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Abstract

We study the application of large language
models to zero-shot and few-shot classification
of tabular data. We prompt the large language
model with a serialization of the tabular data to
a natural-language string, together with a short
description of the classification problem. In the
few-shot setting, we fine-tune the large language
model using some labeled examples. We evalu-
ate several serialization methods including tem-
plates, table-to-text models, and large language
models. Despite its simplicity, we find that this
technique outperforms prior deep-learning-based
tabular classification methods on several bench-
mark datasets. In most cases, even zero-shot
classification obtains non-trivial performance,
illustrating the method’s ability to exploit prior
knowledge encoded in large language models.
Unlike many deep learning methods for tabular
datasets, this approach is also competitive with
strong traditional baselines like gradient-boosted
trees, especially in the very-few-shot setting.

1 INTRODUCTION

Many real world applications generate tabular data as a
natural byproduct of relational databases (Shwartz-Ziv and
Armon, 2022). It is ubiquitous in domains ranging from
healthcare to climate and finance (Sahakyan et al., 2021).
Obtaining enough labeled data to train supervised learn-
ing algorithms for classification can be difficult. For exam-
ple, in healthcare, there are 10,000 rare diseases (Haendel
et al., 2020) affecting very few patients, which hampers the
development of risk stratification models. Thus, we seek
to develop methods that can exploit prior knowledge (e.g.,
from medical articles) to improve predictive performance
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in settings with a small number of training examples, i.e.
the few-shot setting.

While deep learning has led to breakthroughs in computer
vision and natural language processing, this success has not
yet been extended to the tabular domain. For example, self-
supervised deep learning methods have been introduced for
tabular data (Yin et al., 2020; Arik and Pfister, 2021), but
Grinsztajn et al. (2022) showed that these deep techniques
still underperform ensembles of gradient boosted trees in
the fully supervised setting. This disparity in performance
can be attributed to the differences between tabular data and
text or images; tabular data lacks locality, contains mixed
data types, and the number of columns is usually fairly
small compared to the number of features in text or image
data (Borisov et al., 2022a).

Recently, large language models (LLMs) such as GPT-3,
which are pre-trained on enormous corpora of text, have
shown incredible performance on few-shot text classifica-
tion and generation tasks (Brown et al., 2020; Sanh et al.,
2022; Ouyang et al., 2022). These LLMs perform well on
a variety of tasks and domains, including fact retrieval (Liu
et al., 2021), mathematical reasoning (Wei et al., 2022),
medical information extraction (Agrawal et al., 2022), and
tabular data cleaning tasks (Narayan et al., 2022). Most
importantly, because of all the knowledge encoded in their
parameters, LLMs require little or no labeled training data
to obtain this good performance.

In this work we introduce TabLLM, which is a general
framework to leverage LLMs for few-shot classification of
tabular data. We prompt the LLM with a serialization of
a row to a natural-language representation and a short de-
scription of the classification problem. For risk stratifica-
tion, for instance, this serialization could list relevant pa-
tient attributes and combine it with, “Will this patient be
hospitalized?”. We experiment with nine different serial-
izations and the T0 language model of different sizes (Sanh
et al., 2022). We use the parameter-efficient fine-tuning
method T-Few (Liu et al., 2022) to update the LLM’s pa-
rameters using some labeled examples. We also evaluate
GPT-3 in the zero-shot setting (Brown et al., 2020). To the
best of our knowledge, this is one of the widest evaluations
of LLMs for zero- and few-shot tabular classification.
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LLMManual Template

 1. Tabular data with k labeled rows

age education gain income

39 Bachelor 2174 ≤50K

36 HS-grad 0 >50K

64 12th 0

29 Doctorate 1086 >50K

42 Master 594

≤50K

 2. Serialize feature names and values into natural-language string with different methods

The person is 42 years old 
and has a Master’s degree. 
She gained $594.

The person is 42 years old. 
She has a Master. The gain 
is 594 dollars.

The age is 42. The educa-
tion is Master. The gain is 
594.

 3. Add task-specific prompt  Does this person earn more than 50000 dollars? Yes or no? Answer:

Table-To-Text

The age is 42. The education is 
Master. The gain is 594.

Does this person earn more than 
50000 dollars? Yes or no?
Answer:

The age is 29. The education is 
Doctorate. The gain is 1086.

Does this person earn more than 
50000 dollars? Yes or no?
Answer:

4a. Fine-tune LLM using
                labeled examples

4b. Use LLM for prediction
                   on unlabeled examples

LLM >50K>50K>50KYes
>50K>50K>50K>50K

Preditions Labels

Backprop

LLM No

Yes

Figure 1: Overview of TabLLM. We first serialize the feature names and values into a natural language string. We
evaluate different strategies. This string is then combined with a task-specific prompt. To get predictions, we obtain
output probabilities from the LLM for each of a pre-specified set of verbalizer tokens (e.g., “Yes”, “No”), which map to
class labels (e.g., 1, −1). If 𝑘 > 0, we use the 𝑘 labeled examples to fine-tune the large language model using T-Few (Liu
et al., 2022). Finally, we use the (possibly tuned) large language model to obtain predictions on unlabeled examples.

Despite its simplicity, we find that TabLLM outperforms
prior deep-learning-based tabular classification methods on
several benchmark datasets. By using information from
the natural-language column names and feature values, it
often enables effective zero-shot classification of tabular
data. Unlike many deep learning methods on tabular data,
this approach is also competitive with gradient-boosted tree
baselines and outperforms them or is on par until 256 shots.
In the very-few-shot setting it outperforms them by a con-
siderable margin. The main contributions of this work are:

• We introduce TabLLM, a novel framework leveraging
LLMs for data-efficient tabular classification

• We study nine serialization techniques and explore
their performance across ten different datasets

• We show that TabLLM instantiated with a simple text
serialization and the T0 LLM can outperform state-of-
the-art neural models and tree ensembles in the zero-
and few-shot setting

• We investigate the application of TabLLM to a large
real-world healthcare claims dataset and introduce se-
rialization methods that deal with many input features

2 RELATED WORK

2.1 Machine Learning on Tabular Data

Due to the success of deep learning in other domains, there
have been many recent attempts at representation learning
for tabular data. Self-supervised objectives have largely
revolved around the prediction of masked cells, the iden-
tification or correction of corrupted cells, and contrastive

losses over augmentations (Bahri et al., 2022; Somepalli
et al., 2021; Yoon et al., 2020; Arik and Pfister, 2021;
Huang et al., 2020). Additional efforts have included dif-
ferentiable trees, which combine advantages of tree ensem-
bles with gradient based optimization of neural networks
(Kontschieder et al., 2015; Popov et al., 2020). How-
ever, several recent comprehensive reviews (Shwartz-Ziv
and Armon, 2022; Borisov et al., 2022a; Grinsztajn et al.,
2022) found that gradient-boosted tree ensembles like XG-
Boost (Chen and Guestrin, 2016) and LightGBM (Ke et al.,
2017) systematically outperform these novel deep learning
architectures, even with proper fine-tuning and regulariza-
tion (Kadra et al., 2021). Levin et al. (2022) found util-
ity in transfer learning in the semi-supervised setting, but
required a set of additional supervised tasks on the same
table, which can be a nontrivial limitation. They investi-
gate few-shot classification for medical diagnosis using 4 to
200 labeled examples, but do not exploit the power of large
pre-trained models, as we do in this work. Hollmann et al.
(2022) recently introduced TabPFN, a Bayesian neural net-
work pre-trained on synthetic tabular data, outperforming
gradient boosted trees in a comprehensive evaluation.

2.2 Large Language Models for Tabular Data

Another approach has been to leverage the natural language
capabilities of language models. Yin et al. (2020) use a
language model for semantic parsing of natural language
queries over tabular data. Li et al. (2020) investigate the
ability of language models to perform entity matching on
tabular data, i.e. determining if two rows refer to the same
object. Harari and Katz (2022) study data enrichment by
linking each table row with additional unstructured text
(e.g., from Wikipedia) from which they generated addi-
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tional features using a language model. However, this setup
requires named entities (e.g., celebrities, universities, etc.),
which is quite limiting. Bertsimas et al. (2022) studied two
healthcare datasets and used a language model to gener-
ate feature embeddings, which they fed into classifiers like
gradient boosted trees. All these studies use a BERT-style
language model (Devlin et al., 2019). Narayan et al. (2022)
recently assessed in-context learning with the autoregres-
sive language model GPT-3 for tabular data cleaning tasks.
They found that it often outperforms state-of-the-art ap-
proaches with ten labeled examples. Borisov et al. (2022b)
introduced an LLM-agnostic method to generate realistic
tabular data and found that it achieved better results than
existing approaches. In contrast, here we study classifica-
tion tasks of tabular data and investigate parameter-efficient
fine-tuning of LLMs.

To use an LLM for tabular data, the table must be serial-
ized into a natural text representation. All aforementioned
works relied on simple list or sentence serializations; Yin
et al. (2020) also included the column data type in the se-
rialized string. Only Bertsimas et al. (2022) studied differ-
ent serialization variants, but this was in a different context
of deriving feature embeddings from BERT-style language
models. The LIFT method introduced by Dinh et al. (2022)
comes closest to our work. The authors evaluated the ca-
pabilities of fine-tuned GPT-3 and GPT-J models for re-
gression and classification on synthetic, tabular, and vision
data. They also studied the sample efficiency and consid-
ered different static serialization templates assessing the ef-
fect of including column names in the input. In this work,
we focus on the publicly available T0 model and perform a
broader analysis of nine serialization techniques including
automatic approaches and ablations evaluating the impor-
tance of feature values. Particularly, we are interested in
leveraging prior knowledge encoded in LLMs and we do a
more fine-grained analysis of the sample efficiency includ-
ing zero-shot experiments on ten different datasets.

3 METHODS

3.1 TabLLM for Tabular Data Classification

Problem Formalization. Suppose we have a tabular
dataset with 𝑛 rows and 𝑑 columns or features. We can
formalize this as 𝐷 = {(x𝑖 , 𝑦𝑖)}𝑛𝑖=1, where each x𝑖 is a 𝑑-
dimensional feature vector. Since we consider classifica-
tion, 𝑦𝑖 ∈ 𝐶 for a set of classes 𝐶. We define the column
names or feature names as 𝐹 = { 𝑓1, ..., 𝑓𝑑}. We assume the
𝑓𝑖’s are natural-language strings such as “age” or “educa-
tion” (see Figure 1). For our 𝑘-shot classification experi-
ments, we only use a subset 𝐷𝑘 of size 𝑘—sampled from
𝐷 with replacement—for fine-tuning or training.

Serialization of Tabular Data. To use an LLM for tab-
ular data, the table must be transformed into a natural text

representation. Typically, when prompting an LLM, there
is a template used to both serialize the inputs into one
natural-language string, and to provide the prompt itself
(e.g., the string “Does this person make more than 50,000
dollars? Yes or no?”), which is usually located after the
serialized input. In this work, we break these pieces up
into a serialization and a prompt. We define a function
serialize(𝐹, x) that takes the column names 𝐹 and fea-
ture values x for a row as inputs and creates a textual repre-
sentation of the input. Combining this serialization with
a task-specific prompt 𝑝 will then form the LLM input
(serialize(𝐹, x), 𝑝). This is illustrated in Figure 1. We
primarily study the serialization, since that is the biggest
difference compared to existing applications of prompting.
Previous work has usually considered a simple concatena-
tion of feature names and values as a serialization of tabu-
lar data (Li et al., 2020; Narayan et al., 2022). In our work,
this function can be arbitrarily complex. For instance, we
explore serializations that include (i) incorporating another
LLM and (ii) employing feature selection as a substep.

Large Language Models For Classification TabLLM
can be used with different LLMs that generate text based
on a natural-language input. Let LLM be an LLM with
vocabulary 𝑉 . Then, LLM((serialize(𝐹, x), 𝑝)) ∈ 𝑉∗

is the prompted output of the LLM. In our few-shot set-
ting, {(serialize(𝐹, x), 𝑝) | (x, 𝑦) ∈ 𝐷𝑘} can be used
as training examples for fine-tuning the LLM. The LLM
generates text in the vocabulary space 𝑉∗ that has to be
mapped to a valid class in 𝐶. Several approaches already
exist for this problem. For example, the verbalizer (Schick
and Schütze, 2021) defines a mapping between LLM out-
put tokens and the discrete label space. Verbalizers can
be manually specified or automatically learned; see Cui
et al. (2022) for an overview of different verbalizer-learning
approaches. In this work, we assume for simplicity that
the verbalizer mapping is manually specified (see answer
choices in the templates in Sec. 8 in the Supplement).

3.2 Our Instantiation of TabLLM

Serialization Approaches for TabLLM. The perfor-
mance of LLMs is very sensitive to the precise details of
the natural-language input (Zhao et al., 2021; Webson and
Pavlick, 2022). In this work, we focus on the serialization
of the tabular data. For the prompt, we use a simple de-
scription of the classification task and perform no further
prompt engineering. We study nine different serialization
formats varying in complexity. All serialization methods
require minimal human effort to apply to new classification
tasks. We evaluate several methods that generate natural
text to create inputs that are closer to the training distribu-
tion of the LLM, thereby improving zero and very-few-shot
performance. Additional details and examples for the seri-
alizations are given in Sec. 1.2.1 and 9 in the Supplement.
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• List Template: A list of column names and feature
values. We fixed an arbitrary ordering of the columns.

• Text Template: An textual enumeration of all features
as “The column name is value.” (see Figure 1).

• Table-To-Text: We use an LLM fine-tuned on a
table-to-text generation task from HuggingFace
(Narrativaai/bloom-560m-finetuned-totto
-table-to-text). To ensure that the serialization
includes all data we hand each column-value tuple to
the model separately and concatenate the outputs.

• Text T0: We use the LLM T0 with 11B parameters
(bigscience/T0pp) (Sanh et al., 2022). We split up
a row into pairs of two column-value tuples. We send
them to LLM separately with the prompt “Write this
information as a sentence:” and combine the outputs.

• Text GPT-3: We use GPT-3 (engine text-davinci-
002) accessible through an API (Ouyang et al., 2022).
GPT-3 was able to serialize all features at once, so we
use a list of all features with the prompt “Rewrite all
list items in the input as a natural text.” as input. We
guide the output with “The {person, car, patient} is”.

We consider the following serializations as ablations:

• List Only Values: List Template for feature values
only. We want to evaluate whether column names aid
the classification performance.

• List Permuted Names: List Template with permuted
column names. Hence, the wrong column name is as-
sociated with each feature value. The permutation is
the same across all examples. We perform this abla-
tion to study the relevance of the correct association
between column names and feature values.

• List Permuted Values: List Template with consis-
tently permuted values across all examples. We gen-
erate one permutation for each column and apply this
mapping to all column values. For continuous values,
we use ten uniform bins. This tests whether the LLM
uses the fine-grained information encoded by the fea-
ture values for zero-shot and few-shot classification.

• List Short: List Template with at most ten features.
We only consider this for the healthcare dataset where
the number of features exceeds the input limit of the
LLM. We want to study the effect of less information.

Large Language Models for TabLLM Another crucial
component of TabLLM is the LLM. TabLLM is both ag-
nostic to the LLM and the specific fine-tuning method that
is used. We only consider a single LLM for most of our ex-
periments. We employ the T0 encoder-decoder model with
11 billion parameters as the LLM for TabLLM (Sanh et al.,
2022). It was trained on a large variety of task-specific
prompts, making it a suitable candidate for our experiments

(Sanh et al., 2022). This model has a token limit of 1024,
which roughly corresponds to 400 words. We also evaluate
the effect of a smaller version of the T0 model (T0 3B). We
fine-tuned on the few-shot data D𝑘 using the recent T-Few
recipe, which outperforms other parameter-efficient tuning
methods such as soft prompt tuning (Liu et al., 2022). In
addition, we perform zero-shot experiments with the LLM
GPT-3 (engine text-davinci-002) (Ouyang et al., 2022).

4 EXPERIMENTAL SETUP

4.1 Datasets

We studied TabLLM in two experimental settings. First,
we considered nine medium-sized tabular datasets for bi-
nary and multi-class classification. We systematically iden-
tified datasets from Kadra et al. (2021), Grinsztajn et al.
(2022), and Borisov et al. (2022a). We included datasets
with at most 50,000 rows to keep the fine-tuning costs man-
ageable and at most 30 columns to stay within T0’s token
limit. We also required textual feature names to make the
serializations more meaningful and we excluded datasets
with derived feature values (e.g., mean pixel values). This
lead to inclusion of Bank (45,211 rows, 16 feats), Blood
(748, 4), California (20,640, 8), Car (1,728, 8), Credit-
g (1,000, 20), Income (48,842, 14), and Jungle (44,819,
6). We added two additional datasets from Kaggle that ful-
filled our inclusion criteria: Diabetes (768, 8) and Heart
(918, 11). Second, we evaluated TabLLM for risk stratifi-
cation on three binary classification tasks, following prior
work by Kodialam et al. (2021) and similarly using a de-
identified health claims dataset from a U.S. health insurer.
We predicted the end-of-life (EoL) of all patients older than
70 years, which can be used to inform care in a palliative
setting (Avati et al., 2018). We also considered the need for
any surgical procedure (Surgery) and the likelihood of hos-
pitalization (LoH), which can help with determining health
care needs and estimating future costs. Additional details
on all datasets can be found in Sec. 1 in the Supplement.
We release the code for our experiments on Github.1

4.2 LLM and Fine-tuning

We used the HuggingFace implementation of the T0 model
(bigscience/{T0pp,T0 3B}). Prompts for the LLM
were designed following Sanh et al. (2022) using the
PromptSource framework (Bach et al., 2022). Each class
in our classification tasks was manually encoded in a tex-
tual response, e.g., “Yes” and “No” for true and false (Sanh
et al., 2022). The prediction probability for each class cor-
responds to the probability of the LLM generating its token
sequence normalized across all classes. All templates used
in this work are given in Sec. 8 in the Supplement.

1https://github.com/clinicalml/TabLLM
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For fine-tuning, we adopted the default hyperparameters of
the T-Few method without any additional parameter tun-
ing (Liu et al., 2022). The authors used a setup of 𝑘 = 32
shots and 1,000 training steps for most of their experiments,
which corresponds to 31.25 epochs. Hence, we fixed 30
training epochs for all few-shot experiments on the public
tabular datasets. We used 20% of the data as a test set. For
the large healthcare claims dataset, we used 10 epochs for
up to 256 shots and 3 epochs for 1,024, 4,096 and 16,384 to
reduce the runtime and prevent overfitting for many train-
ing examples. We used a test set of 10,000 examples for the
three healthcare tasks. All experiments were evaluated with
the area under the receiver operating characteristic curve
(AUC). We used macro-AUC one-versus-rest for the mul-
ticlass setting. Estimates for the runtime are given in Sec.
2 in the Supplement.

4.3 Baseline Models

We compared TabLLM to several baselines. For the sim-
plest baseline, we used a logistic regression (LR) model.
Since previous work showed the superiority of gradient
boosted tree ensembles (Borisov et al., 2022a), we included
the most common models XGBoost (Chen and Guestrin,
2016) and LightGBM (Ke et al., 2017). We also evaluated
several state-of-the-art deep learning baselines. TabNet is
a widely used neural model for tabular data that uses at-
tention over columns (Arik and Pfister, 2021). SAINT is
a more recent approach that uses attention over rows and
columns (Somepalli et al., 2021). SAINT performed best
in a comprehensive review on tabular data (Borisov et al.,
2022a). NODE is a differentiable tree ensemble method
that performed best in the evaluation of Shwartz-Ziv and
Armon (2022). Lastly, we include TabPFN, a Bayesian
neural network that was pre-trained on synthetic tabular
data (Hollmann et al., 2022). In contrast to TabLLM, we
performed hyperparameter tuning for all baselines except
TabPFN (see Sec. 3 in the Supplement), which requires no
tuning by design. We adopted the parameter ranges from
previous reviews (Borisov et al., 2022a; Grinsztajn et al.,
2022). Since no validation set exists in the few-shot setting,
we used 4-fold cross validation on the 𝑘-shots. In particu-
lar, we did not use a large validation set for hyperparameter
tuning, unlike some few-shot learning works as highlighted
by Perez et al. (2021). We encoded categorical values as
one-hot vectors. We also tested ordinal encoding for LR,
XGBoost, LightGBM, and TabPFN, but it showed worse
results (see Table 12, 13, and 14 in the Supplement). In ad-
dition, we give results for GPT-3 (text-davinci-002)
without fine-tuning, i.e. in the zero-shot setting using the
Text Template serialization.

For the three health claims tasks, we used the same experi-
mental setup for the baselines. However, we only included
LR and LightGBM due to runtime limitations. Following
Kodialam et al. (2021), each patient’s input was a one-hot

encoded vector. For each medical concept, there were three
indicator variables of whether that concept occurred within
30 days, 1 year, and anytime before prediction time.

4.4 Serializations

For the public datasets, some column names and feature
values were manually mapped to human-readable forms,
based on the provided documentation. For instance, for
the Income dataset, the feature name hours per week was
mapped to work hours per week and the feature value pri-
vate for working class was mapped to private sector em-
ployee. Numerical values were not changed.

Serialization was more complex for the healthcare claims
data. Each patient record is a time series of visits, with
each visit consisting of a list of medical conditions and
procedures. We only considered the manual serializations
List Template and Text Template. We tried to mimic the
style of a medical professional to tap potential prior knowl-
edge of the LLM. To this end, the serialization starts with
an intro sentence containing the patient’s gender, age, and
race. It then describes each visit, stating its date, the type
of doctor the patient saw (e.g., dermatology) if an outpa-
tient visit or length of hospitalization if an inpatient visit,
the primary complaint of the associated visit, and proce-
dures performed. Since there are no feature values in this
dataset, we omit List Only Values and List Permuted Values.
We also performed experiments for concept selection and
different names for the medical concepts. Details for these
additional experiments and examples of the serializations
are given in Sec. 1.2.2, 1.2.3, and 9 in the Supplement.

5 RESULTS

5.1 Effects of serialization

Figure 2 shows the performance of different serializa-
tion methods for TabLLM averaged over the nine public
datasets. The Text Template serialization performed very
well across all experiments. In the zero-shot setting, the
Text Template showed improvements over List Template,
indicating the benefit of a serialization that is closer to the
training distribution of T0. However, these differences al-
ready vanished for 8 training examples. Hence, very few
training examples might already suffice to adjust for dif-
ferent templates. This suggests that sophisticated serializa-
tions might be unnecessary when some training data exists.

Using LLMs for serialization showed mixed results. The
ordering is according to the complexity of the LLM used
for serialization. GPT-3 has 175B, T0 11B, and the
BLOOM table-to-text model 0.56B parameters. Different
reasons might be responsible for the worse performance
overall. The models tended to hallucinate information for
some examples, leading to biased predictions of TabLLM.
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Figure 2: Average AUC and SD of different serializations
across nine public datasets. Text Template performs best
for zero and few training examples. For many examples,
the performance of different serializations converges.

For instance, GPT-3 added “this car is a good choice” or
added entirely new data to some examples (see Sec. 9 in
the Supplement). Also, the LLMs are not completely faith-
ful at including all features, even though we tried to enforce
it in our experiments. This could explain that none of the
LLM serializations reaches the same performance as the
template serializations, even for many training examples.

Using only feature values had a poor performance for zero
and very few shots, but the performance equalized with
more training examples. The same applies to the list se-
rialization with permuted feature names. This indicates
that if enough training examples are available, the serial-
ization approach does not matter, but that TabLLM relies
on information from the feature names in the zero-shot and
few-shot regime, and also relies on the association of the
names with the correct values. The discrepancy for zero
and very few shots was even stronger for List Permuted Val-
ues, which suggests that TabLLM relies more on the correct
values than feature names. Again, the performance equal-
ized for more examples showing the ability of TabLLM to
learn new associations if enough training data is available.
Using the smaller T0 3B model showed a slightly decreased
performance (see Table 12, 13, and 14 in the Supplement).

For the healthcare claims dataset, we found that the List
Template slightly outperformed the Text Template serial-
ization (see Table 15 in the Supplement). This was con-
sistent across tasks. The List Short serialization only per-
formed slightly worse. The evaluation of different concept
selection strategies showed that choosing the most frequent
conditions per patient performed best. We found no consid-
erable performance difference for different concept names.

From here onwards, we show results for TabLLM using the
Text Template serialization for the public datasets. For the
healthcare claims dataset, we use the List Template seri-
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Figure 3: Average AUC and SD of TabLLM versus all
baseline models across nine public datasets. TabLLM
outperforms all baselines for zero and very few training
examples. TabPFN is the strongest baseline.

alization and select the most frequent conditions. Results
for all (dataset, serialization) combinations (Table 12, 13,
and 14) and the additional experiments on the healthcare
dataset (Table 5 and 7) can be found in the Supplement.

5.2 Public Tabular Datasets

Figure 3 shows the averaged results for TabLLM using the
best serialization (Text Template) versus all baseline mod-
els. Table 1 contains the detailed results for TabLLM,
TabPFN, and XGBoost. TabLLM showed a similar behav-
ior across datasets. It achieved nontrivial zero-shot perfor-
mance for all tasks except on Credit-g and Heart. For
Heart this might be due to the dataset’s inclusion crite-
ria requiring eligibility for a heart procedure biasing the
prediction. In all cases, TabLLM’s performance improved
with a higher number of shots. In the zero-shot setting,
TabLLM was on par with GPT-3 even though GPT-3 is
a much larger model than T0 (175B vs. 11B parame-
ters). TabPFN consistently outperformed the other baseline
models across all numbers of training examples. TabPFN
reached TabLLM’s performance with 4 to 256 (Income)
training examples. LR was the second-best baseline of-
ten beating the tree models, which might be due to our ex-
tensive parameter tuning (see Sec. 4 in the Supplement).
TabLLM outperformed or was on par with the tree ensem-
ble baselines until 256 training examples for all datasets
except Calhousing and Jungle. For fewer shots, it often
outperformed them by a large margin. XGBoost performed
relatively poorly for few shots, which was probably due to
overfitting on the small training and validation sets (as de-
scribed in the previous section, we do not use large valida-
tion sets for hyperparameter tuning to ensure the results are
truly few-shot). TabLLM outperformed the neural base-
lines SAINT, NODE, and TabNet in many settings. It also
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Table 1: Test AUC performance of TabLLM, the best tree ensemble model (XGBoost), and the best baseline (TabPFN) on
the public tabular datasets. Each column reports the performance for 𝑘 training examples. TabLLM (T0 + Text Template)
outperforms XGBoost and TabPFN in the very-few-shot regime. Standard deviations are given across five random seeds.

Number of Shots

Dataset Method 0 4 8 16 32 64 128 256 512 all

Bank
XGBoost — 0.50.00 0.56.09 0.68.04 0.76.03 0.83.02 0.85.03 0.88.01 0.90.01 0.94.00
TabPFN — 0.59.14 0.66.08 0.69.02 0.76.03 0.82.03 0.86.02 0.89.00 0.90.00 0.91.00
TabLLM 0.63.01 0.59.10 0.64.05 0.65.05 0.64.06 0.69.03 0.82.05 0.87.01 0.88.01 0.92 †

Blood
XGBoost — 0.50.00 0.58.07 0.66.04 0.67.06 0.68.05 0.71.06 0.70.07 0.67.06 0.71.04
TabPFN — 0.52.08 0.64.04 0.67.01 0.70.04 0.73.04 0.75.04 0.76.04 0.76.03 0.74.03
TabLLM 0.61.04 0.58.09 0.66.03 0.66.07 0.68.04 0.68.04 0.68.06 0.70.08 0.68.04 0.70.04

Calhousing
XGBoost — 0.50.00 0.62.10 0.74.03 0.79.04 0.82.04 0.87.01 0.90.01 0.92.01 0.97.00
TabPFN — 0.63.13 0.63.11 0.80.03 0.85.03 0.89.01 0.91.01 0.92.00 0.93.00 0.94.00
TabLLM 0.61.01 0.63.05 0.60.07 0.70.08 0.77.08 0.77.04 0.81.02 0.83.01 0.86.02 0.95.00

Car
XGBoost — 0.50.00 0.59.04 0.70.08 0.82.03 0.91.02 0.95.01 0.98.01 0.99.01 1.00.00
TabPFN — 0.64.06 0.75.05 0.87.04 0.92.02 0.97.00 0.99.01 1.00.00 1.00.00 1.00.00
TabLLM 0.82.02 0.83.03 0.85.03 0.86.03 0.91.02 0.96.02 0.98.01 0.99.00 1.00.00 1.00.00

Credit-g
XGBoost — 0.50.00 0.51.07 0.59.05 0.66.03 0.67.06 0.68.02 0.73.02 0.75.03 0.78.04
TabPFN — 0.58.08 0.59.03 0.64.06 0.69.07 0.70.07 0.72.06 0.75.04 0.75.02 0.75.03
TabLLM 0.53.05 0.69.04 0.66.04 0.66.05 0.72.06 0.70.07 0.71.07 0.72.03 0.72.02 0.70.02

Diabetes
XGBoost — 0.50.00 0.59.16 0.72.07 0.69.08 0.73.05 0.78.05 0.80.03 0.80.01 0.84.03
TabPFN — 0.61.13 0.67.11 0.71.07 0.77.03 0.82.03 0.83.03 0.83.03 0.81.02 0.81.03
TabLLM 0.68.06 0.61.09 0.63.08 0.69.07 0.68.04 0.73.03 0.79.04 0.78.02 0.78.04 0.80.04

Heart
XGBoost — 0.50.00 0.55.14 0.84.07 0.88.04 0.91.01 0.91.01 0.90.01 0.92.01 0.94.01
TabPFN — 0.84.06 0.88.05 0.87.06 0.91.02 0.92.02 0.92.02 0.92.01 0.92.02 0.92.02
TabLLM 0.54.04 0.76.14 0.83.05 0.87.04 0.87.06 0.91.01 0.90.01 0.92.01 0.92.01 0.94.01

Income
XGBoost — 0.50.00 0.59.06 0.77.02 0.79.03 0.82.02 0.84.01 0.87.01 0.88.00 0.93.00
TabPFN — 0.73.08 0.71.09 0.76.09 0.80.04 0.82.04 0.84.01 0.86.01 0.87.01 0.89.00
TabLLM 0.84.00 0.84.01 0.84.02 0.84.04 0.84.01 0.84.02 0.86.01 0.87.00 0.89.01 0.92.00

Jungle
XGBoost — 0.50.00 0.58.07 0.72.05 0.78.03 0.81.02 0.84.02 0.87.01 0.91.01 0.98.00
TabPFN — 0.65.08 0.72.04 0.71.07 0.78.02 0.81.01 0.84.01 0.88.01 0.91.00 0.93.00
TabLLM 0.60.00 0.64.01 0.64.02 0.65.03 0.71.02 0.78.02 0.81.02 0.84.01 0.89.01 1.00 †

† These experiments were only performed for a single run due to runtime limitations of TabLLM on the full dataset.

Table 2: Five highest and lowest weighted features for
zero-shot TabLLM and logistic regression (LR) trained on
all data for Income. Both models show very similar trends
for important features.

Feature TabLLM LR
rank weight rank weight

capital gain 1 5.310 2 2.393
education Masters 2 4.623 6 1.455
education Doctorate 3 3.410 4 2.066
education Bachelors 4 2.995 7 1.135
education Prof-school 5 2.949 5 1.900

occupation Priv-house-serv 102 -2.840 105 -1.909
education 12th 103 -3.178 79 -0.480
education Preschool 104 -3.520 106 -2.385
occupation Farming-fishing 105 -3.853 98 -0.982
workclass Without-pay 106 -4.423 69 -0.174

was on par or very close to the best baseline models on the
full datasets, indicating that there is little performance lost
due to the serialization and the choice of model family.

Introspecting TabLLM—What Prior Knowledge Does
it Use? Given the strong zero-shot performance of
TabLLM on the Income dataset, we next sought to under-
stand which features it based its predictions on in order to
shed light on the prior knowledge used by the LLM. To de-
termine the feature importance for TabLLM, we fit a LR
model to the zero-shot prediction using the original fea-
tures as covariates as described in Sec. 6 in the Supple-
ment. Highly weighted features (see Table 2) for zero-shot
TabLLM include the individual’s occupation (with e.g.,
‘Farming-fishing’ having a large negative weight), high-
est education level (‘Masters’ and ‘Doctorate’ have posi-
tive weights; ‘Preschool’ grade has a negative weight), and
workclass (‘Without-pay’ has a negative weight). TabLLM
also seems to be able to correctly interpret the numerically
encoded capital gain value. For comparison, we also show
the feature weights for a LR model trained on all data. We
see a strong concordance between both models; TabLLM’s
top five features are all among the top seven of the LR
model. However, TabLLM scores the highest education
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Table 3: Test AUC on the healthcare claims dataset. TabLLM outperforms logistic regression (LR) for up to 64 and
LightGBM for up 256 training examples on End of Life (EoL). Standard deviations are given across five random seeds.

Number of Shots
Dataset Method 0 16 64 256 1,024 4,096 16,384 all

EoL LR — 0.65.07 0.77.02 0.80.02 0.83.01 0.83.01 0.84.01 0.84.01
LightGBM — 0.50.00 0.71.01 0.76.02 0.80.01 0.82.01 0.83.01 0.82 †
TabLLM 0.70 0.74 0.78 0.78 0.79 0.81 0.81 —

Surgery LR — 0.72.04 0.75.05 0.77.01 0.79.01 0.80.01 0.80.00 0.81.00
LightGBM — 0.50.00 0.73.02 0.77.01 0.79.01 0.80.00 0.81.01 0.82 †
TabLLM 0.67 0.73 0.72 0.73 0.75 0.78 0.79 —

LoH LR — 0.72.04 0.76.03 0.80.01 0.82.01 0.83.01 0.83.01 0.84.01
LightGBM — 0.50.00 0.72.02 0.76.03 0.81.01 0.83.00 0.83.01 0.85 †
TabLLM 0.71 0.73 0.73 0.76 0.78 0.81 0.82 —

† These experiments were only performed for a single run due to runtime limitations on the full dataset.

Table 4: Five highest and lowest weighted features for
zero-shot TabLLM for EoL and their relative risk (RR)
with confidence intervals (CI). The top five features show
a significant increase of the relative risk.

Feature TabLLM RR (95% CI)

atrial fibrillation 0.633 2.72 (2.51-2.95)
atherosclerosis of coronary art... 0.530 2.10 (1.94-2.27)
atherosclerosis of aorta 0.473 1.99 (1.81-2.19)
exudative age-related macular d... 0.452 2.38 (2.06-2.75)
sex male 0.442 1.23 (1.14-1.33)

open angle with borderline intr... -0.338 1.20 (1.03-1.40)
primary localized osteoarthrosi... -0.366 1.08 (0.82-1.43)
localized, primary osteoarthritis -0.393 1.23 (1.07-1.40)
sex female -0.441 0.81 (0.75-0.88)
open-angle glaucoma - borderline -0.495 0.97 (0.85-1.10)

degrees in the opposite order. Table 16 in the Supplement
shows the importance of all 106 features.

5.3 Large Healthcare Claims Dataset

Table 3 shows the results for TabLLM with the List Tem-
plate serialization on EoL, Surgery, and LoH, the three
prediction tasks for the healthcare claims dataset. TabLLM
showed very considerable zero-shot performance, ranging
from 0.67 AUC for Surgery to 0.71 for LoH. The perfor-
mance improves with higher number of training examples.
However, the performance jumps happen at different steps
and to a different extent. TabLLM outperformed LR for
up to 16 (Surgery and LoH) to 64 (EoL) training exam-
ples and LightGBM for up to 64 (LoH) and 256 (EoL)
examples. For more examples, LR and LightGBM per-
formed slightly better. This could suggest that the infor-
mation lost from our concept selection procedure, needed
because of the token limits of the LLM, eventually starts
costing TabLLM performance. We also evaluated TabLLM
and LR in an unbalanced setting (see Table 15 in the Sup-
plement). In this case, TabLLM outperforms LR up to 64
training examples on all datasets emphasizing its utility in
a real world setting with limited access to labeled data.

Introspecting TabLLM—What Prior Knowledge Does
it Use? We also performed a feature analysis to study the
strong zero-shot performance on EoL. However, we did not
compare to a LR model trained on all data due to the vast
amount of features and potential colinearites in the data.
Instead, we compared to the relative risk (RR) with a 95%
confidence interval (CI). Table 4 shows the five highest and
lowest weighted features of zero-shot TabLLM and their
relative risk for EoL. All top five features have a signifi-
cantly increased relative risk demonstrating the capabilities
of TabLLM to identify relevant features even without any
training examples. For the five lowest weighted features,
only ‘sex female’ has a significantly decreased risk. A list
of 100 features is given in Table 17 in the Supplement.

6 DISCUSSION

For all datasets except Credit-g and Heart, the List Tem-
plate and Text Template serializations showed nontrivial
zero-shot performance, indicating that TabLLM is able to
effectively utilize prior knowledge in the LLM for classi-
fication. Serializations with LLMs proved suboptimal due
to their noisy outputs suggesting that simple templates are
preferable for TabLLM. The performance drops observed
when we removed or permuted the column names indicate
that the LLM actually makes use of feature names and their
relationships to the correct values, especially in the few-
shot setting. These findings are partly consistent with Dinh
et al. (2022) who used GPT-3 and tested serializations with
removed or permuted column names. When using all train-
ing examples, they showed that using the correct column
names led to the best performance on four classification
tasks. In contrast to our results, however, they could not
confirm these findings when using only a fraction (0.2, 0.4,
0.6, 0.8) of the training data. A reason for this could be that
we tested much fewer number of training examples. In ad-
dition to that, we found a very strong drop in performance
for permuted values showing that the LLM relies more on
the correct values than feature names. Surprisingly, how-
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ever, all serializations with less information came close
to the best serialization for 256 (tabular datasets) to 1024
training examples (insurance dataset). Hence, when hun-
dreds of training examples are available, the input format
proved less relevant, and the LLM was able to adapt (Jin
et al., 2022). Like our results, Bertsimas et al. (2022) found
that natural language representation of healthcare data gave
little-to-no improvement (in their different setup) compared
to a more straightforward serialization in the medium-shot
setting. Our findings also support prior work showing that
irrelevant and even misleading inputs can lead to simi-
lar few-shot performance (Min et al., 2022; Webson and
Pavlick, 2022; Reynolds and McDonell, 2021). For in-
stance, permuting the column names only showed a dif-
ference for up to 16 training examples (see Figure 2).

We found clear performance improvements for TabLLM
when using additional training examples. It often outper-
formed strong baseline models in the very-few-shot setting.
This emphasizes the value of leveraging LLMs when only
little labeled data is available. Surprisingly, Dinh et al.
(2022) could not confirm these findings for GPT-3. On
two binary classification tasks a fine-tuned GPT-3 model
performed worse than LR for up to 250 training examples.
Our results indicate that the sample efficiency of TabLLM
is highly task-dependent. The performance on Blood,
Credit-g, Diabetes, and Heart is worse than the perfor-
mance on Income and Car. Most features of the latter
datasets have semantically meaningful textual values likely
boosting TabLLM’s performance. However, TabLLM also
achieved reasonable results on numerical datasets (Blood,
California, Diabetes, and Jungle). In addition, Diabetes
and Heart have somewhat specialized feature names and
values, such as “ventricular hypertrophy” and “Plasma glu-
cose concentration,” whereas Income and Car are more
general-domain knowledge. This indicates that T0, the lan-
guage model we used in TabLLM, seems to have less prior
knowledge about medicine than about general-domain con-
cepts. Indeed, the training tasks for T0 do not contain any
tasks with medical data (Sanh et al., 2022).

Our findings on the three insurance claims datasets partly
reinforce this hypothesis. Zero-shot performance depends
on the concept selection strategy and the LLM seems to
have little knowledge about medical procedures. Prior
work has shown that medical-domain-specific language
models, such as PubMedBERT, and general-domain mod-
els with medical data in their training sets, such as GPT-
3, perform well at downstream prediction tasks on medical
data even with fairly few samples (Gu et al., 2021; Agrawal
et al., 2022). Substituting T0 with one of these models in
TabLLM to study medical predictions tasks is an interest-
ing direction for future work.

Our results on the public Blood, Diabetes, and Heart
datasets are very similar to our results for EoL, Surgery,
and LoH, which are practically relevant but rely on pri-

vate data. Except for the zero-shot and very few-shot
regime, other baselines tend to outperform TabLLM on
these datasets. This suggests that Blood, Diabetes, and
Heart datasets could be good proxies for the community
to further study medical-domain tabular classification with
LLMs without needing access to large private datasets.

7 LIMITATIONS AND CONCLUSION

TabLLM has a much larger computational footprint com-
pared to traditional algorithms. It still requires fairly large
GPUs to fine-tune the LLM, and inference with T0 requires
far more FLOPs than inference with XGBoost or LR. Our
results indicate that TabLLM trades off this computational
efficiency for improved sample efficiency. Further, as we
saw with the three healthcare claims tasks, performance
may suffer if the dense feature set for a given row cannot
fit within the token limit for a given LLM. Since the gains
from TabLLM stem from its ability to use existing domain
knowledge, the semantics of the column names and fea-
ture values need to have been observed during the LLM’s
original pre-training. For example, if the columns represent
genes, we may not expect a vanilla LLM to have strong rep-
resentations for gene names. Finally, due to dataset shift,
the pre-training data for a given LLM may not necessarily
reflect the settings under which a given table was aggre-
gated, e.g., due to inflation and a changing value of money
(see Sec. 5 in the Supplement).

Despite these limitations, our empirical results show that
TabLLM enjoys strong performance at tabular classifi-
cation, outperforming state-of-the-art baseline algorithms
like XGBoost and SAINT by over 5 AUC points in the
very-few-shot regime, all while staying competitive with
these methods when a large number of samples is available.

Currently, TabLLM does not use any unlabeled data; a
fruitful direction could involve leveraging unlabeled data,
e.g., using the techniques from Lang et al. (2022) to com-
bine the few-shot performance of TabLLM with the ulti-
mate performance of tree-based baselines by co-training
the models together. Other improvements could include
more faithful LLM serializations as well as numeric-
specific encoding methods (Gorishniy et al., 2022).

8 SOCIETAL IMPACT

Similar to other ML systems that were trained on his-
toric data, LLMs are prone to replicate existing biases and
stereotypes. Hence, when applying TabLLM for sensi-
tive tasks such as income or a health trajectory, predictions
should be considered with great care and further analyses
(e.g., for subgroups) are mandatory. In addition, LLMs re-
quire a lot of computing resources. This bears the risk of
creating an exclusive research environment. Also, the en-
vironmental impact of LLMs can be significant.



TabLLM: Few-shot Classification of Tabular Data with Large Language Models

9 ACKNOWLEDGEMENTS

SH was supported by the German Academic Exchange Ser-
vice, HL by NSF AiTF award CCF-1723344, MA by a
Takeda Fellowship, and DS, HL, AB, and SH in part by
Independence Blue Cross. Thanks to Dr. Steven Horng for
generously donating GPU-time on the BIDMC computing
cluster (Horng, 2022) and to NVIDIA Corporation for their
donation of two NVIDIA A100 GPUs used in this work.

References

Agrawal, M., Hegselmann, S., Lang, H., Kim, Y., and
Sontag, D. (2022). Large Language Models are Zero-
Shot Clinical Information Extractors. Technical Report
arXiv:2205.12689, arXiv.
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Supplementary Materials:
TabLLM: Few-shot Classification of Tabular Data with Large Language

Models

1 ADDITIONAL DATASET DETAILS

1.1 Public Tabular Datasets

We systematically identified datasets for classification from Kadra et al. (2021), Grinsztajn et al. (2022), Borisov et al.
(2022a), and from Kaggle. Each dataset was separated into 80/20 train-test splits. The 𝑘 labeled examples D𝑘 were
sampled in a class-balanced manner from the training set. We performed experiments for different numbers of trainings
examples (shots) ranging from 0 to 512 and the entire dataset (all). To characterize the sensitivity of models to the choice of
𝑘 labeled examples, we repeated the dataset splitting and sampling procedures for five different seeds and report the mean
AUC and standard deviation (SD) across seeds. No hyperparameter tuning was conducted for TabLLM; for baselines,
internal cross validation was conducted to choose optimal hyperparameters, and the model was then retrained on all data.
We analyzed the following datasets:

• Bank (Kadra et al., 2021) contains information of a direct marketing campaign from a Portugese banking institution
(Moro et al., 2014). The goal is to predict whether a customer subscribed to a term deposit or not. It consists of 45,211
rows and 16 features; 5,289 labels are positive.

• Blood (Kadra et al., 2021) consists of data of a blood transfusion service from Taiwan (Yeh et al., 2009). It contains
4 attributes of 748 donors and the label is representing whether they returned for another donation (178 positive).

• California (Grinsztajn et al., 2022) contains eight attributes of 20,640 districts in California and the goal is to predict
the median house value in each district (Pace and Barry, 1997). Analogously to Grinsztajn et al. (2022), we created a
balanced classification task by predicting whether the house value is below or above the median (10,317 positive).

• Car (Kadra et al., 2021) has entries for different cars that are characterized by six attributes; the task is a multiclass
classification problem evaluating the state of each car. The dataset contains 1,728 rows, and the four classes have a
distribution of 1210, 384, 65, and 69 examples.

• Credit-g (Kadra et al., 2021) describes 1,000 people from Germany that want to receive a credit using 20 attributes.
The label is to predict whether they have good or bad risk; 700 are classified as good.

• Diabetes (from Kaggle2) was collected by the National Institute of Diabetes and Digestive and Kidney Diseases
(Smith et al., 1988) and contains 768 rows, each corresponding to women of Pima Indian heritage with eight clinical
variables. The task is binary classification of whether a person has diabetes; 268 cases are positive.

• Heart (from Kaggle3) contains data of four different hospitals (Detrano et al., 1989). Each row contains 11 clinical
variables of a patient. The task is binary classification of coronary artery disease. Of the 918 patients, 508 are positive.

• Income (Kadra et al., 2021; Borisov et al., 2022a) also called Adult contains rows for 48,842 individuals with twelve
attributes collected in the 1994 U.S. Census (Kohavi et al., 1996; Dua and Graff, 2017). The task is to predict whether
each person has an annual income over $50,000. The dataset has 11,687 positive labels.

• Jungle (Kadra et al., 2021) is a collection of 44,819 end game positions of Jungle Chess (van Rijn and Vis, 2014).
Each game is described with 6 attributes and the goal is to predict whether the white player will win (23,062 positive).

2https://www.kaggle.com/datasets/uciml/pima-indians-diabetes-database (06/28/2022)
3https://www.kaggle.com/fedesoriano/heart-failure-prediction(06/28/2022)
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Table 5: Evaluation of different concept selection methods for the healthcare claims dataset in the zero-shot setting. The
last two rows show the performance when concepts where selected based on the lasso path of logistic regression weights,
which violates the zero-shot assumption (*).

Method EoL Surgery LoH

Age, sex, and race 0.59 0.57 0.65

Least frequent conditions 0.57 0.64 0.67
Least frequent procedures 0.59 0.59 0.65
Least frequent concepts (cond. + proc.) 0.55 0.55 0.66
Most frequent conditions 0.67 0.66 0.69
Most frequent procedures 0.59 0.58 0.65
Most frequent concepts (cond. + proc.) 0.62 0.61 0.65
Oldest conditions 0.65 0.66 0.69
Oldest procedures 0.59 0.58 0.65
Oldest concepts (cond. + proc.) 0.60 0.60 0.67
Most recent conditions 0.65 0.66 0.69
Most recent procedures 0.55 0.59 0.65
Most recent concepts (cond. + proc.) 0.59 0.60 0.66

Most relevant concepts based on 256 shots* 0.60 0.58 0.69
Most relevant concepts based on 4096 shots* 0.65 0.57 0.68

1.2 Large Healthcare Claims Dataset

The de-identified health claims data set was provided by a large U.S. health insurer. The data is stored in the Observational
Medical Outcomes Partnership (OMOP) Common Data Model version 6.0 (Hripcsak et al., 2015). It contains an entry for
every encounter a patient has with the health system. Each entry is associated with a date, a visit type (5 total), a medical
specialty (216 total), present conditions (14,095 total), and performed procedures (21,184 total). We additionally used the
static concepts age, sex, and race at time of prediction.

We studied three different tasks on this dataset with distinct cohorts. For all tasks, we used a six month outcome period
and a gap of three months between time of prediction and the outcome window to prevent data leakage. We required
patients to have at least one medical visit and to have been actively enrolled in an insurance plan for at least 95% of the
last year and the six month outcome window. We used 10% of the data as a holdout set and sampled the 𝑘 balanced shots
with replacement from the remaining data. We chose larger shot sizes, as the tasks are more complex. We only ran the
experiments for a single seed due to runtime limitations. We considered the following tasks:

• End of Life (EoL): We predicted the mortality of all patients older than 70 years. This is often used as a surrogate
task. For instance, it can improve initiation of palliative care (Avati et al., 2018) and can help to inform close relatives
to reduce family distress (Curtis et al., 2016). The final cohort contained 94,972 individuals; 2,424 were positive.

• Surgical Procedure (Surgery): We predicted the need for any surgical procedure. The task is important in determin-
ing health care needs and estimating costs. The cohort included 620,382 people of which 243,349 were positive.

• Likelihood of Hospitalization (LoH): We also predicted the likelihood of being hospitalized. Again, this information
can help identify needs and estimate costs. The cohort included 612,656 individuals; 22,427 were positive.

1.2.1 More Details on the Serialization

Each serialization begins with the patient’s age, sex, and race. For each concept entry that we included, we also added
information of the associated visit. This included its date, the type of doctor the patient saw (e.g., dermatology), if an
outpatient visit or length of hospitalization if an inpatient visit, and the primary complaint of the associated visit. If a visit
was already added to the serialization, we just added the concept to the existing visit entry. For the List Template and
Text Template serializations approximately 40 medical concepts could be added until the token limit of T0 was reached.
To explore the effect of fewer information in the input, we also tested the List Short serializations were we added only
10 medical concepts to the serialization. Hence, not the entire token limit of the LLM was used. Examples of the List
Template, Text Template and List Permuted Names serializations illustrating this structure are given in Sec. 9.1 at the end
of the Supplement.
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Table 6: Five examples of different concept names for conditions. The first column shows the original name in the
healthcare claims dataset using SNOMED codes. A dash illustrates that no mapping was available.

Original name ICD MEDCIN CHV Simplify (GPT-3) Jargon (GPT-3)

Seasonal allergic
rhinitis

Allergic rhinitis due
to pollen

hay fever hay fever Allergies Seasonal allergic
rhinitis

Disturbance in
speech

Unspecified speech
disturbances

speech difficulties speech impairment Speech problems Dysarthria

Congenital
duplication of
cervix

— — double cervix Double cervix Congenital
duplication of the
cervix

Hypertensive
retinopathy

Hypertensive
retinopathy

hypertensive
retinopathy

hypertensive
retinopathy

High blood pressure
affecting the retina

Retinopathy h-tensa

Malignant
neoplasm of liver

Malignant
neoplasm of liver,
unspecified

malignant neoplasm
of liver

liver cancer Liver cancer Hepato-ca

Table 7: Evaluation of alternative condition concepts names. International Classification of Diseases (ICD), MEDCIN and
the Consumer Health Vocabulary (CHV) are alternative medical terminologies. We also tested shortening, simplifying,
and rewriting concepts as medical jargon via GPT-3. None of the alternative concept names showed consistent
performance improvement.

Method EoL Surgery LoH

Original concept names (SNOMED) 0.67 0.66 0.69

Map to ICD concept names 0.67 0.67 0.68
Map to MEDCIN concept names 0.67 0.66 0.69
Map to CHV concept names 0.66 0.66 0.69
Shorten longs concepts with GPT-3 0.67 0.66 0.69
Simplify concepts with GPT-3 0.67 0.66 0.70
Medical jargon with GPT-3 0.68 0.67 0.70

1.2.2 Concept Selection

For the healthcare claims dataset, the number of recorded medical concepts per patients usually exceeded T0’s token limit.
Hence, we had to determine which concepts of a patient should be included during the serialization. We evaluated four
different concept selection strategies in the zero-shot setting for the List Template serialization. Choosing the least frequent,
most frequent, oldest, or most recent concepts per patient. We tested these for all concepts (conditions and procedures),
only conditions, or only procedures. For each patient, we ranked all concepts according to one of the above methods and
added concepts until the token limit of the LLM was reached. For least frequent and most frequent, we used the earliest
visits associated with the selected medical concepts. We used a simple serialization that only contained the patient’s age,
sex, and race as a baseline for our experiments. We also tested concept selection based on the lasso path of a logistic
regression model determined on 256 and 4,096 shots. This violates the few-shot assumption, but we considered it an
interesting comparison with the other strategies that select concepts per patient.

The results are given in Table 5. Using the most frequent conditions per patient consistently outperformed all other
selection strategies. Frequent conditions might be useful since they reveal the most relevant condition of a patient. Also,
they are usually more common allowing more prior knowledge of the LLM. Across all strategies conditions were usually
more useful than procedures. This suggests more prior knowledge of conditions. Interestingly, selecting the most frequent
conditions is even better than using the concept weights of a LR model trained on 256 or 4,096 shots.

1.2.3 Alternative Concept Names

The healthcare claims dataset used SNOMED concept names for conditions and SNOMED, Healthcare Common Proce-
dure Coding System (HCPCS), International Classification of Diseases (ICD), and Current Procedural Terminology (CPT)
concept names for procedures. We tested different concept names to assess their effect on the performance. We used a zero-
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Table 8: Hyperparameters for LR model.

Parameter Values

penalty ‘l1’, ‘l2’
C 100, 10, 1, 1e-1, 1e-2, 1e-3, 1e-4, 1e-5

Table 9: Hyperparameters for LightGBM model.

Parameter Values

num leaves 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
lambda l1 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1., 10.
lambda l2 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1., 10.
learning rate 0.01, 0.03, 0.1, 0.3

Table 10: Hyperparameters for XGBoost model.

Parameter Values

max depth 2, 4, 6, 8, 10, 12
lambda l1 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1.
lambda l2 1e-8, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1.
eta 0.01, 0.03, 0.1, 0.3

shot setting with the List Template serialization and the most frequent conditions per patient as the best selection strategy
determined as described above. Since the selection method only considered conditions, we only used different condition
names. We considered three alternative vocabularies in the Unified Medical Language System (UMLS) that covered at
least 20% of the condition concepts and offered different names. ICD is a very common medical terminology offering
alternative names for conditions. MEDCIN and the Consumer Health Vocabulary (CHV) offer concept names specifically
targeted at clinicians or consumers. We mapped the concept via their UMLS identifier. For ICD we were able to map
7,372, for MEDCIN 9,370 and for CHV 3,700 of the 14,095 condition concepts. Alternatively, we explored concept names
generated by GPT-3 (Brown et al., 2020). To do so, we used the publicly accessible GPT-3 API (engine text-davinci-
002) (Ouyang et al., 2022). We considered shortened names for concepts with more than sixty character (“Rewrite this
medical condition with at most six words.”), simplified concept names (“Write this medical condition in a short form in
lay language.”) and medical jargon (“Write this medical condition in medical jargon.”). For the simplified names and the
medical jargon, we provided GPT-3 with a single example for in-context learning. Examples for all alternative concept
names except the shortening are given in Table 6.

The results of this experiment are given in Table 7. We used the most frequent concept as a concept selection methods.
Based on the best concept selection, we performed additional experiments for alternative concept names. We found no
consistent performance difference even though there were considerable differences in the concept names (see Table 6).
Surprisingly, TabLLM performs better for EoL and Surgery using medical jargon to encode concepts.

2 RUNTIME ESTIMATES FOR TABLLM

The TabLLM training time on the Income dataset for 64 training examples and 30 epochs with a batch size of 8 was less
than 3 minutes. The average inference time for the test set of 10,000 examples with a batch size of 16 was 2 minutes,
around 12 ms per example. The training and inference times for the other public datasets were comparable. Due to the
larger size of the healthcare claims dataset, it took nearly 4 minutes to train for 64 examples and 10 epochs for EoL and
was similar for the other two tasks. Inference took approximately 14 minutes for 10,000 examples with a batch size of 16,
i.e. around 84 ms per example. The training times scaled linearly in the shot size.

3 PARAMETER TUNING FOR BASELINES

We used the scikit-learn framework to perform cross-validation and parameter tuning for the LR and the tree-based models
(Pedregosa et al., 2011). For LR we tried common parameters for the penalty term and regularization strength (see Table
8). We used the same LR parameters for the public tabular datasets and the healthcare claims dataset. For the tree-based
models we adopted the hyperparameter ranges from Borisov et al. (2022a) and Grinsztajn et al. (2022). We discretized the
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parameter ranges and performed a complete grid search (see Tables 9 and 10).

For the neural baselines SAINT, TabNet, and NODE, we used the setup and suggested hyperparameter ranges in Borisov
et al. (2022a). We modified the open-source implementation of these methods4 to support ingestion of the nine public
tabular datasets. We used the hyperparameter-tuning framework Optuna5 and selected parameters that maximize AUC-
ROC across folds. Note that for the 4-shot setting of the Car dataset, AUC may not be defined if the selected validation
set includes only one label; in this case we used accuracy as our validation metric but report AUC-ROC on the holdout test
set. Each neural baseline model was run for 20 trials with Optuna and trained for 100 epochs per hyperparameter settings.

4 COMPARING BASELINE RESULTS TO THE LITERATURE

To assess whether our baseline results match results reported in the literature, we report studies that used the same models.

Bank Dataset. Kadra et al. (2021) trained a XGBoost, TabNet, and NODE baseline on this dataset and achieved a
balanced accuracy of 72.7, 70.6, and 74.6. Our experiments for a set of 512 balanced training examples (512 shots) show
a better performance for XGBoost than NODE.

Blood Dataset. The XGBoost, TabNet, and NODE baselines trained in Kadra et al. (2021) achieved a balanced accuracy
of 62.3, 64.3, 50. Our results for a set of 512 balanced training examples (512 shots) also show a better performance for
TabNet than XGBoost. However, in our experiments NODE performs better than XGBoost and not worse.

California Dataset. Borisov et al. (2022a) trained a Linear Model, XGBoost, LightGBM, TabNet, NODE, and SAINT
baseline on a regression version of the dataset. They achieved a mean squared error of 0.53, 0.21, 0.20, 0.35, 0.28, and
0.23. Our experiments for a set of 512 balanced training examples (512 shots) show a better performance for XGBoost
than LightGBM and the same performance for TabNet and NODE. Also, our linear model performs much better which is
probably due to more extensive hyperparameter tuning.

Car Dataset. The XGBoost, TabNet, and NODE models in Kadra et al. (2021) showed a balanced accuracy of 92.4,
98.7, and 46.1. In our experiments, XGBoost and TabNet performed very similar for many training examples and NODE
was only slightly inferior.

Credit-g Dataset. The XGBoost, TabNet, and NODE baselines trained in Kadra et al. (2021) achieved a balanced accu-
racy of 68.9, 61.2, and 73.1. Our AUC results cannot easily be compared but our experiments for 512 balanced training
examples (512 shots) follow the same trend.

Diabetes Dataset. Hasan et al. (2020) reported an AUC of 0.828 (0.030) for XGBoost on the diabetes dataset, which
matches our findings. With additional feature selection and preprocessing methods they reached an AUC of 0.946 (0.020)
with XGBoost, but this was out of the scope of our work. XGBoost was the most performant model that they included in
their experiments.

Heart Dataset. Muhammad et al. (2020) used only the 303 instances from the Cleveland cohort, while we combined all
four sub-cohorts. They achieved an AUC of 0.923 with LR, which is close to our results on all sub-cohorts. They also
tested several models that outperformed LR.

Income Dataset. Many studies used the Income or Adult dataset. The review Borisov et al. (2022a) included several of
our baselines. They reported an AUC of 0.854 (0.002) for a linear model, 0.928 (0.001) for XGBoost, 0.928 (0.001) for
LightGBM, 0.916 (0.002) for SAINT, 0.911 (0.001) for TabNet, and 0.911 (0.002) for NODE. These are in accordance
with our results. We reckon the better performance of our LR model is due to more extensive parameter tuning.

Jungle Dataset. The XGBoost and TabNet baselines trained in Kadra et al. (2021) achieved a balanced accuracy of 87.3
and 73.4. They did not train a NODE moel for this dataset. The results follows the same trend as our experiments for a set
of 512 balanced training examples (512 shots).

4https://github.com/kathrinse/TabSurvey
5https://github.com/optuna/optuna
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Table 11: The mean performance for one prompt (ours, SD over five seed omitted) and the mean performance and SD
across five different prompts (each again over five seeds).

Dataset Bank Blood California Car Credit-g Diabetes Heart Income Jungle

TabLLM 0-shot: 1 prompt (ours) 0.63 0.61 0.61 0.81 0.53 0.68 0.54 0.84 0.60

TabLLM 0-shot: avg. 5 prompts 0.64.01 0.60.02 0.59.01 0.80.01 0.52.01 0.67.01 0.55.04 0.84.01 0.60.00

5 ADJUSTING INCOME DATASET FOR INFLATION

We wanted to investigate how a distribution shift caused by inflation affects the zero-shot performance of TabLLM. The
Income dataset was collected in 1994, and the label and two features (capital gain/loss in last year) contain dollar values.
T0 was trained in 2021 (Sanh et al., 2022), and we assumed that the training data is much more recent than the Income
dataset. The inflation rate from 1994 to 2021 is 1.796. Without inflation correction the zero-shot results were 0.80 (0.01).
Correcting the two features, correcting only the prompt, and correcting both all yielded the same performance as the
uncorrected one. The accuracy values also remained the same with the inflation correction.

6 FEATURE IMPORTANCE ANALYSIS OF TABLLM

We wanted to understand which features were most important for the zero-shot performance of TabLLM on Income and
EoL. To this end, we used zero-shot TabLLM with the List Template serialization to predict the label probability of all
examples in the dataset. We then used 4-fold cross validation to fit a L2-regularized LR model to the predicted label using
the features in the serialization as covariates. For EoL, we used age, sex, race, and the conditions as inputs, which summed
up to 14,105 features.

For Income we compared these approximated importance scores to the feature coefficients of a LR model trained on all
data for a single seed (Table 16). We used the same setup for the LR model as for our main experiments. We did 4-fold
cross validation on an 80% training split to choose hyperparameters, and then refit the model using all training data. The
best parameters of the LR model for Income were a ‘l1’ penalty and a regularization constant of 1. For EoL, we decided
that the LR model coefficients did not provide a good estimate of the ground truth due to the vast amount of features and
possible collinearities in the data. Instead, we provide the relative risk (RR) with 95% confidence intervals (CI) treating
the occurrence of a feature as an intervention. We report the 50 most and least important features of TabLLM in Table 17.

7 EFFECT OF USING DIFFERENT PROMPTS

To evaluate the effect of using a different prompt we considered the zero-shot setting, since even few training examples
mostly cancel the effect. For all datasets we constructed five different prompts that contained the same question, e.g., “Does
this person earn a lot of money?” instead of “Does this person earn more than 50000 dollars per year?” for the Income
dataset. The results are summarized in Table 11. The effects were relative small ranging from a standard deviation of 0.00
for Jungle to 0.04 for Heart across the five prompts. This suggests that TabLLM is not very sensitive to using different
prompts.

6U.S. Bureau of Labor Statistics, CPI Inflation Calculator: https://www.bls.gov/data/inflation calculator.htm
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Table 12: Test AUC performance of competing methods on public tabular datasets. Each column reports the 𝑘-shot
performance for different values of 𝑘 . Standard deviations across five random seeds are shown as subscripts.

Number of Shots
Method 0 4 8 16 32 64 128 256 512 all

Bank Dataset

Logistic regression — 0.55.09 0.66.09 0.75.06 0.81.02 0.84.02 0.86.02 0.88.01 0.89.00 0.91.00
Logistic regression (ordinal) — 0.51.02 0.60.12 0.68.09 0.78.04 0.82.01 0.84.03 0.86.01 0.87.00 0.88.00
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.77.03 0.84.03 0.88.01 0.89.00 0.94.00
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.78.03 0.84.02 0.87.01 0.89.00 0.94.00
XGBoost — 0.50.00 0.56.09 0.68.04 0.76.03 0.83.02 0.85.03 0.88.01 0.90.01 0.94.00
XGBoost (ordinal) — 0.50.00 0.56.09 0.69.05 0.75.04 0.82.02 0.84.03 0.87.01 0.89.00 0.93.00

SAINT — 0.51.10 0.61.11 0.70.04 0.77.03 0.81.03 0.85.02 0.88.01 0.88.01 0.93.00
TabNet — 0.51.06 0.58.05 0.64.10 0.62.04 0.71.06 0.73.03 0.80.04 0.83.03 0.93.00
NODE — 0.52.02 0.55.06 0.64.06 0.73.06 0.78.02 0.83.03 0.85.01 0.86.01 0.76.02
TabPFN — 0.59.14 0.66.08 0.69.02 0.76.03 0.82.03 0.86.02 0.89.00 0.90.00 0.91.00
TabPFN (ordinal) — 0.57.10 0.67.05 0.71.05 0.78.04 0.83.01 0.86.02 0.87.00 0.88.00 0.89.00

TabLLM (T0 + Text GPT-3) 0.63.01 0.61.04 0.62.02 0.63.03 0.64.02 0.66.04 0.76.04 0.81.02 0.82.01 *
TabLLM (T0 + Text T0) 0.54.01 0.56.08 0.60.06 0.59.06 0.60.04 0.62.04 0.67.04 0.79.03 0.85.01 *
TabLLM (T0 + Table-To-Text) 0.42.01 0.48.07 0.50.05 0.56.03 0.57.04 0.59.05 0.63.03 0.68.02 0.74.01 *
TabLLM (T0 + Text Template) 0.63.01 0.59.10 0.64.05 0.65.05 0.64.06 0.69.03 0.82.05 0.87.01 0.88.01 0.92 †
TabLLM (T0 + List Template) 0.60.01 0.59.10 0.66.02 0.65.04 0.66.05 0.74.07 0.85.02 0.87.01 0.87.01 *
TabLLM (T0 + List Only Values) 0.56.01 0.58.09 0.60.04 0.63.03 0.67.03 0.71.05 0.79.03 0.84.01 0.86.01 *
TabLLM (T0 + List Perm. Names) 0.64.00 0.55.10 0.62.07 0.63.04 0.63.05 0.68.04 0.82.02 0.86.01 0.88.00 *
TabLLM (T0 + List Perm. Values) 0.38.01 0.47.11 0.53.06 0.55.07 0.57.05 0.65.04 0.75.07 0.84.01 0.85.01 *
TabLLM (T0 3B + Text Template) 0.61.01 0.60.10 0.65.05 0.64.07 0.65.05 0.70.02 0.77.05 0.88.01 0.89.01 *

Blood Dataset

Logistic regression — 0.54.09 0.59.08 0.72.03 0.70.06 0.74.02 0.76.02 0.76.02 0.76.03 0.76.03
Logistic regression (ordinal) — 0.54.09 0.59.08 0.72.03 0.70.06 0.74.02 0.76.02 0.76.02 0.76.03 0.76.03
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.69.04 0.71.05 0.71.07 0.67.05 0.74.04
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.69.04 0.71.05 0.71.07 0.67.05 0.74.04
XGBoost — 0.50.00 0.58.07 0.66.04 0.67.06 0.68.05 0.71.06 0.70.07 0.67.06 0.71.04
XGBoost (ordinal) — 0.50.00 0.58.07 0.66.04 0.67.06 0.68.05 0.71.06 0.70.07 0.67.06 0.71.04

SAINT — 0.47.12 0.66.08 0.66.03 0.67.06 0.67.05 0.71.03 0.76.05 0.73.02 0.74.03
TabNet — 0.47.09 0.61.06 0.60.09 0.66.06 0.63.06 0.66.04 0.72.06 0.72.02 0.71.03
NODE — 0.49.04 0.60.07 0.62.04 0.67.03 0.71.05 0.76.03 0.74.03 0.76.03 0.74.03
TabPFN — 0.52.08 0.64.04 0.67.01 0.70.04 0.73.04 0.75.04 0.76.04 0.76.03 0.74.03
TabPFN (ordinal) — 0.52.08 0.64.04 0.67.01 0.70.04 0.73.04 0.75.04 0.76.04 0.76.03 0.74.03

TabLLM (T0 + Text GPT-3) 0.63.04 0.61.07 0.65.04 0.63.02 0.64.03 0.62.05 0.67.06 0.68.05 0.66.05 *
TabLLM (T0 + Text T0) 0.49.04 0.51.03 0.59.08 0.59.06 0.64.04 0.65.06 0.66.05 0.68.06 0.66.03 *
TabLLM (T0 + Table-To-Text) 0.61.04 0.59.04 0.59.03 0.57.03 0.62.07 0.56.07 0.57.07 0.64.07 0.61.05 *
TabLLM (T0 + Text Template) 0.61.04 0.58.09 0.66.03 0.66.07 0.68.04 0.68.04 0.68.06 0.70.08 0.68.04 0.70.04
TabLLM (T0 + List Template) 0.56.05 0.54.08 0.64.02 0.64.08 0.67.05 0.66.06 0.67.05 0.70.06 0.67.06 *
TabLLM (T0 + List Only Values) 0.45.05 0.49.07 0.57.03 0.57.06 0.62.06 0.61.04 0.64.04 0.68.07 0.67.05 *
TabLLM (T0 + List Perm. Names) 0.52.04 0.49.07 0.62.03 0.62.06 0.65.05 0.65.04 0.68.06 0.72.06 0.68.04 *
TabLLM (T0 + List Perm. Values) 0.51.03 0.51.06 0.54.04 0.52.07 0.55.03 0.59.06 0.59.02 0.62.06 0.62.05 *
TabLLM (T0 3B + Text Template) 0.42.05 0.47.04 0.62.04 0.62.09 0.65.07 0.67.04 0.69.04 0.71.06 0.67.04 *

California Dataset

Logistic regression — 0.58.11 0.69.13 0.80.06 0.84.03 0.88.01 0.90.00 0.91.00 0.91.00 0.92.00
Logistic regression (ordinal) — 0.58.11 0.69.13 0.80.06 0.84.03 0.88.01 0.90.00 0.91.00 0.91.00 0.92.00
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.81.02 0.87.01 0.90.01 0.92.00 0.97.00
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.81.02 0.87.01 0.90.01 0.92.00 0.97.00
XGBoost — 0.50.00 0.62.10 0.74.03 0.79.04 0.82.04 0.87.01 0.90.01 0.92.01 0.97.00
XGBoost (ordinal) — 0.50.00 0.62.10 0.74.03 0.79.04 0.82.04 0.87.01 0.90.01 0.92.01 0.97.00

SAINT — 0.59.09 0.64.12 0.73.06 0.76.06 0.81.02 0.84.01 0.88.02 0.91.02 0.95.00
TabNet — 0.50.08 0.57.06 0.67.02 0.69.05 0.72.03 0.79.02 0.84.02 0.87.01 0.96.00
NODE — 0.58.06 0.57.07 0.70.05 0.77.03 0.80.01 0.86.02 0.86.02 0.87.01 0.87.01
TabPFN — 0.63.13 0.63.11 0.80.03 0.85.03 0.89.01 0.91.01 0.92.00 0.93.00 0.94.00
TabPFN (ordinal) — 0.63.13 0.63.11 0.80.03 0.85.03 0.89.01 0.91.01 0.92.00 0.93.00 0.94.00

TabLLM (T0 + Text GPT-3) 0.56.00 0.55.03 0.57.05 0.61.06 0.73.05 0.73.04 0.82.01 0.84.01 0.85.01 *
TabLLM (T0 + Text T0) 0.49.01 0.52.02 0.51.02 0.52.02 0.54.04 0.56.04 0.69.02 0.73.03 0.80.02 *
TabLLM (T0 + Table-To-Text) 0.49.01 0.50.01 0.51.01 0.52.02 0.57.04 0.58.04 0.74.03 0.79.02 0.82.01 *
TabLLM (T0 + Text Template) 0.61.01 0.63.05 0.60.07 0.70.08 0.77.08 0.77.04 0.81.02 0.83.01 0.86.02 0.95.00
TabLLM (T0 + List Template) 0.61.01 0.64.05 0.62.06 0.68.07 0.77.07 0.79.02 0.82.02 0.84.01 0.87.01 *
TabLLM (T0 + List Only Values) 0.58.01 0.57.08 0.55.03 0.65.09 0.74.08 0.77.03 0.83.01 0.84.02 0.86.02 *
TabLLM (T0 + List Perm. Names) 0.54.01 0.52.03 0.52.04 0.52.03 0.66.06 0.74.01 0.81.02 0.84.02 0.86.02 *
TabLLM (T0 + List Perm. Values) 0.47.01 0.48.02 0.50.01 0.52.02 0.57.03 0.64.04 0.71.04 0.76.01 0.78.02 *
TabLLM (T0 3B + Text Template) 0.57.01 0.59.03 0.57.04 0.66.07 0.77.06 0.79.02 0.81.01 0.83.01 0.85.01 *

* Result omitted due to runtime limitations of TabLLM on the full dataset.
† Only a single run performed due to runtime limitations of TabLLM on the full dataset.
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Table 13: Test AUC performance of competing methods on public tabular datasets. Each column reports the 𝑘-shot
performance for different values of 𝑘 . Standard deviations across five random seeds are shown as subscripts.

Number of Shots
Method 0 4 8 16 32 64 128 256 512 all

Car Dataset

Logistic regression — 0.61.02 0.65.10 0.74.07 0.83.02 0.93.02 0.96.01 0.97.01 0.98.00 0.98.00
Logistic regression (ordinal) — 0.62.06 0.63.05 0.64.07 0.75.04 0.73.03 0.73.03 0.74.03 0.76.02 0.78.03
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.85.06 0.93.01 0.98.01 0.99.01 1.00.00
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.75.04 0.91.05 0.98.01 0.99.00 1.00.00
XGBoost — 0.50.00 0.59.04 0.70.08 0.82.03 0.91.02 0.95.01 0.98.01 0.99.01 1.00.00
XGBoost (ordinal) — 0.50.00 0.55.03 0.70.04 0.78.03 0.90.03 0.94.01 0.98.01 0.99.01 1.00.00

SAINT — 0.56.08 0.64.08 0.76.03 0.85.03 0.92.02 0.96.01 0.98.01 0.99.00 1.00.00
TabNet — † 0.54.05 0.64.05 0.66.05 0.73.07 0.81.04 0.93.02 0.98.01 1.00.00
NODE — 0.51.10 0.57.06 0.69.02 0.74.03 0.80.02 0.82.01 0.91.01 0.96.01 0.93.01
TabPFN — 0.64.06 0.75.05 0.87.04 0.92.02 0.97.00 0.99.01 1.00.00 1.00.00 1.00.00
TabPFN (ordinal) — 0.59.06 0.65.08 0.75.04 0.82.06 0.89.01 0.93.01 0.98.01 0.99.01 1.00.00

TabLLM (T0 + Text GPT-3) 0.72.02 0.75.03 0.75.02 0.78.01 0.83.01 0.87.02 0.90.01 0.93.02 0.93.02 0.96.01
TabLLM (T0 + Text T0) 0.85.01 0.85.02 0.84.03 0.86.02 0.89.02 0.92.02 0.94.01 0.98.01 0.99.00 1.00.00
TabLLM (T0 + Table-To-Text) 0.61.01 0.69.04 0.74.04 0.79.02 0.88.01 0.91.02 0.94.01 0.96.01 0.95.01 0.96.00
TabLLM (T0 + Text Template) 0.82.02 0.83.03 0.85.03 0.86.03 0.91.02 0.96.02 0.98.01 0.99.00 1.00.00 1.00.00
TabLLM (T0 + List Template) 0.79.02 0.84.03 0.85.02 0.86.03 0.91.02 0.95.01 0.98.01 0.99.00 1.00.00 1.00.00
TabLLM (T0 + List Only Values) 0.48.03 0.62.04 0.67.03 0.70.03 0.75.02 0.87.02 0.94.01 0.98.01 0.99.01 1.00.00
TabLLM (T0 + List Perm. Names) 0.39.02 0.54.10 0.58.06 0.70.03 0.86.02 0.94.01 0.97.02 0.99.01 0.99.00 1.00.00
TabLLM (T0 + List Perm. Values) 0.38.02 0.48.08 0.55.05 0.63.04 0.69.03 0.78.02 0.90.03 0.98.01 1.00.00 1.00.00
TabLLM (T0 3B + Text Template) 0.78.02 0.80.03 0.84.03 0.84.04 0.89.03 0.91.01 0.96.01 0.98.01 0.99.00 1.00.00

Credit-g Dataset

Logistic regression — 0.50.08 0.56.06 0.58.08 0.68.08 0.66.07 0.71.06 0.75.04 0.76.02 0.79.03
Logistic regression (ordinal) — 0.56.05 0.54.06 0.55.05 0.61.05 0.68.05 0.66.03 0.68.04 0.71.02 0.72.02
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.61.09 0.68.03 0.72.02 0.75.02 0.78.02
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.68.07 0.66.04 0.72.02 0.75.03 0.76.04
XGBoost — 0.50.00 0.51.07 0.59.05 0.66.03 0.67.06 0.68.02 0.73.02 0.75.03 0.78.04
XGBoost (ordinal) — 0.50.00 0.54.11 0.57.08 0.64.05 0.66.06 0.68.04 0.74.02 0.76.03 0.76.04

SAINT — 0.56.08 0.53.05 0.60.05 0.66.06 0.66.06 0.68.05 0.72.04 0.73.03 0.77.04
TabNet — 0.48.05 0.52.07 0.49.03 0.52.03 0.56.05 0.60.05 0.61.02 0.66.04 0.64.03
NODE — 0.54.09 0.54.10 0.54.09 0.59.07 0.63.04 0.68.02 0.68.05 0.70.02 0.65.03
TabPFN — 0.58.08 0.59.03 0.64.06 0.69.07 0.70.07 0.72.06 0.75.04 0.75.02 0.75.03
TabPFN (ordinal) — 0.55.08 0.51.07 0.57.06 0.62.03 0.66.05 0.70.02 0.73.01 0.73.03 0.75.04

TabLLM (T0 + Text GPT-3) 0.52.04 0.53.04 0.56.03 0.56.05 0.55.05 0.57.08 0.60.06 0.61.04 0.63.05 *
TabLLM (T0 + Text T0) 0.49.02 0.50.06 0.54.06 0.55.04 0.60.06 0.61.02 0.61.02 0.63.03 0.65.02 *
TabLLM (T0 + Table-To-Text) 0.50.06 0.65.04 0.60.05 0.60.07 0.65.05 0.67.05 0.65.05 0.68.04 0.64.05 *
TabLLM (T0 + Text Template) 0.53.05 0.69.04 0.66.04 0.66.05 0.72.06 0.70.07 0.71.07 0.72.03 0.72.02 0.70.02
TabLLM (T0 + List Template) 0.53.05 0.64.04 0.60.06 0.64.05 0.70.05 0.66.08 0.67.03 0.70.03 0.70.04 *
TabLLM (T0 + List Only Values) 0.66.06 0.71.03 0.67.06 0.69.06 0.72.06 0.69.05 0.69.07 0.70.06 0.68.04 *
TabLLM (T0 + List Perm. Names) 0.44.01 0.58.09 0.59.08 0.60.07 0.70.06 0.69.06 0.67.05 0.70.05 0.70.03 *
TabLLM (T0 + List Perm. Values) 0.50.05 0.55.06 0.56.07 0.58.04 0.64.03 0.66.08 0.67.09 0.68.03 0.69.03 *
TabLLM (T0 3B + Text Template) 0.54.03 0.65.05 0.63.05 0.63.03 0.73.04 0.69.05 0.68.06 0.73.05 0.73.03 *

Diabetes Dataset

Logistic regression — 0.60.15 0.68.11 0.73.05 0.76.05 0.80.02 0.81.02 0.83.02 0.83.02 0.83.02
Logistic regression (ordinal) — 0.60.15 0.68.11 0.73.05 0.76.05 0.80.02 0.81.02 0.83.02 0.83.02 0.83.02
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.79.02 0.79.04 0.79.02 0.79.03 0.83.03
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.79.02 0.79.04 0.79.02 0.79.03 0.83.03
XGBoost — 0.50.00 0.59.16 0.72.07 0.69.08 0.73.05 0.78.05 0.80.03 0.80.01 0.84.03
XGBoost (ordinal) — 0.50.00 0.59.16 0.72.07 0.69.08 0.73.05 0.78.05 0.80.03 0.80.01 0.84.03

SAINT — 0.46.12 0.65.11 0.73.06 0.73.06 0.79.03 0.81.03 0.81.04 0.77.03 0.83.03
TabNet — 0.56.04 0.56.06 0.64.09 0.66.06 0.71.04 0.73.04 0.74.05 0.74.07 0.81.03
NODE — 0.49.13 0.67.09 0.69.08 0.73.05 0.77.04 0.80.04 0.81.03 0.83.02 0.83.03
TabPFN — 0.61.13 0.67.11 0.71.07 0.77.03 0.82.03 0.83.03 0.83.03 0.81.02 0.81.03
TabPFN (ordinal) — 0.61.13 0.67.11 0.71.07 0.77.03 0.82.03 0.83.03 0.83.03 0.81.02 0.81.03

TabLLM (T0 + Text GPT-3) 0.61.06 0.61.07 0.56.12 0.67.08 0.74.04 0.77.02 0.79.03 0.76.03 0.78.04 0.81.04
TabLLM (T0 + Text T0) 0.58.04 0.53.05 0.53.06 0.54.09 0.59.05 0.68.02 0.73.04 0.72.05 0.72.03 0.76.01
TabLLM (T0 + Table-To-Text) 0.58.04 0.51.10 0.53.07 0.56.05 0.57.04 0.59.04 0.72.05 0.74.04 0.75.06 0.77.04
TabLLM (T0 + Text Template) 0.68.06 0.61.09 0.63.08 0.69.07 0.68.04 0.73.03 0.79.04 0.78.02 0.78.04 0.80.04
TabLLM (T0 + List Template) 0.64.06 0.64.09 0.64.10 0.67.07 0.70.05 0.76.04 0.78.03 0.78.03 0.78.04 0.81.05
TabLLM (T0 + List Only Values) 0.55.05 0.54.07 0.52.05 0.59.08 0.63.04 0.67.07 0.73.03 0.75.06 0.77.04 0.79.03
TabLLM (T0 + List Perm. Names) 0.56.07 0.60.09 0.68.12 0.74.05 0.74.03 0.72.04 0.76.04 0.77.04 0.77.04 0.81.04
TabLLM (T0 + List Perm. Values) 0.44.03 0.47.09 0.43.06 0.55.07 0.61.05 0.65.05 0.73.03 0.76.03 0.78.02 0.80.03
TabLLM (T0 3B + Text Template) 0.62.05 0.57.07 0.60.08 0.67.05 0.67.06 0.76.03 0.77.04 0.81.05 0.80.04 0.82.04

* Result omitted due to runtime limitations of TabLLM on the full dataset.
† Result omitted due to TabNet package not supporting unseen labels in validation set during cross validation.
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Table 14: Test AUC performance of competing methods on public tabular datasets. Each column reports the 𝑘-shot
performance for different values of 𝑘 . Standard deviations across five random seeds are shown as subscripts.

Number of Shots
Method 0 4 8 16 32 64 128 256 512 all

Heart Dataset

Logistic regression — 0.69.17 0.75.13 0.82.06 0.87.05 0.91.01 0.90.02 0.92.01 0.93.01 0.93.01
Logistic regression (ordinal) — 0.70.17 0.73.14 0.84.04 0.88.03 0.89.01 0.88.02 0.90.02 0.92.02 0.92.02
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.91.01 0.91.01 0.91.01 0.93.00 0.94.01
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.91.01 0.91.02 0.91.01 0.92.01 0.94.01
XGBoost — 0.50.00 0.55.14 0.84.07 0.88.04 0.91.01 0.91.01 0.90.01 0.92.01 0.94.01
XGBoost (ordinal) — 0.50.00 0.56.15 0.84.07 0.90.03 0.91.01 0.90.01 0.90.01 0.92.01 0.94.01

SAINT — 0.80.12 0.83.10 0.88.07 0.90.01 0.90.04 0.90.02 0.90.01 0.92.01 0.93.01
TabNet — 0.56.12 0.70.05 0.73.14 0.80.04 0.83.05 0.84.03 0.88.02 0.88.03 0.89.03
NODE — 0.52.10 0.78.08 0.83.03 0.86.02 0.88.02 0.88.01 0.91.02 0.92.03 0.92.03
TabPFN — 0.84.06 0.88.05 0.87.06 0.91.02 0.92.02 0.92.02 0.92.01 0.92.02 0.92.02
TabPFN (ordinal) — 0.79.08 0.85.07 0.88.05 0.90.02 0.92.01 0.92.01 0.92.00 0.92.02 0.92.02

TabLLM (T0 + Text GPT-3) 0.51.04 0.72.05 0.82.03 0.85.05 0.88.03 0.91.02 0.89.02 0.91.01 0.91.01 0.93.01
TabLLM (T0 + Text T0) 0.44.03 0.74.07 0.82.10 0.87.02 0.88.02 0.89.04 0.90.01 0.89.02 0.89.03 0.93.02
TabLLM (T0 + Table-To-Text) 0.56.05 0.73.09 0.78.08 0.86.06 0.88.03 0.91.02 0.91.02 0.90.02 0.91.01 0.92.01
TabLLM (T0 + Text Template) 0.54.04 0.76.14 0.83.05 0.87.04 0.87.06 0.91.01 0.90.01 0.92.01 0.92.01 0.94.01
TabLLM (T0 + List Template) 0.52.03 0.73.12 0.83.05 0.87.04 0.88.04 0.91.02 0.91.01 0.92.01 0.92.01 0.94.01
TabLLM (T0 + List Only Values) 0.40.04 0.67.16 0.83.06 0.84.05 0.88.03 0.89.03 0.92.02 0.90.00 0.90.01 0.92.01
TabLLM (T0 + List Perm. Names) 0.57.02 0.78.07 0.85.02 0.82.06 0.87.05 0.90.02 0.92.02 0.91.01 0.91.01 0.93.02
TabLLM (T0 + List Perm. Values) 0.23.02 0.63.20 0.79.12 0.83.07 0.88.04 0.89.04 0.90.02 0.91.01 0.91.01 0.93.00
TabLLM (T0 3B + Text Template) 0.56.03 0.68.13 0.82.04 0.85.02 0.86.03 0.90.01 0.91.01 0.93.01 0.93.01 0.94.01

Income Dataset

Logistic regression — 0.68.15 0.72.13 0.80.03 0.82.01 0.83.03 0.85.01 0.87.01 0.88.00 0.90.00
Logistic regression (ordinal) — 0.55.04 0.56.06 0.58.07 0.70.06 0.76.03 0.79.01 0.80.01 0.80.00 0.81.00
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.78.03 0.81.03 0.87.01 0.88.00 0.93.00
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.78.01 0.81.01 0.86.01 0.89.00 0.93.00
XGBoost — 0.50.00 0.59.06 0.77.02 0.79.03 0.82.02 0.84.01 0.87.01 0.88.00 0.93.00
XGBoost (ordinal) — 0.50.00 0.63.04 0.74.04 0.76.04 0.79.03 0.84.02 0.86.01 0.88.00 0.93.00

SAINT — 0.74.03 0.65.15 0.79.03 0.81.03 0.84.02 0.84.02 0.87.01 0.88.00 0.91.00
TabNet — 0.56.04 0.59.07 0.62.11 0.64.06 0.71.04 0.73.05 0.80.02 0.83.02 0.92.00
NODE — 0.54.02 0.54.04 0.65.04 0.67.03 0.75.02 0.78.01 0.78.01 0.83.01 0.82.00
TabPFN — 0.73.08 0.71.09 0.76.09 0.80.04 0.82.04 0.84.01 0.86.01 0.87.01 0.89.00
TabPFN (ordinal) — 0.64.11 0.64.06 0.72.04 0.77.02 0.80.02 0.81.01 0.83.01 0.85.01 0.87.00

TabLLM (T0 + Text GPT-3) 0.75.01 0.79.03 0.80.03 0.82.02 0.82.01 0.84.02 0.84.02 0.85.01 0.86.00 *
TabLLM (T0 + Text T0) 0.65.01 0.67.03 0.66.07 0.72.02 0.75.03 0.79.04 0.82.02 0.83.02 0.86.01 *
TabLLM (T0 + Table-To-Text) 0.50.00 0.64.07 0.64.11 0.72.05 0.74.03 0.79.03 0.81.01 0.84.01 0.84.01 *
TabLLM (T0 + Text Template) 0.84.00 0.84.01 0.84.02 0.84.04 0.84.01 0.84.02 0.86.01 0.87.00 0.89.01 0.92.00
TabLLM (T0 + List Template) 0.79.01 0.83.01 0.83.03 0.83.02 0.84.01 0.85.01 0.86.01 0.87.01 0.88.01 *
TabLLM (T0 + List Only Values) 0.73.01 0.74.04 0.75.04 0.80.03 0.82.01 0.84.01 0.84.01 0.86.01 0.87.01 *
TabLLM (T0 + List Perm. Names) 0.65.00 0.75.03 0.74.05 0.82.02 0.83.02 0.84.02 0.86.01 0.86.01 0.88.01 *
TabLLM (T0 + List Perm. Values) 0.26.00 0.40.04 0.48.10 0.65.06 0.72.03 0.79.03 0.81.02 0.83.01 0.84.01 *
TabLLM (T0 3B + Text Template) 0.76.00 0.77.06 0.80.04 0.83.02 0.83.03 0.85.01 0.86.00 0.86.01 0.88.01 *

Jungle Dataset

Logistic regression — 0.62.09 0.69.09 0.68.04 0.76.03 0.79.01 0.79.00 0.80.01 0.80.00 0.81.00
Logistic regression (ordinal) — 0.62.09 0.69.09 0.68.04 0.76.03 0.79.01 0.79.00 0.80.01 0.80.00 0.81.00
LightGBM — 0.50.00 0.50.00 0.50.00 0.50.00 0.79.02 0.84.02 0.88.01 0.91.00 0.98.00
LightGBM (ordinal) — 0.50.00 0.50.00 0.50.00 0.50.00 0.79.02 0.84.02 0.88.01 0.91.00 0.98.00
XGBoost — 0.50.00 0.58.07 0.72.05 0.78.03 0.81.02 0.84.02 0.87.01 0.91.01 0.98.00
XGBoost (ordinal) — 0.50.00 0.58.07 0.72.05 0.78.03 0.81.02 0.84.02 0.87.01 0.91.01 0.98.00

SAINT — 0.64.05 0.69.06 0.72.05 0.79.02 0.81.01 0.83.01 0.88.01 0.90.00 1.00.00
TabNet — 0.53.09 0.60.05 0.62.03 0.69.04 0.73.04 0.75.02 0.79.02 0.84.01 0.99.00
NODE — 0.60.01 0.71.03 0.68.04 0.74.02 0.75.04 0.78.01 0.79.01 0.80.00 0.81.00
TabPFN — 0.65.08 0.72.04 0.71.07 0.78.02 0.81.01 0.84.01 0.88.01 0.91.00 0.93.00
TabPFN (ordinal) — 0.65.08 0.72.04 0.71.07 0.78.02 0.81.01 0.84.01 0.88.01 0.91.00 0.93.00

TabLLM (T0 + Text GPT-3) 0.56.01 0.58.02 0.55.02 0.60.06 0.68.03 0.74.03 0.77.01 0.81.01 0.85.01 *
TabLLM (T0 + Text T0) 0.63.00 0.63.04 0.64.05 0.62.06 0.70.01 0.71.03 0.74.02 0.78.02 0.82.01 *
TabLLM (T0 + Table-To-Text) 0.51.01 0.60.02 0.60.04 0.63.05 0.69.03 0.75.01 0.78.03 0.82.01 0.85.01 *
TabLLM (T0 + Text Template) 0.60.00 0.64.01 0.64.02 0.65.03 0.71.02 0.78.02 0.81.02 0.84.01 0.89.01 1.00 †
TabLLM (T0 + List Template) 0.63.00 0.65.01 0.66.03 0.66.04 0.71.03 0.78.02 0.81.03 0.84.01 0.88.01 *
TabLLM (T0 + List Only Values) 0.58.00 0.60.03 0.62.03 0.63.02 0.65.04 0.73.01 0.76.02 0.82.02 0.88.01 *
TabLLM (T0 + List Perm. Names) 0.40.00 0.53.06 0.55.05 0.63.10 0.72.03 0.79.02 0.80.03 0.84.02 0.89.01 *
TabLLM (T0 + List Perm. Values) 0.48.00 0.50.02 0.52.03 0.53.03 0.55.01 0.59.02 0.63.01 0.72.02 0.75.01 *
TabLLM (T0 3B + Text Template) 0.54.00 0.63.02 0.64.04 0.67.03 0.72.03 0.77.02 0.80.02 0.83.01 0.87.01 *

* Result omitted due to runtime limitations of TabLLM on the full dataset.
† These experiments were only performed for a single run due to runtime limitations of TabLLM on the full dataset.
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Table 15: Full results on healthcare claims dataset. The best concept selection method (most frequent concepts) and
concept names (original concept names) were used as determined in prior zero-shot experiments. A fix number of 10
epochs was used for up to 256 shots and 3 epochs for more shots to decrease the runtime and prevent overfitting.

Number of Shots
Method 0 16 64 256 1,024 4,096 16,384 all

End of Life (EoL)

TabLLM (T0 + List Template) 0.70 0.74 0.78 0.78 0.79 0.81 0.81 —
TabLLM (T0 + Text Template) 0.63 0.71 0.74 0.76 0.78 0.79 0.80 —
TabLLM (T0 + List Short) 0.68 0.71 0.76 0.79 0.80 0.81 0.82 —
TabLLM (T0 + List Perm. Names) 0.62 0.66 0.70 0.74 0.75 0.77 0.79 —

Logistic Regression — 0.65.07 0.77.02 0.80.02 0.83.01 0.83.01 0.84.01 0.84.01
LightGBM — 0.50.00 0.71.01 0.76.02 0.80.01 0.82.01 0.83.01 0.82 *

TabLLM (T0 + List Template) unbalanced 0.70 0.64 0.69 0.74 0.74 0.77 0.79 —
Logistic Regression unbalanced — 0.44.04 0.53.12 0.75.03 0.77.03 0.80.02 0.82.02 0.84.01

Surgical Procedure (Surgery)

TabLLM (T0 + List Template) 0.67 0.73 0.72 0.73 0.75 0.78 0.79 —
TabLLM (T0 + Text Template) 0.62 0.71 0.69 0.72 0.74 0.77 0.78 —
TabLLM (T0 + List Short) 0.66 0.70 0.69 0.72 0.73 0.76 0.78 —
TabLLM (T0 + List Perm. Names) 0.60 0.68 0.70 0.72 0.74 0.77 —

Logistic Regression — 0.72.04 0.75.05 0.77.01 0.79.01 0.80.01 0.80.00 0.81.00
LightGBM — 0.50.00 0.73.02 0.77.01 0.79.01 0.80.00 0.81.01 0.82 *

TabLLM (T0 + List Template) unbalanced 0.67 0.68 0.73 0.74 0.75 0.77 0.79 —
Logistic Regression unbalanced — 0.61.15 0.77.01 0.77.02 0.78.01 0.80.01 0.80.00 0.81.00

Likelihood of Hospitalization (LoH)

TabLLM (T0 + List Template) 0.71 0.73 0.73 0.76 0.78 0.81 0.82 —
TabLLM (T0 + Text Template) 0.65 0.74 0.72 0.74 0.78 0.80 0.81 —
TabLLM (T0 + List Short) 0.70 0.73 0.75 0.78 0.79 0.80 0.82 —
TabLLM (T0 + List Perm. Names) 0.62 0.71 0.72 0.75 0.75 0.78 0.80 —

Logistic Regression — 0.72.04 0.76.03 0.80.01 0.82.01 0.83.01 0.83.01 0.84.01
LightGBM — 0.50.00 0.72.02 0.76.03 0.81.01 0.83.00 0.83.01 0.85 *

TabLLM (T0 + List Template) unbalanced 0.71 0.66 0.72 0.75 0.75 0.78 0.80 —
Logistic Regression unbalanced — 0.53.06 0.54.09 0.73.06 0.79.01 0.81.01 0.82.01 0.84.01

* These experiments were only performed for a single run due to runtime limitations on the full dataset.
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Table 16: Feature importance of zero-shot TabLLM and LR on all data for the Income dataset. To determine the feature
importance of TabLLM, we fit a separate LR model to the predictions using the original feature values as covariates. For
LR we simply use the feature coefficients. The features are ranked by their TabLLM importance score.

Feature TabLLM LR
rank weight rank weight

capital gain 1 5.310 2 2.393
education Masters 2 4.623 6 1.455
education Doctorate 3 3.410 4 2.066
education Bachelors 4 2.995 7 1.135
education Prof-school 5 2.949 5 1.900
occupation Machine-op-insp. 6 2.589 75 -0.325
workclass Private 7 2.275 37 0.102
relationship Wife 8 2.109 8 0.955
native country China 9 2.086 94 -0.839
native country United-States 10 2.045 38 0.087
native country Taiwan 11 1.965 54 0.000
workclass Federal-gov 12 1.784 14 0.574
race White 13 1.685 61 0.000
education Assoc-acdm 14 1.621 13 0.574
native country nan 15 1.565 63 -0.056
marital status Married-civ-sp. 16 1.487 3 2.214
occupation Protective-serv 17 1.434 17 0.535
sex Male 18 1.335 42 0.000
occupation Armed-Forces 19 1.290 60 0.000
occupation Adm-clerical 20 1.245 52 0.000
hours per week 21 1.240 20 0.424
native country Hong 22 1.227 86 -0.749
occupation Tech-support 23 1.164 18 0.526
relationship Husband 24 1.087 72 -0.212
occupation Sales 25 0.857 28 0.298
native country Vietnam 26 0.803 95 -0.898
marital status Married-AF-sp. 27 0.792 1 2.571
native country Philippines 28 0.711 40 0.011
age 29 0.710 22 0.411
native country Poland 30 0.698 53 0.000
occupation Prof-specialty 31 0.684 12 0.620
race Asian-Pac-Islander 32 0.651 32 0.254
native country Outlying-US 33 0.591 92 -0.836
workclass Self-emp-not-inc 34 0.582 76 -0.344
native country Italy 35 0.534 24 0.400
marital status Separated 36 0.523 70 -0.181
workclass nan 37 0.515 59 0.000
occupation Exec-managerial 38 0.503 10 0.773
native country Scotland 39 0.491 81 -0.626
native country Laos 40 0.475 44 0.000
native country Cambodia 41 0.328 11 0.642
native country Guatemala 42 0.276 55 0.000
workclass State-gov 43 0.267 73 -0.223
native country Germany 44 0.262 39 0.043
native country Puerto-Rico 45 0.241 67 -0.128
native country Hungary 46 0.177 34 0.191
native country Mexico 47 0.123 80 -0.579
native country Ireland 48 0.116 9 0.954
education HS-grad 49 0.092 43 0.000
occupation Transport-moving 50 0.090 62 -0.048
native country El-Salvador 51 0.027 90 -0.803
native country Canada 52 0.027 23 0.407
workclass Self-emp-inc 53 0.001 30 0.255

Feature TabLLM LR
rank weight rank weight

relationship Other-relative 54 -0.010 88 -0.759
native country Trinadad&Tob. 55 -0.028 66 -0.097
race Black 56 -0.044 74 -0.291
native country England 57 -0.088 16 0.551
native country Honduras 58 -0.105 58 0.000
relationship Not-in-family 59 -0.153 29 0.257
native country Holand-Neth. 60 -0.154 57 0.000
occupation Craft-repair 61 -0.161 36 0.108
capital loss 62 -0.182 31 0.255
race Other 63 -0.202 65 -0.085
native country Yugoslavia 64 -0.204 27 0.357
workclass Local-gov 65 -0.230 47 0.000
occupation nan 66 -0.248 82 -0.653
marital status Never-married 67 -0.292 77 -0.443
native country Iran 68 -0.330 41 0.000
native country Dominican-Rep. 69 -0.332 85 -0.731
marital status Married-sp.-abs. 70 -0.379 51 0.000
native country Jamaica 71 -0.416 25 0.392
native country Nicaragua 72 -0.425 45 0.000
native country Thailand 73 -0.451 100 -1.116
native country Peru 74 -0.522 93 -0.837
native country Japan 75 -0.617 56 0.000
relationship Unmarried 76 -0.620 48 0.000
native country France 77 -0.754 21 0.416
occupation Other-service 78 -0.754 96 -0.903
workclass Never-worked 79 -0.763 50 0.000
education 1st-4th 80 -0.763 101 -1.172
native country Columbia 81 -0.836 104 -1.855
education 5th-6th 82 -0.843 97 -0.961
marital status Divorced 83 -0.870 46 0.000
education 9th 84 -0.904 102 -1.222
native country Ecuador 85 -0.952 49 0.000
education 11th 86 -0.993 91 -0.825
native country Haiti 87 -1.062 35 0.137
education Assoc-voc 88 -1.074 19 0.514
native country India 89 -1.074 71 -0.183
education 7th-8th 90 -1.151 103 -1.303
marital status Widowed 91 -1.253 64 -0.071
education 10th 92 -1.306 89 -0.797
native country Greece 93 -1.319 68 -0.140
sex Female 94 -1.327 84 -0.710
native country South 95 -1.466 99 -1.101
native country Cuba 96 -1.575 33 0.230
education Some-college 97 -1.950 26 0.363
occupation Handlers-cleaners 98 -1.992 83 -0.681
native country Portugal 99 -2.049 15 0.572
race Amer-Indian-Eskimo 100 -2.081 78 -0.465
relationship Own-child 101 -2.404 87 -0.755
occupation Priv-house-serv 102 -2.840 105 -1.909
education 12th 103 -3.178 79 -0.480
education Preschool 104 -3.520 106 -2.385
occupation Farming-fishing 105 -3.853 98 -0.982
workclass Without-pay 106 -4.423 69 -0.174
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Table 17: Feature importance of zero-shot TabLLM and relative risk (RR) with 95% confidence interval (CI) for EoL task
on the healthcare claims dataset. For TabLLM we fit a separate LR model to the predictions using the original feature
values as covariates. We determine the relative risk treating the respective feature as an intervention, i.e. the ratio of the
label in the group that has a concept divided by the ratio in the group without it. We selected 50 features with the highest
and the lowest importance.
Feature TabLLM RR (95% CI)

rank weight

atrial fibrillation 1 0.633 2.72 (2.51-2.95)
atherosclerosis of coronary art... 2 0.530 2.10 (1.94-2.27)
atherosclerosis of aorta 3 0.473 1.99 (1.81-2.19)
exudative age-related macular d... 4 0.452 2.38 (2.06-2.75)
sex male 5 0.442 1.23 (1.14-1.33)
non-hodgkin’s lymphoma (clinical) 6 0.440 1.36 (0.94-1.96)
chronic atrial fibrillation 7 0.436 3.36 (3.05-3.70)
chronic kidney disease stage 3 8 0.430 2.75 (2.53-2.98)
atherosclerosis of arteries of ... 9 0.404 2.76 (2.42-3.15)
barrett’s esophagus 10 0.402 1.07 (0.84-1.37)
chronic obstructive lung disease 11 0.401 2.39 (2.19-2.60)
paroxysmal atrial fibrillation 12 0.395 2.58 (2.37-2.81)
systemic lupus erythematosus 13 0.395 1.51 (0.99-2.29)
atherosclerosis of artery of lo... 14 0.394 2.45 (2.20-2.72)
coronary atherosclerosis 15 0.381 2.15 (1.95-2.36)
nonexudative age-related macula... 16 0.377 2.15 (1.95-2.37)
age related macular degeneration 17 0.371 2.18 (1.76-2.71)
pseudoexfoliation glaucoma 18 0.360 1.13 (0.72-1.76)
degenerative joint disease invo... 19 0.359 1.77 (1.52-2.06)
coronary arteriosclerosis 20 0.357 2.00 (1.82-2.20)
coronary artery graft present 21 0.346 1.64 (1.41-1.91)
aortocoronary bypass graft present 22 0.335 2.24 (1.98-2.54)
dehydration 23 0.332 2.94 (2.68-3.22)
primary malignant neoplasm of f... 24 0.327 1.19 (1.01-1.40)
malignant lymphoma 25 0.322 1.54 (0.96-2.46)
cerebral infarction due to thro... 26 0.316 2.86 (2.46-3.32)
congestive heart failure 27 0.313 3.67 (3.38-3.99)
old myocardial infarction 28 0.299 2.04 (1.81-2.30)
sleep apnea 29 0.294 1.16 (0.98-1.37)
acute hypoxemic respiratory fai... 30 0.292 4.02 (3.62-4.46)
obstructive sleep apnea syndrome 31 0.287 1.09 (0.96-1.24)
primary malignant neoplasm of e... 32 0.284 0.92 (0.56-1.53)
sensorineural hearing loss 33 0.281 1.26 (1.09-1.47)
retention of urine 34 0.280 2.19 (1.97-2.44)
atrial flutter 35 0.280 2.14 (1.85-2.47)
abdominal aortic aneurysm witho... 36 0.275 1.85 (1.58-2.18)
chronic kidney disease due to h... 37 0.274 2.65 (2.42-2.90)
non-rheumatic aortic sclerosis 38 0.271 2.64 (2.38-2.93)
type 2 diabetes mellitus 39 0.267 2.14 (1.96-2.33)
intraductal carcinoma in situ o... 40 0.265 0.62 (0.30-1.29)
chronic kidney disease stage 2 41 0.264 1.77 (1.55-2.03)
degenerative disorder of macula 42 0.263 2.23 (1.88-2.65)
sensorineural hearing loss, bil... 43 0.262 1.30 (1.17-1.43)
race white 44 0.262 1.25 (1.14-1.37)
metabolic encephalopathy 45 0.259 4.42 (3.86-5.07)
alzheimer’s disease 46 0.256 5.03 (4.45-5.69)
sick sinus syndrome 47 0.256 2.37 (2.08-2.71)
ventricular tachycardia 48 0.255 2.33 (2.00-2.70)
acute posthemorrhagic anemia 49 0.255 2.15 (1.92-2.41)
impaired fasting glycemia 50 0.254 0.97 (0.85-1.09)

Feature TabLLM RR (95% CI)
rank weight

open wound of forehead without ... 14056 -0.152 1.80 (1.18-2.74)
prediabetes 14057 -0.157 0.81 (0.68-0.96)
primary iridocyclitis 14058 -0.157 1.63 (1.03-2.56)
discoloration of skin 14059 -0.157 0.87 (0.73-1.04)
basal cell carcinoma of truncal... 14060 -0.158 1.14 (0.94-1.40)
lumbar sprain 14061 -0.158 1.14 (0.91-1.42)
spasm 14062 -0.160 0.98 (0.82-1.16)
chronic rhinitis 14063 -0.161 1.22 (1.06-1.42)
primary cardiomyopathy 14064 -0.161 2.50 (2.11-2.97)
benign neoplastic disease 14065 -0.162 1.04 (0.63-1.72)
palpitations 14066 -0.166 1.12 (1.01-1.25)
localized, primary osteoarthrit... 14067 -0.167 1.50 (1.33-1.70)
benign neoplasm of skin of lowe... 14068 -0.167 0.68 (0.53-0.89)
cyst of ovary 14069 -0.171 0.90 (0.64-1.26)
microscopic hematuria 14070 -0.171 1.18 (1.01-1.37)
problem related to lifestyle 14071 -0.172 0.96 (0.48-1.91)
acquired hypothyroidism 14072 -0.172 1.47 (1.34-1.62)
abnormal findings on diagnostic... 14073 -0.176 0.63 (0.54-0.73)
increased frequency of urination 14074 -0.177 1.41 (1.22-1.64)
disorder of skin 14075 -0.178 1.18 (0.95-1.48)
thyroiditis 14076 -0.180 0.87 (0.49-1.57)
race hispanic or latino 14077 -0.186 0.96 (0.60-1.51)
herpes zoster without complication 14078 -0.187 1.14 (0.96-1.35)
altered sensation of skin 14079 -0.191 1.00 (0.82-1.22)
generalized hyperhidrosis 14080 -0.194 1.37 (1.07-1.76)
primary open angle glaucoma 14081 -0.194 1.35 (1.20-1.52)
stool finding 14082 -0.195 1.48 (1.26-1.73)
primary gout 14083 -0.196 1.80 (1.51-2.15)
localized, primary osteoarthrit... 14084 -0.199 1.10 (0.92-1.30)
diarrhea 14085 -0.200 1.73 (1.57-1.90)
benign neoplasm of skin of uppe... 14086 -0.204 0.78 (0.58-1.03)
prostatitis 14087 -0.204 1.20 (0.89-1.62)
eruption 14088 -0.205 1.25 (1.11-1.41)
scar conditions and fibrosis of... 14089 -0.206 1.00 (0.86-1.15)
hashimoto thyroiditis 14090 -0.215 0.91 (0.49-1.68)
acquired deformity of toe 14091 -0.227 1.25 (0.94-1.65)
race asian 14092 -0.228 0.70 (0.50-0.99)
localized swelling, mass and lu... 14093 -0.242 1.48 (1.15-1.91)
benign neoplasm of skin of trunk 14094 -0.245 0.91 (0.79-1.05)
benign essential hypertension 14095 -0.245 1.86 (1.72-2.01)
finding of frequency of urination 14096 -0.255 1.48 (1.34-1.64)
benign essential microscopic he... 14097 -0.258 1.10 (0.76-1.59)
localized swelling, mass and lu... 14098 -0.262 1.93 (1.67-2.23)
digestive symptom 14099 -0.267 0.91 (0.68-1.21)
type 1 diabetes mellitus withou... 14100 -0.298 2.34 (2.03-2.70)
open angle with borderline intr... 14101 -0.338 1.20 (1.03-1.40)
primary localized osteoarthrosi... 14102 -0.366 1.08 (0.82-1.43)
localized, primary osteoarthritis 14103 -0.393 1.23 (1.07-1.40)
sex female 14104 -0.441 0.81 (0.75-0.88)
open-angle glaucoma - borderline 14105 -0.495 0.97 (0.85-1.10)
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8 TASK TEMPLATES

Bank Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this client subscribe to a term
deposit? Yes or no?
Answer:
|||
{{ answer choices[label] }}’

Blood Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Did the person donate blood? Yes or no?
Answer:
|||
{{ answer choices[label] }}’

California Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Is this house block valuable? Yes or
no?
Answer:
|||
{{ answer choices[label] }}’

Car Dataset:
answer choices: ’Unacceptable |||
Acceptable ||| Good ||| Very good’
jinja: ’{{serialization}}

How would you rate the decision to buy
this car? Unacceptable, acceptable,
good or very good?
Answer:
|||
{{ answer choices[label] }}’

Credit-g Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this person receive a credit? Yes
or no?
Answer:
|||
{{ answer choices[label] }}’

Diabetes Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this patient have diabetes? Yes or
no?
Answer:
|||
{{ answer choices[label] }}’

Heart Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does the coronary angiography of this
patient show a heart disease? Yes or
no?
Answer:
|||
{{ answer choices[label] }}’

Income Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this person earn more than 50000
dollars per year? Yes or no?
Answer:
|||
{{ answer choices[label] }}’

Jungle Dataset:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does the white player win this two
pieces endgame of Jungle Chess? Yes or
no?
Answer:
|||
{{ answer choices[label] }}’

End Of Life Task:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this patient die in the next nine
months? Yes or no?
Answer:
|||
{{ answer choices[label] }}’

Surgical Procedure Task:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Does this patient need a surgery in the
next nine months? Yes or no?
Answer:
|||
{{ answer choices[label] }}’

Likelihood of Hospitalization Task:
answer choices: ’No ||| Yes’
jinja: ’{{serialization}}

Is this patient admitted to the hospital
in the next nine months? Yes or no?
Answer:
|||
{{ answer choices[label] }}’
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9 EXAMPLE SERIALIZATIONS

Bank Dataset (List Template):
- age: 69
- type of job: retired
- marital status: single
- education: tertiary
- has credit in default?: no
- average yearly balance, in euros:
2144
- has housing loan?: no
- has personal loan?: no
- contact communication type: cellular
- last contact day of the month: 29
- last contact month of year: jul
- last contact duration, in seconds:
417
- number of contacts performed during
this campaign and for this client:
- number of days that passed by after
the client was last contacted from a
previous campaign: 184
- number of contacts performed before
this campaign and for this client: 4
- outcome of the previous marketing
campaign: success

Bank Dataset (Text Template):
The age is 69. The type of job is
retired. The marital status is single.
The education is tertiary. The has
credit in default? is no. The average
yearly balance, in euros is 2144. The
has housing loan? is no. The has
personal loan? is no. The contact
communication type is cellular. The
last contact day of the month is 29.
The last contact month of year is jul.
The last contact duration, in seconds is
417. The number of contacts performed
during this campaign and for this client
is. The number of days that passed by
after the client was last contacted from
a previous campaign is 184. The number
of contacts performed before this
campaign and for this client is 4. The
outcome of the previous marketing
campaign is success.

Bank Dataset (Table-To-Text):
the age of 69 was 69 years. the retired
retired. the marital status is single
with the single name. the school has a
school of four students. the has a
credit of $500,000. The average yearly
balance in euros is 2144. the has a
total of 2,000+ housing units. the has
an official loan of $500 million. the
standard definition has been updated to
the standard definition. the current
record of the month is 29. the first
contact month was on December 20, 2005,
and then on March 22, 2006, the next
month was on March 22, 2006. the first
contact duration was 417 seconds. the
DVB has a selection of DVB. The year, in
which the client was first contacted by
a former airline operator, was by a
former airline operator, and by a former
airline operator, he was the first to
enter the post of the office. the 4 is
a 4-purpose cycle. the first of the
first 20 MB of the history history to
use the 20 MB.

Bank Dataset (Text T0):
a retired soldier shows off his tattoos.
a city is a city with a population of
singles and tertiary education. no, the
average yearly balance is 2144 euros.
no he has no personal loan or housing
loan a man is contacting a woman on her
cell phone on the 29th day of the month.
last contact month of year was july,
last contact duration was 417 seconds.
184 days after the client was last
contacted from a previous campaign. a
previous marketing campaign for this
client resulted in success with 4
contacts

Bank Dataset (Text GPT-3):
The person is 69 years old, retired,
single, and has a tertiary education.
They have no credit in default, and
their average yearly balance is 2144
euros. They have no housing loan or
personal loan. The contact
communication type is cellular, and the
last contact was on the 29th day of the
month and lasted 417 seconds. They have
been contacted 4 times before this
campaign, and the outcome of the
previous marketing campaign was success.

Blood Dataset (List Template):
- Recency - months since last donation:
23
- Frequency - total number of donation:
1
- Monetary - total blood donated in
c.c.: 250
- Time - months since first donation:
23
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Blood Dataset (Text Template):
The Recency - months since last donation
is 23. The Frequency - total number of
donation is 1. The Monetary - total
blood donated in c.c. is 250. The Time
- months since first donation is 23.

Blood Dataset (Table-To-Text):
the number of the public can be from the
number of the public. The 1.2 has a
maximum speed of 1.2. The first set of
the first set was in 1742 and was in
1742.

Blood Dataset (Text T0):
The donor has made 1 donation in the
last 23 months. monetary - total blood
donated in c.c. : 250, time - months
since first donation : 23

Blood Dataset (Text GPT-3):
The blood donor is a 23-year-old male
who has donated blood once, 250 c.c. of
blood, 23 months ago.

California Dataset (List Template):
- median income: 3.2377
- median age: 32
- total rooms: 6597
- total bedrooms: 1579
- population: 3689
- households: 1459
- latitude: 34.15
- longitude: -118.01

California Dataset (Text Template):
The median income is 3.2377. The median
age is 32. The total rooms is 6597.
The total bedrooms is 1579. The
population is 3689. The households is
1459. The latitude is 34.15. The
longitude is -118.01.

California Dataset (Table-To-Text):
there were 3.2377 people residing in the
city. the total rooms have 6597 rooms.
the total has a total of 1579. The
population was 3689 at the time of the
census. The households 1459 is a
standard households. The value 34.15 is
a value that has a value of 34.15. The
longitude has a distance of 1.5 km and
is approximately 1.5 km.

California Dataset (Text T0):
median age of 32 years old the hotel has
a total of 6597 rooms and 1579 bedrooms.
a city has a population of 3689 and
households of 1459. a city is located
in the southwestern part of the country
at latitude 34.15 and longitude -118.01.

California Dataset (Text GPT-3):
The house block is located in the city
of Los Angeles, in the state of
California. The median income in the
area is $3,237, the median age is 32
years old, the total number of rooms is
6,597, the total number of bedrooms is
1,579, the population is 3,689, and the
number of households is 1,459. The
latitude is 34.15, and the longitude is
-118.01.

Car Dataset (List Template):
- Buying price: low
- Doors: three
- Maintenance costs: low
- Persons: more than four
- Safety score: medium
- Trunk size: medium

Car Dataset (Text Template):
The Buying price is low. The Doors is
three. The Maintenance costs is low.
The Persons is more than four. The
Safety score is medium. The Trunk size
is medium.

Car Dataset (Table-To-Text):
The price of the price is C1,000. the
three Doors were three. The total
number of people in the city is more
than four. the Safety score was 17.5.
the Trunk size is 20.5-inch.

Car Dataset (Text T0):
The refrigerator has three doors and is
very cheap. The maintenance costs are
low for a family of more than four. The
car has a medium safety score and a
medium trunk size.

Car Dataset (Text GPT-3):
This car a good choice for those who are
looking for a low-priced vehicle with
low maintenance costs. It is also a
good choice for families or groups of
friends who need a car with a bit more
space than a smaller car. The safety
score is medium, so it is not the best
choice for those who are looking for a
car with the highest safety rating.
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Credit-g Dataset (List Template):
- Status of existing checking account:
0 <= ... < 200 DM
- Duration in month: 11
- Credit history : existing credits
paid back duly till now
- Purpose: furniture/equipment
- Credit amount: 1577
- Savings account/bonds: ... >= 1000
DM
- Present employment since: <1
- Installment rate in percentage of
disposable income: 4
- Personal status and sex: female :
divorced/separated/married
- Other debtors / guarantors: none
- Present residence since: 1
- Property: real estate
- Age in years: 20
- Other installment plans: none
- Housing: own
- Number of existing credits at this
bank: 1
- Job: skilled employee / official
- Number of people being liable to
provide maintenance for: 1.0
- Telephone: none
- foreign worker: yes

Credit-g Dataset (Text Template):
The Status of existing checking account
is 0 <= ... < 200 DM. The Duration in
month is 11. The Credit history is
existing credits paid back duly till
now. The Purpose is
furniture/equipment. The Credit amount
is 1577. The Savings account/bonds is
... >= 1000 DM. The Present employment
since is <1. The Installment rate in
percentage of disposable income is 4.
The Personal status and sex is female :
divorced/separated/married. The Other
debtors / guarantors is none. The
Present residence since is 1. The
Property is real estate. The Age in
years is 20. The Other installment
plans is none. The Housing is own. The
Number of existing credits at this bank
is 1. The Job is skilled employee /
official. The Number of people being
liable to provide maintenance for is
1.0. The Telephone is none. The
foreign worker is yes.

Credit-g Dataset (Table-To-Text):
the 0.2 (0.2) is a type of 00.2. The
average annual precipitation is 11.5
millimetres (4.5 in). the Credit
history has been paid back to a few
years. the standard cell is a
standard cell. the amount was 1577. the
Savings account/bonds were from the
Savings account/bonds to the Savings
account/bonds. there were 1,000
employees. there were 4,000 people in
the city. The male has a male score of
the female. the debt was $12.5 million
($9.5 million in 2013). the current
residence has a 1,000 feet (460 m) long.
the standard estate is a standard
estate. It has a age of 20 years. the
first installment was the first
installment in the year 2005. The
Housing is a public transport system
that is a network of the public. the
company has a number of existing and
existing works, and has a number of
existing and existing works. the
company’s job is job with the job name
as "Success". the network has a network
of over 800 MT/s. the foreign worker
has no foreign worker.

Credit-g Dataset (Text T0):
The checking account has a balance of 0
DM. A man is paying for furniture and
equipment with a credit card. The
credit amount is 1577, the savings
account/bonds are >= 1000 DM. The
present employee has been in this job
for a year, and the installment rate is
4. % of disposable income. A female
who is divorced/separated/married is
requesting a loan. The property is
located in a gated community and has
been on the market since. The man is 20
years old and has no other installment
plans. The number of existing credits
at this bank is 1. A skilled employee
is liable to provide maintenance for
1.0. A foreign worker is without a
telephone.

Credit-g Dataset (Text GPT-3):
The person is a 20-year-old female with
a checking account status of 0-200 DM.
She has been employed for less than a
year and her installment rate is 4% of
her disposable income. She is
divorced/separated/married and has no
other debtors or guarantors. She has
been living in her current residence for
1 year and owns real estate. She has 1
credit at this bank and is a skilled
employee/official. She is liable for
maintenance for 1 person. She has no
telephone. She is a foreign worker.
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Diabetes Dataset (List Template):
- Age: 30 years
- Number of times pregnant: 1
- Diastolic blood pressure: 64 mmHg
- Triceps skin fold thickness: 32 mm
- Plasma glucose concentration at 2
hours in an oral glucose tolerance test
(GTT): 122 mg/dl
- 2-hour serum insulin: 156 µU/ml
- Body mass index: 35.1
- Diabetes pedigree function: 0.692

Diabetes Dataset (Text Template):
The Age is 30. The Number of times
pregnant is 1. The Diastolic blood
pressure is 64. The Triceps skin fold
thickness is 32. The Plasma glucose
concentration at 2 hours in an oral
glucose tolerance test (GTT) is 122.
The 2-hour serum insulin is 156. The
Body mass index is 35.1. The Diabetes
pedigree function is 0.692.

Diabetes Dataset (Table-To-Text):
The age was 30 years, and was the
youngest ever to enter the age. the
number of children is 1. The Diastolic
blood pressure is 64. the Triceps can
run up to 32. the 2 hours of the
glucose is 122. the 2-hour cycle peaked
to 156. The mass index was 35.1. The
0.692 is a fast and pathos.

Diabetes Dataset (Text T0):
The woman is 30 years old and has been
pregnant once. The doctor checks the
blood pressure and triceps skin fold
thickness of the patient. The glucose
concentration at 2 hours in an oral
glucose tolerance test (GTT) was 122 and
the 2-hour serum insulin was 156. The
pedigree function of this family is
0.692.

Diabetes Dataset (Text GPT-3):
This patient 30 years old, has been
pregnant once, has a diastolic blood
pressure of 64 mmHg, and has a triceps
skin fold thickness of 32 mm. The
patient’s plasma glucose concentration
at 2 hours in an oral glucose tolerance
test (GTT) is 122 mg/dl, and the
patient’s 2-hour serum insulin is 156
µU/ml. The patient’s body mass index is
35.1, and the patient’s diabetes
pedigree function is 0.692.

Heart Dataset (List Template):
- Age of the patient: 43 years
- Sex of the patient: male
- Chest pain type: asymptomatic
- Resting blood pressure: 132
- Serum cholesterol: 247
- Fasting blood sugar > 120 mg/dl: yes
- Resting electrocardiogram results:
probable or definite left ventricular
hypertrophy
- Maximum heart rate achieved: 143
- Exercise-induced angina: yes
- ST depression induced by exercise
relative to rest: 0.1
- Slope of the peak exercise ST segment:
flat

Heart Dataset (Text Template):
The Age of the patient is 43. The Sex
of the patient is male. The Chest pain
type is asymptomatic. The Resting blood
pressure is 132. The Serum cholesterol
is 247. The Fasting blood sugar > 120
mg/dl is yes. The Resting
electrocardiogram results is probable or
definite left ventricular hypertrophy.
The Maximum heart rate achieved is 143.
The Exercise-induced angina is yes. The
ST depression induced by exercise
relative to rest is 0.1. The Slope of
the peak exercise ST segment is flat.

Heart Dataset (Table-To-Text):
The male patient was the 43rd of the Age
of the patient. The male is a male of
the same class. The blood pressure was
132. The Serum cave has a cave of 247.
the sugar has a low of 120 mg/dl. the
type of the group is the type of the
group that has a group of the group.
The highest heart rate achieved is 143.
the Exercise angina has a yes value.
The ST depression has ranged from 0.1 to
0.1. the first segment was a flat of
the ST.

Heart Dataset (Text T0):
The patient is a 43-year-old male. The
chest pain is asymptomatic and resting
blood pressure is 132. The doctor
checks the fasting blood sugar and finds
it is above 120 mg/dl. The resting ECG
results showed probable or definite left
ventricular hypertrophy, with maximum
heart rate of 143 beats per minute. The
patient had exercise-induced angina,
with ST depression induced by exercise
relative to rest of 0.1. The slope of
the peak exercise segment is flat.
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Heart Dataset (Text GPT-3):
This patient a 43-year-old male with
asymptomatic chest pain. His resting
blood pressure is 132 mmHg and his serum
cholesterol is 247 mm/dl. He has
fasting blood sugar > 120 mg/dl and his
resting electrocardiogram results are
probable or definite left ventricular
hypertrophy. His maximum heart rate
achieved is 143 and he has
exercise-induced angina. His ST
depression induced by exercise relative
to rest is 0.1 and his slope of the peak
exercise ST segment is flat.

Income Dataset (List Template):
- Age: 30
- Race: Asian-Pac-Islander
- Sex: Female
- Marital status: never married
- Rel. to head of the household: Own
- Native country: Taiwan
- Occupation: execution and management
- Work class: private sector employee
- Capital gain last year: 0
- Capital loss last year: 0
- Education: bachelor’s degree
- Work hours per week: 52

Income Dataset (Text Template):
The Age is 30. The Race is
Asian-Pac-Islander. The Sex is Female.
The Marital status is never married.
The Relation to head of the household is
Own-child. The Native country is
Taiwan. The Occupation is execution and
management. The Work class is private
sector employee. The Capital gain last
year is 0. The Capital loss last year
is 0. The Education is bachelor’s
degree. The Work hours per week is 52.

Income Dataset (Table-To-Text):
The age was 30 years, and was the
youngest ever to enter the age. The
race was held in the Asian-Pac-Islander,
and was won by the race. The sex of the
village was Female. The first female to
be married is Marital status never
reported. the family has the head of
the household. The Chinese: native
region of Taiwan. He was the
executioners of the execution and
management of the city of New York City.
the private sector employee is a private
sector employee. The capital was
Capital of the State of India. The
capital loss of the state was 0.5%. The
bachelor’s degree in Education was
bachelor’s degree. the week 52 was the
52-hour week.

Income Dataset (Text T0):
Kim is a 30-year-old Asian-Pacific
Islander. She is never married and has
never had children. The man is the
owner of the house and he is the only
child. A woman is executing a contract
as a private sector employee. The
company had a capital loss of $ 0 last
year. The man has a bachelor’s degree
and works 52 hours a week.

Income Dataset (Text GPT-3):
The person is 30 years old,
Asian-Pac-Islander, female, never
married, and an own-child relation to
the head of the household. The person
is from Taiwan and is an execution and
management occupation in the private
sector employee work class. The person
has 0 dollars in capital gain and 0
dollars in capital loss from the
previous year. The person has a
bachelor’s degree and works 52 hours per
week.

Jungle Dataset (List Template):
- white piece strength: 6
- white piece file: 4
- white piece rank: 7
- black piece strength: 0
- black piece file: 5
- black piece rank: 2

Jungle Dataset (Text Template):
The white piece strength is 6. The
white piece file is 4. The white piece
rank is 7. The black piece strength is
0. The black piece file is 5. The
black piece rank is 2.

Jungle Dataset (Table-To-Text):
the piece has a value of 6. the 4 file
file has a 4-polytopic file. the piece
has a cross point of the right side.
the black piece strength is 0. The
black piece file has a 5.0.

Jungle Dataset (Text T0):
The white piece has a strength of 6 and
a file of 4. The white piece is ranked
7, the black piece is ranked 0. The
black piece is ranked number two.

Jungle Dataset (Text GPT-3):
The white piece is stronger than the
black piece. The white piece is on file
4 and rank 7. The black piece is on
file 5 and rank 2.
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9.1 Large Healthcare Claims Dataset

End Of Life Task anonymized (List Template):
Summary: The patient is a 73 year old
hispanic or latino man.

May 30, 2014: saw a doctor for
dermatology
Conditions:
- chronic cholecystitis
- aplastic anemia due to drugs

April 21, 2017: visited the hospital
for 12 days
Conditions:
- chronic cholecystitis [...]

End Of Life Task anonymized (Text Template):
Summary: The patient is a 73 year old
hispanic or latino man.

On May 30, 2014 the patient saw a doctor
for dermatology with a primary complaint
of chronic cholecystitis. He was also
treated for aplastic anemia due to
drugs.

On April 21, 2017 the patient visited
the hospital for 12 days with a primary
complaint of chronic cholecystitis.
[...]

End Of Life Task anonymized (List Permuted Names):
Summary: The patient is a 73 year old
hispanic or latino man.

May 30, 2014: saw a doctor for
dermatology
Conditions:
- onychomycosis due to dermatophyte
- chronic kidney disease

April 21, 2017: visited the hospital
for 12 days
Conditions:
- onychomycosis due to dermatophyte
[...]
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