

Thus, using Markov’s inequality we can estimate that

P

(
Yk ≤ |I|

2n

k−1∑
i=1

wi

)
≤ P

(
Zk ≤ |I|

2n

k−1∑
i=1

wi

)
≤ P

(
|Zk − E[Zk]| ≥

|I|
2n

k−1∑
i=1

wi

)

≤
E
[
|Zk − E[Zk]|4

](
|I|
2n

∑k−1
i=1 wi

)4 ≤ 16(
|I|
n

∑k−1
i=1 wi

)3 +
48(

|I|
n

∑k−1
i=1 wi

)2 ,
and that

E
[

1

Y 2
k

I(Yk ̸= 0)

]
≤ 1 · P

(
Yk ≤ |I|

2n

k−1∑
i=1

wi

)
+

1(
|I|
2n

∑k−1
i=1 wi

)2 · P

(
Yk >

|I|
2n

k−1∑
i=1

wi

)

≤ 16(
|I|
n

∑k−1
i=1 wi

)3 +
52(

|I|
n

∑k−1
i=1 wi

)2 .
Since it must hold that E

[
1
Y 2
k
I(Yk ̸= 0)

]
≤ 1, we can assume |I|

n

∑k−1
i=1 wi ≥ 1 in the above upper bound without loss of

generality, giving rise to

E
[

1

Y 2
k

I(Yk ̸= 0)

]
≤ 68(

|I|
n

∑k−1
i=1 wi

)2 ≤ Cn2

|I|2w2
1

· 1

k2−2η
(D.10)

where C is a universal constant. Combining (D.9) and (D.10) gives

E
[∣∣∣∣Xk

Yk
· I(Yk > 0)

∣∣∣∣] ≤
√√√√Var(ĉi)|I|

k−1∑
j=1

E[pji ] ·
Cn2

|I|2w2
1

· 1

k2−2η
. (D.11)

We now derive bounds for the aggregated error E[
∑n

i=1 |c̃ki − ci|]. We first note that by Jensen’s inequality(
1

n

n∑
i=1

E
[
|c̃ki − ci|

])2

≤ 1

n

n∑
i=1

(
E
[
|c̃ki − ci|

])2
,
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therefore we can write(
n∑

i=1

E
[
|c̃ki − ci|

])2

≤ n

n∑
i=1

(
E
[
|c̃ki − ci|

])2
≤ 2n

n∑
i=1

Var(ĉi)|I|
k−1∑
j=1

E[pji ] ·
C1n

2

|I|2w2
1

· 1

k2−2η
+ (E[|c̃1i − ci|])2e−

2C2|I|w1
n k1−η


by (D.7) and the bounds (D.8) and (D.11), where C1, C2 are universal constants

≤ 2n

(
max

i
Var(ĉi)k · C1n

2

|I|w2
1

· 1

k2−2η
+

n∑
i=1

(E[|c̃1i − ci|])2e−
2C2|I|w1

n k1−η

)

≤ 2n

(
C1n

2 maxi Var(ĉi)

|I|w2
1

· 1

k1−2η
+

n∑
i=1

(E[|c̃1i − ci|])2e−
2C2|I|w1

n k1−η

)
.

Taking the square root of the above bound then gives

n∑
i=1

E
[
|c̃ki − ci|

]
≤ C1

n3/2
√
maxi Var(ĉi)√
|I|w1

· 1

k
1
2−η

+

√√√√n

n∑
i=1

(E[|c̃1i − ci|])2e−
C2|I|w1

n k1−η

 .

This completes the proof.

In the next lemma we consider the error bound of p∗i in terms of the errors in ci, bi, and b0, i.e., perturbation analysis of
Proposition 2.2.

Lemma D.5. Let p∗i and κ∗ be defined in Proposition 2.2 with ci, bi, and b0. Let p∗i +∆p∗i be the new probability weights
when ci, bi, and b0 are perturbed to ci +∆ci > 0, bi +∆bi ≥ 0, and b0 +∆b0 ≥ 0. Suppose that min(ci +∆ci, ci) ≥ c
for each i and some constant c > 0, and b0 +∆b0 ≥ b0

2 , then

n∑
i=1

|∆p∗i | ≤ Cmax (
√
cmax, 1) ·

cmax√
ccmin

∑n
i=1

√
bi

·

(
n∑

i=1

√
|∆bi|+

n∑
i=1

√
bi|∆ci|+ n

√
|∆b0|

)
,

where cmax = max1≤j≤n cj , cmin = min1≤j≤n cj , and C is a universal constant.

Proof. Let us denote qi =
√

(bi+∆bi)/n2

κ∗(ci+∆ci)+(b0+∆b0)
. It can be computed that

|qi − p∗i | =

∣∣∣∣∣∣
√

(bi +∆bi)/n2

κ∗(ci +∆ci) + (b0 +∆b0)
−

√
bi/n2

κ∗ci + b0

∣∣∣∣∣∣
≤

√∣∣∣∣ (bi +∆bi)/n2

κ∗(ci +∆ci) + (b0 +∆b0)
− bi/n2

κ∗ci + b0

∣∣∣∣
≤

√
|∆bi|
n2 (κ∗ci + b0) +

bi
n2 (κ∗|∆ci|+ |∆b0|)

(κ∗(ci +∆ci) + (b0 +∆b0))(κ∗ci + b0)

≤

√√√√ |∆bi|
n2 (κ∗ci + b0) +

bi
n2 (κ∗|∆ci|+ |∆b0|)

c
2ci

(κ∗ci + b0)2

≤
√
2cmax/c

n

√
|∆bi|

κ∗ci + b0
+

biκ∗|∆ci|
(κ∗ci + b0)2

+
bi|∆b0|

(κ∗ci + b0)2

≤
√
2cmax/c

n

√ |∆bi|
κ∗ci + b0

+

√
biκ∗|∆ci|

(κ∗ci + b0)2
+

√
bi|∆b0|

(κ∗ci + b0)2


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≤
√
2cmax/c

n

√ |∆bi|
κ∗cmin + b0

+

√
bi|∆ci|

cmin(κ∗cmin + b0)
+

√
bi|∆b0|

(κ∗cmin + b0)2

 .

It follows from

1 =

n∑
i=1

√
bi/n2

κ∗ci + b0
≥

n∑
i=1

√
bi/n2

κ∗∥c∥∞ + b0
≥ 1√

κ∗cmin + b0
·
√
cmin

∑n
i=1

√
bi

n
√
∥c∥∞

,

that
1√

κ∗cmin + b0
≤

n
√
∥c∥∞√

cmin

∑n
i=1

√
bi
.

Therefore, it holds that

|qi − p∗i | ≤
√
2cmax/c

n

√ |∆bi|
κ∗cmin + b0

+

√
bi|∆ci|

cmin(κ∗cmin + b0)
+

√
bi|∆b0|

(κ∗cmin + b0)2


≤
√

2cmax

c

( √
∥c∥∞√

cmin

∑n
i=1

√
bi

√
|∆bi|+

√
bi∥c∥∞

cmin

∑n
i=1

√
bi

√
|∆ci|+

n∥c∥∞
√
bi

cmin(
∑n

i=1

√
bi)2

√
|∆b0|

)
,

which implies that∣∣∣∣∣1−
n∑

i=1

qi

∣∣∣∣∣ ≤
n∑

i=1

|qi − p∗i |

≤
√

2cmax

c

( √
∥c∥∞√

cmin

∑n
i=1

√
bi

n∑
i=1

√
|∆bi|+

√
∥c∥∞

cmin

∑n
i=1

√
bi

n∑
i=1

√
bi|∆ci|+

n∥c∥∞
cmin

∑n
i=1

√
bi

√
|∆b0|

)
.

Note that p∗i +∆p∗i =
√

(bi+∆bi)/n2

(κ∗+∆κ∗)(ci+∆ci)+(b0+∆b0)
, where κ = κ∗ +∆κ∗ is the unique solution to the equation

n∑
i=1

√
(bi +∆bi)/n2

κ(ci +∆ci) + (b0 +∆b0)
= 1.

We can thus know that p∗i +∆p∗i ≥ qi for all i ∈ {1, 2, . . . , n} if ∆κ∗ ≤ 0 and that p∗i +∆p∗i ≤ qi for all i ∈ {1, 2, . . . , n}
if ∆κ∗ ≥ 0. In both cases, we have that∣∣∣∣∣1−

n∑
i=1

qi

∣∣∣∣∣ =
∣∣∣∣∣

n∑
i=1

(p∗i +∆p∗i − qi)

∣∣∣∣∣ =
n∑

i=1

|p∗i +∆p∗i − qi|.

Combining all estimations above, we can conclude that

n∑
i=1

|∆p∗i | ≤
n∑

i=1

(|p∗i +∆p∗i − qi|+ |qi − p∗i |) ≤

∣∣∣∣∣1−
n∑

i=1

qi

∣∣∣∣∣+
n∑

i=1

|qi − p∗i |

≤ 2

√
cmax

c

( √
∥c∥∞√

cmin

∑n
i=1

√
bi

n∑
i=1

√
|∆bi|+

√
∥c∥∞

cmin

∑n
i=1

√
bi

n∑
i=1

√
bi|∆ci|+

n∥c∥∞
cmin

∑n
i=1

√
bi

√
|∆b0|

)

≤ Cmax
(√

2cmax, 1
)
· cmax√

ccmin

∑n
i=1

√
bi

·

(
n∑

i=1

√
|∆bi|+

n∑
i=1

√
bi|∆ci|+ n

√
|∆b0|

)
,

which is the desired result.

Proposition D.6. Suppose that the assumptions made in Lemma D.1 and Assumption 2.1 and 4.11 hold and suppose
further that |Ik| = |I| ≤ n and wk = w1/k

η with w1 ≤ 1 for ∀ k ≥ 1. Denote by cmax = maxi ci, cmin = mini ci
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respectively the maximum and minimum sampling costs per gradient evaluation, and by G = (1/n) ·
∑n

i=1 ∥∇fi(x
∗)∥ the

averaged gradient norm at the optimum. Then we have the following error bound for the estimated sampling weights

E[∥p̃k − p∗Hete∥1] ≤ C1 max (
√
cmax, 1) ·

cmax√
ccmin

[( 1

G

√
Cx

µ

w3
1

+ 1
)
· 1

k
β
4 − 3η

4

+
1

G

(C2
f maxi Var(ĉi)

w2
1

) 1
4 · (n/|I|)

1
4

k
1
4−

η
2

]
+ C3(fi, g̃

1
i , c̃

1
i , ci, i = 1, . . . , n) · e−

C2|I|w1
n k1−η

,

where C1, C2 are universal constants, and C3 depends on fi, g̃
1
i , c̃

1
i , ci, i = 1, . . . , n only but does not explicitly depend on

n.

Proof. Substituting the true values bi = ∥∇fi(x
∗)∥2, b0 = 0, and the estimates bi + ∆bi = (g̃ki )

2, b0 + ∆b0 =

min
(
∥G̃k∥,

∑n
i=1

g̃k
i

n

)2
, ci +∆ci = c̃ki into Lemma D.5 gives

∥p̃k − p∗Hete∥1 ≤Cmax (
√
cmax, 1) ·

cmax√
ccmin

∑n
i=1 ∥∇fi(x∗)∥

·

(
n∑

i=1

√
|(g̃ki )2 − ∥∇fi(x∗)∥2|+

n∑
i=1

∥∇fi(x
∗)∥
√

|c̃ki − ci|+ n∥G̃k∥

)
.

(D.12)

We bound the expectation of each term on the right-hand side.

Bound for E
[∑n

i=1

√
|(g̃ki )2 − ∥∇fi(x∗)∥2|

]
: Since |x2−y2|1/2 ≤ ((x−y)2+2|x−y||y|)1/2 ≤ |x−y|+

√
2|x− y||y|,

we can write

n∑
i=1

√
|(g̃ki )2 − ∥∇fi(x∗)∥2| ≤

n∑
i=1

|g̃ki − ∥∇fi(x
∗)∥|+

√
2

n∑
i=1

√
|g̃ki − ∥∇fi(x∗)∥| · ∥∇fi(x∗)∥

≤
n∑

i=1

|g̃ki − ∥∇fi(x
∗)∥|+

√
2

√√√√ n∑
i=1

|g̃ki − ∥∇fi(x∗)∥| ·
n∑

i=1

∥∇fi(x∗)∥,

where in the second inequality we use Cauchy-Schwarz inequality. Using Jensen’s inequality to swap the expectation and
square root operations we have

E

[
n∑

i=1

√
|(g̃ki )2 − ∥∇fi(x∗)∥2|

]

≤ E

[
n∑

i=1

|g̃ki − ∥∇fi(x
∗)∥|

]
+

√√√√2

n∑
i=1

∥∇fi(x∗)∥ ·

√√√√E

[
n∑

i=1

|g̃ki − ∥∇fi(x∗)∥|

]

≤ C1

nL

√
Cx

α1

w3
1

+

√√√√nL

n∑
i=1

∥∇fi(x∗)∥ ·
(
Cx

α1

w3
1

) 1
4

 · 1

k
β
4 − 3η

4

+

E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
+

√√√√2

n∑
i=1

∥∇fi(x∗)∥ · E

[
n∑

i=1

∥g̃1i −∇fi(x∗)∥

] · e−
|I|w1C2

n k1−η

≤ C1

(
nL

√
Cx

α1

w3
1

+

n∑
i=1

∥∇fi(x
∗)∥

)
· 1

k
β
4 − 3η

4

+2

(
E

[
n∑

i=1

∥g̃1i −∇fi(x
∗)∥

]
+

n∑
i=1

∥∇fi(x
∗)∥

)
· e−

C2|I|w1
n k1−η

,

where the second inequality follows from Lemma D.2 and the universal constants C1, C2 are properly adjusted if needed.
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Bound for E
[∑n

i=1 ∥∇fi(x
∗)∥
√

|c̃ki − ci|
]
: Similar to the above bound, we use Cauchy-Schwarz inequality and

Jensen’s inequality to write

E

[
n∑

i=1

∥∇fi(x
∗)∥
√
|c̃ki − ci|

]

≤ E

√√√√ n∑
i=1

∥∇fi(x∗)∥2
n∑

i=1

|c̃ki − ci|

 ≤

√√√√ n∑
i=1

∥∇fi(x∗)∥2E

[
n∑

i=1

|c̃ki − ci|

]

≤ C3

√√√√ n∑
i=1

∥∇fi(x∗)∥2

n3/4 maxi(Var(ĉi))
1/4

|I|1/4√w1
· 1

k
1
4−

η
2

+

(
n

n∑
i=1

(E[|c̃1i − ci|])2
) 1

4

e−
C4|I|w1

n k1−η

 ,

where the last inequality follows from Lemma D.4 and C3, C4 are universal constants.

Bound for E
[
∥G̃k∥

]
: It follows directly from Lemma D.3 and Jensen’s inequality that

E
[
∥G̃k∥

]
≤ C5

(√
Cξ

|I|
+ L

√
Cxα1

w1

)
1

k
β
2 − η

2

where C5 is a universal constant.

Substituting all these bounds into (D.12) gives

1∑n
i=1 ∥∇fi(x∗)∥

· E

[
n∑

i=1

√
|(g̃ki )2 − ∥∇fi(x∗)∥2|+

n∑
i=1

∥∇fi(x
∗)∥
√

|c̃ki − ci|+ n∥G̃k∥

]

≤ 1∑n
i=1 ∥∇fi(x∗)∥

·

[
C1

(
nL

√
Cx

α1

w3
1

+

n∑
i=1

∥∇fi(x
∗)∥

)
· 1

k
β
4 − 3η

4

+C2

√√√√ n∑
i=1

∥∇fi(x∗)∥2n
3/4 maxi(Var(ĉi))

1/4

|I|1/4√w1
+ n

√
Cξ

|I|
+ nL

√
Cxα1

w1

 · 1

k
1
4−

η
2

+nC4(fi, g̃
1
i , c̃

1
i , ci, i = 1, . . . , n) · e−

C3|I|w1
n k1−η

]

where the 1/kβ/2−η/2 term is absorbed since
β

2
− η

2
>

1

4
− η

2

≤ C1

(
L

G

√
Cx

α1

w3
1

+ 1

)
· 1

k
β
4 − 3η

4

+ C2

 1

G

(
C2

fnmaxi Var(ĉi)

|I|w2
1

) 1
4

+
1

G

√
Cξ

|I|

 · 1

k
1
4−

η
2

+
1

G
C4(fi, g̃

1
i , c̃

1
i , ci, i = 1, . . . , n) · e−

C3|I|w1
n k1−η

,

where C1, C2, C3 are universal constants, and C4 depends fi, g̃1i , c̃
1
i , ci, i = 1, . . . , n only but does not explicitly depend

on n. Since Cξ ≤ Cx|I|µ/2, α1 ≤ µ/L2 and w1 ≤ 1, the coefficient 1
G

√
Cξ

|I| is no larger than L
G

√
Cx

α1

w3
1

hence can be

absorbed into the first term. 1
G

can be absorbed into C4. This completes the proof.

Theorem D.7 (Finite-time bounds for Polyak-Ruppert and α-suffix averaging). Suppose Assumptions 2.1, 4.1, 4.4, 4.10
and 4.11 hold. Suppose that in Algorithm 2 αk = α1/k

β , where β ∈ (1/2, 1) and 0 < α1 < min
(
1/µ, µ/L2

)
,

wk = w1/k
η with w1 ∈ (0, 1] and 0 < η < min (β/7, 1− β, β − 1/2), and that |Ik| = |I| is fixed for all k. Then for

every γ ∈ [0, 1) and every non-singular matrix A ∈ Rd×d, we have the decomposition

A(x̄k,γ − x∗) = Lk,γ + Ek,γ ,

where Lk is the leading error term that satisfies

E [Lk,γ ] = 0,
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E[∥Lk,γ∥2] =
1

(1− γ)k|I|
Tr(AH−1G(p∗Hete)H

−1AT ),

and the high-order error Ek,γ satisfies

E [∥Ek,γ∥] ≤ C1(A, γ, α1, w1, β, η, x1, fi, ĉi, g̃
1
i , c̃

1
i , i = 1, . . . , n) · 1√

k

·

(
1

kmin( β
4 − 7η

4 ,η, 12−
β
2 − η

2 ,β−
1
2−η)

+
1√
|I|

·
(

n

|I|

) 1
4 1

k
1
4−

3η
2

+
1√
|I|

·
(

n

|I|

) 1+η
1−η 1

k

)
.

The cumulative sampling cost satisfies

|E [costk]− c(p∗Hete)|I|(k − 1)| ≤ C2(α1, w1, β, η, x1, fi, ĉi, g̃
1
i , c̃

1
i , i = 1, . . . , n) · |I|k

·

(
1

kmin( β
4 − 3η

4 ,η)
+

(
n

|I|

) 1
4 1

k
1
4−

η
2

+

(
n

|I|

) 1
1−η 1

k

)
.

Here the constants C1, C2 depend on the quantities specified respectively and do not explicitly depend on n.

Proof. We have gk = 1
αk

(xk − xk+1) and

gk =
1

|I|
∑
i∈Ik

1

npki
∇fi(xk) =

1

|I|
∑
i∈Ik

1

npki
∇fi(x

∗) +
1

|I|
∑
i∈Ik

1

npki

(∫ 1

0

∇2fi((1− θ)x∗ + θxk)dθ

)
(xk − x∗)

=
1

|I|
∑
i∈Ik

1

npki
∇fi(x

∗) +∇2f(x∗)(xk − x∗) +

(
1

|I|
∑
i∈Ik

1

npki
∇2fi(x

∗)−∇2f(x∗)

)
(xk − x∗)

+
1

|I|
∑
i∈Ik

1

npki

(∫ 1

0

(
∇2fi((1− θ)x∗ + θxk)−∇2fi(x

∗)
)
dθ

)
(xk − x∗).

Therefore summing up the above equality over k and rearranging terms give

(1− γ)k∇2f(x∗)(x̄k,γ − x∗) (D.13)

= −
k∑

j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
∇fi(x

∗)

+

k∑
j=[γk]+1

1

αj
(xj − xj+1)−

k∑
j=[γk]+1

( 1

|I|
∑
i∈Ij

1

npji
∇2fi(x

∗)−∇2f(x∗)
)
(xj − x∗)

−
k∑

j=[γk]+1

1

|I|
∑
i∈Ij

1

npji

(∫ 1

0

(
∇2fi((1− θ)x∗ + θxj)−∇2fi(x

∗)
)
dθ

)
(xj − x∗).

Next we bound each term on the right-hand side of the above representation.

Bound for
∑k

j=[γk]+1
1
|I|
∑

i∈Ij

1

npj
i

∇fi(x
∗): For an arbitrary given d×d matrix M , we can use the martingale property

to write

E


∥∥∥∥∥∥

k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
M∇fi(x

∗)

∥∥∥∥∥∥
2
 =

k∑
j=[γk]+1

E


∥∥∥∥∥∥ 1

|I|
∑
i∈Ij

1

npji
M∇fi(x

∗)

∥∥∥∥∥∥
2


=
1

|I|

k∑
j=[γk]+1

E

[
n∑

i=1

1

n2pji
∥M∇fi(x

∗)∥2
]
. (D.14)

To further bound (D.14), we consider the perturbed optimal sampling weights p∗,k := (1−wk)p
∗
Hete+wk(1/n, . . . , 1/n)

and note that pk = (1− wk)p̃
k + wk · (1/n, . . . , 1/n). Denote by I∗

+ = {i : p∗Hete,i > 0} and δ∗ = min{p∗Hete,i/2 : i ∈
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I∗
+}. We then have ∣∣∣∣∣E

[
n∑

i=1

1

n2pki
∥M∇fi(x

∗)∥2
]
−

n∑
i=1

1

n2p∗,ki

∥M∇fi(x
∗)∥2

∣∣∣∣∣
=

∣∣∣∣∣∣E
∑
i∈I∗

+

1

n2pki
∥M∇fi(x

∗)∥2
−

∑
i∈I∗

+

1

n2p∗,ki

∥M∇fi(x
∗)∥2

∣∣∣∣∣∣
≤ maxi ∥M∇fi(x

∗)∥2

n2
E

∑
i∈I∗

+

|pki − p∗,ki |
pki p

∗,k
i


≤ maxi ∥M∇fi(x

∗)∥2

nδ∗wk
E

∑
i∈I∗

+

|pki − p∗,ki |

 since pki ≥ wk

n
and p∗,ki ≥ δ∗

≤ maxi ∥M∇fi(x
∗)∥2

nδ∗wk
· (1− wk)E

∑
i∈I∗

+

|p̃ki − p∗Hete,i|


≤ maxi ∥M∇fi(x

∗)∥2

nδ∗wk
E
[
∥p̃k − p∗Hete∥1

]
.

On the other hand, since both p∗,ki ≥ δ∗ and p∗Hete,i ≥ δ∗ for all i ∈ I∗
+, by a similar argument as above we have∣∣∣∣∣

n∑
i=1

1

n2p∗,ki

∥M∇fi(x
∗)∥2 −

n∑
i=1

1

n2p∗Hete,i

∥M∇fi(x
∗)∥2

∣∣∣∣∣ ≤ maxi ∥M∇fi(x
∗)∥2

(nδ∗)2
∥p∗,k − p∗Hete∥1

≤ maxi ∥M∇fi(x
∗)∥2

(nδ∗)2
· 2wk.

Combining the two error bounds we obtain the overall error∣∣∣∣∣E
[

n∑
i=1

1

n2pki
∥M∇fi(x

∗)∥2
]
−

n∑
i=1

1

n2p∗Hete,i

∥M∇fi(x
∗)∥2

∣∣∣∣∣
≤ maxi ∥M∇fi(x

∗)∥2

nδ∗

(
1

wk
E
[
∥p̃k − p∗∥1

]
+

2wk

nδ∗

)
.

Using this bound we can bound (D.14) as∣∣∣∣∣∣∣|I| · E

∥∥∥∥∥∥

k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
M∇fi(x

∗)

∥∥∥∥∥∥
2
− (1− γ)k

n∑
i=1

1

n2p∗Hete,i

∥M∇fi(x
∗)∥2

∣∣∣∣∣∣∣
≤ maxi ∥M∇fi(x

∗)∥2

nδ∗

 k∑
j=[γk]+1

1

wj
E
[
∥p̃j − p∗Hete∥1

]
+

2
∑k

j=[γk]+1 wj

nδ∗

 . (D.15)

Note that (D.14) also have the lower bound

n∑
i=1

1

n2pki
∥M∇fi(x

∗)∥2 ≥ min
p∈∆

n∑
i=1

1

n2pi
∥M∇fi(x

∗)∥2 ≥

(
1

n

n∑
i=1

∥M∇fi(x
∗)∥

)2

.

Therefore we also have the following lower bound

E


∥∥∥∥∥∥

k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
M∇fi(x

∗)

∥∥∥∥∥∥
2
 ≥ (1− γ)k

|I|

(
1

n

n∑
i=1

∥M∇fi(x
∗)∥

)2

. (D.16)
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Bound for
∑k

j=[γk]+1
1
αj

(xj − xj+1): We can rearrange terms to write

k∑
j=[γk]+1

1

αj
(xj − xj+1) =

k∑
j=[γk]+1

1

αj
(xj − x∗)−

k+1∑
j=[γk]+2

1

αj−1
(xj − x∗)

=

k∑
j=[γk]+2

(
1

αj
− 1

αj−1
)(xj − x∗) +

1

α[γk]+1
(x[γk]+1 − x∗)− 1

αk
(xk+1 − x∗),

therefore we can use Lemma D.1 to bound the first moment as

E

∥∥∥∥∥∥
k∑

j=[γk]+1

1

αj
(xj − xj+1)

∥∥∥∥∥∥


≤
k∑

j=[γk]+2

(
1

αj
− 1

αj−1
)E[∥xj − x∗∥] + 1

α[γk]+1
E[∥x[γk]+1 − x∗∥] + 1

αk
E[∥xk+1 − x∗∥]

≤ 1

α1

 k∑
j=[γk]+2

β(j − 1)β−1

√
Cx

αj

wj
+ ([γk] + 1)β

√
Cx

α[γk]+1

w[γk]+1
+ kβ

√
Cx

αk+1

wk+1


≤

√
CCx

α1w1
k

β
2 + η

2 ,

where C is a universal constant.

Bound for
∑k

j=[γk]+1

(
1
|I|
∑

i∈Ij

1

npj
i

∇2fi(x
∗)−∇2f(x∗)

)
(xj−x∗): Similar to the analysis of E[∥ξj∥2], we can write

E


∥∥∥∥∥∥

k∑
j=[γk]+1

( 1

|I|
∑
i∈Ij

1

npji
∇2fi(x

∗)−∇2f(x∗)
)
(xj − x∗)

∥∥∥∥∥∥
2


=

k∑
j=[γk]+1

E


∥∥∥∥∥∥
( 1

|I|
∑
i∈Ij

1

npji
∇2fi(x

∗)−∇2f(x∗)
)
(xj − x∗)

∥∥∥∥∥∥
2


≤ 1

|I|

k∑
j=[γk]+1

E

[
1

n2

n∑
i=1

1

pji
∥∇2fi(x

∗)(xj − x∗)∥2 − ∥∇2f(x∗)(xj − x∗)∥2
]

≤ 1

|I|

k∑
j=[γk]+1

E

[
1

n

n∑
i=1

1

wj
L2∥(xj − x∗)∥2

]
since ∥∇2fi(x

∗)∥ ≤ L and pji ≥
wj

n

=
L2

|I|

k∑
j=[γk]+1

1

wj
E
[
∥(xj − x∗)∥2

]
≤ L2Cxα1

|I|w2
1

k∑
j=[γk]+1

j−β+2η by Lemma D.1

≤ L2Cxα1

|I|w2
1

· 1

1− β + 2η
k1−β+2η.

Bound for
∑k

j=[γk]+1
1
|I|
∑

i∈Ij

1

npj
i

(∫ 1

0

(
∇2fi((1− θ)x∗ + θxj)−∇2fi(x

∗)
)
dθ
)
(xj − x∗): By smoothness of the

second-order derivatives we have ∥∇2fi((1− θ)x∗ + θxj)−∇2fi(x
∗)∥ ≤ L2θ∥xj − x∗∥, hence we can write

E

∥∥∥∥∥∥
k∑

j=[γk]+1

1

|I|
∑
i∈Ij

1

npji

(∫ 1

0

(
∇2fi((1− θ)x∗ + θxj)−∇2fi(x

∗)
)
dθ

)
(xj − x∗)

∥∥∥∥∥∥

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≤ E

 k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
L2∥xj − x∗∥2


= L2E

 k∑
j=[γk]+1

∥xj − x∗∥2


≤ L2Cxα1

w1

k∑
j=[γk]+1

j−β+η by Lemma D.1

≤ L2Cxα1

w1
· 1

1− β + η
k1−β+η.

Then we combine all the above bounds to characterize (D.13). We consider multiplying both sides of (D.13) by AH−1

(recall that H = ∇2f(x∗)) for some matrix A ∈ Rd×d, and get

A(x̄k,γ − x∗) = − 1

(1− γ)k

k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
AH−1∇fi(x

∗) +
1

(1− γ)k
AH−1 · Remainder, (D.17)

where the remainder aggregates the remaining terms from (D.13), and has the following first order moment by aggregating
the bounds derived above

E[∥Remainder∥] ≤ C

√
Cx

α1w1
k

β
2 + η

2 + L

√
Cxα1

|I|w2
1(1− β + 2η)

k
1
2−

β
2 +η +

L2Cxα1

w1
· 1

1− β + η
k1−β+η

≤ C

√
Cx

α1w1
k

β
2 + η

2 +
(L+ L2)(Cxα1 +

√
Cxα1)

w1(1− β + η)
· k1−β+η. (D.18)

We now deal with the leading term in (D.17) which we denote by

L̃k,γ := − 1

(1− γ)k

k∑
j=[γk]+1

1

|I|
∑
i∈Ij

1

npji
AH−1∇fi(x

∗)

for convenience. We also denote by

MHete
k,γ :=

1

(1− γ)|I|k

n∑
i=1

1

n2p∗Hete,i

∥AH−1∇fi(x
∗)∥2

the target variance of the leading error. Note that MHete
k,γ = 1

(1−γ)k|I|Tr(AH−1G(p∗Hete)H
−1AT ). Then by (D.15) L̃k,γ

satisfies ∣∣∣∣E [∥∥∥L̃k,γ

∥∥∥2]−MHete
k,γ

∣∣∣∣ (D.19)

≤ maxi ∥AH−1∇fi(x
∗)∥2

(1− γ)2k2|I|nδ∗

 k∑
j=[γk]+1

1

wj
E
[
∥p̃j − p∗∥1

]
+

2
∑k

j=[γk]+1 wj

nδ∗


≤ C1 max (

√
cmax, 1) ·

cmax√
ccmin

· maxi ∥AH−1∇fi(x
∗)∥2

(1− γ)2|I|nδ∗w1

[( 1

G

√
Cx

µ

w3
1

+ 1
)
· 1

k1+
β
4 − 7η

4

+
1

G

(C2
f maxi Var(ĉi)

w2
1

) 1
4 · (n/|I|)

1
4

k
5
4−

3η
2

]
+C3(fi, g̃

1
i , c̃

1
i , ci, i = 1, . . . , n) · maxi ∥AH−1∇fi(x

∗)∥2

(1− γ)2k2|I|nδ∗w1

k∑
j=[γk]+1

jηe−
C2|I|w1

n j1−η

+
C4w1

nδ∗
· maxi ∥AH−1∇fi(x

∗)∥2

(1− γ)2|I|nδ∗
1

k1+η
,
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where C4 is a universal constant and we used results from Proposition D.6. To handle the summation of the exponential
term, we can calculate that

k∑
j=[γk]+1

jηe−
C2|I|w1

n j1−η

≤ C5

∫ ∞

0

xηe−
C2|I|w1

n x1−η

dx where C5 is a universal constant

= C5 ·
(

n

C2|I|w1

) 1+η
1−η

∫ ∞

0

yηe−y1−η

dy with x =

(
n

C2|I|w1

) 1
1−η

y

≤ C5 ·
(

n

C2|I|w1

) 1+η
1−η

≤ C5 ·
(

n

|I|w1

) 1+η
1−η

, (D.20)

where in the last inequality the integral is finite and continuous in η and hence is uniformly bounded for η ∈ [0, 1/2],
therefore the integral can be absorbed into the universal constant C5. The universal constant C2 is also absorbed into C5.
Substituting this bound back into (D.19) and rearranging the terms finally give∣∣∣∣E [∥∥∥L̃k,γ

∥∥∥2]−MHete
k,γ

∣∣∣∣ (D.21)

≤ C1
maxi ∥AH−1∇fi(x

∗)∥2

(1− γ)2|I|

·

[
max

(√
cmax, 1

)
cmax√

ccminnδ∗w1

(( 1

G

√
Cx

µ

w3
1

+ 1
)
· 1

k1+
β
4 − 7η

4

+
1

G

(C2
f maxi Var(ĉi)

w2
1

) 1
4 · (n/|I|)

1
4

k
5
4−

3η
2

)
+

w1

(nδ∗)2
· 1

k1+η
+ C3(fi, g̃

1
i , c̃

1
i , ci, i = 1, . . . , n) · 1

nδ∗w
2/(1−η)
1

(
n

|I|

) 1+η
1−η

· 1

k2

]
.

On the other hand, from (D.16) we have the lower bound

E
[∥∥∥L̃k,γ

∥∥∥2] ≥ M∗
k,γ :=

1

(1− γ)|I|k

(
1

n

n∑
i=1

∥AH−1∇fi(x
∗)∥

)2

> 0, (D.22)

where the positiveness is due to Assumption 4.4. Therefore we can define

Lk,γ :=

√√√√√ MHete
k,γ

E
[∥∥∥L̃k,γ

∥∥∥2] · L̃k,γ ,

then it is clear that E
[
∥Lk,γ∥2

]
= MHete

k,γ and E [Lk,γ ] =

√
MHete

k,γ /E
[∥∥∥L̃k,γ

∥∥∥2]E [L̃k,γ

]
= 0. We also need to control

the difference

E
[∥∥∥Lk,γ − L̃k,γ

∥∥∥] =

∣∣∣∣∣∣∣∣∣∣

√
MHete

k,γ −

√
E
[∥∥∥L̃k,γ

∥∥∥2]√
E
[∥∥∥L̃k,γ

∥∥∥2]
∣∣∣∣∣∣∣∣∣∣
E
[∥∥∥L̃k,γ

∥∥∥]

≤

∣∣∣∣∣√MHete
k,γ −

√
E
[∥∥∥L̃k,γ

∥∥∥2]∣∣∣∣∣ by Jensen’s inequality

=

∣∣∣∣E [∥∥∥L̃k,γ

∥∥∥2]−MHete
k,γ

∣∣∣∣√
E
[∥∥∥L̃k,γ

∥∥∥2]+√MHete
k,γ
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≤ 1

2
√

M∗
k,γ

·
∣∣∣∣E [∥∥∥L̃k,γ

∥∥∥2]−MHete
k,γ

∣∣∣∣ by (D.22) (D.23)

Finally we combine the error bounds in (D.18), (D.21), and (D.23) to conclude the moment bound for the high-order error.
Specifically, applying these error bounds and rearranging terms we obtain

E [∥A(x̄k,γ − x∗)− Lk,γ∥]

≤ E
[∥∥∥Lk,γ − L̃k,γ

∥∥∥]+ 1

(1− γ)k
∥AH−1∥ · E [∥Remainder∥]

≤ 1

2
√

M∗
k,γ

·
∣∣∣∣E [∥∥∥L̃k,γ

∥∥∥2]−MHete
k,γ

∣∣∣∣+ 1

(1− γ)k
∥AH−1∥ · E [∥Remainder∥]

≤ C1
maxi ∥AH−1∇fi(x

∗)∥2

(1− γ)
3
2

√
|I| 1n

∑n
i=1 ∥AH−1∇fi(x∗)∥

·

[
max

(√
cmax, 1

)
cmax√

ccminnδ∗w1

(( 1

G

√
Cx

µ

w3
1

+ 1
)
· 1

k
1
2+

β
4 − 7η

4

+
1

G

(C2
f maxi Var(ĉi)

w2
1

) 1
4 · (n/|I|)

1
4

k
3
4−

3η
2

)

+
w1

(nδ∗)2
· 1

k
1
2+η

+ C3(fi, g̃
1
i , c̃

1
i , ci, i = 1, . . . , n) · 1

nδ∗w
2/(1−η)
1

(
n

|I|

) 1+η
1−η

· 1

k
3
2

]

+
∥AH−1∥
(1− γ)

(
C

√
Cx

α1w1
· 1

k1−
β
2 − η

2

+
(L+ L2)(Cxα1 +

√
Cxα1)

w1(1− β + η)
· 1

kβ−η

)
≤ C1(A, γ, δ∗, c, Cx, α1, w1, β, η, fi, ci, i = 1, . . . , n) · k−min( 1

2+
β
4 − 7η

4 , 12+η,1− β
2 − η

2 ,β−η)

+C2(A, γ, δ∗, c, w1, fi, ci,Var(ĉi), i = 1, . . . , n) · 1√
|I|

·
(

n

|I|

) 1
4

k−
3
4+

3η
2

+C3(A, γ, δ∗, w1, fi, ci, g̃
1
i , c̃

1
i , i = 1, . . . , n) · 1√

|I|
·
(

n

|I|

) 1+η
1−η

k−
3
2 .

It only remains to study the cumulative cost. By the conditional independence of the sampling cost ĉi,j given the sampling
weights, we have

E [costk] = E

k−1∑
j=1

|I|
n∑

i=1

cip
j
i

 ,

therefore we can write

|E [costk]− c(p∗Hete)|I|(k − 1)|

≤ |I|
k−1∑
j=1

E

[∣∣∣∣∣
n∑

i=1

cip
j
i −

n∑
i=1

cip
∗
Hete,i

∣∣∣∣∣
]

≤ |I|
k−1∑
j=1

E

[
max

i
ci

n∑
i=1

|pji − p∗Hete,i|

]

= |I|cmax

k−1∑
j=1

E
[
∥pj − p∗Hete∥1

]

≤ |I|cmax

k−1∑
j=1

E
[
∥p̃j − p∗Hete∥1

]
+

k−1∑
j=1

2wj

 using pj = (1− wj)p̃
j + wj

(
1

n
, . . . ,

1

n

)

≤ |I|cmax · C1 max (
√
cmax, 1) ·

cmax√
ccmin

·
[( 1

G

√
Cx

µ

w3
1

+ 1
)
· k1−

β
4 + 3η

4
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+
1

G

(C2
f maxi Var(ĉi)

w2
1

) 1
4 ·
(

n

|I|

) 1
4

k
3
4+

η
2

]
using results from Proposition D.6

+C2(fi, g̃
1
i , c̃

1
i , ci, i = 1, . . . , n) · |I|cmax ·

(
n

|I|w1

) 1
1−η

using a similar calculation as (D.20)

+C3|I|cmax · w1k
1−η

≤ C4(c, Cx, w1, fi, ci, i = 1, . . . , n) · |I|kmax(1− β
4 + 3η

4 ,1−η)

+C5(c, w1, fi, ci,Var(ĉi), i = 1, . . . , n) · |I|
(

n

|I|

) 1
4

k
3
4+

η
2

+C6(w1, fi, g̃
1
i , c̃

1
i , ci, i = 1, . . . , n) · |I|

(
n

|I|

) 1
1−η

.

This completes the proof.

Now we can present the proof of Theorem 4.12.

Proof of Theorem 4.12. We first prove the bound for HeteRSGD. Theorem D.7 entails the following bounds for the solution
error and cumulative sampling cost

E[∥H(x̄k,γ − x∗)∥] ≤
√
E[∥Lk,γ∥2] + E[∥Ek,γ∥] (D.24)

≤

√
1

(1− γ)k|I|
Tr(G(p∗Hete))

+
C1√
k
·

(
1

kĉβ,η
+

1√
|I|

·
(

n

|I|

) 1
4 1

k
1
4−

3η
2

+
1√
|I|

·
(

n

|I|

) 1+η
1−η 1

k

)
, (D.25)

where ĉβ,η := min(β4 − 7η
4 , η, 1

2 − β
2 − η

2 , β − 1
2 − η), C1 depends on γ, α1, w1, β, η, x1 and fi, ĉi, g̃

1
i , c̃

1
i , i = 1, . . . , n,

and

E [costk] ≤ c(p∗Hete)|I|k + C2|I|k

(
1

kmin( β
4 − 3η

4 ,η)
+

(
n

|I|

) 1
4 1

k
1
4−

η
2

+

(
n

|I|

) 1
1−η 1

k

)
where the constant C2 depends on α1, w1, β, η, x1, fi, ĉi, g̃

1
i , c̃

1
i , i = 1, . . . , n. Taking square root of both sides of the above

inequality and using the inequality
√
a+ b ≤

√
a+

√
b for a, b ≥ 0 give

√
E [costk] ≤

√
c(p∗Hete)|I|k +

√
C2|I|k

(
1

kmin( β
8 − 3η

8 , η2 )
+

(
n

|I|

) 1
8 1

k
1
8−

η
4

+

(
n

|I|

) 1
2(1−η) 1

k
1
2

)
. (D.26)

Under the stated conditions on η, we have ĉβ,η > 0 and min(β8 − 3η
8 , η

2 ) > 0, and hence 1

kĉβ,η
≤ 1 in (D.25) and

1

kmin(
β
8

− 3η
8

,
η
2
)
≤ 1 in (D.26). When k ≥

(
n
|I|

) 1
1−6η

, we have that

(
n

|I|

) 1
4 1

k
1
4−

3η
2

/(( n

|I|

) 1+η
1−η 1

k

)
=

(
n

|I|

)− 3+5η
4(1−η)

· k
3+6η

4

≥
(

n

|I|

)− 3+6η
4(1−6η)

· k
3+6η

4

=

(
k
/( n

|I|

) 1
1−6η

) 3+6η
4

≥ 1,

and that (
n

|I|

) 1
8 1

k
1
8−

η
4

/( n

|I|

) 1
2(1−η) 1

k
1
2

=

(
n

|I|

)− 3+η
8(1−η)

· k
3+2η

8
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≥
(

n

|I|

)− 3+2η
8(1−6η)

· k
3+2η

8

=

(
k
/( n

|I|

) 1
1−6η

) 3+2η
8

≥ 1.

Therefore, the second terms in (D.25) and (D.26) dominate the third terms respectively. One can further verify that(
n
|I|

) 1
4 1

k
1
4
− 3η

2

≤ 1 and
(

n
|I|

) 1
8 1

k
1
8
− η

4
≤ 1 when k ≥

(
n
|I|

) 1
1−6η

. Multiplying (D.24) with (D.26) and leaving out the

high-order terms, we obtain√
E [costk] · E[∥H(x̄k,γ − x∗)∥]

≤

√
c(p∗Hete)

1− γ
Tr(G(p∗Hete)) + C3

(√
|I|

kĉβ,η
+

1

kmin((β−3η)/8,η/2)
+

(
n

|I|

) 1
4 1

k
1
4−

3η
2

+

(
n

|I|

) 1
8 1

k
1
8−

η
4

)

≤

√
c(p∗Hete)

1− γ
Tr(G(p∗Hete)) + C3

(√
|I|

kcβ,η
+

(
n

|I|

) 1
4 1

k
1
4−

3η
2

+

(
n

|I|

) 1
8 1

k
1
8−

η
4

)
,

where cβ,η := min(β4 − 7η
4 , 1

2 − β
2 − η

2 , β − 1
2 − η, β

8 − 3η
8 , η

2 ), and C3 depends on γ, α1, w1, β, η, x1, fi, ĉi, g̃
1
i , c̃

1
i , i =

1, . . . , n. The bound for HeteRSGD then follows by noticing that ρ(p) = c(p)Tr(G(p)).

We now prove the bound for the standard SGD. By following the proof of Theorem D.7 with straightforward modifications,
e.g., with pk = p∗SGD and wk = 1, we can easily obtain the following counterpart of Theorem D.7 for the standard SGD

A(x̄k,γ − x∗) = Lk,γ + Ek,γ

where the leading term Lk,γ satisfies

E[Lk,γ ] = 0,

E[∥Lk,γ∥2] =
1

(1− γ)k|I|
Tr(AH−1G(p∗SGD)H−1AT )

and the high-order error satisfies

E[∥Ek,γ∥] ≤ C4(A, γ, α1, β, x1, fi, i = 1, . . . , n) · 1√
k
· 1

kcβ

with cβ := min( 12 − β
2 , β − 1

2 ). Therefore, letting A = H , we obtain

E[∥H(x̄k,γ − x∗)∥] ≤
√

E[∥Lk,γ∥2] + E[∥Ek,γ∥] ≤

√
1

(1− γ)k|I|
Tr(G(p∗SGD)) +

C4√
k
· 1

kcβ
.

On the other hand E[costk] = c(p∗SGD)|I|(k − 1) ≤ c(p∗SGD)|I|k, hence

√
E[costk] · E[∥Ek,γ∥] ≤

√
c(p∗SGD)

1− γ
Tr(G(p∗SGD)) + C4c(p

∗
SGD) · |I|

kcβ
.

This completes the proof.

E PROOFS FOR RESULTS IN SECTION 5

Proof of Theorem 5.1. We need the following result, which is a straightforward application of a central limit theorem for
controlled Markov chains from Fort (2015) and hence the proof is omitted.

Lemma E.1 (An application of Theorem 2.1 from Fort (2015)). Consider the Rd-valued sequence xk generated by Algo-
rithm 1

xk+1 = xk + αk∇f(xk) + αkξk.

If Assumptions 4.4 and 4.5 holds, xk → x∗ a.s.., and the following five conditions are satisfied:
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1. ∇f(x) is measurable and f(x) has continuous third-order derivatives in a neighborhood of x∗,

2. The Hessian H := ∇2f(x∗) is positive definite,

3.
∑∞

k=1 αk = ∞, and
∑∞

k=1 α
2
k < ∞, and limk→∞ log(αk−1/αk)/αk = 0,

4. There exists a sequence of events {Ak ∈ Fk, k ≥ 0} and δ > 0 such that supk≥1 E[∥ξk∥2+δIAk−1
] < ∞ and

limk→∞ IAk
= 1 a.s.,

5. E[ξkξTk |Fk−1] = M(p∗)+Dk,1+Dk,2, where M(p∗) is a positive semidefinite matrix depending on the limit sampling
distribution p∗. The matrices Dk,1, Dk,2 satisfy limk→∞ Dk,1 = 0 a.s. and limk→∞ αkE[∥

∑k
j=1 Dj,2∥] → 0,

then
1

√
αk

(xk − x∗) ⇒ N (0,Σ(p∗)) , (E.1)

where the covariance matrix Σ(p∗) satisfies Σ(p∗)H +HΣ(p∗) = M(p∗).

To use Lemma E.1, we first argue that xk → x∗ a.s.. Since αk = α1/k
β with β ∈ (1/2, 1), we have

∑∞
k=1 α

2
k/wk ≤∑∞

k=1 αk/wk · α1√
k
= α1

∑∞
k=1 αk/(wk

√
k) < ∞, therefore the conditions of Lemma 4.3 are satisfied and by Theorem

4.2 we have xk → x∗ a.s..

We then verify the five conditions in Lemma E.1. Condition 1 is directly implied by Assumption 4.1 and the continuous
differentiability condition in Theorem 5.1. Condition 2 is a consequence of strong convexity from Assumption 4.1. Con-
dition 3 can be verified to be true for step sizes in the form of αk = α1/k

β for β ∈ (1/2, 1). To verify condition 4, we
consider

Ak = {∥xk+1 − x∗∥ ≤ 1} ∩ Ωk+1

where Ωk+1 is the event (B.4) defined in the Proof of Theorem 4.8, then by the almost sure convergence of xk and pk we
have limk→∞ IAk

= 1 a.s.. We’ve assumed that supk αk/w
3+δ
k < ∞. We write

E[∥ξk∥2+δIAk−1
] ≤ 1

|I|
E

[∑
i∈Ik

∥∥∥∥∇fi(xk)

npki
−∇f(xk)

∥∥∥∥2+δ

IAk−1

]
by Jensen’s inequality

= E

∥∥∥∥∥∇fĩ(xk)

npk
ĩ

−∇f(xk)

∥∥∥∥∥
2+δ

IAk−1

 ,

where ĩ|Fk−1 ∼ pk. To further bound the above expectation, we consider two cases. If p∗
ĩ
> 0, then by Assumption 4.1∥∥∥∥∥∇fĩ(xk)

npk
ĩ

−∇f(xk)

∥∥∥∥∥
2+δ

IAk−1
≤
(
∥∇fĩ(x

∗)∥+ L∥xk − x∗∥
nδ∗

+ L∥xk − x∗∥
)2+δ

IAk−1
.

Otherwise if p∗
ĩ
= 0, we have ∇fĩ(x

∗) = 0 by Assumption 4.5, and hence∥∥∥∥∥∇fĩ(xk)

npk
ĩ

−∇f(xk)

∥∥∥∥∥
2+δ

IAk−1
≤
(
L∥xk − x∗∥

wk
+ L∥xk − x∗∥

)2+δ

IAk−1
.

So we can bound E[∥ξk∥2+δIAk−1
] as

(
E[∥ξk∥2+δIAk−1

]
) 1

2+δ ≤

E

E
∥∥∥∥∥∇fĩ(xk)

npk
ĩ

−∇f(xk)

∥∥∥∥∥
2+δ

IAk−1

∣∣∣Fk−1

 1
2+δ

≤

(
E

[(
maxi ∥∇fi(x

∗)∥
nδ∗

+
L∥xk − x∗∥
min(nδ∗, wk)

+ L∥xk − x∗∥
)2+δ

IAk−1

]) 1
2+δ

≤ maxi ∥∇fi(x
∗)∥

nδ∗
+

(
L

min(nδ∗, wk)
+ L

)
(E[∥xk − x∗∥2+δIAk−1

])
1

2+δ
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by Minkowski inequality

≤ maxi ∥∇fi(x
∗)∥

nδ∗
+

(
L

min(nδ∗, wk)
+ L

)
(E[∥xk − x∗∥2])

1
2+δ

since ∥xk − x∗∥ ≤ 1 on Ak−1

≤ maxi ∥∇fi(x
∗)∥

nδ∗
+ Cx

(
L

min(nδ∗, wk)
+ L

)(
αk

wk

) 1
2+δ

by Lemma B.5. (E.2)

Since supk αk/w
3+δ
k < ∞, we see that (E.2) is bounded as k → ∞. Therefore condition 4 is satisfied.

We now verify condition 5 for M(p∗) = 1
|I|G(p∗). We decompose

E[ξkξTk |Fk−1] =
1

|I|

(
n∑

i=1

∇fi(xk)∇fT
i (xk)

n2pki
−∇f(xk)∇fT (xk)

)

=
G(p∗)

|I|
+

1

|I|

 ∑
i:p∗

i >0

(
∇fi(xk)∇fT

i (xk)

n2pki
− ∇fi(x

∗)∇fT
i (x∗)

n2p∗i

)
−∇f(xk)∇fT (xk)

 (E.3)

+
1

|I|
∑

i:p∗
i =0

∇fi(xk)∇fT
i (xk)

n2pki
. (E.4)

Note that the remainder in (E.3) converges to 0 a.s. since each pki → p∗i > 0 and xk → x∗ a.s. and can be regarded as Dk,1

in condition 5. We then let (E.4) be Dk,2 and verify the condition for Dk,2. We write

αkE

∥∥∥∥∥∥
k∑

j=1

Dj,2

∥∥∥∥∥∥
 ≤ αk

k∑
j=1

E[∥Dj,2∥]

≤ αk
1

|I|
∑

i:p∗
i =0

k∑
j=1

E

[∥∥∥∥∥∇fi(xj)∇fT
i (xj)

n2pji

∥∥∥∥∥
]

by triangular inequality

≤ αk
1

|I|
∑

i:p∗
i =0

k∑
j=1

E
[
L2∥xj − x∗∥2

nwj

]
by Assumptions 4.1 and 4.5

≤ CxL
2

|I|n
∑

i:p∗
i =0

αk

k∑
j=1

αj

w2
j

by Lemma B.5

→ 0 by the assumed condition αk

k∑
j=1

αj

w2
j

→ 0.

Therefore condition 5 is satisfied.

The above verification proves (E.1). Since costk/(|I|k) → c(p∗) a.s. by Proposition 4.7, then by Slutsky’s theorem we
can conclude

cost
β
2

k (xk − x∗) =
√

|I|βα1 ·
(
costk
|I|k

) β
2

· 1
√
αk

(xk − x∗) ⇒ N
(
0, α1|I|βc(p∗)βΣ(p∗)

)
. (E.5)

Since ∇f(x∗) = 0 and the Hessian H at x∗ is positive definite, the CLTs for ∇f(xk) and f(xk)− f(x∗) then follow from
the delta method. Specifically, ∇f(xk) = H(xk−x∗)+op(∥xk−x∗∥) and f(xk)−f(x∗) = 1

2 (xk−x∗)TH(xk−x∗)+
op(∥xk − x∗∥2), hence the delta method implies that

1
√
αk

∇f(xk) ⇒ N (0, HΣ(p∗)H) ,

1

αk
(f(xk)− f(x∗)) ⇒

∥∥∥∥N (
0,

1

2
H

1
2Σ(p∗)H

1
2

)∥∥∥∥2 .
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A similar application of Slutsky’s theorem as in (E.5) then concludes

cost
β
2

k ∇f(xk) =
√

|I|βα1 ·
(
costk
|I|k

) β
2

· 1
√
αk

∇f(xk) ⇒ N
(
0, α1|I|βc(p∗)βHΣ(p∗)H

)
,

costβk(f(xk)− f(x∗)) = |I|βα1 ·
(
costk
|I|k

)β

· 1

αk
(f(xk)− f(x∗)) ⇒

∥∥∥∥N (
0,

1

2
α1|I|βc(p∗)βH

1
2Σ(p∗)H

1
2

)∥∥∥∥2 .
This completes the proof.

Proof of Proposition 5.2. According to Proposition F.1 in Section F, the optimal sampling distribution that minimizes (F.5)
is continuous in the coefficients bi, ci, b0. Therefore by the same argument in the proof of Proposition 4.6, pk converges to
the optimal weights p∗Heteβ

a.s..

F EFFICIENT ROUTINES FOR OPTIMIZING (2.4) AND (5.1)

We first provide the proof for Proposition 2.2, and then present an efficient nested bisection approach (Proposition F.1
below) for optimizing efficiency metrics in the form of (5.1).

Proof of Proposition 2.2. The case that all bi = 0 is trivial, so we assume at least one bi > 0. Let p∗ be an optimal solution
to (2.5). If p∗i = 0 then the corresponding bi must be 0, since otherwise (2.5) becomes ∞. Therefore, if we only consider
the nonzero p∗i ’s, then they sum up to 1 and minimize ∑

i:p∗
i >0

pici

 ∑
i:p∗

i >0

bi
n2pi

− b0

 ,

which is in the same form of (2.5). For this reason, we assume all p∗i > 0 without loss of generality.

Consider the Lagrangian

L(p1, . . . , pn, λ) =

(
n∑

i=1

cipi

)(
n∑

i=1

bi
n2pi

− b0

)
+ λ

(
n∑

i=1

pi − 1

)
.

Since all p∗i > 0 the following KKT condition is necessary

∂L
∂pi

∣∣∣
p=p∗,λ=λ∗

= −

 n∑
j=1

cjp
∗
j

 bi

n2p∗i
2 + ci

 n∑
j=1

bj
n2p∗j

− b0

+ λ∗ = 0 for i = 1, . . . , n, (F.1)

n∑
i=1

p∗i = 1. (F.2)

where λ∗ is the corresponding optimal dual variable associated with the constraint
∑n

i=1 pi = 1. Therefore we have

0 =

n∑
i=1

p∗i
∂L
∂pi

∣∣∣
p=p∗,λ=λ∗

= −
n∑

i=1

cip
∗
i

n∑
i=1

bi
n2p∗i

+

n∑
i=1

cip
∗
i

(
n∑

i=1

bi
n2p∗i

− b0

)
+ λ∗

= −b0

n∑
i=1

cip
∗
i + λ∗.

Denote by c :=
∑n

i=1 cip
∗
i > 0, then λ∗ = b0c. Denoting by v :=

∑n
i=1

bi
n2p∗

i
− b0 ≥ minp∈∆n

∑n
i=1

bi
n2pi

− b0 =

(
∑n

i=1

√
bi
n )2 − b0 ≥ 0 and plugging λ∗, c, v into (F.1) we get

c

(
b0 −

bi

n2p∗i
2

)
+ vci = 0, for i = 1, . . . , n.
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We let κ := v
c ≥ 0, and obtain

p∗i =

√
bi/n2

κci + b0
, for i = 1, . . . , n, (F.3)

and by the feasibility condition in (F.2), κ must satisfy

n∑
i=1

√
bi/n2

κci + b0
= 1. (F.4)

From the expression (F.3) we see that in fact p∗i = 0 if and only if bi = 0, therefore (F.3) holds true even without
assuming all p∗i > 0. Finally, the uniqueness of p∗ follows because the equation (F.4) has a unique root κ∗ due to the strict
monotonicity of its left-hand side in κ.

We can efficiently optimize (5.1) using a nested bisection described in the next result:

Proposition F.1. Let ci > 0, bi ≥ 0 for all i = 1, . . . , n, 0 ≤ b0 ≤ (
∑n

i=1

√
bi/n)

2, and consider

min
p∈∆n

(
n∑

i=1

pici

)β ( n∑
i=1

bi
n2pi

− b0

)
, (F.5)

where β ∈ (0, 1). If at least one bi > 0, then there exists a unique minimizer p∗ for (F.5) and is given by

p∗i =

√
bi/n2

(1− β)κ∗ + βciκ∗/c∗ + b0
, i = 1, 2, . . . , n, (F.6)

where c∗ > 0 uniquely solves
n∑

i=1

√
bi/n2 · c2i

(1− β)κ∗(c∗) + βciκ∗(c∗)/c∗ + b0
= c∗,

with κ∗(c) ≥ 0 for each fixed c > 0 uniquely solving

n∑
i=1

√
bi/n2

(1− β)κ∗(c) + βciκ∗(c)/c+ b0
= 1,

and κ∗ = κ∗(c∗). Otherwise if all bi = 0, then (F.5) is constantly 0.

We observe that the optimal weights (F.6) can be viewed as an interpolation between the variance-minimizing weights
p∗i ∝

√
bi (β = 0) and the optimal weights (2.6) for β = 1. Here is the proof for Proposition F.1:

Proof. Similar to the proof of Proposition 2.2, we assume all p∗i > 0 without loss of generality. We consider the Lagrangian

L(p1, . . . , pn, λ) =

(
n∑

i=1

cipi

)β ( n∑
i=1

bi
n2pi

− b0

)
+ λ

(
n∑

i=1

pi − 1

)
,

and following KKT condition is necessary

∂L
∂pi

∣∣∣∣∣
p=p∗,λ=λ∗

= −

 n∑
j=1

cjp
∗
j

β

bi

n2p∗i
2 + βci

 n∑
j=1

cjp
∗
j

β−1 n∑
j=1

bj
n2p∗j

− b0

+ λ∗ = 0, for i = 1, . . . , n,

(F.7)
n∑

i=1

p∗i = 1. (F.8)
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Multiplying each side of (F.7) by p∗i and summing up gives rise to

0 =

n∑
i=1

p∗i
∂L
∂pi

∣∣∣
p=p∗,λ=λ∗

= −

(
n∑

i=1

cip
∗
i

)β ( n∑
i=1

bi
n2p∗i

)
+ β

(
n∑

i=1

cip
∗
i

)β ( n∑
i=1

bi
n2p∗i

− b0

)
+ λ∗.

Again we denote by c :=
∑n

i=1 cip
∗
i > 0 and v :=

∑n
i=1

bi
n2p∗

i
− b0 ≥ 0, we have λ∗ = ((1 − β)v + b0)c

β . Plugging

λ∗, c, v into (F.7) and dividing each side by cβ−1 gives

− cbi

n2p∗i
2 + βciv + c((1− β)v + b0) = 0, for i = 1, . . . , n,

that is

p∗i =

√
bi/n2

(1− β)v + βciv/c+ b0
, for i = 1, . . . , n, (F.9)

where the unknowns c, v must satisfy

n∑
i=1

√
bi/n2

(1− β)v + βciv/c+ b0
= 1, by (F.8), (F.10)

n∑
i=1

√
bi/n2 · c2i

(1− β)v + βciv/c+ b0
= c, by the definition of c. (F.11)

Note that (F.9) entails that p∗i = 0 if and only if bi = 0, therefore (F.9) continues to hold even if some p∗i = 0 as in the
proof of Proposition 2.2. It remains to show uniqueness. For a given c > 0, there exists a unique v∗(c) that solves (F.10)
due to strict monotonicity in v, therefore it suffices to show that (F.11) is solved by a unique c∗ and the corresponding
v∗(c∗). Suppose that c∗1, v

∗(c∗1) and c∗2, v
∗(c∗2) both solve (F.11). Suppose c∗2 = ηc∗1 > c∗1 > 0 with η > 1 without loss

of generality, then we must have v∗(c∗2) ≥ v∗(c∗1) ≥ 0 since the left-hand side of (F.10) is increasing in c and strictly
decreasing in v, therefore

c∗2 =

n∑
i=1

√
bi/n2 · c2i

(1− β)v∗(c∗2) + βciv∗(c∗2)/c
∗
2 + b0

≤
n∑

i=1

√
bi/n2 · c2i

(1− β)v∗(c∗1) + βciv∗(c∗1)/(ηc
∗
1) + b0

≤
n∑

i=1

√
bi/n2 · c2i

(1− β)v∗(c∗1)/η + βciv∗(c∗1)/(ηc
∗
1) + b0/η

=
√
η

n∑
i=1

√
bi/n2 · c2i

(1− β)v∗(c∗1) + βciv∗(c∗1)/c
∗
1 + b0

=
√
ηc∗1 < ηc∗1,

contradicting with the starting assumption that c∗2 = ηc∗1. Hence the optimal p∗ must be unique.

G ADDITIONAL EXPERIMENTAL DETAILS AND RESULTS

G.1 Implementation Details

This subsection contains some implementation details for numerical experiments in Section 6. In all experiments, the cost
for evaluating ∇fi is fixed as ci, not a random variable. In HeteRSGD and HeteRSGDβ , we always set G̃k = 0 which
makes the subproblem (3.4) (or the counterpart for HeteRSGDβ) easier to solve. We use the following parameters when
implementing the algorithms:

• The synthetic example: We use x1 = (1, 1), αk = 1
10·k0.8 , and |Ik| = 10 for all algorithms implemented. For SRG,

SRG-m, HeteRSGD and HeteRSGDβ , we set wk = 1
100·k0.4 .
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• ℓ2-regularized logistic regression: We use x1 = (0, 0, . . . , 0), αk = 100
k0.8 , and |Ik| = 10 for all algorithms imple-

mented. For SRG, SRG-m, HeteRSGD and HeteRSGDβ , we set wk = 1
100·k0.2 .

• The nonconvex example: We use x1 = (0, 0, . . . , 0), αk = 100
k0.8 , and |Ik| = 100 for all algorithms implemented. For

SRG, SRG-m, HeteRSGD and HeteRSGDβ , we set wk = 1
100·k0.2 .

For HeteRSGDβ , we use β = 0.8 in the sampling efficiency metric (5.1) to match the decay rate of the step size used.

G.2 Additional Numerical Results

We present additional results in this subsection.

Efficiency gain under varying degrees of heterogeneity: We consider the same synthetic example from Section 6 but
study a wider range of degree of heterogeneity using ϵ ∈ {0.01, 0.05, 0.1, 0.3, 0.5, 1}.

As in Section 6, Figure 3 shows the average error of the Polyak-Ruppert averaged solution over 10 independent runs versus
the sampling cost incurred, as the parameter ϵ increases from 0.01 to 1 (the homogenenous setting). We see a strong

(a) ϵ = 0.01. (b) ϵ = 0.05. (c) ϵ = 0.1.

(d) ϵ = 0.3. (e) ϵ = 0.5. (f) ϵ = 1.

Figure 3: The synthetic example from Section 6 with varying degrees of heterogeneity in sampling costs.

correlation between the degree of heterogeneity and the efficiency gain from our HeteRSGD schemes. When ϵ = 1, which
is essentially the homogeneous setting, all methods are indistinguishable. The efficiency gain of our HeteRSGD variants
over existing schemes immediately shows up as ϵ decreases. In particular, in the case of highest heterogeneity ϵ = 0.01, we
observe a speedup by an order of magnitude from our HeteRSGD algorithms, especially HeteRSGD, compared to existing
SGD schemes. Specifically, HeteRSGD and HeteRSGDβ achieve the same accuracy as SGD/SRG/SRG-m with roughly
95% and 70% less sampling costs respectively. This further speedup from HeteRSGD compared to the synthetic case in
Section 6 is consistent with the changes in the relative efficiency from 0.96 to 4×10−4 with respect to SGD and from 0.84
to 0.039 with respect to SRG. All these show that our HeteRSGD can reduce the required sampling cost by a significant
amount or even an order of magnitude depending on the degree of heterogeneity in the costs.

Robustness against random sampling costs: In order to test the methods in the case that the cost of sampling each
component is random rather than deterministic, we consider the same synthetic example from Section 6 but now let each
sample from fi incur a random cost ĉi ∼ Uniform((1−r)ci, (1+r)ci) for a parameter r ∈ [0, 1]. Figure 4 shows the results
for r ∈ {0.1, 0.2, 0.4, 0.6, 0.8, 0.9}. HeteRSGD consistently outperforms existing methods for all the considered r values.
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HeteRSGDβ and SGD perform similarly, with HeteRSGDβ outperforming SGD for r = 0.1. The similarity between
HeteRSGDβ and SGD is suggested by their similar asymptotic efficiencies for the averaged solution: ρ(p∗Hete)/ρ(p

∗
SGD) =

0.96 and ρ(p∗Hete)/ρ(p
∗
Heteβ

) = 0.98. Nevertheless, HeteRSGD robustly outperforms existing methods under different
levels of randomness in sampling costs.

(a) r = 0.1. (b) r = 0.2. (c) r = 0.4.

(d) r = 0.6. (e) r = 0.8. (f) r = 0.9.

Figure 4: The synthetic example from Section 6 under increasing randomness in sampling costs.

Comparing HeteRSGD and HeteRSGDβ , we have the same observation as in Section 6, i.e., HeteRSGD outperforms
HeteRSGDβ in almost all the cases in terms of the achieved accuracy of the averaged iterate. Having said that, we find
that even if we use errors of individual iterates in place of averaged ones for comparison, the results remain similar, i.e.,
HeteRSGD continues to outperform HeteRSGDβ and both HeteRSGD variants outperform existing SGD schemes. This
suggests that it may take a large number of iterations in practice for the asymptotic errors of individual iterates to take effect
and hence the optimality of HeteRSGDβ appears more of theoretical interest. Based on these observations, we recommend
HeteRSGD over HeteRSGDβ for better finite-sample performance.
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