
Compress Then Test: Powerful Kernel Testing in Near-linear Time

Carles Domingo-Enrich Raaz Dwivedi Lester Mackey
Courant Institute of Mathematical Sciences

NYU
cd2754@nyu.edu

Harvard University
MIT

raaz@mit.edu

Microsoft Research New England
lmackey@microsoft.com

Abstract

Kernel two-sample testing provides a powerful
framework for distinguishing any pair of distri-
butions based on n sample points. However, ex-
isting kernel tests either run in n2 time or sac-
rifice undue power to improve runtime. To ad-
dress these shortcomings, we introduce Com-
press Then Test (CTT), a new framework for
high-powered kernel testing based on sample
compression. CTT cheaply approximates an ex-
pensive test by compressing each n point sam-
ple into a small but provably high-fidelity core-
set. For standard kernels and subexponential
distributions, CTT inherits the statistical behav-
ior of a quadratic-time test—recovering the same
optimal detection boundary—while running in
near-linear time. We couple these advances with
cheaper permutation testing, justified by new
power analyses; improved time-vs.-quality guar-
antees for low-rank approximation; and a fast
aggregation procedure for identifying especially
discriminating kernels. In our experiments with
real and simulated data, CTT and its extensions
provide 20–200x speed-ups over state-of-the-art
approximate MMD tests with no loss of power.

1 Introduction

Kernel two-sample tests based on the maximum mean dis-
crepancy (MMD, Gretton et al., 2012a) can distinguish any
pair of distributions given only a sufficiently large sample
from each. However, standard MMD tests have prohibitive
running times that scale quadratically in the sample size
n. Gretton et al. (2012a); Zaremba et al. (2013); Yamada
et al. (2019); Schrab et al. (2022) introduced faster approx-
imate MMD tests based on subsampling, but each suffers

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

from a fundamental time-quality trade-off barrier: for any
pair of distributions, quadratic time is required to match the
discrimination power of a standard MMD test (see Prop. 2).
Our first contribution is a new subsampling approach called
Compress Then Test (CTT) that accelerates testing by first
compressing each sample. In Sec. 3, we prove that this
approach pierces the aforementioned barrier, matching the
quality of quadratic-time tests in near-linear time for subex-
ponential distributions. Along the way, we develop refined
analyses of permutation tests, establishing their discrimi-
nating power even when permutations are restricted to pre-
serve group structure and relatively few (e.g., 39) permu-
tations are employed. In our experiments with both real
and synthetic data, the CTT time-quality trade-off curves
dominate those of state-of-the-art subsampling approaches,
providing 200× speed-ups.

Zhao and Meng (2015) introduced an alternative, low-rank
approach to fast approximate MMD testing that replaces
the target kernel with a Θ(nr) time approximation based
on r random Fourier features (RFFs, Rahimi and Recht,
2008). This method often performs well in practice, but the
guarantees of Rahimi and Recht (2008); Zhao and Meng
(2015); Sutherland and Schneider (2015); Sriperumbudur
and Szabó (2015) require Ω(n2) random features and hence
Ω(n3) time to match the power of a standard MMD test.
By compressing before performing low-rank approxima-
tion, our second contribution, Low-Rank CTT (LR-CTT),
allows a user to harness any effective low-rank approxima-
tion without sacrificing the improved time-quality guaran-
tees of CTT. In our experiments, this hybrid test offers the
best performance of all, outpacing both the CTT and RFF
tests.

Finally, in the spirit of Schrab et al. (2021), we develop Ag-
gregated CTT (ACTT) tests that improve power by rapidly
identifying the most discriminating kernel in a collection
of candidates. In our experiments, ACTT offers 100-200×
speed-ups over the state-of-the-art efficient aggregated tests
of Schrab et al. (2022).

Compress Then Test: Powerful Kernel Testing in Near-linear Time

2 Kernel Two-sample Testing

As a standing assumption, suppose that we observe Xm ≜
(Xi)

m
i=1 and Yn ≜ (Yj)

n
j=1, two independent sequences of

datapoints drawn i.i.d. from unknown probability measures
P and Q respectively. In two-sample testing, our goal is
to decide whether the null hypothesis H0 : P = Q or the
alternative hypothesis H1 : P ̸= Q is correct. A test ∆
is a binary function of Xm and Yn such that the null hy-
pothesisH0 is rejected if and only if ∆(Xm,Yn) = 1. The
size or Type I error of the test is the probability that the
null hypothesis is rejected when it is true, i.e., the proba-
bility Pr[∆(Xm,Yn) = 1] when P = Q. A test is said to
have level α ∈ (0, 1) if its Type I error is bounded by α for
all probability distributions, i.e., supP=Q Pr[∆(Xm,Yn) =
1] ≤ α. The Type II error of a test for a specific choice of
P ̸= Q is the probability that the null hypothesis is ac-
cepted, i.e., Pr[∆(Xm,Yn) = 0]. For a given level α, our
aim is to build a test with Type II error as small as pos-
sible for alternatives Q that are not too similar to P. If
Pr[∆(Xm,Yn) = 0] = β, we say that the test has power
1− β against the alternative Q.

Kernel two-sample tests are popular because they can
distinguish any pair of distributions given sufficiently
large samples and a characteristic kernel k (Gretton
et al., 2012a). A characteristic kernel is any positive-
definite function k(x, y) (Steinwart and Christmann, 2008,
Def. 4.15) satisfying EX∼Pk(X,x) ̸= EY∼Qk(Y, x) for
some x whenever P ̸= Q. Common examples include
Gaussian, Matérn, B-spline, inverse multiquadric (IMQ),
sech, and Wendland’s compactly supported kernels on Rd
(Dwivedi and Mackey, 2021). Kernel two-sample tests take
the form ∆(Xm,Yn) = 1[T (Xm,Yn)> tα] where the test
statistic T (Xm,Yn) is an estimate of the squared maximum
mean discrepancy (MMD) between P and Q,

MMD2
k(P,Q) ≜ E

X,X′i.i.d.∼ P
k(X,X ′) + E

Y,Y ′i.i.d.∼ Q
k(Y, Y ′)

− 2EX∼P⊥⊥Y∼Qk(X,Y),

and tα is a threshold chosen to ensure that the test has either
finite-sample or asymptotic level α.

Quadratic-time or complete MMD tests The standard
MMD test statistics defined in Gretton et al. (2012a) each
require Θ(m2 + n2) kernel evaluations and hence compu-
tation that grows quadratically in the sample sizes. For ex-
ample, Gretton et al. (2012a, Sec. 4.1) defines the squared
sample MMD test statistic,

MMD2
k(Xm,Yn)≜ 1

m2

∑
1≤i,i′≤m k(Xi, Xi′)

+ 1
n2

∑
1≤j,j′≤n k(Yj , Yj′)−

2
mn

∑m
i=1

∑n
j=1 k(Xi, Yj).

Gretton et al. (2012a, Lem. 6) also presents two unbiased

estimators of MMD2
k(P,Q) as test statistics:

MMD2
u(Xm,Yn)≜

∑
1≤i̸=i′≤m k(Xi,Xi′)

m(m−1)

+
∑

1≤j ̸=j′≤n k(Yj ,Yj′)

n(n−1) −2
∑m

i=1

∑n
j=1 k(Xi,Yj)

mn , (1)

MMD2
up(Xn,Yn)≜

∑
1≤i̸=j≤n h(Xi,Xj ,Yi,Yj)

n(n−1) , (2)

where h(x, x′, y, y′)=k(x, x′)+k(y, y′)−k(x, y′)−k(x′, y).
The estimator (2) differs from the estimator (1) as it omits
the diagonal cross-terms and is defined only when m = n.

Block MMD tests To improve computational cost
through subsampling, Zaremba et al. (2013) introduced
block MMD tests, or B-tests for short, that average n

B inde-
pendent instances of the quadratic estimator (2), each with
sample size B, i.e.,

MMD2
B(Xn,Yn)≜ B

n

∑ n
B
i=1 ηi(Xn,Yn) with (3)

ηi(Xn,Yn)≜ 1
B(B−1)

∑iB
j,k=(i−1)B+1,j ̸=k h(Xj , Xk, Yj , Yk).

Consequently, the statistic computation takes time Θ(nB).
Moreover, when n

B → ∞,
√

n
B MMD2

B has a Gaussian
limit under the null that can be estimated to set tα. Pre-
viously, Gretton et al. (2012a, Sec. 6) studied a particular
instantiation of this test with B=2.

Incomplete MMD tests Yamada et al. (2019) introduced
an alternative Θ(ℓ) time subsampling approximation based
on incomplete MMD test statistics, MMD2

inc(Xn,Yn) ≜
1
ℓ

∑
(i,j)∈D h(Xi, Xj ,Yi,Yj), with D a collection of ℓ or-

dered index pairs. Yamada et al. (2019) sampled pairs
uniformly with replacement and set tα using the Gaussian
limit of

√
ℓMMD2

inc as ℓ → ∞. Schrab et al. (2022) in-
stead used deterministically pre-selected index pairs and a
wild bootstrap setting of tα described below.

Low-rank RFF tests Zhao and Meng (2015) proposed a
complementary speed-up for MMD testing based on a low-
rank MMD approximation of the form

MMD2
Φr

(Xm,Yn) ≜ (4)∥∥ 1
m

∑m
i=1Φr(xi)−

1
n

∑n
i=1Φr(yi)

∥∥2
2

where Φr maps each sample point to an r-dimensional fea-
ture vector. Specifically, Zhao and Meng chose r RFFs to
unbiasedly estimate MMD2

k in Θ((m+ n)r) time.

Permutation tests For any of the aforementioned test
statistics, one can alternatively set tα using the following
permutation approach to obtain a test with non-asymptotic
level α (Romano and Wolf, 2005; Fromont et al., 2012).
Let U be the concatenation of Xm and Yn. For each per-
mutation σ of the indices {1, . . . ,m + n}, define the per-
muted samples Xσm = (Uσ(i))

m
i=1,Yσn = (Uσ(m+j))

n
j=1

and the permuted statistic as Tσ ≜ T (Xσm,Yσn). Sample B
uniformly random permutations (σb)Bb=1 to obtain the val-
ues Tb ≜ Tσb and sort them in increasing order (T(b))Bb=1.
Finally, set tα = T(⌈(1−α)(B+1)⌉).

Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey

Wild bootstrap tests Similarly, when m = n, the follow-
ing wild bootstrap approach employed by Fromont et al.
(2012) yields a non-asymptotic level α by exchangeabil-
ity and Romano and Wolf (2005, Lem. 1). For each vec-
tor ϵ ∈ {±1}n, define T ϵ ≜ T (Xϵn,Yϵn) where Xϵbn ,Yϵbn
are constructed from Xn and Yn by swapping Xi and Yi if
ϵi = −1. Sample B i.i.d. vectors (ϵb)

B
b=1 uniformly from

{±1}n, compute the values Tb ≜ T ϵb , and finally set tα as
in the permutation approach.

3 Compress Then Test

This section introduces Compress Then Test (CTT), a new
framework for testing with sample compression. CTT re-
lies on a new test statistic, CORESETMMD, that we de-
scribe and analyze in Sec. 3.1. Sec. 3.2 then provides an
analysis of the complete CTT procedure detailed in Alg. 1.

Algorithm 1: Compress Then Test, ∆CTT

Input: Samples (Xm, Yn), # coresets s, compression level g,
kernels (k,k′), failure prob. δ, # replicates B, level α

Partition Xm into sm = sm
m+n

equal-sized bins (X(i)
m)smi=1

Partition Yn into sn = sn
m+n

equal-sized bins (Y(i)
n)sni=1

// Identify coreset of size 2g
√

m+n
s

for each bin
for i = 1, . . . , sm do

X̂(i)
m ← KT-COMPRESS(X(i)

m , g,k,k′, δ)
end
for i = 1, . . . , sn do

Ŷ(i)
n ← KT-COMPRESS(Y(i)

n , g,k,k′, δ)
end
// Compute CORESETMMD test statistic
MB+1 ← MMDk(X̂m, Ŷn) for (5)

X̂m := CONCAT((X̂(i)
m)smi=1) and Ŷn := CONCAT((Ŷ(i)

n)sni=1)

// Simulate null by randomly permuting the s coresets B times
for b = 1, . . . ,B do

(X̂b
m, Ŷb

n)← PERMUTECORESETS(X̂m, Ŷn, s)

Mb←MMDk(X̂b
m, Ŷb

n)
end
// Threshold test statistic
R← position of MB+1 in an increasing ordering of (Mb)

B+1
b=1

with ties broken uniformly at random
if R > bα := ⌈(1−α)(B+1)⌉ then return 1 // reject null
else if R < bα then return 0 // accept null
else return 1 with prob. pα = bα − (1− α)(B + 1) or else 0

3.1 MMD compression with CORESETMMD

At the heart of our testing strategy lies CORESETMMD (5),
a new, inexpensive estimate for MMDk(P,Q) that builds
atop the KT-COMPRESS algorithm, a strategy introduced
by Shetty et al. (2022, Ex. 4) to compress a given point se-
quence (see App. A for background on KT-COMPRESS).
Given a coreset count s, a target compression level g, and
an auxiliary kernel function k′ used by KT-COMPRESS,

CORESETMMD partitions each input sample into bins of
size m+n

s , compresses each bin into a smaller coreset of
points using KT-COMPRESS, concatenates the coresets to
form the compressed approximations X̂m and Ŷn of size
2gm

√
s

m+n and 2gn
√

s
m+n respectively, and finally com-

putes the MMD estimate MMDk(X̂m, Ŷn).

As we show in App. B, this strategy offers the following
strong approximation error guarantees, expressed in terms
of the KT-COMPRESS error inflation factor Rk,k′/2g.
Lemma 1 (Quality of CORESETMMD). The CORESET-
MMD estimate (5) satisfies1

|MMDk(Xm,Yn)−MMDk(X̂m, Ŷn)| (6)

≤
Rk,k′ (Xm,

m
sm

,δ,g)

2g
√
m

+
Rk,k′ (Yn,

n
sn
,δ,g)

2g
√
n

,

with probability at least 1−δ conditional on (Xm,Yn), and

|MMDk(P,Q)−MMDk(X̂m, Ŷn)| (7)

≤
Rk,k′ (P, m

sm
,δ,g)

2g
√
m

+
Rk,k′ (Q, n

sn
,δ,g)

2g
√
n

+cδ
(√∥k∥∞

m +
√

∥k∥∞
n

)
,

with probability at least 1−3δ for cδ≜2+
√
2 log(2δ).

Remark 1 (Beyond i.i.d. data). Our proof shows that the
guarantee (6) holds more generally for any point sequences
(Xm,Yn) generated independently of the randomness in
CORESETMMD.
Remark 2 (Beyond KT-COMPRESS). CORESETMMD
and CTT are compatible with any compression scheme. In
particular, when an alternative compression algorithm is
used in place of KT-COMPRESS in Alg. 1, the conclusions
of Lem. 1 and Thm. 1 can be straightforwardly generalized
to accommodate the quality guarantees of that alternative.

The first guarantee of Lem. 1 bounds the compression
error introduced by substituting the compressed points
(X̂m, Ŷn) for (Xm,Yn), while the second accounts also
for the Θ(1√

m
+ 1√

n
) random fluctuations of the quadratic-

time statistic MMDk(Xm,Yn) around the population es-
timand MMDk(P,Q) (Gretton et al., 2012a). In either
case, we find that CORESETMMD offers an orderO(1√

m
+

1√
n

approximation—the same order as the quadratic-time
MMDk(Xm,Yn) estimate—up to the inflation factor (1+
Rk,k′/2g).

The value Rk,k′(P,m, δ, g) depends on the choice of the
auxiliary kernel k′ and the tail decay of P (see App. B.1 for
details).2 Two standard choices for k′ are the target kernel
k itself (Dwivedi and Mackey, 2022) or a square-root ker-
nel krt satisfying k(x, y) =

∫
krt(x, z)krt(y, z)dz. As de-

tailed in Dwivedi and Mackey (2021), convenient square-
root (or square-root dominating) kernels are available for a

1Unless otherwise specified, all of our results refer to an arbi-
trary setting of an algorithm’s input arguments.

2The related value Rk,k′(Xm,m, δ, g) is Rk,k′(·,m, δ, g) ap-
plied to the empirical distribution over Xm.

Compress Then Test: Powerful Kernel Testing in Near-linear Time

Tails of P Choice of k′ Rk,k′(P,m, δ, g)

Compact Compact krt (log m
δ)

2

Subexponential Analytic k (log m
δ)

3d+5
2

Subexponential Subexponential krt cm,δ(log
m
δ)

d+5
2

ρ-Heavy-tailed ρ-Heavy-tailed krt (mδ)
d
2ρ (log m

δ)
5
2

Table 1: Error inflation due to compression. We report
the scaling of Rk,k′ in Lem. 1 up to constants depending
on d under various assumptions on k′ and the tail decay of
P (see App. B.5 for the proof). Here cm,δ ≜

√
log log m

δ .

variety of popular kernels including Gaussian, Matérn, B-
spline, inverse multiquadric (IMQ), sech, and Wendland’s
compactly supported k.

Tab. 1 summarizes how Rk,k′(P,m, δ, g) varies with k′ and
P. For example, when P, Q, and k′ = krt are compactly
supported, Rk,k′(P,m, δ, g) = O((log m

δ)
2) and hence the

compression error (6) of Lem. 1 becomes

O(
(log m

δ)2

2g
√
m

+
(log n

δ)2

2g
√
n

) = o(1√
m
+ 1√

n
),

when g = log2(ω(log
2(m∨n

δ))). More generally, the
CORESETMMD compression error is asymptotically neg-
ligible relative to the usual error of MMDk(Xm,Yn)
whenever g = log2(ω(Rk,k′(P,m ∨ n, δ, g))). For ex-
ample, if P, Q, and k′ = krt have have subexponen-
tial tails then, for some constant c > 0, the choice g ≥
c log2 log(m ∨ n) yields o(1√

m
+ 1√

n
) compression error.

By Tab. 1, the same result holds when k′ = k is analytic.
Together, these results cover all of the aforementioned pop-
ular kernels.

We next turn our attention to the running time of CORE-
SETMMD. By Shetty et al. (2022, Ex. 4), the runtime
of each KT-COMPRESS(X(i)

m , g,k,k′, δ) call is dominated
by O(4gm+n

s (log4(
m+n
s) − g)) kernel evaluations. Since

MMDk(X̂m, Ŷn) can be computed using O(4gs(m + n))

kernel evaluations once X̂m and Ŷn are available, the total
runtime of CORESETMMD is

O(4g(m+ n)(s+ log4(
m+n
s)− g)). (8)

Notably, this runtime is O((m+ n) logc+1
4 (m+ n)), near-

linear in m + n, whenever s = O(log4(m + n)) and g ≤
c log4 log(m + n), as in the subexponential and compact-
support settings previously considered.

3.2 Compress Then Test

We are now prepared to discuss our complete CTT pro-
cedure defined in Alg. 1. CTT begins by computing the

Test name MMD separation Runtime

(ours, Thm. 1)

CTT Rk,k′ (P,m,δ,g)
2g

√
m

+m− 1
2 4gm logm

(Gretton et al., 2012a)

Complete MMD
m− 1

2 m2

(Zaremba et al., 2013)

Block MMD
(Bm)−

1
4 Bm

(Yamada et al., 2019)

Incomp. MMD
ℓ−

1
4 ℓ

Table 2: Detectable MMD(P,Q) separation vs. runtime
for complete and approximate MMD tests. For subexpo-
nential (P,Q), CTT can detect m− 1

2 MMD separation in
near-linear time, while the complete, block, and incomplete
tests require quadratic time. See Sec. 3.2 for more details.

CORESETMMD test statistic described in Sec. 3.1 but then
reuses the coresets to carry out a special form of the per-
mutation test. Rather than permuting all m + n points as
in the standard permutation tests of Sec. 2, CTT keeps each
coreset intact and only permutes the order of the s coresets
when setting the test threshold.

The advantages of coreset reuse are threefold. First, the
compression step can be carried out just once, irrespective
of the number of permutations employed. Second, the same
kernel evaluations used to compute the initial test statistic
(5) can be reused to compute every permuted CORESET-
MMD. Indeed, when forming the initial test statistic, it suf-
fices to store the s2 sufficient statistics

aij =
1

|Ẑ(i)||Ẑ(j)|

∑
z∈Ẑ(i),z′∈Ẑ(j) k(z, z′) for

(Ẑ(1), . . . , Ẑ(s)) ≜ (X̂(1)
m , . . . , X̂(sm)

m , Ŷ(1)
n , . . . , Ŷ(sn)

n)

since each permuted CORESETMMD can be written as

MMD2
k(X̂bm, Ŷbn) =

∑s
i,j=1

1−2|I[i≤sm]−I[j≤sm]|
s2 aσ(i)σ(j)

for some permutation σ over the coreset indices {1, . . . , s}.
Hence, the total running time of CTT is simply the running
time (8) of a single CORESETMMD call plusO(s2B) arith-
metic operations.

Finally, by keeping each coreset intact, CTT ensures that
every coreset permutation (X̂bm, Ŷbn) accurately approx-
imates an analogous full-sample permutation that keeps
each of the (X(i)

m)smi=1 and (Y(i)
n)sni=1 bins intact and only

permutes the order of the s bins. One of the main contri-
butions of this work is showing that such restricted permu-
tation procedures provide high power even when s is set to
a small value. However, before turning to power, we next
show that CTT has a size exactly equal to the nominal level
α for all sample sizes and all data distributions P.

Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey

Proposition 1 (Finite-sample exactness of CTT). For any
distribution P, Compress Then Test (Alg. 1) has size (Type
I error) exactly equal to the nominal level α, i.e.,

Pr[∆CTT(Xm,Yn) = 1] = α whenever P = Q.

Remark 3 (Exchangeability). Our proof in App. C does
not require datapoint independence and rather holds
under the weaker condition that the point sequence
(X1, . . . , Xm, Y1, . . . , Yn) is exchangeable under the null,
i.e., the null distribution of this point sequence is invariant
under permutation.

Our proof of Prop. 1, based on exchangeability, parallels
the size-no-larger-than-level proofs of Schrab et al. (2021);
Albert et al. (2022) but includes a more detailed treatment
of the case R = bα to ensure the exactness of the Type I
error, as in Hoeffding (1952).

We now provide a complementary upper bound on the
Type II error of CTT (or equivalently, a lower bound on its
power) under suitable assumptions on the MMD separation
between P and Q.

Theorem 1 (Power of CTT). Suppose Compress Then Test
(Alg. 1) is run with m ≤ n, level α, replication count
B ≥ 1

α − 1, coreset count sm ≥ 32
9 log(2eγ) for γ ≜

α
4e (

β̃
4)

1
⌊α(B+1)⌋ and β̃ ≜ β

1+β/2 . Then CTT has power

Pr[∆CTT(Xm,Yn) = 1] ≥ 1−β

whenever c′ MMDk(P,Q)/
√

log(1/γ) is greater than

2cβ̃/20s

√
∥k∥∞
m +

Rk,k′ (P, m
sm

, β̃
20sm

,g)+Rk,k′ (Q, m
sm

, β̃
20sn

,g)

2g
√
m

for c′ a universal constant and cδ as defined in Lem. 1.

Remark 4 (Valid parameter values). The CTT compres-
sion level g is an integer in {0, . . . , log4(m+n

s)}—a larger
value provides more power but increases runtime. The fail-
ure probability δ and level α take arbitrary values in (0, 1),
while the coreset count s ≤ m + n and replicate count B
are positive integers.

The proof of Thm. 1 in App. D contains several novel ar-
guments that may be of independent interest. First, us-
ing novel techniques based on order statistics, we show
that B ≥ 1

α−1 permutations suffice to obtain a powerful
permutation test. Our arguments can be straightforwardly
adapted to strengthen the analogous results for the com-
plete (Schrab et al., 2021, Thm. 5) and incomplete (Schrab
et al., 2022, Thm. 5.2) permutation tests. Compared with
the B ≥ 3

α2 (log(
8
β)+α(1−α)) requirement of Schrab et al.

(2021, 2022), our requirement eliminates all dependence
on the target power 1 − β and improves the α dependence
by a quadratic factor. Put in practical terms, by Thm. 1,
B ≥ 19 permutations suffice for powerful permutation test-
ing at level α = 0.05 while B ≥ 2613 were previously

required to guarantee power greater than the level. Sec-
ond, we show that to obtain a powerful permutation test,
one need not permute all m + n datapoints; rather, it suf-
fices to permute s bins where the number s can be chosen
independently of the sample sizes.

In the end, Thm. 1 implies that CTT with a small number of
coresets and permutations can detect distributional discrep-
ancies of order 1√

m
—the same detection threshold enjoyed

by the quadratic-time MMD tests (Gretton et al., 2012b,
Thm. 13)—-up to the inflation factor (1+Rk,k′/2g). Since
Rk,k′/2g = o(1) whenever g = log2(ω(Rk,k′)) and the
runtime of CTT is dominated by a single CORESETMMD
computation, by setting k′, g, and s as discussed in Sec. 3.1,
CTT can recover the quadratic-time detection threshold in
near-linear O((m + n) logc+1

4 (m + n)) time for subex-
ponential (P,Q) and subquadratic time for heavy-tailed
(P,Q) with ρ > 2d moments.

Our next result shows that such runtime improvements can-
not be achieved by the state-of-the-art block and incom-
plete MMD tests of Sec. 2, as each requires quadratic time
(i.e., B = Ω(m) or ℓ = Ω(m2)) to match the order 1√

m

detection threshold of a complete MMD test.

Proposition 2 (Power upper bounds for complete, block,
and incomplete MMD tests). For any nominal level α ∈
(0, 1) and target Type II error β ∈ (0, 1), there exists a
constant cα,β such that the following power upper bounds
hold for all sample sizes m.

(a) Asymptotic complete test: Pr[∆up(Xm,Ym) = 1] <
1−β if MMD(P,Q)≤ cα,β√

m
.

(b) Asymptotic block test: Pr[∆B(Xm,Ym)=1]<1−β if
MMD(P,Q)≤ cα,β

(Bm)1/4
and B,mB →∞.

(c) Asymptotic incomplete test: Pr[∆inc(Xm,Ym) = 1]<
1−β if MMD(P,Q)≤ cα,β

ℓ1/4
, and ℓ

m→c>0.

The proof of Prop. 2 in App. E uses the asymptotic distribu-
tion of each statistic under the null and alternative hypothe-
ses (as derived by Gretton et al., 2007, 2009; Zaremba et al.,
2013; Yamada et al., 2019) to upper bound the power (and
hence lower bound the Type II error) of each test. More-
over, the proof reveals that these detectable MMD(P,Q)
separation rates are tight. For example, there also exists a
constant c′α,β > cα,β such that Pr[∆up(Xm,Ym) = 1] >

1−β whenever MMD(P,Q) ≥ c′α,β/
√
m. Tab. 2 summa-

rizes the trade-off between detectable MMD separation and
runtime for the complete and approximate MMD tests and
highlights the improved trade-off offered by CTT.

In particular, the time-power trade-off of CTT improves
significantly under the favorable settings of Tab. 1 (e.g., for
compact P or subexponential P and analytic k in lower di-
mensions). While the improvements need not be as large
for heavier-tailed distributions, less smooth kernels, and

Compress Then Test: Powerful Kernel Testing in Near-linear Time

higher dimensions, even the worst-case trade-offs of CTT
are no worse than prior methods’ as Rk,k′(P,m, δ, g) =

O
(
2g/2m1/4

√
log(1δ)

)
by Dwivedi and Mackey (2021,

Rem. 2). That is, for arbitrary distributions, dimensions,
and kernels, a user can comfortably use CTT as a drop-
in replacement for the block and incomplete tests, as we
should expect no worse power-time trade-off curves. That
said, there is some overhead associated with compression,
so a user may find the block and incomplete tests to be
faster for small sample sizes.

4 CTT Extensions

In this section, we develop two extensions of CTT: first,
a fast and powerful way to exploit an accurate low-rank
kernel approximation and, second, a fast and powerful ag-
gregation procedure for identifying a particularly discrimi-
nating kernel from amongst a collection of candidates.

4.1 Low-Rank CTT

Our first extension, called Low-Rank CTT (Alg. 2), allows
the user to exploit an accurate low-rank kernel approxima-
tion without sacrificing the provable time-power trade-off
improvements of CTT. Specifically, we consider Θ(nr)-
time low-rank MMDΦr

approximations of the form (4)
with Φr selected so that the approximation error

ϵ2Φr
(Xm,Yn) = supx,y∈Xm∪Yn

|k(x, y)− Φr(x)
⊤Φr(y)|

is small. For example, Sriperumbudur and Szabó (2015,
Thm. 1) show that ϵΦr

(Xm,Yn) = O(r−1/4) and

hence that |MMD2
k(Xm,Yn) − MMD2

Φr
(Xm,Yn)|

(60)
≤

4ϵ2Φr
(Xm,Yn) = O(r−1/2) with high probability when

Φr consists of r random Fourier features and (P,Q)
are compactly supported. However, since computing
MMDΦr

(Xm,Yn) requires Θ((m + n)r) feature evalua-
tions, this analysis requires Ω(m3) time to match the or-
der 1√

m
detection threshold of a complete MMD test. Our

following result, proved in App. F, shows that appropriate
compression prior to low-rank approximation yields com-
parable power guarantees in just O(4g(m+ n) log r) time.

Theorem 2 (LR-CTT exactness and power). Low-Rank
CTT (Alg. 2) has size exactly equal to the level α for all
P. If the replication count B ≥ 1

α − 1, the permutation
bin count s ≥ m+n

m
32
9 log(2eγ) for (γ, β̃) as in Thm. 1, and

m ≤ n, then LR-CTT has power

Pr[∆LR-CTT(Xm,Yn) = 1] ≥ 1−β

when, for a universal constant c′ and cδ defined in Lem. 1,

c′ MMDk(P,Q)/
√
log(1/γ) ≥ 2cβ̃/20sr

√
∥k∥∞
m +

Rk,k′ (P, m
sm,r

, β̃
20sm,r

,g)+Rk,k′ (Q, m
sm,r

, β̃
20sn,r

,g)

2g
√
m

+ ϵΦr
(X̂m,Ŷn).

Algorithm 2: Low-Rank CTT, ∆LR-CTT

Input: Samples (Xm, Yn), coreset size factor a, compression
level g, kernels (k,k′), feature map Φr , failure prob. δ, #
permutation bins s, # replicates B, level α

Partition Xm into sm,r = 4ga2m
r2

equal-sized bins (X(i)
m)

sm,r

i=1

Partition Yn into sn,r = 4ga2n
r2

equal-sized bins (Y(i)
n)

sn,r

i=1

// Identify coreset of size r
a

for each bin
for i = 1, . . . , sm,r do

X̂(i)
m ← KT-COMPRESS(X(i)

m , g,k,k′, δ)
end
for i = 1, . . . , sn,r do

Ŷ(i)
n ← KT-COMPRESS(Y(i)

n , g,k,k′, δ)
end
// Compute LR-CORESETMMD test statistic
MB+1 ← MMDΦr (X̂m, Ŷn) for (9)

X̂m := CONCAT((X̂(i)
m)

sm,r

i=1) and Ŷn := CONCAT((Ŷ(i)
n)

sn,r

i=1)

// Simulate null by randomly permuting s coresets B times
for b = 1, . . . ,B do

(X̂b
m, Ŷb

n)← PERMUTECORESETS(X̂m, Ŷn, s)

Mb←MMDΦr (X̂b
m, Ŷb

n)
end
// Threshold test statistic
R← position of MB+1 in an increasing ordering of (Mb)

B+1
b=1

with ties broken uniformly at random
if R > bα := ⌈(1−α)(B+1)⌉ then return 1 // reject null
else if R < bα then return 0 // accept null
else return 1 with prob. pα = bα − (1− α)(B + 1) or else 0

Specifically, to form a low-rank CORESETMMD test statis-
tic (9), Low-Rank CTT (LR-CTT, Alg. 2) divides each
sample into sm,r or sn,r equal-sized bins, forms a coreset
for each bin using KT-COMPRESS with kernels (k,k′), and
computes the low-rank approximation MMDΦr using only
the concatenated coreset points X̂m and Ŷn. Then, just
as in Alg. 1, LR-CTT selects an appropriate test statistic
threshold albeit now manually partitioning (X̂m, Ŷn) into
s coreset bins and permuting those bins. All told, the LR-
CTT runtime is dominated byO(4g(m+n)(log4(

2r
a)−g))

kernel evaluations, O(4g(m + n)a) feature evaluations,
and O(s2B) arithmetic operations. Importantly, when a =
O(log r), the logarithmic dependence on the rank r means
that, by Thm. 2, LR-CTT can recover the order 1√

m
de-

tection threshold of a complete MMD test in near-linear
time for subexponential (P,Q) and subquadratic time for
heavy-tailed (P,Q) with ρ > 2d moments, even when the
approximation error ϵΦr has slow (e.g., order r−1/4) decay.

4.2 Aggregated CTT

Each of the tests considered so far assumes that a suitable
kernel k has been pre-selected by the user. However, be-
cause the discriminating power of a kernel varies with the
pair of distributions under consideration, it can be challeng-
ing to identify a single suitable kernel a priori. As a result, a

Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey

variety of strategies have been introduced for automatically
selecting discriminating kernels for MMD tests (see, e.g.,
Gretton et al., 2012b; Sutherland et al., 2017; Liu et al.,
2020; Kübler et al., 2020). We highlight in particular the
aggregated MMD tests of Schrab et al. (2021) which com-
bine complete MMD tests with varying kernels into a sin-
gle test with power comparable to the best individual test.
Since these complete aggregated tests run in quadratic time,
Schrab et al. (2022) recently introduced incomplete aggre-
gated tests that trade off computation time and power ex-
actly as in the single-kernel setting (see Tab. 2).

In Alg. 6 of App. G, we extend our Compress Then Test
framework to form a more efficient aggregated test that
we call Aggregated CTT (ACTT). Like past aggregated
tests, Alg. 6 takes as input any indexed collection of ker-
nels (kλ)λ∈Λ and accommodates nonnegative importance
weights (wλ)λ∈Λ with

∑
λ∈Λ wλ ≤ 1 reflecting prior be-

liefs about the suitability of each kernel. Like Alg. 1, ACTT
then proceeds to partition Xm and Yn into bins and to
form a coreset for each bin using a parallel collection of
auxiliary KT-COMPRESS kernels (k′

λ)λ∈Λ scaled so that
supz|k′

λ(z, z)| = 1. However, instead of forming a sepa-
rate coreset for each candidate kernel, as one might if one
were running a CTT test separately for each kλ, ACTT
saves additional computation by forming a single coreset
per bin using the combination kernels k =

∑
λ∈Λ kλ and

k′ =
∑
λ∈Λ k′

λ. These shared coresets are used to compute
a CORESETMMD test statistic Mλ for each kλ, B1 per-
muted CORESETMMD statistics to estimate the null dis-
tribution for each kλ, and B2 permuted CORESETMMD
statistics to estimate the size of the aggregated test. Fi-
nally, exactly as in Schrab et al. (2021, Alg. 1), ACTT
selects a suitable rejection threshold for each test statistic
Mλ and rejects the null whenever at least one Mλ exceeds
its threshold. The total cost of ACTT is at most |Λ| times
that of single-kernel CTT (with B = B1) plus the cost
of O(|Λ|(B1 logB1 + B2B3)) arithmetic operations due to
sorting and selecting thresholds.

Thm. 3, proved in App. G, shows that ACTT is valid,
i.e., it has Type I error ≤ α for all sample sizes and
generating distributions, and that its power is compara-
ble to that of the best kλ-CTT test run with compression
level g − log2 |Λ|. Moreover, by Thm. 1, each kλ-CTT
test has power comparable to a complete kλ test when
g = log2(|Λ|ω(Rkλ,k′

λ
)). Therefore, by setting k′, g, and

s as discussed in Sec. 3.1, ACTT with |Λ| = O(1) can
recover the detection threshold of the best quadratic-time
kλ test in near-linear O((m + n) logc+1

4 (m + n)) time
for subexponential (P,Q) and subquadratic time for heavy-
tailed (P,Q) with ρ > 2d moments.

Theorem 3 (ACTT validity and power). For any distribu-
tion P, ACTT (Alg. 6) has non-asymptotic level α, i.e.,

Pr[∆ACTT(Xm,Yn) = 1] ≤ α whenever P = Q. (10)

Morever, with m ≤ n, α ∈ (0, 1e), and replicate counts
B1≥(maxλ∈Λ w

−2
λ) 12

α2 (log(
8
β)+α(1−α)), B2≥

8
α2 log(

2
β),

and B3≥ log2(
4
α minλ∈Λ w

−1
λ), ACTT has power

Pr[∆ACTT(Xm,Yn) = 1] ≥ 1− β (11)

whenever there exists a λ ∈ Λ satisfying

MMDkλ
(P,Q)≥c′

√
log(1

γλ
) εAGG(

β/(10s)
4+β) (12)

and sm≥ 32
9 log(2e

γλ
), where γλ≜ αwλ

8e (β
8+2β)

1
⌊αwλ(B1+1)/2⌋ ,

c′ is a universal constant, and

εAGG(δ) ≜ 2cδ

√
∥kλ∥∞
m

+ cΛmax
λ∈Λ

Rkλ,k′ (P, m
sm

,δ,g)+Rkλ,k′ (Q, m
sm

,δ,g)

2g
√
m

for cδ as in Lem. 1 and cΛ≜2
√
|Λ|(1+log(|Λ|)) .

5 Experiments

We now present seven experiments that illustrate the im-
proved power-runtime trade-offs of CTT, LR-CTT, and
ACTT over state-of-the-art approximate MMD tests. In all
experiments, we use a Gaussian k′ = k, α=0.05, m=n=
49, s = 32, and δ = 1

2 . We report average rejection rates
over 400 independent replications of each experiment with
95% Wilson (1927) confidence intervals. See App. H for
additional details and github.com/microsoft/goodpoints for
open-source Python code recreating all experiments.

CTT experiments We evaluate CTT in two settings with
the kernel bandwidth set using the popular median heuristic
(Chaudhuri et al., 2017). In the GAUSSIAN setting, P and
Q are 10-dimensional Gaussians with identity covariances;
the means have Euclidean distance 0.012 under the alterna-
tive and 0 under the null. The EMNIST setting is similar
to the one considered by Kübler et al. (2020); Schrab et al.
(2021), where P and Q denote distributions on downsam-
pled 7 × 7 images of the EMNIST dataset (Cohen et al.,
2017)—an extension of the MNIST dataset (LeCun et al.,
2010) that also includes letters. Under the alternative hy-
pothesis, P denotes a 2-mixture of uniform distributions
based on parity of digits and letters with weight 0.49 (resp.
0.51) for even (resp. odd) parity, while Q puts equal weight
0.5 on both parities. Under the null hypothesis, we consider
P = Q = equally weighted mixture. We plot the test power
results versus runtime in Fig. 1 with GAUSSIAN setting on
top and EMNIST setting on the bottom.

Fig. 1 (left) shows that in both settings, the CTT time-
power trade-off curve uniformly dominates those of the
state-of-the-art subsampling approximations of Sec. 2:
the wild bootstrap block (W-Block) and incomplete (W-
Incomp.) tests and the asymptotic block (A-Block I and II)
incomplete (A-Incomp.) tests. In particular, the CTT test

https://github.com/microsoft/goodpoints

Compress Then Test: Powerful Kernel Testing in Near-linear Time

1 2 5 10 20 50 100 200 500 1k 2k 5k
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

B=49 ℓ= 49−1
2 n

B=48

Gaussian (mean separation= 0.012, n=49)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

r=1

r=256

r=1

r=1024
Gaussian (mean separation= 0.012, n=49)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

1 2 5 10 20 50 100 200 500 1k 2k 5k 10k
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

B=49

ℓ= 49−1
2 n

Downsampled EMNIST (peven= 0.49, n=49)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2

g=3

r=1

r=256

r=1

r=1024
Downsampled EMNIST (peven= 0.49, n=49)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

Figure 1: Time-power trade-off curves in the GAUSSIAN and EMNIST experimental settings comparing (left) CTT to
five state-of-the-art approximate MMD tests based on subsampling and (right) LR-CTT to the state-of-the-art low-rank
MMD test based on random Fourier features (RFF).

with g= 3 achieves the same power as the wild bootstrap
quadratic-time tests (W-block with B=49 and W-Incomp.
with ℓ= (49−1)n

2) while providing a 200× speed-up. While
CTT and the wild bootstrap tests are guaranteed to have
Type I error controlled by α (Fig. 3 in App. H), the asymp-
totic tests violate their level constraint for large B or ℓ as
the asymptotic approximation is poor for such settings. As
a result, Fig. 1 displays only those points that respect the
level constraint in the power plots. For consistency, we
used B = 39 replicates for all the non-asymptotic tests.

LR-CTT experiments In the same settings, Fig. 1
(right) compares CTT, the state-of-the-art low-rank RFF
test of Sec. 2, and LR-CTT with RFF Φr and a =
r/(4g2I[r>4g+1]). We use B = 39 permutations to set the
threshold for each test. We find that CTT and RFF produce
comparable trade-off curves despite their distinct and com-
plementary approximation strategies and that the combined
LR-CTT test with g ≥ 2 consistently yields the best perfor-
mance, with 5–20× speed-ups over CTT or RFF alone.

ACTT experiments We compare our ACTT procedure
in two different settings with the aggregated wild bootstrap
incomplete test (W-Incomp.) of Schrab et al. (2022). For
the BLOBS experiment of Gretton et al. (2012b, Fig. 1),
and Sutherland et al. (2017, Fig. 2), P and Q are two-
dimensional 3 × 3 grids of Gaussian mixture components
with a grid spacing of 10. Each mixture component has
identity covariance in P, while for Q the ratio of eigenval-
ues for their covariance matrix is ϵ with diagonal entries
set to 1; the null hypothesis corresponds to ϵ = 1. We con-

sider the bandwidth set Λ = {2iλ0}−4
i=0 for kλ(x, y) =

e−∥x−y∥2
2/(2λ

2), where λ0 denotes the median heuristic
bandwidth, and uniform weights wλ = 1/|Λ|. We plot the
results in Fig. 2 and observe that ACTT provides a uniform
gain in the power-runtime curve over the aggregated WB
incomplete test—a 100× to 200×-speed up.

We perform the same comparison with the same configu-
rations on the HIGGS experiment, a variation of the setting
considered by Liu et al. (2020), which took the data from
Baldi et al. (2014). While the original dataset has samples
with 27 covariates belonging to two different classes (0 and
1), Liu et al. (2020) considers only four covariates of those,
and we only use the first two of the four. We consider
two settings for the alternative distribution: one in which
P is sampled from the class 0 and Q is sampled from the
class 1 (HIGGS: Fig. 2, middle) and a more challenging one
in which P is sampled from the class 0 and Q is sampled
from each class with equal probability (HIGGS MIXTURE:
Fig. 2, bottom). We observe a 100× to 200×-speed up over
the aggregated WB incomplete test.

6 Connections and Conclusions

This paper introduced CTT, a new framework for kernel
testing with compression; LR-CTT, a test that combines
low-rank approximation and compression for added scal-
ability; and ACTT, a fast and powerful procedure for ag-
gregating kernel tests. While we have shown that CTT,
LR-CTT, and ACTT offer better power-time trade-offs than

Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2

g=3 ℓ= 47−1
2 nℓ= 47−1
2 n

Blobs (ε= 1.4, n=47)

ACTT
Agg. W-Incomp.
CTT (median λ)
W-Incomp. (median λ)
Level 0.05

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1 g=2 g=3 g=4

ℓ= 47−1
2 nℓ= 47−1
2 n

Higgs (n=47)

ACTT
Agg. W-Incomp.
CTT (median λ)
W-Incomp. (median λ)
Level 0.05

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100 200 500
Total computation time (s)

0.0

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2

g=3 g=4
ℓ= 47−1

2 nℓ= 47−1
2 n

Higgs Mixture (pm=0.5, n=47)

ACTT
Agg. W-Incomp.
CTT (median λ)
W-Incomp. (med. λ)
Level 0.05

Figure 2: Time-power trade-off curves for ACTT and the
state-of-the-art incomplete MMD aggregation test in the
BLOBS and HIGGS experimental settings.

state-of-the-art approximate MMD tests, we highlight that
there are other approaches to fast non-parametric testing
based on alternative test statistics (see, e.g., Chwialkowski
et al., 2015; Jitkrittum et al., 2016; Kirchler et al., 2020;
Shekhar et al., 2022). A natural follow-up question is
whether compression techniques can also improve the
power-time trade-offs of those tests. A second opportunity
for future work is to extend the CTT framework to other in-
ferential tasks like independence and goodness-of-fit test-
ing or kernel regression.

References

NIST Digital Library of Mathematical Functions.
http://dlmf.nist.gov/, Release 1.1.6 of 2022-06-30.
F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I.
Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller,
B. V. Saunders, H. S. Cohl, and M. A. McClain, eds.
(Cited on page 23.)

Mélisande Albert, Béatrice Laurent, Amandine Marrel, and

Anouar Meynaoui. Adaptive test of independence based
on HSIC measures. The Annals of Statistics, 50(2):858–
879, 2022. (Cited on page 5.)

Pierre Baldi, Peter Sadowski, and Daniel Whiteson.
Searching for exotic particles in high-energy physics
with deep learning. Nature Communications, 5(1), 2014.
(Cited on page 8.)

Arin Chaudhuri, Deovrat Kakde, Carol Sadek, Laura Gon-
zalez, and Seunghyun Kong. The mean and median cri-
teria for kernel bandwidth selection for support vector
data description. In 2017 IEEE International Confer-
ence on Data Mining Workshops (ICDMW). IEEE, nov
2017. (Cited on pages 7 and 42.)

Kacper P Chwialkowski, Aaditya Ramdas, Dino Sejdi-
novic, and Arthur Gretton. Fast two-sample testing with
analytic representations of probability measures. Ad-
vances in Neural Information Processing Systems, 28,
2015. (Cited on page 9.)

Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André
van Schaik. Emnist: Extending mnist to handwritten let-
ters. In 2017 International Joint Conference on Neu-
ral Networks (IJCNN), pages 2921–2926, 2017. doi:
10.1109/IJCNN.2017.7966217. (Cited on page 7.)

Raaz Dwivedi and Lester Mackey. Kernel thinning. In Pro-
ceedings of Thirty Fourth Conference on Learning The-
ory, volume 134 of Proceedings of Machine Learning
Research, pages 1753–1753. PMLR, 15–19 Aug 2021.
(Cited on pages 2, 3, 6, 13, 18, 19, 20, and 40.)

Raaz Dwivedi and Lester Mackey. Generalized kernel thin-
ning. In International Conference on Learning Repre-
sentations, 2022. (Cited on pages 3, 13, 18, 20, 40, 41,
and 42.)

Magalie Fromont, Béatrice Laurent, Matthieu Lerasle, and
Patricia Reynaud-Bouret. Kernels based tests with non-
asymptotic bootstrap approaches for two-sample prob-
lems. In Proceedings of the 25th Annual Conference on
Learning Theory, volume 23 of Proceedings of Machine
Learning Research, pages 23.1–23.23. PMLR, 2012.
(Cited on pages 2 and 3.)

James Gentle. Computational Statistics. 01 2009. ISBN
978-0-387-98143-7. doi: 10.1007/978-0-387-98144-4.
(Cited on page 22.)

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bern-
hard Schölkopf, and Alex J Smola. A kernel method for
the two-sample-problem. In Advances in neural infor-
mation processing systems, pages 513–520, 2007. (Cited
on pages 5, 32, and 33.)

Arthur Gretton, Kenji Fukumizu, Zaı̈d Harchaoui, and
Bharath K. Sriperumbudur. A fast, consistent kernel two-
sample test. In Advances in Neural Information Process-
ing Systems, volume 22. Curran Associates, Inc., 2009.
(Cited on pages 5 and 32.)

Compress Then Test: Powerful Kernel Testing in Near-linear Time

Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch,
Bernhard Schölkopf, and Alexander Smola. A kernel
two-sample test. Journal of Machine Learning Research,
13(25):723–773, 2012a. (Cited on pages 1, 2, 3, 4, and 17.)

Arthur Gretton, Dino Sejdinovic, Heiko Strathmann,
Sivaraman Balakrishnan, Massimiliano Pontil, Kenji
Fukumizu, and Bharath K. Sriperumbudur. Optimal ker-
nel choice for large-scale two-sample tests. In F. Pereira,
C.J. Burges, L. Bottou, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems,
volume 25. Curran Associates, Inc., 2012b. (Cited on
pages 5, 7, and 8.)

Wassily Hoeffding. The Large-Sample Power of Tests
Based on Permutations of Observations. The Annals
of Mathematical Statistics, 23(2):169 – 192, 1952. doi:
10.1214/aoms/1177729436. (Cited on page 5.)

Wittawat Jitkrittum, Zoltán Szabó, Kacper Chwialkowski,
and Arthur Gretton. Interpretable distribution features
with maximum testing power. In Proceedings of the 30th
International Conference on Neural Information Pro-
cessing Systems, page 181–189. Curran Associates Inc.,
2016. (Cited on page 9.)

Matthias Kirchler, Shahryar Khorasani, Marius Kloft, and
Christoph Lippert. Two-sample testing using deep learn-
ing. In International Conference on Artificial Intelli-
gence and Statistics, pages 1387–1398. PMLR, 2020.
(Cited on page 9.)

Jonas M. Kübler, Wittawat Jitkrittum, Bernhard Schölkopf,
and Krikamol Muandet. Learning kernel tests without
data splitting. In Advances in Neural Information Pro-
cessing Systems. Curran Associates, Inc., 2020. (Cited on
page 7.)

Erik Learned-Miller and Joseph DeStefano. A probabilistic
upper bound on differential entropy. IEEE Transactions
on Information Theory, 54(11):5223–5230, 2008. doi:
10.1109/TIT.2008.929937. (Cited on page 22.)

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist, 2, 2010. (Cited on
page 7.)

Feng Liu, Wenkai Xu, Jie Lu, Guangquan Zhang 0001,
Arthur Gretton, and Dougal J. Sutherland. Learning deep
kernels for non-parametric two-sample tests. In Proceed-
ings of the 37th International Conference on Machine
Learning, ICML 2020, 13-18 July 2020, Virtual Event,
volume 119 of Proceedings of Machine Learning Re-
search, pages 6316–6326. PMLR, 2020. (Cited on pages 7
and 8.)

Ali Rahimi and Benjamin Recht. Random features for
large-scale kernel machines. In J. C. Platt, D. Koller,
Y. Singer, and S. T. Roweis, editors, Advances in Neural
Information Processing Systems 20, pages 1177–1184.
Curran Associates, Inc., 2008. (Cited on page 1.)

Joseph P Romano and Michael Wolf. Exact and approx-
imate stepdown methods for multiple hypothesis test-
ing. Journal of the American Statistical Association, 100
(469):94–108, 2005. (Cited on pages 2 and 3.)

Mark Rudelson and Roman Vershynin. Hanson-Wright
inequality and sub-gaussian concentration. Electronic
Communications in Probability, 18:1 – 9, 2013. (Cited
on page 29.)

Antonin Schrab, Ilmun Kim, Mélisande Albert, Béatrice
Laurent, Benjamin Guedj, and Arthur Gretton. MMD
aggregated two-sample test, 2021. (Cited on pages 1, 5, 7,
21, 22, 39, and 42.)

Antonin Schrab, Ilmun Kim, Benjamin Guedj, and Arthur
Gretton. Efficient aggregated kernel tests using incom-
plete u-statistics, 2022. (Cited on pages 1, 2, 5, 7, 8, and 42.)

Robert Serfling. Approximation Theorems of Mathematical
Statistics, volume 162. John Wiley & Sons, 2009. (Cited
on page 33.)

Shubhanshu Shekhar, Ilmun Kim, and Aaditya Ramdas. A
permutation-free kernel two-sample test. In Alice H.
Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun
Cho, editors, Advances in Neural Information Process-
ing Systems, 2022. (Cited on page 9.)

Abhishek Shetty, Raaz Dwivedi, and Lester Mackey. Dis-
tribution compression in near-linear time. In Interna-
tional Conference on Learning Representations, 2022.
(Cited on pages 3, 4, 13, 14, 15, 16, 17, 18, 39, 40, 41, and 42.)

Bharath Sriperumbudur and Zoltán Szabó. Optimal rates
for random fourier features. Advances in neural infor-
mation processing systems, 28, 2015. (Cited on pages 1
and 6.)

Ingo Steinwart and Andreas Christmann. Support vector
machines. Springer Science & Business Media, 2008.
(Cited on page 2.)

Danica J Sutherland and Jeff Schneider. On the error of
random fourier features. In Proceedings of the Thirty-
First Conference on Uncertainty in Artificial Intelli-
gence, pages 862–871, 2015. (Cited on page 1.)

Danica J. Sutherland, Hsiao-Yu Tung, Heiko Strathmann,
Soumyajit De, Aaditya Ramdas, Alex Smola, and Arthur
Gretton. Generative models and model criticism via op-
timized maximum mean discrepancy. In International
Conference on Learning Representations, 2017. (Cited
on pages 7 and 8.)

Martin J. Wainwright. High-Dimensional Statistics: A
Non-Asymptotic Viewpoint. Cambridge Series in Statis-
tical and Probabilistic Mathematics. Cambridge Univer-
sity Press, 2019. (Cited on page 20.)

Edwin B Wilson. Probable inference, the law of succes-
sion, and statistical inference. Journal of the American
Statistical Association, 22(158):209–212, 1927. (Cited
on page 7.)

Carles Domingo-Enrich, Raaz Dwivedi, Lester Mackey

Makoto Yamada, Denny Wu, Yao-Hung Hubert Tsai, Hiro-
fumi Ohta, Ruslan Salakhutdinov, Ichiro Takeuchi, and
Kenji Fukumizu. Post selection inference with incom-
plete maximum mean discrepancy estimator. In Interna-
tional Conference on Learning Representations, 2019.
(Cited on pages 1, 2, 4, 5, 34, and 42.)

Wojciech Zaremba, Arthur Gretton, and Matthew
Blaschko. B-test: A non-parametric, low variance
kernel two-sample test. In C.J. Burges, L. Bottou,
M. Welling, Z. Ghahramani, and K.Q. Weinberger,
editors, Advances in Neural Information Processing
Systems, volume 26. Curran Associates, Inc., 2013.
(Cited on pages 1, 2, 4, 5, and 42.)

Ji Zhao and Deyu Meng. FastMMD: Ensemble of circular
discrepancy for efficient two-sample test. Neural Com-
putation, 27(6):1345–1372, 2015. (Cited on pages 1 and 2.)

Appendix

A Background on KT-COMPRESS 13

B Proof of Lem. 1: Quality of CORESETMMD 14

B.1 On the KT-COMPRESS error inflation factor . 14

B.2 Proof of claim (6) . 15

B.3 Proof of claim (7) . 17

B.4 Bounds on Ck,k′ and Mk,k′ . 18

B.5 Proof of Tab. 1 . 19

C Proof of Prop. 1: Finite-sample exactness of CTT 20

D Proof of Thm. 1: Power of CTT 20

D.1 Thm. 4: Power of CTT, detailed . 21

D.2 Recasting the power lower bound into a high-probability threshold upper bound . 21

D.3 High-probability bound on the threshold . 22

D.4 Concluding the proof of Thm. 4 . 31

E Proof of Prop. 2: Power upper bounds for complete, block, and incomplete MMD tests 32

E.1 Proof of Prop. 2(a) . 32

E.2 Proof of Prop. 2(b) . 33

E.3 Proof of Prop. 2(c) . 34

F Proof of Thm. 2: LR-CTT exactness and power 35

G Proof of Thm. 3: ACTT validity and power 39

H Experiment details and supplementary results 42

12

A Background on KT-COMPRESS

This section details the KT-COMPRESS algorithm of Shetty et al. (2022, Ex. 4). In a nutshell, KT-COMPRESS (Alg. 3)
takes as input a point sequence of size n, a compression level g, two kernel functions (k,k′), and a failure probability δ. It
then combines the COMPRESS algorithm of Shetty et al. (2022, Alg. 1) with the generalized kernel thinning (KT) algorithm
of Dwivedi and Mackey (2021, 2022, Alg. 1) to output a coreset of 2g

√
n input points that together closely approximate

the input in terms of MMDk. KT-COMPRESS proceeds by calling the recursive procedure COMPRESS, which uses KT
with kernels (k,k′) as an intermediate halving algorithm. The KT algorithm itself consists of two subroutines: (1) KT-
SPLIT (Alg. 5a), which splits a given input point sequence into two equal halves with small approximation error in the
k′ reproducing kernel Hilbert space and (2) KT-SWAP (Alg. 5b), which selects the best approximation amongst the KT-
SPLIT coresets and a baseline coreset (that simply selects every other point in the sequence) and then iteratively refines the
selected coreset by swapping out each element in turn for the non-coreset point that most improves MMDk error. As in
Shetty et al. (2022, Rem. 3), we symmetrize the output of KT by returning either the KT coreset or its complement with
equal probability.

For this work, we develop a slight modification of the original KT-COMPRESS algorithm, which we use in all experiments
and in the released implementation. When the compression level g = 0 and the number of input points passed to COM-
PRESS is n = 4, instead of running the usual COMPRESS algorithm, we run OPTHALVE4 (Alg. 4) which identifies the
coreset of size two that optimally approximates the input point sequence in terms of MMDk and then returns either that
coreset or its complement with equal probability.

Algorithm 3: KT-COMPRESS – Identify coreset of size 2g
√
n

Input: point sequence Sin of size n, compression level g, kernels (k,k′), failure probability δ

return COMPRESS(Sin, g,k,k′, δ
n4g+1(log4 n−g)

)

function COMPRESS(S, g,k,k′, δ):
if |S| = 4g then return S
Partition S into four arbitrary subsequences {Si}4i=1 each of size n/4
for i = 1, 2, 3, 4 do

S̃i ← COMPRESS(Si, g,k,k′, δ) // run COMPRESS recursively to return coresets of size 2g ·
√

|S|
4

end
S̃ ← CONCATENATE(S̃1, S̃2, S̃3, S̃4) // combine the coresets to obtain a coreset of size 2 · 2g ·

√
|S|

return KT(S̃,k,k′, |S̃|2δ) // halve the coreset to size 2g
√
|S| via symmetrized kernel thinning

function KT(S,k,k′, δ):
// Identify kernel thinning coreset containing ⌊|S|/2⌋ input points
SKT ← KT-SWAP(k, KT-SPLIT(k′,S, δ))

return SKT with probability 1
2

and the complementary coreset S \ SKT otherwise

Algorithm 4: OPTHALVE4 – Optimal four-point halving
Input: kernel k, point sequence Sin = (xi)

4
i=1

K12 plus K43← k(x1, x2) + k(x4, x3); K41 plus K23← k(x4, x1) + k(x2, x3); K42 plus K13← k(x4, x2) + k(x1, x3)

if K12 plus K43 < K41 plus K23 then
if K12 plus K43 < K42 plus K13 then

return (x3, x4) with probability 1
2

and (x1, x2) otherwise
end
return (x2, x4) with probability 1

2
and (x1, x3) otherwise

end
if K41 plus K23 < K42 plus K13 then

return (x1, x4) with probability 1
2

and (x2, x3) otherwise
end
return (x2, x4) with probability 1

2
and (x1, x3) otherwise

13

Algorithm 5a: KT-SPLIT – Divide points into candidate coresets of size ⌊n/2⌋
Input: kernel k′, point sequence Sin = (xi)

n
i=1, failure probability δ

S(1),S(2) ← {} // Initialize empty coresets: S(1),S(2) have size i after round i
σ ← 0 // Initialize swapping parameter
for i = 1, 2, . . . , ⌊n/2⌋ do

// Consider two points at a time
(x, x′)← (x2i−1, x2i)

// Compute swapping threshold a
a, σ ←get swap params(σ, b, δ

n
) with b2=k′(x, x)+k′(x′, x′)−2k′(x, x′)

// Assign one point to each coreset after probabilistic swapping
θ ←

∑2i−2
j=1 (k′(xj , x)− k′(xj , x

′))− 2
∑

z∈S(1)(k
′(z, x)− k′(z, x′))

(x, x′)← (x′, x) with probability min(1, 1
2
(1− θ

a
)+)

S(1).append(x); S(2).append(x′)
end
return (S(1),S(2)), candidate coresets of size ⌊n/2⌋

function get swap params(σ, b, δ):
a← max(bσ

√
2 log(2/δ), b2)

σ2 ← σ2+b2(1+(b2−2a)σ2/a2)+
return (a, σ)

Algorithm 5b: KT-SWAP – Identify and refine the best candidate coreset

Input: kernel k, point sequence Sin = (xi)
n
i=1, candidate coresets (S(1),S(2))

S(0)←baseline coreset(Sin,size=⌊n/2⌋) // Compare to baseline (e.g., standard thinning)

SKT←S(ℓ⋆) for ℓ⋆←argminℓ∈{0,1,2} MMDk(Sin,S(ℓ)) // Select best coreset

// Swap out each point in SKT for best alternative in Sin while ensuring no point is repeated in SKT

for i = 1, . . . , ⌊n/2⌋ do
SKT[i]← argminz∈{SKT[i]}∪(Sin\SKT) MMDk(Sin,SKT with SKT[i] = z)

end
return SKT, refined coreset of size ⌊n/2⌋

B Proof of Lem. 1: Quality of CORESETMMD

We first provide a discussion on the error inflation factor and then prove the two claims in Lem. 1.

B.1 On the KT-COMPRESS error inflation factor

Given a point sequence Sin, a positive integer n, and a scalar δ ∈ (0, 1), the inflation factor Rk,k′(Sin, n, δ, g) denotes the
smallest scalar of the form

R2
k,k′(Sin, n, δ, g) =256(log4 n−g−1)(Ck,k′(Sin) +Mk,k′(Sin, δ, 2g+1

√
n)
√
log(3n(log4 n−g−1)

δ))2 (13)

· (
√

log(n+1) +
√
log(2/δ))2,

where Ck,k′(Sin) and Mk,k′(Sin, δ, 2g+1
√
n) are any scalars satisfying the property that, on an event of probability at least

1 − δ
2 , every KT-COMPRESS (Alg. 3) call to KT with an input of size ℓ (that is a subset of Sin) is k-sub-Gaussian (see

Shetty et al. (2022, Def. 2)) with parameters

aℓ,n =
2Ck,k′ (Sin)

ℓ and vℓ,n =
2Mk,k′ (Sin,δ,ℓ)

ℓ

√
log(12n4

g(log4 n−g)
ℓδ). (14)

See App. B.4.1 for the valid values of Ck,k′ , and Mk,k′ derived in prior work for standard choices of k′. (Notably, Mk,k′

is non-decreasing in its last argument.)

The factor Rk,k′(Q, n, δ, g) is the population analogue of Rk,k′(Yn, n, δ, g) and is defined as the smallest scalar of the

14

form

R2
k,k′(Q, n, δ, g) ≜256(log4 n−g−1)(Ck,k′(Q, n, δ) +Mk,k′(Q, n, δ, 2g+1

√
n)
√
log(3n(log4 n−g−1)

δ))2

· (
√
log(n+1) +

√
log(2/δ))2,

where Ck,k′(Q, n, δ) and Mk,k′(Q, n, δ, 2g+1
√
n) satisfy

P
[
Ck,k′(Yn) ≤ Ck,k′(Q, n, δ) and Mk,k′(Yn, δ, 2g+1

√
n) ≤Mk,k′(Q, n, δ, 2g+1

√
n)
]
≥ 1− δ/2 (15)

and Ck,k′(Yn) and Mk,k′(Yn, δ, 2g+1
√
n) satisfy the sub-Gaussian property (14) defined above when Sin = Yn. See

App. B.4.2 for upper bounds on the quantities Ck,k′(Q, n, δ) and Mk,k′(Q, n, δ, 2g+1
√
n) for standard choices of k′ and

App. B.5 for how that translates to a scaling for Rk,k′ for the settings in Tab. 1.

B.2 Proof of claim (6)

We follow the notation of Shetty et al. (2022, Apps. A and C) and note that KT-COMPRESS (Alg. 3) is the COMPRESS

algorithm of Shetty et al. (2022) with, in the notation of Shetty et al. (2022, Example 4), HALVE = KT(ℓ2

n4g+1(βn+1)δ)

and βn ≜ log4 n−g−1 for an input of size ℓ.

We associate with each algorithm ALG and each input point sequence Sin of size n and output Sout of size nout the
measure difference

ϕALG(Sin) = 1
n

∑
x∈Sin

δx − 1
nout

∑
x∈Sout

δx,

and the unnormalized measure difference

ψALG(Sin) = n · ϕALG(Sin) =
∑
x∈Sin

δx − n
nout

∑
x∈Sout

δx.

Shetty et al. (2022, Eqn. 18) show that for their COMPRESS algorithm, the following holds:

ψC(Sin) =
√
n2−g−1

∑βn

i=0

∑4i

j=1 2
−iψH(S ini,j), (16)

where βn ≜ log4 n − g − 1, (S ini,j)j∈[4i]
are the 4i coresets of size ni = 2g+1−i√n resulting from i recursive calls to the

COMPRESS algorithm, and ψH is the unnormalized measure difference for HALVE. Substituting Sin ← X(r)
m , we get that

for r = 1, . . . , s, ψC(X(r)
m) =

√
m/sm · 2−g−1

∑βm/sm

i=0

∑4i

j=1 2
−iψH(X(r)

m,i,j), where X(r)
m,i,j is defined analogously to

S ini,j . If we let C+ be the algorithm that maps Xm to X̂m (and Yn to Ŷn), we obtain

ψC+(X(r)
m) =

√
m/sm · 2−g−1

∑sm
r=1

∑βm/sm

i=0

∑4i

j=1 2
−iψH(X(r)

m,i,j).

Similarly,

ψC+(Y(r)
n) =

√
n/sn · 2−g−1

∑sn
r=1

∑βn/sn

i=0

∑4i

j=1 2
−iψH(Y(r)

n,i,j).

Following App. C.1 from Shetty et al. (2022), if one numbers the elements of Sin as (x1, . . . , xn), and defines the n × n
kernel matrix K ≜ (k(xi, xj))

n
i,j=1, one obtains

uk,j≜K
1
2

∑n
i=1 ei

(
1(xi∈S ink,j)−2·1(xi∈Soutk,j)

)
, and uC ≜

∑log4 n−g−1
k=0

∑4k

j=1 wk,nuk,j ,

where wk,n≜
√
n

2g+1+k . Then, we have

n2 ·MMD2
k(Sin,SC) = ∥uC∥22, and

E[uk,j |(uk′,j′ : j′ ∈ [4k
′
], k′ > k)] = 0 for k = 0, . . . , log4 n−g−2,

and uk,j for j ∈ [4k] are conditionally independent given (uk′,j′ : j
′ ∈ [4k

′
], k′ > k). This follows easily from (16). For

any u ∈ Rn for arbitrary n, we also define

Mu≜

(
0 u⊤

u 0n×n

)
∈ R(n+1)×(n+1).

15

For any u ∈ Rn, the matrix Mu satisfies

∥Mu∥op = ∥u∥2 = λmax(Mu), and Mq
u ⪯ ∥u∥

q
2In+1 for all q ∈ N.

Defining the shorthand Mk,n ≜ Mwk,nuk,j
, we find that

nMMDk(Sin,SC)=∥uC∥2=λmax(MuC)=λmax(
∑log4 n−g−1
k=0

∑4k

j=1 Mk,j),

Let U = (Ui)
m+n
i=1 be the sequence obtained as the concatenation of Xm and Yn. Define the matrix KXm,Yn

≜

(k(Ui, Uj))
m+n
i,j=1. Substituting Sin ← X(r)

m , we can write

u
(r)
k,j,Xm

≜K
1
2

Xm,Yn

∑n
i=1 ei

(
1(xi∈X(r)

m,k,j)−2·1(xi∈X
(r),out
m,k,j)

)
,

and u(r)C,Xm
≜
∑log4(m/sm)−g−1
k=0

∑4k

j=1 wk,m/smu
(r)
k,j,Xm

, M
(r)
k,j,Xm

≜ M
wk,m/su

(r)
k,j,Xm

Hence, we can define

uC+,Xm ≜
∑sm
r=1

∑log4(m/sm)−g−1
k=0

∑4k

j=1 wk,m/smu
(r)
k,j,Xm

.

Analogously,

uC+,Yn
≜
∑sn
r=1

∑log4(n/sn)−g−1
k=0

∑4k

j=1 wk,n/snu
(r)
k,j,Yn

.

Also, note that

|MMDk(Xm,Yn)−MMDk

(
X̂m, Ŷn

)
| = |∥(P−Q)k∥k − ∥(Pm −Qn)k∥k| ≤ ∥(P−Q− (Pm −Qn))k∥k

= ∥(P− Pm)k− (Q−Qn)k∥k

which implies that

|MMDk(Xm,Yn)−MMDk

(
X̂m, Ŷn

)
|≤∥uC+,Xm

/m− uC+,Yn
/n∥2

=
∥∥∥∑sm

r=1(
1
m

∑log4(m/sm)−g−1
k=0

∑4k

j=1 wk,m/smu
(r)
k,j,Xm

− 1
n

∑log4(n/sn)−g−1
k=0

∑4k

j=1 wk,n/snu
(r)
k,j,Yn

)
∥∥∥
2

= λmax(
∑sm
r=1(

1
m

∑log4(m/sm)−g−1
k=0

∑4k

j=1 M
(r)
k,j,Xm

− 1
n

∑log4(n/sn)−g−1
k=0

∑4k

j=1 M
(r)
k,j,Yn

)).

Now we apply the sub-Gaussian matrix Freedman inequality (Shetty et al., 2022, Lem. 4). The zero-mean condition on
the matrices holds following the argument in Shetty et al. (2022, Sec. C.3.1), while for the moment bounds we use the
approach in their Sec. C.3.2. Namely, we use that for any q ∈ 2N,

(M
(r)
k,j,Xm

)q = Mq

wk,m/4u
(r)
k,j,Xm

⪯ ∥wk,m/4u
(r)
k,j,Xm

∥q2In+1 = wqk,m/4∥u
(r)
k,j,Xm

∥q2Im+n+1,

and similarly, (M(r)
k,j,Xm

)q ⪯ wqk,m/4∥u
(r)
k,j,Xm

∥q2Im+n+1. Shetty et al. (2022, Lem. 5) prove that for any non-negative
random variable Z,

P[Z>a+v
√
t]≤e−t for all t ≥ 0 =⇒ E[Zq] ≤ (2a+2v)q(q2)! for all q ∈ 2N.

In their case, their k-sub Gaussian assumption on HALVE implies that

P[∥uk,j∥2 ≥ ℓ′k(aℓ′k + vℓ′k
√
t) | (uk′,j′ : j′ ∈ [4k

′
], k′ > k)] ≤ e−t for all t ≥ 0,

for suitable scalar sequences {aℓ, vℓ} (also see (14)), where ℓ′k ≜
√
n2g+1−k, which yields the moment bound E[∥uk,j∥q2 |

(uk′,j′ : j
′ ∈ [4k

′
], k′ > k)] ≤ (q2)!(2ℓ

′
k(aℓ′k + vℓ′k))

q . Under the same assumption on HALVE, we obtain analogously that

E[∥u(r)k,j,Xm
∥q2 | (u

(r)
k′,j′,Xm

: j′ ∈ [4k
′
], k′ > k)] ≤ (q2)!(2ℓ

′
k,m/sm

(aℓ′
k,m/sm

+ vℓ′
k,m/sm

))q,

E[∥u(r)k,j,Yn
∥q2 | (u

(r)
k′,j′,Yn

: j′ ∈ [4k
′
], k′ > k)] ≤ (q2)!(2ℓ

′
k,n/sn

(a′ℓ′
k,n/sn

+ v′ℓ′
k,n/sn

))q,

16

where ℓ′k,m/sm ≜
√
m/sm · 2g+1−k, ℓ′k,n/sn ≜

√
n/sn · 2g+1−k.

Now let {aℓ,n, vℓ,n} denote the scalar sequences from (14) so that COMPRESS with HALVE = KT(ℓ2

n4g+1(βn+1)δ) for input
of size ℓ, every HALVE call invoked by COMPRESS is k-sub-Gaussian with parameters aℓ,n, vℓ,n on an event of probability
at least 1− δ

2 . We define

σ2 ≜
∑sm
r=1(

∑log4(m/sm)−g−1
k=0

∑4k

j=1(
2
mwk,m/smℓ

′
k,m/sm

(aℓ′
k,m/sm

,m/sm + vℓ′
k,m/sm

,m/sm))2

+
∑log4(n/sn)−g−1
k=0

∑4k

j=1(
2
mwk,n/snℓ

′
k,n/sn

(a′ℓ′
k,n/sn

,n/sn
+ v′ℓ′

k,n/sn
,n/sn

))2),

which when combined with the expressions for aℓ,n and vℓ,n from (14), yields that

σ2 =
∑log4(m/sm)−g−1
k=0

(
4

2g
√
m

(
Ck,k′(Xm) +Mk,k′(Xm, δ, 2g+1−k

√
m
sm

)

√
log(

6·4g
√
m/sm(βm/sm+1)

2g−kδ
)

))2

(17)

+
∑log4(n/sn)−g−1
k=0

(
4

2g
√
n

(
Ck,k′(Yn) +Mk,k′(Yn, δ, 2g+1−k

√
n
sn
)

√
log(

6·4g
√
n/sn(βn/sn+1)

2g−kδ
)

))2

≤ 16(log4(m/sm)−g−1)
4gm

(
Ck,k′(Xm) +Mk,k′(Xm, δ, 2g+1

√
m
sm

)
√
log(3m(log4(m/sm)−g−1)

smδ
)

)2

+ 16(log4(n/sn)−g−1)
4gn

(
Ck,k′(Yn) +Mk,k′(Yn, δ, 2g+1

√
n
sn
)
√

log(3n(log4(n/sn)−g−1)
snδ

)

)2

, (18)

where in the last inequality we also use the fact that Mk,k′ is non-decreasing in its last argument. Now, by the sub-Gaussian
matrix Freedman inequality as stated in (Shetty et al., 2022, Lem. 4), we obtain that

Pr(|MMDk(Xm,Yn)−MMDk(X̂m, Ŷn)| > σ
√
8(log(m+ n+ 1) + t)) (19)

≤ Pr(λmax(
∑4
r=1(

1
m

∑βm/4

k=0

∑4k

j=1 M
(r)
k,j,Xm

− 1
n

∑βn/4

k=0

∑4k

j=1M
(r)
k,j,Yn

))>σ
√
8(log(m+n+1)+t))

≤ δ
2 + e−t, for all t ≥ 0.

The term δ
2 does not come from the sub-Gaussian matrix Freedman inequality but rather from the conditioning on

the event for which (14) holds. Equation (19) in turn implies that Pr(|MMDk(Xm,Yn) − MMDk

(
X̂m, Ŷn

)
| >

σ(
√
8 log(m+ n+ 1) +

√
8t)) ≤ δ

2 + e−t. Equivalently, for any δ > 0, with probability at least 1− δ,

|MMDk(Xm,Yn)−MMDk

(
X̂m, Ŷn

)
| ≤
√
8σ(

√
log(m+ n+ 1) +

√
log(2/δ)). (20)

Putting together the bound (20) with the upper bound (18) and the definition (13) of Rk,k′ immediately yields the claimed
bound (6) and we are done.

B.3 Proof of claim (7)

Note that

MMD(P,Q)−MMD(X̂m, Ŷn) = MMD(P,Q)−MMD(Xm,Yn) +MMD(Xm,Yn)−MMD(X̂m, Ŷn).

The second term in the display above can be bounded via (6) and the first term via the following result from Gretton et al.
(2012a):

Lemma 2 (Adapted from Theorem 7, Gretton et al. (2012a)). Assume that ∥k∥∞ < +∞. Then,

Pr

[
|MMD(Xm,Yn)−MMD(P,Q)| > 2

(√
∥k∥∞
m +

√
∥k∥∞
n

)
+ ϵ

]
≤ 2 exp

(
−ϵ2mn

2∥k∥∞(m+n)

)
.

Using Lem. 2 with δ = 2 exp

(
−ϵ2mn

2∥k∥∞(m+n)

)
, which is equivalent to ϵ =

√
2∥k∥∞(m+n)

mn log
(
2
δ

)
, we obtain that

Pr

[
|MMD(Xm,Yn)−MMD(P,Q)| > 2

(√∥k∥∞
m +

√
∥k∥∞
n

)
+
√

2∥k∥∞(m+n)
mn log

(
2
δ

)]
≤ δ,

17

where the bound (18) on σ depends on (Xm,Yn). Next, the bound (6) states that with probability at least 1− δ,

|MMD(Xm,Yn)−MMD(X̂m, Ŷn)| ≤
Rk,k′ (Xm,m,δ,g)

2g
√
m

+
Rk,k′ (Yn,n,δg)

2g
√
n

,

and the definition of Rk,k′(P,m, δ, g) (see the discussion around (15) in App. B.1) implies that

P
[
Rk,k′(Xm,m, δ, g) ≤ Rk,k′(P,m, δ, g) and Rk,k′(Yn, n, δ, g) ≤ Rk,k′(Q, n, δ, g)

]
≥ 1− δ.

Putting the pieces together yields the bound (7) with probability at least 1− 3δ as claimed.

B.4 Bounds on Ck,k′ and Mk,k′

First, we discuss bounds on the sample-based quantities Ck,k′(Xm) and Mk,k′(Xm, δ, 2g+1
√
n) defined in (14) followed

by bounds on its population analog Ck,k′(P,m, δ) and Mk,k′(P,m, δ, 2g+1
√
n) defined in (15).

B.4.1 Bounds on sample-level quantities (Ck,k′(Xm) and Mk,k′(Xm, δ, 2g+1
√
n))

We discuss the default choices k′ = krt and k′ = k and the more general case one-by-one.

Case I: k′ = krt For this case, we follow the discussion from Dwivedi and Mackey (2021, Sec. 3.1). Let Lkrt
denote

the Lipschitz constant of krt and define τkrt
(R) ≜ (supx

∫
∥y∥2≥R

k2
rt(x, x− y)dy)

1
2 ,

Skrt,ℓ≜min{r : sup x,y:
∥x−y∥2≥r

|krt(x, y)|≤
∥krt∥∞

ℓ }, S†
krt,ℓ

≜min{r : τkrt
(r)≤ ∥krt∥∞

ℓ },

SXm
≜maxx∈Xm

∥x∥2, and SXm,krt,ℓ≜min
(
SXm

, ℓ1+
1
dSkrt,ℓ + ℓ

1
d
∥krt∥∞
Lkrt

)
,

and the kernel thinning inflation factor

Nkrt(ℓ,d,δ,R)≜37
√

log
(
3ℓ
δ

)[√
log

(
8
δ

)
+5

√
d log

(
2 + 2

Lkrt

∥krt∥∞

(
Skrt,ℓ+R

))]
.

Then using Dwivedi and Mackey (2021, Thm. 1) in Shetty et al. (2022, Example 4), we find that

Ck,krt
(Xm) = 2∥krt∥∞,in and Mk,krt

(Xm, δ, ℓ)=∥krt∥∞,in(max(SXm
,S†

krt,ℓ/2
))

d
2 ·Nkrt

(ℓ,d,δ,SXm,krt,ℓ),

and Mk,k′(Yn, δ, ℓ) defined analogously by replacing Xm by Yn and m by n. Here ∥k′∥∞,in = supx∈Xm
k′(x, x). We

note that the bounds in Dwivedi and Mackey (2021); Shetty et al. (2022) are stated with ∥k′∥∞ ≜ supx k
′(x, x) instead

of ∥k′∥∞,in (and note that ∥k′∥∞,in ≤ ∥k′∥∞). However, as noted in Dwivedi and Mackey (2022, App. B), all the results
of Dwivedi and Mackey (2021) (which is what Shetty et al. (2022) build on) go through with ∥k′∥∞ replaced by ∥k′∥∞,in

thereby yielding the result stated above.

Case II: k′ = k For this case, we follow the discussion in (Dwivedi and Mackey, 2022, Sec 2.2). In particular, for a
set A ⊂ Rd and scalar ε > 0, define the k covering number Nk(A, ε) withMk(A, ε) ≜ logNk(A, ε) as the minimum
cardinality of a set C ⊂ Bk ≜ {f : ∥f∥k ≤ 1} satisfying

Bk ⊆
⋃
h∈C{g ∈ Bk : supx∈A |h(x)− g(x)| ≤ ε}.

Then choosing ε =
√

∥k∥∞,in

ℓ/2 in the notation of Dwivedi and Mackey (2022, Thm. 2) and combining that result with Shetty
et al. (2022, Example 4), we conclude that we can use the following bounds

Ck,k(Xm) = 2
√
∥k∥∞,in and Mk,k(Xm, δ, ℓ) =

√
8∥k∥∞,in

3 log(12 log ℓ
δ)

[
log(8δ) +Mk(AXm

, (ℓ/2)−1)
]
, (21)

where AXm
= {x : ∥x∥2 ≤ SXm

}. We can define Mk,k′(Yn, δ, ℓ) analogously by replacing Xm by Yn and m by n.

Case III: General k′ When k′ is neither of the two default choices (k or krt) like in ACTT, then the expressions for
Rk,k′ can be derived using Dwivedi and Mackey (2022, Thm. 2-4) and Dwivedi and Mackey (2021, Thm. 1-2). For
instance, when the RKHS of k is contained in the RKHS of k′, we can apply the sub-Gaussian tail bounds for a single f
(Dwivedi and Mackey (2021, Thm. 1)) and then apply a union bound with a covering argument for the ball {∥f∥k ≤ 1}
(Dwivedi and Mackey (2022, Thm. 2)), in which case Rk,k′ also scales with sup∥f∥k≤1∥f∥k′ . See Rem. 6 for an example
of this case.

18

B.4.2 Bounds on population-level quantities (Ck,k′(P,m, δ, g) and Mk,k′(P,m, δ, 2g+1
√
n))

Define

C ′
k,k′ =

{
2∥krt∥∞ when k′ = krt

2
√
∥k∥∞ when k′ = k

.

Then for the choices of Ck,k′(·) in App. B.4.1, we have max{Ck,k′(Xm), Ck,k′(Yn)} ≤ C ′
k,k′ almost surely, where

∥k∥∞ ≜ supx∈X k(x, x). Thus if we set Ck,k′(P,m, δ) = Ck,k′(Q, n, δ) = C ′
k,k′ , to satisfy (15), it remains to determine

Mk,k′(P,m, δ, 2g+1
√
n) such that P

[
Mk,k′(Xm, δ, 2g+1

√
n) ≤Mk,k′(P,m, δ, 2g+1

√
n)
]
≥ 1 − δ/2 for the choices of

Mk,k′ in App. B.4.1.

We now derive a suitable expression for these population-level quantities. Following Dwivedi and Mackey (2021), we
define τP(R) ≜ P(Bc(0, R)) and τQ(R) ≜ Q(Bc(0, R)) where Bc(x,R) = {y : ∥x− y∥2 ≥ R}. The following result
(proven using results on order statistics that we later develop in App. D.3) shows that we can upper-bound SXm

and SYn

with high probability by a quantities that depend on P and m, and Q and n, respectively.

Lemma 3. Define SP,m,δ ≜ τ−1
P (δ/m). With probability at least 1 − δ, we have that SXm

≤ SP,m,δ . Similarly, with
probability at least 1− δ, we have that SYn ≤ SQ,n,δ ≜ τ−1

Q (δ/n).

Proof. The random variable SXm
≜ maxx∈Xm

∥x∥2 is the m-th order statistic for m samples of P (Def. 1). Since the
function τP(R) ≜ P(Bc(0, R)) = 1−P(B(0, R)) is one minus the cumulative function of the random variable ∥x∥2, x ∼ P,
we obtain that τP(SXm) is the first order statistic form samples of the uniform distribution over [0, 1]. Applying Lem. 5(iv)
on 1− τP(SXm), we obtain that

Pr(τP(SXm) < x) = Pr(1− τP(SXm) > 1− x) =
(
m
m−1

)
xm+1−m = mx.

Hence, with probability at least 1− δ, SXm < τ−1
P (δ/m), and similarly SYn < τ−1

P (δ/n).

Now we can set

Mk,k′(P,m, δ, ℓ) = ∥krt∥∞ max(SP,m,δ/2,S
†
krt,ℓ/2

)
d
2 Nkrt(ℓ,d,δ,SP,m,δ/2,krt,ℓ) when k′ = krt and (22)

Mk,k′(P,m, δ, ℓ) =
√

8∥k∥∞
3 log(12 logm

δ)
[
log(8δ) +Mk(AP,m,δ, (ℓ/2)−1)

]
when k′ = k, (23)

where SP,m,δ/2,krt,ℓ ≜ min
(
SP,m,δ/2, ℓ

1+ 1
dSkrt,ℓ + ℓ

1
d
∥krt∥∞
Lkrt

)
and AP,m,δ =

{
x : ∥x∥2 ≤ SP,m,δ/2

}
. By Lem. 3, we

have that with probability at least 1− δ/2, SXm
≤ SP,m,δ/2, and by construction (see App. B.4.1), P(Mk,k′(Xm, δ, ℓ) ≤

Mk,k′(P,m, δ, ℓ)) ≥ 1− δ/2 as needed above.

B.5 Proof of Tab. 1

We begin by showing the bounds on Rk,k′(P,m, δ, g) for the cases in which k′ = krt, and we include the case
in which k′ and P are sub-Gaussian for completeness. For g ≤ logm, equation (13) implies that the quantity
Rk,k′(P,m, δ, g) is of order cd

√
∥k′∥∞ log(m+n) log(m) log(mδ) ·Mk,k′(P,m, δ, 2g+1

√
m). Hence, we seek to upper-

bound Mk,k′(P,m, δ, 2g+1
√
m). In the table we replace the factor

√
log(m+n) log(m) by log(mδ) for simplcity.

First, note that upper bounds on τP(x) ≜ P(Bc(0, x)), which are the usual notion of tail bounds on distributions, are
equivalent to upper bounds on SP,m,δ ≜ τ−1

P (δ/m). Namely,

• r-Compact: τP(x) = 0, ∀x > r ⇔ τ−1
P (δ/m) ≤ r, ∀δ,m,

• σ-Sub-Gaussian: τP(x) ≤ 2e−
x2

2σ2 ⇔ τ−1
P (δ/m) ≤

√
2σ2 log(2mδ), ∀δ,m,

• σ, λ-subexponential: τP(x) ≤ 2max{e−
x2

2σ2 , e−
x
2λ } ⇔ τ−1

P (δ/m) ≤ max{
√

2σ2 log(2mδ), 2λ log(2mδ)}, ∀δ,m,

• ρ-Heavy-Tailed: τP(x) ≤ cdr−ρ ⇔ τ−1
P (δ/m) ≤ (cdmδ)1/ρ,∀δ,m.

19

Second, define S̃krt,m = max{Skrt,m,S
†
krt,m

}. Following Dwivedi and Mackey (2021), we formulate bounds on the
decay of k′ in terms of bounds on Skrt .

In Tab. 1, we consider four different growth conditions for the input point radii SXm arising from four forms of the target
distribution and kernel tail decay (assuming same decay for both P and k′): (1) Compact: SP,m,δ ≾d r, S̃krt,m ≾d 1, (2)
Sub-Gaussian: SP,m,δ ≾d σ

√
log(m/δ), S̃krt,m ≾d

√
logm, (3) subexponential: SP,m,δ ≾d λ log(m/δ), S̃krt,m ≾d

logm, and (4) Heavy-Tailed: SP,m,δ ≾d (m/δ)1/ρ, S̃krt,m ≾d m1/ρ). Here, the notation ≾d means that factors depend-
ing on d and δ are hidden. The first condition holds when P is supported on a compact set like the unit cube [0, 1]d.

To get the bounds in the table, we observe that

Mk,k′(P,m, δ, 2g+1
√
m) = Od

(
max(SP,m,δ/6,S

†
krt,2g

√
m
)

d
2

√
log(mδ) · log(max(SP,m,δ/6,Skrt,2g

√
m))

)
,

where Od hides constants that depend on d. We now plug in the bounds on SP,m,δ, S̃krt,m for each of the four cases to
obtain the following scaling for Mk,k′(P,m, δ, 2g+1

√
m) (and simplifying expressions by using g ≤ 1

2 log2m):

• r-Compact: Od(r
d
2

√
log(mδ) · log r)

• σ-Sub-Gaussian: Od(σ
d
2 log(mδ)

d+2
4

√
log(log(mδ)))

• σ, λ-subexponential: Od(λ
d
2 log(mδ)

d+2
2

√
log(log(mδ)))

• ρ-Heavy-Tailed: Od((mδ)
d
2ρ log(mδ))

To show the bound for k′ = k with an analytic k and P with subexponential tails, we follow the pointers in App. B.4.1.
Putting together (23) and Dwivedi and Mackey (2022, Thm. 2), we find that for this case Rk,k′(P,m, δ, g) is of order
cd
√
∥k∥∞ log(m+n) log(m) log(mδ)·Mk,k(P,m, δ, 2g+1

√
m), and doing algebra with (21), we conclude that MP,m,k(δ)

scales linearly with the square-root of the log-covering numberMk. Dwivedi and Mackey (2022, Prop. 2(a)) states that
the kernel covering numberMk admits the scaling (log(1/ε))d+1 times the Euclidean covering number in Rd that admits
a scaling of rd for a Euclidean ball of radius r (see Wainwright (2019, Lem. 5.7)). Consequently, using the LOGGROWTH
Mk and subexponential P column with ω = d + 1 in Dwivedi and Mackey (2022, Tab. 2) shows that for this case
Mk,k(P,m, δ, 2g+1

√
m) = O(log m

δ)
3d+2

2 , which in turn implies the corresponding scaling in Tab. 1 for Rk,k′(P,m, δ, g),
where once again we have used the fact that g ≤ 1

2 log2m to simplify expressions.

C Proof of Prop. 1: Finite-sample exactness of CTT

We will prove the result under the weaker assumption that the point sequence (X1, . . . , Xm, Y1, . . . , Yn) is exchangeable.
Under this assumption the statistics (Mb)

B+1
b=1 are also exchangeable. Since R represents the position of MB+1 in a sorted

ordering of (Mb)
B+1
b=1 with ties broken uniformly at random and all positions in {1, . . . ,B + 1} are equally likely under

exchangeability,

Pr[R = bα] = 1/(B + 1),

Pr[R > bα] = (B + 1− bα)/(B + 1), and
Pr[R < bα] = (bα − 1)/(B + 1).

Therefore, the CTT probability of rejection is

Pr[∆(Xm,Yn) = 1] = Pr[R > bα] + Pr[R = bα]pα

= (B + 1− bα)/(B + 1) + (bα − (1− α)(B + 1))/(B + 1) = α.

D Proof of Thm. 1: Power of CTT

We first state a detailed version of Thm. 1.

20

D.1 Thm. 4: Power of CTT, detailed

In this section we will prove the following theorem, which is the detailed statement of the result in Thm. 1.

Theorem 4 (Power of CTT, detailed). Suppose Compress Then Test (Alg. 1) is run with level α, replication count B ≥
1
α − 1, and coreset count sm ≥ (32/9) log(2eγ) for γ ≜ α

4e (
β

4+2β)
1

⌊α(B+1)⌋ . Let β̃ = β/(1 + β/2). Then CTT has power

Pr[∆CTT(Xm,Yn) = 1] ≥ 1−β

whenever

MMDk(P,Q)≥32

(
Rk,k′ (P,m/sm,β̃/6),g

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+ 2

(√
9
32 + 1

)(
2 + c′

√
log(γ)

)
×

(Rk,k′ (P,m/sm,β̃/(20sm),g)

2g
√
m

+
√

sn
sm

Rk,k′ (Q,n/sn,β̃/(20sn),g)
2g

√
n

+cβ̃/(20s)
(√∥k∥∞

m +
√

sn∥k∥∞
smn

)))
.

Remark 5. Thm. 1 follows from this result as√
sn/sm · Rk,k′(Q, n/sn, β̃/(20sn), g)/(2g

√
n) = Rk,k′(Q, n/sn, β̃/(20sn), g)/(2g

√
m)

and since 20s > 6 and m ≤ n.

We introduce some notation that we use throughout the proof. First, we let (M(b))
B
b=1 be the increasing ordering of the

permuted MMD values. Recall that bα = ⌈(1 − α)(B + 1)⌉, and that R is the position of MB+1 after sorting (Mb)
B+1
b=1

increasingly with ties broken at random.

We note R ≤ bα is a necessary condition to accept the null hypothesis, and we show that it implies that MB+1 ≜
MMD(X̂m, Ŷn) ≤ M(bα). To prove this, assume the contrapositive: if MB+1 > M(bα), then forcibly the position R of
MB+1 within an increasing ordering of (Mb)

B
b=1 is greater than bα. Hence,

Pr[∆CTT(Xm,Yn) = 0] ≤ Pr[R ≤ bα] ≤ Pr[MMD(X̂m, Ŷn) ≤M(bα)].

Hence, to prove Thm. 1 (or Thm. 4) it suffices to show that Pr[MMD(X̂m, Ŷn) ≤M(bα)] ≤ β.

D.2 Recasting the power lower bound into a high-probability threshold upper bound

We start with the following result that follows a structure similar to Schrab et al. (2021, Lem. 2).

Lemma 4 (Upper bound on acceptance probability from upper bound on threshold). Let 1 ≥ β > 0 arbitrary, and define
β̃ = β

1+ β
2

. Define the function

Z(m,n, β) ≜
Rk,k′ (P,m/sm,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
, (24)

which is equal to the upper bound in (7) when we make the choice δ = β̃/6. If Pr
[
MMD(P,Q) ≥ Z(m,n, β) +M(bα)

]
≥

1
1+ β

2

then Pr[MMD(X̂m, Ŷn) ≤M(bα)] ≤ β.

Proof. Define the events A := {MMD(X̂m, Ŷn) ≤M(bα)}, and B := {MMD(P,Q) ≥ Z(m,n, β) +M(bα)}.

By assumption, we have Pr[B] ≥ 1− β̃
2 , and we want to show Pr[A] ≤ β. Note that

Pr[A|B] = Pr
[
MMD(X̂m, Ŷn) ≤M(bα)

∣∣B]
≤ Pr

[
MMD(X̂m, Ŷn) ≤ MMD(P,Q)− Z(m,n, β) |B

]
≤ 1

Pr[B]Pr
[
MMD(P,Q)−MMD(X̂m, Ŷn) ≥ Z(m,n, β)

]
≤ 1

1− β̃
2

Pr
[
MMD(P,Q)−MMD(X̂m, Ŷn) ≥ Z(m,n, β)

]
.

(25)

21

Equation (7) in Lem. 1 shows that with probability at least 1− β̃
2 ,

|MMD(P,Q)−MMD(X̂m, Ŷn)| ≤ Z(m,n, β).

Thus, the right-hand side of (25) is upper-bounded by β̃
2 ·

1

1− β̃
2

= β
2 , where we used that

β̃ = β

1+ β
2

⇔ β̃
2 =

β
2

1+ β
2

⇔ β
2 =

β̃
2

1− β̃
2

.

We conclude the proof:

Pr(A) = Pr(A|B)Pr(B)

+ Pr(A|Bc)Pr(Bc) ≤ β
2 · 1 + 1 · β2 = β.

D.3 High-probability bound on the threshold

Given Lem. 4, the remainder of the proof of Thm. 1 is devoted to checking that Pr
[
MMD(P,Q) ≥ Z(m,n, β) +M(bα)

]
≥

1/(1 + β
2) holds, which involves getting a high-probability upper-bound on M(bα). Schrab et al. (2021) use an approach

based on the Dvoretzky-Kiefer-Wolfowitz theorem, which forces them to use a number of permutations B larger than a
threshold which is larger than the values used in practice. We employ more precise techniques based on order statistics
(pioneered in this setting by Learned-Miller and DeStefano (2008)) which give tight results for any B as long as B≥α−1−1.
We focus on the case of permutations instead of wild bootstrap, but the arguments could be adapted for the wild boostrap
case, which is in fact simpler.

Definition 1 (k-th order statistic). Given n i.i.d. variables (Yk)
n
k=1, and define the variables (Y(k))

n
k=1 as the result of

sorting (Yk)
n
k=1 in increasing order. For any 1 ≤ k ≤ n, the variable Y(k) is known as the k-th order statistic.

It is well known that the k-th order statistic for n samples of the uniform distribution on [0, 1] is distributed according to
the beta distribution Beta(k, n+ 1− k) (Gentle, 2009, p.63). The CDF of the distribution Beta(k, n+ 1− k) is equal to
the regularized incomplete beta function Ix(k, n+ 1− k), which is defined below.

Given positive a, b ∈ R and x ∈ [0, 1], the regularized incomplete beta function is defined as Ix(a, b) =
B(x;a,b)
B(a,b) , where

B(x; a, b) =
∫ x
0
ta−1(1− t)b−1 dt is the incomplete beta function and B(a, b) =

∫ 1

0
ta−1(1− t)b−1 dt is the beta function.

Lemma 5 (Properties of the regularized incomplete beta function). The following statements regarding the regularized
incomplete beta function and order statistics hold:

(i) For any integers m ≤ n and x ∈ [0, 1), we have that

Ix(m,n+ 1−m) =
∑n
j=m

(
n
j

)
xj(1− x)n−j . (26)

(ii) For any m ≤ n and x ∈ [0, 1), we have that ∂k

∂xk Ix(m,n+ 1−m)|x=0 = 0 for any 0 ≤ k < m, and that

∂m

∂xm Ix(m,n+ 1−m)|x=0 =
(
n
m

)
m! = n!

(n−m)! , (27)

∂m+1

∂xm+1 Ix(m,n+ 1−m)|x=0 = −1m<n n!m
(n−m−1)! (28)

(iii) For any x ∈ [0, 1), there exists z ∈ [0, x) such that Ix(m,n+ 1−m) =
(
n
m

)
xm −m

(
n

m+1

)
zm+1.

(iv) Let Y(m) be the m-th order statistic (Def. 1) for n samples of the uniform distribution on [0, 1]. For any x ∈ [0, 1],
we have that(

n
m−1

)
xn+1−m − (n+ 1−m)

(
n

m−2

)
xn+2−m1m>1 ≤ Pr[Y(m) > 1− x] ≤

(
n

m−1

)
xn+1−m.

Proof. We prove each part separately.

22

(i) This part follows directly from NIS, Eq. 8.17.5.

(ii) The statement ∂k

∂xk Ix(m,n+ 1−m)|x=0 = 0 for any 0 ≤ k < m holds because by (26), Ix(m,n+ 1−m) can be
expressed as a polynomial in x where all the terms are of power at least m.

To obtain ∂m

∂xm Ix(m,n+ 1−m)|x=0, we multiply by m! the coefficient of Ix(m,n+ 1−m) for the term of degree
m, which is the term of degree m of the polynomial

(
n
m

)
xm(1− x)n−m.

To obtain ∂m+1

∂xm+1 Ix(m,n+1−m)|x=0, we multiply by (m+1)! the coefficient of Ix(m,n+1−m) for the term of
degree m+1, which is the term of degree m+1 of the polynomial

(
n
m

)
xm(1−x)n−m plus the term of degree m+1

of the polynomial
(

n
m+1

)
xm+1(1 − x)n−m−1 (if the latter term exists). Thus, when m + 1 ≤ n, (m + 1)! times the

coefficient of Ix(m,n+ 1−m) for the term of degree m+ 1 reads:

−
(
n
m

)
(n−m)(m+ 1)! +

(
n

m+1

)
(m+ 1)!

= − n!
m!(n−m)! (n−m)(m+ 1)! + n!

(m+1)!(n−m−1)! (m+ 1)!

= − n!(m+1)
(n−m−1)! +

n!
(n−m−1)!

= − n!m
(n−m−1)! .

When m = n, we obtain 0 instead.

(iii) By the residual form of Taylor’s theorem, we have that for any y ∈ [0, 1),

Iy(m,n+ 1−m) = 1
m!

∂m

∂xm Ix(m,n+ 1−m)|x=0y
m + 1

(m+1)!
∂m+1

∂xm+1 Ix(m,n+ 1−m)|x=0z
m+1,

where z ∈ [0, y]. Substituting the expressions from (27) and (28) into this equation, we obtain that

Iy(m,n+ 1−m) = n!
(n−m)!m!y

m − n!m
(m+1)!(n−m−1)!z

m+11m<n =
(
n
m

)
ym −m

(
n

m+1

)
zm+11m<n.

(iv) By NIS, Eq. 8.17.4, for any a, b non-negative and x ∈ [0, 1], we have that Ix(a, b) = 1 − I1−x(a, b). The variable
Y(m) is distributed according to Beta(m,n+ 1−m), which means that

Pr[Y(m) > 1− x] = 1− Pr[Y(m) ≤ 1− x] = 1− I1−x(m,n+ 1−m) = Ix(n+ 1−m,m)

= Ix(n+ 1−m,n+ 1− (n+ 1−m))

=
(

n
n+1−m

)
xn+1−m − (n+ 1−m)

(
n

n+2−m
)
zn+2−m1n+1−m<n

=
(

n
m−1

)
xn+1−m − (n+ 1−m)

(
n

m−2

)
zn+2−m1m>1

In the second-to-last equality we plugged the result from Lem. 5(iii), replacing m by n+1−m. Since z ∈ [0, x], the
result follows.

Let F be the CDF of the random variable Mσ ≜ MMD(X̂σm, Ŷσn),i.e. F (x) = P (Mσ ≤ x). We define the random map F
as

F(x) =

{
F (x) if F continuous at x
Unif(limy→x− F (y), F (x)) otherwise

Note that by definition, for all x we have that Pr(Mσ < x) ≤ F(x) ≤ Pr(Mσ ≤ x). Also, by construction F(Mσ) is
distributed uniformly over [0, 1].
Lemma 6 (High probability bound on the threshold from quantile of the CDF F). For an arbitrary α′ ∈ (0, 1), we define
the random variable

q1−α′(Xm,Yn) ≜ inf
{
x ∈ R : 1− α′ ≤ F (x)

}
.

Given Xm,Yn, we have that with probability at least 1− δ
2 ,

M(bα) ≤ q1−α∗(Xm,Yn),

where α∗ =
(

δ

2(B
⌊α(B+1)⌋)

)1/⌊α(B+1)⌋
.

23

Proof. Note that M(bα) is the bα-th order statistic for the B samples (Mb)
B
b=1. Since the random map F is increasing, this

implies that F(M(bα)) is the bα-th order statistic for the B samples (F(Mb))
B
b=1. As stated above, (F(Mb))

B
b=1 are uniform

i.i.d. variables over [0, 1], which means that F(M(bα)) is the bα-th order statistic for B samples of the uniform distribution
over [0, 1]. Applying Lem. 5(iv) with n = B, m = bα = ⌈(1− α)(B + 1)⌉, we obtain that for any x ∈ [0, 1),

Pr[F(M(bα)) > 1− x] ≤
(B
bα−1

)
xB+1−bα =

(B
B+1−bα

)
xB+1−bα =

(B
⌊α(B+1)⌋

)
x⌊α(B+1)⌋.

Since (B
⌊α(B+1)⌋

)
x⌊α(B+1)⌋ = δ/2 ⇔ x =

(
δ

2(B
⌊α(B+1)⌋)

)1/⌊α(B+1)⌋
,

we obtain that with probability at least 1− δ
2 ,

F(M(bα)) < 1−
(

δ

2(B
⌊α(B+1)⌋)

)1/⌊α(B+1)⌋
.

For any ϵ > 0, we have that given Xm,Yn, F (x− ϵ) = Pr(Mσ ≤ x− ϵ) ≤ Pr(Mσ < x) ≤ F(x). Hence, with probability
at least 1− δ

2 , F (M(bα) − ϵ) ≤ 1−
(

δ

2(B
⌊α(B+1)⌋)

)1/⌊α(B+1)⌋
.

Hence, if we define α∗ =
(

δ

2(B
⌊α(B+1)⌋)

)1/⌊α(B+1)⌋
, we obtain that

M(bα) − ϵ ≤ inf
{
x ∈ R : 1− α∗ ≤ F (x)

}
≜ q1−α∗(Xm,Yn)

Since ϵ > 0 is arbitrary, we conclude that M(bα) ≤ q1−α∗(Xm,Yn) with probability at least 1− δ
2 .

Recall that (X̂(i)
m)smi=1, (Ŷ(i)

n)sni=1 are the outputs of KT-COMPRESS on inputs (X(i)
m)smi=1, (Y(i)

n)sni=1. For i = 1, . . . , sm,
j = 1, . . . , sn, denote

P̂m = 1
|X̂m|

∑
x∈X̂m

δx, Q̂n = 1
|Ŷn|

∑
y∈Ŷn

δy,

P̂(i)
m = 1

|X̂(i)
m |

∑
x∈X̂(i)

m
δx, Q̂(j)

n = 1

|Ŷ(j)
n |

∑
y∈Ŷ(j)

n
δy,

Ŝ(i)m+n = P̂(i)
m , Ŝ(sm+j)

m+n = Q̂(j)
n

We can write

MMD2(X̂m, Ŷn) = ⟨(P̂m − Q̂n)k, (P̂m − Q̂n)k⟩k
= 1

s2ms
2
n

∑sm
i=1

∑sm
i′=1

∑sn
j=1

∑sn
j′=1⟨(P̂im − Q̂jn)k, (P̂i

′

m − Q̂j′n)k⟩k

= 1
s2ms

2
n

∑sm
i=1

∑sm
i′=1

∑sn
j=1

∑sn
j′=1⟨(Ŝim+n − Ŝsm+j

m+n)k, (Ŝi
′

m+n − Ŝsm+j′

m+n)k⟩k

= 1
s2ms

2
n

(∑
i ̸=i′∈{1,...,sm}

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝsm+j

m+n)k, (Ŝi
′

m+n − Ŝsm+j′

m+n)k⟩k

+
∑sm
i=1

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝsm+j

m+n)k, (Ŝim+n − Ŝsm+j′

m+n)k⟩k
+
∑sn
j=1

∑
i ̸=i′∈{1,...,sm}⟨(Ŝim+n − Ŝsm+j

m+n)k, (Ŝi
′

m+n − Ŝsm+j
m+n)k⟩k

+
∑sm
i=1

∑sn
j=1⟨(Ŝim+n − Ŝsm+j

m+n)k, (Ŝim+n − Ŝsm+j
m+n)k⟩k

)

(29)

By assuming m ≤ n, let L := {l1, ..., lm} be an m-tuple uniformly drawn without replacement from {1, . . . , n}. Then,
we can write (29) as

MMD2(X̂m, Ŷn) = sn−1
sns2m

EL[
∑
i ̸=i′∈{1,...,sm}⟨(Ŝim+n − Ŝsm+li

m+n)k, (Ŝi′m+n − Ŝsm+li′
m+n)k⟩k] (30)

+ 1
s2ms

2
n

(∑sm
i=1

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝsm+j

m+n)k, (Ŝim+n − Ŝsm+j′

m+n)k⟩k

+
∑sn
j=1

∑
i ̸=i′∈{1,...,sm}⟨(Ŝim+n − Ŝsm+j

m+n)k, (Ŝi
′

m+n − Ŝsm+j
m+n)k⟩k

+
∑sm
i=1

∑sn
j=1⟨(Ŝim+n − Ŝsm+j

m+n)k, (Ŝim+n − Ŝsm+j
m+n)k⟩k

)
.

24

This holds because for any i ̸= i′ ∈ {1, . . . , sm},

EL[⟨(P̂(i)
m − Q̂(sm+li)

n)k, (P̂(i′)
m − Q̂(sm+li′)

n)k⟩k] = 1
sn(sn−1)

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

(i)
m+n − Ŝ(sm+j)

m+n)k, (Ŝ(i
′)

m+n − Ŝ(sm+j′)
m+n)k⟩k

Recall also that Um+n = (Ui)
m+n
i=1 , with Ui = Xi for i = 1, . . . ,m and Um+j = Yj for j = 1, . . . , n. Equivalently,

we can write that Um+n = (U(i)
m+n)

s
i=1, with U(i)

m+n = X(i)
m and U(sm+j)

m+n = Y(j)
n for i = 1, . . . , sm, j = 1, . . . , sn.

Analogously, we define Ûm+n = (Û(i)
m+n)

s
i=1, with Û(i)

m+n = X̂(i)
m and Û(sm+j)

m+n = Ŷ(j)
n for i = 1, . . . , sm, j = 1, . . . , sn.

Given a permutation σ : {1, . . . , s} → {1, . . . , s}, we write Uσm+n = (U(σ(i))
m+n)

s
i=1, Ûσm+n = (Û(σ(i))

m+n)
s
i=1, and Xσm =

(U(σ(i))
m+n)

sm
i=1, X̂σm = (Û(σ(i))

m+n)
sm
i=1, Yσn = (U(σ(i))

m+n)
s
i=sm+1, Ŷσn = (Û(σ(i))

m+n)
s
i=sm+1. Analogously to (30), we can write

MMD2(X̂σm, Ŷσn) = 1
s2ms

2
n

∑sm
i=1

∑sm
i′=1

∑sn
j=1

∑sn
j′=1⟨(Ŝ

(σ(i))
m+n − Ŝ(σ(sm+j))

m+n)k, (Ŝ(σ(i
′))

m+n − Ŝ(σ(sm+j′))
m+n)k⟩k

= (sm−1)(sn−1)
smsn

EL[Mσ,L]

+ 1
s2ms

2
n

(∑sm
i=1

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝσ(sm+j)

m+n)k, (Ŝim+n − Ŝσ(sm+j′)
m+n)k⟩k

+
∑sn
j=1

∑
i ̸=i′∈{1,...,sm}⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i
′)

m+n − Ŝσ(sm+j)
m+n)k⟩k

+
∑sm
i=1

∑sn
j=1⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i)m+n − Ŝσ(sm+j)
m+n)k⟩k

)
,

(31)

where we use the short-hand

Mσ,L ≜ 1
sm(sm−1)

∑
i̸=i′∈{1,...,sm}⟨(Ŝ

(σ(i))
m+n − Ŝ(σ(sm+li))

m+n)k, (Ŝ(σ(i
′))

m+n − Ŝ(σ(sm+li′))
m+n)k⟩k. (32)

The following proposition, whose proof is deferred to App. D.3.1, provides a tail upper-bound on the random variable
MMD2(X̂σm, Ŷσn).

Proposition 3 (Tail bound on MMD2(X̂σm, Ŷσn) conditioned on X̂m, Ŷn). Let σ be a uniformly random permutation over
{1, . . . , s}. Let δ, δ′′ ∈ (0, 1), and δ ∈ (0, e−1). There is an event A of probability at least 1 − δ concerning the draw of
X̂m, Ŷn, such that conditioned on A, with probability at least 1− δ′ − δ′′ on the draw of σ,

MMD2(X̂σm, Ŷσn) ≤ 2
sm

(log(2
δ′′) + 1)MMD2(P,Q) + c′ log(1/δ′)+2

sm

(
MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2

)
where c′ is a universal constant and

W (m,n, δ) = 2
(√

smRk,k′ (P,m/sm,δ,g)
2g

√
m

+
√
snRk,k′ (Q,n/sn,δ,g)

2g
√
n

+cδ
(√ sm∥k∥∞

m +
√

sn∥k∥∞
n

))
. (33)

Here, the KT-COMPRESS error inflation factors Rk,k′ and the factor cδ are defined as in Lem. 1.

Combining Lem. 6 with the tail bound from Prop. 3 yields the following high-probability upper bound on the threshold
M(bα).

Corollary 1 (High probability bound on the threshold). Assume that bα ≜ ⌈(B+1)(1−α)⌉ ≤ B, and that KT-COMPRESS
calls are run with value δ∗/(5sm) and δ∗/(5sn) respectively. Then, with probability at least 1− δ

2 ,

M(bα) ≤ Ẑ(m,n, α, δ)

≜
√

2
sm

(log(2
δ∗) + 1)MMD(P,Q) +

√
1
sm

(2 + c′ log(1/δ∗))(
√
MMD(P,Q)W (m,n, δ/(20s))

+W (m,n, δ/(20s))).

(34)

where

δ∗ ≜ (δ2)
1/kα α

4e , kα ≜ ⌊α(B + 1)⌋,

Proof. By Lem. 6, with probability at least 1− δ
4 , we have that

M(bα) ≤ q1−α∗(Xm,Yn),

25

where α∗ =
(

δ

4(B
kα
)

)1/kα . Conditioned on the event A with δ ← δ/4 (i.e. Pr(A) ≥ 1− δ/4), and setting δ′ = δ′′ = α∗/2

we have that with probability at least 1− α∗ on the choice of σ,

MMD(X̂σm, Ŷσn) ≤
(

2
sm

(log(2·2α∗) + 1)MMD2(P,Q)

+ 1
sm

(
MMD(P,Q)W (m,n, δ/(20s)) +W (m,n, δ/(20s))2

)
(2 + c′ log(2/α∗))

)1/2
≤

√
2
sm

(log(2·2α∗) + 1)MMD(P,Q)

+
√

1
sm

(2 + c′ log(2/α∗))(
√
MMD(P,Q)W (m,n, δ/(20s)) +W (m,n, δ/(20s))).

An application of Prop. 3 yields, conditioned on the event A,

q1−α∗(Xm,Yn) ≤
√

2
sm

(log(2·2α∗) + 1)MMD(P,Q) (35)

+
√

1
sm

(2 + c′ log(2/α∗))(
√

MMD(P,Q)W (m,n, δ/(20s)) +W (m,n, δ/(20s))).

Since the probability of A is at least 1− δ/4, we obtain that with probability at least 1− δ/2,

M(bα) ≤
√

2
sm

(log(2·2α∗) + 1)MMD(P,Q)

+
√

1
sm

(2 + c′ log(2/α∗))(
√
MMD(P,Q)W (m,n, δ/(20s)) +W (m,n, δ/(20s))).

Using the fact (nk)
k ≤

(
n
k

)
≤ (enk)k, we obtain that log(B

kα
) ≤ log(

(B
kα

) 1
kα) ≤ log(B

kα
)+1. Furthermore, log(B

kα
) ≤

log(2B
α(B+1)) ≤ log(2

α) since kα ≥ 1. Consequently, log(
(B
kα

) 1
kα) ≤ log 2e

α , so that the separation rate in Thm. 1 is

independent of B (up to the condition B+1≥α−1). Equivalently,
(B
kα

) 1
kα ≤ 2e

α , and α∗ ≥ (δ4)
1/kα α

2e , and δ∗ ≥ (δ4)
1/kα α

4e .
Plugging this into (35) concludes the proof.

D.3.1 Proof of Prop. 3: Tail bound on MMD2(X̂σm, Ŷσn) conditioned on X̂m, Ŷn

We will first show the following lemma, which gives a high-probability upper bound on the expectation EL[Mσ,L], where
Mσ,L is defined in equation (32), and on the rest of the terms that appear in the right-hand side of (31).
Lemma 7 (Bounding the right-hand side of (31)). Let σ be a uniformly random permutation over {1, . . . , s}, and L :=
{l1, ..., lm} a uniformly random m-tuple of elements from {1, . . . , n} without replacement. Let δ, δ′′ ∈ (0, 1), and δ′ ∈
(0, e−1). Conditioned on the event A defined in Lem. 9, which has probability at least 1− δ, we have that with probability
at least 1− δ′ − δ′′ on the choice of σ,

EL[Mσ,L] ≤ 2
sm−1 log(

2
δ′′)MMD2(P,Q)

+ c′ log(1/δ′)√
sm(sm−1)

(
MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2

)
and

1
s2ms

2
n

(∑sm
i=1

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝσ(sm+j)

m+n)k, (Ŝim+n − Ŝσ(sm+j′)
m+n)k⟩k

+
∑sn
j=1

∑
i ̸=i′∈{1,...,sm}⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i
′)

m+n − Ŝσ(sm+j)
m+n)k⟩k

+
∑sm
i=1

∑sn
j=1⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i)m+n − Ŝσ(sm+j)
m+n)k⟩k

)
≤ s−1

smsn
(MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2 +MMD2(P,Q))

(36)

simultaneously, where c′ is a universal constant and W (m,n, δ) is as defined in (33).

Proof. Given a vector ϵ = (ϵi)
s
i=1 ∈ {±1}s, an m-tuple L := {l1, ..., lm} of elements from {1, . . . , n} without replace-

ment, and a permutation σ on {1, . . . , s}, define the permutation σϵ on {1, . . . , s} as
σϵ,L(i) = ϵiσ(i) + (1− ϵi)σ(sm + li) for i ∈ {1, . . . , sm},
σϵ,L(sm + li) = (1− ϵi)σ(i) + ϵiσ(sm + li) for i ∈ {1, . . . , sm},
σϵ,L(j) = σ(j) otherwise.

26

Using these objects, we have that

Mσϵ,L,L ≜ 1
sm(sm−1)

∑
i ̸=i′∈{1,...,sm}⟨(Ŝ

σϵ,L(i)
m+n − Ŝσϵ,L(sm+li)

m+n)k, (Ŝσϵ,L(i′)
m+n − Ŝσϵ,L(sm+li′)

m+n)k⟩k

= 1
sm(sm−1)

∑
i ̸=i′∈{1,...,sm} ϵiϵi′⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+li)

m+n)k, (Ŝσ(i
′)

m+n − Ŝσ(sm+li′)
m+n)k⟩k (37)

Note that given a fixed m-tuple L, if σ is distributed uniformly over the permutations of {1, . . . , s}, and ϵ contains i.i.d.
Rademacher variables, then σϵ,L is distributed uniformly over the permutations of {1, . . . , s} as well. Hence,Mσ,L has
the same distribution asMσϵ,L,L, conditioned on X̂m,Ŷn and L (and consequently conditioned on Xm and Yn). Given σ,
L, define the function ρσ,L : {1, . . . , sm} → {−1, 0, 1} as

ρσ,L(i) =


1 if σ(i) ∈ {1, . . . , sm} and σ(sm + li) ∈ {sm + 1, . . . , s}
−1 if σ(i) ∈ {sm + 1, . . . , s} and σ(sm + li) ∈ {1, . . . , sm}
0 if σ(i), σ(sm + li) ∈ {1, . . . , sm} or σ(i), σ(sm + li) ∈ {sm + 1, . . . , s}

We can rewrite (37) as

Mσϵ,L,L = 1
sm(sm−1)

(∑
i ̸=i′∈ρ−1

σ,L({−1,1}) ϵ̃iϵ̃i′⟨(P̂
σ̃(i)
m − Q̂σ̃(sm+li)−sm

n)k, (P̂σ̃(i
′)

m − Q̂σ̃(sm+li′)−sm
n)k⟩k

+
∑
i ̸=i′∈ρ−1

σ,L({0}) ϵ̃iϵ̃i′⟨(Ŝ
σ̃(i)
m+n − Ŝσ̃(sm+li)

m+n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(sm+li′)
m+n)k⟩k

+ 2
∑
i∈ρ−1

σ,L({−1,1}),i′∈ρ−1
σ,L({0}) ϵ̃iϵ̃i′⟨(P̂

σ̃(i)
m − Q̂σ̃(sm+li)−sm

n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(sm+li′)
m+n)k⟩k

)
where we introduced ϵ̃ = (ϵ̃i)

s
i=1 and the permutation σ̃, defined as:

ϵ̃i =

{
−ϵi if ρσ(i) = −1,
ϵi otherwise

σ̃(i) =


σ(sm + li) if i ∈ {1, . . . , s} and ρσ(i) = −1
σ(j) if i = sm + lj and ρσ(j) = −1
σ(i) otherwise.

Note that conditioned on σ, ϵ̃ is still a vector of i.i.d. Rademacher variables. Now, we will apply Lem. 8 on ϵ̃ = (ϵ̃i)
s
i=1 ∈

Rs and the matrix A = (Ai,i′)
s
i,i′=1 ∈ Rs×s defined as

Ai,i′ =



0 if i = i′

1
sm(sm−1)

(⟨(P̂σ̃(i)
m −Q̂σ̃(sm+li)−sm

n)k, (P̂σ̃(i′)
m −Q̂σ̃(sm+li′)−sm

n)k⟩k−MMD2(P,Q)) if i ̸= i′ ∈ ρ−1
σ ({±1}),

1
sm(sm−1)

⟨(P̂(σ̃(i))
m − Q̂(σ̃(sm+i)−sm)

n)k, (Ŝ(σ̃(i′))
m+n − Ŝ(σ̃(sm+li′))

m+n)k⟩k if i ∈ ρ−1
σ ({±1}), i′ ∈ ρ−1

σ ({0}),
1

sm(sm−1)
⟨(Ŝσ̃(i)

m+n − Ŝσ̃(sm+li)
m+n)k, (P̂σ̃(i′)

m − Q̂σ̃(sm+li′)−sm
n)k⟩k if i ∈ ρ−1

σ ({0}), i′ ∈ ρ−1
σ ({±1}),

1
sm(sm−1)

⟨(Ŝσ̃(i)
m+n − Ŝσ̃(sm+li)

m+n)k, (Ŝσ̃(li′)
m+n − Ŝσ̃(sm+li′)

m+n)k⟩k if i ̸= i′ ∈ ρ−1
σ ({0}).

(38)

We develop the expressions that appear in Lem. 8. First, note that E[ϵ̃⊤Aϵ̃] = Tr[A] = 0. Also,

ϵ̃⊤Aϵ̃ = 1
sm(sm−1) (

∑
i ̸=i′∈ρ−1

σ ({−1,1}) ϵ̃iϵ̃i′(⟨(P̂
σ̃(i)
m − Q̂σ̃(sm+li)−sm

n)k, (P̂σ̃(i
′)

m − Q̂σ̃(sm+li′)−sm
n)k⟩k −MMD2(P,Q))(39)

+ 2
∑
i∈ρ−1

σ ({−1,1}),i′∈ρ−1
σ ({0}) ϵ̃iϵ̃i′⟨(P̂

σ̃(i)
m − Q̂σ̃(sm+i)−sm

n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(sm+li′)
m+n)k⟩k

+
∑
i ̸=i′∈ρ−1

σ ({0}) ϵ̃iϵ̃i′⟨(Ŝ
σ̃(i)
m+n − Ŝσ̃(sm+li)

m+n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(s+i
′)

m+n)k⟩k)

=Mσϵ,L,L − (1
sm(sm−1)

∑
i ̸=i′∈ρ−1

σ ({−1,1}) ϵ̃iϵ̃i′)MMD2(P,Q) =Mσϵ,L,L − cϵ̃MMD2(P,Q),

where we defined cϵ̃ ≜ 1
sm(sm−1)

∑
i ̸=i′∈ρ−1

σ ({−1,1}) ϵ̃iϵ̃i′ , and

∥A∥2op ≤ ∥A∥2F
= 1

s2m(sm−1)2

(∑
i̸=i′∈ρ−1

σ ({−1,1})(⟨(P̂
σ̃(i)
m − Q̂σ̃(sm+li)−s

n)k, (P̂σ̃(i
′)

m − Q̂σ̃(sm+li′)−sm
n)k⟩k −MMD2(P,Q))2(40)

+ 2
∑
i∈ρ−1

σ ({−1,1}),i′∈ρ−1
σ ({0})⟨(P̂

σ̃(i)
m − Q̂σ̃(sm+li)−sm

n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(sm+li′)
m+n)k⟩2k (41)

+
∑
i ̸=i′∈ρ−1

σ ({0})⟨(Ŝ
σ̃(i)
m+n − Ŝσ̃(sm+li)

m+n)k, (Ŝσ̃(i
′)

m+n − Ŝσ̃(sm+li′)
m+n)k⟩2k

)
(42)

27

Using that MMD2(P,Q) = ⟨(P−Q)k, (P−Q)k⟩k, we upper-bound each of the terms in the right-hand side of (40):

|⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (P̂σ̃(i

′)
m − Q̂σ̃(sm+i′)−sm

n)k⟩k − ⟨(P−Q)k, (P−Q)k⟩k|

≤ |⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (P̂σ̃(i

′)
m − Q̂σ̃(sm+li′)−sm

n)k− (P−Q)k⟩k|

+ |⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k− (P−Q)k, (P−Q)k⟩k|

≤ ∥(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k∥k · ∥(P̂σ̃(i

′)
m − P)k− (Q̂σ̃(sm+li′)−sm

n −Q)k∥k
+ ∥(P̂σ̃(i)m − P)k− (Q̂σ̃(sm+i)−sm

n −Q)k∥k · ∥(P−Q)k∥k

≤ ∥(P̂σ̃(i)m − P)k− (Q̂σ̃(sm+i)−sm
n −Q)k∥k · ∥(P−Q)k∥k + ∥(P̂σ̃(i

′)
m − P)k− (Q̂σ̃(sm+i′)−sm

n −Q)k∥k · ∥(P−Q)k∥k

+ ∥(P̂σ̃(i)m − P)k− (Q̂σ̃(sm+li)−sm
n −Q)k∥k · ∥(P̂σ(i

′)
m − P)k− (Q̂σ̃(sm+li′)−sm

n −Q)k∥k

= (MMD(P̂σ̃(i)m ,P) +MMD(Q̂σ̃(sm+li)−sm
n ,Q) +MMD(P̂σ̃(i

′)
m ,P) +MMD(Q̂σ̃(sm+li′)−sm

n ,Q)) ·MMD(P,Q)

+ (MMD(P̂σ̃(i)m ,P) +MMD(Q̂σ̃(sm+li)−sm
n ,Q))(MMD(P̂σ̃(i

′)
m ,P) +MMD(Q̂σ̃(sm+li′)−sm

n ,Q)).

(43)

An analogous but simpler approach yields bounds for the terms in (41) and (42):

|⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (Ŝσ̃(i

′)
m+n − Ŝσ̃(sm+li′)

m+n)k⟩k| ≤ ∥(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k∥k · ∥(Ŝσ̃(i

′)
m+n − Ŝσ̃(sm+li′)

m+n)k∥k

= MMD(P̂σ̃(i)m , Q̂σ̃(sm+li)−sm
n) ·MMD(Ŝσ̃(i

′)
m+n, Ŝ

σ̃(sm+li′)
m+n)

≤ (MMD(P̂σ̃(i)m ,P) +MMD(P,Q) +MMD(Q, Q̂σ̃(sm+li)−sm
n)) · (MMD(Ŝσ̃(i

′)
m+n,S) +MMD(S, Ŝσ̃(sm+li′)

m+n)),

|⟨(Ŝσ̃(i)m+n − Ŝσ̃(sm+li)
m+n)k, (Ŝσ̃(i

′)
m+n − Ŝσ̃(sm+li′)

m+n)k⟩k| ≤ MMD(Ŝσ̃(i)m+n, Ŝ
σ̃(sm+li)
m+n) ·MMD(Ŝσ̃(i

′)
m+n, Ŝ

σ̃(sm+li′)
m+n)

≤ (MMD(Ŝσ̃(i)m+n,S) +MMD(S, Ŝσ̃(sm+li)
m+n))(MMD(Ŝσ̃(i

′)
m+n,S) +MMD(S, Ŝσ̃(sm+li′)

m+n))

(44)

where S stands for P or Q as needed. Applying Lem. 9, we obtain that if KT-COMPRESS calls are run with value δ/(5sm)
and δ/(5sn) respectively, conditioned on the event A we have that simultaneously for any i, i′ ∈ {1, . . . , sm},

|⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (P̂σ̃(i

′)
m − Q̂σ̃(sm+li′)−sm

n)k⟩k − ⟨(P−Q)k, (P−Q)k⟩k|,
≤ MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2,

|⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (Ŝσ̃(i

′)
m+n − Ŝσ̃(sm+li′)

m+n)k⟩k| ≤W (m,n, δ/(5s))MMD(P,Q) + 1
2W (m,n, δ/(5s))2

|MMD2(P̂σ̃(i)m , Q̂σ̃(sm+li′)−sm
n)−MMD2(P,Q)| ≤ MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2,

|⟨(Ŝσ̃(i)m+n − Ŝσ̃(sm+li)
m+n)k, (Ŝσ̃(i

′)
m+n − Ŝσ̃(sm+li′)

m+n)k⟩k| ≤W (m,n, δ/(5s))2

MMD2(Ŝσ̃(i)m+n, Ŝ
σ̃(sm+li)
m+n) ≤W (m,n, δ/(5s))2,

(45)

where W (m,n, δ/(5s)) is defined as in (33), and where we used that δ/(5s) ≤ δ/(5sm) and δ/(5s) ≤ δ/(5sn) since
sm, sn ≤ s. We conclude that conditioned on the event A,

∥A∥2op ≤ ∥A∥2F ≤ 1
s2m(sm−1)2

(
|ρ−1
σ ({−1, 1})|(|ρ−1

σ ({−1, 1})| − 1)(MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2)2(46)

+ |ρ−1
σ ({−1, 1})||ρ−1

σ ({0})|(MMD(P,Q)W (m,n, δ/(5s)) + 1
2W (m,n, δ/(5s))2)2

+ |ρ−1
σ ({0})|(|ρ−1

σ ({0})| − 1)W (m,n, δ/(5s))4
)

≤ η(m,n, δ)2 ≜ 1
sm(sm−1) (MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2)2

Applying Lem. 10, we get that with probability at least 1− δ′′,

| 1
sm

∑
i∈ρ−1

σ ({−1,1}) ϵ̃i| ≤ |
1
sm

∑sm
i=1 ϵi| ≤

√
2
sm

log(2
δ′′),

and this implies that with probability at least 1− δ′′,

cϵ̃ ≜ 1
sm(sm−1)

∑
i̸=i′∈ρ−1

σ ({−1,1}) ϵ̃iϵ̃i′ =
1

sm(sm−1)

(
(
∑
i∈ρ−1

σ ({−1,1}) ϵ̃i)
2 −

∑
i∈ρ−1

σ ({−1,1}) ϵ̃
2
i

)
(47)

≤ 1
sm(sm−1) (2sm log(2

δ′′)− |ρ
−1
σ ({−1, 1})|) ≤ 2

sm−1 log(
2
δ′′).

28

Conditioned on the event A defined in Lem. 9, we obtain that for any x ≥ 0,

Prσ(EL[Mσϵ,L,L] ≥ x) (i)
= Prσ,ϵ̃(EL[ϵ̃⊤Aϵ̃− cϵ̃MMD2(P,Q)] ≥ x)
(ii)
≤ δ′′ + e−λ

∗xEσ,ϵ̃[exp(λ∗EL[ϵ̃⊤Aϵ̃− 2
sm−1 log(

2
δ′′)MMD2(P,Q)])]

(iii)
≤ δ′′ + e−λ

∗xEσ,ϵ̃,L[exp(λ∗(ϵ̃⊤Aϵ̃− 2
sm−1 log(

2
δ′′)MMD2(P,Q)))]

= δ′′ + Eσ,L[e−λ
∗(x+ 2

sm−1 log(2
δ′′)MMD2(P,Q))Eϵ̃[exp(λ∗ϵ̃⊤Aϵ̃)]]

(iv)
≤ δ′′ + Eσ,L

[
exp(− λ∗

K2 (x+ 2
sm−1 log(

2
δ′′)MMD2(P,Q)) + c′′(λ∗)2∥A∥2F)

]
(v)
≤ δ′′ + exp(− λ∗

K2 (x+ 2
sm−1 log(

2
δ′′)MMD2(P,Q)) + c′′(λ∗)2η(m,n, δ)2)

(vi)
≤ δ′′ + exp

(
− cmin{ (x+

2
sm−1 log(2

δ′′)MMD2(P,Q))2

K4η(m,n,δ)2 ,
x+ 2

sm−1 log(2
δ′′)MMD2(P,Q)

K2η(m,n,δ) }
)

Here, (i) holds by (39), (ii) holds by (47) and the application of a Chernoff bound; the value of λ∗ is to be set at a later
point. Inequality (iii) holds by the convexity of the exponential function, and (iv) follows from Lem. 8 (48). (v) holds
because conditioned on A, ∥A∥2F ≤ η(m,n, δ)2 by equation (46), and (vi) follows from Lem. 8 (49). If we set

δ′ = exp
(
− cmin{ (x+

2
sm−1 log(2

δ′′)MMD2(P,Q))2

K4η(m,n,δ)2 ,
x+ 2

sm−1 log(2
δ′′)MMD2(P,Q)

K2η(m,n,δ) }
)
∈ (0, e−1)

we have that

x = c0(MMD(P,Q)W (m,n,δ/(5s))+W (m,n,δ/(5s))2) log(1/δ′)√
sm(sm−1)

+ 2
sm−1 log(

2
δ′′)MMD2(P,Q),

where we defined c0 = K2/c and we used that δ ∈ (0, e−1). We conclude that conditioned on A, with probability at least
1− δ′ − δ′′,

EL[Mσϵ,L,L] ≤ c0(MMD(P,Q)W (m,n,δ/(5s))+W (m,n,δ/(5s))2) log(1/δ′)√
sm(sm−1)

+ 2
sm−1 log(

2
δ′′)MMD2(P,Q).

To show (36), we use the same arguments of (43), (44) and (45).

Plugging the results of Lem. 7 into the right-hand side of (31) shows that conditioned on the event A, with probability at
least 1− δ′ − δ′′,

MMD2(X̂σm, Ŷσn) ≤
(sm−1)(sn−1)

smsn

(
2

sm−1 log(
2
δ′′)MMD2(P,Q)

+ c′ log(1/δ′)√
sm(sm−1)

(
MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2

))
+ s−1

smsn
(MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2 +MMD2(P,Q)),

which concludes the proof of Prop. 3 upon simplification.

Lemma 8 (Hanson-Wright inequality, Rudelson and Vershynin (2013), Thm. 1.1, adapted). Let X = (X1, . . . , Xn) ∈ Rn
be a random vector with sub-Gaussian independent components Xi which satisfy EXi = 0, and E[X⊤AX] = 0, and
∥Xi∥ψ2

= inf{K ′|E[exp(X2
i /(K

′)2)] < 2} ≤ K. Let A be an n×n matrix. Then, there exists c, c′, c′′ > 0 and such that
for every t ≥ 0, λ ≤ c′/∥A∥op,

Pr(X⊤AX > t) ≤ e−λtE[eλX⊤AX] ≤ exp(−λt/K2 + c′′λ2∥A∥2F). (48)

Optimizing this bound over λ ≤ c0/∥A∥op, one obtains

Pr(X⊤AX > t) ≤ exp(−min{ t2

K4∥A∥2
F
, t
K2∥A∥op

}). (49)

29

Lemma 9 (Simultaneous bound on the MMD errors of P̂im and Q̂jn). Suppose that KT-COMPRESS is
run with value δ/(5sm) and δ/(5sn), i.e. X̂(i)

m ← KT-COMPRESS(X(i)
m , g,k,k′, δ/(5sm)) and Ŷ(i)

n ←
KT-COMPRESS(Y(i)

n , g,k,k′, δ/(5sn)). Then, with probability at least 1 − δ, we have that simultaneously for all
i ∈ {1, . . . , sm}, j ∈ {1, . . . , sn},

MMD(P̂im,P) ≤
√
smRk,k′ (P,m/sm,δ/(5sm),g)

2g
√
m

+cδ/(5sm)

√
sm∥k∥∞

m ,

MMD(Q̂jn,Q) ≤
√
snRk,k′ (Q,n/sn,δ/(5sn),g)

2g
√
n

+cδ/(5sn)

√
sn∥k∥∞

n .

We define A as the event that these s conditions take place simultaneously, and observe that Pr(A) ≥ 1− δ.

Proof. Using the notation in App. B.2, we can write that

MMD(P̂im,Pim)≤
∥∥uC+,Xi

m
· sm/m

∥∥
2
=

∥∥∥ smm ∑log4(m/s)−g−1
k=0

∑4k

j=1 wk,m/smu
(i)
k,j,Xm

∥∥∥
2

= λmax(
sm
m

∑log4(m/sm)−g−1
k=0

∑4k

j=1 M
(i)
k,j,Xm

).

We define

σ2
i ≜

∑log4(m/sm)−g−1
k=0

∑4k

j=1(
2sm
m wk,m/smℓ

′
k,m/sm

(aℓ′
k,m/sm

,m/sm(δ
5sm

) + vℓ′
k,m/sm

,m/sm(δ
5sm

)))2

= sm
∑log4(m/sm)−g−1
k=0 (1

2g
√
m
(Ca

√
∥k′∥∞ + Cv

√
∥k′∥∞ log(

6·4g
√
m/sm(βm/sm+1)

2g−kδ/(5sm)
)MXi

m,k
′))2

≤ sm(log4(m/sm)−g−1)∥k′∥∞
4gm (Ca + Cv

√
log(15m(log4(m/sm)−g−1)

δ)MXi
m,k

′)2

When comparing this equation with (17), we have replaced δ by δ/(5sm). We obtain that

Pr(MMD(P̂im,Pim) > σi
√

8(log(m+ 1) + t)) ≤ δ
10sm

+ e−t, for all t ≥ 0.

Equivalently, with probability at least 1− δ/(5sm),

MMD(P̂im,Pim) ≤
√
8σi(

√
log(m+ 1) +

√
log(2sm/δ)).

An application of Lem. 2 with Q = P and n = +∞ yields

Pr

[
MMD(Pim,P) > (2 +

√
2 log(10sδ))

√
s∥k∥∞
m

]
≤ δ

5s .

Hence, with probability at least 1− 2δ/(5sm),

MMD(P̂im,P) ≤ MMD(P̂im,Pim) +MMD(Pim,P)

≤
√
8σi(

√
log(m+ 1) +

√
log(2sm/δ)) + (2 +

√
2 log(2smδ))

√
sm∥k∥∞

m .

Defining MP,m,k′(δ) as in (22) and (23), we obtain that with probability at least 1 − δ/(10sm), MXi
m,k

′ ≤
MP,m/sm,k′(δ/(5sm)). Hence, with probability at least 1− 5δ/(10sm) = 1− δ/(2sm),

MMD(P̂im,P) ≤
√
smRk,k′ (P,m/sm,δ/(5sm),g)

2g
√
m

+cδ/(5sm)

√
sm

∥k∥∞
m ,

Using a union bound, we obtain the result.

Lemma 10 (Chernoff bound for sums of Rademacher variables). Let ϵ = (ϵi)
k
i=1 be i.i.d. Rademacher variables. We have

that for any x > 0,

Pr
(
| 1k
(∑k

i=1 ϵi
)
| > x

)
≤ e−D((1+x)/2||1/2)k + e−D((1−x)/2||1/2)k ≤ 2 exp(−x

2k
2),

where D(x||y) = x log(xy) + (1− x) log(1−x1−y).

Proof. The first inequality holds by the Chernoff-Hoeffding theorem. The second inequality holds because D((1 +

x)/2||1/2) = D((1− x)/2||1/2), and because for p ≥ 1/2, we have that D(p+ x||p) ≥ x2

2p(1−p) .

30

D.4 Concluding the proof of Thm. 4

The following result is the basis for Thm. 4.

Lemma 11 (Putting everything together). Let β ∈ (0, 1) be arbitrary, and define β̃ = β

1+ β
2

. Let α ∈ (0, 1) and suppose

that kα ≜ ⌊α(B + 1)⌋ ≥ 1. Assume that CTT is run with B ≥ 1
α − 1 and δ = min{ β̃6 , (

β̃
2)

1/kα α
30es}. Define the function

Z̃(m,n, α, β) ≜ Z(m,n, β) + Ẑ(m,n, α, β̃),

where the functions Z and Ẑ are defined in Lem. 4 (equation (24)) and Cor. 1 (equation (34)), respectively. If
MMD(P,Q) ≥ Z̃(m,n, α, β), then

Pr[MMD(X̂m, Ŷn) ≤M(bα)] ≤ β. (50)

Proof. Using Lem. 4, it suffices to see that with probability at least 1− β̃
2 ,

MMD(P,Q) ≥ Z(m,n, β) +M(bα).

Cor. 1 implies that with probability at least 1− β̃
2 ,

M(bα) ≤ Ẑ(m,n, α, β̃).

Hence, with probability at least 1 − β̃
2 , Z̃(m,n, α, β) ≥ Z(m,n, β) +M(bα). Using the assumption that MMD(P,Q) ≥

Z̃(m,n, α, β), we obtain that (50) holds.

Proof of Thm. 4 To go from the statement of Lem. 11 to the one of Thm. 4, we write the function Z̃(m,n, α, β) in terms
of its arguments, as follows:

Z̃(m,n, α, β) =
Rk,k′ (P,m/sm,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+
√

2
sm

log(8e
2

α (4
β̃
)1/kα)MMD(P,Q)

+
√

1
sm

(2 + c′ log(4eα (4
β̃
)1/kα))(

√
MMD(P,Q)W (m,n, β̃/(20s)) +W (m,n, β̃/(20s))).

If we define

a = 1−
√

2
sm

log(8e
2

α (4
β̃
)1/kα),

b =
√

1
sm

(2 + c′ log(4eα (2
β̃
)1/kα))W (m,n, β̃/(20s)),

c=
Rk,k′ (P,m/sm,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+

√
2+c′ log(4e

α (4
β̃
)1/kα)

sm
W (m,n, β̃/(20s)),

x =
√
MMD(P,Q),

(51)

and we assume that a > 0, we can rewrite the condition MMD(P,Q) ≥ Z̃(m,n, α, β) as ax2−bx−c ≥ 0, which together
with the positivity constraint on x is equivalent to x ≥ b+

√
b2+4ac
2a . A sufficient condition for this is

√
MMD(P,Q) ≥

b
a+

√
c
a , and yet another sufficient condition is MMD(P,Q) ≥ 2(b

2

a2 +
c
a). Since 0 < a < 1 by assumption, the right-hand

side of this equation is upper-bounded by

2
a2 (b

2 + c) = 2

(1−
√

2
sm

log(8e2

α (4
β̃
)1/kα))2

(
Rk,k′ (P,m/sm,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+ 2

(
1
sm

(2 + c′ log(4eα (4
β̃
)1/kα)) +

√
1
sm

(2 + c′ log(4eα (4
β̃
)1/kα))

)
×(Rk,k′ (P,m/sm,β̃/(20sm),g)

2g
√
m/sm

+
Rk,k′ (Q,n/sn,β̃/(20sn),g)

2g
√
n/sn

+cβ̃/(20s)
(√ ∥k∥∞

m/sm
+

√
∥k∥∞
n/sn

)))
.

31

We have that √
2
sm

log(8e
2

α (4
β̃
)1/kα) ≤ 3

4 ⇔ sm ≥ 32
9 log(8e

2

α (4
β̃
)1/kα) (52)

Under (52), we have that

2

(1−
√

2
sm

log(8e2

α (4
β̃
)1/kα))2

≤ 2
(1− 3

4)
2 = 32,

1√
sm

(2 + c′ log(4eα (4
β̃
)1/kα)) ≤

2+c′ log(4e
α (4

β̃
)1/kα)√

9
32 log(8e2

α (4
β̃
)1/kα)

≤
√

32
9 (2 + c′

√
log(4eα (4

β̃
)1/kα))

and consequently,

2
a2 (b

2 + c) ≤ 32

(
Rk,k′ (P,m/sm,β̃/6)

2g
√
m

+
Rk,k′ (Q,n/sn,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+ 2

(√
9
32 + 1

)(
2 + c′

√
log(4eα (4

β̃
)1/kα)

)(Rk,k′ (P,m/sm,β̃/(20s),g)
2g

√
m

+
√

sn
sm

Rk,k′ (Q,n/sn,β̃/(20s),g)
2g

√
n

+cβ̃/(20s)
(√∥k∥∞

m +
√

sn∥k∥∞
smn

)))
The final result follows.

E Proof of Prop. 2: Power upper bounds for complete, block, and incomplete MMD tests

We prove the three parts of Prop. 2 one by one.

E.1 Proof of Prop. 2(a)

According to Gretton et al. (2007, Thm. 8) (see also Gretton et al. (2009, Eq. 2) for the exact formulation), the complete
unbiased test with statistic MMD2

up(Xm,Ym) has the following asymptotic distribution under the null hypothesis:

mMMD2
up(Xm,Ym)→

∑∞
l=1 λl(z

2
l − 2),

where zl ∼ N(0, 2) i.i.d.,→ denotes convergence in distribution and λi are the solutions to the eigenvalue equation∫
k̃(xi, xj)ψl(xi)dP (xi) = λlψl(xj),

where k̃(xi, xj) = k(xi, xj) − Exk(xi, x) − Exk(x, xj) + Ex,x′k(x, x′). Hence, the variance of MMD2
up(Xm,Ym) is

(asymptotically)

Var(MMD2
up(Xm,Ym)) = 1

m2

∑∞
l=1 λ

2
lVar(z

2
l − 2) = 4

m2

∑∞
l=1 λ

2
l ,

where the last equality holds because z2l is distributed like a chi-squared distribution of one degree of freedom scaled by√
2, which has variance 4. Since the asymptotic threshold t1−α of level α for MMD2

up(Xm,Ym) is of the order of the
standard deviation of MMD2

up(Xm,Ym), we can write

t1−α = K1−α

m , (53)

where the constant K1−α is of the order of 2
√∑∞

l=1 λ
2
l and depends on α.

Under the alternative, MMD2
up(Xm,Ym) converges in distribution to a Gaussian according to

m1/2(MMD2
up(Xm,Ym)−MMD2(P,Q))→ N(0, σ2

up), (54)

32

where σ2
up = 4(Ex,y(Ex′,y′h(x, x

′, y, y′))2 − (Ex,y,x′,y′h(x, x
′, y, y′))2) (Gretton et al., 2007, Sec. 6), (Serfling, 2009,

Sec. 5.5). Let z = (x, y), z′ = (x′, y′) and h(z, z′) = h(x, x′, y, y′). If ⟨·, ·⟩k denotes the RKHS inner product, note that

|Ez′ [h(z, z′)]|
= |Ex′,y′ [k(x, x

′) + k(y, y′)− k(x, y′)− k(x′, y)]|
=

∣∣ ∫ k(x, x′) d(P−Q)(x′)−
∫
k(y, x′) d(P−Q)(x′)

∣∣ = ∣∣ ∫ (k(x, x′)− k(y, x′)) d(P−Q)(x′)
∣∣

=
∣∣ ∫ k(x′′, x′) d(P−Q)(x′) d(δx − δy)(x′′)

∣∣ = ∣∣〈∫ k(·, x′) d(P−Q)(x′),
∫
k(·, x′) d(δx − δy)(x′)

〉
k

∣∣
≤

∥∥ ∫ k(·, x′) d(P−Q)(x′)
∥∥
k

∥∥ ∫ k(·, x′) d(δx − δy)(x′)
∥∥
k

= MMD(P,Q)(k(x, x) + k(y, y)− 2k(x, y)).

(55)

Hence, using equation (55) we obtain an upper bound on σ2
up:

σ2
up := 4(Ez[(Ez′ [h(z, z′)])2]− (Ez,z′ [h(z, z′)])2) ≤ 4Ez[(Ez′ [h(z, z′)])2]
≤ 4MMD2(P,Q)Ex,y[(k(x, x) + k(y, y)− 2k(x, y))2] = 4MMD2(P,Q)Ez[h(z, z)2].

(56)

Asymptotically, we obtain that under the alternative distribution

Pr(MMD2
up(Xm,Ym) < t1−α)

= Pr(
√
m

σup
(MMD2

up(Xm,Ym)−MMD2(P,Q)) <
√
m

σup
(t1−α −MMD2(P,Q)))

= Φ(
√
m

σup
(t1−α −MMD2(P,Q))),

where Φ denotes the CDF of a standard Gaussian. Hence, the condition that the Type II error be upper-bounded by
β ∈ (0, 1/2) translates to

√
m

σup
(t1−α −MMD2(P,Q)) ≤ Φ−1(β) (57)

⇔ MMD2(P,Q) ≥ t1−α − σup√
m
Φ−1(β) = t1−α +

σup√
m
Φ−1(1− β)

Replacing t1−α by its expression in (53) and using the upper bound (56), we get that a sufficient condition for (57) is

MMD2(P,Q)− 2
√

Ez [h(z,z)2]
m Φ−1(1− β)MMD(P,Q)− K1−α

m ≥ 0.

Solving the corresponding second-degree equation, this is equivalent to

MMD(P,Q) ≥
√

Ez [h(z,z)2]Φ
−1(1−β)+

√
Ez [h(z,z)2]Φ−1(1−β)2+K1−α√
m

= O(1/
√
m)

A necessary condition for (57) to hold is MMD(P,Q) ≥
√

K1−α

m = Ω(1/
√
m), which concludes the proof of this part.

E.2 Proof of Prop. 2(b)

By the definition of MMD2
B(Xm,Ym) in (3), it is the average of m/B independent instances ηi(Xm,Ym) of the quadratic

estimator (2), each with sample size B. Hence, in the regime m/B →∞, we have

m
B (MMD2

B(Xm,Ym)−MMD2(P,Q))→ N(0,Var(ηi(Xm,Ym))).

Using the argument of App. E.1, under the null hypothesis, we obtain that asymptotically Var(ηi(Xm,Ym)) =
4
B2

∑∞
l=1 λ

2
l . Hence, under the null hypothesis,

√
Bm

4
∑∞

l=1 λ
2
l
MMD2

B(Xm,Ym) → N(0, 1). We derive the expression

for the threshold t1−α corresponding to the level α:

Pr(MMD2
B(Xm,Ym) < t1−α) = Pr(

√
Bn

4
∑∞

l=1 λ
2
l
MMD2

B(Xm,Ym) <
√

Bn
4
∑∞

l=1 λ
2
l
t1−α)

= Φ(
√

Bm
4
∑∞

l=1 λ
2
l
t1−α) = 1− α.

33

This implies that

t1−α =

√
4
∑∞

l=1 λ
2
l

Bm Φ−1(1− α). (58)

Reusing (54), we have that asymptotically, under the alternative hypothesis, Var(ηi(Xm,Ym)) = σ2
up/B. Hence, under

the alternative hypothesis,
√
m

σup
(MMD2

B(Xm,Ym)−MMD2(P,Q))→ N(0, 1)).

We conclude that asymptotically,

Pr(MMD2
B(Xm,Ym) < t1−α)

= Pr(
√
m

σup
(MMD2

B(Xm,Ym)−MMD2(P,Q)) <
√
m

σup
(t1−α −MMD2(P,Q)))

= Φ(
√
m

σup
(t1−α −MMD2(P,Q))).

Hence, the condition that the Type II error be upper-bounded by β ∈ (0, 1/2) translates to
√
m

σup
(t1−α −MMD2(P,Q)) ≤ Φ−1(β)⇔ MMD2(P,Q) ≥ t1−α +

σup√
m
Φ−1(1− β) (59)

Replacing t1−α by its expression in (58) and using the upper bound (56), we get that a necessary condition for (59) to hold
is

MMD(P,Q) ≥
√
t1−α = (

4
∑∞

l=1 λ
2
l

Bm)1/4
√
Φ−1(1− α) = Ω(1/(Bm)1/4).

Also, a sufficient condition for (59) is

MMD2(P,Q)− 2
√

Ez [h(z,z)2]
m Φ−1(1− β)MMD(P,Q)− 2

√∑∞
l=1 λ

2
l

Bm Φ−1(1− α) ≥ 0.

Solving the corresponding second-degree equation, this is equivalent to

MMD(P,Q) ≥
√

Ez [h(z,z)2]
m Φ−1(1− β) +

√
Ez [h(z,z)2]

m Φ−1(1− β)2 + 2

√∑∞
l=1 λ

2
l

Bm Φ−1(1− α)

= O(1/(Bm)1/4).

E.3 Proof of Prop. 2(c)

Yamada et al. (2019, Cor. 3) show that when the pairs in the design D are chosen i.i.d. (with replacement), and
limm,|D|→∞m−2|D| = 0, 0 < γ = limm,|D|→∞m−1|D| < ∞, the incomplete MMD statistic MMD2

inc(Xm,Ym) is
asymptotically distributed according to{

|D|1/2 MMD2
inc(Xm,Ym)→ N(0, σ2) if P = Q

|D|1/2(MMD2
inc(Xm,Ym)−MMD2(P,Q))→ N(0, σ2 + γσ2

up), if P ̸= Q.

where σ2 = Ez,z′(h(z, z′)− Ez,z′h(z, z′))2 and σ2
up is defined in (56).

We derive the expression for the threshold t1−α corresponding to the level α using the asymptotic distribution under the
null hypothesis:

Pr(MMD2
inc(Xm,Ym) < t1−α) = Pr(|D|1/2

σ MMD2
inc(Xm,Ym) < |D|1/2

σ t1−α)

= Φ(|D|1/2
σ t1−α) = 1− α⇔ t1−α = σ

|D|1/2Φ
−1(1− α).

And then, under the alternative hypothesis and asymptotically,

Pr(MMD2
inc(Xm,Ym) < t1−α)

= Pr(|D|1/2√
σ2+γ2σ2

up

(Xm,Ym)−MMD2(P,Q)) < |D|1/2√
σ2+γ2σ2

up

(t1−α −MMD2(P,Q)))

= Φ(|D|1/2√
σ2+γ2σ2

up

(t1−α −MMD2(P,Q))).

34

Proceeding as in App. E.2, we obtain that a necessary condition for the Type II error to be upper-bounded by β ∈ (0, 1/2)
is that

MMD(P,Q) ≥
√
t1−α =

√
σ

|D|1/2Φ
−1(1− α) = Ω(1/|D|1/4),

and that a sufficient condition is

MMD2(P,Q) ≥ t1−α +
σ+2γMMD(P,Q)

√
Ez [h(z,z)2]

|D|1/2 Φ−1(1− β)

In order to derive this, we used that
√
σ2 + 4γ2MMD2(P,Q)Ez[h(z, z)2] ≤ σ+2γMMD(P,Q)

√
Ez[h(z, z)2]. Solving

the corresponding second-degree equation, this is equivalent to

MMD(P,Q) ≥ γ
√

Ez [h(z,z)2]

|D|1/2 Φ−1(1− β) +
√

γ2Ez [h(z,z)2]
|D| Φ−1(1− β)2 + t1−α + σΦ−1(1−β)

|D|1/2

= O(1/|D|1/4).

F Proof of Thm. 2: LR-CTT exactness and power

The proof of Thm. 2 follows the structure of the proof of Thm. 1. We first introduce a detailed statement of the result of
Thm. 2.
Theorem 5. Low-Rank CTT (Alg. 2) has size exactly equal to the level α for all P. Suppose Low-Rank CTT (Alg. 2) is
run with level α, replication count B ≥ 1

α − 1, and coreset count sm ≥ (32/9) log(2eγ) for γ ≜ α
4e (

β
4+2β)

1
⌊α(B+1)⌋ . Let

β̃ = β/(1 + β/2). Then LR-CTT has power

Pr[∆CTT(Xm,Yn) = 1] ≥ 1−β

whenever

MMDk(P,Q)≥32

(
Rk,k′ (P,m/sm,r,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,r,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+2ϵΦr

(Xm,Yn)

+ 21+1/4
(√

9
32 + 1

)(
2 + c′

√
log(γ)

)
×

(
ϵΦr (Xm,Yn) +

Rk,k′ (P,m/sm,r,β̃/(20sm,r),g)

2g
√
m

+
√

sn
sm

Rk,k′ (Q,n/sn,r,β̃/(20sn,r),g)

2g
√
n

+cβ̃/(20sr)
(√∥k∥∞

m +
√

sn∥k∥∞
smn

)))
.

It is important to remark that Alg. 2 involves two separate parameters: the number of compression bins sr := sm,r + sn,r
and the number of permutation bins s = sm + sn. The former is always larger or equal than the latter and in particular s
divides sr, that is, the compressed outputs of sr/s compression bins are grouped together into a single permutation bin.

We formulate a statement which is analogous to Lem. 4, but for the LR-CTT test statistic, and with a slightly different
lower bound Z(m,n, β).
Lemma 12 (Upper bound on acceptance probability from upper bound on threshold). Let 1 ≥ β > 0 arbitrary, and define
β̃ = β

1+ β
2

. Define the function

Z(m,n, β) ≜
Rk,k′ (P,m/sm,r,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,r,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+ 2ϵΦr (Xm,Yn),

which is equal to the upper bound in (7) when we make the choice δ = β̃/6. If Pr
[
MMD(P,Q) ≥ Z(m,n, β) +M(bα)

]
≥

1
1+ β

2

then Pr[MMDΦr
(X̂m, Ŷn) ≤ M(bα)] ≤ β. Here, Rk,k′ are defined in App. B.1, and ϵ2Φr

(Pm,Qn) =

supx,x′∈supp(Pm)∪supp(Qm) |⟨Φr(x),Φr(x′)⟩ − k(x, x′)|.

Proof. The proof structure is the same as for Lem. 4, but in this case we must use instead that with probability at least
1− β̃

2 ,

|MMD(P,Q)−MMDΦr (X̂m, Ŷn)| ≤ |MMD(P,Q)−MMD(X̂m, Ŷn)|

+ |MMDΦr (X̂m, Ŷn)−MMD(X̂m, Ŷn)|

35

The first term in the right-hand side is upper-bounded by

Rk,k′(P,m/sm,r, β̃/6, g)
2g
√
m

+
Rk,k′(Q, n/sn,r, β̃/6, g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m
+

√
∥k∥∞
n

)
,

while the second term can be upper-bounded as follows, since MMD is nonnegative:

|MMDΦr (X̂m, Ŷn)−MMD(X̂m, Ŷn)|

≤
√
|MMD2

Φr
(X̂m, Ŷn)−MMD2(X̂m, Ŷn)|

≤
√
|⟨Φr(X̂m)− Φr(Ŷn),Φr(X̂m)− Φr(Ŷn)⟩ − ⟨(P̂m − Q̂n)k, (P̂m − Q̂n)k⟩k|

≤
(
|⟨Φr(X̂m),Φr(X̂m)⟩ − ⟨P̂mk, P̂mk⟩k|+ 2|⟨Φr(X̂m),Φr(Ŷn)⟩ − ⟨P̂mk, Q̂nk⟩k|

+ |⟨Φr(Ŷn),Φr(Ŷn)⟩ − ⟨Q̂nk, Q̂nk⟩k|
)1/2

≤ 2 sup
x,x′∈Xm∪Yn

√
|⟨Φr(x),Φr(x′)⟩ − k(x, x′)| = 2ϵΦr

(Pm,Qn).

(60)

The following proposition, an analog of Prop. 3, establishes a high-probability upper-bound on the MMD obtained by
permuting the data samples.

Lemma 13 (Tail bound on MMD2
Φr

(X̂σm, Ŷσn) conditioned on X̂m, Ŷn, and Φr). Let σ be a uniformly random permutation
over {1, . . . , s}. Let δ, δ′′ ∈ (0, 1), and δ ∈ (0, e−1). There is an eventA of probability at least 1− δ concerning the draw
of X̂m, Ŷn, such that conditioned on A, with probability at least 1− δ′ − δ′′ on the draw of σ,

MMD2
Φr

(X̂σm, Ŷσn) ≤ 2
sm

(log(2
δ′′) + 1)MMD2(P,Q)

+ c′ log(1/δ′)+2
sm

(
2ϵ4Φr

(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5s)) +W (m,n, δ/(5s))2)2
)1/2

where sr = sm + sn, c′ is a universal constant and

W (m,n, δ) = 2
(√

smRk,k′ (P,m/sm,r,δ,g)

2g
√
m

+
√
snRk,k′ (Q,n/sn,r,δ,g)

2g
√
n

+cδ
(√ sm∥k∥∞

m +
√

sn∥k∥∞
n

))
. (61)

Here, the KT-COMPRESS error inflation factors Rk,k′ and the factor cδ are defined as in Lem. 1, and ξ(Pm,Qn) =
supx,x′∈supp(Pm)∪supp(Qm) |⟨Φr(x),Φr(x′)⟩ − k(x, x′)|.

Proof. For an arbitrary distribution P, we denote Φr(P) = Ex∼PΦr(x) ∈ Rr. We can write

MMD2
Φr

(X̂σm, Ŷσn) = ⟨Φr(P̂σm)− Φr(Q̂σn),Φr(P̂σm)− Φr(Q̂σn)⟩

= 1
s2ms

2
n

∑sm
i=1

∑sm
i′=1

∑sn
j=1

∑sn
j′=1⟨Φr(Ŝ

(σ(i))
m+n)− Φr(Ŝ(σ(sm+j))

m+n),Φr(Ŝ(σ(i
′))

m+n)− Φr(Ŝ(σ(sm+j′))
m+n)⟩

Remark that this is the analog of (31) when one replaces ⟨(Ŝ(σ(i))m+n − Ŝ(σ(sm+j))
m+n)k, (Ŝ(σ(i

′))
m+n − Ŝ(σ(sm+j′))

m+n)k⟩k by

⟨Φr(Ŝ(σ(i))m+n) − Φr(Ŝ(σ(sm+j))
m+n),Φr(Ŝ(σ(i

′))
m+n) − Φr(Ŝ(σ(sm+j′))

m+n)⟩. Following the analogy and using the construction from
Prop. 3, we will apply the Hanson-Wright inequality (Lem. 8) to the matrix A defined as

Ai,i′ =



0 if i = i′

⟨Φr(P̂σ̃(i)
m)−Φr(Q̂

σ̃(sm+li)−sm
n),Φr(P̂σ̃(i′)

m)−Φr(Q̂
σ̃(sm+l

i′)−sm
n)⟩−MMD2

k(P,Q)
sm(sm−1) if i ̸= i′ ∈ ρ−1

σ ({±1}),
1

sm(sm−1) ⟨Φr(P̂
σ̃(i)
m)− Φr(Q̂σ̃(sm+i)−sm

n),Φr(Ŝσ̃(i
′)

m+n)− Φr(Ŝ
σ̃(sm+li′)
m+n)⟩ if i ∈ ρ−1

σ ({±1}), i′ ∈ ρ−1
σ ({0}),

1
sm(sm−1) ⟨Φr(Ŝ

σ̃(i)
m+n)− Φr(Ŝσ̃(sm+li)

m+n),Φr(P̂σ̃(i
′)

m)− Φr(Q̂
σ̃(sm+li′)−sm
n)⟩ if i ∈ ρ−1

σ ({0}), i′ ∈ ρ−1
σ ({±1}),

1
sm(sm−1) ⟨Φr(Ŝ

σ̃(i)
m+n)− Φr(Ŝσ̃(sm+li)

m+n),Φr(Ŝ
σ̃(li′)
m+n)− Φr(Ŝ

σ̃(sm+li′)
m+n)⟩ if i ̸= i′ ∈ ρ−1

σ ({0}).
(62)

36

which is the analog of the matrix defined in (38). Note that

|⟨Φr(P̂σ̃(i)m)−Φr(Q̂σ̃(sm+li)−sm
n),Φr(P̂σ̃(i

′)
m)−Φr(Q̂σ̃(sm+li′)−sm

n)⟩−MMD2
k(P,Q)| (63)

≤ |⟨Φr(P̂σ̃(i)m)−Φr(Q̂σ̃(sm+li)−sm
n),Φr(P̂σ̃(i

′)
m)−Φr(Q̂σ̃(sm+li′)−sm

n)⟩

− ⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (P̂σ̃(i

′)
m − Q̂σ̃(sm+i′)−sm

n)k⟩k|

+ |⟨(P̂σ̃(i)m − Q̂σ̃(sm+li)−sm
n)k, (P̂σ̃(i

′)
m − Q̂σ̃(sm+i′)−sm

n)k⟩k − ⟨(P−Q)k, (P−Q)k⟩k|.

The last term in the right-hand side is formally the same as the one upper-bounded in (43). However, there is a difference:
in this case P̂σ̃(i)m is not the empirical distribution of the output of KT-COMPRESS on the points of X(σ̃(i))

m , but rather the
distribution corresponding to the concatenation of the outputs of KT-COMPRESS on the sr/s compression bins contained
in X(σ̃(i))

m . As a result, an adaptation of the argument yields

|⟨Φr(P̂σ̃(i)m)−Φr(Q̂σ̃(sm+li)−sm
n),Φr(P̂σ̃(i

′)
m)−Φr(Q̂σ̃(sm+li′)−sm

n)⟩−MMD2
k(P,Q)|

≤ MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))
2,

where the function W defined in (61) is slightly different from the one in Prop. 3 in that the arguments of the error inflation
factors are m/sm,r and n/sn,r instead of m/sm and n/sn.

We can bound the first term of (63) by

|⟨Φr(P̂σ̃(i)m),Φr(P̂σ̃(i
′)

m)⟩ − ⟨P̂σ̃(i)m k, P̂σ̃(i
′)

m k⟩k|+ |⟨Φr(P̂σ̃(i)m),Φr(Q̂
σ̃(sm+li′)−sm
n)⟩ − ⟨P̂σ̃(i)m k, Q̂σ̃(sm+li′)−sm

n k⟩k|

+ |⟨Φr(P̂σ̃(i
′)

m),Φr(Q̂σ̃(sm+li)−sm
n)⟩ − ⟨P̂σ̃(i

′)
m k, Q̂σ̃(sm+li)−sm

n k⟩k|

+ |⟨Φr(Q̂σ̃(sm+li)−sm
n),Φr(Q̂

σ̃(sm+li′)−sm
n)⟩ − ⟨Q̂σ̃(sm+li)−sm

n k, Q̂σ̃(sm+li′)−sm
n k⟩k|

≤ 4 supx,x′∈supp(Pm)∪supp(Qn) |⟨Φr(x),Φr(x
′)⟩ − k(x, x′)|.

The bound in the right-hand side follows from applying Lem. 14. The other cases in (62) admit similar upper-bounds
which in this case rely on (44). In analogy with (46), we obtain that

∥A∥2op ≤ ∥A∥2F ≤ 1
s2m(sm−1)2

(
|ρ−1
σ ({−1, 1})|(|ρ−1

σ ({−1, 1})| − 1)
(
2ξ2(Pm,Qn)

+ 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))
2)2

)
+ |ρ−1

σ ({−1, 1})||ρ−1
σ ({0})|(2ξ2(Pm,Qn)

+ 2(MMD(P,Q)W (m,n, δ/(5sr)) +
1
2W (m,n, δ/(5sr))

2)2)

+ |ρ−1
σ ({0})|(|ρ−1

σ ({0})| − 1)W (m,n, δ/(5sr))
4
)

≤ η(m,n, δ)2 ≜ 1
sm(sm−1)

(
2ϵ4Φr

(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))
2)2

)
To prove this inequality, we used that (a+ b)2 ≤ 2a2 + 2b2 for any a, b ≥ 0.

Mirroring the proof of Lem. 7, we establish that conditioned on the event A defined in Lem. 9, which has probability at
least 1− δ, we have that with probability at least 1− δ′ − δ′′ on the choice of σ,

EL[Mσ,L] ≤ 2
sm−1 log(

2
δ′′)MMD2(P,Q)

+ c′ log(1/δ′)√
sm(sm−1)

(2ϵ4Φr
(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))

2)2)1/2

and

1
s2ms

2
n

(∑sm
i=1

∑
j ̸=j′∈{1,...,sn}⟨(Ŝ

i
m+n − Ŝσ(sm+j)

m+n)k, (Ŝim+n − Ŝσ(sm+j′)
m+n)k⟩k

+
∑sn
j=1

∑
i ̸=i′∈{1,...,sm}⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i
′)

m+n − Ŝσ(sm+j)
m+n)k⟩k

+
∑sm
i=1

∑sn
j=1⟨(Ŝ

σ(i)
m+n − Ŝσ(sm+j)

m+n)k, (Ŝσ(i)m+n − Ŝσ(sm+j)
m+n)k⟩k

)
≤ s−1

smsn
((2ϵ4Φr

(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))
2)2)1/2 +MMD2(P,Q))

simultaneously, where c′ is a universal constant and W (m,n, δ) is as defined in (33).

37

Mirroring the final step of the proof of Prop. 3, we rely on these two equations to show that conditioned on the event A,
with probability at least 1− δ′ − δ′′,

MMD2
Φr

(X̂σm, Ŷσn) ≤
(sm−1)(sn−1)

smsn

(
2

sm−1 log(
2
δ′′)MMD2(P,Q)

+ c′ log(1/δ′)√
sm(sm−1)

(2ϵ4Φr
(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))

2)2)1/2
)

+ s−1
smsn

((2ϵ4Φr
(Pm,Qn) + 2(MMD(P,Q)W (m,n, δ/(5sr)) +W (m,n, δ/(5sr))

2)2)1/2 +MMD2(P,Q)),

which concludes the proof upon simplification.

Lemma 14. Let S and S′ be arbitrary distributions. We have that

|⟨Φr(S),Φr(S′)⟩ − ⟨Sk,S′k⟩k| ≤ sup
x∈supp(S),x′∈supp(S′)

|⟨Φr(x),Φr(x′)⟩ − k(x, x′)|. (64)

Proof. The right-hand side of (64) is equal to

|Ex∼S,x′∼S′⟨Φr(x),Φr(x′)⟩ − Ex∼S,x′∼S′k(x, x
′)| ≤ Ex∼S,x′∼S′ |⟨Φr(x),Φr(x′)⟩ − k(x, x′)|

≤ sup
x∈supp(S),x′∈supp(S′)

|⟨Φr(x),Φr(x′)⟩ − k(x, x′)|.

We proceed to prove Thm. 5. Reproducing the argument of Cor. 1, if bα ≜ ⌈(B + 1)(1 − α)⌉ ≤ B, and KT-COMPRESS
calls are run with value δ∗/(5sm) and δ∗/(5sn) respectively, then with probability at least 1− δ

2 ,

M(bα) ≤ Ẑ(m,n, α, δ)

≜
√

2
sm

(log(2
δ∗) + 1)MMD(P,Q) +

√
1
sm

(2 + c′ log(1/δ∗)) · 21/4(ϵΦr
(Pm,Qn)

+
√

MMD(P,Q)W (m,n, δ/(20sr)) +W (m,n, δ/(20sr))).

(65)

where M(bα) is the threshold of Alg. 2, and

δ∗ ≜ (δ2)
1/kα α

4e , kα ≜ ⌊α(B + 1)⌋.

Then, we have that the statement in Lem. 11 holds with the redefined Ẑ(m,n, α, β̃) given by (65). Consequently, the
function Z̃(m,n, α, β) now reads

Z̃(m,n, α, β) =
Rk,k′ (P,m/sm,r,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,r,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+
√

2
sm

log(8e
2

α (4
β̃
)1/kα)MMD(P,Q)

+
√√

2
sm

(2 + c′ log(4eα (4
β̃
)1/kα))(ϵΦr (Pm,Qn) +

√
MMD(P,Q)W (m,n, β̃/(20sr))

+W (m,n, β̃/(20sr))).

We also reduce the remainder of the proof to a second-degree inequality analogous to (51), but in this case the coefficients
read

a = 1−
√

2
sm

log(8e
2

α (4
β̃
)1/kα),

b =
√√

2
sm

(2 + c′ log(4eα (2
β̃
)1/kα))W (m,n, β̃/(20sr)),

c =
Rk,k′ (P,m/sm,r,β̃/6,g)

2g
√
m

+
Rk,k′ (Q,n/sn,r,β̃/6,g)

2g
√
n

+ cβ̃/6
(√∥k∥∞

m +
√

∥k∥∞
n

)
+
√√

2
sm

(2 + c′ log(4eα (4
β̃
)1/kα))(ϵΦr (Pm,Qn) +W (m,n, β̃/(20sr))),

x =
√
MMD(P,Q),

Proceeding just like in the case of CTT, the proof is concluded (recall that the function W is slightly different in this case).

38

G Proof of Thm. 3: ACTT validity and power

Algorithm 6: Aggregated CTT, ∆ACTT

Input: Samples (Xm, Yn), # coresets s, compression level g, kernels (kλ,k
′
λ)λ∈Λ, importance weights (wλ)λ∈Λ, failure prob. δ, #

replicates (B1, B2, B3), level α

Partition Xm into sm = sm
m+n

equal-sized bins (X(i)
m)smi=1

Partition Yn into sn = sn
m+n

equal-sized bins (Y(i)
n)sni=1

// Identify coresets of size 2g
√

m+n
s

using sum of kernels

k←
∑

λ∈Λ kλ; k′ ←
∑

λ∈Λ k′
λ

for i = 1, . . . , sm do
X̂(i)

m ← KT-COMPRESS(X(i)
m , g,k,k′, δ)

end
for i = 1, . . . , sn do

Ŷ(i)
n ← KT-COMPRESS(Y(i)

n , g,k,k′, δ)
end
// Compute CORESETMMD for each candidate parameter λ
X̂m := CONCAT((X̂(i)

m)smi=1); Ŷn := CONCAT((Ŷ(i)
n)sni=1)

for λ ∈ Λ do Mλ ← MMDkλ(X̂m, Ŷn)

// Simulate null for each λ by randomly permuting s coresets
for ℓ = 1, 2 and b = 1, . . . ,Bℓ do

(X̂ℓ,b
m , Ŷℓ,b

n)← PERMUTECORESETS(Xm,Yn, s)

for λ ∈ Λ do Mb,λ,ℓ ← MMDkλ(X̂
b
m, Ŷb

n)
end
for λ ∈ Λ do Sort (Mb,λ,1)

B1
b=1 increasingly into (M(b),λ,1)

B1
b=1

// Estimate largest rejection threshold for each Mλ statistic that ensures aggregated test size ≤ α
umin ← 0 and umax ← minλ∈Λ w−1

λ
for i = 1, . . . ,B3 do

u← umin+umax
2

; for λ ∈ Λ do bu,λ←⌈(B1+1)(1−uwλ)⌉
Pu ← 1

B2

∑B2
b=11[maxλ∈Λ(Mb,λ,2−M(bu,λ),λ,1)>0]

if Pu ≤ α then umin ← u else umax ← u
end
// Reject null if any test statistic Mλ exceeds its threshold
ûα ← umin; for λ ∈ Λ do b′α,λ ← ⌈(B1 + 1)(1− ûαwλ)⌉
if Mλ > M(b′

α,λ
),λ,1 for some λ ∈ Λ then return 1 (reject null)

else return 0 (accept null)

The validity statement in (10) follows from exactly the same argument as Schrab et al. (2021, Prop. 8), replacing the
estimate MMDup(Xm,Yn) with parameter λ by CORESETMMD(Xm,Yn) with parameter λ.

Let ∆CTT,λ denote the output of a modified CTT (Alg. 1) with level αwλ/2, B = B1, k=
∑
λ∈Λ kλ and k′ =

∑
λ∈Λ k′

λ

that uses kλ (in place of k) to compute CORESETMMD. Then using arguments from Schrab et al. (2021, Proof of Thm. 9,
up to their equation 25), we find that

Pr[∆ACTT(Xm,Yn) = 1] ≥ maxλ∈Λ Pr[∆CTT,λ(Xm,Yn)=1]− β
2 . (66)

We claim that for λ such that (12) holds, we have Pr[∆CTT,λ(Xm,Yn) = 1] ≥ 1− β
2 , which when put together with (66)

immediately implies the claimed power in (11). We now establish our power claim for this modified CTT test.

To do so, we claim that KT-COMPRESS with k and k′ =
∑
λ∈Λ k′

λ—referred to as KT-COMPRESS-AGG—is kλ-sub-
Gaussian (Shetty et al., 2022, Def. 3) with parameters a′′ℓ,n and v′′ℓ,n (the analog of (aℓ,n, vℓ,n) from (14) in our notation)
simultaneously for all λ ∈ Λ, on an event of probability 1− δ/2, where

a′′ℓ,n = 4
ℓ

√∑
λ∈Λ

(
C2

kλ,k′(Sin) +M2
kλ,k′(Sin, δ, ℓ) · log |Λ|

)
, (67)

v′′ℓ,n = 2
ℓ

√
log(12n4

g(βn+1)
ℓδ) ·

∑
λ∈Λ M2

kλ,k′(Sin, δ, ℓ),

39

and Ck,k′ and Mk,k′ were defined in (14). Deferring the proof of this claim to the end of this section, we proceed with the
proof.

Using (67) and repeating the arguments from the proof of Lem. 1 (after (14)), we conclude the following analog of (6) for
the CORESETMMD estimate with the output X̂m, Ŷn of KT-COMPRESS-AGG: With probability at least 1− δ, we have

|MMDkλ
(Xm,Yn)−MMDkλ

(X̂m, Ŷn)|2 (68)

≤ 1024(
√
log(m+ n+ 1) +

√
log(2/δ))2

· |Λ|

[
(log4(m/sm)−g−1)

4gm

(
CΛ,k′(Xm) +

(√
log |Λ|+

√
log(3m(log4(m/sm)−g−1)

smδ
)

)
M′

Λ,k′(Xm, δ, 2g+1
√
m/sm)

)2

+ (log4(n/sn)−g−1)
4gn

(
CΛ,k′(Yn) +

(√
log |Λ|+

√
log(3n(log4(n/sn)−g−1)

snδ
)

)
M′

Λ,k′(Yn, δ, 2g+1
√
n/sn)

)2
]
,

where CΛ,k′(Sin) ≜ maxλ∈Λ Ckλ,k′(Sin) and M′
Λ,k′(Sin, δ, ℓ) ≜ maxλ∈Λ Mkλ,k′(Sin, δ, ℓ). Putting (68) together with

the definitions (13), we find that

|MMDkλ
(Xm,Yn)−MMDkλ

(X̂m, Ŷn)| ≤ 2
√
|Λ|(1 + log(|Λ|))︸ ︷︷ ︸

=cΛ

·maxλ∈Λ

(
Rkλ,k′ (Xm,

m
sm

,δ,g)

4gm +
Rkλ,k′ (Yn,

n
sn
,δ,g)

2g
√
n

)
.

with probability at least 1− δ. Propagating this result further in the proof of Lem. 1 implies the following analog of (7):

|MMDkλ
(P,Q)−MMDkλ

(X̂m, Ŷn)| ≤ cδ
(√∥kλ∥∞

m +
√

∥kλ∥∞
n

)
+ cΛ maxλ∈Λ

(
Rk′

λ
(P, m

sm
,δ,g)

2g
√
m

+
Rk′

λ
(Q, n

sn
,δ,g)

2g
√
n

)
, (69)

with probability at least 1−3δ with cδ≜2+
√
2 log(2δ) as in Lem. 1.

We now apply Thm. 1 to characterize the power of the modified CTT (corresponding to ∆CTT,λ) described above. In
particular, substituting α ← αwλ

2 , β ← β
2 , γ ← γλ in Thm. 1, noting sm ≥ 32

9 log(2e
γλ

), and using the definition of εAGG

along with (69) in the proof of Thm. 1, we conclude that

Pr[∆CTT,λ(Xm,Yn)] ≥ 1− β
2 whenever MMDkλ

(P,Q) ≥ c′
√

log(1
γλ

) εAGG(
β/(10s)
4+β)

for some universal constant c′, and yielding the desired claim when m ≤ n. It remains to prove our earlier claim (67).

Proof of (67) Note that, for any probability measures (P′,Q′),

MMDkλ
(P′,Q′) ≤ MMDk(P′,Q′) (70)

whenever the right-hand side is well-defined, since for any two kernels k1,k2 with well-defined MMDk1+k2
(P′,Q′), we

have

MMD2
k1+k2

(P′,Q′) = (P′ −Q′)(k1 + k2)(P′ −Q′) = MMD2
k1
(P′,Q′) +MMD2

k2
(P′,Q′). (71)

In the terminology of Shetty et al. (2022, Def. 3), we next establish that the halving algorithm KT(δ) (Shetty et al., 2022,
Ex. 2) underlying KT-COMPRESS is kλ-sub-Gaussian when run with k and split kernel k′. To proceed, we can suitably
adapt the proof of Thm. 4 of Dwivedi and Mackey (2022) (which in turn is an adaptation of Dwivedi and Mackey (2021,
Thm. 2-4)).

We begin by instantiating the notation of Dwivedi and Mackey (2022). Given an input coreset Sin, let Ssplit,1 denote the
first coreset output by the KT-SPLIT step and Sout denote the output of size nout after the KT-SWAP step. Then using (70)
and the definition of KT-SWAP, we have

MMD2
kλ
(Sin,Sout) ≤ MMD2

k(Sin,Sout)
(i)

≤ MMD2
k(Sin,Ssplit,1)

(71)
=

∑
λ∈Λ MMD2

kλ
(Sin,Ssplit,1), (72)

40

where the inequality (i) follows directly from the definition of KT-SWAP (Dwivedi and Mackey, 2022, Eqn. 27). Hence it
remains to show that KT-SPLIT(δ) is kλ-sub-Gaussian for each λ.

To proceed, we modify the Dwivedi and Mackey (2022, Proof of Thm. 4). In particular, replacing k† (in their notation)
with k′, and ∥k†∥∞ with ∥k′∥∞,in throughout their proof3 we conclude, with analogy to Shetty et al. (2022, Ex. 2), that
KT-SPLIT(δ) is kλ-sub-Gaussian with parameters vλ,ℓ and aλ,ℓ satisfying

aλ,ℓ =
Ckλ,k′ (Sin)

nout
and vλ,ℓ =

Mkλ,k′ (Sin,δ,ℓ)

nout

√
log(6nout log2(ℓ/nout)

δ), (73)

for input (a subset of Sin) of size ℓ and output of size nout, for Ckλ,k′ and Mkλ,k′ defined in (14) (also see Rem. 6).

Next, we use an auxiliary result proven at the end of this section.

Lemma 15 (Tail bounds for sum of non-centered sub-Gaussian random variables). Consider non-negative random vari-
ables Z1, . . . , Zℓ such that for i ∈ [ℓ], we have P

[
Zi ≥ ai + vi

√
t
]
≤ e−t for all t ≥ 0, with some suitable scalars

{ai, vi}ℓi=1. Then P
[√∑ℓ

i=1 Z
2
i ≥ α̃+ β̃

√
t

]
≤ e−t for t ≥ 0, where

α̃2 ≜ 2
∑ℓ
i=1(a

2
i + v2i log ℓ) ≤ 4ℓ log ℓ ·maximax{a2i , v2i } and β̃2 ≜

∑ℓ
i=1 v

2
i ≤ ℓmaxi v

2
i .

Putting Lem. 15 together with (72) and (73), we conclude that on an event of probability at least 1−δ/2 and simultaneously
for all λ ∈ Λ, KT-COMPRESS-AGG (KT(δ) with aggregated kernels as above) is kλ-sub-Gaussian with parameters (a′ℓ, v

′
ℓ)

given by

a′ℓ =
1

nout

√
2
∑
λ∈Λ

(
C2

kλ,k′(Sin) +M2
kλ,k′(Sin, δ, ℓ) · log |Λ|

)
and

v′ℓ =
1

nout

√
log(6nout log2(ℓ/nout)

δ) ·
√∑

λ∈Λ M2
kλ,k′(Sin, δ, ℓ).

for input (a subset of Sin) of size ℓ and output of size nout. Now the arguments of Shetty et al. (2022, Ex. 4) imply
that on an event of probability at least 1 − δ/2, every HALVE call invoked by COMPRESS (for KT-COMPRESS-AGG) is
kλ-sub-Gaussian with parameters a′′ℓ,n and v′′ℓ,n (the analog of (aℓ,n, vℓ,n) in our notation (14)), where

a′′ℓ,n = 2
√
2
ℓ

√
2
∑
λ∈Λ

(
C2

kλ,k′(Sin) +M2
kλ,k′(Sin, δ, ℓ) · log |Λ|

)
and

v′′ℓ,n = 2
ℓ

√
log(12n4

g(βn+1)
ℓδ) ·

∑
λ∈Λ M2

kλ,k′(Sin, δ, ℓ),

as claimed in (67).

Proof of Lem. 15 Collect the scalars {ai} (resp. {vi}) into vector a ∈ Rℓ (resp. v ∈ Rℓ) such that the i-th coordinate of
a (resp. v) is equal to ai (resp. vi). A direct union bound yields that with probability at least 1− ℓe−t, we have∑ℓ

i=1 Z
2
i ≤

∑ℓ
i=1(ai + vi

√
t)2 =

∑ℓ
i=1 a

2
i + v2i t+ 2aivi

√
t = ∥a∥22 +

∥∥v√t∥∥2
2
+ 2

〈
a, v
√
t
〉

(i)

≤ ∥a∥22 +
∥∥v√t∥∥2

2
+ 2∥a∥2

∥∥v√t∥∥
2

= (∥a∥2 +
∥∥v√t∥∥

2
)2,

where step (i) follows from Cauchy-Schwarz’s inequality. Substituting t← t+ log ℓ, we conclude that

P
[√∑ℓ

i=1 Z
2
i ≥ ∥a∥2 + ∥v∥2

√
log ℓ+

√
t∥v∥2

]
≤ e−t.

The lemma now follows once we note that β̃ = ∥v∥2 and

α̃2 = 2(∥a∥22 + ∥v∥
2
2 log ℓ) ≥ (∥a∥2 + ∥v∥2

√
log ℓ)2.

3The remark in Dwivedi and Mackey (2022, Footnote 5) implies that the arguments work both with ∥k′∥∞ and ∥k′∥∞,in.

41

Remark 6. If the aggregated kernel satisfies k′ =
∑
λ∈Λ kλ with each kλ normalized, i.e., ∥kλ∥∞ = 1. In this case,

Dwivedi and Mackey (2022, Eq. (23)) shows that for any λ ∈ Λ and any f in the RKHS of kλ, we have ∥f∥kλ
≤ ∥f∥k′ .

Then, repeating arguments as in Dwivedi and Mackey (2022, App. F, Proof of Thm. 4), we find that

Ckλ,k′(Sin) = 2
√
∥k′∥∞ = 2

√
|Λ| and Mkλ,k′ =

√
|Λ| ·Mkλ,kλ

where Mk,k is defined in (21).

H Experiment details and supplementary results

Here we provide the details deferred from Sec. 5 along with supplementary results.

Optimal four-point halving As discussed in App. A, we modify the KT-COMPRESS algorithm of Shetty et al. (2022,
Ex. 4) slightly so that whenever an input of size 4 is being compressed into an coreset of size 2, we return an optimal coreset
of size 2 that minimizes MMDk between the input point set and the output. This optimal coreset is also symmetrized so
the either the coreset or its complement is returned with equal probability. See Alg. 4.

Details on the code All computations related to kernel and MMD evaluations are written using identical Cython com-
mands to ensure both consistent runtime comparisons across methods and faster runtimes overall. Our code can be easily
extended to cover other MMD tests and can be used as a benchmark to assess power-time trade-off curves.

Additional details for CTT experiments on GAUSSIAN and EMNIST

• The bandwidth of the Gaussian kernel is selected according the median heuristic, which is a popular heuristic in kernel
methods (Chaudhuri et al., 2017) that prescribes the usage of kernels of the form k(x, y) = exp(−∥x − y∥2/(2σ̂2)),
where σ̂ is the median of the pairwise distances between different points in the sequence Xm ∪ Yn. Unless otherwise
specified, we used the median heuristic to select all bandwidths in our experiments. Since computing the median among
all pairs is expensive, we selected 512 points from Xm and 512 points from Yn uniformly at random and computed the
median of all

(
1024
2

)
pairwise distances among them.

• For wild bootstrap block and incomplete tests, we use the fast computation procedure proposed by Schrab et al. (2021,
2022), which computes the terms h(Xi, Xj , Yi, Yj) only once for each pair i ̸= j. This is the main advantage of the wild
bootstrap approach over the permutation approach. The wild bootstrap incomplete test is the same test studied by Schrab
et al. (2022).

• Both in Asymp. Block I and II, the threshold is computed via the CLT using an estimate of the variance of the estimator.
In Asymp. Block II, the estimate of the variance is obtained from the variance of the n/B block MMD estimates.
Asymp. Block II was considered as a baseline by Yamada et al. (2019). In Asymp. Block I, the estimate of the variance
is obtained by sampling a Rademacher vector length n and flipping the corresponding elements of Xm, Yn to obtain a
new pair of sets of n/B blocks of size B, and computing the empirical variance of these n/B block MMD estimates.
Since computations of h(Xi, Xj , Yi, Yj) are reused, Asymp. Block I is almost as fast as Asymp. Block II. Asymp. Block
I was proposed first chronologically by Zaremba et al. (2013) in the paper that introduced block tests, although they used
a permutation instead of a Rademacher variable, which made the method twice as slow.

Additional details for LR-CTT experiments on GAUSSIAN and EMNIST

• The bandwidth selection is as described above.

Additional details for ACTT experiments on BLOBS and HIGGS

• We use the permutation approach and take B1 = 299 permutations, B2 = 200 permutations, and B3 = 20 iterations.

• As suggested by Schrab et al. (2021), the ACTT experiments set Λ as multiples of the bandwidth given by the median
heuristic. We computed the median heuristic bandwidth λ0 as in the CTT experiments, and we set Λ = {2−iλ0|i ∈
{0, . . . , 4}}.

• The aggregated wild bootstrap incomplete test is the same test studied by Schrab et al. (2022).

42

10 20 50 100 200 500 1k 2k 5k
Total computation time (s)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

Si
ze

 (T
yp

e
I e

rr
or

)

B=49/2

B=49

ℓ= 48
2 n

ℓ=48n

Gaussian (mean separation= 0.0, n=49)

A-Block I
A-Block II
A-Incomp.
Level 0.05

20 50 100 200 500 1k 2k 5k 10k
Total computation time (s)

0.00

0.05

0.10

0.15

0.20

0.25

Si
ze

 (T
yp

e
I e

rr
or

)

B=49/2

B=49
ℓ= 48

2 n

ℓ=48n

Downsampled EMNIST (peven= 0.5, n=49)

A-Block I
A-Block II
A-Incomp.
Level 0.05

20 50 100 200 500 1k 2k 5k
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

0.08

Si
ze

 (T
yp

e
I e

rr
or

)

Gaussian (mean separation= 0.0, n=49)

W-Block
W-Incomp.
Level 0.05

20 50 100 200 500 1k 2k 5k 10k
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

Si
ze

 (T
yp

e
I e

rr
or

)
Downsampled EMNIST (peven= 0.5, n=49)

W-Block
W-Incomp.
Level 0.05

0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50 100
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

Si
ze

 (T
yp

e
I e

rr
or

)

g=0
g=1

g=2
g=3

Gaussian (mean separation= 0.0, n=49)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

0.05 0.1 0.2 0.5 1 2 5 10 20 50 100
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

0.08

Si
ze

 (T
yp

e
I e

rr
or

)

g=0

g=1
g=2

g=3

Downsampled EMNIST (peven= 0.5, n=49)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

Figure 3: Estimated test size with 95% Wilson confidence intervals in the GAUSSIAN (left) and EMNIST (right) exper-
imental settings of Fig. 1. Top: Asymptotic block and incomplete tests with 800 (left) and 400 (right) independent test
repetitions. Middle: Non-asymptotic wild bootstrap block and incomplete with 800 independent test repetitions. Bottom:
Non-asymptotic CTT, RFF, and LR-CTT with 1200 independent test repetitions.

43

0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 50
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

B=47 ℓ= 47−1
2 n

Gaussian (mean separation= 0.048, n=47)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.002 0.0050.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

r=1

r=256

r=1

r=1024
Gaussian (mean separation= 0.048, n=47)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

0.1 0.2 0.5 1 2 5 10 20 50 100
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3 B=47

ℓ= 47−1
2 n

Downsampled EMNIST (peven= 0.46, n=47)

CTT
W-Block
W-Incomp.
A-Block I
A-Block II
A-Incomp.
Level 0.05

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
Total computation time (s)

0.2

0.4

0.6

0.8

Po
w

er
 (1

 -
Ty

pe
 II

 e
rr

or
)

g=0

g=1

g=2
g=3

r=1

r=256

r=1

r=1024

Downsampled EMNIST (peven= 0.46, n=47)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

Figure 4: Time-power trade-off curves in the GAUSSIAN and EMNIST experimental settings comparing (left) CTT
to five state-of-the-art approximate MMD tests based on subsampling and (right) LR-CTT to the state-of-the-art low-rank
MMD test based on random Fourier features (RFF). These plots are like those in Fig. 1, but for a smaller sample size:
n = 47 instead of n = 49.

44

0.2 0.5 1 2 5 10 20
Total computation time (s)

0.00

0.05

0.10

0.15

0.20

Si
ze

 (T
yp

e
I e

rr
or

)

B=47/2

B=47

ℓ=46n

ℓ=47n2

Gaussian (mean separation= 0.0, n=47)

A-Block I
A-Block II
A-Incomp.
Level 0.05

0.5 1 2 5 10 20 50
Total computation time (s)

0.00

0.05

0.10

0.15

Si
ze

 (T
yp

e
I e

rr
or

)

B=47/2

B=47

ℓ=46n

ℓ=47n2

Downsampled EMNIST (peven= 0.5, n=47)

A-Block I
A-Block II
A-Incomp.
Level 0.05

0.2 0.5 1 2 5 10 20
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

Si
ze

 (T
yp

e
I e

rr
or

)

Gaussian (mean separation= 0.0, n=47)

W-Block
W-Incomp.
Level 0.05

0.2 0.5 1 2 5 10 20 50
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

Si
ze

 (T
yp

e
I e

rr
or

)
Downsampled EMNIST (peven= 0.5, n=47)

W-Block
W-Incomp.
Level 0.05

0.002 0.0050.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10
Total computation time (s)

0.03

0.04

0.05

0.06

0.07

0.08

Si
ze

 (T
yp

e
I e

rr
or

) g=0

g=1

g=2
g=3

Gaussian (mean separation= 0.0, n=47)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

0.002 0.005 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5
Total computation time (s)

0.04

0.05

0.06

0.07

0.08

0.09

Si
ze

 (T
yp

e
I e

rr
or

)

g=0
g=1 g=2

g=3

Downsampled EMNIST (peven= 0.5, n=47)

CTT
RFF
LR-CTT-RFF g=0
LR-CTT-RFF g=1
LR-CTT-RFF g=2
LR-CTT-RFF g=3
Level 0.05

Figure 5: Estimated test size with 95% Wilson confidence intervals in the GAUSSIAN (right) and EMNIST (left) ex-
perimental settings of Fig. 4, i.e. with n = 47. Top: Asymptotic block and incomplete tests with 1200 independent test
repetitions. Middle: Non-asymptotic wild bootstrap block and incomplete with 1200 independent test repetitions. Bot-
tom: Non-asymptotic CTT, RFF, and LR-CTT with 1200 independent test repetitions.

45

	Introduction
	Kernel Two-sample Testing
	Compress Then Test
	MMD compression with CoresetMMD
	Compress Then Test

	CTT Extensions
	Low-Rank CTT
	Aggregated CTT

	Experiments
	Connections and Conclusions
	Background on KT-Compress
	Proof of thm:compressionguarantee: Quality of CoresetMMD
	On the KT-Compress error inflation factor
	Proof of claim eq:mmddiffxy
	Proof of claim eq:mmddiffpq
	Bounds on and
	Bounds on sample-level quantities (() and (, , 2g +1n))
	Bounds on population-level quantities ((¶, m, , g) and (¶, m,, 2g +1n))

	Proof of table:errortails

	Proof of thm:validity: Finite-sample exactness of CTT
	Proof of thm:uniformseparation: Power of CTT
	thm:uniformseparationdetailed: Power of CTT, detailed
	Recasting the power lower bound into a high-probability threshold upper bound
	High-probability bound on the threshold
	Proof of prop:randompermmmdbound: Tail bound on `3́9`42`"̇613A``45`47`"603AMMD2(,n) conditioned on , n

	Concluding the proof of thm:uniformseparationdetailed

	Proof of thm:ratesothertests: Power upper bounds for complete, block, and incomplete MMD tests
	Proof of thm:ratesotherteststhm:ratecomplete
	Proof of thm:ratesotherteststhm:rateblock
	Proof of thm:ratesotherteststhm:rateincomplete

	Proof of lcttguarantees: LR-CTT exactness and power
	Proof of thm:aggvaliditypower: ACTT validity and power
	Experiment details and supplementary results

