
Improved Representation Learning Through Tensorized Autoencoders

Pascal Esser∗ Satyaki Mukherjee∗ Mahalakshmi Sabanayagam∗

Technical University of Munich Technical University of Munich Technical University of Munich

Debarghya Ghoshdastidar
Technical University of Munich

Abstract

The central question in representation learning is
what constitutes a good or meaningful represen-
tation. In this work we argue that if we consider
data with inherent cluster structures, where clus-
ters can be characterized through different means
and covariances, those data structures should be
represented in the embedding as well. While Au-
toencoders (AE) are widely used in practice for
unsupervised representation learning, they do
not fulfil the above condition on the embedding
as they obtain a single representation of the data.
To overcome this we propose a meta-algorithm
that can be used to extend an arbitrary AE archi-
tecture to a tensorized version (TAE) that allows
for learning cluster-specific embeddings while
simultaneously learning the cluster assignment.
For the linear setting we prove that TAE can re-
cover the principle components of the different
clusters in contrast to principle component of
the entire data recovered by a standard AE. We
validate this on planted models and for general,
non-linear and convolutional AEs we empirically
illustrate that tensorizing the AE is beneficial in
clustering and de-noising tasks.

1 INTRODUCTION AND MOTIVATION

With the increasing use of very high dimensional data an
important task is to find a good lower dimensional represen-
tation either to reduce noise in the data or to overcome the
curse of dimensionality. An obvious question is therefore,
what is a good representation and how can we guarantee
that a given algorithm obtains it? Conceptually a latent rep-

Proceedings of the 26th International Conference on Artificial In-
telligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

resentation should preserve certain structures of the data,
while removing noise dimensions. Naturally there are dif-
ferent perspectives on what could constitute an important
structure of the given data, such as an underlying topology
or clustering structures. In this work we consider the latter
from a statistical perspective and more specifically from
the perspective of its covariance structure and latent repre-
sentation. Suppose our dataset consists of 𝑘 clusters that
each have some inherent structure. Then we would want
those separate structures to be again represented in the
latent space. One of the most common approaches in deep
learning for obtaining latent representations are Autoen-
coders (AE) (Kramer, 1991). Formally we write a general
AE as the following optimization problem

min
Φ,Ψ

‖𝑿 − 𝑓Φ (𝑔Ψ (𝑿))‖ − 𝜆 ∗ penalty, (1)

where 𝑿 ∈ R𝑑×𝑛 is the centred data input matrix consisting
of 𝑛 samples of dimension 𝑑 and 𝑿̂ = 𝑓Φ (𝑔Ψ (𝑿)) the recon-
struction. Let 𝑔Ψ(⋅) be the encoder function, parameterized
by Ψ mapping from the data dimension 𝑑 onto the latent
dimension ℎ and 𝑓Φ(⋅) the decoder function parameterized
by Φ mapping back to 𝑑 . 𝜆 determines the strength of the
penalty, that is chosen depending on the task or desired
properties of the parameters.

It has been shown that in the linear setting the encoder
recovers the principal components of the full dataset (Kunin
et al., 2019). However this one representation does not nec-
essarily capture the underlying cluster structure well as
illustrated in Figure 1. A classical example of this is the
so called simpson’s paradox (Simpson, 1951), a known phe-
nomenon in statistics where the trend in clusters does not
align with the trend that appears in the full dataset, often
observed in social-science and medical-science statistics
(Wagner, 1982; Holt, 2016). Figure 1 shows that one repre-
sentation for all the data points (shown in black) does not
capture the structures of individual clusters well (shown
by the colored arrows). To be able to model such structures
we therefore introduce a modified AE architecture we term

*Equal contribution.

Improved Representation Learning Through Tensorized Autoencoders

0.6 0.7 0.8 0.9 1.0
normalized culmen depth

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

no
rm

al
ize

d
cu

lm
en

 le
ng

th

Adelie
Chinstrap
Gentoo

Figure 1: Illustration simpson’s paradox in the ‘penguin
dataset’ (Gorman et al., 2014). The three clusters and their
first principal component are plotted in red, blue and green
respectively and the principal direction for the full dataset
in black.

Figure 2: Illustration of the tensorized AE. An input 𝑿 𝑖 , is
passed through 𝑘 AEs, with 𝑘-means penalty latent space
that reconstruct 𝑿 𝑖 . 𝑺𝑖,𝑗 weight the outputs of the AEs by
class assignment.

Tensorized Autoencoders (TAE) that, in the linear setting,
provably recovers the principal directions of each cluster
while jointly learning the cluster assignment. This new AE
architecture considers a single AE for each cluster allowing
us to learn distinct cluster representations and is illustrated
in Figure 2. Important to note that while this increases the
number of parameters, the representation still remains the
same dimension as before. In particular this still experi-
mentally performs better than a single autoencoder with
𝑑 × 𝑘 encoding dimension. Formally we change (1) to the
following

min
{Φ𝑗 ,Ψ𝑗}𝑘𝑗=1 ,𝑺

𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑺𝑗,𝑖 [
‖‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑓Φ𝑗 (𝑔Ψ𝑗 (𝑿 𝑖 − 𝑪 𝑗))

‖‖‖
2

−𝜆 ∗ penalty𝑗] , (2)

where 𝑺 is a 𝑘 × 𝑛 matrix, such that 𝑺𝑗,𝑖 is the probability
that data point 𝑖 belongs to class 𝑗, 𝑔Ψ𝑗 (⋅) and 𝑓Φ𝑗 (⋅) are the
encoder and the decoder functions respectively specific to
points in class 𝑗, and 𝐶𝑗 is a parameter centering the data
passed to each autoencoder specific to class 𝑗. Specifically a
𝑘-means (Macqueen, 1967) penalty is considered to enforce

a cluster friendly structure in the latent space (similar to
the one proposed in Yang et al. (2017)).

To further illustrate the importance of the new formu-
lation (2), that provides cluster specific representations,
we look at two important representations learning down-
stream tasks.

Clustering. The main goal of clustering is to group sim-
ilar objects into the same class in an unsupervised setting.
While this problem has been extensively studied in tradi-
tional machine learning the time complexity significantly
increases with high dimensional data and therefore existing
works focus on projecting data into low-dimensional spaces
and then cluster the embedded representations (Roth and
Lange, 2003; Tian et al., 2014; Wang et al., 2016). Several
methods have been developed that use deep unsupervised
models to learn representations with a clustering focus that
simultaneously learns feature representations and cluster
assignments using deep neural networks (Xie et al., 2016;
Dizaji et al., 2017; Wang et al., 2016; Xie and Xing, 2015;
Wang et al., 2015). However all of these algorithms learn
a single representation for the full dataset. Assuming we
use an AE for learning the representation we formally con-
sider (1) and perform the clustering on 𝑔Ψ (𝑿) instead of
𝑿 . Now the question is, is one representation of the data
sufficient? We investigate this question by considering
different planted datasets as shown in Figure 3, where we
compare the clustering obtained from 𝑘-means ++ (Arthur
and Vassilvitskii, 2007) on the original features, the embed-
ding obtained by a standard AE and the proposed TAE. In
addition we also consider a simple variational autoencoder
(VAE) (Kingma and Welling, 2013) and Deep Clustering
(DC) (Yang et al., 2017) and observe that in this setting
they perform very similar to standard AE. Therefore for
the later experiments we only focus on the comparison to
𝑘-means ++ and standard AE. The advantage of TAE is that
it captures the directions of the clusters whereas simple
AE mis-classifies some points in clusters that are close in
euclidean space. For those datasets the distance function
is inherently linked to the shape of the clusters. We ex-
tend this analysis to real world data and more complex AE
architectures in Section 3.

De-noising. Consider an image corrupted by noise, the
task is to remove the noise from the image. In this setting a
good representation is one that only returns the true data
structure and removes the noise. Here we are not directly
interested in the embedding but only in the obtained recon-
struction of the decoder. However we again conjecture that
having separate embeddings for each cluster is beneficial
as it allows to learn more cluster specific representations.

We consider a De-Noising AE (DAE), formally defined
(Buades et al., 2005; Cho, 2013) by considering 𝑿+𝜀 as input
in Eq 1 where 𝜀 is an additive noise term and the goal is to
remove the noise from the data. An additional advantage in
the denosing setting is that the cluster structure obtained

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

k-
m

ea
ns

 +
+

D1: Parallel D2: Orthogonal D3: Triangle
AE

TA
E

D4: Axis Parallel

0.0

0.2

0.4

0.6

0.8

1.0

AR
I

Cluster Accuracy

K-means ++
AE

TAE
VAE

DC

D1 D2 D3 D4

10−1

100

M
SE

Denoising Error
AE TAE VAE DC

Figure 3: Illustration for cases where separate embedding for clusters are beneficial. Left grid. Plotted is the true data in
R2. Top row: Clustering obtained from 𝑘-means ++ on the original features. Middle row: 𝑘-means ++ on the embedding
obtained by a standard AE. Bottom row: 𝑘-means ++ on the proposed TAE. Right plots. Top: alignment of clustering
with true labels measured by ARI (Rand, 1971). Bottom MSE for denosing on the same datasets.

by the TAE does not have to match the one imposed by the
ground truth. This is beneficial in cases where there is not a
unique way to cluster given data (e.g. when clustering cars,
one might group by color or by type). We see this advantage
empirically illustrated in Figure 3, right, where we see
that the MSE of the simple AE is consistently significantly
higher than for the TAE. We further validate this intuition
empirically in Section 3.

Contributions This paper provides the following main
contributions. (a) To learn different representations for
each cluster in the data we formally propose tensorized
autoencoders with 𝑘-means penalty in section 2, that simul-
taneously learns the embedding and cluster assignments.
(b) In section 2.2 we prove that this architecture with linear
encoder and decoder recovers the ℎ leading eigenvectors
of the different clusters instead of the eigenvectors of the
whole data-set as done by standard linear AEs. (c) Empiri-
cally we demonstrate in section 3 that the general concept
can be extended efficiently to the non-linear setting as well
and TAE perform well in clustering and de-noising tasks
on real data. (d) Finally in section 4 we show how TAE
are connected to Expectation maximization. We provide
related works and concluding remarks in sections 5–6 and
all the proofs in Appendix.
Notation. We denote vectors as lowercase bold, 𝒂, ma-

trices as uppercase bold, 𝑨 and tensors calligraphic as .
Let ‖ ⋅ ‖2 be the standard square norm and a function 𝑓 pa-
rameterized by Θ as 𝑓Θ. Furthermore let 1𝑛 be the all ones
vector of size 𝑛 and I𝑛 the 𝑛 × 𝑛 identity matrix.

2 ANALYSIS OF TENSORIZED LINEAR AE
WITH K-MEANS PENALTY

To get a better understanding of the behaviour of the pro-
posed architecture in (2), we consider a simple linear-AE as
this allows us to analytically derive the optimal parameter-
ization. We extend the analysis empirically to a non-linear
setting in section 3.

2.1 Formal Setup

For simplicity consider the clustering setting where 𝑿 ∶=
𝑿 ∈ R𝑑×𝑛 , with 𝑛 being the number of data-points and 𝑑 the
feature dimension. Note that the analysis extends directly
to the de-noising setting as well. For a two layer linear
AE, let  ∈ R𝑘×ℎ×𝑑 and  ∈ R𝑘×𝑑×ℎ be the encoding and
decoding tensor respectively. Then for each 1 ≤ 𝑗 ≤ 𝑘, let
𝑼 𝑗 ∈ Rℎ×𝑑 , be the encoding matrix by taking the appropriate
slice of the tensor  . Essentially 𝑼 𝑗 corresponds to the
encoding function of the 𝑗’th cluster. We assume 𝑼 𝑗 is a
projection matrix i.e. 𝑼 𝑗𝑼 𝑇

𝑗 = Iℎ. Similarly define 𝑽 𝑑×ℎ
𝑗

from the decoder 𝑽 (injection matrix).Finally let 𝑪 𝑗 be the
cluster centers and 𝜆 be the weight assigned to the penalty.
We treat it as a hyperparameter. From there we define the
loss function as

𝜆(𝑿) ∶=
𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑺𝑗,𝑖[
‖‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑽 𝑗𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)

‖‖‖
2

− 𝜆 ‖‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)
‖‖‖
2

],

s.t. 1𝑇
𝑘 𝑺 = 1𝑇

𝑛 , 𝑺𝑗,𝑖 ≥ 0, (3)

where we define 𝑺 to be a 𝑘 × 𝑛 matrix, such that 𝑺𝑗,𝑖 is the
probability that datapoint 𝑖 belongs to class 𝑗. To ensure
that the entries can be interpreted as probabilities we im-
pose the above stated constraints. To further illuminate the

Improved Representation Learning Through Tensorized Autoencoders

intuition behind 𝑺 consider a dataset {𝑿 𝑖}𝑛𝑖=1 where asso-
ciated to each datapoint 𝑿 𝑖 there are probabilities {𝑺𝑗,𝑖}𝑘𝑗=1
corresponding to how certain we are that 𝑿 𝑖 is sampled
from the true distribution. These {𝑺𝑗,𝑖} are latent variables
that we learn from the dataset.

2.2 Parameterization at optimum

For the linear setting we derive the parameterization at the
optimum but for reference we first recall the optimum of a
standard linear AE:
Theorem 2.1 (Parameterization at Optimal for Linear AE).
Baldi and Hornik (1989) showed that linear AE without re-
gurlarization finds solutions in the principal component span-
ning subspace, but the individual components and correspond-
ing eigenvalues cannot be recovered. Kunin et al. (2019) show
that 𝑙2 regularization reduces the symmetry solutions to the
group of orthogonal transformations. Finally Bao et al. (2020)
show that non-uniform 𝑙2 regularization allows linear AE to
recover ordered, axis-aligned principal components.

From this we note that we only learn a single repre-
sentation for the data and therefore cannot capture the
underlying cluster structures. To give the intuition of this
cost, before we characterize the optimal parameters of a
linear TAE, lets consider a single datapoint 𝑿 𝑖 assigned to
cluster 𝑪 𝑗 and its cost is,

𝑺𝑗,𝑖 [
‖‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑽 𝑗𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)

‖‖‖
2
− 𝜆 ‖‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)

‖‖‖
2

] .

Ignoring𝑪 𝑗 , the cost is simply the cost of𝑿 𝑖 in AE weighted
by the probability of it belonging to cluster 𝑗 (i.e. 𝑺𝑗,𝑖). With
this intuition, we characterize the optimal parameters of a
linear TAE in the following theorem.
Theorem 2.2 (Parameterization at Optimal for TAE). For
0 < 𝜆 ≤ 1, optimizing Eq. 3 results in the parameters at the
optimum satisfying the following:

i) Class Assignment. While in Eq. 3 we define 𝑺𝑗,𝑖 as
the probability that 𝑿 𝑖 belongs to class 𝑗 at the optimal
𝑺𝑗,𝑖 = 1 or 0 and therefore converges to a strict class
assignment.

ii) Centers. 𝑪 𝑗 at optimumnaturally satisfies the condition

𝑪 𝑗 =
∑𝑖=1 𝑺𝑗,𝑖𝑿 𝑖

∑𝑖=1 𝑺𝑗,𝑖
.

iii) Encoding / Decoding (learned weights). We first
show that 𝑽 𝑇

𝑗 = 𝑼 𝑗 , and define

𝚺̂𝑗 ∶=
𝑛

∑
𝑖=1

𝑺𝑗,𝑖 (𝑿 𝑖 − 𝑪 𝑗) (𝑿 𝑖 − 𝑪 𝑗)
𝑇 ,

then the encoding corresponds to the top ℎ eigenvectors
of Σ̂𝑗 .

At the above values for the parameters, 𝑪 𝑗 and 𝚺̂𝑗 acts as
estimates for the means and covariances for each specific
class respectively. Thus assuming that 𝑺 gives reasonable
cluster assignments, 𝑼 𝑗 and 𝑽 𝑗 combined gives the prin-
cipal components of each cluster. While points ii) and iii)
follow directly by deriving the parameterization at the op-
timal and we give the full derivation in the supplementary
material, we give a short intuition on i) here. First we note
that as per our current definition  is linear in 𝑺. Thus the
global optimum of the loss with respect to the aforemen-
tioned linear conditions on 𝑺 must be at some vertex of
the convex polytope defined by the conditions. Since these
conditions are 1𝑇

𝑘 𝑺 = 1𝑇
𝑛 and 𝑺𝑗,𝑖 ≥ 0, at any of the vertices

of the corresponding polytope we have that 𝑺𝑗,𝑖 = 1 or 0.
This combined with the fact that at global optimum 𝑪 𝑗 sat-
isfies the condition 𝑪 𝑗 =

∑𝑖=1 𝑺𝑗,𝑖𝑿 𝑖
∑𝑖=1 𝑺𝑗,𝑖

implies that the global
optimum of the loss  in this expanded space is precisely
same as that of the cost in the strict case we discuss in
remark 2.1. This is important as it shows that even though
we allow the optimization using gradient decent the pa-
rameterization at the optimal assigns each datapoint to one
AE.

Let us compare Theorem 2.2 to the general notion pro-
posed in the introduction: We would like an approach to
obtain a separate meaningful representation (in the sense of
recovering principal directions) for each cluster structure
without having prior knowledge of which cluster a given
datapoint belongs to. Theorem 2.2 shows that the proposed
tensorized AE (Eq. 3) fulfills those requirements as TAE
recover the top 𝑘 eigenvectors for each cluster separately.
Remark 2.1 (Strict cost function). Since we showed in
Theorem 2.2 that Eq. 3 converges to a strict class assignment
we can alternatively also define the loss function directly
with strict class assignments as follows: Let 𝑿 𝑆(𝑖) be the
center of all data-points which 𝑿 𝑖 belongs to. We define
the loss function with strict class assignments as

min
𝑆

min
𝑽 𝑆(𝑖) ,𝑼 𝑆(𝑖)

min
𝐶𝑆(𝑖)

𝑛

∑
𝑖=1

‖‖‖(𝑿 𝑖 − 𝑿 𝑆(𝑖)
) − 𝑽 𝑆(𝑖)𝑼 𝑆(𝑖)(𝑿 𝑖 − 𝑿 𝑆(𝑖)

)
‖‖‖
2

− 𝜆 ‖‖𝑼 𝑆(𝑖)𝑿 𝑖 − 𝑪𝑆(𝑖)‖‖
2

Similar to Theorem 2.2 we again characterize the parame-
ters at the optimal and most importantly note that with

Σ̂𝑗 =
∑𝑖∶𝑆(𝑖)=𝑗 (𝑿 𝑖 − 𝑿 𝑗

)(𝑿 𝑖 − 𝑿 𝑗
)
𝑇

|{𝑖 ∶ 𝑆(𝑖) = 𝑗}|
,

as long as 𝜆 < 1, the optimal projection 𝑈𝑗 for the above
cost is exactly the top ℎ eigenvectors of Σ̂𝑗 .

2.3 Optimization

While in the previous section we discussed the optimum
that is obtained by solving the optimization problem in Eq. 3
we now look at how to practically train the tensorized AE.

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

The general steps for learning the encoder and decoder are
summarized as follows, where step 2 and 3 are repeated
until convergence.

1. Initialize weights and cluster assignments according
to 𝑘-means ++ (Arthur and Vassilvitskii, 2007)1.

2. Update the weights for the encoder and decoder
(using e.g. a GD step).

3. Update the class assignment 𝑺. To do so we con-
sider a number of different options:
Option 1: using a GD step under constraints 1𝑇

𝑘 𝑺 =
1𝑇
𝑛 , 𝑺𝑗,𝑖 ≥ 0.

Option 2: using an un-constrained GD step and project
𝑺 back onto the constraints.
Option 3: using a Lloyd’s step2 on a strict class-
assignment.

The choice of options in step 3 mostly depends on the
framework of implementation. As noted, 𝑺 as defined in
Eq. 3 allows us to perform gradient updates on the class
assignments. The advantage is that since 𝑺 is not defined
binary, frameworks such as CVXPY (Diamond and Boyd,
2016) or Keras (Chollet et al., 2015) can be used to perform a
constrained gradient steps, however in popular frameworks
such as PyTorch (Paszke et al., 2019), that as of the time
of writing this paper do not directly support constraint
optimization Option 3 can be used.

While the general goal of the proposed setup is to learn
good data representations, the exact train and test steps
depend on the downstream task. In this work there are
two main settings. For instance in clustering we directly
apply the above steps and jointly learn the clustering and
embedding. While in a simple AE we would have to apply
a clustering algorithm onto the latent representations, in
TAE the above steps directly provide the clusters. While
for the linear case we prove that 𝑺𝑖𝑗 is binary, in practice,
especially with more complex networks one has to compute
argmax𝑗 𝑺𝑖𝑗 to determine the class assignment. On the other
hand in de-nosing we again jointly learn the embedding
and cluster assignment but only train on the train set and
in a second step use the learned TAE to de-noise images
in the test set. While for a simple AE we can directly pass
test data, with a TAE we use the approach presented in
section 2.4 that allows us to assign the new datapoint to
the appropriate AE to process it. This same setup could
be used for tasks such as super resolution or inpainting.
Importantly, while the results from Theorem 2.2 hold only

1Note on the initialization: while in this algorithm we consider
a 𝑘-means++ in cases where we have access to some labels (e.g.
in a semi-supervised setting) this can be replaced by considering
random points with given labels for each cluster as initializations.

2Here the Lyod’s step solves the linear problem on 𝑺 assuming
all other parameters are fixed.

for the exact linear formulation in Eq. 3, the main idea
and training steps can be extended to arbitrary encoding
and decoding functions which we illustrate empirically in
section 3.

2.4 Test on new data

In the context of De-noising and validating clustering on
an independent test dataset or other downstream tasks,
we generally need a way of encoding and decoding a new
or test datapoint. In contrast to AE, where one simply
passes any new data through the trained network, TAE
additionally decides on the latent variable 𝑺. Note then that
essentially in our model the actual parameters are𝑪 𝑗 , 𝑼 𝑗 , 𝑽 𝑗
whereas 𝑺 is simply an encoding of our confidence of what
the latent variable or label is for each 𝑿 𝑖 . Thus to run the
TAE on a new datapoint, we have to first estimate this
latent variable.

Following this idea, let 𝒔 ∈ R𝑘 , with its 𝑗’th coordinate
being 𝒔𝑗 .3 Then given a new datapoint 𝑿 𝑖 and given the
trained parameters 𝑪 𝑗 , 𝑼 𝑗 , 𝑽 𝑗 , we first find 𝒔̂ such that

𝒔̂ = argmin
1𝑇
𝑘 𝒔=1;𝒔𝑗≥0

𝑘

∑
𝑗=1

𝒔𝑗 [
‖‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑽 𝑗𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)

‖‖‖
2

−𝜆 ‖‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)
‖‖‖
2

] .

We use this setting for example for a de-noising task such
that the de-noised reconstruction of 𝑿 𝑖 would be given by
(I − 𝑽 𝑗𝑼 𝑗)(𝑿 𝑖 − 𝑪 𝑗) + 𝑪 𝑗 .

We consider the following two cases to present a heuris-
tic that the step in general does not worsen the prediction.
On the one hand if clusters are well separated, this implies
that the separate AEs are quite different and therefore a
wrong assignment would be significant. However well sep-
arated clusters also implies that the assignment of a new
point is with high probability correct. On the other hand if
the clusters are not well separated then the point might be
assigned to the wrong cluster more easily, however similar
clusters also implies similar AEs so even if we assign a new
point to the wrong AE the reconstruction is still close to
the one from the correct AE.

3 EXPERIMENTS WITH NON-LINEAR
AND CONVOLUTIONAL NETWORKS

The above linear setting allows us to perform a thorough
analysis of the model and prove that the parameterization
at the optimal fulfills the desired criteria of learning a mean-
ingful representation for each cluster instead of one for the
whole dataset. However in an applied setting we would like

3Note then that this is a linear problem in the variables 𝒔𝑗 and
thus its solution is at some vertex of the bounding polytope, i.e.
there is some 𝑗 such that 𝒔̂𝑗 = 1. Thus the label assigned to 𝑿 𝑖 is
this 𝑗.

Improved Representation Learning Through Tensorized Autoencoders

to take advantage of the expressive power of more com-
plex, non-linear encoders and decoders as well. Therefore
we first discuss how tensorized AE can be extended to a
more general setting and additionally empirically validate
its performance.

All further details on the implementation4 and experi-
ments are provided in the supplementary material.

3.1 Extension to Arbitrary AE Architectures

Given a single datapoint 𝑥 and some specific architecture,
let {Φ𝑗 ,Ψ𝑗}𝑘𝑗=1 (𝑥) and 𝑔Ψ𝑗 (⋅) be the corresponding loss func-
tion and encoder parameterized by Ψ𝑗 respectively. Then
the corresponding tensorized autoencoder is generated by
first considering 𝑘 many independent copies of the above
AE {𝑔Ψ𝑗 (⋅)}𝑘𝑗=1. Then the tensorized loss is defined by

(𝑋) ∶=
𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑺𝑗,𝑖 [Φ𝑗 ,Ψ𝑗 (𝑿 𝑖 − 𝑪 𝑗) − 𝜆 ‖‖‖𝑔Ψ𝑗 (𝑿 𝑖 − 𝑪 𝑗)
‖‖‖
2

] ,

where𝑪 𝑗 is defined as𝑪 𝑗 =
∑𝑖=1 𝑺𝑗,𝑖𝑿 𝑖
∑𝑖=1 𝑺𝑗,𝑖

. While a more involved
analysis is required to prove the exact latent representation
in this case, the overall idea presented in (2). Again for the
training we follow the steps presented in Section 2.3.

3.2 Clustering on Real Data

While on the toy data in Figure 3 we clearly observed how
the analyzed approaches deal with different datastructures,
we extend the analysis to real data and also more complex
AE architectures.

For comparability of the number of parameters we fur-
thermore compare AE 1 with latent dimension 𝑑 and AE 2
with latent dimensions 𝑑 × 𝑘 in Figure 5. We note that their
performance on the clustering task is very comparable and
we therefore conclude that the performance of the TAE is
not a direct result of the increased number of parameters
but is achieved due to the different architecture.

To start the analysis we consider the penguin dataset
presented in the introduction. Figure 4 (top left) shows the
simpson’s paradox for the penguin dataset and the other
plots show the clusterings the different algorithms con-
verge to. Notably we see that for 𝑘-means as well as for
both AE architectures, the y-axis parallel decision bound-
aries are obtained where as for the TAE we obtain clusters
that are closer to the true structures.

To further quantify the empirical performance of TAE we
show the average and standard deviation over five runs for
the ’penguin dataset’ with two and four features as well as
the ’iris dataset’ (Fisher, 1936; Anderson, 1936) and ’MNIST’
(LeCun and Cortes, 2010) (sub-sample of 50 datapoints for
class {1, 2, 3, 4, 5} each) for simple linear networks as well

4The code is available at: https://github.com/mahalakshmi-
sabanayagam/tensorized autoencoder

cu
lm

en
 le

ng
th

true TAE

culmen depth

cu
lm

en
 le

ng
th

k-means

culmen depth

AE 1

culmen depth

AE 2

Figure 4: Illustration of the final clustering obtained for the
penguin dataset, two features by the different algorithms.

Penguin
4 Feat.

Penguin
2 Feat.

Iris MNIST
MLP

MNIST
CNN

0.0

0.2

0.4

0.6

0.8
AR

I

k-means
AE 1
AE 2
TAE

Figure 5: Comparison of 𝑘-means ++, standard AE with
𝑘-means ++ and TAE. AE 1 has latent dimension 𝑑 while
AE 2 has latent dimension 𝑑 ×𝑘. MNIST MLP shows the per-
formance for a single hidden layer network, while MNIST
CNN considers an encoder and decoder with two convolu-
tional layers each. Again the latent dimension is 𝑑 for both
networks.

as two layer convolutional networks. We show this in
Figure 5. For penguin dataset and iris we consider 𝑑 = 1
and 𝑑 = 10 for MNIST. We observe that the difference in
the performance between AE and TAE is significant for the
penguin dataset which we attribute to the above outlined
clustering structures. For MNIST, we observe very similar
performance of AE and TAE, which is most likely due to
the fact that the underlying clustering structures have very
similar properties, such there is no significant difference
for the TAE to exploit.

3.3 De-Noising on Real Data

Similar to the experiments on clustering real data we look
at de-noising on various real datasets with standard AE and
TAE. We use the same datasets we used in the clustering
case to illustrate that TAE learns a reasonable clustering

https://github.com/mahalakshmi-sabanayagam/tensorized_autoencoder
https://github.com/mahalakshmi-sabanayagam/tensorized_autoencoder

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

Penguin
4 Feat.

Penguin
2 Feat.

Iris MNIST
MLP

MNIST
CNN

10−1

101

103

M
SE

AE
TAE

Figure 6: Real data de-noising. Note that the MSE is plotted
in log scale

0.25 0.50 0.75 1.00
σ

0

1

2

3

4

M
SE

noise level
D1
D2
D3
D4
AE
TAE

2 4
k

3000

4000

5000

6000

M
SE

change k

k-means init.
random init.
AE

2 4
k

400

600

800

1000

1200

se
c.

runtime
TAE
AE

Figure 7: (left) De-nosing under change in noise level for
the four toy datasets. (middle) De-nosing for five classes
MNIST using AE and TAE with non-optimal 𝑘. (right) De-
nosing for five classes MNIST. Analysis of run-time with
changing number of 𝑘 in TAE.

as well as a better reconstruction. The original data was
corrupted by adding an isometric Gaussian to each data
point. We illustrate this difference in Figure 6 and observe
that TAE consistently performs the same or significantly
better then the standard AE. For the penguin dataset we
observe a better cluster recovery and a better de-noising
performance. Interestingly for the Iris dataset the recon-
struction obtained by TAE is significantly better the the
one by the standard AE while their clustering performance
is about the same. Finally for MNIST with CNN we get
a markedly improved performance on using TAE, while
using a single layer linear neural network as the underlying
architecture doesn’t gives us any significant improvement
in performance. This suggests that it is important to choose
a function class or underlying architecture that is capable
of capturing a low dimensional representation of the data.

Let us consider the presented de-nosing setting for some
further investigation of the model.
Different levels of noise. When considering de-

noising an obvious question on the influence of the noise
level on the performance of AE and TAE. To analyze this
we go back to the toy datasets introduced in section 1 and
observe in Figure 7 (left) that while with increasing noise
level the the MSE increases for both approaches, TAE con-
sistently outperforms the standard AE on all datasets.

Performance of TAE when 𝑘 is not the true num-
ber of clusters. Let us consider the MNIST setting stated
before with five classes. We observe in Figure 7 (middle)
that the MSE is monotonously improved with 𝑘 getting
closer to 𝑘𝑡𝑟𝑢𝑒 , all improving on standard AE. This indicates
that even if the number of clusters is not known5 TAE for
de-noising tasks performs better then standard AE.

Importance of initialization of 𝑺. While we propose
𝑘-means++ as an initialization procedure for the cluster
assignment, empirically the question is how important
this assumption is. Figure 7 (middle) illustrates that in the
previously considered MNIST setting there is no noticeable
difference between the the 𝑘-means++ initialization and
a random initialization. However we conjecture that the
difference increases for more complex the dataset (in the
sense of structures such as introduced in Section 1).

Computational demands. Finally an important point
is the computational comparison between AE and TAE. By
construction one can see that the computational complexity
scales linearly with the number of considered clusters. We
can observe that this also holds empirically as shown in
Figure 7 (right), again for the MNIST setting considered in
the previous two points.

4 CONNECTION TO EXPECTATION
MAXIMIZATION

The astute reader would notice that the gradient descent
step that we are proposing is similar to Expectation Maxi-
mization (EM) algorithm. To explain this connection more
carefully (and propose a slightly modified algorithm in
the case of Gaussian data), we first write down the EM
algorithm itself.

Let 𝑿 1, … , 𝑿 𝑛 be data coming from from some distribu-
tion in the set of distributions with parameter 𝜃 with some
latent or unobserved variables 𝑍 . Let 𝐿(𝜃; 𝑿 , 𝑍) be the like-
lihood function of the parameters. The EM algorithm then
seeks to maximise

𝑄(𝜃) =
𝑛

∑
𝑖=1

1
𝑛

E𝑍|𝑿 𝑖 ,𝜃 [log 𝐿(𝜃; 𝑿 𝑖 , 𝑍)].

To make matters a little clearer let us see what this implies
when the data comes from a mixture of Gaussians. Let

𝑿 ∼
𝑘

∑
𝑖=1

𝑝𝑖𝑁(𝜇𝑖 , Σ𝑖).

To imagine a latent variable imagine the data being gen-
erated as follows. First sample a random variable 𝑍 such

5This is a general problem in any clustering based tasks, and
also present in deep clustering (Yang et al., 2017) works. A possible
future approach would be along the lines of the semidefinite
programming relaxation in (Yan et al., 2017), however this comes
with computational overhead and the extension is not trivial.

Improved Representation Learning Through Tensorized Autoencoders

that 𝑝(𝑍 = 𝑖) = 𝑝𝑖 . Then sample an observation from
𝑁(𝜇𝑧 , Σ𝑍). Thus in this case the latent variable 𝑍 is the
assignment of the data to its respective cluster or the ob-
served data’s label. The parameters 𝜃 in this case is the
vector (𝑝1, ..., 𝑝𝑘 , 𝜇1, ..., 𝜇𝑘 , Σ1, ..., Σ𝑘). Then given data𝑿 𝑖 , the
probability the corresponding 𝑍 is 𝑗 is given by (using Bayes
rule) :

𝑺𝑗,𝑖 =
𝑝𝑗𝑓 (𝑿 𝑖 ; 𝜇𝑗 , Σ𝑗)

∑𝑡 𝑝𝑡 𝑓 (𝑿 𝑖 ; 𝜇𝑡 , Σ𝑡)

=
𝑝𝑗
√

det(2𝜋Σ𝑗) exp (− 1
2 (𝑿 𝑖 − 𝜇𝑗)Σ−1

𝑗 (𝑿 𝑖 − 𝜇𝑗))
∑𝑡 𝑝𝑡

√
det(2𝜋Σ𝑡) exp (− 1

2 (𝑿 𝑖 − 𝜇𝑡)Σ−1
𝑡 (𝑿 𝑖 − 𝜇𝑡))

.

Then the expectation of the log likelihood E𝑍 [𝐿(𝜃; 𝑋 , 𝑍)]
is :

1
𝑛

𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑆𝑗,𝑖 (
log det(2𝜋Σ𝑗)

2
−
||Σ−1/2

𝑗 (𝑿 𝑖 − 𝜇𝑗)||2

2) .

Now note that ignoring the determinant term
(log det(2𝜋Σ𝑗)) maximizing this above quantity is exactly
minimizing

𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑺𝑗,𝑖
‖‖‖Σ

−1/2
𝑗 (𝑿 𝑖 − 𝜇𝑗)

‖‖‖
2
.

Note then that this is very similar to the term we are opti-
mizing if we allow 𝑆 to be independent of Σ𝑗 and set

Σ−1
𝑗 = (I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗) − 𝜆𝑼 𝑇

𝑗 𝑼 𝑗 , and 𝜇𝑗 = 𝑪 𝑗 .

In other words we are fixing the covariance matrix to have
numerically low rank, i.e. it has only ℎ (few) of its eigenval-
ues are 1/𝜆 (very large) whereas rest of them are 1 (small).

The connection between TAE and the EM algorithm is
especially interesting as there is a vast literature on the
theoretical properties of EM and therefore opens up fu-
ture research directions for a more fine-grained analysis of
TAEs.

5 RELATEDWORK AND FUTURE
APPLICATIONS

Theoretical analysis of AE. The theoretical understand-
ing of simple AE is still limited and mainly summarized in
Theorem 2.1 and formalizes the optimal parameterization
of linear AE depending on the considered regularization
(Baldi and Hornik, 1989; Kunin et al., 2019; Bao et al., 2020;
Pretorius et al., 2018). While the considered proof tech-
niques differ in our work we derive a similar result of the
TAE. An important future direction for theoretical anal-
ysis for both simple AE and TAE is the extension to the
non-linear setting.

Before going into the related work on clustering and
de-noising we would like to note here that the focus of

this work is to show the difference in learning a single
representation for the data and a representation for each
cluster in the data. The general literature of possible, task
specific, AE models is vast and would exceed the limits
of this related work section. Therefore we focus on the
most relevant related work, which is the basic setup for
clustering on embedding and de-noising with simple AEs.
Clustering. The main goal of clustering is to group

similar objects into the same class in an unsupervised set-
ting. While this problem has been extensively studied in
traditional machine learning in terms of feature selection
(Boutsidis et al., 2009; Alelyani et al., 2013), distance func-
tions (Xing et al., 2002; Xiang et al., 2008) and group meth-
ods (Macqueen, 1967; von Luxburg, 2007; Li et al., 2004)
(for a more comprehensive overview see Aggarwal and
Reddy (2014)) the time complexity significantly increases
with high dimensional data, previous work focuses on pro-
jecting data into low-dimensional spaces and then cluster
the embedded representations (Roth and Lange, 2003; Tian
et al., 2014; Wang et al., 2016). For there there several
methods have been developed that use deep unsupervised
models to learn representations with a clustering focus that
simultaneously learns feature representations and cluster
assignments using deep neural networks (Xie et al., 2016;
Dizaji et al., 2017; Wang et al., 2016; Xie and Xing, 2015;
Wang et al., 2015).

De-noising. We consider de-noising with AEs (Buades
et al., 2005; Cho, 2013). While there are several extensions
to more complex AE models and task specific setups (see e.g.
Zhang et al. (2022)) in this work we focus on the question
if learning cluster specific representations is beneficial for
reducing the reconstruction error, which to the best of our
Knowledge has been considered so far.
Possible future applications. We note that while in

this paper we focus on clustering and de-noising the general
concept can be extended to other AE based downstream
tasks such as anomaly detection (Morales-Forero and Bas-
setto, 2019; Sakurada and Yairi, 2014; Zhou and Paffenroth,
2017), image compression (Theis et al., 2017; Ballé et al.,
2017), super resolution (Zeng et al., 2017; Song et al., 2017)
and machine translation (Cho et al., 2014; Sutskever et al.,
2014).

Such extensions are especially of interest for future ap-
plications as Figure 3 and Section 3.3 show that TAE out-
perform standard AE especially when measured in the
reconstruction quality. This indicates that tasks such as
image compression can benefit from using TAE, as for such
tasks the matching to the true clustering is not required.

6 CONCLUSION

This work presents a meta algorithm which can be used
to better adapt any existing autoencoder architecture to
datasets in which one might anticipate cluster structures.

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

By jointly learning the cluster structure and low dimen-
sional representations of clusters, the proposed tensor auto-
encoder (TAE) directly improves upon Kmeans, applied
to a dataset or to an encoding of the same generated by
an AE. More importantly, in the context of de-noising or
downstream learning tasks, while it is trivial to note that
mathematically a TAE can never have worse MSE than
a corresponding AE, we verify the same experimentally.
On the surface the difference in performance might sim-
ply seem to be a matter of more parameters. However we
show experimentally (see experiment on real data clus-
tering, Figure 5) that even with the same total number of
parameters TAE clusters better and hence gives a more
accurate reconstruction than an AE. An open question in
this regard would be to show such a result mathematically
under certain data assumptions. Another open implementa-
tion problem would be to design a more a efficient gradient
step for the TAE.

7 SOCIAL IMPACT

Usage of traditional autoencoders on large diverse com-
munities often favour creating a single latent monolithic
representations mostly representing a single majority. This
might create situations where the interests of various
smaller communities are ignored. An instance of this might
be to use autoencoders to find a couple of parameters which
are the most significant markers of a particular disease. Us-
ing a tensorized autoencoders might be of interest in these
situations as this might create multiple representations for
each community. On the other hand in cases where re-
covering more explicit clustering structures have negative
implications TAE might not be favorable. A possible exam-
ple here could be differential privacy. However to better
understand this setting the interplay between properties
of latent representations in AE and privacy will has to be
more thoroughly investigated in the future.

Acknowledgements

This work has been supported by the German Research
Foundation (DFG) through the Priority Program SPP-2298
(project GH-257/2-1), DFG-ANR PRCI “ASCAI” (GH 257/3-
1) and Research Training Group GRK 2428.

Bibliography

Aggarwal, C. C. and Reddy, C. K., editors (2014). Data
Clustering: Algorithms and Applications. CRC Press.

Alelyani, S., Tang, J., and Liu, H. (2013). Feature selection
for clustering: A review. In Data Clustering: Algorithms
and Applications.

Anderson, E. (1936). The species problem in iris. Annals of
the Missouri Botanical Garden.

Arthur, D. and Vassilvitskii, S. (2007). K-means++: The

advantages of careful seeding. Proc. of the Annu. ACM-
SIAM Symp. on Discrete Algorithms.

Baldi, P. and Hornik, K. (1989). Neural networks and prin-
cipal component analysis: Learning from examples with-
out local minima. Neural Networks.

Ballé, J., Laparra, V., and Simoncelli, E. P. (2017). End-to-end
optimized image compression. In Int’l Conf on Learning
Representations (ICLR).

Bao, X., Lucas, J., Sachdeva, S., and Grosse, R. B. (2020).
Regularized linear autoencoders recover the principal
components, eventually. In Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., and Lin, H., editors, Advances in
Neural Information Processing Systems, volume 33, pages
6971–6981. Curran Associates, Inc.

Boutsidis, C., Drineas, P., and Mahoney, M. W. (2009). Un-
supervised feature selection for the k-means clustering
problem. In Advances in Neural Information Processing
Systems.

Buades, A., Coll, B., and Morel, J.-M. (2005). A review of
image denoising algorithms, with a new one. Multi-
scale Modeling and Simulation: A SIAM Interdisciplinary
Journal.

Cho, K. (2013). Simple sparsification improves sparse de-
noising autoencoders in denoising highly corrupted im-
ages. Proceedings of the 30th International Conference on
Machine Learning.

Cho, K., van Merriënboer, B., Bahdanau, D., and Bengio, Y.
(2014). On the properties of neural machine translation:
Encoder–decoder approaches. In Proceedings of SSST-8,
Eighth Workshop on Syntax, Semantics and Structure in
Statistical Translation.

Chollet, F. et al. (2015). Keras. https://keras.io.
Diamond, S. and Boyd, S. (2016). CVXPY: A Python-

embedded modeling language for convex optimization.
Journal of Machine Learning Research.

Dizaji, K., Herandi, A., Deng, C., Cai, W., and Huang, H.
(2017). Deep clustering via joint convolutional autoen-
coder embedding and relative entropy minimization. In-
ternational Conference on Computer Vision (ICCV).

Fisher, R. A. (1936). The use of multiple measurements in
taxonomic problems. Annals of Human Genetics.

Gorman, K. B., Williams, T. D., and Fraser, W. R. (2014).
Ecological sexual dimorphism and environmental vari-
ability within a community of antarctic penguins (genus
pygoscelis). PLOS ONE.

Holt, G. B. (2016). Potential simpson’s paradox in multicen-
ter study of intraperitoneal chemotherapy for ovarian
cancer. Journal of Clinical Oncology.

Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.

https://keras.io

Improved Representation Learning Through Tensorized Autoencoders

Kramer, M. A. (1991). Nonlinear principal component anal-
ysis using autoassociative neural networks. AIChE Jour-
nal, 37(2):233–243.

Kunin, D., Bloom, J., Goeva, A., and Seed, C. (2019). Loss
landscapes of regularized linear autoencoders. In Pro-
ceedings of the 36th International Conference on Machine
Learning, Proceedings of Machine Learning Research.

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit
database.

Li, T., Ma, S., and Ogihara, M. (2004). Entropy-based crite-
rion in categorical clustering. Proceedings of the Interna-
tional Conference on Machine Learning.

Macqueen, J. (1967). Some methods for classification and
analysis of multivariate observations. In In 5-th Berkeley
Symposium on Mathematical Statistics and Probability,
pages 281–297.

Morales-Forero, A. and Bassetto, S. (2019). Case study:
A semi-supervised methodology for anomaly detection
and diagnosis. In 2019 IEEE International Conference
on Industrial Engineering and Engineering Management
(IEEM).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison,
M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,
J., and Chintala, S. (2019). Pytorch: An imperative style,
high-performance deep learning library. In Advances in
Neural Information Processing Systems 32.

Pretorius, A., Kroon, S., and Kamper, H. (2018). Learning dy-
namics of linear denoising autoencoders. In Proceedings
of the 35th International Conference on Machine Learning.

Rand, W. M. (1971). Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association.

Roth, V. and Lange, T. (2003). Feature selection in clustering
problems. In Advances in Neural Information Processing
Systems.

Sakurada, M. and Yairi, T. (2014). Anomaly detection using
autoencoders with nonlinear dimensionality reduction.
In MLSDA’14: Proceedings of the MLSDA 2014 2nd Work-
shop on Machine Learning for Sensory Data Analysis.

Simpson, E. H. (1951). The interpretation of interaction
in contingency tables. Journal of the Royal Statistical
Society. Series B (Methodological).

Song, T.-H., Sanchez, V., ElDaly, H., and Rajpoot, N. M.
(2017). Hybrid deep autoencoder with curvature gaus-
sian for detection of various types of cells in bone mar-
row trephine biopsy images. In 2017 IEEE 14th Interna-
tional Symposium on Biomedical Imaging (ISBI 2017).

Sutskever, I., Vinyals, O., and Le, Q. V. (2014). Sequence to
sequence learning with neural networks. In NIPS.

Theis, L., Shi, W., Cunningham, A., and Huszár, F. (2017).
Lossy image compression with compressive autoen-
coders. In International Conference on Learning Represen-
tations.

Tian, F., Gao, B., Cui, Q., Chen, E., and Liu, T.-Y. (2014).
Learning deep representations for graph clustering. Pro-
ceedings of the AAAI Conference on Artificial Intelligence.

von Luxburg, U. (2007). A tutorial on spectral clustering.
Statistics and Computing.

Wagner, C. H. (1982). Simpson’s paradox in real life. The
American Statistician.

Wang, Z., Chang, S., Zhou, J., and Wang, M. (2016). Learn-
ing a task-specific deep architecture for clustering. Pro-
ceedings of the 2016 SIAM International Conference on
Data Mining.

Wang, Z., Yang, Y., Chang, S., Li, J., Fong, S., and Huang,
T. S. (2015). A joint optimization framework of sparse
coding and discriminative clustering. In Proceedings of
the 24th International Conference on Artificial Intelligence.
AAAI Press.

Xiang, S., Nie, F., and Zhang, C. (2008). Learning a maha-
lanobis distance metric for data clustering and classifica-
tion. Pattern Recognition.

Xie, J., Girshick, R., and Farhadi, A. (2016). Unsupervised
deep embedding for clustering analysis.

Xie, P. and Xing, E. P. (2015). Integrating image clustering
and codebook learning.

Xing, E., Jordan, M., Russell, S. J., and Ng, A. (2002). Dis-
tance metric learning with application to clustering with
side-information. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Processing
Systems.

Yan, B., Sarkar, P., and Cheng, X. (2017). Provable estima-
tion of the number of blocks in block models. In Interna-
tional Conference on Artificial Intelligence and Statistics.

Yang, B., Fu, X., Sidiropoulos, N. D., and Hong, M. (2017).
Towards k-means-friendly spaces: Simultaneous deep
learning and clustering. In Proceedings of the 34th Inter-
national Conference on Machine Learning.

Zeng, K., Yu, J., Wang, R., Li, C., and Tao, D. (2017). Coupled
deep autoencoder for single image super-resolution. IEEE
Transactions on Cybernetics.

Zhang, C., Zhang, C., Song, J., Yi, J. S. K., Zhang, K., and
Kweon, I. S. (2022). A survey on masked autoencoder for
self-supervised learning in vision and beyond.

Zhou, C. and Paffenroth, R. C. (2017). Anomaly detection
with robust deep autoencoders. Knowledge Discovery in
Databases ’17: Proceedings of the 23rd ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining.

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

A PROOF OF THEOREM 2.2

For clarity let us first restate the considered loss function

𝜆(𝑿) ∶=
𝑛

∑
𝑖=1

𝑘

∑
𝑗=1

𝑺𝑗,𝑖[
‖‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑽 𝑗𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)

‖‖‖
2

− 𝜆 ‖‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)
‖‖‖
2

],

s.t. 1𝑇
𝑘 𝑺 = 1𝑇

𝑛 , 𝑺𝑗,𝑖 ≥ 0, (4)

where we define 𝑺 to be a 𝑘 × 𝑛 matrix, such that 𝑺𝑗,𝑖 is the probability that datapoint 𝑖 belongs to class 𝑗 and the theorem :

Theorem A.2 (Parameterization at Optimal for TAE). For 0 < 𝜆 ≤ 1, optimizing Eq. 4 results in the parameters at the
optimum satisfying the following:

i) Class Assignment. While in Eq. 4 we define 𝑺𝑗,𝑖 as the probability that 𝑿 𝑖 belongs to class 𝑗 at the optimal 𝑺𝑗,𝑖 = 1 or 0
and therefore converges to a strict class assignment.

ii) Centers. 𝑪 𝑗 at optimum naturally satisfies the condition

𝑪 𝑗 =
∑𝑖=1 𝑺𝑗,𝑖𝑿 𝑖

∑𝑖=1 𝑺𝑗,𝑖
.

iii) Encoding / Decoding (learned weights). We first show that 𝑽 𝑇
𝑗 = 𝑼 𝑗 , and define

𝚺̂𝑗 ∶=
𝑛

∑
𝑖=1

𝑺𝑗,𝑖 (𝑿 𝑖 − 𝑪 𝑗) (𝑿 𝑖 − 𝑪 𝑗)
𝑇 ,

then the encoding corresponds to the top ℎ eigenvectors of Σ̂𝑗 .

Proof. (i) This part is trivial once we note that for a fixed 𝑪 𝑗 , 𝑼 𝑗 , 𝑽 𝑗 , the loss is linear in 𝑺𝑗,𝑖 . Thus the optimal must occur
at the extreme points of the constraints

1𝑇
𝑘 𝑺 = 1𝑇

𝑛

𝑺𝑗,𝑖 ≥ 0.

Let us first prove part (iii). To get conditions on 𝑼 𝑗 , 𝑽 𝑗 let us fix 𝑺, 𝑪 𝑗 and get conditions of optimal in terms of the fixed
quantities. Define

Σ̂𝑗 ∶=
𝑛

∑
𝑖=1

𝑺𝑗,𝑖(𝑿 𝑖 − 𝑪 𝑗)(𝑿 𝑖 − 𝑪 𝑗)𝑇

Improved Representation Learning Through Tensorized Autoencoders

Let us now optimize 𝑽 𝑗 , 𝑼 𝑗 for each fixed 𝑗.

min
𝑽 𝑗 ,𝑼 𝑗

𝑛

∑
𝑖=1

𝑺𝑗,𝑖 (‖‖(𝑿 𝑖 − 𝑪 𝑗) − 𝑽 𝑗𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)‖‖
2 − 𝜆 ‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)‖‖

2
)

=min
𝑽 𝑗 ,𝑼 𝑗

𝑛

∑
𝑖=1

𝑺𝑗,𝑖 (‖‖(I − 𝑽 𝑗𝑼 𝑗)(𝑿 𝑖 − 𝑪 𝑗)‖‖
2 − 𝜆 ‖‖𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)‖‖

2
)

=min
𝑽 𝑗 ,𝑼 𝑗

𝑛

∑
𝑖=1

𝑺𝑗,𝑖 ((𝑿 𝑖 − 𝑪 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)(𝑿 𝑖 − 𝑪 𝑗) − 𝜆(𝑿 𝑖 − 𝑪 𝑗)𝑇𝑼 𝑇
𝑗 𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗))

= min
𝑽 𝑗 ,𝑼 𝑗

𝑛

∑
𝑖=1

𝑺𝑗,𝑖 Tr [(𝑿 𝑖 − 𝑪 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)(𝑿 𝑖 − 𝑪 𝑗)] − 𝜆𝒆𝑇𝑗 𝑺𝒆𝑖 Tr [(𝑿 𝑖 − 𝑪 𝑗)𝑇𝑼 𝑇
𝑗 𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)]

= min
𝑽 𝑗 ,𝑼 𝑗

𝑛

∑
𝑖=1

𝑺𝑗,𝑖 Tr [(I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)(𝑿 𝑖 − 𝑪 𝑗)(𝑿 𝑖 − 𝑪 𝑗)𝑇] − 𝜆𝒆𝑇𝑗 𝑺𝒆𝑖 Tr [𝑼
𝑇
𝑗 𝑼 𝑗 (𝑿 𝑖 − 𝑪 𝑗)(𝑿 𝑖 − 𝑪 𝑗)𝑇]

= min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗)Σ̂𝑗] − 𝜆 Tr [𝑼 𝑇
𝑗 𝑼 𝑗 Σ̂𝑗]

= min
𝑽 𝑗 ,𝑼 𝑗

Tr [((I − 𝑽 𝑗𝑼 𝑗)𝑇 (I − 𝑽 𝑗𝑼 𝑗) − 𝜆𝑼 𝑇
𝑗 𝑼 𝑗)Σ̂𝑗]

= min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I − 𝑽 𝑗𝑼 𝑗 − 𝑼 𝑇
𝑗 𝑽

𝑇
𝑗 + (1 − 𝜆)𝑼 𝑇

𝑗 𝑼 𝑗)Σ̂𝑗] .

We can now bound the above as follows

min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I − 𝑽 𝑗𝑼 𝑗 − 𝑼 𝑇
𝑗 𝑽

𝑇
𝑗 + (1 − 𝜆)𝑼 𝑇

𝑗 𝑼 𝑗)Σ̂𝑗]

= min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I + (1 − 𝜆)𝑼 𝑇
𝑗 𝑼 𝑗)Σ̂𝑗] − Tr [(𝑼 𝑇

𝑗 𝑽
𝑇
𝑗 + 𝑽 𝑗𝑼 𝑗)Σ̂𝑗]

= min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I + (1 − 𝜆)𝑼 𝑇
𝑗 𝑼 𝑗)Σ̂𝑗] − 2 Tr [𝑼 𝑗 Σ̂𝑗𝑽 𝑇

𝑗]

≥ min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I + (1 − 𝜆)𝑼 𝑇
𝑗 𝑼 𝑗)Σ̂𝑗] − 2

√
Tr [𝑼 𝑗 Σ̂1/2

𝑗 Σ̂1/2
𝑗 𝑼 𝑇

𝑗] Tr [𝑽 𝑇
𝑗 Σ̂1/2

𝑗 Σ̂1/2
𝑗 𝑽 𝑗] (5)

≥ min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I + (1 − 𝜆)𝑼 𝑇
𝑗 𝑼 𝑗)Σ̂𝑗] − 2

√

Tr [𝑼 𝑗 Σ̂𝑗𝑼 𝑇
𝑗]

ℎ

∑
𝑖=1

𝛼𝑖 (6)

= min
𝑽 𝑗 ,𝑼 𝑗

𝑑

∑
𝑖=1

𝛼𝑖 − 2

√

Tr [𝑼 𝑗 Σ̂𝑗𝑼 𝑇
𝑗]

ℎ

∑
𝑖=1

𝛼𝑖 + (1 − 𝜆) Tr [𝑼 𝑗 Σ̂𝑗𝑼 𝑇
𝑗] ,

where the inequality 5 follows from applying Cauchy Schwarz inequality and the inequality 6 from observing that the
columns of 𝑉 are ℎ orthonormal vectors to get Tr [𝑽 𝑇

𝑗 Σ̂𝑗𝑽 𝑗] ≤ ∑ℎ
𝑖=1 𝛼𝑖 .

Let us set 𝑥 =
√
Tr [𝑼 𝑗 Σ̂𝑗𝑼 𝑇

𝑗], 𝑎 = 1 − 𝜆, 𝑏 = 2
√
∑ℎ

𝑖=1 𝛼𝑖 and 𝑐 = ∑𝑑
𝑖=1 𝛼𝑖 . We can now observe that 0 ≤ 𝑥 =

√
Tr [𝑼 𝑗 Σ̂𝑗𝑼 𝑇

𝑗] ≤
√
∑ℎ

𝑖=1 𝛼𝑖 =
𝑏
2 and the minimization problem becomes

𝑎𝑥2 − 𝑏𝑥 + 𝑐

which is a quadratic and thus decreasing when 𝑥 ≤ 𝑏
2𝑎 . Therefore as 𝑏

2 ≤ 𝑏
2𝑎 the minimum is achieved at 𝑥 = 𝑏

2 thus we get

min
𝑽 𝑗 ,𝑼 𝑗

Tr [(I − 𝑽 𝑗𝑼 𝑗 − 𝑼 𝑇
𝑗 𝑽

𝑇
𝑗 + (1 − 𝜆)𝑼 𝑇

𝑗 𝑼 𝑗)Σ̂𝑗] ≥
𝑑

∑
𝑖=1

𝛼𝑖 − 2

√
ℎ

∑
𝑖=1

𝛼𝑖
ℎ

∑
𝑖=1

𝛼𝑖 + (1 + 𝜆)
ℎ

∑
𝑖=1

𝛼𝑖

=
𝑑

∑
𝑖=1

𝛼𝑖 − (1 + 𝜆)
ℎ

∑
𝑖=1

𝛼𝑖

Reviewing the proof above we note that for the inequality to be achieved, we must satisfy the conditions :

• Tr [𝑼 𝑗 Σ̂𝑗𝑼 ⊤
𝑗] = ∑ℎ

𝑖=1 𝛼𝑖 (from optimizing the quadratic above),

Esser, Mukherjee, Sabanayagam, Ghoshdastidar

• 𝑽 𝑇
𝑗 Σ̂1/2

𝑗 = 𝑼 𝑗 Σ̂1/2
𝑗 (from equalizing C.S. used to get inequality 5),

• Tr [𝑽 ⊤
𝑗 Σ̂𝑗𝑽 𝑗] = ∑ℎ

𝑖=1 𝛼𝑖 (from equalizing inequality 6).

Luckily the above conditions are only all satisfied for the following unique choice of orthonormal 𝑼̂ 𝑗 and 𝑽 𝑗 . If 𝛼𝑖 and 𝒘𝑖

are the eigenvalues (arranged in descending order) and eigenvectors of Σ̂𝑗 respectively define

𝑼̂ 𝑗 =
⎡
⎢
⎢
⎣

𝒘𝑇
1
⋮

𝒘𝑇
ℎ

⎤
⎥
⎥
⎦
, 𝑽̂ 𝑗 = [𝒘1, … , 𝒘ℎ] .

We then obtain,

Tr [(I − 𝑽̂ 𝑗𝑼̂ 𝑗 − 𝑼̂ 𝑇
𝑗 𝑽̂

𝑇
𝑗 + (1 − 𝜆)𝑼̂ 𝑇

𝑗 𝑼̂ 𝑗)Σ̂𝑗] =
𝑑

∑
𝑖=1

𝛼𝑖 − (1 + 𝜆)
ℎ

∑
𝑗
𝛼𝑗

= −𝜆
ℎ

∑
𝑖=1

𝛼𝑖 +
𝑑

∑
𝑗=ℎ+1

𝛼𝑗 .

Let us finally derive (ii).
Define

𝑨 ∶= (I − 𝑽 𝑗𝑼 𝑗 − 𝑼 𝑇
𝑗 𝑽

𝑇
𝑗 + (1 − 𝜆)𝑼 𝑇

𝑗 𝑼 𝑗).

Then,

min
𝑪 𝑗

Tr
[(

I − 𝑽 𝑗𝑼 𝑗 − 𝑼 𝑇
𝑗 𝑽

𝑇
𝑗 + (1 − 𝜆)𝑼 𝑇

𝑗 𝑼 𝑗)(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖(𝑿 𝑖 − 𝑪 𝑗)(𝑿 𝑖 − 𝑪 𝑗)𝑇)]

=min
𝑪 𝑗

Tr
[
𝑨
(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖(𝑿 𝑖 − 𝑪 𝑗)(𝑿 𝑖 − 𝑪 𝑗)𝑇)]

=min
𝑪 𝑗

Tr
[
𝑨
(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖(𝑿 𝑖𝑿𝑇
𝑖 − 𝑿 𝑖𝑪𝑇

𝑗 + 𝑪 𝑗𝑪𝑇
𝑗))]

=min
𝑪 𝑗

Tr
[
𝑨
((

𝑛

∑
𝑖=1

𝑺𝑗,𝑖𝑿 𝑖𝑿𝑇
𝑖)

−
(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖𝑿 𝑖)
𝑪𝑇
𝑗 +

(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖)
𝑪 𝑗𝑪𝑇

𝑗)]
.

As 𝑼 𝑗 , 𝑽 𝑗 are variables varying in a space independent of 𝑪 𝑗 , at optimality of the above, the partial derivative with
respect to 𝑪 𝑗 must be 0. Thus we have,

𝜕
𝜕𝑪 𝑗

= −𝑨
(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖𝑿 𝑖)
+ 𝑨

(

𝑛

∑
𝑖=1

𝑺𝑗,𝑖)
𝑪 𝑗 = 0 (7)

On the other hand from the derivation of (iii), we also have the condition that at optimality 𝑽 𝑗 = 𝑼 ⊤
𝑗 = 𝑼̂ ⊤

𝑗 . Thus at
optimality

𝑨 = (I − (1 + 𝜆)𝑼̂ ⊤
𝑗 𝑼̂ 𝑗) .

In particular when 𝜆 > 0, 𝑨 (at optimality) is invertible (as its eigenvalues are 0 and −𝜆). Using this in equation 7 we get

𝑪̂ 𝑗 =
∑𝑛

𝑖=1 𝑺𝑗,𝑖𝑿 𝑖

∑𝑛
𝑖=1 𝑺𝑗,𝑖

.

B EXPERIMENTAL DETAILS FOR RESULTS FROM THE MAIN PAPER

In this section we provide the setup for the experiments performed in the main paper. Further details can be see in the
provided code.

Improved Representation Learning Through Tensorized Autoencoders

B.1 Experiments on Toy Data

For all experiments we consider the theoretical setting where we use a two layer linear network and 𝜆 = −0.1. The Scatter
plot is for a converged clustering from a randomly sampled run. The cluster accuracy and de-nosing error plot show the
average over five random initialization after 100 epochs.

We consider ℎ = 1

B.2 Notes on the penguin dataset

We consider two main versions of the dataset. The two feature version only considers ’culmen depth’ and ’culmen length’
as features (this version is illustrated in Figure 1 (main paper)). The four feature version additionally considers ’flipper
length’ in mm and ’body mass’ in grams.

Since the features ’body mass’ and ’culmen depth’ are on very different scales we normalize all features for the
experiments with four features.

B.3 Experiments on Clustering on Real Data

As a default network we consider a one hidden layer, ReLU network. For Penguin and Iris we consider ℎ = 1 and for
MNIST ℎ = 10.

For the CNN we consider a network with two encoding CNN layers and two decoding CNN layers and the same hidden
dimension as for the fully connected setting. For the exact architecture we refer to the provided code.

B.4 Experiments on De-Noising on Real Data

We generally consider the same setup as for the clustering tasks with a default network of one hidden layer, ReLU network.
For Penguin and Iris we consider ℎ = 1 and for MNIST ℎ = 10.

	INTRODUCTION AND MOTIVATION
	ANALYSIS OF TENSORIZED LINEAR AE WITH K-MEANS PENALTY
	Formal Setup
	Parameterization at optimum
	Optimization
	Test on new data

	EXPERIMENTS WITH NON-LINEAR AND CONVOLUTIONAL NETWORKS
	Extension to Arbitrary AE Architectures
	Clustering on Real Data
	De-Noising on Real Data

	CONNECTION TO EXPECTATION MAXIMIZATION
	RELATED WORK AND FUTURE APPLICATIONS
	CONCLUSION
	SOCIAL IMPACT
	PROOF OF THEOREM 2.2
	EXPERIMENTAL DETAILS FOR RESULTS FROM THE MAIN PAPER
	Experiments on Toy Data
	Notes on the penguin dataset
	Experiments on Clustering on Real Data
	Experiments on De-Noising on Real Data

