
Optimism and Delays in Episodic Reinforcement Learning

Benjamin Howson Ciara Pike-Burke Sarah Filippi
Imperial College London Imperial College London Imperial College London

Abstract

There are many algorithms for regret minimi-
sation in episodic reinforcement learning. This
problem is well-understood from a theoretical
perspective, providing that the sequences of
states, actions and rewards associated with each
episode are available to the algorithm updating
the policy immediately after every interaction
with the environment. However, feedback is al-
most always delayed in practice. In this pa-
per, we study the impact of delayed feedback in
episodic reinforcement learning from a theoreti-
cal perspective and propose two general-purpose
approaches to handling the delays. The first in-
volves updating as soon as new information be-
comes available, whereas the second waits be-
fore using newly observed information to update
the policy. For the class of optimistic algorithms
and either approach, we show that the regret in-
creases by an additive term involving the number
of states, actions, episode length, the expected
delay and an algorithm-dependent constant. We
empirically investigate the impact of various de-
lay distributions on the regret of optimistic algo-
rithms to validate our theoretical results.

1 INTRODUCTION

Episodic Reinforcement Learning (RL) considers the prob-
lem of an agent learning how to act in an unknown envi-
ronment to maximise its cumulative reward. The problem
formulation is broad enough to capture the nature of se-
quential decision-making in many real-world scenarios as
it permits complex dependencies between actions, rewards
and future environmental states. Despite the complexity
of the learning problem, there are many provably efficient
algorithms for this problem setting (Jaksch et al., 2010; Fil-

Proceedings of the 26th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2023, Valencia, Spain.
PMLR: Volume 206. Copyright 2023 by the author(s).

ippi et al., 2010; Fruit et al., 2020; Azar et al., 2017; Dann
et al., 2017).

These existing algorithms focus on the traditional model
where one assumes that the algorithm updating the policy
observes the sequence of states, actions and rewards at the
end of every episode. Unfortunately, this immediate feed-
back assumption is unrealistic in almost all practical appli-
cations. In healthcare, for example, feedback relating to
a patient on a particular treatment protocol is not observ-
able to the policy maker until they return to the clinic at a
scheduled time point in the future. In e-commerce, one ob-
serves a conversion at some unknown time long after a se-
quence of recommendations. Yet another example is wear-
able technology. Here, the heavy computation involved in
policy updating must occur on a separate machine, forcing
the communication of information, which naturally intro-
duces a delay between the agent collecting feedback and
the policy updater. In any of these scenarios, the algorithm
must continue operating, despite lacking information from
its past choices.

The above examples illustrate that delayed feedback is a
fundamental challenge in real world reinforcement learn-
ing. Unfortunately, there is little theoretical understanding
of the impact of delays in episodic reinforcement learning
in the existing literature. We seek to fill this gap in the lit-
erature in this paper.

1.1 Related Work

Recently, the topic of delays has attracted a lot of atten-
tion in the bandit setting (Agarwal and Duchi, 2011; Dudik
et al., 2011; Joulani et al., 2013; Mandel et al., 2015; Ver-
nade et al., 2017; Pike-Burke et al., 2018; Zhou et al., 2019;
Manegueu et al., 2020; Vernade et al., 2020). Here, the
feedback is the reward associated with the chosen action in
each round. Perhaps the most appealing approach in the
multi-armed bandit setting is the queuing technique, which
shows that the delays cause an additive penalty involving
the expected delay for any base algorithm (Joulani et al.,
2013; Mandel et al., 2015). The high-level idea is to build
a meta-algorithm that creates a simulated non-delayed en-
vironment for any base algorithm designed for immediate
feedback, such as UCB1 or KL-UCB. They achieve this by

Optimism and Delays in Episodic Reinforcement Learning

introducing a mechanism that stores the rewards for each
action in separate queues and having the base algorithm in-
teract with these rather than the actual environment. Unfor-
tunately, the queuing technique does not readily extend to
the delayed feedback setting in RL, as forming the queues
would require knowledge of the state and action seen in
each step of an episode; this information is delayed in our
setting.

Joulani et al. (2013) present another meta-algorithm for ad-
versarial multi-armed bandits with delayed rewards that is
trivial to adapt to our setting. They propose creating a new
instance of the chosen base algorithm whenever there is no
feedback, allowing one to bound the regret of each instance
separately using standard techniques. More precisely, this
involves maintaining τmax + 1 versions of the algorithm,
where τ ≤ τmax almost surely (Joulani et al., 2013). Thus,
the regret of taking this approach is multiplicative, as the
maximal delay scales the regret of the base algorithm.

Previous work in RL has considered constant delays in
observing the current state in Markov Decision Processes
(MDPs) (Katsikopoulos and Engelbrecht, 2003). More re-
cent work considers delayed feedback in adversarial MDPs
(Lancewicki et al., 2021). They developed an algorithm
that computes stochastic policies based on policy optimi-
sation. The regret of this algorithm depends on the sum of
the delays, the number of states and the number of steps per
episode. For stochastic MDPs, they state a regret bound of
the form H3/2S

√
AT +H2Sτmax, where H is the number

of decisions the learner must make per episode, T = KH
is the total number of decisions made across allK episodes,
S is the number of states in the environment, A is the num-
ber of actions and τk ≤ τmax. However, the leading or-
der term in their regret bound is loose for many base al-
gorithms. Their approach also requires a-priori knowledge
of the maximal delay to define a phase of explicit explo-
ration; this quantity is often unknown in many practical
applications. Further, the base algorithm accrues linear re-
gret in this exploration phase, and the maximal delay can
be prohibitively large. We propose two approaches that
avoid such prior knowledge and can leverage new infor-
mation in the early episodes much faster, leading to tighter
algorithm-specific theoretical results and better empirical
performance. In addition to the improved theoretical re-
sults, we relax the assumption that the delay distribution
has a finite and known maximum, and instead only require
that the delays have a finite expectation that we assume is
unknown.

1.2 Contributions

The delayed feedback model studied in this paper poses
several theoretical challenges that do not arise in the stan-
dard episodic reinforcement learning problem, such as de-
layed updates and disentangling the delays from the diffi-

culty of the learning problem in the theoretical analysis.

We introduce two novel meta-algorithms to overcome these
challenges, namely active and lazy updating. Both take any
algorithm as input and transform it into an algorithm that
can handle delayed feedback. Henceforth, we refer to the
input algorithm as the base algorithm. Using these meta-
algorithms, we obtain high probability regret bounds for
any optimistic model-based base algorithm in the delayed
feedback setting. For both active and lazy updating, the
penalty for delayed feedback is an additive term involving
the expected delay. Although they obtain similar theoreti-
cal results, active and lazy updating employ different algo-
rithmic ideas to separate the delays from the learning prob-
lem in the theoretical analysis.

The active updating meta-algorithm uses the base algo-
rithm to update the policy as soon as it observes feedback
from the environment. Deriving theoretical guarantees for
active updating involves tackling the delays head-on, as the
delays force the policy to remain constant across numerous
episodes. Consequently, the learner can repeatedly make
sub-optimal decisions. To quantify the impact of delayed
feedback, we introduce several techniques that carefully
separate the difficulty of the learning problem from the de-
lays.

The lazy meta-algorithm works slightly differently. Instead
of updating immediately, it waits for the amount of feed-
back to surpass some threshold before updating the policy.
One can control this threshold, and therefore the frequency
of policy updates, through a hyperparameter α. By waiting
to update, lazy creates a simulated non-delayed version of
the environment for the input algorithm, allowing us to han-
dle the delays separately from the difficulty of the learning
problem.

2 PRELIMINARIES

We consider the task of learning to act optimally in an un-
known episodic finite-horizon Markov Decision Process,
EFH-MDP. An EFH-MDP is formalised as a quintuple:
M = (S,A, H, P,R). Here, S is the set of states, A is
the set of actions, H is the horizon and gives the num-
ber of steps per episode, P = {Ph(·|s, a)}h,s,a is the set
of probability distributions over the next state and R =
{Rh(s, a)}h,s,a is the set of reward functions. For con-
ciseness, we assume that the reward function is known, de-
terministic and bounded between zero and one for all state-
action-step triples.1

In the episodic reinforcement learning problem, the base al-
gorithm interacts with an MDP in a sequence of episodes:
k = 1, 2, . . . ,K. We denote the set of episodes by:

1The main challenge in model-based reinforcement learning
lies in estimating the transition function. Thus, an extension to un-
known bounded stochastic rewards is relatively straightforward.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

[K] = {1, 2, . . .K}; a convention that we adopt for sets
of integers. In this paper, we consider base algorithms that
compute a deterministic policy πk : S × [H] → A at
the start of each episode k ∈ [K]. It is known that in fi-
nite horizon stochastic MDPs, if an optimal policy exists,
there is a deterministic optimal policy (Puterman, 1994).
Once the base algorithm has computed a policy, an agent
uses said policy to sample feedback from the environment
by: selecting an action, akh = πk(s

k
h, h); receiving a re-

ward, rkh = Rh(s
k
h, a

k
h); and transitioning to the next state,

skh+1 ∼ Ph(·|skh, akh); for each h = 1, · · · , H . The feed-
back associated with the h-th step of the k-th episode is
given by:

Dk
h := {(skh, akh, rkh, skh+1)} . (1)

We measure the quality of a policy, π, using the value func-
tion, which is the expected return at the end of the episode
from the current step, given the current state:

V πh (s) = Eπ

[
H∑

h′=h

rkh′

∣∣∣skh′ = s

]
. (2)

Further, we denote the optimal value function by: V ∗
h (s) =

maxπ{V πh (s)}, which gives the maximum expected return
over deterministic policies ∀(s, h) ∈ S × [H]. When eval-
uating reinforcement learning algorithms, it is common to
use regret:

RK =

K∑
k=1

V ∗
1

(
sk1
)
− V πk

1

(
sk1
)
:=

K∑
k=1

∆k
1 . (3)

Throughout, T = KH denotes the total number of steps.
Domingues et al. (2020) show that the lower bound for the
regret in the standard episodic reinforcement learning set-
ting with stage-dependent transitions is: Ω(H

√
SAT).

2.1 Regret Minimisation in Model-Based RL

Many provably efficient algorithms exist for learning in
EFH-MDPs when feedback is immediate. In this pa-
per, we focus on the large class of optimistic model-
based reinforcement learning algorithms. These algorithms
maintain estimators of the transition probabilities for each
(s, a, s′) ∈ S ×A× S:

P̂kh (s
′|s, a) =

∑
i:i<k 1

{
sih+1 = s′ |

(
sih, a

i
h

)
= (s, a)

}
Nkh (s, a)

where

Nkh(s, a) = max

{
1,
∑
i:i<k

1
{(
sih = s, aih = a

)}}
is the total visitation count. There are two main ways of en-
suring optimism using model-based algorithms. The first
is the model-optimistic approach, which maintains a con-
fidence set around P̂kh that contains Ph with high proba-
bility (Jaksch et al., 2010; Filippi et al., 2010; Fruit et al.,

2020). The second is the value-optimistic approach, which
involves directly upper bounding the optimal value func-
tion with high probability by adding a bonus to the value
function of a policy under the estimated transition density
P̂kh (Dann et al., 2017; Azar et al., 2017). Recent work
has shown that all model-based optimistic algorithms have
a value-optimistic representation, meaning they all com-
pute a value function of the following form (Neu and Pike-
Burke, 2020):

Ṽ πh = (H ′ + 1) ∧
(
Rh +

〈
P̂kh, Ṽ

π
h+1

〉
+ β+

kh

)
(4)

where H ′ = H − h and

β+
kh (s, a) = H ′ ∧

(
B1√

Nkh (s, a)
+

B2

Nkh (s, a)

)
= H ′ ∧ βkh (s, a) (5)

is the exploration bonus and x ∧ y = min{x, y}. Here,
B1 and B2 are algorithm-dependent quantities which may
depend on S,A,H, log(T) or the empirical variance of the
optimistic value function. A suitably chosen exploration
bonus ensures the computed value function is optimistic
with high probability. For our theoretical results to hold,
we require the following assumption on the base algorithm.

Assumption 1. The exploration bonus upper bounds the
estimation error with high probability. Mathematically:
β+
kh(s, a) ≥ ⟨(P̂kh − Ph)(·|s, a), V ∗

h+1(·)⟩ for all time-
steps, with probability 1− δ.

All value-optimistic algorithms explicitly use the estima-
tion error to derive suitable bonuses. Further, model-
optimistic algorithms compute bonuses satisfying this as-
sumption implicitly (Neu and Pike-Burke, 2020). There-
fore, Assumption 1 allows us to capture a wide range of
model-based algorithms.

For our analysis, it will be helpful to define an algorithm-
dependent variable C, which indicates whether the algo-
rithm’s bonuses satisfy the following inequality:

β+
kh(s, a)) <

〈(
P̂kh − Ph

)
(· |s, a) , Ṽ πk

h+1(·)
〉

(6)

for all s, a, h, k with probability 1 − δ. Intuitively, C = 1
corresponds to a bonuses that sits somewhere between the
estimation error and the difference between the expecta-
tion of the optimistic value function under the estimated
and true transition function. Since these bonuses must
sit within a specific (potentially narrow) interval, they are
tighter. However, as we will see later, such bonuses come
at the expense of lower-order terms. UBEV and UCBVI
are algorithms where C = 1. Whereas UCRL2, UCRL2B,
KL-UCRL and χ2-UCRL are algorithms with C = 0.

Optimism and Delays in Episodic Reinforcement Learning

3 DELAYED FEEDBACK

Under stochastic delays, the feedback from an episode does
not return to the base algorithm immediately after the in-
teraction. Instead, it returns at some unknown time in the
future, k+ τk. Here, τk denotes the random delay between
the agent playing the kth episode and the base algorithm
receiving the corresponding feedback. Throughout this pa-
per, we make the following assumption about the delays:

Assumption 2. The delays are positive, independent and
identically distributed random variables with a finite ex-
pected value, E[τk] <∞.

The introduction of delays causes the feedback associated
with an episode to return at some unknown time in the fu-
ture, k + τk. As a result, the base algorithm cannot up-
date its policy using feedback from episode k at the start
of episode k + 1. Instead, it can only use feedback it
has observed, e.g. the feedback associated with episodes
i : i+ τi < k + 1.

When working with delayed feedback in RL, it is helpful
to introduce the observed and missing visitation counters:

N ′
kh (s, a) =

∑
i:i+τi<k

1
{(
sih, a

i
h

)
= (s, a)

}
(7)

N ′′
kh (s, a) =

∑
i:i+τi≥k

1
{(
sih, a

i
h

)
= (s, a)

}
. (8)

These are related to the total visitation counter by

Nkh (s, a) = N ′
kh (s, a) +N ′′

kh (s, a) . (9)

When the feedback is delayed, optimistic algorithms can
only compute their bonuses and any required estimators
using the observed visitation counter. The corresponding
value functions are still optimistic, but they contract to
the optimal value function more slowly since Nkh(s, a) ≥
N ′
kh(s, a).

3.1 Bounding the Missing Episodes

In our analysis, it is helpful to bound the number of missing
episodes to get an upper bound on the amount of informa-
tion missing for each state-action-step. This is done in the
following lemma.

Lemma 1. Let Sk =
∑k−1
i=1 1{i + τi ≥ k}, where

τ1, τ2, · · · τk−1 ∼ fτ (·) are independent and identically
distributed random variables with finite expected value. We
define

F τk =

{
Sk ≥ E [τ] + log

(
Kπ

6δ′

)
+

√
2E [τ] log

(
Kπ

6δ′

)}

to be the failure event for a single k. Then, P(Fτ) =
P(∪∞

k=1F
τ
k) ≤ δ′.

Proof. Firstly, notice that Sk is a sum of Bernoulli random
variables, meaning it is subgaussian. Therefore, one can
apply Bernstein’s inequality to obtain the following upper
bound that holds with probability 1− δ′:.

Sk ≤ E[Sk] +
2

3
log

(
kπ

6δ′

)
+

√
2Var (Sk) log

(
kπ

6δ′

)
The remainder of the proof follows from noticing that
E[Sk] ≤

∑∞
i=0 P(τ > i), which is the tail probability func-

tion of the delay distribution and is equal to the expected
delay. Similarly, one can show that Var (Sk) ≤ E[Sk] ≤
E[τ]. Substituting these values into the above inequality
gives the result. See Appendix A.1 for a full proof.

A direct consequence of this lemma is an upper bound on
the number of missing episodes Sk ≤ ψτK for

ψτK := E [τ] + log

(
Kπ

6δ′

)
+

√
2E [τ] log

(
Kπ

6δ′

)
which holds for all k ∈ [K] with probability 1 − δ′. Es-
sentially, ψτK allows us to bound the amount of missing
information in any given episode due to the delays.

4 META-ALGORITHMS FOR DELAYED
FEEDBACK

Here, we describe two flexible approaches that allow any
base algorithm to handle delayed feedback. Additionally,
we prove regret guarantees for both procedures, providing
the base algorithm satisfies Assumption 1. Regardless of
the approach, we utilise the following regret decomposi-
tion for optimistic base algorithms that holds for both the
delayed and non-delayed settings.

Lemma 2. Under Assumption 1, with probability 1 − 4δ′,
we can upper bound the regret by:

RK ≤ 6 (H + C)

√
T log

(
Kπ

6δ′

)

+ 6

K∑
k=1

H∑
h=1

β+
kh

(
skh, a

k
h

)
+ 6

K∑
k=1

H∑
h=1

3CH2SL

N ′
kh

(
skh, a

k
h

)
where L = log

(
S2AHπ2/6δ′

)
and C indicates whether

the bonuses of the algorithm satisfy Equation (6).

Proof. See Appendix B.1.

4.1 Active Updating

The first meta-algorithm we propose is active updating,
which leverages new information by updating as soon as

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Algorithm 1 Active Updating
Input. Base(N ′,M ′) (any base algorithm).
Initialise. N ′ = {N ′

h(s, a) = 0}h,s,a and
Initialise. M ′ = {M ′

h(s, a, s
′) = 0}h,s,a with

M ′
h(s, a, s

′) :=
∑

i:i+τi<k

1{(sih, aih, sih+1) = (s, a, s′)}

Compute policy: π1 = Base(N ′,M ′)
for k = 1 to K do

if ∃ i : k − 2 < i+ τi ≤ k − 1 then
Update the counters: N ′ and M ′.
Update the policy: πk = Base(N ′,M ′)

else
Reuse previous policy: πk = πk−1

end if
An agent samples an episode using policy πk.

end for

it becomes available. The remainder of this subsection fo-
cuses on bounding the regret for model-based optimistic al-
gorithms using active updating, whose pseudo-code is out-
lined in Algorithm 1.

Base(N ′,M ′) is the only input parameter for our algorithm
and is the base algorithm. One could view it as a function
that takes in the observed number of visits (N ′) and tran-
sitions (M ′), among other algorithm-dependent hyperpa-
rameters, and returns a policy. For the class of optimistic
algorithms, the additional hyperparameter is the confidence
level, δ.

Theorem 1 (Active Updating). Under Assumption 1 and
2, with probability 1 − δ, the regret of any model-based
algorithm under delayed feedback:

RK ≲ B
√
HSAT +max

{
B,B2, CH

2S
}
HSAE [τ]

where ≲ suppresses numeric constants, poly-log and lower
order terms, and B ≥ B1 is a upper bound on the leading-
order term in the numerator of the exploration bonus that is
a function ofH and S, and holds for all (k, h) ∈ [K]×[H].

Proof. From Lemma 2, it is clear that we must bound the
summation of the bonuses to bound the regret. When there
are no delays, one can utilise the fact that the visitation
count for (s, a, h) at the start of episode k + 1 increases
by one if the agent observed (s, a, h) in the k-th episode to
bound this term. However, this is no longer the case under
delayed feedback. Therefore, we introduce the following
lemma to bound the delay-dependent visitation counter.

Lemma 3. Let ZpT =
∑K
k=1

∑H
h=1 1/(N

′
kh(s

k
h, a

k
h))

p.
Then,

ZpT ≤

{
4
√
HSAT + 3HSAψτK if p = 1

2

2HSA log (8T) +HSAψτK log(16ψτK) if p = 1

with probability 1− δ′.

Proof. To prove the claim, we relate the sum involving the
observed visitation counters to a sum involving the total
visitation counters. To do so, we artificially introduce it
into the summation by multiplying by one:

ZpT =

K∑
k=1

H∑
h=1

(
N ′
kh(s

k
h, a

k
h) +N ′′

kh(s
k
h, a

k
h)

N ′
kh(s

k
h, a

k
h)Nkh(s

k
h, a

k
h)

)p

=

K∑
k=1

H∑
h=1

(
1

Nkh(skh, a
k
h)

+
N ′′
kh(s

k
h, a

k
h)

N ′
kh(s

k
h, a

k
h)Nkh(s

k
h, a

k
h)

)p
The term in the numerator of the first line is equivalent to
the total visitation counter by the equivalence relation given
in Equation (9). One can handle the first term using stan-
dard results from the immediate feedback setting. The re-
mainder of the proof follows from carefully splitting the
second term in the sum on the second line into two disjoint
sets. Namely, we split the summation using two indicators:
1{N ′

kh(s, a) ≥ ψτK} and 1{N ′
kh(s, a) < ψτK}. After a

little algebra, we find that we are able to apply results from
the immediate feedback setting, which gives the final re-
sult. See Appendix A.2 for further details.

For many algorithms, B1 depends polynomially on quan-
tities related to the environment, e.g. H and S. For such
algorithms, a direct application of Lemma 3 is able to sepa-
rate the expected delay from the total number of decisions.
This is in line with the intuition that the impact of delays
are negligible once we have a reasonable model of the en-
vironment. However, for algorithms such as for UCRL2B,
χ2-UCRL and UCBVI (Fruit et al., 2020; Neu and Pike-
Burke, 2020; Azar et al., 2017):

B1 = Õ

(√
Vs′∼P̂kh(· | s,a)

(
Ṽ πh+1(s

′)
))

Typically, one uses an application of Cauchy-Schwarz to
separate the terms involving the variance from those involv-
ing the counters, which gives:

∑
k,h

√
Vars′∼P̂h

(Ṽh+1(s′))

N ′
kh(s

k
h, a

k
h)

≤
√∑

k,h

Vars′∼P̂h
(Ṽh+1(s′))

∑
k,h

1

N ′
kh(s

k
h, a

k
h)

Lemma 3 shows that doing so would lead to the delays
multiplying the leading order term, as the summation of
the variances found underneath the square root is of order
HT and multiplies the HSAψτK that arises from bound-
ing the summation of the observed visitation counter. Set-
ting B = H/2 gives us an upper bound for these types of
bonuses and avoids this multiplicative dependence.

Optimism and Delays in Episodic Reinforcement Learning

Using a uniform upper bound on B1 in conjunction with
Lemma 3 allows us to handle the summation of the bonuses
as follows:

K∑
k=1

H∑
h=1

B1√
N ′
kh

(
skh, a

k
h

) + B2 + 3CH2SL

N ′
kh

(
skh, a

k
h

)
≤

K∑
k=1

H∑
h=1

B√
N ′
kh

(
skh, a

k
h

) + B2 + 3CH2SL

N ′
kh

(
skh, a

k
h

)
≤ 4B

√
HSAT + 3BHSAψτK

+ 2
(
B2 + 3CH2SL

)
HSA log(8T)

+
(
B2 + 3CH2SL

)
HSAψτK log (16ψτK)

Substituting the above upper bound of the terms in Lemma
2 and setting δ = 5δ′ gives the stated result.

Table 1 in Section 4.3 presents regret bounds for various
optimistic algorithms using active updating under delayed
feedback that fit into our framework. Further discussion of
the results can be found in Section 4.3.

4.2 Lazy Updating

Instead of updating the policy via the base algorithm as
soon as new feedback becomes observable, we now con-
sider waiting. We name the meta-algorithm that employs
this technique lazy updating. Algorithm 2 presents the
pseudo-code for this meta-algorithm.

Algorithm 2 Lazy Updating
Input. Base(N ′,M ′, · · ·) (any base algorithm) and α
(activity parameter).
Initialise epoch: j = 1 and kj = 1.
Initialise counters: N ′

kh(s, a) =M ′
kh(s, a, s

′) = 0.
Compute policy: πkj = Base(N ′

kh,M
′
kh)

for k = 1 to K do
Update counters, e.g. Equation (7).
if ∃ (s, a, h) : N ′

kh(s, a) ≥ (1+1/α)N ′
kjh

(s, a) then
Update epoch: j = j + 1, kj = k
Update epoch counter: Nkj (s, a) = N ′

kh(s, a)
Update the policy: πkj = Base(N ′

kjh
,M ′

kjh
)

end if
An agent samples an episode using policy πkj .

end for

Lazy updating works in batches of episodes which we call
epochs and denote by j = 1, 2, · · · , J . At the start of
the j-th epoch, lazy updating uses the base algorithm to
compute a policy using all the available information. The
meta-algorithm uses this policy in every episode until the
next epoch begins. Therefore, each epoch is just a set of
episodes where the lazy updating algorithm uses the same
policy.

A new epoch begins as soon as there is an (s, a, h) whose
observed visitation counter reaches 1 + 1/α times the ob-
served visits at the start of the epoch, where α ∈ [1,∞).
Note that α = 1 corresponds to the well-known doubling
trick from Jaksch et al. (2010), and α > 1 represents more
frequent updating. Once the observed visitation counter
triggers this condition, a new epoch begins, and the meta-
algorithm uses the base algorithm to update the policy. For-
mally, we start epoch j + 1 in episode kj+1, which occurs
when:

kj+1 = argmin
k>kj

{
N ′
kh ≥

(
1 +

1

α

)
N ′
kjh

}
= argmin

k>kj

{
nkkj ≥ 1

α
N ′
kjh

} (10)

where

nlkh (s, a) =

l−1∑
i=k

1
{
(sih = s, aih = a), i+ τi ≤ l

}
(11)

counts the observed number of visits between episodes k
and l for l > k. Intuitively, this updating scheme forces the
number of samples needed for any particular (s, a, h) to
trigger an update to increase exponentially quickly, mean-
ing that the total number of epochs should grow logarithmi-
cally in K. Lemma 4 confirms that this is indeed the case.

Lemma 4. For K ≥ SA and α ≥ 1, Algorithm 2 ensures
that the number of epochs has the following upper bound:

J ≤
HSA log

(
αK
SA + 1

)
log(1 + 1

α)

Proof. See Appendix A.3 for further details.

In contrast to active updating, we will later see that the
lazy updating scheme lets us bound the summation of the
bonuses independently of the delays. This property means
we can avoid upper bounding the numerator of the explo-
ration bonus, B1, and get tighter leading order terms in the
regret bound of the chosen base algorithm. In the regret
analysis, we will utilise the following extension of the clas-
sic result by Jaksch et al. (2010) that illustrates the delay-
independence of the bonuses:
Lemma 5. If n0, n1, · · · , nJ are an arbitrary sequence of
real-valued numbers satisfying n0 := 0 and 0 ≤ nj ≤
1
αNj−1 with Nj−1 = max{1,

∑j−1
i=0 ni} for all j ≤ J ,

then
J∑
j=1

nj
Np
j−1

≤

{(√
2(1 + 1

α) + 1
)√

NJ if p = 1
2

(1 + 1
α) + (1 + 1

α) log (NJ) if p = 1

Proof. We prove the claim for each case using an inductive
argument similar to Jaksch et al. (2010). See Appendix
A.3.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Using Lemmas 4 and 5, we can derive regret bounds for
any optimistic base algorithm satisfying Assumption 1.

Theorem 2. LetK ≥ SA and α ≥ 1. Under Assumption 1
and 2, with probability 1−δ, the regret of any model-based
algorithm under delayed feedback is upper bounded by:

RK ≲

(
1 +

1

α

)
R̂K(Base) +

H2SAE[τ]
log(1 + 1

α)

where R̂K(Base) is an upper bound on the regret of the
chosen base algorithm under immediate feedback.

Proof. By optimism and utilising the fact that epochs are
disjoint sets of episodes, with probability 1− δ′:

RK ≤ R̃K :=

K∑
k=1

∆̃k
1

(
sk1
)
=

J∑
j=1

kj+1−1∑
k=kj

∆̃k
1

(
sk1
)

≤ HJ +

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)

where the final inequality follows from separating the
episodes where we update and bounding their contribution
to the regret by HJ .

Handling the remaining summation in the regret bound re-
quires a little more care, which we do by splitting the re-
maining sum into two sets; episodes with short and long
delays. An episode has a short delay if it is played and ob-
served in the same epoch, 1{k + τk < kj+1}. Otherwise,
it has a long delay, 1{k + τk ≥ kj+1}.

One can show that the regret of episodes with long delays
has the following upper bound:

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1{k + τk ≥ kj+1} ≤ H

J∑
j=1

Skj+1

Aforementioned, Sk ≤ ψτK for all k ≤ K with probability
1−δ′. Therefore, we can upper bound the regret of episodes
with long delays by HJψτK .

All that remains is bounding the regret of episodes with
short delays. Applying Lemma 2 to these episodes and re-
arranging gives:2

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1{k + τk < kj+1}

≲
∑
s,a,h

J∑
j=1

n
kj+1

kj+1
(s, a)βkh (s, a)1{k + τk < kj+1}

where we have omitted the state-action-step triples that
caused the update from the summation. By construction,

2Here, we have omitted lower order terms for brevity.

all the state-action-step triples satisfy the conditions of
Lemma 5. Applying this result to the summation of the
bonuses and combining the contributions of the other terms
gives the result. See Appendix A.4 for a full proof of the
claim.

4.3 Discussion

Table 1 presents a selection of algorithms that fit into our
framework and their accompanying theoretical guarantees
when using the active and lazy updating meta-algorithms
to handle delayed feedback. In particular, we see that act-
ing in delayed environments causes an additive increase in
regret for almost all combinations of optimistic base algo-
rithms and meta-algorithms considered. This result mirrors
what is seen in the bandit setting where algorithms incur an
additive regret penalty involving E[τ] (Joulani et al., 2013).

For active updating and some base algorithms, we found
that the additive delay dependence comes at the price of
a penalty to the leading order term in the regret bound.
Namely, an extra

√
H . This extra penalty multiplying the

leading order term is a feature of the theoretical analysis.
Another important factor influencing the impact of the de-
lays when using active updating is the parameter C. The
penalty for delayed feedback is higher when C = 1. The
worsened delay dependence for these algorithms is due
to the introduction of lower-order terms in the probabilis-
tic analysis under immediate feedback, which allows for
tighter bonuses. Unfortunately, these lower-order terms be-
come dependent on the delays in our setting and thus lead
to a worse delay dependence.

To rectify the undesirable penalty to the leading order terms
and the dependence on C, we developed an alternative ap-
proach called lazy updating, which achieves the same ad-
ditive delay dependence for all algorithms that fit into our
framework with only a logarithmic penalty to the leading
order term in the regret bound of the base algorithm un-
der immediate feedback. This approach works by intro-
ducing an additional hyperparameter that controls how fre-
quently the base algorithm updates its policy. We denote
this hyperparameter by α and name it the activity param-
eter. Theorem 2 indicates that there is a trade-off when
selecting α. On the one hand, we would like to choose
a large value of α to minimise the penalty to the leading
order term, which is arises from the slower updating. On
the other hand, the penalty introduced by the delays is a
strictly increasing function of α, making large values un-
desirable. As α → ∞, lazy updating tends to active up-
dating; at this limiting value, lazy updating will update as
soon as it receives new feedback, just like active updating.
Thus, the empirical performance of lazy updating should
get closer to active updating as α increases. In Section 5,
we demonstrate that this is the case and show that it is pos-

Optimism and Delays in Episodic Reinforcement Learning

Table 1: Example Delayed Feedback Regret Bounds

Base Algorithm C R̂K(Base) Active Updating Lazy Updating

UBEV (Dann et al., 2017) 1 H3/2
√
SAT R̂K(Base) +H3S2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

UCBVI-CH (Azar et al., 2017) 1 H3/2
√
SAT R̂K(Base) +H3S2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

UCRL2 (Jaksch et al., 2010) 0 H3/2S
√
AT R̂K(Base) +H2S3/2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

KL-UCRL (Filippi et al., 2010) 0 H3/2S
√
AT R̂K(Base) +H2S3/2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

UCRL2B (Fruit et al., 2020) 0 H
√
SΓAT

√
HR̂K(Base) +H2S2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

χ2-UCRL (Neu and Pike-Burke, 2020) 0 HS
√
AT

√
HR̂K(Base) +H2S2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

UCBVI-BF (Azar et al., 2017) 1 H
√
SAT

√
HR̂K(Base) +H3S2AE[τ] (1 + 1

α) R̂K(Base) + H2SAE[τ]
log(1+ 1

α)

sible to get most of the benefits of active updating with a
relatively modest value of α, which has better worst-case
regret bounds in the delayed feedback setting.

Comparatively, our work significantly improves the regret
bounds for many algorithms in the delayed feedback set-
ting. Lancewicki et al. (2021) presents regret bounds for
stochastic MDPs of the form H3/2S

√
AT + H2Sτmax

for all optimistic algorithms. Except for UCRL2 and KL-
UCRL, the leading order term in their regret bound is loose
in either H , S or both. Conversely, the leading order terms
in our regret bounds are tight for all algorithms when utilis-
ing lazy updating and are only loose by a factor of

√
H for

a few algorithms when utilising active updating. Further-
more, E[τ] ≪ τmax in almost all scenarios. As a result, our
regret bounds have a tighter delay dependence. Our algo-
rithms also remove the need for a-priori knowledge of the
maximal delay.

The setting of delayed feedback also generalises the case
where only the rewards are delayed. Thus, our theoreti-
cal results also hold for this setting if we directly apply
active or lazy updating. However, one could do better
in this case by realising that it is only the delays impact-
ing the rewards, meaning it is only necessary to apply the
meta-algorithms to the estimation of the rewards. We ex-
pect the additive penalty to be HSAE[τ]. Indeed, the im-
proved delay-dependence is due to the fact that learning
the expected reward function is an easier task than learning
the transitions. We prove that this is indeed the case for
UCRL2 algorithm of Jaksch et al. (2010) in Appendix B.2.

5 EXPERIMENTAL RESULTS

In this section, we investigate the impact of delayed feed-
back on the regret of active and lazy updating in the chain
environment of Osband and Van Roy (2017). Briefly, this
environment consists of a sequence of S states arranged
side-by-side. The learner starts in the left-most state and
has to decide between A = 2 actions, head left or right.
Each episode consists of H = S decisions and the only

state with a reward is the right-most state. Thus, the opti-
mal policy is to head right at every step. Heading left is al-
ways successful. However, heading right is successful with
probability 1−1/S. If unsuccessful, the learner moves one
state to the left. Notably, any inefficient exploration strat-
egy will take at least 2S episodes to learn the optimal policy
(Osband and Van Roy, 2017).

We consider chains with H = S ∈ {5, 10, 20, 30} and use
UCBVI-BF as the base algorithm in all of our experiments
as it has the best regret guarantees under immediate feed-
back. For our lazy updating approach, we selected several
values for the activity hyperparameter, α ∈ {1, 10, 100}. In
all our experiments, we set the confidence parameter of the
base algorithm so that the regret bounds hold with probabil-
ity 0.95. Additionally, we compare our meta-algorithms to
the explicit exploration procedure proposed by Lancewicki
et al. (2021). Their procedure requires prior knowledge of
the maximum delay, which we provide by generating all the
delays before the first episode and taking the maximum. In
practice, the maximum delay is often unknown and possi-
bly infinite, making this approach infeasible.

Our experiments consider Constant, Geometric, Poisson
and Uniform delays. For each of these distributions,
we consider the following expected delays: E[τ] ∈
{0, 100, 200, 300, 400, 500}.3 All results are averaged over
30 independent runs and the shaded regions in all the fig-
ures contain 95% of our empirical results.

Figure 1 displays the results for our experiments in the
chain environment with S = 30 and E[τ] = 100. The
results for the other chain lengths and expected values are
in Appendix C. Empirically, active updating achieves the
best performance of all three meta-algorithms. However,
our experimental results suggest that it is possible to get
near identical performance with lazy updating by setting α
to be a large enough constant. Both active and lazy updat-
ing offer superior performance to the explicit exploration
approach of Lancewicki et al. (2021) in all of our exper-

3For the uniformly distributed delays, we set the lower and
upper limits to 0 and 2E[τ], respectively.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Figure 1: Cumulative Regret (S = 30,E[τ] = 100).

Figure 2: Delay Dependence (S = 30).

iments, despite their meta-algorithm having prior knowl-
edge of the delays. In some cases, our meta-algorithms
have converged to the optimal policy before the explicit ex-
ploration procedure finishes; e.g. see Appendix C.

Next, we turn to considering the impact of different delay
distributions on the regret of our meta-algorithms. Empir-
ically, Figure 2 shows that the regret penalty of delays at
the end of the final episode is linear in the expected delay
for active updating and lazy updating, as our theory pre-
dicts. For lazy updating, the gradient of this linear rela-
tionship decreases with α, which is to be expected based
on the log(1 + 1/α) term in the denominator of the delay-
dependent terms in our regret bounds. Interestingly, lazy
updating with α = 1 is the most robust to the delay distri-
bution. We believe that this is due to forcing the base al-
gorithm to wait for long periods of time between updates.
Intuitively, if the epochs are long enough, most information
within an epoch will be received before an update, leading
to little loss of information. Investigating this further is an
interesting avenue for future work.

6 CONCLUSION

In this paper, we provide two generic meta-algorithms that
can extend any episodic reinforcement learning base algo-
rithm to the setting of delayed feedback. Under mild as-
sumptions on the algorithm and the delays, we show that

both maintain the sub-linear theoretical guarantees of the
chosen base algorithm and provide good empirical perfor-
mance, regardless of the delay distribution. These first pos-
itive results for stochastically delayed feedback in episodic
reinforcement learning prove that the penalty for delays is
an additive term involving the expected delay that is inde-
pendent of the number of episodes. This additive penalty
matches what is seen in the multi-armed bandit setting,
despite the additional complexities of the reinforcement
learning problem.

Our framework is broad enough to cover the theoretically
successful class of optimistic model-based algorithms, and
many existing algorithms fit into our framework. However,
we believe that both updating procedures could be used
for a wider class of base algorithms. For example, model-
free optimistic algorithms and posterior sampling (Jin et al.,
2018; Osband and Van Roy, 2017). Extending our analyses
to cover these algorithms is left to future work.

Acknowledgements

We would like to thank the anonymous reviewers for their
helpful feedback that helped greatly improved the clarity
and quality of the manuscript.

BH is funded by EPSRC through the Modern Statis-
tics and Statistical Machine Learning CDT. Grant number
EP/S023151/1.

Optimism and Delays in Episodic Reinforcement Learning

References

Alekh Agarwal and John C Duchi. Distributed Delayed
Stochastic Optimization. In J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Q. Weinberger, editors, Ad-
vances in Neural Information Processing Systems, vol-
ume 24. Curran Associates, Inc., 2011.

Mohammad Gheshlaghi Azar, Ian Osband, and Rémi
Munos. Minimax Regret Bounds for Reinforcement
Learning. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on
Machine Learning, volume 70, pages 263–272. PMLR,
2017.

Christoph Dann, Tor Lattimore, and Emma Brunskill.
Unifying PAC and Regret: Uniform PAC Bounds for
Episodic Reinforcement Learning. In Proceedings of
the 31st International Conference on Neural Information
Processing Systems, page 5717–5727. Curran Associates
Inc., 2017.

Omar Darwiche Domingues, Pierre Ménard, Emilie Kauf-
mann, and Michal Valko. Episodic Reinforcement
Learning in Finite MDPs: Minimax Lower Bounds Re-
visited. In Proceedings of the 32nd International Con-
ference on Algorithmic Learning Theory, 2020.

Miroslav Dudik, Daniel Hsu, Satyen Kale, Nikos Karam-
patziakis, John Langford, Lev Reyzin, and Tong Zhang.
Efficient Optimal Learning for Contextual Bandits. In
Proceedings of the 27th Conference on Uncertainty in
Artificial Intelligence, page 169–178. AUAI Press, 2011.

Sarah Filippi, Olivier Cappé, and Aurélien Garivier. Opti-
mism in Reinforcement Learning and Kullback-Leibler
Divergence. In 48th Annual Allerton Conference on
Communication, Control, and Computing (Allerton),
pages 115–122, 2010.

Ronan Fruit, Matteo Pirotta, and Alessandro Lazaric. Im-
proved Analysis of UCRL2 with Empirical Bernstein In-
equality, 2020. URL https://arxiv.org/abs/
2007.05456.

Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-
Optimal Regret Bounds for Reinforcement Learning.
Journal of Machine Learning Research, 11:1563–1600,
August 2010.

Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and
Michael I Jordan. Is q-learning provably efficient? In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Pooria Joulani, András György, and Csaba Szepesvári. On-
line Learning under Delayed Feedback. In Proceed-
ings of the 30th International Conference on Interna-
tional Conference on Machine Learning, volume 28,
page 1453–1461. JMLR.org, 2013.

K.V. Katsikopoulos and S.E. Engelbrecht. Markov deci-
sion processes with delays and asynchronous cost col-
lection. IEEE Transactions on Automatic Control, 48
(4):568–574, 2003.

Tal Lancewicki, Aviv Rosenberg, and Yishay Mansour.
Learning Adversarial Markov Decision Processes with
Delayed Feedback, 2021. URL https://arxiv.
org/abs/2012.14843.

Friedrich Liese and Igor Vajda. On Divergences and In-
formations in Statistics and Information Theory. IEEE
Transactions on Information Theory, 52:4394–4412,
2006.

Travis Mandel, Yun-En Liu, Emma Brunskill, and Zo-
ran Popović. The Queue Method: Handling Delay,
Heuristics, Prior Data, and Evaluation in Bandits. Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, 29(1), Feb. 2015. doi: 10.1609/aaai.v29i1.
9604. URL https://ojs.aaai.org/index.
php/AAAI/article/view/9604.

Anne Gael Manegueu, Claire Vernade, Alexandra Carpen-
tier, and Michal Valko. Stochastic Bandits with Arm-
Dependent Delays. In Proceedings of the 37th Interna-
tional Conference on International Conference on Ma-
chine Learning - Volume 28. JMLR.org, 2020.

Gergely Neu and Ciara Pike-Burke. A Unifying View of
Optimism in Episodic Reinforcement Learning. In Pro-
ceedings of the 31st International Conference on Neural
Information Processing Systems. Curran Associates Inc.,
2020.

Ian Osband and Benjamin Van Roy. Why is posterior
sampling better than optimism for reinforcement learn-
ing? In Proceedings of the 34th International Confer-
ence on Machine Learning - Volume 70, ICML’17, page
2701–2710. JMLR.org, 2017.

Ciara Pike-Burke, Shipra Agrawal, Csaba Szepesvari, and
Steffen Grunewalder. Bandits with delayed, aggre-
gated anonymous feedback. In Jennifer Dy and Andreas
Krause, editors, Proceedings of the 35th International
Conference on Machine Learning, volume 80 of Pro-
ceedings of Machine Learning Research, pages 4105–
4113. PMLR, 10–15 Jul 2018.

Martin L. Puterman. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley, 1994.

Claire Vernade, Olivier Cappé, and Vianney Perchet.
Stochastic Bandit Models for Delayed Conversions. In
In Proceedings of the 33rd Conference on Uncertainty in
Artificial Intelligence. AUAI Press, 2017.

Claire Vernade, Alexandra Carpentier, Tor Lattimore, Gio-
vanni Zappella, Beyza Ermis, and Michael Brueckner.
Linear bandits with stochastic delayed feedback, 2020.
URL https://arxiv.org/abs/1807.02089.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Zhengyuan Zhou, Renyuan Xu, and Jose Blanchet.
Learning in Generalized Linear Contextual Bandits
with Stochastic Delays. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates,
Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/
56cb94cb34617aeadff1e79b53f38354-Paper.
pdf.

Optimism and Delays in Episodic Reinforcement Learning

A MISSING PROOFS

A.1 Bounding the Missing Episodes

An important aspect in our proofs is to bound the amount of missing information. Since we see only one state-action pair
per step of an episode, an upper bound on the missing visitation counter is simply the number of missing episodes. Lemma
1 bounds the number of missing episodes with high probability and only requires the delays have a finite expected value.

Lemma 1. Let Sk =
∑k−1
i=1 1{i + τi ≥ k}, where τ1, τ2, · · · τk−1 ∼ fτ (·) are independent and identically distributed

random variables with finite expected value. We define

F τk =

{
Sk ≥ E [τ] + log

(
Kπ

6δ′

)
+

√
2E [τ] log

(
Kπ

6δ′

)}

to be the failure event for a single k. Then, P(Fτ) = P(∪∞
k=1F

τ
k) ≤ δ′.

Proof. By definition, the summation involves a sequence of independent indicator random variables. Considering its
expectation reveals that:

E [Sk] =

k−1∑
i=1

E [1 {i+ τi ≥ k}] =
k−1∑
i=1

P [1 {i+ τi ≥ k}] =
k−1∑
i=1

P [τk−i > i] =

k−2∑
i=0

P [τk−i+1 > i]

≤
∞∑
i=0

P [τ > i] =

∞∑
i=0

∞∑
j=i+1

P [τ = j] =

∞∑
j=1

j−1∑
i=0

P [τ = j] =

∞∑
j=1

j P [τ = j]

= E [τ] .

Next, looking at its variance reveals that:

Var (Sk) =
k−1∑
i=1

Var (1 {i+ τi ≥ k}) =
k−1∑
i=1

E
[
(1 {i+ τi ≥ k} − E [1 {i+ τi ≥ k}])2

]
≤
k−1∑
i=1

E
[
1 {i+ τi ≥ k}2

]
=

k−1∑
i=1

E [1 {i+ τi ≥ k}] = E [Sk]

≤ E [τ]

By Bernstein’s inequality, we have that:

P (Sk − E [Sk] ≥ ϵ) ≤ exp

(
− ϵ2

Var (Sk) + ϵ
3

)
=

6δ′

(kπ)
2

Rearranging the above reveals that:

ϵ ≤ 1

3
log

(
(kπ)

2

6δ′

)
+

√√√√Var (Sk) log

(
(kπ)

2

6δ′

)
≤ 2

3
log

(
kπ

6δ′

)
+

√
2E [τ] log

(
kπ

6δ′

)
Since k ≤ K, we have that:

P (F τk) = P

(
Sk − E [τ] ≥ 2

3
log

(
Kπ

6δ′

)
+

√
2E [τ] log

(
Kπ

6δ′

))
≤ 6δ′

(kπ)2

By Boole’s inequality, we have that:

P

(∞⋃
k=1

F τk

)
≤

∞∑
k=1

P (F τk) =
6δ′

π2

∞∑
k=1

1

k2
= δ′

as required.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

A.2 Missing Proofs for Active Updating

Lemma 2 (the regret decomposition) and Equation (5) (the form of the exploration bonuses) reveal that the summation of
the counters is an important quantity in determining the regret of an optimistic algorithm. Whenever τk = 0 for all k ≤ K,
e.g. immediate feedback, we can use standard results that utilise the fact the counters increase by one between successive
plays of a state-action pair at a given step.

Lemma 6. Let Zpn =
∑N
n=0 1/(1 ∨ n)p. Then, Zpn has the following upper bound:

Zpn ≤

{
2
√
N if p ∈ 1

2

log (8N) if p = 1

for p = 1/2 and p = 1.

Proof. Removing the first two terms from the summation and upper bounding the remaining terms by an integral gives:

Zpn = 2 +

N∑
n=2

1

np
≤ 2 +

∫ N

1

1

np
dn ≤ 2 +

{
2
√
N − 2 if p ∈ 1

2

log (N) if p = 1

≤

{
2
√
N if p ∈ 1

2

log (8N) if p = 1

as required.

When τk is random, the observed visitation counter need not increase by one between successive plays of the same state-
action-step. Instead, the counter only increases by one (or more in some cases) after a random number of episodes. In
the worst-case scenario, the counter will remain constant between playing and observing the feedback associated with
a specific state-action-step. Thus, the standard techniques no longer apply, and we must find another way to bound the
summation of counters than can remain unchanged for numerous episodes due to the delays. We do this by relating the
summation involving the observed visitation counter to one involving the total visitation counter, thereby splitting the terms
affected by the delays from those that are not.

Lemma 3. Let ZpT =
∑K
k=1

∑H
h=1 1/(N

′
kh(s

k
h, a

k
h))

p. Then,

ZpT ≤

{
4
√
HSAT + 3HSAψτK if p = 1

2

2HSA log (8T) +HSAψτK log(16ψτK) if p = 1

with probability 1− δ′.

Proof. Unless otherwise stated, we let: Nkh(s, a) = 1 ∨Nkh(s, a) and N ′
kh(s, a) = 1 ∨N ′

kh(s, a) for notational conve-
nience. First, we use the relationships between the observed, missing and total visitation counters to split the summation
into two parts. To do so, in a similar manner to Lancewicki et al. (2021), we start by artificially introducing the total
visitation counter:

ZpT =

K∑
k=1

H∑
h=1

(
1

N ′
kh

(
skh, a

k
h

))p =∑
k,h

(
1

Nkh
(
skh, a

k
h

))p(Nkh (skh, akh)
N ′
kh

(
skh, a

k
h

))p

From Equation (9), Nkh(s, a) = N ′
kh(s, a) +N ′′

kh(s, a), for any (s, a, h) ∈ S ×A× [H]. Consequently,

ZpT ≤
∑
k,h

(
1

Nkh
(
skh, a

k
h

))p
︸ ︷︷ ︸

(i)

+
∑
k,h

(
1

Nkh
(
skh, a

k
h

)N ′′
kh

(
skh, a

k
h

)
N ′
kh

(
skh, a

k
h

))p
︸ ︷︷ ︸

(ii)

,

since (1 + x)p ≤ 1 + xp for p = 1/2 and p = 1 and any x > 0. Term (i) is the summation of the total visitation counter.
Thus, Lemma 6 applies.

Optimism and Delays in Episodic Reinforcement Learning

Bounding (ii) requires more care, as it involves the observed and missing visitation counters. Recall that the algorithm
plays one state-action pair at each step in every episode. Thus, the missing visitation counter is upper bounded by the
number of missing episodes: N ′′

kh(s, a) ≤ Sk. Lemma 1 bounds the number of missing episodes: with probability 1− δ′,
Sk ≤ ψτK across all k ∈ Z+. Splitting (ii) using the observed visitation counts and the upper bound on Sk gives:

(ii) ≤
∑
k,h

(
1
{
N ′
kh

(
skh, a

k
h

)
≥ ψτK

}
ψτK

Nkh
(
skh, a

k
h

)
N ′
kh

(
skh, a

k
h

))p +∑
k,h

(
1
{
N ′
kh

(
skh, a

k
h

)
≤ ψτK

}
ψτK

Nkh
(
skh, a

k
h

)
N ′
kh

(
skh, a

k
h

))p

≤
∑
k,h

(
1
{
N ′
kh

(
skh, a

k
h

)
≥ ψτK

}
Nkh

(
skh, a

k
h

))p
︸ ︷︷ ︸

(ii.a)

+
∑
k,h

(
1
{
N ′
kh

(
skh, a

k
h

)
≤ ψτK

}
ψτK

Nkh
(
skh, a

k
h

)
N ′
kh

(
skh, a

k
h

))p
︸ ︷︷ ︸

(ii.b)

The last inequality follows since for the first sum, N ′
kh(s, a) ≥ ψτK .

Clearly, (ii.a) ≤ (i), as it is a summation over a subset of all the episodes. Using (9), it is possible to rewrite the indicator
in the remaining term as: 1{Nkh(s, a) − N ′′

kh(s, a) ≤ ψτK}, for any (s, a, h) ∈ S × A × [H]. Further, N ′′
kh(s, a) ≤ ψτK

and N ′
kh(s, a) ≥ 1. Therefore,

(ii.b) ≤ (ψτK)p
∑
k,h

(
1
{
Nkh

(
skh, a

k
h

)
≤ 2ψτK

}
Nkh

(
skh, a

k
h

))p

≤ (ψτK)p
∑
s,a,h

2ψτ
K∑

n=0

1

(1 ∨ n)p

Lemma 6 gives an upper bound of
∑N
n=0 1/(1 ∨ n)p. Summing this upper bound over all state-action-step triples gives:

(ii.b) ≤

{
3HSAψτK if p = 1

2

HSAψτK log (16ψτK) if p = 1

Therefore:

ZpT ≤ 2A+B.2

≤

{
4
√
HSAT + 3HSAψτK if p = 1

2

HSA (2 log (8T) + ψτK log (16ψτK)) if p = 1

as required.

A.3 Missing Proofs for Lazy Updating

When using active updating, we prove that the bound on the counts depends on the delay. However, we can mitigate this
delay-dependence by taking a slower approach to updating, providing that the number of epochs is bounded and the counts
between epochs satisfy certain constraints outlined in Section 4.2.

Lemma 4. For K ≥ SA and α ≥ 1, Algorithm 2 ensures that the number of epochs has the following upper bound:

J ≤
HSA log

(
αK
SA + 1

)
log(1 + 1

α)

Proof. In this proof, we extend arguments from the standard doubling trick of Jaksch et al. (2010) so that the learner can
update more frequently. Firstly, we recall the definition of the observed visitation counter:4

N ′
k (s, a, h) =

k−1∑
i=1

1
{(
sih, a

i
h

)
= (s, a) , i+ τi < k

}
4We move the subscript denoting the step into the bracket for notational convenience

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

and the updating rule for j ≥ 1:

kj+1 = argmin
k>kj

{
∃s, a, h : N ′

k(s, a, h) ≥
(
1 +

1

α

)
N ′
kj (s, a, h)

}

Now, we define a counter that counts the observed number of visits between two episodes:

nlk (s, a, h) =

l−1∑
i=1

1
{(
sih, a

i
h

)
= (s, a) , k ≤ i+ τi < l

}

Direct computation allows us to relate the observed visitation counter at the start of the (j + 1)-th epoch to the sum of the
observed visitation counts within each of the previous epochs:

N ′
kj+1

(s, a, h) =

kj+1−1∑
i=1

1
{(
sih, a

i
h

)
= (s, a) , i+ τi < k

}
=

j∑
l=1

kl+1−1∑
i=kl

1
{(
sih, a

i
h

)
= (s, a) , i+ τi < k

}
=

j∑
l=1

kj+1∑
i=1

1
{(
sih, a

i
h

)
= (s, a) , kl ≤ i+ τi < k

}
=

j∑
l=1

n
kl+1

kl
(s, a, h)

where the second equality follows from the fact that an epoch is a disjoint set of episodes and the final equality follows
from the definition of the between episodes visitation counter. From the above, it is easy to see that

N ′
kj+1

(s, a, h) = n
kj+1

kj
(s, a, h) +

j−1∑
l=1

n
kl+1

kl
(s, a, h) = n

kj+1

kj
(s, a, h) +N ′

kj (s, a, h)

Thus, we can re-write the updating rule using the within episode counter as:

kj+1 = argmin
k>kj

{
∃s, a, h : N ′

k(s, a, h) ≥
(
1 +

1

α

)
N ′
kj (s, a, h)

}
= argmin

k>kj

{
∃s, a, h : N ′

k(s, a, h)−N ′
kj (s, a, h) ≥

1

α
N ′
kj (s, a, h)

}
= argmin

k>kj

{
∃s, a, h : n

kj+1

kj
(s, a, h) ≥ 1

α
N ′
kj (s, a, h)

}

providing that we have seen the state-action-step at least once.5 Therefore, at the end of each epoch there is a state-action-
step with nkj+1

kj
(s, a, h) ≥ N ′

kj
(s, a, h)/α.

Suppose N ′
(K+1)h(s, a) > 0 for a fixed (s, a, h) ∈ S × A × [H]. Define J(s, a, h) as the number of epochs with

n
kj+1

kj
(s, a, h) ≥ N ′

kjh
(s, a)/α. Or, equivalently, it is the number of epochs with Nkj+1

(s, a, h) ≥ (1+1/α)N ′
kj
(s, a, h).

5We handle the case for the epochs where the observed visitation count is zero later on in the proof.

Optimism and Delays in Episodic Reinforcement Learning

Then,

N ′
K+1 (s, a, h) =

J∑
j=1

n
kj+1

kj
(s, a, h)

≥ 1 +
∑

j:n
kj+1
kj

(s,a,h)≥N ′
kj

(s,a,h)/α

n
kj+1

kj
(s, a, h)

≥ 1 +
1

α

∑
j:n

kj+1
kj

(s,a,h)≥N ′
kj

(s,a,h)/α

N ′
kj (s, a, h)

≥ 1 +
1

α

J(s,a,h)∑
j=1

(
1 +

1

α

)j

The first inequality follows from focusing only on the epochs where we update due to (s, a, h), where the +1 accounts for
the first update due to the observing the given state-action-step triple. The second inequality follows from the condition
in the subscript of the summation, e.g. we are updating due to (s, a, h). The final inequality follows from the definition
of how we trigger updates and because we update J(s, a, h) times due to (s, a, h). Since α ∈ [1,∞), Lemma 7 applies.
Rearranging terms reveals that:

J(s,a,h)∑
j=1

(
1 +

1

α

)j
≥
(
1 +

1

α

)J(s,a,h)+1

−
(
1 +

1

α

)

Therefore, for N ′
K+1(s, a, h) > 0:

N ′
K+1 (s, a, h) ≥ 1− 1

α

(
1 +

1

α

)
+

1

α

(
1 +

1

α

)J(s,a,h)+1

>
1

α

(
1 +

1

α

)J(s,a,h)+1

− 1

α

(
1 +

1

α

)
If N ′

K+1(s, a, h) = 0 it follows we never update due to this state-action-step triple, which means that J(s, a, h) = 0 too.
Plugging this into the above expression reveals that:

N ′
K+1(s, a, h) =

1

α

(
1 +

1

α

)J(s,a,h)+1

− 1

α

(
1 +

1

α

)
= 0

Thus, for all possible values of the observed visitation counter, we have that:

N ′
K+1 (s, a, h) ≥

1

α

(
1 +

1

α

)J(s,a,h)+1

− 1

α

(
1 +

1

α

)

Using the above inequality, we have that

T =
∑
s,a,h

NK+1(s, a, h)

≥
∑
s,a,h

N ′
K+1(s, a, h)

≥
∑
s,a,h

(
1

α

(
1 +

1

α

)J(s,a,h)+1

− 1

α

(
1 +

1

α

))

= −HSA
α

(
1 +

1

α

)
+
∑
s,a,h

1

α

(
1 +

1

α

)J(s,a,h)+1

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

≥ −HSA
α

(
1 +

1

α

)
+
HSA

α

(
1 +

1

α

)HSA+
∑

s,a,h J(s,a,h)

HSA

(Jensen’s inequality)

≥ −HSA
α

(
1 +

1

α

)
+
HSA

α

(
1 +

1

α

) J
HSA

where the final line follows from the fact that J ≤ HSA +
∑
s,a,h J(s, a, h) because we may or may not visit every

state-action-step. Rearranging this gives:

Tα

HSA
+ 1 ≥

(
1 +

1

α

) J
HSA

Taking logs of both sides and rearranging one last time gives:

J ≤ HSA log1+1/α

(
Tα

HSA
+ 1

)
=
HSA log

(
Tα
HSA + 1

)
log(1 + 1

α)

=
HSA log

(
Kα+SA
SA

)
log(1 + 1

α)

as required.

Lemma 5. If n0, n1, · · · , nJ are an arbitrary sequence of real-valued numbers satisfying n0 := 0 and 0 ≤ nj ≤ 1
αNj−1

with Nj−1 = max{1,
∑j−1
i=0 ni} for all j ≤ J , then

J∑
j=1

nj
Np
j−1

≤

{(√
2(1 + 1

α) + 1
)√

NJ if p = 1
2

(1 + 1
α) + (1 + 1

α) log (NJ) if p = 1

Proof. We prove the claim via induction in a similar manner to Jaksch et al. (2010). First, consider the case where p = 1/2.
Suppose

J−1∑
j=1

nj ≤ 1 =⇒ N1 = N2 = · · · = NJ−1 = 1 (Nj−1 = max{1,
∑j−1
i=0 ni})

=⇒ nJ ∈ [0, NJ−1] =

[
0,

1

α

]

Then,

J∑
j=1

nj√
Nj−1

=

J∑
j=1

nj = nJ +

J−1∑
j=1

nj ≤
1

α
+ 1 ≤ c

√
NJ (For c ≥ 1 + 1/α)

because NJ ≥ 1. The above is our base case and covers us as long as
∑J−1
j=1 nj ≤ 1 e.g., when J = 1 due to n0 := 1.

Now, we assume the above holds for
∑J−1
j=1 nj > 1:

J−1∑
j=1

nj√
Nj−1

≤ c
√
NJ−1

Optimism and Delays in Episodic Reinforcement Learning

Finally, we prove the claim holds for J :

J∑
j=1

nj√
Nj−1

=
nJ√
NJ−1

+

J−1∑
j=1

nj√
Nj−1

≤ nJ√
NJ−1

+ c
√
NJ−1 (Induction Hypothesis)

=

√√√√(nJ√
NJ−1

+ c
√
NJ−1

)2

=

√
n2J
NJ−1

+ 2cnJ + c2NJ−1

≤
√

1

α
nJ + 2cnJ + c2NJ−1 (As nJ ∈ [0, NJ−1/α)

≤
√
nJ + 2cnJ + c2NJ−1 (As α ≥ 1)

=
√
(1 + 2c)nJ + c2NJ−1

≤ c
√
nJ +NJ−1 (Pick c : c2 ≥ 1 + 2c)

= c
√
NJ

where the final inequality follows from the fact that
∑J−1
j=1 nj > 1 =⇒ NJ = nJ +NJ−1. All that remains is selecting

c. Using the quadratic formula to find the roots of c2 − 2c− 1 = 0, one can deduce that selecting:

c = 1 +
√
2

(
1 +

1

α

)
satisfies c ≥ 1 + 1/α and

c2 = 1 + 2
√
2

(
1 +

1

α

)
+ 2

(
1 +

1

α

)2

≥ 1 + 2
√
2

(
1 +

1

α

)
+ (α ≥ 1)

= 1 + 2

(
1 +

√
2

(
1 +

1

α

))
= 1 + 2c

giving the required result. All that remains is to prove the claim for p = 1. Similarly to before, suppose:

J−1∑
j=1

nj ≤ 1 =⇒ N1 = N2 = · · · = NJ−1 = 1 (Nj−1 = max{1,
∑j−1
i=0 ni})

=⇒ nJ ∈ [0, NJ−1] =

[
0,

1

α

]

Then,

J∑
j=1

nj
Nj−1

=

J∑
j=1

nj = nJ +

J−1∑
j=1

nj ≤
1

α
+ 1 ≤

(
1 +

1

α

)
+

(
1 +

1

α

)
log(NJ)

because NJ ≥ 1. The above is our base case and covers us as long as
∑J−1
j=1 nj ≤ 1 e.g., when J = 1 due to n0 := 1.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Now, we assume the above holds for
∑J−1
j=1 nj > 1:

J−1∑
j=1

nj
Nj−1

≤
(
1 +

1

α

)
+

(
1 +

1

α

)
log(NJ−1)

Finally, we prove the claim holds for J :
J∑
j=1

nj
Nj−1

=
nJ
NJ−1

+

J−1∑
j=1

nj
Nj−1

≤ nJ
NJ−1

+

(
1 +

1

α

)
+

(
1 +

1

α

)
log(NJ−1) (Induction Hypothesis)

≤
(
1 +

1

α

)
log

(
nJ
NJ−1

+ 1

)
+

(
1 +

1

α

)
+

(
1 +

1

α

)
log(NJ−1) (nj/Nj−1 ∈ [0, 1] for all j ≤ J)

=

(
1 +

1

α

)
+

(
1 +

1

α

)
log

(
NJ−1

(
nJ
NJ−1

+ 1

))
=

(
1 +

1

α

)
+

(
1 +

1

α

)
log (nJ +NJ−1)

=

(
1 +

1

α

)
+

(
1 +

1

α

)
log (NJ)

where the final inequality follows from the fact that
∑J−1
j=1 nj > 1 =⇒ NJ−1 =

∑J−1
j=1 nj .

Lemma 7. Let α ∈ [1,∞). Then
n∑
i=0

(
1 +

1

α

)i
≥
(
1 +

1

α

)n+1

− 1

α

Proof. Trivially, the statement is true for n = 0, because (1 + 1/α)0 = 1 and (1 + 1/α)1 − 1/α = 1. Thus, we proceed
by induction. Suppose

n∑
i=0

(
1 +

1

α

)i
≥
(
1 +

1

α

)n+1

− 1

α

for some n. Then
n+1∑
i=0

(
1 +

1

α

)i
=

(
1 +

1

α

)n+1

+

n∑
i=0

(
1 +

1

α

)i
≥
(
1 +

1

α

)n+1

+

(
1 +

1

α

)n+1

− 1

α

= 2

(
1 +

1

α

)n+1

− 1

α

≥
(
1 +

1

α

)(
1 +

1

α

)n+1

− 1

α
(Since 2 ≥ 1 + 1/α)

=

(
1 +

1

α

)n+2

− 1

α

Thus, the claim holds for n+ 1, which proves the lemma for all n ≥ 0.

Lemma 8. Algorithm 2 ensures that the summation of the counters across the episodes where we do not update have the
following upper bounds:∑

s,a,h

J∑
j=1

n
kj+1

kj+1,h(s, a)

N ′
kjh

(s, a)
≤
(
1 +

1

α

)
HSA+

(
1 +

1

α

)
HSA log

(
K

SA

)
≤ 2

(
1 +

1

α

)
HSA

(
K

SA

)
where the final inequality holds for K/SA ≥ exp(1).

Optimism and Delays in Episodic Reinforcement Learning

Proof. To prove the result, we extend the summation to include the state-action-step triples in episode kj that did not
trigger the update rule:

∑
s,a,h

J∑
j=1

n
kj+1

kj+1,h(s, a)

N ′
kjh

(s, a)
≤
∑
s,a,h

J∑
j=1

n
kj+1

kjh
(s, a)

N ′
kjh

(s, a)
1

{
nkjh(s, a) ≤

1

α
N ′
kjh(s, a)

}

≤
∑
s,a,h

((
1 +

1

α

)
+

(
1 +

1

α

)
log (NJ(s, a, h))

)
(Lemma 5)

=

(
1 +

1

α

)
HSA+

(
1 +

1

α

)∑
s,a,h

log (NJ(s, a, h)) (Expand Summation)

≤
(
1 +

1

α

)
HSA+

(
1 +

1

α

)
HSA log

(∑
s,a,hNJ(s, a, h)

HSA

)
(Jensen’s)

≤
(
1 +

1

α

)
HSA+

(
1 +

1

α

)
HSA log

(
T

HSA

)
(
∑
s,a,hNJ(s, a, h) ≤ T)

=

(
1 +

1

α

)
HSA+

(
1 +

1

α

)
HSA log

(
K

SA

)
(T = KH)

≤ 2

(
1 +

1

α

)
HSA log

(
K

SA

)
for K/SA ≥ exp(1), as required.

A.4 Proof of Regret Bound for Lazy Updating

Theorem 2. Let K ≥ SA and α ≥ 1. Under Assumption 1 and 2, with probability 1 − δ, the regret of any model-based
algorithm under delayed feedback is upper bounded by:

RK ≲

(
1 +

1

α

)
R̂K(Base) +

H2SAE[τ]
log(1 + 1

α)

where R̂K(Base) is an upper bound on the regret of the chosen base algorithm under immediate feedback.

Proof. Let ∆̃k
h(s) = Ṽ πk

h (s) − V πk

h (s) denote the difference between the optimistic and actual value of policy πk from
state s and step h. By definition, the regret of any episodic reinforcement learning algorithm is given by:

RK =

K∑
k=1

(
V ∗
1

(
sk1
)
− V πk

1

(
sk1
))

≤
K∑
k=1

(
Ṽ πk
1

(
sk1
)
− V πk

1

(
sk1
))

=

K∑
k=1

∆̃k
1

(
sk1
)
=

J∑
j=1

kj+1−1∑
k=kj

∆̃k
1

(
sk1
)

=

J∑
j=1

kj+1−1∑
k=kj

∆̃k
1

(
sk1
)
1 {k + τk ≥ kj+1} =

J∑
j=1

∆̃
kj
1

(
s
kj
1

)
+

J∑
j=1

kj+1−1∑
k=kj

∆̃k
1

(
sk1
)

=

J∑
j=1

∆̃
kj
1

(
s
kj
1

)
︸ ︷︷ ︸

(i)

+

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1 {k + τk ≥ kj+1}︸ ︷︷ ︸

(ii)

+

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1 {k + τk < kj+1}︸ ︷︷ ︸

(iii)

where the inequality follows from optimism, the penultimate equality follows from epochs consisting of disjoint sets of
episodes and the final equality follows from splitting the episodes into three disjoint sets, (i), (ii), and (ii):

(i) episodes where we perform a policy update,

(ii) episodes played in the j-th epoch but observed in epoch j′ > j,

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

(iii) episodes played in the j-th epoch and observed in the j-th epoch.

First, we focus on the episodes where we perform a policy update, e.g. (i). Recall that Lemma 4 tells us the total number
of updates is logarithmic in the number of episodes. Further, the rewards are bounded between zero and one, meaning the
regret of any episode is at most H . Combining these two results gives a trivial bound on regret of this term: (i) ≤ HJ .

Next, we bound the regret of the episodes whose feedback is not observable before the start of the next epoch e.g., (ii).
Once again, we can rely on Lemma 4 and the fact that the regret of any episode is at most H to get a bound on this term
that is logarithmic in K. Doing so gives the following result:

(ii) =

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1 {k + τk ≥ kj+1}

≤ H

J∑
j=1

kj+1−1∑
k=kj+1

1 {k + τk ≥ kj+1}

≤ H

J∑
j=1

kj+1−1∑
k=1

1 {k + τk ≥ kj+1}

= H

J∑
j=1

Skj+1

≤ HJψτK (Sk ≤ ψτk ≤ ψτK)

Finally, we handle the episodes that are played and observed in the same epoch e.g., term (iii). Lemma 2 allows us to
make a start on bounding this term:

(iii) =

J∑
j=1

kj+1−1∑
k=kj+1

∆̃k
1

(
sk1
)
1 {k + τk < kj+1}

≤ 6 (H + C)

√
T log

(
Kπ

6δ′

)
+ 6

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

(
βkh

(
skh, a

k
h

)
+

3CH2SL

N ′
kh

(
skh, a

k
h

))1 {k + τk < kj+1}

= 6 (H + C)

√
T log

(
Kπ

6δ′

)

+ 6

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

3CH2SL

N ′
kh

(
skh, a

k
h

)1 {k + τk < kj+1} (iii.a)

+ 6

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

βkh
(
skh, a

k
h

)
1 {k + τk < kj+1} (iii.b)

Thus, bounding (iii) now amounts to finding an upper bounds for (iii.a) and (iii.b). Since kj does not feature in either
summation, we know that

n
kj+1

k′h (s, a) ≤ 1

α
N ′
kjh(s, a)

for all (s, a, h) ∈ S ×A× [H] and k′ ≥ kj + 1. By introducing a summation over all the states-actions and steps, we can
easily bound (iii.a) via Lemma 8:

(iii.a) = 3CH2SL

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

1 {k + τk < kj+1}
N ′
kjh

(
skh, a

k
h

)
= 3CH2SL

∑
s,a,h

J∑
j=1

kj+1−1∑
k=kj+1

1
{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(s, a)

Optimism and Delays in Episodic Reinforcement Learning

=
(
B2 + 3CH2SL

) ∑
s,a,h

J∑
j=1

∑kj+1−1
k=kj+1 1

{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(s, a)

= 3CH2SL
∑
s,a,h

J∑
j=1

n
kj+1

kj+1,h(s, a)

N ′
kjh

(s, a)
(Definition in Equation (11))

≤ 3CH2SL

(
2

(
1 +

1

α

)
HSA log

(
K

SA

))
(By Lemma 8)

= 6

(
1 +

1

α

)
CH3S2AL log

(
K

SA

)

Bounding (iii.b) requires some care due to the various forms of B1 e.g., those that remain constant and those that utilise
variance reduction techniques. By Lemma 5, it is clear that the summation of the visitation counters no longer depends
on the delay. Therefore, we begin by an application of Cauchy-Schwarz (CS) to separate the numerator of the exploration
bonus from the summation of the visitation counters:

(iii.b) =

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

(
B1√

N ′
kjh

(
skh, a

k
h

) + B2

N ′
kjh

(
skh, a

k
h

))1 {k + τk < kj+1}

=

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B11 {k + τk < kj+1}√
N ′
kjh

(
skh, a

k
h

) +B2

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

1 {k + τk < kj+1}
N ′
kjh

(
skh, a

k
h

)
≤

√√√√√ J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B2
1 1 {k + τk < kj+1}

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

1 {k + τk < kj+1}
N ′
kjh

(
skh, a

k
h

)
+B2

J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

1 {k + τk < kj+1}
N ′
kjh

(
skh, a

k
h

)
=

√√√√√ J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B2
1 1 {k + τk < kj+1}

∑
s,a,h

J∑
j=1

kj+1−1∑
k=kj+1

1
{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(
skh, a

k
h

)
+B2

∑
s,a,h

J∑
j=1

kj+1−1∑
k=kj+1

1
{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(
skh, a

k
h

)
=

√√√√√ J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B2
1 1 {k + τk < kj+1}

∑
s,a,h

J∑
j=1

∑kj+1−1
k=kj+1 1

{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(
skh, a

k
h

)
+B2

∑
s,a,h

J∑
j=1

∑kj+1−1
k=kj+1 1

{
skh = s, akh = a, k + τk < kj+1

}
N ′
kjh

(
skh, a

k
h

)
=

√√√√√ J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B2
1 1 {k + τk < kj+1}

∑
s,a,h

J∑
j=1

n
kj+1

kj+1,h(s, a)

N ′
kjh

(
skh, a

k
h

) +B2

∑
s,a,h

J∑
j=1

n
kj+1

kj+1,h(s, a)

N ′
kjh

(
skh, a

k
h

) (Eq. (11))

≤

√√√√√2

(
1 +

1

α

)
HSA log

(
K

SA

) J∑
j=1

kj+1−1∑
k=kj+1

H∑
h=1

B2
1 1 {k + τk < kj+1}

+ 2

(
1 +

1

α

)
B2HSA log

(
K

SA

)
(Lemma 8)

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

≤
(
1 +

1

α

)
R̂K(Base) log

(
K

SA

)
≲

(
1 +

1

α

)
R̂K(Base)

The penultimate line in the above is simply the sum of the bonuses for the chosen base algorithm under immediate feedback
scaled by a logarithmic factor, which is introduced by the slower updating. ForB1 ≈ B e.g., the upper bound only involves
inflating terms inside logarithms, one can upper bound the summation under the square-root by TB2, which is tight up to
logarithmic factors. When B1 involves some form of empirical variance term, one can use the techniques outlined by Neu
and Pike-Burke (2020); Azar et al. (2017); Fruit et al. (2020) to bound the summation under the square-root by ≈ HT ;
once again this too is tight up to logarithmic factors. More simply, the epochs form a simulated non-delayed version of the
environment for the base algorithm. Therefore, (iii.b) can be replaced with the upper bound of the regret in the non-delayed
environment multiplied by the extra logarithmic factors that arise from the slower updating, because the summation of the
bonuses are the leading term in the regret bound.

Bringing everything together gives:

RK ≤ (i) + (ii) + (iii.a) + (iii.b)

≲

(
1 +

1

α

)
R̂K(Base) +HJψτK

≲

(
1 +

1

α

)
R̂K(Base) +

H2SAψτK
log(1 + 1

α)

Plugging in ψτK (and suppressing poly-logarithmic factors) gives the stated result.

B ADDITIONAL THEORETICAL RESULTS

Here, we present a brief overview of the results that unify model-optimistic and value-optimistic model-based episodic
reinforcement learning algorithms (Neu and Pike-Burke, 2020). The class of model-optimistic algorithms explicitly define
the following failure event for some divergence D(P̂kh(·|s, a), Ph(·|s, a):

F pk =
{
∃ s, a, h : D

(
P̂kh (·|s, a) , Ph (·|s, a)

)
≥ ϵpkh (s, a)

}
which holds across all episodes with probability δ′. Indeed, D must satisfy some conditions. Namely, D must be jointly
convex in its arguments so that Pkh (defined below) is convex, and it must be positive homogeneous.6 Outside the failure
event, with probability 1− δ′, the divergence between the empirical and actual transition density of the hth step at the start
of the kth episode is therefore, at most: D(P̂kh(·|s, a), Ph(·|s, a)) ≤ ϵpkh(s, a). Using ϵpkh(s, a) as the maximum divergence
allows for the construction of the following plausible set:

Pkh =
{
P̃h (·|s, a) ∈ ∆ : D

(
P̃h (·|s, a) , P̂kh (·|s, a)

)
≤ ϵpkh (s, a)

}
for each (s, a, h) ∈ S × A × [H]. Here, ∆ denotes the set of valid transition densities. From here, it is possible to derive
the bonus by finding the conjugate of the divergence:

β∗
kh (s, a) = max

P̃h(·|s,a)∈∆

{〈
Ṽ , P̃h (·|s, a)− P̂h (·|s, a)

〉}
β−
kh (s, a) = max

P̃h(·|s,a)∈∆

{〈
− Ṽ , P̃h (·|s, a)− P̂h (·|s, a)

〉}
βkh (s, a) ≥ max

{
β∗
kh (s, a) , β

−
kh (s, a)

}
by introducing a Lagrange multiplier. For a derivation of the bonuses associated with each divergence, we refer the reader
to Appendix A.5 of Neu and Pike-Burke (2020).

6The distance ∥p− p′∥ for any norm and all f -divergences satisfy these conditions (Liese and Vajda, 2006).

Optimism and Delays in Episodic Reinforcement Learning

B.1 Missing Proofs for the Regret Decomposition

In this subsection, we utilise the fact that all model-based algorithms compute an optimistic value function of the form
(4) to derive an adaptable regret decomposition. The decomposition is adaptable in the sense it allows for tighter delay-
dependence when the bonuses satisfy a symmetry-like property.

Throughout, we assume that the model-based algorithm is optimistic with high probability. That is, Ṽ πk

h (s) ≥ V ∗
h (s) ≥

V πk

h (s) with high probability at least 1− δ′. Further, C is defined as the event where:

β+
kh(s, a)) ≥

〈(
P̂kh − Ph

)
(· |s, a) , Ṽ πk

h+1(·)
〉

which holds across all episodes for every state-action-step triple conditional on the complement of the failure event.

Lemma 2. Under Assumption 1, with probability 1− 4δ′, we can upper bound the regret by:

RK ≤ 6 (H + C)

√
T log

(
Kπ

6δ′

)

+ 6

K∑
k=1

H∑
h=1

β+
kh

(
skh, a

k
h

)
+ 6

K∑
k=1

H∑
h=1

3CH2SL

N ′
kh

(
skh, a

k
h

)
where L = log

(
S2AHπ2/6δ′

)
and C indicates whether the bonuses of the algorithm satisfy Equation (6).

Proof. By definition, the regret of any episodic reinforcement learning algorithm is given by:

RK =

K∑
k=1

V ∗
1

(
sk1
)
− V πk

1

(
sk1
)

≤
K∑
k=1

Ṽ πk
1

(
sk1
)
− V πk

1

(
sk1
)

where the final inequality holds by optimism, which holds across all episodes with probability at least 1 − δ′. Consider
the more general case of bounding the regret from the h-th step of each episode, rather than just the first step. Define
∆̃k
h = Ṽ πk

h (skh)− V πk

h (skh). Applying Lemma 9 gives, with probability at least 1− δ′:

∆̃k
h(s

k
h) ≤

(
1 +

C

H

)
∆̃k
h+1

(
skh+1

)
+ 2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

where

ζkh+1 :=
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1

(
skh+1

)
ζ̄kh+1 :=

√
4L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


and

Gkh := {s′ : Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≥ 4H2L}

Now, we can utilise the recursive decomposition above to show that:

∆̃k
j

(
skj
)
≤
(
1 +

C

H

)H−j H∑
h=j

2βkh
(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

which we do by induction. Recall that: Ṽ πk

H+1 = V ∗
H+1 = V πk

H+1 = 0⃗. Therefore, the statement holds when j = H ,
because: ∆̃k

H+1 = 0. Now assume the statement holds for h = j + 1. Then,

∆̃k
j

(
skj
)
≤
(
1 +

C

H

)
∆̃k
j+1

(
skj+1

)
+

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

≤
(
1 +

C

H

)(1 + C

H

)H−(j+1) H∑
h=j+1

2βkh
(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1


+

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

=

(
1 +

C

H

)H−j H∑
h=j+1

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

+

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

≤
(
1 +

C

H

)H−j H∑
h=j+1

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

+

(
1 +

C

H

)H−j
(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

≤
(
1 +

C

H

)H−j H∑
h=j

(
2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

) + ζkh+1 + Cζ̄kh+1

)

Therefore, we are now able to upper bound the regret as follows:

RK ≤
K∑
k=1

∆̃k
1

(
sk1
)

≤
(
1 +

C

H

)H
︸ ︷︷ ︸

≤ e<3

(
C

K∑
k=1

H∑
h=1

ζ̄kh+1 +

K∑
k=1

H∑
h=1

ζkh+1 + 2

K∑
k=1

H∑
h=1

βkh
(
skh, a

k
h

)
+

K∑
k=1

H∑
h=1

6CH2SL

N ′
kh

(
skh, a

k
h

))

≤ 3C
K∑
k=1

H∑
h=1

ζ̄kh+1 + 3

K∑
k=1

H∑
h=1

ζkh+1 + 6

K∑
k=1

H∑
h=1

βkh
(
skh, a

k
h

)
+

K∑
k=1

H∑
h=1

18CH2SL

N ′
kh

(
skh, a

k
h

)
= 3C

K∑
k=1

H∑
h=1

ζ̄kh+1 + 3

K∑
k=1

H∑
h=1

ζkh+1 + 6

K∑
k=1

H∑
h=1

(
βkh

(
skh, a

k
h

)
+

3CH2SL

N ′
kh

(
skh, a

k
h

))

Recall the definitions of ζkh+1 and ζ̄kh+1:

ζkh+1 =
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1(s
k
h+1)

ζ̄kh+1 =

√
4L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′|skh, akh

)
∆̃k
h+1 (s

′)√
Ph
(
s′|skh, akh

)
−

∆k
h+1

(
skh+1

)√
Ph
(
skh+1|skh, akh

)


with

Gkh := {s′ : Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≥ 4H2L}

Optimism and Delays in Episodic Reinforcement Learning

Let Fkh = σ({Hi}i:i+τi<k) be the natural filtration of the observed information. Then |ζkh+1| ≤ 2H and

Eskh+1∼Ph(· | skh,a
k
h)

[
ζkh+1 | Fkh ∪ {skh, akh}

]
= Eskh+1∼Ph(· | skh,a

k
h)

[〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1 (sh+1)
∣∣∣Fkh ∪ {skh, akh}

]
=
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− Eskh+1∼Ph(· | skh,a

k
h)

[
∆̃k
h+1

(
skh+1

) ∣∣∣Fkh ∪ {skh, akh}
]

=
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
−
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
= 0

Similarly, |ζ̄kh+1| ≤ 2 and Eskh+1∼Ph(· | skh,a
k
h)

[
ζ̄kh+1 | Fkh ∪ {skh, akh} , skh+1 ∈ Gkh

]
= 0. Therefore, ζkh+1 and ζ̄kh+1 are

martingale differences, which are easily bounded using Azuma-Hoeffding:

K∑
k=1

H∑
h=1

ζkh+1 ≤ 2H

√
T log

(
Kπ

6δ′

)
(with probability at least 1− δ′)

K∑
k=1

H∑
h=1

ζ̄kh+1 ≤ 2

√
T log

(
Kπ

6δ′

)
(with probability at least 1− δ′)

Therefore, with probability 1− 4δ′:

RK ≤ 6C

√
T log

(
Kπ

6δ′

)
+ 6H

√
T log

(
Kπ

6δ′

)
+ 6

K∑
k=1

H∑
h=1

(
βkh

(
skh, a

k
h

)
+

3CH2SL

N ′
kh

(
skh, a

k
h

))

≤ 6(H + C)

√
T log

(
Kπ

6δ′

)
+ 6

K∑
k=1

H∑
h=1

(
βkh

(
skh, a

k
h

)
+

3CH2SL

N ′
kh

(
skh, a

k
h

))

as required.

Lemma 9. Let C be an algorithm dependent-constant indicating whether it is model-optimistic or value-optimistic. Under
Assumption 1, the regret of any optimistic model-based algorithm from the h-th step of the k-th episode upper bounded by:

∆̃k
h(s

k
h) ≤

(
1 +

C

H

)
∆̃k
h+1

(
skh+1

)
+ 2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

)
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1

(
skh+1

)
+

√
4CL

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


where L = log(S2AHπ2/6δ′) and

Gkh := {s′ : Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≥ 4H2L}

with probability 1− δ′.

Proof. By Proposition 2 of Neu and Pike-Burke (2020) and by definition of the value-optimistic algorithms, we have that:

∆̃k
h(s

k
h) = Ṽ πk

h

(
skh
)
− V πk

h

(
skh
)

= β+
kh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
Ṽ πk

h+1

〉
−
〈
Ph
(
· | skh, akh

)
V πk

h+1

〉
= β+

kh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
+
〈
Ph
(
· | skh, akh

)
, Ṽ πk

h+1 − V πk

h+1

〉
= β+

kh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1

〉
≤ βkh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1

〉
= ∆̃k

h+1

(
skh+1

)
+ βkh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1

〉
− ∆̃k

h+1

(
skh+1

)

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

where the inequality follows from the fact that βkh(s, a)+ ≤ βkh(s, a). For model-optimistic algorithms, from the defini-
tion of the bonuses, we have that:〈

P̂kh
(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
≤ β−

kh

(
skh, a

k
h

)
≤ βkh

(
skh, a

k
h

)
However, this term cannot be bound as easily for the value-optimistic algorithms. But, Assumption 1 allows us to show
that: 〈

P̂kh
(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1

〉
=
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, V ∗
h+1

〉
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1 − V ∗
h+1

〉
≤ βkh

(
skh, a

k
h

)
+
〈
P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, Ṽ πk

h+1 − V ∗
h+1

〉
(By Assumption 1)

≤ βkh
(
skh, a

k
h

)
+
〈
|P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
|, Ṽ πk

h+1 − V ∗
h+1

〉
≤ βkh

(
skh, a

k
h

)
+
〈
|P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
|, Ṽ πk

h+1 − V πk

h+1

〉
(V ∗
h (s) ≥ V πk

h (s))

= βkh
(
skh, a

k
h

)
+
〈
|P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
|, ∆̃k

h+1

〉
≤ βkh

(
skh, a

k
h

)
+

∆̃k
h+1

(
skh+1

)
H

+
2HSL

N ′
kh

(
skh, a

k
h

) + 4H2SL

N ′
kh

(
skh, a

k
h

)
+

√
4L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)
 (By Lemma 10)

with probability 1− δ′. Thus, utilising the indicator variable, we have that:

∆̃k
h(s

k
h) ≤

(
1 +

C

H

)
∆̃k
h+1

(
skh+1

)
+ 2βkh

(
skh, a

k
h

)
+

2CHSL

N ′
kh

(
skh, a

k
h

) + 4CH2SL

N ′
kh

(
skh, a

k
h

)
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1

(
skh+1

)
+

√
4CL

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


≤
(
1 +

C

H

)
∆̃k
h+1

(
skh+1

)
+ 2βkh

(
skh, a

k
h

)
+

6CH2SL

N ′
kh

(
skh, a

k
h

)
+
〈
Ph
(
· | skh, akh

)
, ∆̃k

h+1 (·)
〉
− ∆̃k

h+1

(
skh+1

)
+

√
4CL

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


as required.

Lemma 10. Let γkh(skh, a
k
h) := ⟨P̂kh

(
· | skh, akh

)
− Ph

(
· | skh, akh

)
, ∆̃k

h+1⟩. Then, with probability at least 1− δ′:

γkh
(
skh, a

k
h

)
≤

∆̃k
h+1

(
skh+1

)
H

+
2HSL

N ′
kh

(
skh, a

k
h

) + 4H2SL

N ′
kh

(
skh, a

k
h

)
+

√
4L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


where L = log(S2AHπ2/6δ′) and

Gkh := {s′ : Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≥ 4H2L}

for all S ×A×H and K ∈ N1.

Optimism and Delays in Episodic Reinforcement Learning

Proof. For completeness, we present proof of this claim and note that the ideas found here were first introduced by Azar
et al. (2017).

We upper bound the so-called ”correction term”, C⟨P̂kh
(
· | skh, akh

)
−Ph

(
· | skh, akh

)
, ∆̃k

h+1⟩. Following Azar et al. (2017)
and applying Bernstein’s inequality to bound the difference between the estimated and actual transitions gives us, with
probability 1− δ:

γkh
(
skh, a

k
h

)
=
〈(

P̂kh − Ph

) (
· | skh, akh

)
, ∆̃k

h+1

〉
≤ 2

∑
s′

(
L

N ′
kh

(
skh, a

k
h

) +√Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

))
∆̃k
h+1 (s

′) (Bernstein’s Inequality)

≤ 2

(
HSL

N ′
kh

(
skh, a

k
h

) +∑
s′

√
Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

) ∆̃k
h+1 (s

′)

)

= 2

 HSL

N ′
kh

(
skh, a

k
h

) + ∑
s′ ̸∈Gkh

√
Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

) ∆̃k
h+1 (s

′) +
∑

s′∈Gkh

√
Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

) ∆̃k
h+1 (s

′)

 (12)

By definition, Ph(s′|s, a) < 4H2L/N ′
kh(s, a) whenever s′ ̸∈ Gkh, which follows simply from rearranging terms in the

definition of Gkh. Therefore,

∑
s′ ̸∈Gkh

√
Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

) ∆̃k
h+1 (s

′) ≤
∑

s′ ̸∈Gkh

2HL

N ′
kh

(
skh, a

k
h

)∆̃k
h+1 (s

′) ≤ 2H2SL

N ′
kh

(
skh, a

k
h

)
Now, we focus on the s′ ∈ Gkh.

∑
s′∈Gkh

√
Ph
(
s′ | skh, akh

)
L

N ′
kh

(
skh, a

k
h

) ∆̃k
h+1 (s

′)

=

√
L

Ph
(
skh+1 | skh, akh

)
N ′
kh

(
skh, a

k
h

)∆̃k
h+1

(
skh+1

)
−
√

L

Ph
(
skh+1 | skh, akh

)
N ′
kh

(
skh, a

k
h

)∆̃k
h+1

(
skh+1

)
+

∑
s′∈Gkh

Ph
(
s′ | skh, akh

)√ L

Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≤

∆̃k
h+1

(
skh+1

)
2H

+

√
L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


where the inequality follows from the fact that s′ ∈ Gkh, implying that Ph
(
s′ | skh, akh

)
N ′
kh

(
skh, a

k
h

)
≥ 4H2L. Substitut-

ing both of the above into (12) gives:

γkh
(
skh, a

k
h

)
≤

∆̃k
h+1

(
skh+1

)
H

+
2HSL

N ′
kh

(
skh, a

k
h

)
+

4H2SL

N ′
kh

(
skh, a

k
h

)
+

√
4L

N ′
kh

(
skh, a

k
h

)
 ∑

s′∈Gkh

Ph
(
s′ | skh, akh

) ∆̃k
h+1 (s

′)√
Ph
(
s′ | skh, akh

)
−

∆̃k
h+1

(
skh+1

)√
Ph
(
skh+1 | skh, akh

)


completing the proof.

B.2 Missing Theoretical Results for Delayed Rewards

In this section, we describe how to use active or lazy updating in the setting where only the rewards return in delay. We
assume the rewards are stochastic and their expected values are unknown.

In the setting of delayed rewards, the agent returns the state-action pairs {skh, akh}Hh=1 at the end of episode k, immediately.
However, the rewards {rkh}Hh=1 return with a random delay τk. Since it is only the rewards that return in delay, we can

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

estimate the transitions at the start of each episode, as usual. Thus, we apply active or lazy updating to the estimation of
the expected reward function only.

For active updating, this amounts to estimating the expected reward function as soon as new feedback arrives:

r̂kh (s, a) =
1

N ′
kh (s, a)

k−1∑
i=1

rih1{sih = s, aih = a, i+ τi < k}

For lazy updating, this amounts to waiting until the observed number of rewards for a state-action-step triple have doubled
before starting a new epoch. When estimating the expected reward function for jth epoch, the base algorithm will use all
the available rewards:

r̂kjh (s, a) =
1

N ′
kjh

(s, a)

kj−1∑
i=1

rih1{sih = s, aih = a, i+ τi < k}

Using Hoeffding’s inequality, one can construct confidence sets around the above estimators and derive another estimator
that is optimistic, with high probability. We derive the width of the confidence set in the proof below.

Theorem 3. Let RP
K denote the regret of UCRL2 from estimating the transition densities under immediate feedback. Then,

with probability 1− δ, the regret of UCRL2 under delayed reward is:

RK ≲ RP
K +HSAψτK

for active updating.

Proof. First, since the rewards are stochastic and their expected values are unknown, we must derive an estimator. Natu-
rally, we use only the observed information to compute the expected value, as it is an unbiased estimator:

r̂kh (s, a) =
1

N ′
kh (s, a)

k−1∑
i=1

rih1{sih = s, aih = a, i+ τi < k}

Now, assume that the rewards are bounded in [0, 1]. Using Hoeffding’s inequality, we can define an additional failure event
to account for the fact that we are estimating the expected reward function:

F rk =

{
∃ s, a, h : |r̂kh (s, a)− rh (s, a)| ≥

√
6 log (2SATπ/6δ′)

N ′
kh (s, a)

:= ϵrkh (s, a)

}

which holds across all episodes with probability 1 − δ′. Recall, we have a failure event for the transitions that holds with
probability 1− δ′ too. Thus, we get the following optimistic estimator of the expected reward function:

r̃kh (s, a) = min

{
1, r̂kh (s, a) +

√
6 log (2SATπ/6δ′)

N ′
kh (s, a)

}

which upper bounds the true expected reward function with probability 1 − δ′ across all episodes. As in the immediate
feedback setting, the failure event for the transition densities is:

F pk =

{
∃ s, a, h : ∥P̂kh (·|s, a)− Ph (·|s, a)∥1 ≥

√
6S log (ATπ/6δ′)

Nkh (s, a)
:= ϵpkh (s, a)

}

where

P̃kh (·|s, a) ∈ {Q ∈ ∆ : ∥Q− Ph (·|s, a)∥ ≤ ϵpkh (s, a)}

Optimism and Delays in Episodic Reinforcement Learning

By optimism, and due to UCRL2 having C = 1: with probability 1− 2δ′:

RK =

K∑
k=1

∆k
1 =

K∑
k=1

V ∗
1

(
sk1
)
− V πk

1

(
sk1
)

≤
K∑
k=1

∆̃k
1 =

K∑
k=1

Ṽ πk
1

(
sk1
)
− V πk

1

(
sk1
)

(13)

≤
K∑
k=1

H∑
h=1

2Hϵpkh
(
skh, a

k
h

)
+ 2ϵrkh

(
skh, a

k
h

)
+ ζkh

(
skh, a

k
h

)
≤ 2H

√
T log

(
Kπ

6δ′

)
+

K∑
k=1

H∑
h=1

2Hϵpkh
(
skh, a

k
h

)
+

K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)
≤ 2H

√
T log

(
Kπ

6δ′

)
+ 2H

√
6S log (ATπ/6δ′)

K∑
k=1

H∑
h=1

1√
Nkh

(
skh, a

k
h

) + K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)

≤ 2H

√
T log

(
Kπ

6δ′

)
+ 4H

√
6SHSAT log (ATπ/6δ′) +

K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)
≤ 2H

√
T log

(
Kπ

6δ′

)
+ 10H3/2S

√
AT log (ATπ/6δ′) +

K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)
≤ RP

K +

K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)
(14)

The penultimate inequality follows from Lemma 6. Further, RP
K = 2H

√
T log

(
Kπ
6δ′

)
+ 10H3/2S

√
AT log (ATπ/6δ′)

is the regret of the base algorithm (UCRL2) in an immediate feedback environment with know reward functions. Now, to
prove the statements of the corollary, we must bound the summation of the estimation error for the rewards. Doing so is
just a matter of applying Lemma 3:

K∑
k=1

H∑
h=1

2ϵrkh
(
skh, a

k
h

)
= 2

K∑
k=1

H∑
h=1

√
6 log (2SATπ/6δ′)

N ′
kh (s, a)

≤ 8
√
6HSAT log (SATπ/6δ′) + 6HSAψτK

√
6 log (SATπ/6δ′)

Substituting the above into Equation (14) and omitting poly-logarithmic factors gives the stated result.

C ADDITIONAL EXPERIMENTS

Here, we present additional experimental results for the chain environments with H = S ∈ {5, 10, 20} and E[τ] ∈
{100, 300, 500}. In all combinations of chain length and expected delay, our updating procedures give better empirical
performance, especially for the delay distributions with higher variances. For all expected delays, active updating gives the
best performance. However, our experiments indicate that lazy updating with α = 10 or 100 is comparable, as one would
expect based on the intuition that it is an approximation to active updating that converges in the limit as α→ ∞.

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

C.1 Chain Environment with H = S = 5

Figure 3: Cumulative Regret (S = 5,E[τ] = 100).

Figure 4: Cumulative Regret (S = 5,E[τ] = 300).

Figure 5: Cumulative Regret (S = 5,E[τ] = 500).

Optimism and Delays in Episodic Reinforcement Learning

Figure 6: Delay Dependence (S = 5)

C.2 Chain Environment with H = S = 10

Figure 7: Cumulative Regret (S = 10,E[τ] = 100).

Figure 8: Cumulative Regret (S = 10,E[τ] = 300).

Figure 9: Cumulative Regret (S = 10,E[τ] = 500).

Benjamin Howson, Ciara Pike-Burke, Sarah Filippi

Figure 10: Delay Dependence (S = 10)

C.3 Chain Environment with H = S = 20

Figure 11: Cumulative Regret (S = 20,E[τ] = 100).

Figure 12: Cumulative Regret (S = 20,E[τ] = 300).

Figure 13: Cumulative Regret (S = 20,E[τ] = 500).

Optimism and Delays in Episodic Reinforcement Learning

Figure 14: Delay Dependence (S = 20)

C.4 Chain Environment with H = S = 30

Figure 15: Cumulative Regret (S = 30,E[τ] = 300).

Figure 16: Cumulative Regret (S = 30,E[τ] = 500).

