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Abstract

Machine learning models are known to be sus-
ceptible to adversarial perturbations. Even more
concerning is the fact that these adversarial per-
turbations can be found by black-box search us-
ing surprisingly few queries, which essentially
restricts the perturbation to a subspace of dimen-
sion k—much smaller than the dimension d of the
image space. This intriguing phenomenon raises
the question: Is the vulnerability to black-box at-
tacks inherent or can we hope to prevent them?
In this paper, we initiate a rigorous study of the
phenomenon of low-dimensional adversarial per-
turbations (LDAPs). Our result characterizes pre-
cisely the sufficient conditions for the existence
of LDAPs, and we show that these conditions
hold for neural networks under practical settings,
including the so-called lazy regime wherein the
parameters of the trained network remain close
to their values at initialization. Our theoretical
results are confirmed by experiments on both syn-
thetic and real data.
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1 Introduction

Despite their widespread use and success in solving real-life
tasks like speech recognition, face recognition, assisted driv-
ing, etc., neural networks (NNs) are known to be vulnerable
to adversarial perturbations, i.e. imperceptible modifica-
tions of input data causing the model to fail (Szegedy et al.,
2013). This vulnerability can be exploited by an adver-
sary to manipulate the model’s decision at test-time and can
constitute a serious security risk if left unchecked.

Although the majority of attacks using adversarial pertur-
bation rely on access to the model parameters for gradient-
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based search, a more recent series of works showed that
query-based black-box attacks are also possible. Meth-
ods such as Boundary Attack (Brendel et al., 2017),
NES (Ilyas et al., 2018), SimBA (Guo et al., 2019) and
HopSkipJump (Chen et al., 2020) approximate the full gra-
dient via a Monte-Carlo finite-difference estimate which
sub-samples the coordinates randomly. Surprisingly, exist-
ing black-box attacks can be carried out using a very small
number of queries, which suggests that adversarial examples
are abundant in low-dimensional subspaces.

For instance, Chen et al. (2017) initiated the study on black-
box attacks using a finite-difference approximation for the
gradient to perform gradient-ascent search. This method
inspired others such as Boundary Attack (Brendel et al.,
2017), NES (Ilyas et al., 2018), SimBA (Guo et al., 2019)
and HopSkipJump (Chen et al., 2020) that approximate
the full finite-difference gradient via a Monte-Carlo esti-
mate which sub-samples the coordinates randomly. This
approach only requires sampling a very small fraction of the
total input space, e.g., on ImageNet where the input dimen-
sionality is approximately 150K, SimBA perturbs as few
as 1665 random coordinates and succeeds with over 98.6%
probability (Guo et al., 2019). Subsequent works also per-
formed adversarial search in a fixed subspace such as the
low-frequency subspace (Yin et al., 2019; Guo et al., 2018)
or by selecting the subspace in a distribution-dependent
manner using an independently-trained NN (Tu et al., 2019;
Yan et al., 2019; Huang and Zhang, 2019).

These empirical findings lead us to hypothesize that ad-
versarial perturbations exist with high probability in low-
dimensional subspaces. Our work initiates a rigorous study
to understand low-dimensional adversarial perturbations
(LDAPs). We provide rigorous explanations for the empiri-
cal success of some powerful heuristics that have appeared
in the literature (Moosavi-Dezfooli et al., 2017; Khrulkov
and Oseledets, 2018; Guo et al., 2018; Yin et al., 2019; Chen
et al., 2020).

1.1 Main Contributions

Our main results are as follows. In Sections 4 and 5, we
consider different realistic notions of smoothness for a bi-
nary classifier. These smoothness assumptions allow us to



linearize the decision boundary locally and derive generic
lower-bounds on the fooling rate of any subspace V of the
feature space Rd. Our bounds reveal the role of

– the alignment of the subspace V with the unit-normals
at the classifier’s decision-boundary,

– the distribution of classifier’s pointwise margin,

– the local smoothness of the classifier’s decision-
boundary, and

– the attacker’s budget ε (measured in Euclidean norm).

We formalize a notion of alignment in Section 3.

For random subspaces of sufficiently high dimension (Guo
et al., 2019) and subspaces obtained via SVD on the gra-
dients (Moosavi-Dezfooli et al., 2017; Khrulkov and Os-
eledets, 2018), our results provide transparent lower-bounds
on the fooling rate, which explain the empirical success
of the very efficient heuristic methods that have been pro-
posed in the literature for constructing LDAPs; see section
6. Moreover, the lower-bounds only depend on the distribu-
tions of the predictions and the gradients of the model and
so can be empirically estimated on held-out data, making
them a practical predictor for the adversarial vulnerability
of classifiers. Our theoretical results are confirmed by nu-
merous experiments on real and simulated data (Section 7).
In all cases, the bounds can be easily evaluated and are close
to the actual fooling rates.

1.2 Literature Overview

Earlier experiments showed that adversarial attacks based
on a single direction of feature space (i.e., UAPS) can
be designed to effectively fool neural networks (Moosavi-
Dezfooli et al., 2017; Khrulkov and Oseledets, 2018). UAPs
are often more transferable across datasets and architectures
than classical attacks, making them interesting for use in
practice. Their theoretical analysis has been initiated in
Moosavi-Dezfooli et al. (2018), where the authors establish
lower-bounds for the fooling rate of UAPs under certain
curvature conditions on the decision boundary. The afore-
mentioned work has two fundamental limitations. First,
the notions of curvature used are stated in terms of uncon-
strained optimal adversarial perturbation (i.e., the closest
point) for an arbitrary input point, and thus are not easy to
verify in practice. Also, the existence of the UAP is only
guaranteed within a subspace which is required to satisfy a
global alignment property with the gradients of the model.
In contrast, we use a more flexible curvature requirement (re-
fer to Definition 3), which is adapted to any subspace under
consideration, and we prove results that are strong enough
to provide a satisfactory theory of LDAPs, and UAPs in
particular, under very general settings.

Guo (2020) studied LDAPs when the attacker is constrained
to a uniformly random k-dimensional subspace. For classi-
fiers whose decision regions are half-spaces and spheres in
Rd, they established the existence of low-dimensional adver-
sarial subspaces under a Gaussian concentration assumption
on the data. Our work considers more general decision re-
gions (e.g. of certain neural networks) and more general
data distributions and subspaces. Our results recover the
findings of Guo (2020) as special cases.

1.3 Need for New Theoretical Tools

Classical theoretical works on understanding adversarial ex-
amples (Tsipras et al., 2019; Shafahi et al., 2018a; Mahlou-
jifar et al., 2018; Gilmer et al., 2018; Dohmatob, 2019)
focus on the case of adversarial attacks on the full feature
space. They use the concentration property of certain high-
dimensional (e.g., multivariate Gaussians, distributions sat-
isfying log-Sobolev inequalities, etc.), to establish that an
imperfect classifier will admit adversarial examples. How-
ever, such techniques cannot be used directly when we add
the constraint that the attacks only live in a low-dimensional
subspace. Thus, new techniques are needed. Such tech-
niques were initiated in Guo (2020) for the case of linear
models, and are extended in our paper to non-linear models.

2 Preliminaries

Notations. We denote by [d] the set of integers from 1 to
d inclusive. The notation t+ is for the maximum of t and
0, ∥u∥ the L2-norm (unless otherwise stated) of a vector
u, and ∥A∥op denotes the operator norm of a real matrix
A. The unit-sphere (resp. closed unit-ball) in Rd is written
Sd−1 (resp. Bd). The orthogonal projection of a vector
z ∈ Rd onto the subspace V ⊆ Rd is denoted ΠV z. As
usual, asymptotic notation F (d) = O(G(d)) (also written
F (d) ≲ G(d)) means there exists a constant c such that
F (d) ≤ c · G(d) for sufficiently large d, while F (d) =
Ω(G(d)) means G(d) = O(F (d)), and F (d) = Θ(G(d))
or F (d) ≍ G(d) means F (d) ≲ G(d) ≲ F (d). Finally,
F (d) = o(G(d)) means F (d)/G(d) → 0 as d → ∞.

2.1 Binary Classification and Adversarial Examples

We consider a binary classification setup, where X =
(X1, ..., Xd) ∈ Rd denotes an input of dimension d (e.g.
for the MNIST dataset, d = 784) drawn from a probability
distribution PX on Rd. We will denote by f : Rd → R the
feature map, and hf = sign ◦ f the corresponding classi-
fier, with the arbitrary convention that sign(0) = −1. For
example, for NNs, f(x) would be the predicted logit, for a
closed ball of radius r > 0 in Rd, f(x) := (∥x∥2 − r2)/2,
and for a half-space (linear classifier), f(x) := x⊤w − b.
The binary classifier hf can be unambiguously identified



with a measurable subset of Rd

C = {x ∈ Rd | hf (x) = −1} = {x ∈ Rd | f(x) ≤ 0}, (1)

called the negative decision-region of h. Thus, the com-
plement C ′ := Rd \ C of C is the positive decision-region
of h. Of course, the terms "negative" or "positive" are in-
terchangeable, as we can always consider the classifier −h
instead. Therefore, without loss of generality, we shall
focus our attention on adversarial attacks on the positive
decision-region C ′.

Given an input x ∈ C ′ classified by hf as positive, an adver-
sarial perturbation for x is a vector a ∈ Rd of size ∥a∥ such
that x+ a ∈ C. The goal of the attacker is to move points
from C ′ to C with small perturbations. Note that we are not
interested in the true labels of the inputs, just the robustness
of the classifier w.r.t. its own predictions. However, note
that this distinction is not important for classifiers which are
already very accurate in the classical sense.

The notion of margin will be important in the sequel.

Definition 1 (Margin at a point). If f is differentiable at a
non-critical point x ∈ Rd, its margin at x, denoted mf (x),
is defined by

mf (x) := (f(x))+/∥∇f(x)∥. (2)

For example, if f(x) ≡ x⊤w − b for some scalar b ∈ R
non-zero w ∈ Rd, as in the case where the classifier is
a half-space, then mf (x) = (x⊤w − b)+/∥w∥. In this
case, mf (x) also corresponds to the distance of x from the
negative decision-region of the classifier.

2.2 Low-Dimensional Adversarial Perturbations

In this paper, we focus on low-dimensional perturbations
(LDAPs) (Guo et al., 2018, 2019; Tu et al., 2019; Yan et al.,
2019; Huang and Zhang, 2019; Guo, 2020), meaning that
the perturbations a are limited to a k-dimensional subspace
V of Rd whose choice is left to the attacker. Here, k can
be much smaller than d. The special case where k = 1
corresponds to the scenario where the attacker is allowed
to operate in one dimension only (e.g. modify the same
pixel in all images of the same class), also famously known
as universal adversarial perturbations (UAPs) (Moosavi-
Dezfooli et al., 2017; Khrulkov and Oseledets, 2018). More
generally, given a subspace V of Rd, let Cε

V be the set of all
points in Rd which can be pushed into the negative decision-
region C by adding a perturbation of size ε in V , that is

Cε
V := {x ∈ Rd | ∃v ∈ V with ∥v∥ ≤ ε s.t x+ v ∈ C}, (3)

where BV := V ∩ Bd is the unit-ball in V . Note that by
definition, x ∈ Cε

V iff (x+ εBV )∩C ̸= ∅. In the particular
case of full-dimensional attacks where V = Rd, the set Cε

V

corresponds to the usual ε-expansion Cε of C, i.e., the set of

points in Rd which are at a distance at most ε from C. This
case has been extensively studied in Shafahi et al. (2018b);
Fawzi et al. (2018); Mahloujifar et al. (2019); Dohmatob
(2019). Note that it always holds that C ⊆ Cε

V ⊆ Cε.

Definition 2 (Fooling rate of a subspace). Given an attack
budget ε ≥ 0, the fooling rate FR(V ; ε) of a subspace
V ⊆ Rd is the proportion of test data which can be moved
from the positive decision-region C ′ to the negative decision-
region C by moving a distance ε along V , that is

FR(V ; ε) := PX(X ∈ Cε
V | X ∈ C ′). (4)

Note that by definition of Cε
V , the fooling rate FR(V ; ε)

is a supremum over all possible attackers operating in the
subspace V , and with L2-norm budget ε. In particular,
FR(Rd; ε) is the usual optimal fooling rate of an adversar-
ial attack with budget ε, without any subspace constraint,
and already studied extensively in the literature (Shafahi
et al., 2018b; Fawzi et al., 2018; Mahloujifar et al., 2019;
Dohmatob, 2019).

2.3 Warm-up: Insights from Linear models

We start with the simple case of a linear binary classifier on
Rd, for which the negative decision-region C (and therefore
the positive decision region too) is a half-space given by

Hw,b := {x ∈ Rd | x⊤w − b ≤ 0}, (5)

on with unit-normal vector w ∈ Rd and bias parameter
b ∈ R. This corresponds to taking f(x) := x⊤w − b in (1).
The following result generalizes a result of Guo (2020) (see
Lemma 2.2 therein) which was only established in the case
where the marginal distribution of the features PX is the
standard Gaussian distribution on Rd.

Proposition 1. Consider the scenario where C is the half-
space Hw,b defined in (5). For any subspace V of Rd and
ε ≥ 0, it holds FR(V ; ε) ≥ PX(X⊤w − b ≤ ∥ΠV w∥ε |
X ∈ C ′).

In particular, if V is a uniformly random k-dimensional
subspace of Rd, then for any t ∈ (0,

√
k/d) it holds w.p

1− 2e−t2d/2 over V that

FR(V ; ε) ≥ PX(X⊤w − b ≤ (
√

k/d− t)ε | X ∈ C ′). (6)

Interpretation of Proposition 1. To understand the power
of the the above proposition, consider the cause where
PX = N (0, Id) and b = 0 so that PX(C) = PX(C ′) =
1/2. Note that a typical x ∼ PX has norm of order
N = E∥x∥ ≍

√
d. Thus a random perturbation of dimen-

sion k =
√
d ≪ d and of ℓ2-norm ε =

√
d/k = d1/4 ≪ N

is sufficient to change the decision of the classifier on a pro-
portion

FR(V ; ϵ) ≥ PX(X⊤w ≤ 1 | X⊤w ≥ 0)

= (Φ(1)− Φ(0))/(1/2) ≈ 68%



from negative to positive.

Proof of Proposition 1. Indeed, one computes

FR(V ; ε) := PX(X ∈ Cε
V | X ∈ C ′)

≥ sup
v∈V

PX(X ∈ Cε
v | X ∈ C ′)

= sup
v∈V ∩Sd−1

PX(X⊤w + εv⊤w − b ≤ 0 | X ∈ C ′)

= PX(X⊤w − b ≤ ε∥ΠV w∥ | X ∈ C ′),

which proves the first part of the claim. The second part
follows from the first part combined with the fact that

∥ΠV w∥ ≥
√
k/d− t w.p.1− 2e−t2d/2, (7)

by basic concentration arguments.

Lifting the Core Ideas to the Non-Linear Setting. In the
results of this manuscript, we will emulate the lower-bound
(6), for the case of non-linear classifiers. In this direction,
first observe that, since the margin for the linear classifier
is mf (x) := max(f(x), 0)/∥∇f(x)∥ = (x⊤w + b)+, the
lower-bound (6) can be written in expectation-form as

EV FR(V ; ε) ≥ P(mf (x) ≤ αε | X ∈ C ′)− δ, (8)

with α =
√
k/d − t and δ = 2e−t2d/2. The pair of

scalars (α, δ) capture the alignment between the random
subspace V , and the gradients of the linear classifier at
a random point X ∈ C ′, i.e with the normal vector
η(X) = ∇f(x)/∥∇f(X)∥ = w, in the sense that

PX,V (∥ΠV η(X)∥ ≥ α | X ∈ C ′) ≥ 1− δ. (9)

Since η(X) = w here, and is independent of the feature
vector X , (9) is just a restatement of (7). In the general
case of non-linear models f (e.g neural nets) and arbitrary
subspaces V , inequalities such as (9) will be the basis of
so-called adversarially viable subspaces, studied in detail in
Section 3.

3 Adversarially Viable Subspaces

We will formalize the notion of an adversarially viable sub-
space which is a subspace V that has a non-negligible inner
product with the classifier’s gradient, hence it is possible
to significantly alter the value of f(x) by moving strictly
within V . Intriguingly, such subspaces are pivotal to the
empirical success of LDAPs, and we show that popular
heuristics lead to adversarially viable subspaces. Then, we
prove that when the classifier satisfies certain smoothness
conditions, adversarially viable subspaces allow the attacker
to follow the gradient direction within V to reach the deci-
sion boundary of C for most points x ∈ C ′, hence achieving
a high fooling rate. Restricting the adversarial perturbation
to a given subspace V presents a particular challenge to the

attacker. If dimV < d and x ∈ C ′ := Rd \C ̸= ∅, it is pos-
sible that x ̸∈ Cε

V for all ε > 0. In particular, if f is convex
and the subspace V is orthogonal to the gradient of f at a
point x ∈ Rd, then no amount of perturbation within V will
make x closer to the boundary of C, in an effort to flip its
predicted class label. See Figure 1 for underlying geometric
intuition. Thus, we can hope to establish nontrivial fooling
rates only for certain subspaces.

Figure 1: Adversarial viability.

Our first contribution is a crisp characterization of subspaces
for which we can hope to achieve a nonzero fooling rate.
These are so-called adversarially viable subspaces and are
a generalization of the subspaces considered in Moosavi-
Dezfooli et al. (2018); Moosavi-Dezfooli et al. (2017); Guo
(2020).

Definition 3 (Adversarially viable subspace). Given α ∈
(0, 1] and δ ∈ [0, 1), a possibly random subspace V ⊆ Rd

is said to be adversarially (α, δ)-viable if

PX,V (∥ΠV η(X)∥ ≥ α | X ∈ C ′) ≥ 1− δ, (10)

where η(x) := ∇f(x)/∥∇f(x)∥ is the gradient direction
at x.

The above definition captures the essence of (7), which
was the crucial piece in the proof of Proposition 1. To
see that this is a generalization of (7), note that η(x) ≡ w
when C is a half-space (i.e when f is a linear function
f(x) ≡ x⊤w − b).

We now provide some important examples of adversarially
viable subspaces.

3.1 Random Subspaces

Consider the case of a uniformly random k-dimensional
subspace V of Rd. Such subspaces have been proposed in
the literature (Moosavi-Dezfooli et al., 2017; Guo, 2020),
for constructing low-dimensional adversarial perturbations.

Lemma 1. The random subspace as given above is
(
√
k/d− t, 2e−t2d/2)-viable for any t ∈ (0,

√
k/d).

Indeed, this is just a restatement of (7), in the language of
Definition 3.



3.2 Top Eigenvectors of Gradient Covariance Matrix

Let Ση ∈ Rd×d be the covariance matrix of the gradient
direction η(X) conditioned on X ∈ C ′.

Theorem 1. For any k ∈ [d], let sk ∈ (0, 1] be the sum of
first the k eigenvalues of Ση. Then, for any α ∈ (0,

√
sk),

the (deterministic) subspace Veigen,k of Rd corresponding
to the top k eigendirections of Ση is adversarially (α, (1−
sk)/(1− α2))-viable.

Thus, if the histogram of eigenvalues of Ση is "spiked" in the
sense that sk ≥ s = Ω(1) for some k = o(d), then Veigen,k

is a o(d)-dimensional adversarially (Ω(1), O(1− s))-viable
subspace! Combined with the results established in the
following sections, the preceding observation provides a
rigorous justification for the heuristic in Moosavi-Dezfooli
et al. (2017); Khrulkov and Oseledets (2018) which pro-
posed UAPs based on eigenvectors of the covariance matrix
Ση . Our experiments in Section 7 also support this.

4 Lipschitz Decision-Boundary

Consider a binary classifier on Rd for which the negative
decision-region C of the classifier is given by (1), where
f : Rd → R is a differentiable function. Let us start by
observing that, thanks to a classical result from optimization
theory (see Proposition 3.2 of Azé and Corvellec (2017)), if
the following condition is satisfied, then any x ∈ C ′ is at a
distance dC(x) at most f(x)/β from C.

Condition 1 (Uniformly strong gradients). There exists a
constant β > 0 such that ∥∇f(x)∥ ≥ β for all x ∈ C ′

Intuitively, under Condition 1, the gradient of f at any point
x ∈ C ′ is strong enough: gradient-flow started at x then
escapes the region C ′ after travelling a distance O(f(x)).
This is formalized in the following result which will be
extended to the case of subspace attacks in the rest of this
section.

Theorem 2 (A lower-bound for full-dimensional attacks).
Under Condition 1, it holds for any ε ≥ 0 that

FR(Rd; ε) ≥ PX(f(X) ≤ βε | X ∈ C ′). (11)

As an illustration, if we consider f to be a randomly ini-
tialized1 finite-depth ReLU neural-network, one can show
(see Daniely and Shacham (2020); Bubeck et al. (2021);
Bartlett et al. (2021)) that for any x ∈ Rd, we have
f(x) = O(∥x∥/

√
d) and infx ∥∇f(x)∥ = Ω(1) w.h.p.

over the weights. The above theorem immediately pre-
dicts the existence of adversarial examples of size

√
d times

smaller than the typical L2-norm of a data point.

1With layer widths within poly(log d) factors of one another,
and weights initialized in the standard way.

4.1 Main Result under Lipschitz Smoothness

We will extend Theorem 2 to the case of subspace attacks,
under the following smoothness condition.

Condition 2 (Lipschitz gradients). There exists a constant
L ≥ 0 such that for all x, x′ ∈ Rd,

∥∇f(x′)−∇f(x)∥ ≤ L∥x′ − x∥. (12)

This condition stipulates that the gradient of f varies
smoothly on the positive decision-region C ′ = Rd \ C
of the classifier (1). Note that when f is twice-differentiable
on C ′, Condition 2 holds with L = supx∈C′ ∥∇2f(x)∥op,
where ∇2f(x) ∈ Rd×d is the Hessian of f at x. For exam-
ple, a feed-forward neural net with bounded weights and
twice-differentiable activation function with bounded Hes-
sian (e.g. sigmoid, quadratic, tanh, GELU, cos, sin, etc.)
will satisfy Condition 2.

To obtain simplified / more transparent lower-bounds for the
fooling rates, we will also need the following natural condi-
tion which ensures that there is a strong descent direction at
a constant fraction of points in the positive decision-region
C ′, to allow for gradient-based attacks.

Condition 3 (Strong gradients). For some constants β > 0
and γ ∈ [0, 1), it holds that

PX(∥∇f(X)∥ ≥ β | X ∈ C ′) ≥ 1− γ. (13)

Note that Condition 1 is a special case of Condition 3 corre-
sponding to γ = 0. The following is one of our main results.
It generalizes both Proposition 1 and Theorem 2.

Theorem 3. Suppose Condition 2 holds. Let V be a possibly
random adversarially (α, δ)-viable subspace of Rd. Then,

(A) For any ε ≥ 0, the average fooling rate of V is lower-
bounded as follows

EV [FR(V ; ε)] ≥ PX (mf (X) ≤ α̃(X) | X ∈ C ′)− δ, (14)

where α̃(X) := min
(
αε/2, α2∥∇f(X)∥/(2L)

)
. (B) If in

addition Condition 3 is in order, then for any ε ∈ [0, αβ/L],

EV FR(V ; ε) ≥ PX(mf (X) ≤ αε/2 | X ∈ C ′)

− δ − γ.
(15)

Remark 1. Note that the condition "ε ≤ αβ/L" in part (B)
of the theorem cannot be removed in general, as is seen in
the case where C = Bd, and considering any subspace V
with dimV < d.

4.2 Sketch of Proof of Theorem 3

We give a vivid sketch of the proof here. It is an elementary
fact in optimization theory that a function f : Rd → R



which has the structure stated in Condition 2 admits the
following first-order approximation: for all x, x′ ∈ Rd,

|f(x′)− f(x)−∇f(x)⊤(x′ − x)| ≤ L

2
∥x′ − x∥2. (16)

Now, starting at a point x ∈ C ′, let us move a distance ε
in the direction ΠV ∇f(x) to arrive at a point x′ = x −
εΠV ∇f(x) ∈ Rd, the above inequality gives the quadratic
approximation

f(x′) ≤ f(x)− ε∥ΠV ∇f(x)∥2 + L

2
ε2∥ΠV ∇f(x)∥2. (17)

After some calculations, the RHS of (17) can be made ≤ 0
by guaranteeing that

(1) Alignment: ∥ΠV ∇f(x)∥ ≥ α∥∇f(x)∥.

(2) Small Margin: mf (x) ≤ min(αε/2, α2∥∇f(x)∥
2L ).

The requirement (1) holds because the subspace V is as-
sumed to be (α, δ)-viable (see Definition 3). (2) is obtained
from (1) and a careful analysis of (17). In particular, if
0 ≤ ε ≤ αβ/L, then conditioned on ∥∇f(x)∥ ≥ β the
"small margin" condition reduces to: mf (x) ≤ αϵ/2. The
full proof is given in the supplemental / appendix.

4.3 Applications: Some Special Cases of Theorem 3

We provide a non-exhaustive list of examples to illustrate
the power of Theorem 3.

Linear Models. Proposition 1 which is a generalization of
Lemma 2.2 of Guo (2020) is itself a special case of part (B)
of Theorem 3. Indeed the linear function f(x) ≡ x⊤w + b
has margin mf (x) = (x⊤w + b)+ and verifies Conditions
2 and 3 with β = ∥w∥, L = 0, and γ = 0. Also, thanks to
Lemma 1, for any k ∈ [d] and t ∈ (0,

√
k/d), a random k-

dimensional subspace V of Rd is adversarially (α, δ)-viable
with α =

√
k/d − t and δ = 2e−t2d/2. In Appendix 4.3,

other lower-bounds established in Guo (2020) are recovered
from Theorem 3 as special cases.

Hyper-Ellipsoids. We now generalize another result of
Guo (2020), namely, Lemma 2.3 therein. Indeed, consider
the case where f(x) := (x⊤Bx−r2)/2, where B is a d×d
positive semi-definite matrix and r > 0 is a scalar, so that
the negative decision-region C of the classifier is the hyper-
ellipsoid f ≤ 0. In particular, C is a solid sphere of radius r
when B = Id. One computes ∇f(x) = Bx, ∇2f(x) = B,
hence Conditions 2 and 3 are satisfied with γ = 0 and

L = sup
x∈Rd

∥∇2f(x)∥op = ∥B∥op, (18)

∥∇f(x)∥ = ∥Bx∥, for all x ∈ Rd, (19)
β = inf

x∈C′
∥∇f(x)∥ = inf

x⊤Bx>r2
∥Bx∥ = r

√
smin, (20)

where smin is the smallest singular / eigenvalue of B, and
∥B∥op is the operator norm of B, i.e, its largest eigenvalue
(since B is psd). Moreover, the margin of f at a any point
x ∈ Rd is given by

mf (x) =
max(f(x), 0)

∥∇f(x)∥
=

(x⊤Bx− r2)+
2∥Bx∥

. (21)

In particular, if B = Id, then we deduce L = 1, β = r,
Moreover, for any x ∈ C ′, then the distance of x from C,
i.e d(x) = ∥x∥ − r and we have

mf (x) =
∥x∥2 − r2

2∥x∥
=

1

2
(∥x∥ − r)(1 +

r

∥x∥
). (22)

Applying Theorem 3 with B = Id (corresponding to a
solid sphere) then recovers exactly the bounds established
in (Guo, 2020, Lemma 2.3) as a special case.

4.4 A Matching Upper-Bound under Convexity

We now show that the lower-bound given in Theorem 3
is tight by establishing a corresponding upper-bound for
the case where C is convex (e.g., half-spaces, balls, hyper-
ellipsoids, etc.).
Theorem 4. Suppose f is convex differentiable, and let V
be a subspace of Rd satisfying

∥ΠV η(x)∥ ≤ α̃, for some α̃ ∈ [0, 1] and ∀x ∈ C ′. (23)

Then, for any ε ≥ 0, we have

FR(V ; ε) ≤ PX(mf (X) ≤ α̃ε | X ∈ C ′). (24)

5 Locally Almost-Affine Decision-Boundary

We now consider the following smoothness condition for
the classifier (1).
Condition 4 (Bounded oscillation of gradients). The ex-
ist 0 < R ≤ ∞ and θ ≥ 0 such that for all x,∆x ∈
Rd with ∥∆x∥ ≤ R,

∥∇f(x+∆x)−∇f(x)∥ ≤ θ.

Examples of functions that satisfy this condition include
half-spaces and wide feedforward ReLU neural nets with
randomly initialized intermediate weights, where θ = o(1)
w.h.p. over the intermediate weights, as will be seen in
Section 5.2. The following is one of our main contributions.

Theorem 5. Suppose Conditions 3 and 4 with parameters
β ∈ (0,∞), R ∈ (0,∞] and θ ≥ 0 are in order. Let V be
a possibly random adversarially (α, δ)-viable subspace of
Rd with α > θ/β. Then, for any 0 ≤ ε ≤ R, the average
fooling rate of V is lower-bounded as follows

EV FR(V ; ε) ≥ PX(mf (X) ≤ αε | X ∈ C ′)− δ − γ, (25)

where α := α− θ/β > 0.



Remark 2 (Tightness). Theorem 5 is tight, as can be seen by
considering the case where C is a half-space in which case
f(x) = x⊤w − b, for some unit-vector w ∈ Rd and b ∈ R;
take V = Rw. N.B.: ∇f(x) ≡ w, and so Conditions 3 and
4 hold with α = β = 1, θ = γ = 0, and R = ∞.

5.1 Sketch of Proof of Theorem 5

The core of the proof (detailed in the appendix) is similar
to that of Theorem 3, but with (16) replaced by the fol-
lowing inequality which holds under Condition 4 for all
x ∈ supp(PX) and ∆x ∈ Rd with ∥∆x∥ ≤ R

|f(x+∆x)− f(x)−∇f(x)⊤∆x| ≤ θ∥∆x∥. (26)

5.2 ReLU Neural Nets in Random Features Regime

Consider a feed-forward neural net with M ≥ 2 lay-
ers with parameters matrices W1 ∈ Rd0×d1 ,W2 ∈
Rd1×d2 , . . . ,WM = a ∈ RdM−1×dM , where d0 = d and
dM := 1. Each dℓ is the width of the ℓ layer, and the matri-
ces W1, . . . ,WM−1 are the intermediate weights matrices,
while WM = a is the output weights vector. For an input
x ∈ Rd, the output of the neural net is

f(x) = zM := a⊤zM−1 ∈ R, with z0 := x,

zℓ := σ(W⊤
ℓ zℓ−1) ∈ Rℓ, ∀ℓ ∈ [M − 1].

(27)

Here, σ is the activation function, and is applied entry-
wise. We will focus on the case of ReLU neural nets, where
σ(t) ≡ (t)+. The matrices W1, . . . ,WM are randomly
initialized as follows: for all ℓ ∈ [M ], i ∈ [dℓ], j ∈ [dℓ−1],

[Wℓ]i,j
iid∼ N(0, 1/dℓ−1). (28)

The output weights vector a ∈ RdM−1 can be arbitrary, for
example: (1) random (as in Daniely and Shacham (2020);
Bartlett et al. (2021)), or (2) optimized to fit training data,
as in the so-called random features (RF) regime (Rahimi
and Recht, 2008, 2009), with L2-regularization on a. Let
dmin := min0≤ℓ≤M−1 dℓ and dmax := max0≤ℓ≤M−1 dℓ
be respectively, the minimum and maximum width of the
layers. As in Bartlett et al. (2021), we will need the follow-
ing technical condition.

Condition 5 (Genuinely wide, finite-width). The neural
net architecture verifies: (i) Bounded depth, i.e., only
M = O(1) layers. (ii) Genuinely wide, i.e., dmin ≳
(log dmax)

40M and dmin → ∞.

We have the following corollary to Theorem 5.

Corollary 1. Consider the case where the marginal distri-
bution of the covariates X is supported on the sphere of
radius

√
d in Rd, and f is the relu neural net defined in (27)

with random intermediate weights W1, . . . ,WM−1 sampled
according to (28). Suppose Conditions 5 is in order. Let
V be a possibly random (α, δ)-viable subspace of Rd, with

α = Ω(1). Then, for 0 ≤ ε ≲ (log dmax)
40M , it holds

w.h.p. over W1, . . . ,WM−1 that

EV [FR(V ; ε)] ≳ PX(mf (X) ≤ ε | X ∈ C ′)− δ. (29)

In particular, at initialization, we have EV [FR(V ; ε)] ≳
1− δ for all ε ≥ ε0, where ε0 is an absolute constant.

The second part of the result implies that the subspace V
contains adversarial perturbations of size

√
d times smaller

than the norm of a typical data point. Thus, it is a general-
izes Daniely and Shacham (2020); Bartlett et al. (2021) to
subspaces.

Proof of Corollary 1. The first part is obtained as a conse-
quence of Theorem 5, by combining Lemma 2.2 and Lemma
2.8 of Bartlett et al. (2021) and Lemma 2 below.

The second part is because w.h.p over intermediate weights,
it holds that

mf (x) ≤ |f(x)|/∥∇f(x)∥

≲ ∥a∥∥zL−1(x)∥/∥a∥ = ∥zL−1(x)∥ ≤ ∥x∥/
√
d = 1,

where the last inequality is because zL−1(x) is (∥x∥2/d)-
subGaussian.

Lemma 2. Suppose PX is supported on the sphere
√
dSd−1,

and Condition 5 holds. Then, w.h.p. over the initialization
of intermediate weights W1, . . . ,WM−1, the ReLU neural
net f defined in (27) satisfies Conditions 3 and 4 with

γ = 0, R =

√
dmin

(log dmax)80M
= Ω((log dmax)

40M ),

θ =
∥a∥

(log dmax)M
, β = ∥a∥.

5.3 ReLU Neural Nets in Lazy Regime

At the moment, we are not able to extend our theoretical
results to fully-trained neural nets. An exception is when
the model is in the lazy regime, whereby the parameters of
the network stay close to their value at definition. More,
precisely

Definition 4 (Lazy regime). The neural net (27) is said to
be in the lazy regime if

sup
j∈[dℓ]

∥Wℓ,j −W 0
ℓ,j∥2

∥W 0
ℓ,j∥2

≲
1√
dℓ

for all ℓ ∈ [M − 1], (30)

where W 0
ℓ is the initialization the ℓth layer.

Note that the lazy regime as defined above subsumes both
relu neural nets at initialization and in the random features
regime (studied in Section 5.2). Now, in Wang et al. (2022),
it was shown that if M = 2 (i.e two-layer ReLU neural net),



then there exists absolute positive constants c1, c2, c3, and
c4 that that: if the neural net is in the lazy regime, then w.h.p
over the initialization, the following hold simultaneously for
all x ∈

√
dSd−1 and ∆x ∈ Rd with ∥∆x∥ ≤ c1,

|f(x)| ≤ c2, ∥∇f(x)∥ ≥ c3, |∇f(x+∆x)−∇f(x)| ≤ c4.

See Lemma B.5, Lemma B.7, and Lemma B.9 (resp.) of
Wang et al. (2022). We deduce that in the lazy regime, w.h.p
over initialization, Conditions 3 and 4 hold with R = c1
and β = c3, θ = c4, and with γ = 0. On the same event,
we also deduce the following margin bound

mf (x) =
(f(x))+
∥∇f(x)∥

≤ |f(x)|
∥∇f(x)∥

≤ c2
c3

=: c5, (31)

for all x ∈
√
dSd−1. Combining with Theorem 5, we obtain

the following important corollary.

Corollary 2. Suppose f defined in (27) is a two-layer net-
work (M = 2) which is in the lazy regime. Also suppose
the marginal distribution of the features X is supported on
the sphere

√
dSd−1. If V is an adversarially (α, δ)-viable

subspace of Rd, then for any 0 ≤ ε ≤ R = c1 then w.h.p
over the initial weights, the average fooling rate of V is
lower-bounded as in (25), with β = c3, θ = c4, and γ = 0.

In particular, if ε ∈ [c5, c1], then EV FR(V ; ε) ≥ 1− δ.

6 Some Consequences of Our Results

Let us now outline some consequences for practical classi-
fiers (neural networks). First, we recall the general form of
our results. Given a possibly random adversarially (α, δ)-
viable subspace V of Rd, we have established in Theorem 3
and Theorem 5 lower-bounds on the fooling rate of the form

EV FR(V ; ε) ≳ P(mf (X) ≤ αε | X ∈ C ′)− δ−γ. (32)

Here, the scalar α ∈ (0, 1] depends on α, β and the smooth-
ness of f as in Condition 3. Importantly, the generic bound
(32) explicitly highlights the dependence of the fooling rate
on the pointwise margin of the classifier and on the align-
ment of the given subspace with the gradients of the f .

The L2-norm N of a typical data point is of order
√
d, while

the margin mf (X) is typically of order O(1), as (i) ob-
served empirically observed in Jiang et al. (2019) general
trained neural networks (ii) formally proved in Daniely and
Shacham (2020); Bartlett et al. (2021) for the case of relu
networks at initialization and more recently, and in Wang
et al. (2022) for the case of lazy regime where the interme-
diate parameters of the network stay close to their initial
values throughout training (see (31)). Also, as observed
in Moosavi-Dezfooli et al. (2017), the singular values of
the gradient covariance matrix Ση are typically long-tailed.
Thus, combining with Theorem 1, our results predict that
for sufficiently large k ≪ d, the subspace spanned by the

top k singular-vectors of Ση has a nonzero fooling rate with
attack budget ε ≍ 1/α̃ = O(1) which is

√
d/ε = Ω(

√
d)

times smaller than N , the L2-norm of a typical data point,
for relu neural networks in the lazy regime.

7 Empirical Verification

Our results are empirically verified in Figure 2 (random sub-
space attacks) and Figure 3 (singular subspace attack). Full
details of the experimental setup and code for reproducing
the results are provided in Appendix A.

Random Subspace Attacks. In Figure 2 (first and second
row), the distribution PX of the features is N(0, Id), and
the training labels are given from a simple linear model:
yi = xij . For MNIST data (LeCun and Cortes, 2010)
(third row), we construct a binary classification problem by
restricting it to the digits 0 and 8. As in Guo et al. (2018), we
run PGD Madry et al. (2017) attacks on a randomly chosen
subspace V (of different dimensions) of the feature space
Rd, and report the fooling rates (solid lines) and compare
them with our lower-bounds (32). As we can see from the
figure, in all the cases, the lower-bounds are verified.

Eigen-Subspace Attacks. In Figure 3, we consider the
same experimental setting in Figure 2. We use n = 1000
random examples x1, . . . , xn, and compute the empirical
covariance matrix of the gradient directions, i.e Σ̂η :=

1

n− 1

∑n
i=1(ηi − η)(ηi − η)⊤, where ηi := η(xi), with

η := (1/n)
∑n

i=1 ηi. As in Khrulkov and Oseledets (2018),
we extract the top eigenvector of Σ̂η and use it as a universal
perturbation vector for a separate test set. In the leftmost
subplot, we show a histogram of eigenvalues. Notice how
the largest eigenvalue for each model is much larger than
the other eigenvalues. Thanks to Theorem 1, this means
that the principal eigenvector v spans an adversarially vi-
able subspace. This is confirmed in the 2nd, 3rd, and 4th
subplots where we see that the fooling rate rises rapidly as a
function of the attack budget ε. We see from the figure that
our predicted lower-bounds are satisfied in all cases.

Additional Experimental Results. In Appendix A, we
provide experiments that empirically confirm our results
on more complex models and datasets (like Resnet on CI-
FAR10), and also for adversarially trained models.

8 Concluding Remarks

In this work, we have conducted a rigorous analysis of the
phenomenon of low-dimensional adversarial perturbations
and derived tight lower-bounds for the fooling rate along
arbitrary adversarial subspaces based on the geometry of
the target decision-region, and the alignment between the



Two-layer ReLU NN at initialization: input dimension d = 784, width d1 = 100. Simulated data.

Two-layer ReLU NN in RF regime: input dimension d = 784, width d1 = 100. Simulated data.

Full-trained LeNet (conv layers + dense layers + ReLU activation) on MNIST.

Figure 2: (Random subspace attack) Empirical confirmation of our results. Broken lines correspond to our theoretical
lower-bounds (32), for different neural network regimes. k is the dimension of the random subspace from which the
perturbations are constructed. In the first two rows, d1 is the width of the network. Solid curves correspond to empirically
computed fooling rates, with error-bars accounting for randomness in the initialization of the network, over 5 independent
runs. Our theoretical lower bounds are confirmed in all cases. See Appendix A for details.

Figure 3: (Eigen-subspace attack). Same experimental setting in Figure 2. Leftmost plot: Showing a histogram of the
eigenvalues of empirical covariance matrix Σ̂η of gradient directions (computed on 1000 examples). Notice how the largest
eigenvalue for each model is much larger than the other eigenvalues. Second to fourth (rightmost) plot: Notice how the
fooling rate rises rapidly. Further details are provided in Appendix A.

subspace and the gradients of the model, i.e., the adversarial
viability of the subspace (Definition 3). Our work provides
rigorous foundations for explaining intriguing empirical
observations from the literature on the subject (Moosavi-
Dezfooli et al., 2017; Khrulkov and Oseledets, 2018; Yin
et al., 2019; Guo et al., 2018). For the case of compact
decision regions we have shown the existence of UAPs. We

believe our work will further generate fruitful research in
this area.

Finally, a non-trivial extension of our work would be the
case of multi-class problems. It would also be interesting
to extend our treatment of neural networks (Section 5.2) to
general case, (i.e beyond the lazy regime). This would likely
require the development of new theoretical tools.
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A More Information About the Experiments

A.1 Details of Experimental Setup

Our theoretical results are empirically verified in Figure 2 (random subspace attacks) and Figure 3 (singular subspace attack).
We now provide experimental details on these figures.

Given a binary classifier hf : x 7→ sign(f(x)) on Rd (e.g a neural net), with negative decision-region C := {x ∈ Rd |
hf (x) = −1}. For a subspace V ⊆ Rd and a (Euclidean) attack budget ε, Refer to Definition 2 for the fooling rate of V on
the classifier hf .

Figure 2: Results for Random Subspace Attacks. In Figure 2 (first and second row), the distribution PX of the features
is N(0, Id), and the training labels are given from a simple linear model: yi = xij . For classical LeNet convolutational
neural network trained on MNIST data (LeCun and Cortes, 2010) (third row), we construct a binary classification dataset
of n = 2× 10K = 20K examples by restricting it to the digits 0 and 8. As in Guo et al. (2018), we run PGD Madry et al.
(2017) attacks on a randomly chosen subspace V (of different dimensions k ≤ d) of the feature space Rd, and report the
fooling rates (solid lines) and compare them with our proposed lower-bounds (32), from Theorem 5 with R = ∞ and θ = 0
(these extremal values work for our experiments). As can be seen from the figure, in all the cases, the lower-bounds (broken
lines) are verified.

Figure 3: Results for Attacks Based on Eigen-subspaces of Gradients. Let x1, . . . , xn ∈ Rd be iid samples from the
conditional distribution PX|X∈C′ , the distribution of the data conditioned on the positive decision-region of the classifier,
and let J be the n × d matrix with ith row given by η(xi) := ∇f(xi)/∥∇f(xi)∥ ∈ Sd−1. Moosavi-Dezfooli et al.
(2017); Khrulkov and Oseledets (2018) have provided strong empirical evidence that the subspace spanned by the first top
eigenvectors of the matrix of Σ̂η := J⊤J/n contains successful adversarial perturbations. In fact, the one-dimensional
subspace spanned by the top eigenvector of Σ̂η was shown in Khrulkov and Oseledets (2018) to achieve state-of-the-art
performance, on a variety of models and datasets.

Theorem 1 provides a rigorous justification for the success of these SVD-based heuristics used in Moosavi-Dezfooli et al.
(2017); Khrulkov and Oseledets (2018) to compute UAPs. This is empirically verified in Figure 3, where we consider the
same experimental setting (dataset and model) in Figure 2. We use n = 1000 random examples x1, . . . , xn, and compute
the empirical covariance matrix Σ̂η := (n − 1)−1

∑n
i=1(ηi − η)(ηi − η)⊤, of the gradient directions ηi := η(xi), with

η := (1/n)
∑n

i=1 ηi. As in Khrulkov and Oseledets (2018), we extract the top eigenvector of Σ̂η and use it as a universal
perturbation vector for a separate test set. In the leftmost subplot, we show a histogram of eigenvalues. Notice how the
largest eigenvalue for each model is much larger than the other eigenvalues. Thanks to Theorem 1, this means that the
principal eigenvector v spans an adversarially viable subspace. This is confirmed in the 2nd, 3rd, and 4th subplots where we
see that fooling rate rises rapidly as a function of the attack budget ε. We see from the figure that our predicted lower-bounds
shown in broken lines (computed analogously to the case of Figure 2 described above) are satisfied in all cases.

Here the dataset is constructed by transforming MNIST into 10 one-versus-all binary classification problems.

Remark 3. We ignore issues concerning the consistency of approximating the principal eigenvector Ση with that of Σ̂η,
used in practice (Moosavi-Dezfooli et al., 2017; Khrulkov and Oseledets, 2018).

Remark 4. The gap in Figures 2 and 3 between experiments (solid curves) and our theoretical results (broken ones) is due
to the fact that our established lower-bounds (32), though sufficient to explain the success of low-dimensional adversarial
perturbations, might be too conservative for obtaining exact quantitative estimates for the fooling rate in the case of random
adversarial subspaces on neural nets, because we only use first-order (see Conditions 2, 3, and 4) information on the
neural net f . However, in the specific scenario where the target decision-region is a half-space or hyper-ellipsoid, this gap
disappears because the aforementioned first-order information is sufficient in such cases, and our estimates for fooling rate
are exact.

A.2 Additional Experimental Results

At the moment, we are not able to extend our theoretical results to fully-trained NNs. An exception is when the model is in
the lazy regime, as shown in Section 5.3. A rigorous study of the general case is left for future work. That not withstanding,
we empirically observe that our results remain valid both on normally and adversarially trained (AT) NNs (see Figure 4),



Figure 4: Results for adversarially trained model. We consider a LeNet convolutional neural network on MNIST dataset,
learned via adversarial training.

Figure 5: Results on larger models. Here we consider Resnet on CIFAR10 dataset.

and on more complicated NNs / datasets like Resnet on CIFAR10 (see Figure 5). Comparing with the last row of Figure 2,
notice how AT slightly helps to slightly decrease the fooling rate.

B Proof of Theorem 1: Adversarial Viability of Eigenspaces of Unit-Normals

Theorem 1. For any k ∈ [d], let sk ∈ (0, 1] be the sum of first the k eigenvalues of Ση. Then, for any α ∈ (0,
√
sk), the

(deterministic) subspace Veigen,k of Rd corresponding to the top k eigendirections of Ση is adversarially (α, (1− sk)/(1−
α2))-viable.

Proof of Theorem 1. Let Ση = USU⊤ be the SVD of Ση , where S is a diagonal matrix containing the nonzero eigenvalues
λ1 ≥ λ2 ≥ . . . ≥ λr > 0 of Ση, r ∈ [d] is the rank of Ση, and U is a d× r matrix with orthonormal columns. Then, the
orthogonal projector for the subspace V := Veigen,k is given explicitly by ΠV = U≤kU

⊤
≤k, where U≤k is the d×min(k, r)

orthogonal matrix corresponding to the first min(k, r) columns of U . Consider the r.v Z := ∥ΠV η(X)∥. By a standard
formula for the expectation of a quadratic form, one computes

E [Z2 | X ∈ C ′] = E[η(X)⊤ΠV η(X) | X ∈ C ′]

= tr(ΠV Ση) = tr(U≤kU
⊤
≤kΣη)

= tr(U⊤
≤kΣηU≤k) =

min(k,r)∑
i=1

λi =: sk.

(33)

On the other hand, conditioned on X ∈ C ′ we have 0 ≤ Z ≤ ∥η(X)∥. Thus, for any α ∈ (0,
√
sk), we have

X ∈ C ′ =⇒ 1(Z ≥ α) ≥ (Z2 − α2)/(1− α2), (34)

with equality on the event Z2 ∈ {α2, 1}. The claim then follows upon taking expectations on both sides of the above
inequality conditioned on the event X ∈ C ′.



C Lower-Bound under Smoothness Assumptions

C.1 Auxiliary Lemmas

Lemma 3. For any ρ, r > 0 and b ∈ Rd, we have the identity

sup
z∈ρBn

b⊤z − 1

2r
∥z∥2 =

{
r∥b∥2/2, if ∥b∥ ≤ ρ/r,

ρ∥b∥ − ρ2/(2r), otherwise.
(35)

Proof. Since the quadratic function z 7→ (1/2)∥z∥2 is unchanged upon taking the Fenchel-Legendre transform, we have

sup
z∈ρBd

b⊤z − 1

2r
∥z∥2 = sup

∥z∥≤ρ

b⊤z − 1

r

(
sup
u∈Rd

z⊤u− 1

2
∥u∥2

)
(∗)
= inf

u∈Rd

(
1

2r
∥u∥2 + sup

∥z∥≤ρ

z⊤(b− u/r)

)

= inf
u∈Rd

(
1

2r
∥u∥2 + ρ∥b− u/r∥

)
= inf

v∈Rd

(r
2
∥v − b∥2 + ρ∥v∥

)
, by change of variable v := b− u/r

= ρ inf
v∈Rd

(
1

2ρ/r
∥v − b∥2 + ∥v∥

)
, by factoring out ρ

(∗∗)
= ρ

{
∥b∥2/(2ρ/r), if ∥b∥ ≤ ρ/r,

∥b∥ − ρ/(2r), else

=

{
r∥b∥2/2, if ∥b∥ ≤ ρ/r,

ρ∥b∥ − ρ2/(2r), else,

where (∗) uses Sion’s Minimax Theorem, and in (∗∗) we have recognized a rescaled Moreau envelope of the Euclidean
norm, which is the Huber function evaluated at ∥b∥.

We will also need the following auxiliary lemma.
Lemma 4. For any r, ρ > 0 and b ∈ Rd, we have the identity

sup
z∈ρBn

b⊤z − 1

r
∥z∥ = ρ(∥b∥ − 1/r)+. (36)

Proof. By direct computation, we have

sup
∥z∥≤ρ

b⊤z − 1

r
∥z∥ = sup

∥z∥≤ρ

b⊤z − sup
∥u∥≤1

z⊤u/r

= inf
∥u∥≤1

sup
∥z∥≤ρ

z⊤(b− u/r)

= ρ inf
∥u∥≤1

∥b− u/r∥

= ρ(∥b∥ − 1/r)+,

we in the last step, we have recognized the well-known block soft-thresholding operator.

Finally, we will need the following lemma.
Lemma 5. Suppose R1, R2, R3 are random variables and ϕ : R → [−∞,∞] is a possibly random nondecreasing function.
If P(R2 ≥ R3) ≥ 1− δ

P(R1 ≤ ϕ(R2)) ≥ P(R1 ≥ ϕ(R3))− δ. (37)



Proof. Indeed, consider the events E1 := {R1 ≤ ϕ(R3)}, E2 := {R3 ≤ R2}, E3 := E1 ∩ E2 and E4 := {R1 ≤ ϕ(R2)}.
It is clear that E3 ⊆ E4. One then easily computes

P(R1 ≤ ϕ(R2)) = P(E4) ≥ P(E3) = P(E1 ∩ E2)

= P(E1) + P(E2)− P(E1 ∪ E2)

≥ P(E1) + P(E2)− 1

≥ P(E1)− δ

= P(R1 ≤ ϕ(R3))− δ,

as claimed.

C.2 Proof of Theorem 3: Lipschitz Decision-Boundary

We are now ready to prove Theorem 3. First, we restate it for convenience
Theorem 3. Suppose Condition 2 holds. Let V be a possibly random adversarially (α, δ)-viable subspace of Rd. Then,

(A) For any ε ≥ 0, the average fooling rate of V is lower-bounded as follows

EV [FR(V ; ε)] ≥ PX (mf (X) ≤ α̃(X) | X ∈ C ′)− δ, (14)

where α̃(X) := min
(
αε/2, α2∥∇f(X)∥/(2L)

)
. (B) If in addition Condition 3 is in order, then for any ε ∈ [0, αβ/L],

EV FR(V ; ε) ≥ PX(mf (X) ≤ αε/2 | X ∈ C ′)

− δ − γ.
(15)

Proof of Theorem 3. Let x ∈ C ′ := Rd \ C and set v(x) := ΠV ∇f(x)/∥ΠV ∇f(x)∥ ∈ Sd−1 ∩ V . Define pV (x) :=
∥ΠV ∇f(x)∥, the L2-norm of the orthogonal projection of the gradient vector ∇f(x) onto the subspace V . It is clear that
∇f(x)⊤v(x) = ∥ΠV ∇f(x)∥ = pV (x). Let dV (x) ∈ (0,∞] be the distance of x from C along the subspace V (see (48)).
By definition, dV (x) is no larger than the distance between x and the point where the line x+Rv(x) := {x+sv(x) | s ∈ R}
first meets C (if it meets it at all!). Thus, with the convention inf ∅ = ∞, we have

dV (x) ≤ inf
s∈R

|s| subject to x+ sv(x) ∈ C

= inf
s∈R

|s| subject to f(x+ sv(x)) ≤ 0

≤ inf
s∈R

|s| subject to f(x) + s∇f(x)⊤v(x) + Ls2/2 ≤ 0

= inf
s∈R

|s| subject to f(x) + pV (x)s+ Ls2/2 ≤ 0,

(38)

where we have invoked the RHS of (16) with x′ = x+ sv(x) to arrive at the third line.

f(x) ≥ sup
|s|<dV (x)

−pV (x)s− Ls2/2 =

{
pV (x)

2/(2L), if pV (x) ≤ LdV (x),

pV (x)dV (x)− LdV (x)
2/2, otherwise,

(39)

where the second step is an application of Lemma 3 with n = 1, b = −pV (x), r = 1/L and ρ = dV (x). Now, if
f(x) < pV (x)

2/(2L), we deduce from (39) that dV (x) < pV (x)/L and f(x) ≥ pV (x)dV (x)− LdV (x)
2/2 (see Figure 6

for geometric intuition), and so

dV (x) ≤ pV (x)/L−
√
(pV (x)/L)2 − 2f(x)/L

=
2f(x)

pV (x) +
√

pV (x)2 − 2f(x)L

≤ 2f(x)

pV (x)
=

2mf (x)

αV (x)
,

(40)

where αV (x) = pV (x)/∥∇f(x)∥ = ∥ΠV ∇f(x)∥/∥∇f(x)∥ = ∥ΠV η(x)∥. Now, because Cε
V = {x ∈ Rd | dV (x) ≤ ε},

we deduce that {
x ∈ C ′ | mf (x) ≤ min

(
αV (x)ε

2
,
αV (x)

2∥∇f(x)∥
2L

)}
⊆ Cε

V \ C. (41)



Figure 6: Graphical illustration of the RHS of (39), denote here as G(x). In this illustration, p(x) = pV (x) and L are fixed
to 5 and 1 respectively. Here, d̃(x) is shorthand for dV (x), the distance of x from C along the subspace V .

Now, define sV (x) := αV (x)
2∥∇f(x)∥/(2L) and s(x) := α2∥∇f(x)∥/(2L). Since the subspace V is an adversarial

(α, δ)-viable by hypothesis, it follows from Definition 3 that

PX,V (min(αV (X)ϵ/2, sV (X)) ≥ min(αϵ/2, s(X)) | X ∈ C ′)

≥ PX,V (∥ΠV η(X)∥ ≥ α | X ∈ C ′) ≥ 1− δ.
(42)

The Fubini-Tonelli Theorem then gives,

FR(V ; ε) := EV PX(X ∈ Cε
V | X ∈ C ′) = EXPV (X ∈ Cε

V | X ∈ C ′)

≥ EXPV (mf (X) ≤ min(αV (X)ε/2, sV (X)) | X ∈ C ′)

≥ EXPV (mf (X) ≤ min(αε/2, s(X)) | X ∈ C ′)− δ,

where the last step is thanks to Lemma 5 with R1 = mf (X), R2 = min(αV (x)ϵ/2, sV (X)), R3 = min(αϵ/2, s(X)), and
ϕ = Id, and recalling (42). This proves the first part of the theorem.

For the second part, Condition 3 is in order and so we have P(∥∇f(X)∥ ≥ β | X ∈ C ′) ≥ 1− γ. On the other hand, if
0 ≤ ϵ ≤ αβ/L, then conditioned on the event ∥∇f(x)∥ ≥ β, we have min(αϵ/2, s(X)) ≥ min(αϵ/2, α2β/(2L)) = αϵ/2,
and the result follows from the first part and Lemma 5.

C.3 Proof of Theorem 5: Locally Affine Decision-Boundaries

Theorem 5. Suppose Conditions 3 and 4 with parameters β ∈ (0,∞), R ∈ (0,∞] and θ ≥ 0 are in order. Let V be a
possibly random adversarially (α, δ)-viable subspace of Rd with α > θ/β. Then, for any 0 ≤ ε ≤ R, the average fooling
rate of V is lower-bounded as follows

EV FR(V ; ε) ≥ PX(mf (X) ≤ αε | X ∈ C ′)− δ − γ, (25)

where α := α− θ/β > 0.

Proof of Theorem 5. Under Condition 4, it is easy to establish the classical inequality

−θ∥x′ − x∥ ≤ f(x′)− f(x)−∇f(x)⊤(x′ − x) ≤ θ∥x′ − x∥, for all ∥x′ − x∥ ≤ R. (43)



Now, let x ∈ C ′ := Rd \ C and let dV (x) be the distance of x from V along the subspace V . Let v(x), pV (x), αV (x),
sV (x), and s(x) be as defined in the proof of Theorem 3. By an argument analogous to the beginning of the proof of
Theorem 3 but with (43) used in place of (16) and the restriction that |s| ≤ R so that (43) is valid for every x′ on the line
x+ Rv(x), it is straightforward to establish that

dV (x) ≤ inf
s∈R

|s| subject to x+ sv(x) ∈ C, |s| ≤ R

≤ inf
s∈R

|s| subject to f(x) + pV (x)s+ θ|s| ≤ 0, |s| ≤ R

≤ inf
s∈R

|s| subject to f(x) + pV (x)s+ θ|s| ≤ 0, |s| ≤ R.

(44)

We deduce that

f(x) ≥ sup
|s|<min(dV (x),R)

−pV (x)s− θ|s| = min(dV (x), R) · (pV (x)− θ)+, (45)

where the equality is thanks to Lemma 4 applied with n = 1, b = −pV (x), r = 1/θ, and ρ = min(dV (x), R). Thus, we
deduce from (45) that

min(dV (x), R) ≤ f(x)

(pV (x)− θ)+
= cV (x)mf (x), (46)

with cV (x) := ∥∇f(x)∥/(αV (x)∥∇f(x)∥ − θ)+. One the event αV (x) ≥ α > θ/β, we have 1/cV (x) ≥ α := α− θ/β.
Thus, if mf (x) ≤ αε and 0 ≤ ε < R, then dV (x) ≤ ε. That is, if 0 ≤ ϵ < R

{x ∈ C ′ | mf (x) ≤ αε} ⊆ Cε
V \ C. (47)

The rest of the proof is analogous to the end of the proof of the first part of Theorem 3 ( starting from the set-inclusion (41)),
and is thus omitted.

D Proof of Theorem 4: A Matching Upper-Bound under Convexity

Theorem 4. Suppose f is convex differentiable, and let V be a subspace of Rd satisfying

∥ΠV η(x)∥ ≤ α̃, for some α̃ ∈ [0, 1] and ∀x ∈ C ′. (23)

Then, for any ε ≥ 0, we have

FR(V ; ε) ≤ PX(mf (X) ≤ α̃ε | X ∈ C ′). (24)

Proof. Let d(x) ∈ [0,∞) be the distance of x from C and let dV (x) ∈ [0,∞] be the distance of x from C along the
subspace V , i.e.,

d(x) := inf
v∈Rd

∥v∥ subject to x+ v ∈ C,

dV (x) := inf
v∈V

∥v∥ subject to x+ v ∈ C,
(48)

with the convention that inf ∅ = ∞. By definition of the (ε, V )-expansion Cε
V of C (refer to (3), we have

Cε
V = {x ∈ Rd | dV (x) ≤ ε}. (49)

Also, it is clear that dV (x) ≥ d(x), attained when V = Rd. By definition of dV (x), it is clear that x− dV (x)v ∈ C, where
v = ΠV ∇f(x)/∥ΠV ∇f(x)∥. Observe that ∇f(x)⊤v = ∥ΠV ∇f(x)∥. Now, thanks to the convexity of f , we have

f(x′) ≥ f(x) +∇f(x)⊤(x′ − x), (50)

for all x′ ∈ Rd. Thus,

x− dV (x)v ∈ C =⇒ f(x− dV (x)v) ≤ 0

=⇒ f(x)− dV (x)∇f(x)⊤v ≤ 0 thanks to (50)

=⇒ mf (x) ≤
dV (x)∇f(x)⊤v

∥∇f(x)∥
≤ dV (x)∥ΠV ∇f(x)∥

∥∇f(x)∥
≤ α̃dV (x).

We deduce that {x ∈ C ′ | mf (x) ≤ α̃ε} ⊇ {x ∈ C ′ | dV (x) ≤ ε} =: Cε
V \ C, and the result follows.


