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Abstract

We address the problem of Internal Regret
in adversarial Sleeping Bandits and the rela-
tionship between different notions of sleeping
regrets in multi-armed bandits. We propose a
new concept called Internal Regret for sleep-
ing multi-armed bandits (MAB) and present
an algorithm that achieves sublinear Internal
Regret, even when losses and availabilities are
both adversarial. We demonstrate that a low
internal regret leads to both low external re-
gret and low policy regret for i.i.d. losses. Our
contribution is unifying existing notions of re-
gret in sleeping bandits and exploring their
implications for each other. In addition, we
extend our results to Dueling Bandits (DB),
a preference feedback version of multi-armed
bandits, and design a low-regret algorithm
for sleeping dueling bandits with stochastic
preferences and adversarial availabilities. We
validate the effectiveness of our algorithms
through empirical evaluations.

1 INTRODUCTION

The problem of online sequential decision-making in
standard multi-armed bandits (MAB) is well stud-
ied in machine learning (Auer, 2000; Vermorel and
Mohri, 2005) and used to model online decision-making
problems under uncertainty. Due to their implicit
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exploration-vs-exploitation trade-off, bandits are able
to model clinical trials, movie recommendations, retail
management job scheduling etc., where the goal is to
keep pulling the ‘best-item’ in hindsight through se-
quentially querying one item at a time and subsequently
observing a noisy reward feedback of the queried arm
(Even-Dar et al., 2006; Auer et al., 2002; Auer, 2000;
Agrawal and Goyal, 2012; Bubeck et al., 2012).

From a practical perspective, the decision space (also
called the arm space, denoted as A = 1, . . . , K) fre-
quently changes over time due to the unavailability of
some items. For example, in a retail store, some items
may go out of stock, certain websites may go down,
or some restaurants may be closed. This situation is
known as sleeping bandits in the multi-armed bandit
literature (Kanade et al., 2009; Neu and Valko, 2014a;
Kanade and Steinke, 2014a; Kale et al., 2016). In this
scenario, the set St ⊆ A of available actions can vary
stochastically (Neu and Valko, 2014a; Cortes et al.,
2019) or adversarially (Kale et al., 2016; Kleinberg
et al., 2010; Kanade and Steinke, 2014a) at any round
t ≥ 1. Over the years, several lines of research have
been conducted for sleeping multi-armed bandits with
different notions of regret performance, e.g. policy, or-
dering, or sleeping external regret (Blum and Mansour,
2007; Neu and Valko, 2014a; Saha et al., 2020).

This paper introduces a new notion of sleeping re-
gret, called Sleeping Internal Regret, which helps to
connect different existing concepts of sleeping regret
in multi-armed bandit problems. We show that our
regret notion can be applied to the fully adversarial
setup, which implies sleeping external regret in the
fully adversarial setup (i.e. when both losses and item
availabilities are adversarial), as well as policy regret in
the stochastic setting (i.e. when losses are stochastic).
Additionally, an efficient worst-case regret algorithm
for sleeping internal regret is proposed, which achieves
O(
√

T ) performance, where T is the number of rounds.
The implications of these results for the Dueling Bandit
(DB) framework (Yue et al., 2012; Ailon et al., 2014;
Zoghi et al., 2014; Saha and Gopalan, 2019a,b) are also
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Figure 1: One Arrow, Two Kills: The connections
between our proposed notion of Sleeping Internal Re-
gret and different existing notions of regret for sleeping
MAB and their implications

discussed. The main contributions of this paper can
be summarized as follows:

• Connecting Existing Sleeping Regret. The
first contribution (Sec. 2) lies in relating the existing
notions of sleeping regret given as:
– The first one, sleeping external regret, is mostly used
in prediction with expert advice (Blum and Mansour,
2007; Gaillard et al., 2014). If the learner had played j
instead of kt at all rounds where j was available, we
want the learner to not incur large regret. It is well-
used to design dynamic regret algorithms (Raj et al.,
2020; Zhao et al., 2020; Campolongo and Orabona,
2021; Zhang et al., 2019; Wei et al., 2016). It has the
advantage that efficient no-regret algorithms can be
designed even when both availabilities St ⊆ A and
losses ℓt ∈ [0, 1]K are adversarial.
– The second one, called ordering regret, is mostly used
in the bandit literature (Kleinberg et al., 2010; Saha
et al., 2020; Kanade and Steinke, 2014b; Neu and Valko,
2014b). It compares the cumulative loss of the learner,
with the one of the best ordering σ∗ (i.e., a permutation
of [K]) that selects the best available action according
to σ∗ at every round. No efficient algorithm exists
when both ℓt and St are adversarial: either St or ℓt

should be i.i.d (Kleinberg et al., 2010).
– We also note that in some works, policies π∗ (i.e.,
functions from subsets of [K] to [K]) are considered
instead of orderings σ∗, termed as policy regret (Neu
and Valko, 2014a; Saha et al., 2020). The latter two
are equivalent when the losses are i.i.d., or come from
an oblivious adversary with stochastic sleeping.

• General Notion of Sleeping Regret. Our
second and one of the primary contribution lies in
introducing a new notion of sleeping regret, called In-
ternal Sleeping Regret (Definition 1), which we show
actually unifies the different notions of sleeping regret
under a general umbrella (see Fig. 1): We show that (i)
Low sleeping internal regret always implies a low sleep-

ing external regret, even under fully adversarial setup.
(ii) For stochastic losses is also implies a low ordering
regret (equivalently policy regret), even under adver-
sarial availabilities. Thus we now have a tool, Sleeping
Internal Regret, optimizing which can simultaneously
optimize all the existing notions of sleeping regret (and
justifies the title of this work too!) (Sec. 2.3).
• Algorithm Design and Regret Implications.
We propose an efficient algorithm (SI-EXP3, Alg. 1)
w.r.t. Sleeping Internal Regret, and design a O(

√
T )

regret algorithm (Thm. 4). As motivated, the general-
izability of our regret further implies O(

√
T ) external

regret and also ordering regret for i.i.d losses Rem. 3.
We are the first to achieve this regret unification with
only a single algorithm (Sec. 3).
• Extensions: Generalized Regret for Dueling-
Bandits (DB) and Algorithm. Another versatility
of Internal Sleeping Regret is it can be made useful for
designing no-regret algorithms for the sleeping dueling
bandit setup, which is a relative feedback based variant
of standard MAB (Zoghi et al., 2014; Ailon et al., 2014;
Bengs et al., 2021) (Sec. 4).
– General Sleeping DB. We propose a new and more
unifying notion of sleeping dueling bandit setup that
allows the environment to play from different subsets
of available dueling pairs (At ⊆ [K]2) at each round
t. This generalizes the standard notion of DB setting
where At = [K]2 without sleeping, but also the setup
of Sleeping DB for At = St × St, (Saha and Gaillard,
2021).
– Unifying Sleeping DB Regret. Next, based on our
notion of Sleeping Internal Regret for MAB, we propose
a generalized dueling bandit regret, Internal Sleeping
DB Regret (Eq. (10)), which unifies the classical dueling
bandit regret (Zoghi et al., 2014) as well as sleeping
DB regret (Saha and Gaillard, 2021) (Rem. 4).
– Optimal Algorithm Design. We propose an effi-
cient and order optimal O(

√
T ) sleeping DB algorithm

(Thm. 5). This improves the regret bound of Saha and
Gaillard (2021) that only get O(T 2/3) worst-case regret
even in the more restrictive At = St × St setting.
• Experiments. In Sec. 5, we provide empirical
evidence to support our theoretical findings. Our algo-
rithm performs better than baselines when there is a
correlation between St and ℓt. The experimental results
also suggest that our algorithm can effectively converge
to Nash equilibria in two-player zero-sum games that
include sleeping actions (as discussed in Rem. 5).

Related Work. The problem of regret minimization
for stochastic multi-armed bandits is widely studied in
the online learning literature (Auer et al., 2002; Agrawal
and Goyal, 2012; Lattimore and Szepesvári, 2018; Au-
dibert and Bubeck, 2010), and as motivated above, the
problem of item non-availability in the MAB setting
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is a practical one, which is studied as the problem of
sleeping MAB (Kanade et al., 2009; Neu and Valko,
2014a; Kanade and Steinke, 2014a; Kale et al., 2016),
for both stochastic rewards and adversarial availabili-
ties (Kale et al., 2016; Kleinberg et al., 2010; Kanade
and Steinke, 2014a) as well as adversarial rewards and
stochastic availabilities (Kanade et al., 2009; Neu and
Valko, 2014a; Cortes et al., 2019). In case of stochastic
rewards and adversarial availabilities the achievable re-
gret lower bound is known to be Ω(

√
KT ), K being the

number of actions in the decision space A = [K]. The
well studied EXP4 algorithm does achieve the above
optimal regret bound, although it is computationally
inefficient (Kleinberg et al., 2010; Kale et al., 2016).
The optimal and efficient algorithm for this case is by
Saha et al. (2020), which is known to yield Õ(

√
T )

regret1.

On the other hand over the last decade, the relative
feedback variants of stochastic MAB problem has seen a
widespread resurgence in the form of the Dueling Bandit
problem, where, instead of getting noisy feedback of
the reward of the chosen arm, the learner only gets to
see a noisy feedback on the pairwise preference of two
arms selected by the learner (Zoghi et al., 2014, 2015;
Komiyama et al., 2015; Wu and Liu, 2016; Saha et al.,
2021a; Saha and Krishnamurthy, 2022; Saha, 2021;
Saha et al., 2021b), or even extending the pairwise
preference to subsetwise preferences (Sui et al., 2017;
Brost et al., 2016; Saha and Gopalan, 2018a, 2019b,
2020; Ghoshal and Saha, 2022; Ren et al., 2018).

Little research has been done on dueling bandits in a
sleeping setup, despite its practical usefulness. In a
recent study, Saha and Gaillard (2021) addressed the
Sleeping Dueling Bandit problem in the case of stochas-
tic preferences and adversarial availabilities. However,
their proposed algorithms only provide a suboptimal
regret guarantee of O(T 2/3). Our work is the first to
achieve O(

√
T ) regret for Sleeping Dueling Bandits, as

detailed in Thm. 5.

2 SETTING

This section introduces the formal problem of sleeping
multi-armed bandit and a new notion of learner’s perfor-
mance called "Internal Sleeping Regret" (as described in
Section Sec. 2.3). It also discusses the different existing
regret bounds in Sleeping MAB (as outlined in Section
Sec. 2.1) and their relationships, which are summarized
in Fig. 1.

Problem Setting: Sleeping MAB. Let [K] =
{1, . . . , K} be a set of arms. At each round t ≥ 1, a
set of available arms St ⊆ [K] is revealed to a learner,

1Õ(·) notation hides logarithmic dependencies.

that is asked to select an arm kt ∈ St, upon which
the learner gets to observe the loss ℓt(kt) ∈ [0, 1] of
the selected arm. The availability sequence {St}T

t=1
and the loss sequence {ℓt}T

t=1 can be either stochastic
or adversarial (oblivious) in nature. We consider the
hardest setting of adversarial losses and availabilities,
which subsumes the other settings as special cases (see
Sec. 2.3 for details).

The next thing to understand is how should we evaluate
the learner or what is the final objective? Before pro-
ceeding to our unifying notion of Sleeping MAB regret,
let us do a quick overview of existing notions of sleeping
MAB regret studied in the prior bandit literature.

2.1 Existing Objectives for Sleeping MAB

1. External Sleeping Regret. The first notion
was introduced by Blum and Mansour (2007). Here,
the learner is compared with each arm, only on the
rounds in which the arm is available:

Rext
T (k) :=

T∑
t=1

(
ℓt(kt)− ℓt(k)

)
1{k ∈ St} . (1)

The learner is asked to control maxk∈[K] RT (k) = o(T )
as T →∞. In Blum and Mansour (2007), the authors
provide an algorithm which achieves RT (k) ≤ O(

√
T )

for all k.

2. Ordering Regret. This second notion compares
the performance of the learner on all rounds, with any
fixed ordering σ = (σ1, . . . , σK) ∈ Σ of the arms, where
Σ denotes the set of all possible orderings of [K]:

Rordering
T (σ) :=

T∑
t=1

ℓt(kt)− ℓt

(
σ(St)

)
, (2)

where σ(St) =
{

σk s.t. k = argmin{i : σi ∈ St}
}

denotes the best arm available in St. Consequently, in
this case, the learner’s regret is evaluated against the
best ordering maxσ∈Σ Rordering

T (σ).

It is known that no polynomial time algorithm can
achieve a sublinear regret without stochastic assump-
tions on the losses ℓt or the availabilities St, as the
problem is known to be NP-hard when both rewards
and availabilities are adversarial Kleinberg et al. (2010);
Kanade and Steinke (2014a); Kale et al. (2016). For
adversarial losses and i.i.d. St (where each arm is
independently available according to a Bernoulli dis-
tribution), Saha et al. (2020) proposed an algorithm
with O(

√
T ) regret. For i.i.d. losses and adversarial

availabilities, a UCB based algorithm with logarithmic
regret was proposed in Kleinberg et al. (2010).

3. Policy Regret A policy π : 2[K] 7→ [K] denotes
here a mapping from a set of available actions/experts
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to an item. Let Π := {π | 2[K] 7→ [K]} be the class of
all policies. In this case, the regret of the learner is
measured against a fixed policy π is defined as:

Rpolicy
T (π) = E

[ T∑
t=1

ℓt(kt)−
T∑

t=1
ℓt(π(St))

]
, (3)

where the expectation is taken w.r.t. the availabilities
and the randomness of the player’s strategy (Saha
et al., 2020). As usual, in this case, the learner’s
regret is evaluated is evaluated against the best policy
maxπ∈Π Rpolicy

T (π).

2.2 Relations across Different Notions of
Existing Sleeping MAB Regret

One may wonder how these above notions are related.
Is one stronger than the other? Or does optimizing one
imply optimizing the other? Under what assumptions
on the sequence of losses {ℓt}t∈[T ] and availabilities
{St}t∈[T ]? We answer these questions in this section
and also summarized them in Fig. 1.

1. Relationship between (ii) Ordering Regret
and (iii) Policy Regret. These two notions are
very close, in principle they are equivalent in all prac-
tical contexts where they can be controlled. Note
for stochastic losses and availabilities, it is easy to
see both are equivalent, i.e. maxσ∈Σ Rordering

T (σ) =
maxπ∈Π Rpolicy

T (π). In fact, even when either losses or
the availabilities are stochastic, and losses are indepen-
dent of the availabilities (which are the only settings
in which algorithms exist for these notions), we can
claim the same equivalence! See App. A.3 for a proof.
Thus, for the rest of this paper, we will only work with
Ordering Regret (Rordering

T ).

2. Relationship between (i) External Sleeping
Regret and (ii) Ordering Regret.

• Does Ordering Regret (2) Implies External
Regret (1)?
– Case (i): Stochastic losses, Adversarial St:
Yes, in this case it does. Since losses are stochastic, let
at any round t, E[ℓt(i)] = µi for all i ∈ [K]. Then,

E[Rext
T (k)] =

T∑
t=1

(µkt − µk)1{k ∈ St}

≤
T∑

t=1
(µkt

− µk∗
t
)1{k ∈ St}

≤
T∑

t=1
(µkt − µk∗) = E[Rordering

T (σ)]

where the first inequality simply follows by the defini-
tion of k∗

t = σ∗(St), σ∗ being the best ordering in the
hindsight, and by noting that for i.i.d. losses for any
i ∈ St, µi − µk∗

t
≥ 0.

– Case (ii): Adversarial losses, Stochastic St:
The implication does not hold in this case. We can
construct examples to show that it is possible to have
E[Rordering

T (σ)] = 0 but E[Rext
T (k)] = O(T ) for some

k ∈ [K] (see App. A). The key observation lies in
making the losses ℓt dependent of availability St.

• Does External Regret (1) Implies Ordering
Regret (2)? This direction is not true in general,
as indeed, it would otherwise contradict the hardness
result for ordering regret. Minimizing ordering regret
is known to be NP-Hard for adversarial ℓt and St

Kleinberg et al. (2010), while one can easily construct
efficient Õ(

√
T ) regret algorithms for external regret

in the fully adversarial setup, e.g. even our proposed
algorithm SI-EXP3 achieves that (see Rem. 3). Let us
analyze in a more case by case basis:
– Case (i) Stochastic losses, Adversarial St: No!
Even for i.i.d. losses the implication does not hold
for adversarial sleeping. To see this, we consider the
following counter example with three arms (K = 3).
Assume that the arms incur constant losses ℓt(k) = k
when they are available. During the first T/2 rounds,
we set St = {1, 2} so that the worst arm is unavailable
and during the last T/2 rounds, the best arm is the one
that is sleeping, i.e., St = {2, 3}. Then, an algorithm
that selects the first arm for t = 1, . . . , T/2 and the
worst arm for t = T/2 + 1, . . . , T satisfies Rext

T (k) = 0
for any k ∈ [3]. Yet, Rordering

T

(
(1, 2, 3)

)
= T/2 because

the algorithm chooses the worst arm 3 instead of 2
when St = {2, 3}.
– Case (ii) Adversarial losses, Stochastic St: The
implication is not true in this case as well. We can
simply do the same counter-example by taking i.i.d.
availability sets: St = {1, 2} with probability 1/2 and
St = {2, 3} otherwise.
This essentially shows that ordering regret is a stronger
notion of regret compared to external regret.

To precisely summarize the relationships between the
various notions of regret mentioned above, we present
them graphically in Figure 1. However, keeping track of
so many different regret notions is already challenging.
It is even more difficult to determine which one to
work with and whether optimizing one will necessarily
guarantee low regret in another. Thus, we aim to find
a more general notion of sleeping regret that implies
both. To address this challenge, we introduce a new
sleeping MAB regret notion that unifies the existing
notions of regret under a general umbrella.

2.3 Internal Sleeping Regret: A New
Performance Objective for Sleeping MAB

The notion of Internal Regret was introduced in the
theory of repeated games Foster and Vohra (1999),
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and largely studied in online learning since then, see
among other Cesa-Bianchi and Lugosi (2006); Stoltz
(2005); Stoltz and Lugosi (2005); Blum and Mansour
(2007). Roughly, a small internal regret for some pair
(i, j) implies at any round t, learner would not have
regretted playing j, where she actually played arm-i
instead. Drawing motivation, for our sleeping MAB
setup, we define the notion as follows:
Definition 1 (Internal Sleeping Regret). For any pair
of arms (i, j) ∈ [K]2, the internal sleeping regret is

Rint
T (i→j) :=

T∑
t=1

(
ℓt(kt)− ℓt(j)

)
1{i = kt, j ∈ St}. (4)

Typically, optimizing Rint
T (i→ j) implies, we want that

if the learner had played j on all the rounds where he
played i and j was available, he does not incur large
regret. The strength of this notion is that it can be
minimized efficiently (as detailed in Sec. 3) for general
adversarial losses and availabilities which is the key
behind our main results (see Rem. 3 and 4).

2.4 Generalizing Power of Internal Sleeping
Regret

In this section, we discuss, how Rint
T generalizes the

other existing notions of sleeping regret (Sec. 2.1).

1. Internal Regret vs External Regret We start
by noting that following is a well-known result in the
classical online learning setting (Stoltz and Lugosi,
2005) (without sleeping).
Lemma 2 (Internal Regret Implies External Regret,
Stoltz and Lugosi (2005)). For any sequences (ℓt), (St),
and any algorithm, Rext

T (k) =
∑K

i=1 Rint
T (i→ k) for all

k ∈ [K].

The proof follows from the regret definitions. Thus any
uniform upper-bound on the internal regret, implies
the same bound for the external regret up to a factor
K. The other direction is not true though!

2. Internal Sleeping Regret vs Ordering Regret
Lemma 3 (Internal Regret Implies Ordering (for
stochastic Losses)). Assume that the losses (ℓt)t≥1 are
i.i.d.. Then, for any ordering σ, we have

E
[
Rordering

T (σ)
]
≤

K∑
i=1

∑
j∈Di

E
[
Rint

T (i→ j)
]

.

where Di is the set of arms such that E[ℓt(j)] ≤ E[ℓt(i)].

Therefore, any algorithm that satisfies E
[
Rint

T (i →
j)

]
≤ O(

√
T ), also satisfies E

[
Rordering

T (σ)
]
≤ O(

√
T ).

The proof is deferred to the App. A.4.
Remark 1. An interesting research direction for the
future would be to see if the sleeping internal regret also

implies the ordering regret for adversarial losses and
stochastic availabilities? Our experiments seem to point
into this direction (see App. D). Such a result would im-
ply that any algorithm that can achieve sublinear regret
w.r.t. sleeping internal regret Rint

T (we in fact proposed
such an algorithm in Sec. 3, see SI-EXP3), would actu-
ally satisfy a best-of-both worlds guarantee. That is if
either the losses or the availabilities are stochastic, the
algorithm will incur a sublinear regret w.r.t. ordering
regret Rordering

T as well.
Remark 2. On the other hand, it is well known that
for adversarial losses, a small external regret does not
imply a small internal regret Stoltz and Lugosi (2005)
even when St = [K]. But, when losses are stochas-
tic and availabilities are adversarial, minimizing the
ordering regret does control the internal regret (see
App. A.4).

3 SI-EXP3: AN ALGORITHM FOR
INTERNAL SLEEPING REGRET

We now propose an EXP3-based algorithm that guaran-
tees sublinear sleeping internal regret. It is important
to note that our algorithm works for the most chal-
lenging scenario of adversarial losses and availabilities,
which includes stochastic settings (either losses or avail-
abilities) as a special case. As proven in Thm. 4, our
proposed algorithm SI-EXP3 achieves Õ(

√
KT ) inter-

nal regret for any arbitrary sequence of losses {ℓt}t∈[T ]
and availabilities {St}t∈[T ]. In addition, the general-
ity of our internal regret (as shown in Fig. 1) implies
O(
√

T ) external regret in any scenario, as well as or-
dering regret for i.i.d losses, as explained in Rem. 3.

Our regret analysis is inspired from the construction
of Stoltz (2005) (see Section 3, Thm. 3.2) for the
internal regret although the ‘sleeping component’ or
item non-avilabilities is not considered by Stoltz (2005).

Another relevant work is Blum and Mansour (2007),
which designs an algorithm minimizing a variant of
internal sleeping regret with a subtle difference: it
considers time selection functions I ∈ I ⊆ {0, 1}T

instead of sleeping actions. More precisely, the regret
considered by Blum and Mansour (2007) is of the form

max
I∈I

T∑
t=1

(
ℓt(kt)− ℓt(j)

)
1{kt = i, I(t) = 1} .

Thus Rint
T (i → j) would correspond to the choice

I(t) = 1{j ∈ St}, but the dependence on the arm
j is not possible in their definition and makes the adap-
tation of their algorithm challenging. Moreover, their
algorithm differs from ours and the one of Stoltz (2005)
because it combines algorithms. In short, Blum and
Mansour (2007) provides a reduction that needs K
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instances of a no-external regret algorithm, that are
combined by a meta-algorithm. In contrast, we use a
single instance of EXP3 to combine K(K−1) fictitious
experts. Each expert is in charge of controlling the
internal regret Rint

T (i → j). No external regret algo-
rithm is needed on the lower level. Because combining
bandit algorithms is a difficult task (see e.g., Agarwal
et al. (2017)), Blum and Mansour (2007) incurs subop-
timal factors in [K] (see their Thm. 11 which yields an
internal regret of order O(K

√
TK log K)), need extra

assumptions (see their Lem. 10), and the adaptation
of their analysis to sleeping is sophisticated. Note in
particular that, their regret bound (Thm. 18) only
holds in the full information setting, while their result
on bandit feedback (Thm. 11) does not have the sleep-
ing component. We now describe our main algorithm,
SI-EXP3, for optimizing Internal Sleeping Regret.

3.1 Algorithm: SI-EXP3

The Sleeping-Internal-EXP3 (SI-EXP3) procedure is
a two-level algorithm. At round t ≥ 1, the master
algorithm forms a probability vector pt ∈ ∆K over
the arms, which is used to sample the played action
kt ∼ pt. The vector pt is such that pt(i) = 0 for any
i /∈ St. A subroutine, based on EXP3 (Auer et al.,
2002), combines K(K − 1) sleeping experts indexed by
i → j, for i ≠ j. Each expert aims to minimize the
internal sleeping regret Rint

T (i → j). We detail below
how to construct pt.

Algorithm 1 SI-EXP3: Sleeping Internal Regret Al-
gorithm for MAB
1: input: Arm set: [K], learning rate η > 0
2: init: E := {(i, j) ∈ [K]2, i ̸= j}

q̃1 ∈ ∆E uniform distribution on E
3: for t = 1, 2, . . . , T do
4: Observe St ⊆ [K] and define qt ∈ ∆E as in (8)
5: Define pt ∈ ∆K by solving (9)
6: Predict kt ∼ pt and observe ℓt(kt)
7: Define ℓ̂t(k) = ℓt(k)

pt(k)1{k = kt} for all k ∈ [K]
8: for (i, j) ∈ E do
9: Define pi→j

t ∈ ∆K as in (5)
10: Define ℓ̂t(i→ j) as in (6)
11: Update q̃t+1(i→ j) ∝ q̃t(i→ j)e−ηℓ̂t(i→j)

12: end for
13: end for

For any i ̸= j, we denote by pi→j
t ∈ ∆K the probability

vector that moves the weight of pt from i to j,

pi→j
t (k) =

 0 if k = i
pt(i) + pt(j) if k = j

pt(k) otherwise
. (5)

As usually considered in adversarial multi-armed ban-

dits, for any active arm i ∈ St, we define the associated
estimated loss ℓ̂t(i) := ℓt(i)1{i = kt}/pt(i). Further-
more, by abuse of notation, we also define for any
i, j ∈ [K], i ̸= j the loss

ℓ̂t

(
i→ j

)
:=

{ ∑K
k=1 pi→j

t (k)ℓ̂t(k) if j ∈ St

ℓt(kt) otherwise . (6)

The subroutine then computes the exponential
weighted average of the experts i → j, by forming
the weights

q̃t(i→ j) :=
exp

(
− η

∑t−1
s=1 ℓ̂s(i→ j)

)
∑

i′ ̸=j′ exp
(
− η

∑t−1
s=1 ℓ̂s(i′ → j′)

) . (7)

To avoid assigning mass from an active item i to an
inactive j /∈ St, the subroutine then normalizes those
weights so that sleeping experts get 0 mass

qt(i→ j) := q̃t(i→ j)1{j ∈ St}∑
i′ ̸=j′ q̃t(i′ → j′)1{j′ ∈ St}

. (8)

Finally, the master algorithm forms pt ∈ ∆K by solving
the linear system

pt =
∑
i ̸=j

pi→j
t qt(i→ j) . (9)

The existence and the practical computation of such a
pt is an application of Lemma 3.1 of Stoltz (2005). Sim-
ilarly to Blum and Mansour (2007) and Stoltz (2005),
the space and per-round time complexities of SI-EXP3
are O(K2) and O(K3) respectively. The bottleneck is
the above fixed point resolution of pt in (9).

3.2 Regret Analysis of SI-EXP3

We now analyze the sleeping internal regret guarantee
of Alg. 1 (Thm. 4), and also the implications to other
notions of sleeping regret (Rem. 3).
Theorem 4. Consider the problem of Sleeping
MAB for arbitrary (adversarial) sequences of losses
{ℓt} and availabilities {St}. Let T ≥ 1 and
η2 = (log K)/

(
2

∑T
t=1 |St|

)
. Assume that 0 ≤ ℓt(i) ≤ 1

for any i ∈ St and t ∈ [T ]. Then,

E
[
Rint

T (i→ j)
]
≤ 2

√√√√2 log K

T∑
t=1
|St| ≤ 2

√
2TK log K ,

for all i ̸= j in [K].

The proof is postponed to App. B. The learning rate
η can be calibrated online at the price of a con-
stant factor by choosing a time-varying learning rate
η2

t = (log K)/
(
2

∑t
s=1 |Ss|

)
or by using the doubling-

trick technique (Cesa-Bianchi and Lugosi, 2006).
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Remark 3. The above theorem also implies a bound
of order O(K

√
KT log K) for the external sleeping re-

gret by Lem. 2 and O(K2√KT log K) for the ordering
regret when the losses are i.i.d. by Lem. 3. SI-EXP3 is
the first to simultaneously achieve order-optimal sleep-
ing external regret for fully adversarial setup as well
as ordering regret for stochastic losses and this was
possible owning to the versatility of Sleeping Internal
Regret as summarized in Fig. 1.

4 IMPLICATIONS IN SLEEPING
DUELING BANDITS

In this section, we show the implication of our result
to sleeping dueling bandits.

Motivation behind a generalized DB objective.
We show interesting use-cases of our generalization such
as when the user is asked at each round to choose two
different actions i ̸= j. Note that in the dueling bandit
literature, the user may choose replicated arms (i, i),
and is expected to converge to an optimal pair (i∗, i∗).
However, in many applications, this does not make
sense to show users the same pair of items (i, i), rather
it might be preferred to see their top-two choices, i.e we
would expect the algorithm to converge to the best pair
(i, j), i ̸= j (more motivating examples are provided
after Rem. 4). Classical dueling bandit algorithms do
not easily allow for such a restriction, whereas this can
be easily achieved with our sleeping procedure.

4.1 Our Problem Setting: Sleeping Dueling
Bandits (Sleeping DB)

We generalize the setting of Saha and Gaillard (2021)
for dueling bandits with adversarial sleeping. We
consider the stochastic dueling bandit setting with
a preference matrix P ∈ [0, 1]K×K such that P (i, j) =
1−P (j, i) is the probability of item i to beat item j in
some round. Furthermore, we assume that their exists
a total ordering of the arms σ, such that P (σ(i), j) ≥
P (σ(i′), j) for all σ(i) ≤ σ(i′) and all j ∈ [K]. This
is satisfied for utility-based preference matrices (Ailon
et al., 2014), or for Plackett-Luce model (Azari et al.,
2012), where it is assumed that the K items are as-
sociated to positive score parameters θ1, . . . , θK and
P (i, j) = θi/(θi + θj) for all i, j ∈ [K].

Before each round t ≥ 1, an adversary reveals a set of
possible dueling pairs At ⊆ [K]2. We assume that if
(i, j) ∈ At then (j, i) ∈ At. We denote for any i ∈ [K]
by At(i) := {j ∈ [K], (i, j) ∈ At}, the set of possible
adversaries for i ∈ [K], and by St := {i ∈ [K], At(i) ̸=
∅} the set of available arms at time t. After observing
At, the learner selects a pair of items (it, jt) ∈ At and
observes the result of the duel ot(it, jt) which follows a

Bernoulli distribution with mean P (it, jt).

Performance: Internal Sleeping DB regret. We
measure the learner’s regret w.r.t. the following regret
measure:

RSI-DB
T = 1

2

T∑
t=1

(
max

j∗∈At(it)
P (j∗, it)+ max

i∗∈At(jt)
P (i∗, jt)−1

)
.

(10)
Since the definition is inspired from internal regret, we
term it as Internal Sleeping DB regret (or SI-DB in
short) — the measure essentially evaluates the dueling
choices of the learner (it, jt) against their best ‘available
competitor’ according to At(·).
Remark 4 (Generalizability of RSI-DB

T ). It is note-
worthy that if all pairs are available At = [K]2, then
i∗
t = j∗

t is the Condorcet Winner (CW) (see Zoghi et al.
(2014) for definition) for all rounds since P respects
total ordering. Thus, in this case, RSI-DB

T reduces to the
standard CW-regret studied in DB (Yue and Joachims,
2009; Zoghi et al., 2014; Bengs et al., 2021). Moreover,
RSI-DB

T also generalizes the notion of Sleeping Dueling
Bandit of Saha and Gaillard (2021) for the special case
At = St × St (i.e. when all pairs of the available items
are feasible): This is since for this case we again have
i∗
t = j∗

t (owing to the total ordering assumption of P),
and hence we can recover their notion of sleeping regret
(see Eqn. (1) of Saha and Gaillard (2021)). Neverthe-
less, our new notion offers more flexibility as we now
show with some application examples.

Motivating Examples: Practicability of RSI-DB
T .

(i.) Dueling bandits with non-repeating arms.
A first example consists in choosing At = {(i, j) ∈
[K]2, i ̸= j}. At each round, our algorithm is then
required to select two distinct items, which is a new
constraint in the context of dueling bandits. This re-
striction is relevant for various applications, including
recommendation systems that recommend pairs of dif-
ferent items. Our algorithm is designed to converge
to the best-performing item pair. An intriguing future
research direction would be to extend our approach to
subsets of unique battling items of any size, which may
be larger than two. A related scenario was explored by
Saha and Gopalan (2018b), but they allow the selection
of duplicate items.
(ii). Preference learning with categories. An
application that illustrates this point involves arms
that are categorized into different groups. For instance,
consider a movie recommendation system that offers a
variety of movie types, such as action, documentaries,
TV series, and romantic movies. At each round, the
system is tasked with suggesting movies from different
categories to add diversity to the recommendations.
Our algorithm can learn the optimal movies as well as
the two best categories simultaneously. Furthermore,
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the ability to sleep permits the collection of movies to
change over time.

4.2 Sparring SI-EXP3: An Algorithm for
Sleeping DB and Regret Analysis

Following the generic reduction from multi-armed ban-
dit to dueling bandit from Saha and Gaillard (2022)
(see Section 4), we consider the following algorithm.
We run two versions Aleft and Aright of the internal
sleeping regret algorithm of Thm. 4 in parallel. At
each round t, it is chosen by Aleft, which is run on the
availability sets St and losses ℓleft

t (k) = ot(jt, k), k ∈ St.
After it is chosen, Aright chooses jt, by using the avail-
ability sets At(it) and losses ℓright

t (k) = ot(it, k). We
call the algorithm as Sparring SI-EXP3, following the
classical nomenclature from Ailon et al. (2014) which
first invented the idea of designing a DB algorithm
by making two MAB algorithms competing against
another, and famously termed it as ‘Sparring’.
Theorem 5. Consider the problem setting of Sleep-
ing DB defined above (Sec. 4) and let T ≥ 1. Then,
Sparring SI-EXP3 satisfies

E[RSI-DB
T ] ≤ 2K2

√
2TK log K .

The proof is postponed to App. C. As explained in
Rem. 4, by choosing At of the form St × St for some
subset St ⊆ [K], we retrieve the setting of Saha and
Gaillard (2021). Note that they provide distribution
dependent upper-bounds while we present worst-case
upper-bound. They show a high-probability regret
bound of order O(K2 log(1/δ)/∆2) for an UCB based
algorithm, and a O(K3/∆2 + K2 log(T )/∆) upper-
bound on the expected regret of an algorithm based
on empirical divergences. Their analysis are quite tech-
nical and non-trivial to adapt to general sets At as
our result. Furthermore, both their algorithms yield a
worst-case regret of order O(T 2/3) while we get O(

√
T ).

5 EXPERIMENTS

We provide sleeping multi-armed bandit simulations,
averaged across 20 runs2. More findings are in App. D.
We compare the results of the following algorithms:
• SI-EXP3: Alg. 1;
• S-UCB: A sleeping UCB procedure (Kleinberg et al.,

2010) initially designed for ordering regret with
stochastic losses;

• S-EXP3: Sleeping-EXP3G (Saha et al., 2020) ini-
tially designed for ordering regret with adversarial
losses and i.i.d. sleeping.

2The code is available at:
https://github.com/sdan2/Internal-Regret-Bandits

We compare these two algorithms because they achieve
state-of-the-art performance in their respective settings.
The hyper-parameters η of SI-EXP3 and (η, λ) of S-
EXP3 are considered as time-varying hyper-parameters
and set to t−1/2.

Stochastic environment. The losses and avail-
abilies for K = 10 arms are i.i.d. and respectively follow
Bernoulli distributions with mean µk and ak. The lat-
ter are uniformly sampled at the start of each run on
(0, 1). Rounds with no available arms are skipped.

Dependent environment. We consider the follow-
ing semi-stochastic environment with K = 3. The pairs
(St, ℓt) are still i.i.d. but the losses ℓt depend on the
availabilities. The sets St are first uniformly sampled
among {1, 2}, {1, 2, 3}, {1, 3} and {2, 3}. According to
the values of St, the loss vectors are then respectively
(0, .5, x), (0, .5, 1), (1, x, 0), and (x, 0, 1), where x means
that the arm is sleeping.

Rock-Paper-Scissors. We consider a repeated two-
player zero-sum game with payoff matrix

P =
( 0 1 −1

−1 0 1
1 −1 0

)
.

We assume that at each round some action may be
unavailable (St is uniformly sampled as in the previous
environment). The game is then played on St only. We
consider an opponent that is playing the Nash equilib-
rium of the sub-games (i.e., the game with the payoff
matrix P restricted to St) and run each algorithm
against that opponent.

Results. The cumulative regrets (Policy, External,
and Internal) for the algorithms are shown in Fig. 2. It
is observed that when there are dependencies between
the loss vectors and availabilities, SI-EXP3 outperforms
the other two algorithms significantly. This is not
surprising since S-EXP3 and S-UCB were designed
to perform well under the assumption of a best fixed
ordering. Typically, these algorithms first rank the
actions based on their average performance and then
choose the best action available in St. However, when
there is a dependency between St and ℓt, the best
ordering may change from round to round, leading
to linear Policy regret for S-UCB and S-EXP3. It
is important to note that such a situation can occur
frequently in real-world scenarios. For example, an e-
commerce site that sells products may want to suggest
complementary items. If some of the items are out of
stock, suggesting certain items may not make sense.
Remark 5 (Application to game theory with sleeping
actions). For sleeping two-player zero-sum games, the
best policy to play depends on the actions available to
the opponent: if Scissors is not available, then Paper is
the best action, although when all actions are available
the optimal policy is (1/3, 1/3, 1/3). For instance, the

https://github.com/sdan2/Internal-Regret-Bandits
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Figure 2: [Left] Stochastic environment [Middle] Dependent environment [Right] Rock Paper Scissors

Nash equilibrium of P restricted to St = {1, 2} (Rock,
Paper), is (0, 1, 0) (i.e., play Paper). Yet, here, all
actions are on average equally good (i.e., taking the
expectation over St); and S-UCB and S-EXP3 will
converge to (1/2, 1/2, 0) when Scissor is unavailable
and incur linear Policy regret. On the other hand, SI-
EXP3 is able to leverage the dependence between St

and ℓt and choose the right action. In App. D, we
provide an additional experiment for two-player zero-
sum randomized games with a random payoff matrix
P (App. D.1) and also Dueling Bandit experiments
(App. D.2). An intriguing question for future work is
whether SI-EXP3 converges to the Nash equilibrium of
each subgame (or whether it obtains sublinear regret
against an adversary that plays the Nash of P restricted
to actions of St).

6 CONCLUSION
In this paper, we introduce the notion of internal sleep-
ing regret for multi-armed bandits. Under some as-
sumptions this notion implies simultaneously existing
notions considered in the literature in adversarial or
stochastic settings. We provide an efficient algorithm

with O(
√

T ) regret and motivate our regret with ap-
plications for dueling bandits. On a high level, the
general theme of this work–to unify different notions of
performance measure under a common umbrella and
designing efficient algorithms for the general measure–
can be applied to several other bandits/online learn-
ing/learning theory settings, which opens plethora of
new directions.

Future Directions. As an extension to this work,
some of the interesting open challenges could be: (i).
to understand if sleeping internal regret also implies
the ordering regret for adversarial losses but stochas-
tic availabilities (see Rem. 1). (ii). to derive gap-
dependent bounds sleeping dueling bandit regret for
stochastic preferences and adversarial sleeping, same
as derived for its MAB counterpart in (Kleinberg et al.,
2010) or in a recent work (Saha and Gaillard, 2021)
which though only gave suboptimal regret guarantees?
(iii). to understand if our results can be extended to
the subsetwise generalization of dueling bandits, stud-
ied as the Battling Bandits (e.g., Saha and Gopalan,
2019a, 2020; Ren et al., 2018).
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Supplementary: One Arrow, Two Kills: A Unified Framework for
Achieving Optimal Regret Guarantees in Sleeping Bandits

A Appendix for Sec. 2

A.1 Low ordering regret Rordering
T with Adversarial losses, Stochastic availabilities does not imply

low external regret Rext
T

Lemma 6. There exists a sequence of i.i.d. availabilities (St)t≥1 and a sequence of losses (ℓt)t≥1 (possibly
depending on St), such that, there exists an algorithm with

max
σ

Rordering
T (σ) = o(T ) and max

k
Rext

T (k) = Ω(T ) ,

as T →∞.

Proof. We provide the following example. Consider a MAB problem with 3 arms, K = 3. Suppose the problem
encounters the following availability sets A1 = {1, 2, 3},A2 = {1, 2}, ,A3 = {1, 3},A4 = {2, 3} uniformly, i.e.
P(St = Ai) = 1/4 for all i ∈ [4] and t ∈ [T ], where St being the availability set at time t. Further let us consider
the adversarial (rather set dependent) loss sequence generated as follows:

ℓt(1) ℓt(2) ℓt(3)
if St = A1 0 1 1
if St = A2 0 1 x
if St = A3 1 x 0
if St = A4 x 1 1

where x can be any arbitrary loss value. For this example, the best orderings are (1, 2, 3), (1, 3, 2) and (3, 1, 2),
that get a cumulative loss equals to T/2 in expectation. Indeed,

4
T
E

[
T∑

t=1
ℓt(σ(St))

]
=



2 if σ = (1, 2, 3)
2 if σ = (1, 3, 2)
4 if σ = (2, 1, 3)
3 if σ = (2, 3, 1)
2 if σ = (3, 1, 2)
3 if σ = (3, 2, 1)

.

Consider and algorithm that plays kt = σ(St) according to the ordering σ = (3, 1, 2). Then, E
[ ∑T

t=1 ℓt(kt)
]

= T/2.
It has thus no-regret Rordering

T (σ∗) ≤ 0 with respect to any ordering σ∗. Yet, its internal regret with respect to
action 1 is

Rext
T (1) = E

[
T∑

t=1
(ℓt(kt)− ℓt(1))1{1 ∈ St}

]
= T

4 .

This implies a ‘no-regret ordering regret learner’ does not imply a ‘no-regret external regret learner’ for any
arbitrary sequence of adversarial losses, stochastic availabilities.

A.2 Low ordering regret Rordering
T with Stochastic losses, Adversarial availabilities does imply low

internal regret Rint
T

Lemma 7. Let (ℓt)t≥1 be an i.i.d. sequence of losses. Then, for any sequence of availability sets (St)t≥1 such
that St may only depend on (ℓs)s≤t−1

max
1≤i,j≤K

Rint
T (i→ j) ≤ max

σ
Rordering

T (σ) ,

for any algorithm.
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Proof. Consider stochastic losses such that ℓt(k) are i.i.d. with mean µk for all k ∈ [K], and any sequence of
availability sets S1, . . . , ST ⊆ [K] (that can only depend on information up to t − 1). Let σ∗ be an optimal
ordering

σ∗ ∈ argmin
σ

E

[
T∑

t=1
ℓt(σ(St))

]
.

Then, for all S ⊆ [K], µσ∗(S) = mini∈S µi. Let kt be the predictions of any algorithm. Let (i, j) ∈ [K]2. Then,

Rint
T (i→ j) = E

[
T∑

t=1
(ℓt(i)− ℓt(j))1{i = kt, j ∈ St}

]

≤ E

[
T∑

t=1
(µkt

− µj)1{i = kt, j ∈ St}+ (µkt
− µσ∗(St))1{kt ̸= i or j /∈ St}

]

≤ E

[
T∑

t=1
µkt
− µσ∗(St)

]
= Rordering

T (σ∗) ,

where the inequalities are because µσ∗(St) ≤ µi for any i ∈ St. This concludes the proof.

A.3 Equivalence of Policy and Ordering Regret

The policy regret is a stronger notion than ordering regret in general. From their definitions, we see
max

σ
Rordering

T (σ) ≤ max
π

Rpolicy
T (π) ,

because for each ordering σ, one can associate a policy π, such that π(St) = σ(St). But, the other direction is
not true in general. Indeed, in the example of App. A.1, the inequality is strict. This is due to the dependence
between losses and availabilities. Yet, no existing efficient algorithm can handle such dependence neither for
policy regret nor for ordering regret. In this appendix, we prove that when either losses or availabilities are i.i.d.
with no dependence, then the two notions are equivalent.
Lemma 8 (Stochastic losses and adversarial availabilities). Let (ℓt)t≥1 be an i.i.d. sequence of losses. Then, for
any sequence of availability sets (St)t≥1 such that St may only depend on (ℓs)s≤t−1, then

max
π

Rpolicy
T (π) = max

σ
Rordering

T (σ) ,

for any algorithm.

Proof. The proof follows from the observation that the best policy with i.i.d. losses is to play the available action
with the smallest expected loss. Such a policy corresponds to the ordering µσi

≤ µσj
for all i ≤ j. Note that this

would not be true if ℓt could depend on St.

Lemma 9 (Adversarial oblivious losses and stochastic rewards). Let (ℓt)t≥1 be an arbitrary sequence of losses
and (St)t≥1 be a sequence of i.i.d. availability sets. Then,

max
π

Rpolicy
T (π) = max

σ
Rordering

T (σ) ,

for any algorithm.

Proof. It is important to note here that we consider an oblivious adversary for the loss sequence (ℓt), which
cannot depend on the randomness of (St). Let π : 2[K] → [K] be a policy, then

E

[
T∑

t=1
ℓt(π(St))

]
=

T∑
t=1

∑
S∈2[K]

ℓt(π(S))P(S = St) =
∑

S∈2[K]

p(S)
T∑

t=1
ℓt(π(S))

where p(S) = P(St = S). Thus, the best policy corresponds to the choice

π(S) ∈ argmin
k∈S

T∑
t=1

ℓt(k) .

This policy corresponds to the ordering
∑T

t=1 ℓt(σi) ≤
∑T

t=1 ℓt(σj) for i ≤ j.
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A.4 Low internal regret Rint
T with Stochastic losses, Adversarial availabilities does imply low

ordering regret Rordering
T

Lemma 3 (Internal Regret Implies Ordering (for stochastic Losses)). Assume that the losses (ℓt)t≥1 are i.i.d..
Then, for any sequence of availability sets (St)t≥1 such that St may only depend on (ℓs)s≤t−1, for any ordering σ,
we have

E
[
Rordering

T (σ)
]
≤

K∑
i=1

∑
j∈Di

E
[
Rint

T (i→ j)
]

,

where Di is the set of arms such that E[ℓt(j)] ≤ E[ℓt(i)].

Proof. Let µk = E
[
ℓt(k)

]
for all k ∈ [K]. Let σ∗ be the best ordering such that µσ∗

1
≤ µσ∗

2
≤ · · · ≤ µσ∗

K
. Note that

for any ordering σ, we have E
[
Rordering

T (σ)
]
≤ E

[
Rordering

T (σ∗)
]
. Thus, we can restrict ourselves to σ∗. Denote by

k∗
t := σ∗(St), the best available item in St. For any i, we also define by Di := {j ∈ [K] : µj ≤ µi} the items that

are better than i. Then,

E
[
Rordering

T (σ)
]

:= E
[ T∑

t=1
ℓt(kt)− ℓt

(
σ(St)

)]
= E

[ T∑
t=1

µkt − µk∗
t

]

= E
[ T∑

t=1

K∑
i=1

∑
j∈Di

(µi − µj)1{i = kt, j = k∗
t }

]
← k∗

t ∈ Di because it is the best item in St

≤ E
[ T∑

t=1

K∑
i=1

∑
j∈Di

(µi − µj)1{i = kt, j ∈ St}
]
← because k∗

t ∈ St and µi − µj ≥ 0 for any j ∈ Di

≤
K∑

i=1

∑
j∈Di

E
[
Rint

T (i→ j)
]

.

B Proof of Thm. 4

Theorem 4. Consider the problem of Sleeping MAB for arbitrary (adversarial) sequences of losses {ℓt} and
availabilities {St}. Let T ≥ 1 and η2 = (log K)/

(
2

∑T
t=1 |St|

)
. Assume that 0 ≤ ℓt(i) ≤ 1 for any i ∈ St and

t ∈ [T ]. Then,

E
[
Rint

T (i→ j)
]
≤ 2

√√√√2 log K

T∑
t=1
|St| ≤ 2

√
2TK log K ,

for all i ̸= j in [K].

Proof. Let Ft := σ(S1, ℓ1, k1, ℓ1, . . . , kt, St+1, ℓt+1) denotes the past randomness of the algorithm and the adversary
at round t + 1. We respectively denote by Et[ · ] := E[ · |Ft] and Pt( · ) := P( · |Ft) the conditional expectation and
probability.

Note that q̃t(i→ j) follows the prediction of the exponentially weighted average forecaster on the losses ℓ̂t(i→ j).
Noting that −ηℓ̂t(i→ j) ≤ 1 for all i ̸= j and t ≥ 1, and applying the upper-bound on the exponentially weighted
average forecaster yields for any i ̸= j (see Thm. 1.5 of Hazan et al. (2021))

T∑
t=1

∑
i′ ̸=j′

q̃t(i′ → j′)ℓ̂t(i′ → j )−
T∑

t=1
ℓ̂t(i→ j) ≤ log(K(K − 1))

η
+ η

T∑
t=1

∑
i′ ̸=j′

q̃t(i′ → j′)ℓ̂t(i′ → j′)2 . (11)

Now, we compute the expectations. Note that St, ℓt and pt are Ft−1-measurable by assumption. Since kt ∈ St

almost surely, we have for all j ∈ [K]

Et−1
[
ℓ̂t(i→ j)

] (6)= Et−1

[ ∑
k ̸=i

ℓt(k)1{k = kt, j ∈ St}+ pt(i)ℓt(j)
pt(j) 1{j = kt}+ ℓt(kt)1{j /∈ St}

]
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= Et−1

[
ℓt(kt)1{j ∈ St} − ℓt(i)1{i = kt, j ∈ St}+ pt(i)ℓt(j)

pt(j) 1{j = kt}+ ℓt(kt)1{j /∈ St}
]

= Et−1

[
ℓt(kt)− ℓt(i)1{i = kt, j ∈ St}+ pt(i)ℓt(j)

pt(j) 1{j = kt}
]

= Et−1

[
ℓt(kt) + pt(i)(ℓt(j)− ℓt(i))1{j ∈ St}

]
= Et−1

[
ℓt(kt) + (ℓt(j)− ℓt(i))1{i = kt, j ∈ St}

]
.

Furthermore, by definitions of ℓ̂t(i→ j), pt and qt, and denoting Q̃t =
∑

i′ ̸=j′ q̃t(i′ → j′)1{j′ ∈ St}, we have

Et−1

[ ∑
i̸=j

q̃t(i→ j)ℓ̂t(i→ j)
]

(6)= Et−1

[ ∑
i̸=j

q̃t(i→ j)
K∑

k=1
pi→j

t (k)ℓ̂t(k)1{j ∈ St}+
∑
i ̸=j

q̃t(i→ j)ℓt(kt)1{j /∈ St}
]

(8)= Et−1

[
Q̃t

∑
i ̸=j

qt(i→ j)
K∑

k=1
pi→j

t (k)ℓ̂t(k) + (1− Q̃t)ℓt(kt)
]

(9)= Et−1

[
Q̃t

K∑
k=1

pt(k)ℓ̂t(k) + (1− Q̃t)ℓt(kt)
]

= Et−1
[
Q̃tℓt(kt) + (1− Q̃t)ℓt(kt)

]
= Et−1

[
ℓt(kt)

]
.

Therefore, the expectation of the left-hand side of (11) equals the internal sleeping regret:

E
[ T∑

t=1

∑
i′ ̸=j′

q̃t(i′ → j′)ℓ̂t(i′ → j )−
T∑

t=1
ℓ̂t(i→ j)

]
= Rint

T (i→ j) . (12)

On the other hand,

Et−1

[ ∑
i̸=j

q̃t(i→ j)ℓ̂t(i→ j)2
]

= Et−1

[ ∑
i ̸=j

q̃t(i→ j)
( K∑

k=1
pi→j

t (k)ℓ̂t(k)
)2
1{j ∈ St}+ (1− Q̃t)ℓt(kt)2

]

≤ Et−1

[ ∑
i ̸=j

q̃t(i→ j)
K∑

k=1
pi→j

t (k)ℓ̂t(k)21{j ∈ St}+ (1− Q̃t)ℓt(kt)2
]

(8) and (9)= Et−1

[
Q̃t

K∑
k=1

pt(k)ℓ̂t(k)2 + (1− Q̃t)ℓt(kt)2
]

= Et−1

[
Q̃t

ℓt(kt)2

pt(kt)
+ (1− Q̃t)ℓt(kt)2

]
= Q̃t

∑
k∈St

pt(k)ℓt(k)2

pt(k) + (1− Q̃t)Et−1
[
ℓt(kt)

]
≤ (|St| − 1)Q̃t + 1 ≤ |St| .

The expectation of the right-hand-side of (11) can thus be upper-bounded as

ηE

 T∑
t=1

∑
i ̸=j

q̃t(i→ j)ℓ̂t(i→ j)2

 ≤ η

T∑
t=1
|St| .

Therefore, substituting the above inequality and (12) into (11), and optimizing η concludes the proof.
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C Proof of Theorem 5

Theorem 5. Consider the problem setting of Sleeping DB defined above (Sec. 4) and let T ≥ 1. Then, Sparring
SI-EXP3 satisfies

E[RSI-DB
T ] ≤ 2K2

√
2TK log K .

Proof. Denote by j∗
t = argmaxj∈At(it) P (j, it) and by i∗

t = argmaxi∈At(jt) P (i, jt). Then, using that P (i, j) =
1− P (j, i), we have

E[RSI-DB
T ] := E

[
T∑

t=1

P (j∗
t , it) + P (i∗

t , jt)− 1
2

]

:= E

[
T∑

t=1

P (jt, it)− P (jt, i∗
t )

2

]
+ E

[
T∑

t=1

P (it, jt)− P (it, j∗
t )

2

]
. (13)

Let us focus on the first term of the r.h.s, the other one can be analysed similarly.

P (jt, it)− Pt(jt, i∗
t ) =

K∑
i=1

K∑
i′=1

(
P (jt, i)− P (jt, i′)

)
1{i = it, i′ = i∗

t }

≤
K∑

i=1

∑
i′∈Di

(
P (jt, i)− P (jt, i′)

)
1{i = it, i′ ∈ St} ,

where Di := {i′ ∈ St : P (i′, jt) ≥ P (i, jt)}. The last inequality is because i∗
t ∈ St ∩Di and P (jt, i)− P (jt, i′) > 0

for any i′ ∈ Di. Note that Di does not depend on jt because of the total ordering assumption. Then, taking the
expectation and summing over t, we get

Rleft
T := E

[
T∑

t=1
P (jt, it)− Pt(jt, i∗

t )
]

≤
K∑

i=1

∑
i′∈Di

E

[
T∑

t=1

(
P (jt, i)− P (jt, i′)

)
1{i = it, i′ ∈ St}

]

≤
K∑

i=1

∑
i′∈Di

E

[
T∑

t=1

(
ℓleft

t (i)− ℓleft
t (i′)

)
1{i = it, i′ ∈ St}

]

≤
K∑

i=1

∑
i′∈Di

2
√

2TK log K ≤ 2K2
√

2TK log K ,

where the second to last inequality is by Theorem 4 by construction of Aleft which minimizes the internal regret.
Similarly, we can show that

Rright
T := E

[
T∑

t=1
P (it, jt)− Pt(i∗

t , jt)
]
≤ 2K2

√
2TK log K .

Substituting both upper-bounds into (13) concludes the proof.

D Experiments

D.1 Additional experiments on sleeping multi-armed bandits

In this section, we run some additional experiments to compare the 3 algorithms:

• SI-EXP3: Our proposed algorithm Internal Sleeping-EXP3 described in Sec. 3;
• S-UCB: The sleeping UCB procedure proposed by Kleinberg et al. (2010) and designed for ordering regret

with stochastic losses;
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Figure 3: Random environment with dependence

• S-EXP3: The algorithm Sleeping-EXP3G designed by Saha et al. (2020) and designed for ordering regret with
adversarial losses and stochastic sleeping.

Again, each experiment is run 20 times and the Policy, External, and Internal regrets are plotted in Fig. 3
and Fig. 4.

Random environment with dependence (Fig. 3) This setup is similar to the dependent environment of
Sec. 5 where the distribution of (St, ℓt) are uniformly sampled at the start of each run.

More precisely. We consider the following stochastic environment with K = 5. The pairs (St, ℓt) are i.i.d. and
sampled as follows.

At the start of each run, five availability sets A1, . . . ,A5 ⊆ [K] are sampled by including independently each
action with probability 1/2. If a set contains no action, it is sampled again. Then, for each set m = 1, . . . , 5, a
mean vector µm ∈ RK is uniformly sampled on (0, 1)K . Then, for t = 1, . . . , T , the availability set St is drawn
uniformly from {A1, . . . ,A5} and the losses of each arm k is sample from a Bernoulli with parameter µmt(k),
where mt is such that St = Amt

.

Random two-player zero-sum games (Fig. 4) This setup is similar to the Rock-Paper-Scissors environment
of Sec. 5 but with K = 5 players and a random payoff matrix.

At the start of each run, a payoff matrix G ∈ RK×K is randomly sampled as follows. For each 1 ≤ i < j ≤ K,
Gij

i.i.d.∼ Unif
(
(−1, 1)

)
, Gii = 1/2 and Gji = −Gij :

G =
( 0 G12 G13 ...

−G12 0 G23 ...
−G13 −G23 0 ...

... ... ... 0

)
.

Furthermore, 4 availability sets (Am)1≤m≤4 are randomly sampled by including each action with probability 1/2.
For each m ∈ [4], we compute pm ∈ ∆K the Nash equilibrium of the game G restricted to actions in Am. Note
that pm(k) = 0 for all k /∈ Am. Then, for each t = 1, . . . , T , an availability set St = Amt is uniformly sampled in
{A1, . . . ,A4}. The algorithm is asked to choose an action kt ∈ St and receives the loss ℓt(kt) ∼ B(Gjtkt), where
jt is the action chosen by an optimal adversary that follows pmt

.

The optimal strategy in this case should be too also follow kt ∼ Amt and would incur E[ℓt(kt)] = 1/2. Figure 3
(right) plots the cumulative pseudo-regret RT =

∑T
t=1 Gkt,jt

− T/2. As we can see, SI-EXP3 significantly
outperforms S-UCB and S-EXP3. It would be worth to investigate if SI-EXP3 could be used to compute Nash
equilibria in repeated two-player zero-sum games with non-available actions.

D.2 Experiments on sleeping dueling bandits

Dueling Bandits with non-repeating arms This experimental setup is motivated by the first example in
Sec. 4.1 where we want the algorithm to converge to the top 2 items (best pair). We consider utility scores
{u1, u2, ..., uK} corresponding to the K arms, and the preference matrix P , with Pij defined as Pij = ui

ui+uj

indicating the probability of arm i winning over arm j. We repeat this experiment for M independent runs, by
sampling a random utility vector at the beginning of each run. We assume all the arms are available for the
first bandit. All the arms except the one chosen by the first bandit are available to the second bandit. Each
bandit runs its own custom algorithm (which can be UCB, SI-EXP3, etc.). Finally, the winning arm is decided
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Figure 4: Random games

according to P and the loss is 1 for the bandit that chose this arm and 0 for the other bandit. In Fig. 5, we plot
Internal Sleeping DB regret for choices of Sp-UCB and Sp-SIEXP3 (Sparring UCB, SI-EXP3 where both bandits
internally use the UCB algorithm and the SI-EXP3 algorithm respectively). In Fig. 5, we plot the Policy regret
of Sp-SIEXP3 and Sp-UCB and observe that in this relatively simple setting Sp-UCB outperforms Sp-SIEXP3.

Note despite its surprisingly good performance in Fig. 5, especially for small number of arms, Sp-UCB has no
theoretical guarantees for dueling bandits. It would be interesting to study whether such guarantees are possible
or whether it has a linear worst-case regret. Furthermore, Sp-UCB strongly assumes a total and fixed ordering of
stock performance. As we can see in the following example, Sp-SI-EXP3 works better as soon as there is some
dependence between the preference matrix and the availabilities. It is also worth to emphasize that we could not
compare with classical dueling bandit algorithms as they are not suited for this setting.

Figure 5: Dueling Bandits with non-repeating arms for K = 4 [Left] and K = 30 [Right] respectively. (M = 5).

Preference Learning with Categories In this experimental setup we have availability dependent utility
matrices. This is motivated by the following setting: if one item of a category is unavailable, the overall utility
values of all items in the category goes down. In the real world, this could be in a setting where I would want
to watch a season of a show only if all the seasons are available. Concretely, we have K different availability
sets, where Ai has all items available except i. We also have K utility vectors: {u1, u2, ..., uK}. At each turn
we randomly choose r ∈ {1, 2, ..., K} and select Ar and ur. Similar to the previous setting, the first bandit
chooses an available item and the second bandit chooses an available item except the one chosen by the first
bandit. In Fig. 6, we choose the utility vectors as {(1, 2, ..., K), (K, 1, 2, ..., K − 1), ..., (2, 3, ..., K, 1)} and we see
that Sp-SIEXP3 significantly outperforms Sp-UCB.
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Figure 6: Preference Learning with Categories where Utilities depend on Availability.
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