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Abstract

In this paper we study the (sparse) General-
ized Eigenvalue Problem (GEP), which arises in
a number of modern statistical learning mod-
els, such as principal component analysis (PCA),
canonical correlation analysis (CCA), Fisher’s
discriminant analysis (FDA) and sliced inverse
regression (SIR). We provide the first study on
GEP in the differential privacy (DP) model un-
der both deterministic and stochastic settings.
In the low dimensional case, we provide a p-
Concentrated DP (CDP) method namely DP-
Rayleigh Flow and show if the initial vector is
close enough to the optimal vector, its output
has an ¢2-norm estimation error of O(% + n%p)
(under some mild assumptions), where d is the
dimension and n is the sample size. Next, we
discuss how to find such a initial parameter pri-
vately. In the high dimensional sparse case where
d > n, we propose the DP-Truncated Rayleigh
Flow method whose output could achieve an er-
ror of O(% + %) for various statistical
models, where s is the sparsity of the underly-
ing parameter. Moreover, we show that these er-
rors in the stochastic setting are optimal up to
a factor of Poly(logn) by providing the lower
bounds of PCA and SIR under statistical set-
ting and in the CDP model. Finally, to give a
separation between e-DP and p-CDP for GEP,

we also provide the lower bound € % + n‘iz)

and Q(Sh:ligd + %) of private minimax risk
for PCA, under the statistical setting and e-DP
model, in low and high dimensional sparse case
respectively. !
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1 INTRODUCTION

(Sparse) generalized eigenvalue problem (GEP) receives
much attention recently as it arises in a number of
standard and modern statistical learning models, in-
cluding (sparse) principal component analysis (PCA),
(sparse) Fisher’s discriminant analysis (FDA), and (sparse)
canonical correlation analysis (CCA), which have enor-
mous applications in biomedicine [Liu and Altman, 2015],
biomedical imaging [Strickert et al., 2009] and genomics
[Parkhomenko et al., 2009].

The wide applications of GEP also present some new chal-
lenges to this problem. Particularly, due to the existence
of sensitive data (such as biomedical images) and their
distributed nature in many applications like biomedicine
and genomics, it is often challenging to preserve the pri-
vacy of such data as they are extremely difficult to aggre-
gate and learn from. One promising direction is to use
some differentially private mechanisms to conduct the ag-
gregation and learning tasks. Differential Privacy (DP)
[Dwork et al., 2006] is a commonly-accepted criterion that
provides provable protection against identification and is
resilient to arbitrary auxiliary information that might be
available to attackers. To design DP algorithms, previous
work always focus on specific statistical models, such as
(sparse) PCA, CCA. However, there is no general frame-
work which can solve them all together. As the above prob-
lems all can be formulated as a GEP problem, a DP algo-
rithm for (sparse) GEP could simultaneously solve PCA,
CCA, FDA etc. However, to our best knowledge, there is
no work on the designing DP algorithms for (sparse) GEP
and the theoretical behaviors of GEP in DP model is still
unknown.

To address the above issues, in this paper, we provide a first
study of GEP under the DP constraint, i.e., DP-GEP, under
both low dimension and high dimensional sparse settings.
Specifically, our contributions can be summarized as fol-
lowing.

* We first consider DP-GEP in the low dimensional
case. Specifically, we propose a p-Concentrated DP
(CDP) method, namely DP-Rayleigh Flow, and show
that if the initial vector is close enough the optimal
one, then the output of algorithm could achieve an
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£y-norm estimation error of O(n%p) and O(% + n%p)
in the deterministic and statistical setting respectively
(under some mild assumptions), where n is the sam-
ple size and d is the dimension of the space. More-
over, we also show that if n is sufficiently large, then
we can efficiently find such an initial parameter with
p-CDP guarantee by reformulating the original GEP
problem as a convex programming problem with a
LASSO penalty.

* We then consider the problem in the high dimensional
case with d > n, where we assume the underlying pa-
rameter is s-sparse. Particularly, we present a method
namely DP-Truncated Rayleigh Flow which could
achieve an error of O(%) and O(% + %) in
deterministic and statistical setting respectively, with
some initial parameter. As corollaries, we also provide
the first theoretical result for CCA, FDA and Sliced
Inverse Regression (SIR) in the CDP model.

* We also study the lower bounds of DP-GEP under var-
ious settings. We first show that the previous upper
bounds in the stochastic setting are optimal up to a
factor of Poly(logn) by showing the optimal rates of
private minimax risk for PCA and SIR in the CDP
model. Then we study the e-DP model and show
that the private minimax risk for e-DP-PCA is lower

bounded by Q(% + nﬁig) and Q(Sl‘;—bgd + %) in
low dimensional and high dimensional setting respec-
tively. Compared with our upper bounds, we can see
a separation of the problem in e-DP and CDP. To the
best of our knowledge, these are first lower bounds of
DP sparse PCA and DP-SIR under statistical setting,
which may could used to other problems. Finally, ex-
tensive experiments on both synthetic and real-world

data support our previous theoretical analysis.

Due to space limit, the full version of some theorems, all
proofs and experiments are included in Appendix.

2 RELATED WORK

As we mentioned earlier, there is no previous result
on DP-GEP, and there is even no result on DP-FDA
and DP-SIR. For DP-CCA, [Imtiaz and Sarwate, 2017]
first studies the problem, which is later extended by
[Imtiaz and Sarwate, 2019, Shen, 2020] to other settings.
However, their algorithms cannot be extended to the high
dimensional sparse case and there is no theoretical guaran-
tees for their methods. Below we will focus on the previous
results on DP-PCA.

There is a vast number of papers studying PCA un-
der differential privacy, starting from the SULQ
framework [Blum et al., 2005, Dwork et al., 2014,
Chaudhuri et al., 2013, Gonem and Gilad-Bachrach, 2018,

Ge et al., 2018, Balcan et al., 2016]. For DP-PCA in (¢, d)-
DP model, [Hardt and Roth, 2013, Balcan et al., 2016,
Hardt and Price, 2014] study noisy versions of the power
method. [Dwork et al., 2014] considers the deterministic
setting and provides the optimal rate of the problem
for general K-PCA. However, all these methods cannot
be extended to the high dimensional sparse case. For
high dimensional sparse PCA, [Ge et al., 2018] studies
the problem in the distributed setting and proposed a
noisy iterative hard thresholding power method, and
[Wang and Xu, 2020] focuses on the problem in the local
DP model by showing its upper bound and lower bound.
However, these methods are only for PCA and cannot
be extended to GEP where here we have an additional
constraint which also depends on the dataset. Moreover,
the proof of lower bound is also different since it only
focuses on the local DP model while in this paper we study
the central one.

There are also several papers provide the lower bounds of
PCA in central e-DP model. However, all of them are
different with ours. Specifically, [Chaudhuri et al., 2012]
studies the deterministic setting and shows the lower bound
of Q(%) for the estimation error, which is later extended
by [Kapralov and Talwar, 2013] to general K-PCA case.
Compared with their results, we consider the stochastic set-
ting instead and show the lower bound of Q(< + n‘;”; ).
Due to different settings, their proof techniques cannot be
used to ours and we use a different technique of proof.
[Liu et al., 2022] recently also studies the lower bound of e-
DP-PCA under statistical setting. However, their assump-
tions on the underlying distribution of data are totally dif-
ferent with ours, which indicates that our results are incom-
parable with theirs. Moreover, they only consider the low
dimensional case while we consider both low dimension
and high dimensional sparse cases. For PCA in the cen-
tral (¢, 6)-DP model, [Dwork et al., 2014] provides a lower

bound of Q(d:;fj) for the problem in the deterministic
setting by using the fingerprinting codes while in this pa-
per we provide the lower bound of Q(£ + n%p) under the
stochastic setting and in the CDP model. We also consider
the high dimensional sparse case.

3 PRELIMINARIES

Notations: We denote A\;(Z), Amax(Z), Amin(Z) as the i-
th, maximal and minimal eigenvalue of matrix Z respec-
tively. And denote the condition number of a positive def-

inite matrix Z € R4 as k(Z) = ’f\m“i"((g)) Moreover,

let A; and 5\j be the j-th generalized eigenvalue of the ma-
trix pairs (A, B) and (A, B) respectively. Given an index
set ' C [d], let Zp € RIFIXIFl be the submatrix of Z
where the rows and columns are restricted to the set F.
We also denote p(Z,s) = SUp|j,|,—1,jufo<s |4’ Zul and
p(Z) = ||Z||2 = p(Z,d). For a pair of symmetric ma-
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trix (A, B) we denote its Crawford number as cr(A4, B) =
min,|jy(|,=1 /(07 Av)? + (T Bv)? > 0.

In this section, we recall some definitions related to Differ-
netial Privacy and Generalized Eigenvalue Problem.

Definition 1 (Differential Privacy [Dwork et al., 2006]).
Given a data universe X, we say that two datasets D, D’ C
X are neighbors if they differ by only one data sample,
which is denoted as D ~ D’. A randomized algorithm
Ais (e, d)-differentially private (DP) if for all neighboring
datasets D, D’ and for all events .S in the output space of
A, we have Pr(A(D) € S) < ePr(A(D’) € S)+ 4. When
0 = 0 we call the algorithm is e-DP.

Definition 2 (Concentrated DP [Bun and Steinke, 2016]).
A randomized algorithm A is p-Concentrated DP (CDP) if
for all neighboring datasets D, D" and for all @ > 1 we
have D, (A(D)|A(D")) < ap, where D, (A(D)||A(D’))
is the a-Rényi divergence between A(D) and A(D").

Actually, CDP lives between e-DP and (¢, 6)-DP:

Lemma 1 ([Bun and Steinke, 2016]). For every ¢ > 0, if
algorithm A is e-DP then it will be %-CDP. If Ais p-CDP,

then it will be (e, 6)-DP with e = p + 24/plog 3.

By the previous lemma, we can see to achieve a given
(¢, 0)-DP guarantee, it is sufficient to show the algorithm is

p=(\e+logl/s —+/log1/6)? 4log1/5 -CDP. Thus,
all p-CDP algorithms with their utility in this paper can
be transformed to the (¢, §)-DP version with log 1/6 > ¢

by simply replacing p by ﬁi/&.

In this paper, we will mainly use the Gaussian mechanism
and the Composition Theorem to guarantee CDP.

Definition 3 (Gaussian Mechanism). Given any function
g : X" — R? the Gaussian mechanism is defined as
q(D) + & where £ ~ N(0, ?—Eﬂd), where where Az (q)
is the ¢o-sensitivity of the function ¢, ie, As(q) =
supp.q |¢(D)—q(D’)||2. Gaussian mechanism preserves
p-CDP.

Lemma 2 (Composition Theorem). If A is an adaptive
composition of CDP algorithms Ay, - -- , A7 where A; is
pi-CDP. Then A will be p-CDP with p = 37 p;.

Definition 4 (GEP [Golub and Van Loan, 1996]). The
generalized eigenvalues of the symmetric-definite pair
(A, B) are denote by A\(A, B) = {\|det(A — AB) = 0}.
If A € A(A4, B) and v is a non-zero vector satisfies Av =
ABuv, then v is a generalized eigenvector.

Given an n-size data set D = {x1,---,z,}, matrices
A and B. The (largest) generalized eigenvalue problem
(GEP) of (4, B) is characterized as

0 = argmax v Av s.t. UTB’U_l (1)
veRC

where A = A(D) € R™? and B = B(D) € R4
are matrices that (may) dependent on the dataset D. Be-
sides the deterministic setting, for some statistical mod-
els we also want to study the stochastic setting where we
assume each record is sampled from some underlying un-
known distribution P. And our goal is to solve the follow-
ing problem based on the data D, where A = E[A] and
B =E|[B].

vt = = arg maxuv T Av, st. v’ Bv = 1. 2)
vER
In the high dimensional setting, we assume d > n and the
underlying parameter v* in (2) or © in (1) has an additional
sparsity structure, i.e., we assume ||[v*|log < s or [|7]jo < s
for some s < d. Now the sparse GEP becomes to

05 = arg max v TAv, st.v"Bv=1,|Jv)o <s. (3)
veER

vr = = argmaxuv TAv, st.v"Bv=1,||v)o <s. @)
vER?
In the following, we will provide some statistical models
that are special cases of (sparse) GEP.

Principal Component Analysis (PCA): Given dataset
= {x1, -+, 2o} with each z; € Rd (sparse) PCA can
be formulated as (sparse) GEP with B = I, and A=3
o= I (e -

i=1\"1

where Y is the covariance matrix 3 =
£i=1% n the stochastlc setting A

W) (@i — )" i

is the polulation version of A, i.e., A = E[(z— p)(z—p)7T]
with u = E[z].

with p =

Canonical Component Analysis (CCA): Given dataset
D = {(x1,11), -, (Zn,yn)} with each z; € R% and
y; € R?, (sparse) CCA can be formulated as (sparse) GEP

with
(0 Sy 5 (% 0
A—(A a?y)’B_<a: A))
Yoy 0 0 3y
where iz - 1 Zz Sz — )(3,;Z _ Mw)T’ fly _
i (i — uy)(yz - uy) and zxy = iZl 1(% _

the stochastic setting, A and B are the populatlon version
of A and B respectively.

Fisher’s Discriminant Analysis (FDA): Given n samples
with K different classes, Fisher’s discriminant analysis
seeks a low dimensional projection of the samples such that
the between-class variance is large relative to the with-class
variance. Specifically, it could be formulated as GEP with

A E E T
A=— — uk - uk) 5
k 1i€Ck
K
A 1 T;
A AT i
B = E E NEpUurUy , U = n ) (5)
k=1 ieCy |k
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where C}, is the index set for the k-th class, i.e., ifi € C}

then x; is in the k-th class, and ny, = |Ck|.

Sliced Inverse Regression (SIR): In SIR we have the sta-
tistical model Y = f(v{ X, -+ ,vf X, (), where ( is some
random noise and is independent on X, f(-) is some un-
known link function. It has been shown that under some

mild assumptions, the space that is spanned by vy, - - -, vg
can be identified [Li, 1991]. Particularly, the first leading
eigenvector of the subspace that is spanned by vy, - - - , vg

can be identified by solving the GEP with A be the covari-
ance matrix of the conditional expectation E(X|Y) and B
as the covariance matrix of X. That is:

A=Spxpy) B =30 S5xy) = 20 — B[S @)

. 1 &

Zz = E Z( i Mm)(xz - Um)Ta

z -y 4 ©
1€Clh i
Uk)T
E[S(aly) Z D
k 1zeCy "k

In the following we present the definition of DP-GEP.

Definition 5 (DP-GEP). Given a dataset D =
{z1, -+ ,xn,} and its corresponding (sparse) GEP,
the goal of Differentially Private GEP (GEP) is finding
a private estimator vp,;, based on some DP algorithm.
Moreover, we want our private estimator close enough to

the optimal parameter. Specifically, in this paper, we will
(Vpriv, v )

lTopriv 2 [v* [[2

the closeness. Based on different settings, v* could be the

optimal vector of the problem (1), (2), (3) or (4).

mainly use the similarity 1 — to the measure

If we denote Epo = A — A and Eg =B - B. Then we
can see that the deterministic setting is a special case of the
stochastic setting with £4 = E'g = 0. Thus, in this paper
we mainly focus on the stochastic setting. Next we propose
several assumptions that will be used throughout the paper.
Assumption 1 requires that the Frobenius norm sensitivity
of A and B are bounded by O(3).

Assumption 1. Given any neighboring datasets D and
D'. For A(D) € R and B(D) € R in problem
(1) we assume ||A(D) — A(D')||p < €t and |B(D) —

n
B(D")||r < <2 for some constants Cy,Cs > 0.

The following assumption is to control the norm of the error
matrix F4 and Ep in the statistical setting.

Assumption 2. We assume that for any 0 < s < d we have

p(Ea,s),p(Ep,s) = O0(y/ slogd)

It is notable that Assumption 2 is only used in the utility
analysis throughout the paper and is only for simplicity,
i.e., the privacy guarantees will still hold even Assumption

2 does not hold. Moreover, all of our utility analysis could
be extended to general p(E4), p(Ep), p(Ea, s), p(EB, s),
see Appendix for details. In the following we show that
the above assumptions hold (with high probability) for all
the statistical models we mentioned previously if each data
sample ||z;||2 < 1. Thus, we can see these two assumptions
are mild.

Theorem 1. If each ||z;]2 < 1 for i € [n], then PCA,
CCA, FDA and SIR all satisfy Assumption 1. Moreover,
PCA, CCA and SIR satisfy Assumption 2 (with high prob-
ability).

4 LOW DIMENSION CASE

In this section we consider the low dimension case, i.e.,
problem (1) and (2). To illustrate our idea, we first review
the classical method for GEP by using Rayleigh’s quotient
[Parlett, 1998]. Specifically, problem (1) can be rewritten
as -
v Av

vela J(0) = vTBv’ @
where the objective function could be seen as the general-
ized Rayleigh quotient. To solve (7), one can use the Gra-
dient Ascent method, i.e., in the ¢-th iteration the vector v;
is updated as

vy = Vi1 + NV d (ve-1),

~ ut lAUt 1
where VUJU(Ut—l) 0.8 AUt_l — ﬁ

n is the stepsize. Thus, to design DP methods, one
natural approach is based on the idea of DP-SGD,
which is a commonly used method for DP Empiri-
cal Risk Minimization (ERM) and DP Deep Learn-
ing [Abadi et al., 2016, Wu et al., 2017, Wang et al., 2018,
Bassily et al., 2014]. The idea of DP-SGD is injecting
some Gaussian noise into the (stochastic) gradient in each
iteration. That is

th 1 and

v =vi—1 + (VoS (vi—1) + Ci—1),

where (;_1 is a Gaussian vector where the variance of each
coordinate is proportional to the sensitivity of V,J(v;_1).
However, the main challenge is that, unlike the objective
functions in ERM or Deep Learning where the sensitiv-
ity of gradient is O(%) our objective function (Rayleigh
quotient) cannot be decomposed into a sum of loss func-
tions, which means the sensitivity of V,J(v;_1) is larger
and even could be unbounded. Thus, we cannot use DP-
SGD based methods and need new approaches.

Based on the specific structure of V,J,(v;—1), here we
propose a new method namely DP-Rayleigh Flow. Specif-
ically, instead of injecting noise to the gradient, we add
noises to matrices A and B in each iteration, see Algo-
rithm 1 for details. However, compared with the origi-
nal Rayleigh Flow method as mentioned above, we need
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some modifications. First, instead of using some fixed step-
size 7, in each iteration of Algorithm 1 we rescale it by
pr = vl Atv,_y /vl | Btv,_y, where A* and BY are per-
turbed matrices in the ¢-th iteration, i.e., we use % as the
stepsize, which is convenient for our following theoretical
analysis. Secondly, after updating by using Gradient As-
cent i.e., calculating C?v;_1, in step 5 of Algorithm 1 we
need to normalize the vector to ensure v; has unit £5-norm.
This step guarantees that the generalized Rayleigh quotient
for the updated vector is at least as large as that of the initial
vector. In the following we provide theoretical guarantees
for our algorithm.

Algorithm 1 DP-Rayleigh Flow

1: Input: Matrices A and B, initial parameter vy with
|luolla = 1, step size n (will be specified later), itera-
tion numbers m, privacy parameter p.

2: fort =1,--- ,mdo.

3: Denote A' = A+ Z!, Bt = B+ Z%, where Z! and
Z% are symmetric matrix where the upper triangle (in-
cluding the diagonal) is i.i.d. samples from N(0,07)
with 07 = 67;1227; and (0, 03) with 03 = C2 ~ respec-
tively, and each lower triangle entry is copled from its
upper triangle counterpart.

11311At1),,_1
——
vi_, Btvi_1

4: Denote p; =
Ptét)
5: Update v; = I Ct

6: end for
7: return v,,.

and C* = I+%(/~1t -

Vt—1
Vi — 1||2

Theorem 2. Under Assumption 1, for any p > 0 Algo-
rithm 1 is p-CDP.

Before showing the estimation error of the output in Algo-
rithm 1, we first introduce several notations and assump-
tions. The following theorem indicates that when n is suf-
ficiently large, the generalized eigenvalue of the perturbed
matrices is close to the generalized eigenvalue of the un-
derlying matrices.

Theorem 3. Let 5\}1 be the kth generalized eigenvalues of
(At, Bt), where (A, B') are the perturbed matrices in the
t-th iteration. Under Assumption 2, given any failure prob-
ability ¢ > 0, let constants 0 < b < min¢[g 2)\2+1 ,0<¢

is sufficiently large such that n >
~ d \/dm log 1 z \/dm log 1 <
Q(max{ 2/\2 (B) BPe?(A,B) "~ byp Shmim B)f})
Then with probablllty at least 1 — (, there exists constants
a such that for all ¢ € [m],

and if n

(- <3 < (L4,
(1—0)A;(B) < )‘j(ét) < (1+¢))(B) ®)
Olower’i(B) < K(Bt) < C(upper"{(B) 9

where Clower = % Furthermore, we have

1—e .
T5e> Cupper =
_ (I+a)As
= T=a)n

Theorem 4 (Informal). Under Theorem 3 and choose the

stepsize 1) such that nAyax(B) < ﬁ and

1 1-— 1
= \/1 i (B) < 2

AL < 4%, where 7y

8 Cupperi(B) +7v 2

Then if n is sufficient large, in Algorithm 3 we set m =
O(logn) and if the input vector vy with ||vg||2 = 1 satisfy-

ing W >1-— (’42’3) with
. 1 1/y -1
0(A, B) = min , ,
( ) {Scupperli(B) 3Cypperi(B)
-y

30(1 + C)Cgppern)‘maX(B)H2 (B){CUPP‘TYH(B) =+ ’Y} ’

(10)
we have the following with probability at least 1 — (,
(v*, V) 0(A, B) 1 dlogd
1-— <0
[o*]l2 -~ ((1 7 (A?;apsz(A,B) n
1 dlognlogdlog *
S vapTe: 7)), (1n)
gapcr( ,B) n2p
where
A —(1 Aj
Agap = Mmin -t a) (12)

LT+ 23, /14 (1 —a)?A2

is the eigengap for the GEP.

Similarly, for the deterministic setting where A=AB=
B, if n is sufficiently large and we set some appropriate
parameters in Algorithm 3, with probability at least 1 — ¢

7 - dlogdlo
1 <U,~vm> <O 6(A, B) g alog C
19l (L= v)?Aqper®(A,B)  n?p

13)

Remark 1. Since 0(A, B), Agap, cr(A, B) and v all only
depend on the underlying matrices A and B. Thus the out-
put could achieve an error of O( 2 + n%p) and O(n%p) under
the stochastic setting and deterministic setting respectively
(if we omit other terms). Note that in the non-private case,
the optimal rate is O(%) for many statistical models such
as PCA or CCA [Cai et al., 2013, Gao et al., 2015] if each
lz:ll2 < O(1). Thus, based on Theorem 1 we can see it
is possible to obtain privacy nearly for free when p > % in
the statistical setting.

One major issue in Theorem 4 is we need to assume the

initial vector vy is close enough to v* such that |<ﬂ’v;1|"°2>‘ >
0(A,B)
===

. In general, this condition is necessary since
in general GEP is non-concave and the Gradient Ascent
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method can only ensure the parameter converges to some
local maximum. However, with some additional assump-
tions and n is the sufficiently large, in the following we
show how to find such an initial vector privately and effi-
ciently.

Note that in the non-private case, originally finding the K
leading generalized eigenvectors for matrix pair (A4, B) is
equivalent to solve the following optimization problem:
min —tr(UTAU), st. UTBU =Ix.  (14)
UERdx K
Due to the non-convexity of the previous prob-
lem, motivated by [Tanetal., 2018, Vuetal., 2013a,
Wang and Xu, 2020] here we consider a convex relaxation
with a LASSO penalty, i.e.,

min —tr(AP)
PGRdX d

s.t. ||B%PB%||M <K,|B*PB3|, <1, (15)

singular values, A? is the square root of A, and | All1,1 is
the ¢;-norm of the vector of row-wise #; norm of A.

Our private estimator is based on (15). That is, instead of
using the empirical matrices A and B, we use their per-
turbed version to ensure DP. Specifically, we will solve the
following optimization problem:

P =arg min —tr(AP)—i—quPHl 1,
PeRdx

st ||B2PB3||,, <K,|B:PB%|y; <1, (16)

where A = A + Z1, B =B+ Z5 and Z;1 and Z5 are
symmetric Gaussian matrices to ensure DP.

Since the optimization problem (16) is convex, we can fol-
low the approach in [Wang and Xu, 2020] to solve it by us-
ing ADMM method (see Algorithm 2 for the details).

Informally we have the following result.

Theorem 5 (Informal). Under Assumption 1, the
solution of the optimization problem (16) is p-CDP.
Moreover, under Assumption 2 and assume that

1EAllco00: |1 EBllocse = O(/%5%), and n is suffi-

ke 6 = OQumax(BI(YE + 20)),
K = 1in (16). Then the largest eigenvalue of the matrix P

which is denoted as vy, satisfies (vg, v*) > 1 —0(A, B)/2

ciently large,

as the maximal absolute value among the entries in A.

In the above theorem we need to assume that || E4||oc,cos

IEB||co,00 = O(1/ logd), these assumptions hold in the
deterministic setting where 4 = Ep = 0. In the stochas-

tic setting, we can show these assumptions hold for PCA,
CCA and SIR if ||z;]]2 < 1 (see the Proof of Theorem 1).

Algorithm 2 Privately Finding an Initial Vector

1: Input: Matrices A and B, privacy parameters p, tuning
parameter ¢, ADMM parameter v, and convergence
criterion (.

2: Initialize matrices Py, Ho and I'g. Sett =0

3 Llet A= A+ Z,, B = B+ Zy, and Z; and Z»
are symmetric matrix where the upper triangle (includ-
ing the diagonal) is i.i.d. samples from N(0, o3) with
02 = ok > (0,03) with 03 = 27: respectively,
and each lower triangle entry is copied from its upper
triangle counterpart.

4: Update P by solving the following lasso problem:

~ 1

Ptﬂfargmme B2 B%thJrI‘tH%ftr(flP)

+ ¢l Pl

5: Let ZZ ] wj aja; be the singular value decomposition
of I'y + Bz Pt+1B2 and let

% .
= arg min
Y g e 7

d

s.t. Zmin{l,max{wj -7,0}} < K.
j=1

Update H by Hyyq
7", 0}a;af .

6: UpdateT"as Ty 1y =Ty + B2 P, 1 B2 — Hy 1.

7: If |Piy1 — Pillp > B, lett = ¢t + 1 and repeat the
procedure 4-6.

8: return The leading eigenvector of P ;.

Z;l:l min{1, max{w; —

S HIGH DIMENSIONAL SPARSE CASE

In the previous section, we showed the upper bounds of
the estimation error in stochastic and deterministic settings.
However, in the high dimensional case where d > n,
the previous two bounds will be quite large so that their
rates become trivial. To address the high dimensional-
ity issue, in this section we consider the sparse GEP in-
stead, i.e., problem (3) and (4). Specifically, we propose
a truncated version of Algorithm 1, namely DP-Truncated
Rayleigh Flow, see Algorithm 3 for details. Compared
with Algorithm 1, there is an additional truncation step.
That is, we select the indices with largest £ magnitude
of the vector, keep the entries of vectors among these in-
dices and let the remain entries be zero. Intuitively, the
truncation step could project the vector onto a low dimen-
sional space (and thus the effective dimension now be-
comes to k instead of d), and it will diminish the noises
we added to A and B. Note that the idea of truncating the
vector to enforce it be sparse has also been used in other
DP machine learning problems, such as [Cai et al., 2019,
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Algorithm 3 DP-Truncated Rayleigh Flow

1: Input: Matrices A and B, sparsity k, initial parameter
vp is a k-sparse vector with ||ugll2 = 1, step size n,
iteration number m, privacy parameter p.

2: fort=1,--- ,mdo.

3:  Denote A = A+ 7!, B = B+ Z%, where Z! and
Z% are symmetric matrix where the upper triangle (in-
cluding the diagonal) is i.i.d. samples from N (0, 0%)

. 2 2m 2 . 2 CZm
with of = T5= and (0, 03) with 03 = 27 respec-
tively, and each lower triangle entry is copied from its

upper triangle counterpart.
’U,T_ 1 /it Vi—1

4:  Denote p; = and Ot = [+(n/p:) (At —

PtBt)~
5: Update v; =

6: Let F; = supp(v;, k) be the set of indices of v}
with the largest k& absolute values.

T Rt
vl | Btvg_y

7: Denote 9y = truncate(v}, Fy), i.e., 0 is the trun-
cated vector of v; by setting (v}); = 0if i & Fy.
. _ @
8: Update v; = |\73:\|2.
9: end for

10: return v,,.

Wang et al., 2019, Wang and Gu, 2020, Hu et al., 2021] for
DP-ERM and [Ge et al., 2018] for DP-Sparse PCA. How-
ever, as we mentioned, unlike those objective functions, the
Rayleigh quotient cannot be decomposed as a sum of func-
tions, it is unknown whether truncation step is indeed help-
ful. We will provide an affirmative answer in this section.

Theorem 6. Under Assumption 1, for any 0 < p, Algo-
rithm 3 is p-CDP.

Before providing the estimation error of Algorithm 3 we
first provide the following notations.

Notations: For v} in (4) we denote V' = supp(v}) as
the index set corresponding to the non-zero elements of
v¥ Let F C [d] be a superset of V' with |F| = K/,
where k' = 2k + s and k is in Algorithm 3. Let X;(F),
AL(F) and A ;(F) be the j-th generalized eigenvalue of the
matrix pairs (Ar, Br), (AL, B%) and (Ap, Br), respec-
tively. Denote cr(k') = inf . p<i cr(Ap, Br).

Similar to Theorem 3, we first show that when n is suffi-
ciently large, then the generalized eigenvalue (restricted to
the set F) of the perturbed matrices is close to the general-
ized eigenvalue of the underlying matrices.

Theorem 7. Under Assumption 2, given any failure

probability ¢ > 0, if n is sufficiently large such that
& \/k’mlog% \/k’mlog%

AN _(B)’ by/p c)\mi,,(B)\/ﬁ)
: Aj(F)

for some constants ¢ > 0 and 0 < b < min;e(q) DT

Then with probability at least 1 — ¢, there exists constants

n > Q(max{ b%r’;/(k,/),

a and c such that for all ¢ € [m)],

(1= a)X\i(F) < N(F) < (L+a))(F), A7)
(1= 0)Xj(Br) < Xj(BE) < (1+¢)X(Br),  (18)
Clowerli(B) S H(Bé‘) S CupperH(B) (19)

where Clower = % Furthermore, we have

1—c —
1+c¢? C‘JPPCF -

AL (F) < AXL(F), (20)

_ (ta)ra(F)

where 7y T (F)

In the following we provide the statistical error of our pri-
vate estimator if n is sufficiently large and the initial vector
is close the optimal solution with m = O(logn).

Theorem 8 (Informal). Under Theorem 7 with k' = 2k+s
and choose & = C's for sufficiently large C'. In addition,
choose stepsize 7 such that nApax(B) < ﬁ and

| S S

1 1-—
\/1 - j77/\min(B) i

< .

8 Cupperi(B) +v 2

Then if n is sufficiently large, we set m = O(logn) in Al-
gorithm 3. We have the following with probability at least
1 — ( if the input k-sparse vector vy with ||vg]|2 satisfying
[Kvevor] > q 9(‘42’3) with 0(A, B) given in (10).

lvzll2

1 (V¥ V) < (G(A,B) ( 1 slogd
vz ]2 (L—=v)2 " Aggper®(K')
1 slognlogdlog 1
DY cr2 (k') n2p 4)) @h
gap

Similarly, for the deterministic setting where F4 = Ep =
Oand A = A,B = B, ifnis sufficiently large and with
some additional mild assumptions. If we set some appro-
priate parameters in Algorithm 3, with probability at least

1-¢

9(A, B) slogdlog%
(1—v)2X2_ cr2(k') n2p '

gap

1— <1~)i,/Ut> §O~(
10s]l2
(22)

From Theorem 8 we can find that, the error in the determin-
istic setting is O( % :;gp ), while the statistical error of Algo-
rithm 3 will be O (124 + %) (if we omit other terms).
These two bounds only depend on logarithmic of d instead
of polynomial in the low dimensional case. Moreover, the
same as in the low dimensional case, we can obtain privacy

for free in the statistical setting.

Corollary 1. If we transform the above upper bounds in
CDP to (¢,6)-DP via Lemma 1, we can see for PCA un-
der deterministic setting, the output of Algorithm 1 could
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achieve an error of O(Y d,,:g 5 ), which is near optimal
[Dwork et al., 2014]. For sparse PCA under the stochas-
tic setting where A is the covariance matrix and B = I,
if we further assume that ||z||s < 1. Then the out-

put of Algorithm 3 could achieve a statistical error of
~ 1
O(slad 4 sloedlog 5 ) [Wang et al., 2019] provides the

n2e2

first result on the problem in the local DP model, instead of

the central model. Specifically, it shows that the near op-

slog dlog %
ne2

timal statistical rate is O( ) under stochastic set-
ting. Compared with our results, we can see a gap between
the central and the local model for sparse PCA.

Corollary 2. For the problem of sparse CCA under the
stochastic setting and ||zz|2 < 1. The output of Algo-
rithm 3 could achieve an error of O(Sl‘;—gd + %), where
d = di + do. Under deterministic setting, the output of
Algorithm 3 could achieve an error of O(2%£2). In the

n2p
_d_
nQp) and

low dimension setting, the error will be O(% +

O(n%p), respectively. Moreover, we have similar results
for SIR if ||z||2 < 1. Note that these are the first results on
the estimation error for CCA and SIR in the DP model.

Corollary 3. For FDA, the output of Algorithm 1 and 3
could achieve an error of O(n%p) and O(%ﬁpd) in the low
dimension and high dimensional sparse case respectively if
lz|l2 < 1. To our best knowledge, this is the first theoreti-
cal result for FDA in the DP model.

Similar to the low dimension case, here we still need a good
initialization vy. However, unlike the low dimension case,
here we cannot use Algorithm 2 to find such a initialization
due to the assumption of d > n. Thus, we leave it as
an open problem for privately finding such a initialization.
Fortunately, in experiments we find randomly sample an
initial vector can already achieve good performance.

Experimental studies: In Appendix, we provide empirical
studies on the behaviors of our methods for (sparse) PCA,
CCA and FDA on several real-world and synthetic data.

6 LOWER BOUNDS OF DP-GEP

In previous sections, we showed that for GEP in the CDP
model under Assumption 1 and 2, it is possible to achieve
an error of O(% + %) and O~(81°ng + %) in low and
high dimension sparse case under the statistical setting re-
spectively. However, there are several questions left. First,
can we further improve the error, i.e., what is the lower
bound of error for GEP in the CDP model? Secondly, since
all of our previous results are for the CDP or (e,d)-DP
model. Thus, our question is, can we achieve similar re-
sults in the e-DP model? In this section, we first show that
the previous methods are near optimal for (sparse) PCA
and (sparse) SIR in the CDP model. For the second one,
we provide negative results by showing lower bounds of
(sparse) PCA under the stochastic setting in e-DP. Specifi-

cally, we show the following results.

Theorem 9 (Lower Bounds for Low Dimensional PCA).
For0 < e <1, ifn > Q(g), then for any e-DP algo-
rithm with output vy,,.;,, there exists a distribution P with
E.p[x] = 0 and if z; ~ P then it satisfies Assumption 1
and 2 (with high probability), such that

<U riv,U*> d d2
U )

- 23
Tl =\ @3

]EDN'P”,.A[l

Moreover, for any p > 1, if n > Q(max{d, %}), then
for any p-CDP algorithm with output vp,;,, there exists a
distribution P with E,.p[z] = 0 and if z; ~ P then it
satisfies Assumption 1 and 2 (with high probability), and

(Upriv, V%) d d
o ERL CE BT

Ep~pn [l — >
||Upn‘V||2 n

Here v* is the leading eigenvector of A = E,p[zzT]].

Theorem 10 (Lower Bounds for High Dimensional Sparse
PCA). ForO0 <e<1,ifn > Q(ifd), then for any e-DP
algorithm with output vy,.;,, there exists a distribution P
with E; p[z] = 0, if z; ~ P then it satisfies Assumption
1 and 2 (with high probability), and its largest eigenvector

v* of the covariance matrix A = E,p[zxT] is s-sparse,
such that
VUpriy, U* slogd (slogd)?
Eppr afl— V0] 5 qalosd  (slogd)7) - o)
[ TR

Moreover, for any p > 0, if n is sufficiently large such that
n > Q(max{slogd, ¥ S\I/%gd}), then for any p-DP algo-
rithm with output vy,,.;,, there exists a distribution P with
Eyplx] = 0, if z; ~ P then it satisfies Assumption 1 and
2 (with high probability), and its largest eigenvector v* of
the covariance matrix A = E,p[za”] is s-sparse, and

Vprivy U slogd slogd
{Vpriv, V) (2los 2g ). 6)

- vprivll2 * — n n=p

EDNPnﬁA [1

Next we consider the lower bounds of SIR in the CDP
model, for simplicity we only consider the case where
k = 2. That is we have two classes Y = land Y = 2.

Theorem 11. For any p > 0, if n > Q(max{d, L;i:})’ then
for any p-CDP algorithm with output v,,;,,, there exists an
instance P with E,p[x] = 0 and if x; ~ P then it satisfies
Assumption 1 and 2 (with high probability), such that

<Uprivav > > Q(g + %) (27)
n2p

Epprall - -2 t] >
[[Upriv |2 n

Here ||v*||2 = 1 is the leading generalized eigenvector of
the corresponding SIR.

Theorem 12. For any p > 0, if n is sufficiently large such
that n > Q(max{slogd, 7%‘;@}) then for any p-CDP
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algorithm with output vp,;,,, there exists an instance P with
E.plx] = 0 and if 2; ~ P then it satisfies Assumption 1
and 2 (with high probability), such that

slogd slogd

<Uprivav*>
Weriv: V)1 5 ) (9

el T T

Ep~pn all

Here ||v*||]2 = 1 is the leading generalized eigenvector of
the corresponding sparse SIR with ||v*||p < s.

7 CONCLUSIONS

In this paper we provided the first study on the theoretical
behaviors of the (sparse) Generalized Eigenvalue Problem
(GEP) in the Differential Privacy (DP) model. Specifically,
we considered both stochastic setting and deterministic set-
ting in the low dimensional and high dimensional sparse
cases. With some additional assumptions, we showed that
our algorithms could achieve near optimal rates of error
under the stochastic setting in both low dimensional and
high dimensional sparse cases. Moreover, we provided the
lower bound of (sparse) GEP in the e-DP model to show a
gap of the problem in the (¢, §)-DP model.

However, there are still several unsolved problems left.
First, from lower bounds and upper bounds of the error
we can see that there is still a gap of Poly(logn) factor.
Thus, can we further improve the upper bounds of error?
Secondly, in the low dimension case, we discussed how to
find an appropriate initial vector privately and efficiently.
However, our approach cannot be extended to the high di-
mensional sparse case since we need to assume the sam-
ple size is large enough such that n >> d, which violates
the high dimension assumption. Thus, how do we find
the initial vector privately in this case? Thirdly, for the
lower bounds we proposed, we only considered the case
for (sparse) PCA with sub-Gaussian distribution, where

p(Ea, k), p(EB, k) = O(y/ Elogd) and || Ealls, || Epll2 =

O(\/g) Thus, our question is, can we provide more

general lower bounds which involve general p(E 4, k) and
p(Eg, k)? Finally, in the lower bound part we mainly fo-
cused on the stochastic setting. In the deterministic setting,
[Dwork et al., 2014] provided the lower bound of PCA in
the low dimension case. However, the lower bound of
sparse PCA is still unknown. We will leave these open
problems as future work.
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