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Abstract

We consider a personalized pricing problem in
which we have data consisting of feature infor-
mation, historical pricing decisions, and binary
realized demand. The goal is to perform off-
policy evaluation for a new personalized pric-
ing policy that maps features to prices. Methods
based on inverse propensity weighting (includ-
ing doubly robust methods) for off-policy evalua-
tion may perform poorly when the logging policy
has little exploration or is deterministic, which is
common in pricing applications. Building on the
balanced policy evaluation framework of Kallus
(2018), we propose a new approach tailored to
pricing applications. The key idea is to com-
pute an estimate that minimizes the worst-case
mean squared error or maximizes a worst-case
lower bound on policy performance, where in
both cases the worst-case is taken with respect to
a set of possible revenue functions. We establish
theoretical convergence guarantees and empiri-
cally demonstrate the advantage of our approach
using a real-world pricing dataset.

1 INTRODUCTION

Data-driven and personalized pricing has received consid-
erable attention over the past two decades (Cohen et al.,
2017; Besbes et al., 2010; Ferreira et al., 2016; Bu et al.,
2022; Baardman et al., 2019; Wang and Zheng, 2021; Qi
et al., 2022; Biggs, 2022). Utilizing contextual informa-
tion in pricing is especially popular due to applications in
online shopping (Nambiar et al., 2019; Elmachtoub et al.,
2021), auto lending (Phillips et al., 2015; Ban and Ke-
skin, 2021), air travel (Kolbeinsson et al., 2022) and be-
yond (Chen et al., 2022; Wang et al., 2021; Aouad et al.,
2019). The increasing availability of customer data enables
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personalized pricing strategies. However, experimenting
with a new personalized pricing policy that is potentially
more profitable or fairer (Cohen et al., 2022) can be costly
and difficult, motivating the use of off-policy evaluation.
Specifically, we study the problem of off-policy evaluation
for personalized pricing where feature information such as
customer order history, demographics, and market condi-
tions are observed alongside the offered prices and binary
purchase decisions.

There is an extensive literature on off-policy evaluation. In-
verse propensity weighting (IPW) and doubly robust (DR)
methods are especially popular (Dudı́k et al., 2011; Hanna
et al., 2017; Swaminathan and Joachims, 2015a; Thomas
and Brunskill, 2016; Wang et al., 2017; Bottou et al., 2013;
Athey and Wager, 2021). Both approaches reweight his-
torical data to make the data look as if they were gener-
ated by the target policy that we wish to evaluate. While
initial research in the area focused on finite, discrete ac-
tion spaces, more recently Sondhi et al. (2020); Kallus and
Zhou (2018); Cai et al. (2021) propose extensions to more
general, potentially infinite, action spaces. Biggs et al.
(2021) recasts IPW methods as optimizing a particular loss
function and uses this insight to propose suitable general-
izations.

Each of the aforementioned methods leverages an approxi-
mation of the inverse propensity score to form weights. As
noted by Kallus (2018), an inherent shortcoming of such
approaches is that when the overlap between the target
and logging policy is limited, these methods assign large
weights to a small number of data points in the overlap
and assign zero weight elsewhere. This weighting scheme
yields high variance estimates, especially on small datasets.
In the worst-case when there is zero overlap, IPW methods
are not even well-defined.

While such cases might seem pathological, they are com-
mon in pricing applications. Many real-world firms are ret-
icent to engage in extensive randomized pricing, making
limited overlap fairly prevalent. When firms price deter-
ministically, even simple policy adjustments such as rais-
ing all prices 2% yield zero overlap. These features make
the aforementioned methods less attractive.

Many authors have proposed general purpose modifications
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of traditional methods to address these shortcomings. El-
liott (2008); Ionides (2008); Swaminathan and Joachims
(2015a,b) each propose various ways to regularize the naive
IPW weights, e.g. by clipping large values, to reduce vari-
ance. These methods introduce additional bias into esti-
mates, often in ways that are instance dependent and diffi-
cult to quantify.

Other authors attempt to circumvent the issue with IPW by
focusing on policy learning – i.e., identifying a good policy
– rather than policy evaluation. In cases of zero overlap,
Sachdeva et al. (2020) compares three different approaches
– restricting the action space, extrapolating reward, and re-
stricting policy spaces – and argues in favor of restricting
policy spaces. Kallus (2021) proposes a retargeting ap-
proach which reframes the optimal policy as the solution to
an alternate off-policy problem with better overlap proper-
ties and near-optimal asymptotic variance. As stated, how-
ever, neither approach directly addresses policy evaluation.
Insofar as firms are often interested in the performance of
a specific, target pricing policy that may have been chosen
for qualitative, business-specific reasons, there remains a
need for effective policy evaluation methods that balance
bias and variance and provide provable performance guar-
antees.

Inspired by the balanced policy evaluation method of
Kallus (2018), we propose an alternate approach to off-
policy evaluation for pricing applications. Like IPW and
DR methods, we estimate the performance of the policy by
a weighted average of the historical data points. However,
unlike these methods, we use weights that either (i) min-
imize the worst-case mean squared error of our estimated
revenue or (ii) maximize a worst-case lower bound on the
unknown target revenue. In both cases, the worst-case is
taken over a set of plausible revenue functions.

Our work differs from Kallus (2018) in three critical as-
pects: (i) We focus on a binary demand response vari-
able rather than a continuous one with a homoscedastic
variance. Binary demand induces a more complex form
for the variance of our estimator and consequently com-
plicates the worst-case optimization problem defining our
weights. By contrast, the corresponding optimization in
Kallus (2018) is an unconstrained, convex quadratic pro-
gram with a closed-form solution. (ii) Although we treat
worst-case mean squared error (MSE) (similar to Kallus
(2018)), firms are also concerned with operational criteria
such as a guaranteed lower bound on revenue. We show
how our approach can be modified to compute such a lower
bound (via Bernstein’s inequality) and contrast the behav-
ior of the resulting estimator with the MSE approach. (iii)
Kallus (2018) focuses primarily on the case of a small num-
ber of discrete actions, while typical pricing problems in-
volve continuous action spaces. In particular, one cannot
apply Kallus (2018) “out-of-the-box” to continuous action
spaces, since the approach assumes no structure across ac-

tions (prices) and would thus yields overly conservative es-
timates (Kallus (2020) suggests a way to address this). By
contrast, we enforce smoothness of the demand function
across prices by assuming this revenue function belongs to
a particular reproducing kernel Hilbert space (RKHS).

Paper Outline: We start in Section 2 with the notation and
setup, followed by an analysis of weighted revenue estima-
tors in Section 3. We present our off-policy evaluation ap-
proach in Section 4. In Section 5, we establish theoretical
guarantees for our approaches. We present experimental
results on both synthetic datasets and a real world pricing
dataset in Section 6. We describe heuristics for estimating
parameters in Section 7 and conclude in Section 8.

2 NOTATION AND MODEL

We assume the following (fixed-design) data generation
mechanism: We are given a set features xi ∈ X for
i = 1 . . . , n. Price-demand pairs are distributed as

Pi ∼ g0(·,xi), i = 1, . . . , n,

Di | Pi ∼ Bernoulli(d(xi, Pi)), i = 1, . . . , n,

for some unknown demand function d(·, ·) that maps fea-
tures and prices to [0, 1]. Here the density g0(·, ·) en-
codes our logging pricing policy, i.e. we draw a random
price from density g0(·,x) when presented with a feature
x. When the logging policy is deterministic, we interpret
g0(·,x) as a Dirac delta function.

Our dataset {(xi, pi, di) ⊆ X × R+ × {0, 1} : i ∈ [n]}
consists of single a realization of this process.

Loosely, our goal is to evaluate a target policy that draws
a random price from the density g1(·,x) when presented
with feature x. Formally, let

Pn+i ∼ g1(·,xi) i = 1, . . . , n,

and let pn+i ∈ R for i ∈ [n] be a corresponding realization.
Then, if we define the expected revenue function r(x, p) :=
pd(x, p), the expected revenue under the target policy is

R := 1
n

∑n
i=1 pn+id(xi, pn+i) (Target Revenue)

= 1
n

∑n
i=1 r(xi, pn+i),

which we emphasize is a constant. Our goal is to estimate
and provide high confidence bounds on this constant.

We stress that, in what follows, our method does not require
explicit knowledge of g0(·, ·) or g1(·, ·).

In keeping with the literature on doubly-robust estimators,
we define a reference revenue function:

Definition 1 (Reference Revenue Function). The revenue
function can be written as r(·, ·) = r̂(·, ·) + ∆(·, ·), for a
known reference revenue r̂(·, ·), and a perturbation func-
tion ∆(·, ·).
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This decomposition is without loss of generality (take
r̂(·, ·) = 0). In practice, we may have a good reference
model r̂(·, ·) that we believe reasonably captures the rev-
enue curve. Thus, the estimators are best thought of as a
perturbation to this reference.

To streamline notation, we define p ∈ R2n to be the vec-
tor of prices p1, ..., p2n. Similarly, we define the vectors
r, r̂,∆ ∈ R2n such that for for i ∈ [2n],

ri = r(xi, pi), r̂i = r̂(xi, pi), ∆i = ∆(xi, pi).

We focus on the doubly robust weighted revenue estimator

R̂(w) :=
1

n

n∑
i=1

wi(piDi− r̂i)+
1

n

2n∑
i=n+1

r̂i, (Estimator)

for some weights w that we will specify.

3 PROPERTIES OF WEIGHTED
REVENUE ESTIMATORS

We first introduce general properties of weighted revenue
estimators with honest weights, i.e., the weights are inde-
pendent of demand realizations. These properties depend
on the vector r which in practice is unknown. Nonetheless,
these properties serve as a building block for our approach
later on where we take a worst-case perspective on r.

3.1 Mean Squared Error

Define

MSE(w, r) := E
[
(R− R̂(w))2

]
=E

(R− 1

n

2n∑
i=n+1

r̂i −
1

n

n∑
i=1

wi(piDi − r̂i)

)2
 . (1)

Note R and E [pjDj ] depend on the unknown revenue r.
In Lemma 1 below, we provide a more explicit expression
for the MSE, which takes into account the binary nature of
demand. (See Appendix A for proofs.)
Lemma 1 (Bias and Variance Decomposition). Let

b(w) :=
1

n
(w1, . . . , wn,−1, . . . ,−1)

⊤ ∈ R2n

v(w) :=
1

n2

(
w2

1p1, . . . , w
2
npn, 0, . . . , 0

)⊤ ∈ R2n

Then, we have

Bias(w, r) := E
[
R̂(w)−R

]
= b(w)⊤ (r − r̂) ,

V ar(w, r) := E
[(

R̂(w)− E
[
R̂(w)

])2]
= v(w)⊤r − 1

n2
r⊤
(

diag(w2
1, . . . , w

2
n) 0

0 0

)
r,

and, of course, MSE(w, r) = Bias(w, r)2 + V ar(w, r).

3.2 High-Probability Bound

We next provide a high-confidence lower bound on the true
revenue R in terms of the estimate R̂(w). From an opera-
tional perspective, lower bounds provide “safe” guarantees
on potential revenue. Although similar techniques could be
used to form upper bounds, they are less useful in practice.

Define

Bern(w, r) := b(w)⊤(r − r̂) +
√

2V ar(w; r) log(1/ϵ)

+
1

3n
max
1≤i≤n

|wi|pi log(1/ϵ). (2)

Lemma 2 (Revenue Lower Bound). With probability at
least 1 − ϵ over the realization of (D1, . . . , Dn), we have
that R ≥ R̂(w)− Bern(w, r).

The lemma is a direct application of Bernstein’s inequality.

Remark 1 (Convexity in w). Since the expectation of a
convex function is convex, Eq. (1) shows the map w 7→
MSE(w, r) is convex in w for a fixed r. Similarly, the
function Bern(w, r) is convex in w for a fixed r since√

V ar(w; r) =
√

1
n2

∑n
i=1 w

2
i ri(pi − ri) is a weighted

ℓ2-norm, and, hence, w 7→ Bern(w, r) is a sum of convex
functions. We will leverage these convexity properties when
formulating optimization problems to compute our weights.

4 A BALANCED APPROACH FOR
OFF-POLICY EVALUATION IN
PRICING

The expression for mean squared error and the lower bound
in Eq. (2) depend on the unknown revenue vector r. Our
approach will be to compute weights w that optimize these
metrics over “plausible” worst case realizations of r. To
define “plausible,” we make the following assumption for
the remainder of the paper:

Assumption 1 (Perturbation Function is in RKHS). There
exists an RKHS H with kernel K(·, ·) and norm ∥ · ∥H such
that ∆(·, ·) ∈ H and ∥∆(·, ·)∥H < ∞.

Assumption 1 asserts that the unknown perturbation func-
tion is “smooth” in the sense that it has a bounded RKHS
norm. By suitably choosing the kernel K(·, ·), we can en-
force structural constraints on ∆(·, ·), e.g., that ∆(·, ·) is
linear in price or Sobolev smooth in the covariates. See
(Smola and Schölkopf, 2004) for details.

For notational convenience, we let Γ := ∥∆(·, ·)∥H. Define
the Graham matrix G ∈ R2n×2n by

Gij := K ((xi, pi), (xj , pj)) 1 ≤ i, j ≤ 2n.
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Under Assumption 1, the Representer Theorem (Wahba,
1990) implies that there exists α ∈ R2n such that

∆ = Gα and α⊤Gα = Γ2.

We further make the following common assumption.

Assumption 2. The Graham matrix G is invertible.

From Assumptions 1 and 2,

∆⊤G−1∆ = Γ2. (3)

Since d(x, p) ∈ [0, 1] for any x, p, we have

0 ≤ r ≤ p. (4)

Combining (3) and (4), we seek weights that minimize a
worst-case metrics ϕ(w, r) over plausible revenue func-
tions:

w∗ ∈ argmin
w

max
r

ϕ(w, r) (5)

s.t. 0 ≤ r ≤ p , (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Here ϕ(w, r) can be MSE(w, r) or Bern(w, r). We de-
note the corresponding solutions by wMSE and wB , re-
spectively.

Since in practice, we do not know the ground truth Γ, we
proxy Γ by user-specified constant Γ̂ in Problem 5. (We
discuss heuristics for estimating Γ̂ in Section 7.)

Remark 2 (Unconstrained Weights). In contrast to Kallus
(2018), we do not impose an additional simplex constraint
on the weights. Indeed, the value of the target policy need
not be on the same order of magnitude as the logging pol-
icy, e.g., when we raise price significantly. Thus, an ideal
set of weights might not satisfy such a constraint. That said,
our Bernstein variant (wB) does regularize away from
overly large weights via the weighted ℓ∞ norm in Eq. (2).
This regularization emerges naturally via the probabilistic
analysis rather than being imposed via an artificial sim-
plex, or normalizing, constraint.

Remark 3 (Honest vs. Dishonest Weights). When r̂, Γ̂,
and the kernel K(·, ·) are specified exogenously, i.e., in-
dependently of the demand realizations, both wMSE and
wB are honest. We study the corresponding estimators
R̂(wMSE) and R̂(wB) theoretically in Section 5.

In practice, we suggest fitting these parameters to the data
via the heuristics in Section 7. The resulting weights are
“dishonest.” While it might be possible to extend our theo-
retical results to this setting by assuming that (r̂, Γ̂,K(·, ·))
are chosen from a suitably low-complexity class, we do not
pursue this theoretical analysis here. Rather, we present
numerical evidence in Sec. 6 that even with dishonest
weights, our estimator performs well.

4.1 Solution Approach

We next discuss how to solve (5).

For a fixed w, consider the inner problem of finding the
worst case (WC) revenue:

rWC(w) := argmax
r

ϕ(w, r)

s.t. 0 ≤ r ≤ p , (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Let h(w) = ϕ(w, rWC(w)). Since w 7→ ϕ(w, r) is con-
vex for each r by Remark 1, Danskin’s Theorem (Bert-
sekas, 1997) shows that h(w)is in fact convex in w, and,
when rWC(w) is the unique optimizer,

∇h(w) = ∇wϕ(w, r)|r=rWC(w).

Thus, we can minimize h(w) using any number of
gradient-based algorithms. (In our numerical experi-
ments, we use the a first order trust-region method from
scipy.optimize.) Evaluating a gradient requires determin-
ing rWC(w), i.e., solving the inner problem.

That said, for large n, computing gradients in the Bernstein
objective is perhaps easier than for the MSE objective. For
the Bernstein objective, the inner maximization problem
can be reformulated as a concave quadratic maximization
problem in r (see Appendix B). By contrast, for the MSE
objective, the inner problem is an in-definite quadratic pro-
gramming problem. Such problems can, in the worst-case,
be NP-Hard, but are often practically solvable with modern
solvers for moderate sized instances. In our experiments,
we use Gurobi for both computations.

5 THEORETICAL RESULTS

Recall our approach to off-policy evaluation for pricing ap-
plications is partially motivated by the observation that in
typical pricing applications, the overlap between the log-
ging and evaluation policies may be small since both poli-
cies may entail little randomization. This feature precludes
the use of methods based on inverse propensity scores that
require sufficient overlap, including doubly-robust meth-
ods.

In this section we establish a “sanity-check” result, i.e., that
when sufficient overlap does exist, our method achieves
convergence rates similar to the doubly-robust methods.

Assumption 3 (Overlap). For all (p,x) ∈ R+ × X , if
g0(p,x) = 0 then g1(p,x) = 0.

From Assumption 3, the inverse propensity (IP) weights

W IP
i :=

g1(Pi,xi)

g0(Pi,xi)
(6)

are well-defined for all i = 1, . . . , n.
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5.1 Mean Squared Error

We first consider wMSE and the corresponding estimator
R̂(wMSE). Theorem 1 shows that true (unknown) MSE of
this estimator converges to zero at a rate of 1

n , despite not
knowing g0(·, ·), g1(·, ·) or Γ. (See Appendix C for proof.)

For convenience, let Zi = (xi, Pi) for i = 1, . . . , 2n.

Theorem 1 (Convergence of MSE). Suppose that

i) 1
n

∑n
i=1 E

[(
W IP

i − 1
)
K(Zn+i, Zn+i)

]
= O(1)

ii) 1
n

∑n
i=1 E

[
(W IP

i Pi)
2
]
= O(1)

Then, under Assumptions 1, 2, and 3, we have
MSE(wMSE , r) = Op

(
1
n

)
.

For clarity, the “probability” in Theorem 1 is taken over the
randomness in both {Di : i ∈ [n]} and {Pi : i ∈ [2n]}.

To help develop intuition around the assumptions of the
above theorem, consider the case where K(·, ·) is the gaus-
sian kernel, so that K(Zn+i, Zn+i) is almost surely a
constant. Then the first condition i) holds trivially since
E
[
W IP

i

]
= 1 by construction. The second condition

ii) essentially requires that for a typical point, the in-
verse propensity score weights are not too large – they are
O(1). This requirement is analogous to requiring sufficient
overlap between the logging and evaluation policies, since
W IP explodes as the overlap shrinks. In this sense, Theo-
rem 1 is a “sanity-check” result.

5.2 Bernstein Bound

We next consider wB and corresponding estimator
R̂(wB). Recall Lemma 2 shows that, with high proba-
bility, R̂(wB) − Bern(wB , r) lower bounds the true (un-
known) revenue. We will next show that this lower bound is
not too loose, specifically, that Bern(wB , r) = Op(1/

√
n).

(See Appendix D for proof.)

Theorem 2 (Safe Guarantee). Suppose that

i) 1
n

∑n
i=1 E

[(
W IP

i − 1
)
K(Zn+i, Zn+i)

]
= O(1)

ii) 1
n

∑n
i=1 E

[
(W IP

i Pi)
2
]
= O(1)

Then, under Assumptions 1, 2, and 3, we have
max

(
0,Bern(wB , r)

)
= Op

(
1√
n

)
.

In other words, the unknown true revenue cannot exceed
our estimate by more than Op(1/

√
n). In this sense, our

estimate provides a “safe” guarantee that is not too loose.

Remark 4 (One-Sided vs. Two-Sided Bounds). In The-
orem 2, we obtain a one-sided convergence result be-
cause we used a one-sided probability bound to define

Bern(w, r). If one sought a stronger two-sided conver-
gence, one could instead introduce an absolute value in
Eq. (2) and define the corresponding estimator.

In our numerical experiments, we found this “two-sided”
estimator performs worse than our proposed one-sided es-
timator. Hence we have chosen to only present theoretical
results for the one-sided estimator.

6 NUMERICAL RESULTS

We describe our numerical results, but please see our
GitHub for for reproducibility code and documentation. 1

6.1 Mean Squared Error

We first study wMSE and corresponding estimator
R̂(wMSE). We denote our corresponding method as
BOPE-B for “Balanced Off-Policy Evaluation for Binary
response.”

We compare the performance of the following methods on
synethetic and real-world datasets:

• (LASSO) A “direct” regression estimator correspond-
ing to R̂(0). This linear regression method with ℓ1
penalty predict the demand d(·, ·), and revenue is ob-
tained from multiplying it by the price. This serves as
a baseline.

• (SPPE) Semi-parametric policy evaluation (Cher-
nozhukov et al., 2019) which is an extension of the
classical DR method to a setting where the depen-
dence of the policy value on the treatment is known.
In pricing applications, this amounts to specifying a
priori how demand depends on price. In our experi-
ments, we apply the method assuming demand is lin-
ear in price.

• (BOPE) The Balanced Off-Policy Evaluation method
of Kallus (2018). This method can be seen as an in-
stance of Problem 5 with ϕ(w, r) = Bias2(w, r) +
1
n2σ

2
∑n

i=1 w
2
i for some user-defined σ2. Loosely,

this objective is the worst-case mean squared error if
piDi were homoscedastic random variables with vari-
ance σ2 and mean r(pi,xi). Thus, this method does
not exploit the binary structure of demand. We select
hyperparameters according to the heuristic proposed
in Kallus (2018) (see Section 7).

• (BOPE-B) Our proposed Balanced Off-Policy Evalu-
ation estimator for Binary response, R̂(wMSE), with
hyper-parameters chosen according to heuristics de-
scribed in Section 7.

1https://github.com/yzhao3685/
pricing-evaluation

https://github.com/yzhao3685/pricing-evaluation
https://github.com/yzhao3685/pricing-evaluation
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For each of BOPE-B, BOPE, and LASSO, we use a
LASSO linear regression to estimate r̂(·, ·).

Before delving into the details of the experiments, we sum-
marize our main findings:

• By exploiting the binary nature of demand, the BOPE-
B estimator generally has an advantage over the BOPE
estimator, and substantive advantage of the SPPE es-
timator.

• When the baseline LASSO, itself, has small MSE,
there is little room for improvement and both BOPE
and BOPE-B perform comparably. When the base-
line estimate is poor, both BOPE and BOPE-B peform
substantively better than baseline.

• Generally, the improvements in the BOPE-B estimator
over the BOPE estimator are driven by improvements
in both bias and variance, but in many cases, the im-
provement in variance is the dominant factor.

• The SPPE method can perform quite poorly when the
assumption on the apriori structure of demand does
not hold.

6.1.1 Synthetic Datasets

We present results for two different demand functions.

(a) A Simple Demand Function

The features xi are generated uniformly random from the
square [−1, 1]2. The logging pricing policy is Pi =
1
2x

⊤
i [1,−1] + 7 + ϵi, where ϵi ∼ N (0, 2) are i.i.d. noise.

The target pricing policy is Pi = 1
2x

⊤
i [1,−1] + b + ϵi,

where b is chosen from {2, 3, 4} and then fixed throughout
each experiment. We present results for each value of b.

The demand function is

d(x, p) =
1

4
+

3

4
σ

(
5− 1

2
p− x⊤[−1, 1]

)
,

where σ(y) =
1

1 + e−y
.

The sigmoid function σ(y) is used to ensure (i) demand is
within [0,1] (ii) demand decreases while price increases.

We fix the sample size to be n = 50 throughout the exper-
iment. We use the ground truth to simulate realizations of
the binary demand vector corresponding to these 50 sam-
ple points. We repeat the procedure 100 times to obtain the
bias, variance, and MSE of the four estimators. We perform
the experiment for 30 different random seeds and report the
average results in Table 1. Notice for each random seed, we
sample a different set of features and prices.

(b) A Different Demand Function

Metrics BOPE-B BOPE LASSO SPPE

Target Policy has b = 2.

MSE 1.63 1.83 1.71 1.08
Bias2 0.22 0.27 0.25 0.17
Variance 1.41 1.56 1.46 0.91

Target Policy has b = 3.

MSE 1.73 1.95 1.80 1.92
Bias2 0.33 0.40 0.35 0.17
Variance 1.40 1.55 1.45 1.75

Target Policy has b = 4.

MSE 1.50 1.81 1.57 1.60
Bias2 0.31 0.38 0.33 0.16
Variance 1.19 1.43 1.24 1.44

Table 1: Decomposition of the mean squared error. Syn-
thetic dataset setting (a).

We consider a different demand function

d(x, p) =
1

4
+

3

4
σ

(
5− 1

2
p− arctan(x1/x2)

)
.

Notice this demand function is more complicated than that
in setting (a). In the sigmoid function, we now have a non-
linear function arctan(x1/x2) instead of the linear func-
tion x⊤[−1, 1].

The rest of the set up is the same as in part (a). We repeat
the experiment for 30 different random seeds and report the
average results in Table 2.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy has b = 2.

MSE 1.18 1.47 1.21 1.43
Bias2 0.20 0.25 0.22 0.14
Variance 0.98 1.22 0.99 1.29

Target Policy has b = 3.

MSE 2.09 2.30 2.13 2.22
Bias2 0.52 0.57 0.54 0.46
Variance 1.57 1.73 1.59 1.76

Target Policy has b = 4.

MSE 1.99 2.18 2.05 2.42
Bias2 0.38 0.45 0.41 0.27
Variance 1.61 1.73 1.64 2.15

Table 2: Decomposition of the mean squared error. Syn-
thetic dataset setting (b).



Adam N. Elmachtoub, Vishal Gupta, Yunfan Zhao

6.1.2 A Real World Dataset

We conduct experiments on a real world dataset of auto
loan applications collected by a major auto lender in North
America. The dataset was first studied by Phillips et al.
(2015) and later used to evaluate personalized pricing algo-
rithms by Ban and Keskin (2021). The dataset includes data
collected over a period of several years. We present results
for 5 different subsets of the Nomis dataset. To train the
models, we use two covariates: FICO score and requested
loan amount. We use the offered interest rate as price. We
consider four target policies that take the original prices and
increase/decrease them by 5 or 10%.

We impute counterfactuals, including the expected de-
mand, using XGBoost trained on the entire subset to repre-
sent the ground truth model. We choose n = 50 and sample
these points randomly from the dataset. We use the ground
truth to simulation 100 realizations of the demand vector
corresponding to these 50 sample points, which we use to
obtain the bias and variance of the different estimators. We
repeat the experiment 30 times (with a different training set
each time) and report the average results.

In Table 3 and 4, we present results obtained from 2 dif-
ferent subsets of the Nomis dataset. In Appendix E, we
provide results obtained from 3 other subsets of the Nomis
dataset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.11 0.13 0.17 0.80
Bias2 0.03 0.04 0.06 0.34
Variance 0.08 0.09 0.11 0.46

Target Policy is 5% decrease.

MSE 0.03 0.05 0.10 0.20
Bias2 0.01 0.02 0.05 0.10
Variance 0.02 0.03 0.05 0.10

Target Policy is 10% increase.

MSE 0.37 0.41 0.44 1.23
Bias2 0.12 0.13 0.15 0.49
Variance 0.25 0.28 0.29 0.74

Target Policy is 10% decrease.

MSE 0.009 0.007 0.018 0.034
Bias2 0.003 0.003 0.008 0.012
Variance 0.006 0.004 0.010 0.022

Table 3: For each target policy and for each method, we
present the MSE, bias squared, and variance. Results ob-
tained from a subset of the Nomis dataset with Year = 2003,
Tier = 1, Car Type = Used, Term = 60, and Partner Bin = 1.
There are 1,065 datapoints in the subset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.39 0.46 0.45 0.80
Bias2 0.09 0.11 0.11 0.15
Variance 0.30 0.35 0.34 0.65

Target Policy is 5% decrease.

MSE 0.69 0.75 0.77 0.58
Bias2 0.25 0.29 0.30 0.14
Variance 0.44 0.46 0.47 0.44

Target Policy is 10% increase.

MSE 0.78 0.92 0.86 0.80
Bias2 0.26 0.30 0.30 0.13
Variance 0.52 0.62 0.56 0.67

Target Policy is 10% decrease.

MSE 0.38 0.56 0.36 0.38
Bias2 0.10 0.10 0.10 0.10
Variance 0.28 0.46 0.26 0.28

Table 4: For each target policy and for each method, we
present the MSE, bias squared, and variance. Results ob-
tained from a subset of the Nomis dataset with Year from
2002 to 2004, Tier = 3, Car Type = Used, Term = 48, and
Partner Bin = 3. There are 578 datapoints in the subset.

6.2 Bernstein Bounds

We next consider wB and the corresponding estimator
R̂(wB). We denote the corresponding method BOPE-
Bern. Since the primary motivation of BOPE-Bern was
to provide high-quality safe guarantees on the revenue, we
focus our experiments on such safe guarantees, and specif-
ically comparisons to BOPE.

Recall Lemma 2 provides a safe guarantee for any set of
honest weights. Hence, to form a safe guarantee for BOPE,
we take the weights computed by BOPE, and then solve
the inner maximization problem in (5) with the Bernstein
bound objective for those weights. Since the revenue must
be non-negative, we take the positive part of the optimal
value. If weights computed by BOPE were honest, this
procedure would yield a theoretically valid safe guaran-
tee. Insofar as we specify hyperparameters in BOPE in
a “dishonest” fashion, the resulting safe guarantee is only
heuristically valid. (The same criticism holds for our own
method, BOPE-B, making it a fair comparison.)

Our experiments suggest BOPE-B yields much better safe
guarantees than BOPE, while providing comparably good
estimates of the actual revenue.

In Tables 5 and 6, we present results on the two synthetic
datasets described in Section 6.1.1. In Tables 7 and 8,
we present results on subsets of the Nomis dataset. The
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Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

b = 2 3.51 1.07 ± 0.050 3.03 ± 0.054 0.10 ± 0.016 3.08 ± 0.053
b = 3 5.10 1.97 ± 0.098 4.51 ± 0.102 0.10 ± 0.024 4.53 ± 0.099
b = 4 4.95 1.81 ± 0.064 4.91 ± 0.048 0.04 ± 0.014 4.75 ± 0.054

Table 5: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in
BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from synthetic dataset (a) described
in Section 6.1.1.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

b = 2 3.86 1.29 ± 0.051 3.29 ± 0.054 0.08 ± 0.017 3.36 ± 0.054
b = 3 4.59 1.76 ± 0.082 4.30 ± 0.073 0.05 ± 0.021 4.29 ± 0.075
b = 4 5.23 1.57 ± 0.081 4.86 ± 0.072 0.01 ± 0.008 4.85 ± 0.075

Table 6: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in
BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from synthetic dataset (b) described
in Section 6.1.1.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

+5% 4.22 1.99 ± 0.020 4.13 ± 0.017 1.52 ± 0.031 4.24 ± 0.014
-5% 4.16 1.72 ± 0.007 3.87 ± 0.005 1.17 ± 0.009 4.05 ± 0.004

+10% 3.85 1.55 ± 0.034 3.70 ± 0.031 1.06 ± 0.043 3.84 ± 0.028
-10% 4.05 1.97 ± 0.003 3.82 ± 0.004 1.46 ± 0.005 4.08 ± 0.003

Table 7: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in
BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from a subset of the Nomis dataset
with year = 2003, Tier = 1, Car Type = Used, Term = 60, and Partner Bin = 1. There are 1,065 datapoints in the subset.

Target Policy R BOPE-Bern BOPE-B

Bern(wB , rWC(wB)) R̂(wB) Bern(wMSE , rWC(wMSE)) R̂(wMSE)

+5% 2.77 0.45 ± 0.021 2.42 ± 0.031 0.00 ± 0.000 2.52 ± 0.032
-5% 3.35 0.53 ± 0.028 2.64 ± 0.033 0.00 ± 0.000 2.75 ± 0.030

+10% 2.87 0.21 ± 0.018 2.45 ± 0.042 0.00 ± 0.000 2.48 ± 0.045
-10% 3.67 0.55 ± 0.027 2.81 ± 0.034 0.00 ± 0.000 2.93 ± 0.034

Table 8: We present average and standard error of revenue bounds, computed from 100 demand realizations. The bounds in
BOPE-B are the worst-case Bernstein bounds with BOPE-B weights. Results obtained from a subset of the Nomis dataset
with year from 2002 to 2004, Tier = 3, Car Type = Used, Term = 48, and Partner Bin = 3. There are 578 datapoints in the
subset.

experiment details are the same as described in Section 6.
For each method, we present the one-sided 90% confidence
lower bound on revenue (i.e. we choose ϵ = 0.1). For all
experiments in this subsection, we use sample size n = 50.

7 HYPER-PARAMETER HEURISTICS

Our heuristics for fitting hyper-parameters are inspired by
the heuristics of Kallus (2018) for BOPE.

Define the revenue random variable Ri := piDi. Loosely,
Kallus (2018) assumes that the Ri are homoscedastic with
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variance σ2 and mean r(pi,xi) for each i ∈ [n]. They
then compute the worst-case MSE of the weighted doubly
robust estimator over a suitable RKHS ball. It turns out the
resulting expression is identical to the expected MSE of this
same estimator assuming the unknown expected revenue
function was drawn from the following Gaussian Process
Prior:

r(·, ·) ∼ GP(r̂(·, ·), Γ̂2K(·, ·)). (7)

Said differently, the worst-case MSE is equal to an ex-
pected MSE under a suitable prior.

Thus, Kallus (2018) proposes to fit any hyperparameters
needed for BOPE by using standard marginal likelihood
techniques (Williams and Rasmussen, 2006, Chapt. 5) to
instead fit the above Gaussian Process prior and then “read
off” the parameters needed for BOPE.

We follow this same strategy in our experiments. For the
kernel, we adopt a Gaussian kernel but standardize each
component by its variance. Specifically, we take

K(z, z) := exp
(
−(z − z)⊤Σ−1(z − z)

)
,

where z = (p,x) ∈ R+ ×X and Σ is a diagonal matrix.

We then optimize the choice of Σ, σ2 and Γ̂2 to maximize
the marginal likelihood of the data under the prior Eq. (7)
assuming the likelihood Ri | r(·, ·) ∼ N (r(pi,xi), σ

2).
Because the Gaussian process prior and Gaussian likeli-
hood are conjugate, the resulting marginal likelihood has
a nice closed-form expression and the entire optimization
can be represented tractably. (Again, see Williams and Ras-
mussen (2006) for details.)

Unfortunately, for the case of BOPE-B, our expression
for the worst-case MSE does not seem to match the ex-
pected MSE under a simple prior. Hence, we heuristically
seek parameters that maximize the marginal likelihood of
the data under the model Eq. (7), but now assuming that
Di|Pi = pi ∼ Bernoulli(d(pi,xi)) and Ri = piDi. In
other words, we adjust the previous heuristic to account for
the binary nature of demand. For this binary likelihood, we
do not have conjugacy, and so there is no simple closed-
form expression for the marginal likelihood. Instead, we
follow Flaxman et al. (2015) and employ a Laplace approx-
imation to the marginal likelihood. The resulting approxi-
mate likelihood does admit a simple form and the resulting
maximal marginal likelihood optimization is tractable.

For our BOPE-B method, we optimize this approximate
marginal likelihood to fit Eq. (7), and read off the neces-
sary hyper-parameters.

8 CONCLUSION

In this paper, we have proposed a new approach for policy
evaluation tailored to pricing applications. Our approach-
ing uses special structures of pricing problems, including:

(i) demand observations are binary; (ii) revenue per cus-
tomer is nonnegative and no greater than the price offered;
(iii) revenue equals demand times price; (iv) the value of
the target policy can be very different from that of the log-
ging policy, and thus weights do not need to sum to n. We
compute weights to optimize either (i) the worst-case mean
squared error of our estimate or (ii) a worst-case lower
bound on the unknown revenue of the target policy. In both
cases, the worst-case is taken over a set of plausible revenue
functions described by an RKHS ball. We establish theo-
retical guarantees showing our weighted revenue estima-
tor converges under overlap assumptions and empirically
demonstrate the advantage of our approach using a real-
world pricing dataset where there is little overlap. Future
work might consider specialized algorithms for computing
the weights in our method given its special structure, e.g.,
adapting the Mirror Prox algorithm of (Nemirovski, 2004),
the primal-dual method in (Nesterov, 2007), or various al-
gorithms for saddle point problems (Juditsky et al., 2011;
Mertikopoulos et al., 2019).
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A Proof of Properties of Weighted Revenue Estimators

Proof of Lemma 1. By definition of R and rj , we have that R = 1
n

∑n
i=1 rn+i. Since E [piDi] = ri, it follows from the

definitions of R̂(w) that Bias(w, r) = E
[
R̂(w)−R

]
= b(w)⊤ (r − r̂).

For the variance, we see that

V ar(w, r) = Var(R̂(w)) = Var

(
1

n

n∑
i=1

wipiDi

)
=

1

n2

n∑
i=1

w2
i p

2
i Var (Di)

=
1

n2

n∑
i=1

w2
i p

2
i d(xi, pi)(1− d(xi, pi)) =

1

n2

n∑
i=1

w2
i ri(pi − ri) =

1

n2

n∑
i=1

w2
i piri −

1

n2

n∑
i=1

w2
i (ri)

2

= v(w)⊤r − 1

n2
r⊤
(

diag(w2
1, . . . , w

2
n) 0

0 0

)
r.

The expression for MSE follows from the usual bias-variance decomposition.

Proof of Lemma 2. Write

R̂(w)−R = b(w)⊤ (r − r̂) +

n∑
i=1

wi (piDi − ri)

The first term is the bias of our estimator, evaluated in Lemma 1. The second term is a sum of mean-zero independent
random variables. From (Boucheron et al., 2013, Thm. 2.10) and surrounding discussion (i.e. Bernstein’s inequality), we
have that with probability at least 1− ϵ,

1

n

n∑
i=1

wi(piDi − ri) ≤
√
2V ar(w; r) log(1/ϵ)− max1≤i≤n |wi|pi log(1/ϵ)

3n
.

Combining completes the proof.

B Reformulation of the Worst-Case Bernstein Inner Problem

For the Bernstein objective, the inner maximization problem can be reformulated as follows:

rWC(w) ∈ argmax
r,t

w⊤ (r − r̂) +
√
2 log(1/ϵ) · t

s.t. 0 ≤ r ≤ p

t2 ≤ v(w)⊤r − r⊤Q(w)r,

(r − r̂)
⊤
G−1 (r − r̂) ≤ Γ2,

where Q(w) := diag
(
w2

1, . . . ,w
2
n, 0, . . . , 0

)
∈ R2n×2n.

C Proof of Theorem 1

Recall the following classical fact about inverse propensity score weights:

Lemma 3. For any function f : R 7→ R and any i = 1, . . . , n such that the expectations exist, we have the following
identity:

E
[
W IP

i f(Pi)
]
= E [f(Pn+i)] .

Proof. Simply write the integrals:

E
[
W IP

i f(Pi)
]
=

∫
p∈R

f(p)
g1(p,xi)

g0(p,xi)
g0(p,xi)dp =

∫
p∈R

f(p)g1(p,xi)dp = E [f(Pn+i)] .
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In particular, the lemma implies that E
[
R(wIP /n)

]
= E [R] , i.e., using the (scaled) IP weights yields an unbiased

estimator.

Finally, for convenience, define the function

WCMSE(w; Γ̂) := max
r

∆⊤b(w)b(w)⊤∆+ Var(w; r̂ +∆).

s.t. 0 ≤ r ≤ π, (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

A challenge in our analysis that Γ̂ might be misspecified, i.e., it might be much smaller than Γ. Hence, WCMSE(w; Γ̂)
may not upper bound MSE(w, r).

The next lemma shows we can cover such misspecification by inflating the worst-case MSE by a constant.

Lemma 4. For any w, MSE(w, r) ≤ max
(
1, Γ2

Γ̂2

)
· WCMSE(w; Γ̂).

Proof. If Γ ≤ Γ̂, then the unknown revenue function r = r̂+∆ is feasible in the inner maximization defining wMSE(Γ̂),
so that MSE(wMSE(Γ̂); r̂ +∆) ≤ WCMSE(wMSE(Γ̂); Γ̂). We thus focus on the case when Γ > Γ̂ . Then,

MSE(w, r̂ +∆) = ∆⊤b(w)b(w)⊤∆+ Var(w; r̂ +∆)

=
Γ2

Γ̂2

(
Γ̂

Γ
∆⊤b(w)b(w)⊤∆

Γ̂

Γ

)
+ Var(w; r̂ +∆).

Now consider the variance term. From the proof of Lemma 1,

Var(w, r̂ +∆) =
1

n2

n∑
i=1

w2
i (r̂i +∆i)(pi − r̂i −∆i).

Since r̂i ≥ 0, and r̂i ≤ pi,

r̂i +∆i ≤
Γ

Γ̂

(
r̂i +

Γ̂

Γ
∆i

)
, and pi − r̂i −∆i ≤ Γ

Γ̂

(
pi − r̂i −

Γ̂

Γ
∆i

)
.

Substituting above shows that Var(w, r̂ +∆) ≤ Γ2

Γ̂2
Var(w, r̂ + Γ̂

Γ∆). In summary, we have shown that

MSE(w; r̂ +∆) ≤ Γ2

Γ̂2
MSE(w; r̂ +

Γ̂

Γ
∆).

To complete the proof, note that r̂ + Γ̂
Γ∆ is feasible in the optimization defining WCMSE(w; Γ̂).

Proof of Theorem 1. From Lemma 4, it suffices to show that WCMSE(wMSE(Γ̂); Γ̂) = Op(1/n). We show this latter
claim by relating wMSE(Γ̂) with the scaled inverse propensity weights W IP /n.

Specifically, since W IP /n is feasible in the outer optimization problem defining wMSE(Γ̂) we have that

WCMSE(wMSE(Γ̂); Γ̂)

≤ WCMSE(W IP /n; Γ̂)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

MSE(W IP /n; r)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

(r − r̂)⊤b(W IP /n)b(W IP /n)⊤(r − r̂) +
1

4n2

n∑
i=1

(W IP
i Pi)

2,

where the second to last inequality follows by expanding the feasible region and the last by upper bounding the variance
since di(1− di) ≤ 1

4 . We evaluate the maximization in closed form and round the constants up to 1 yielding
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WCMSE(wMSE(Γ̂); Γ̂) ≤ Γ̂2b(W IP )⊤Gb(W IP ) +
1

n2

n∑
i=1

(W IP
i Pi)

2. (8)

We tackle the first term by upper bounding its expectation and applying Markov’s inequality. Using the definition of G
and b(W IP ), write

E
[
b(W IP )⊤Gb(W IP )

]
=

1

n2

n∑
i=1

n∑
j=1

E
[
W IP

i W IP
j K(Zi, Zj)

]
+

1

n2

n∑
i=1

n∑
j=1

E [K(Zn+i, Zn+j)]

− 2

n2

n∑
i=1

n∑
j=1

E
[
W IP

i K(Zi, Zn+j)
]
,

where for convenience Zi = (xi, Pi) for i = 1, . . . , 2n.

Next fix some (i, j) with i ̸= j. By Lemma 3,

E
[
W IP

i W IP
j K(Zi, Zj)

]
= E

[
W IP

j K(Zn+i, Zj)
]
= E [K(Zn+i, Zn+j)] .

Similarly,
E
[
W IP

i K(Zi, Zn+i)
]
= E [K(Zn+i, Zn+i)] .

Hence, substituting above, we see that all terms with i ̸= j drop out and we have that

E
[
b(W IP )⊤Gb(W IP )

]
=

1

n2

n∑
i=1

E
[
(W IP

i )2K(Zi, Zi)
]
+

1

n2

n∑
i=1

E [K(Zn+i, Zn+i)]−
2

n2

n∑
i=1

E
[
W IP

i K(Zi, Zn+i)
]

=
1

n2

n∑
i=1

E
[
wIP

i K(Zn+i, Zn+i)
]
+

1

n2

n∑
i=1

E [K(Zn+i, Zn+i)]−
2

n2

n∑
i=1

E [K(Zn+i, Zn+i)]

=
1

n2

n∑
i=1

E
[
(W IP

i − 1)K(Zn+i, Zn+i)
]
,

by applying Lemma 3 again.

By assumption i), this last term is O(1/n). Thus, by Markov’s inequality, the first term of Eq. (8) is Op(1/n).

For the second term of Eq. (8), observe that

E

[
1

n2

n∑
i=1

(
W IP

i Pj

)2]
=

1

n

(
1

n

n∑
i=1

E
[(
W IP

i Pi

)2])
= O(1/n),

by assumption ii). Thus, by Markov’s inequality, the second term of Eq. (8) is also Op(1/n).

Combining these two pieces completes the proof.

D Proof of Theorem 2

For convenience, define the functions

qmax(w) :=
1

n
max
1≤i≤n

|wi| pi

WCBern(w; Γ̂) := max
r

b(w)⊤(r − r̂) +
√

2Var(w; r) log(1/ϵ) +
qmax(w) log(1/ϵ)

3
.

s.t. 0 ≤ r ≤ π, (r − r̂)⊤G−1(r − r̂) ≤ Γ̂2.

Our proof technique follows Theorem 1 closely.
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Lemma 5. For any w, max(Bern(w, r̂ +∆), 0) ≤ max
(
1, Γ

Γ̂

)
· WCBern(w; Γ̂).

Proof. Notice by considering the feasible solution r = r̂ that WCBern(w, Γ̂) ≥
√
2 log(1/ϵ)Var(w, r̂) +

qmax(w) log(1/ϵ)
3 ≥ 0. Hence, when Bern(w, r̂ +∆) ≤ 0, the inequality is trivially satisfied.

Similarly, when Γ ≤ Γ̂, r feasible in the inner maximization defining wB(Γ̂), so that Bern(wB(Γ̂); r) ≤
WCBern(wB(Γ̂); Γ̂).

We thus focus on the case when Γ > Γ̂ and Bern(w, r̂ +∆) ≥ 0. Then,

Bern(w, r̂ +∆) = b(w)⊤∆+
√

2 log(1/ϵ)Var(w; r̂ +∆) +
qmax(w) log(1/ϵ)

3

≤ Γ

Γ̂

(
b(w)⊤∆

Γ̂

Γ
+

qmax(w) log(1/ϵ)

3

)
+
√
2 log(1/ϵ)Var(w; r̂ +∆),

since Γ/Γ̂ > 1 and qmax ≥ 0 by construction.

Now consider the variance term. From the proof of Lemma 1,

Var(w, r̂ +∆) =
1

n2

n∑
i=1

w2
i (r̂i +∆i)(pi − r̂i −∆i).

Since r̂i ≥ 0, and r̂i ≤ pi,

r̂i +∆i ≤
Γ

Γ̂

(
r̂i +

Γ̂

Γ
∆i

)
, and pi − r̂i −∆i ≤ Γ

Γ̂

(
pi − r̂i −

Γ̂

Γ
∆i

)
.

Substituting above shows that Var(w, r̂ +∆) ≤ Γ2

Γ̂2
Var(w, r̂ + Γ̂

Γ∆). In summary, we have shown that

Bern(w; r̂ +∆) ≤ Γ

Γ̂
Bern(w; r̂ +

Γ̂

Γ
∆).

To complete the proof, note that r̂ + Γ̂
Γ∆ is feasible in the optimization defining WCBern(w; Γ̂).

We can now prove our main result.

Proof of Theorem 2. From Lemma 5, it suffices to show that WCBern(wB(Γ̂); Γ̂) = Op(1/
√
n). We show this latter claim

by relating wB(Γ̂) with the scaled inverse propensity weights W IP /n.

Specifically, since W IP /n is feasible in the outer optimization problem defining wB(Γ̂) we have that

WCBern(wB(Γ̂); Γ̂)

≤ WCBern(W IP /n; Γ̂)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

Bern(W IP /n; r)

≤ max
r:(r−r̂)⊤G−1(r−r̂)≤Γ̂2

b(W IP /n)⊤(r − r̂) +

√
2 log(1/ϵ)

4

√√√√ 1

n2

n∑
i=1

(W IP
i Pi)2 +

qmax(W
IP /n) log(1/ϵ)

3
,

where the second to last inequality follows by expanding the feasible region and the last by upper bounding the variance
since dj(1− dj) ≤ 1

4 . We evaluate the maximization in closed form and round the constants up to 1 yielding

WCBern(wB(Γ̂); Γ̂) ≤ Γ̂
√

b(W IP )⊤Gb(W IP ) +
√
log(1/ϵ)

√√√√ 1

n2

n∑
i=1

(W IP
i Pi)2 + qmax(W

IP /n) log(1/ϵ). (9)
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We tackle the first term by upper bounding its expectation and applying Markov’s inequality. Specifically,
E
[√

b(W IP )⊤Gb(W IP )
]
≤
√

E [b(W IP )⊤Gb(W IP )] by Jensen’s inequality.

Following an identical argument to that in Theorem 1 which uses assumption i), we have that E
[
b(W IP )⊤Gb(W IP )

]
=

O(1/n). Thus, by Markov’s inequality, the first term of Eq. (9) is Op(1/
√
n).

For the second term of Eq. (9), observe again by Jensen’s inequality that

E

√√√√ 1

n2

n∑
i=1

(
W IP

i Pi

)2 ≤ 1√
n

√√√√ 1

n

n∑
i=1

E
[(
W IP

i Pi

)2]
= O(1/

√
n),

again by assumption ii). Thus, by Markov’s inequality, the second term of Eq. (9) is also Op(1/
√
n).

Finally, for the last term, observe that

qmax(W
IP /n) =

1

n
max

i

∣∣W IP
i Pi

∣∣ ≤ 1

n

√√√√ n∑
i=1

(
W IP

i Pi

)2
,

since the ℓ2-norm bounds the ℓ∞-norm. Taking expectations and applying the above inequality with Markov’s inequality
shows the last term is also Op(1/

√
n).

Combining these three pieces completes the proof.

E Additional Experiments

We present results for 3 more subsets of the Nomis dataset. Apart from the subset of data used, the experiment set up are
same as that in Table 3.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.60 0.69 0.90 3.15
Bias2 0.28 0.32 0.43 1.51
Variance 0.32 0.37 0.47 1.64

Target Policy is 5% decrease.

MSE 0.09 0.09 0.18 0.71
Bias2 0.04 0.04 0.09 0.34
Variance 0.05 0.05 0.09 0.37

Target Policy is 10% increase.

MSE 1.77 1.94 2.22 5.78
Bias2 0.84 0.92 1.06 2.79
Variance 0.93 1.02 1.16 2.99

Target Policy is 10% decrease.

MSE 0.02 0.02 0.03 0.08
Bias2 0.01 0.01 0.01 0.03
Variance 0.01 0.01 0.02 0.05

Table 9: Decomposition of the mean squared error. Tier = 2, Car Type = Used, Term = 60, Partner Bin = 1, and year 2003.
There are 609 datapoints in the subset.
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Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.54 0.62 0.61 0.64
Bias2 0.12 0.14 0.15 0.06
Variance 0.42 0.48 0.46 0.59

Target Policy is 5% decrease.

MSE 0.47 0.54 0.48 0.47
Bias2 0.10 0.10 0.11 0.08
Variance 0.37 0.44 0.37 0.39

Target Policy is 10% increase.

MSE 0.98 1.13 1.10 1.23
Bias2 0.31 0.37 0.37 0.22
Variance 0.67 0.76 0.73 1.01

Target Policy is 10% decrease.

MSE 0.55 0.58 0.51 0.90
Bias2 0.11 0.09 0.10 0.25
Variance 0.44 0.49 0.41 0.65

Table 10: Decomposition of the mean squared error. Tier = 3, Car Type = Used, Term = 72, Partner Bin = 3, and year
2002-2004. There are 667 datapoints in the subset.

Metrics BOPE-B BOPE LASSO SPPE

Target Policy is 5% increase.

MSE 0.39 0.52 0.49 1.11
Bias2 0.08 0.12 0.12 0.24
Variance 0.31 0.40 0.37 0.87

Target Policy is 5% decrease.

MSE 0.66 0.81 0.78 0.38
Bias2 0.24 0.29 0.30 0.06
Variance 0.42 0.52 0.48 0.32

Target Policy is 10% increase.

MSE 0.64 0.88 0.75 1.08
Bias2 0.20 0.25 0.25 0.17
Variance 0.44 0.63 0.50 0.91

Target Policy is 10% decrease.

MSE 0.50 0.56 0.50 0.46
Bias2 0.14 0.15 0.15 0.10
Variance 0.36 0.41 0.35 0.36

Table 11: Decomposition of the mean squared error. Tier = 3, Car Type = Used, Term = 60, Partner Bin = 3, and year
2002-2004. There are 1851 datapoints in the subset.
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