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Abstract

Semi-supervised learning (SSL) promises im-
proved accuracy compared to training classifiers
on small labeled datasets by also training on
many unlabeled images. In real applications like
medical imaging, unlabeled data will be col-
lected for expediency and thus uncurated: pos-
sibly different from the labeled set in classes
or features. Unfortunately, modern deep SSL of-
ten makes accuracy worse when given uncurated
unlabeled data. Recent complex remedies try to
detect out-of-distribution unlabeled images and
then discard or downweight them. Instead, we
introduce Fix-A-Step, a simpler procedure that
views all uncurated unlabeled images as poten-
tially helpful. Our first insight is that even uncu-
rated images can yield useful augmentations of
labeled data. Second, we modify gradient descent
updates to prevent optimizing a multi-task SSL
loss from hurting labeled-set accuracy. Fix-A-
Step can “repair” many common deep SSL meth-
ods, improving accuracy on CIFAR benchmarks
across all tested methods and levels of artificial
class mismatch. On a new medical SSL bench-
mark called Heart2Heart, Fix-A-Step can learn
from 353,500 truly uncurated ultrasound images
to deliver gains that generalize across hospitals.

1 INTRODUCTION

A key roadblock to applying supervised learning to real
applications is the need to assemble a large-enough la-
beled dataset for the intended task. Modern deep learning
pipelines are especially data-hungry. In many cases, the ac-
quisition of a large dataset of unlabeled features is rather
affordable. However, providing reliable labels for each ex-
ample is cost-prohibitive, often requiring expensive, time-
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consuming work from human experts. This tradeoff is espe-
cially apt in our motivating application: classifying medical
images where images are collected in the course of routine
care and easily available by querying a hospital’s electronic
records. However, labeling images often requires clinical
staff with years of training to spend minutes per image.

If only a tiny labeled set is available but we can access
a big unlabeled set of images, one promising approach is
semi-supervised learning (SSL) [Zhu, 2005, van Engelen
and Hoos, 2020]. Recent years have seen amazing progress
on standard benchmarks such as recognizing address digits
from photos of houses (SVHN; Netzer et al. [2011]). With
only 100 labeled examples per digit class, a supervised neu-
ral net’s error rate is roughly 12%. Using a large unlabeled
set, the FixMatch SSL method [Sohn et al., 2020] delivers
error below 2.5%, while even more recent work has pushed
below 2% [Xu et al., 2021, Han et al., 2020].

Unfortunately, common benchmarks like SVHN may be
too optimistic. In real tasks, unlabeled sets will be collected
automatically at scale for convenience, and thus uncurated:
they may differ from the labeled set in terms of represented
classes, class frequencies, or even features. Effective SSL
must improve accuracy despite such uncurated data.

Off-the-shelf SSL using mismatched unlabeled sets often
predicts worse than just ignoring unlabeled data [Oliver
et al., 2018, Calderon-Ramirez et al., 2021]. Recent meth-
ods try to be robust to unlabeled sets that differ from the
labeled set (see Tab. 1). The dominant paradigm is intu-
itive: identify examples in the unlabeled set that are out-
of-distribution (OOD), then remove or downweight them
[Calderon-Ramirez et al., 2022, Chen et al., 2022, He et al.,
2022b]. We find this line of work delivers insufficient gains
in accuracy, while adding complexity due to OOD detec-
tion and discarding a substantial amount of unlabeled data.

This study makes 3 contributions toward robust SSL
backed by reproducible experiments1. First, we challenge
the dominant paradigm of filtering out or downweighting
OOD examples in the unlabeled set. Our experiments sug-
gest that even perfect OOD filtering, which is unrealistic
in practice, does not perform well (see Fig. 3). Instead of

1Code and Heart2Heart data: github.com/tufts-ml/fix-a-step

https://github.com/tufts-ml/fix-a-step
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Figure 1: Diagram of our Fix-A-Step approach, which can be used
to improve accuracy despite uncurated data for any SSL method
(e.g. VAT or FixMatch) that trains via a loss like Eq. (1).

viewing OOD images as probably harmful, we argue for a
new paradigm: OOD images from uncurated unlabeled
sets are possibly helpful.

Second, following this paradigm we introduce a new train-
ing procedure called Fix-A-Step that delivers accuracy
gains from uncurated unlabeled sets. When applied to
repair several deep SSL methods across a range of labeled-
unlabeled class mismatch levels, our Fix-A-Step improves
predictions better than alternative methods while being
substantially simpler and faster too.

Finally, we offer a new SSL benchmark called
Heart2Heart that uses truly uncurated unlabeled med-
ical images and assesses cross-hospital generaliza-
tion. Using three inter-operable open-access datasets –
TMED [Huang et al., 2021b], CAMUS [Leclerc et al.,
2019], and Unity [Howard et al., 2021] – we pursue a
clinically-relevant problem: recognizing the view type of
an echocardiogram image of the heart. Future methods that
learn from limited data can follow our reproducible pro-
tocol. We hope this new Heart2Heart benchmark enables
authentic SSL applications in medicine and ultimately im-
proves care for patients with heart disease.

2 BACKGROUND & RELATED WORK

We pursue semi-supervised learning (SSL) [Zhu, 2005,
van Engelen and Hoos, 2020] for the specific problem
of image classification with deep neural networks [Oliver
et al., 2018]. We can observe images x (represented as
D-dimensional vectors) as well as corresponding labels
y ∈ {1, 2, . . . C} for C classes of interest. The goal is to

train predictors from both a labeled dataset DL of feature-
labeled pairs x, y and an unlabeled dataset DU containing
feature vectors x only.

Training for Deep SSL. While many SSL paradigms
have been tried [Kingma et al., 2014, Kumar et al., 2017,
Nalisnick et al., 2019], the dominant approaches for semi-
supervised training of deep image classifiers today con-
tinue to modify standard objectives for discriminative neu-
ral nets by adding a regularization term using unlabeled
data [Miyato et al., 2019, Sohn et al., 2020]. This approach
trains a neural net probabilistic classifier f with weights w
by solving the optimization problem:

min
w

∑
x,y∈DL`L(y, fw(x)) + λ

∑
x∈DU `U (x;w) (1)

Here, the first term `L is a labeled-set-only cross entropy
loss and the second term `U is a method-specific unlabeled-
set loss. A key hyperparameter is the unlabeled-loss-weight
λ > 0, which balances the two terms. Approaches such as
the Pi-model [Laine and Aila, 2017], Pseudo-Label [Lee,
2013], Mean-Teacher [Tarvainen and Valpola, 2017], Vir-
tual Adversarial training (VAT) [Miyato et al., 2019], and
FixMatch [Sohn et al., 2020] all fit this objective, with vari-
ations in (1) the choice of function for `U ; (2) how data
augmentation may alter images x; (3) procedures within `U

that produce a perturbed image x′ that should be consistent
with x; and (4) optimization routines to solve for w.

Uncurated SSL. Unlabeled sets collected automatically at
scale are by construction uncurated, meaning their contents
(features and true labels) are intended to be similar to the
target labeled set but not carefully validated. When the un-
labeled set contains images from classes other than the C
classes represented in the labeled set, others call this “open-
set” SSL [Yu et al., 2020a]. More formally, if we were to
apply labels to the unlabeled set DU , the set of such la-
bels may include an unknown number of classes beyond
the C known classes in the labeled set, and in the worst
case may not even include any examples from some (or
all) known classes. Open-set SSL is a special case of un-
curated SSL, because a truly uncurated dataset may also
differ (usually slightly) in feature distributions from the la-
beled set. Our CIFAR evaluation focuses on open-set SSL,
our Heart2Heart unlabeled set (Sec. 5) is truly uncurated.

Oliver et al. [2018] designed seminal experiments using
CIFAR-10 images that purposefully build an unlabeled set
(some animals, some not) that is mismatched in class com-
position from the labeled set (all animals). As mismatch in-
creases, many SSL methods (e.g. VAT or Pi-Model) score
worse than a labeled-only baseline that ignores the unla-
beled set. Our later experiments confirm this (Fig. 3 left).

Several approaches have tried to remedy this deterioration,
striving to be robust to open-set unlabeled data. Such meth-
ods are also called safe SSL [Guo et al., 2020], because their
goal is to perform no worse than labeled-set-only methods.



Method Acc. Paradigm Extra Complexity Realistic Eval.
Fix-A-Step (ours) 85.4 OOD helpful none Heart2Heart
TOOR [Huang et al., 2022b] ∗78.5 OOD helpful Separate NN for OOD discrimination none
CL [Cascante-Bonilla et al., 2021] ∗83.0 OOD harmful Multiple rounds of training, each from scratch none
OpenMatch [Saito et al., 2021] 82.3 OOD harmful Extra one-vs-all OOD detector / class none
DS3L [Guo et al., 2020] 74.7 OOD harmful 3x train time due to bilevel optimization none
MTCF [Yu et al., 2020a] 77.0 OOD harmful Extra OOD head, curriculum learning none
UASD [Chen et al., 2020d] ∗78.2 OOD harmful none none
Safe-Student [He et al., 2022a]

†n/a OOD harmful 2 NNs (teacher & student), extra KL loss none

Table 1: Comparison of related work on open-set/safe SSL. Acc means accuracy on the CIFAR-10 6-animal task (defined in Sec. 4) with
400 labeled examples/class and an open-set unlabeled set (50% mismatch). Fix-A-Step uses a FixMatch base model, as does OpenMatch.
Numbers come from our implementation except if marked * (copied from cited paper) or † (not assessed in cited paper). Paradigm: how
each method treats out-of-distribution (OOD) images in the unlabeled set, broadly either possibly helpful or likely harmful (and thus in
need of filtering). Extra Complexity: additional neural networks, layers, or runtime concerns that exceed a standard SSL deep classifier
like MixMatch. Realistic Eval.: evaluation beyond “artificial” unlabeled sets from common datasets like CIFAR, ImageNet, etc.

Tab. 1 summarizes previous works, with further discussion
below. These methods have been evaluated primarily on ar-
tificially mismatched remixes of datasets like CIFAR, and
not yet on uncurated medical data.

Related work: Open-set SSL that filters out OOD. Most
previous work on open-set SSL focuses on detecting then
removing or downweighting OOD samples, assuming these
harm the ultimate accuracy of an SSL classifier [Calderon-
Ramirez et al., 2022, Chen et al., 2022, He et al., 2022b].
Chen et al. [2020d]’s UASD ensembles model predictions
temporally to produce probability predictions for unla-
beled samples, with confidence-based thresholding to fil-
ter out OOD samples. Yu et al. [2020a] propose a multi-
task curriculum learning framework (MTCF) that alter-
nates between updates to NN weights and updates to
anomaly scores used to detect OOD images. Guo et al.
[2020]’s Deep Safe Semi-supervised Learning (DS3L) em-
ploys meta-learning ideas to downweight OOD samples.
Saito et al. [2021]’s OpenMatch unifies FixMatch with
novelty detection to learn representations of inliers while
rejecting outliers. He et al. [2022a]’s Safe-Student use a
teacher-student network that identifies OOD via an energy
discrepancy score, while Bae et al. [2022] filter OOD im-
ages via Bayesian neural networks. These methods have
made notable strides on the class mismatch problem. How-
ever, they focus on reducing possible harm by filtering
OOD images but neglect the potential benefits.

Related work: Open-set SSL beyond filtering. Some re-
cent work tries to detect OOD images but still learn some-
thing useful from them. For example, recent parallel work
by Huang et al. [2022b] suggests OOD images may not be
“completely useless.” Their TOOR method trains a model
to classify in-distribution (ID) versus OOD images, and
then, viewing OOD samples as from a related domain, pur-
sue adversarial domain adaptation to “recycle” OOD sam-
ples. Luo et al. [2021] try to reduce the distribution gap
between ID and OOD samples via style transfer: trans-
formed OOD samples are used as if they were ID sam-

ples in a consistency regularizer. Banitalebi-Dehkordi et al.
[2022] detect ID and OOD samples, then use consistency
regularization on ID samples and entropy maximization
on OOD samples. Huang et al. [2021a]’s pretraining stage
uses all unlabeled samples, yet still filters out OOD sam-
ples later, assuming they would harm classifier accuracy.
Cascante-Bonilla et al. [2021] propose a curriculum label-
ing (CL) approach to SSL. Over several training rounds,
they increase the number of unlabeled images contributing
pseudo-labels, eventually using all images. Yet they conjec-
ture their success is due to an adaptive thresholding scheme
that can “filter the out-of-distribution unlabeled samples”.
In contrast, our work does not need any OOD detector or
filter at all; we treat all unlabeled images equally.

Other distantly related work. Ren et al. [2020] learn a
unique weight for each unlabeled sample for closed-set
SSL. Huang et al. [2021c] focus on cases where both class
and feature distributions are mismatched. Cao et al. [2022]
study transductive learning for SSL in “open worlds” where
novel classes appear in the unlabeled test set.

SSL benchmarks. SSL evaluations continue to focus on
repurposed datasets such as CIFAR-10/100 [Krizhevsky,
2009], or ImageNet [Deng et al., 2009] (Tab. 1). In App. D,
we argue this exclusive focus is insufficient because (1) the
SSL application is artificial, dropping known labels to cre-
ate unlabeled sets and (2) CIFAR specifically suffers from
both label leakage due to perceptual duplicates [Barz and
Denzler, 2020] and incorrect labels [Northcutt et al., 2021].
Some recent efforts strive to more realistically benchmark
SSL algorithms [Su et al., 2021, Wang et al., 2022], but do
not have a medical focus. We hope our Heart2Heart bench-
mark and its truly uncurated unlabeled set helps lead to im-
pactful SSL for medical applications with plentiful images
but hard-to-acquire labels.

Self-supervised learning. Another major way to learn
from unlabeled data is self-supervised learning [Qi and
Luo, 2020]. Self-supervised learning aims at obtaining
good feature representations or good network initialization



without using manual annotations. Recent advance in self-
supervised learning have achieved impressive results in
closing the performance gap with supervised pre-training.
[Chen et al., 2020a, He et al., 2020, Chen et al., 2020c].
While the goal is different, self-supervised learning could
be adapted to semi-supervised learning setting, for example
pre-training on all available data (labeled and unlabeled),
and then fine-tuning on the labeled data [Caron et al.,
2020, Chen et al., 2020b]. However, Saito et al. [2021] re-
ported that self-supervised learning does not help open-set
SSL. We thus focus our experimental comparisons on semi-
supervised methods here, and leave a more comprehensive
investigation of self-supervision for future study.

3 METHODS

We have designed a training procedure for deep SSL clas-
sifiers that we call Fix-A-Step, short for Fix via Augmen-
tation and Step direction modification. Fix-A-Step can be
applied to any SSL method that minimizes an SSL objec-
tive matching Eq. (1) via gradient descent. Its goal is to
make SSL classifiers robust to uncurated unlabeled data.

Fig. 1 illustrates the two key concepts of our approach.
First, unlabeled images, even when uncurated, can be help-
ful in creating useful augmentations of the labeled set by
injecting diversity. Second, we protect against accuracy de-
terioration due to the unlabeled set by modifying the gra-
dient update of neural net weights. We do this not by fil-
tering examples permanently, but by omitting the contri-
bution of a batch’s unlabeled loss gradient if its direction
differs substantially from the labeled loss gradient. These
two ideas are implemented in consecutive phases that oc-
cur when visiting each minibatch during gradient descent
training. Alg. 1 provides pseudocode for Fix-A-Step, with
further details below.

Phase 1: Augmentation. In the Augmentation phase
(lines 3-4), our insight is to use all unlabeled images in
MixMatch-style augmentation [Berthelot et al., 2019] of
the labeled set. We transform each labeled pair (x, y) using
another pair (x′, y′) drawn either from the labeled set or the
unlabeled set. If only x′ is known, we use soft pseudo-label
predictions for y′, see Alg. C.1. Given x, y and x′, y′, we
build a new labeled pair x̃, ỹ via MixUp [Zhang et al., 2017]
(see Alg. C.2). This new pair is used to compute the labeled
loss. We readily acknowledge that the success of MixMatch
for standard closed-set SSL is widely known. However,
for uncurated or open-set SSL, we believe MixMatch-style
augmentation has been underexplored.

Fig 2 shows the performance of standard MixMatch on the
CIFAR-10 6-animal open-set task (Sec 4). The first take-
away is that at each level of class mismatch, MixMatch
works better with OOD samples in the unlabeled set
than without. We call the latter “perfect OOD filtering”.
This suggests the value of augmenting with all unlabeled

Algorithm 1: Fix-A-Step Training
Input: Labeled set DL, Unlabeled set DU (uncurated)
Output: Trained weights w
Procedure

1: for iter i ∈ 1, 2, . . . I until converged do
2: xL,yL,xU ← GETNEXTMINIBATCH(DL,DU )
3: x̃U1 , x̃

U
2 , ỹ

U ← AUG+PSEUDOLABEL(xU ;w, τ)

4: x̃L, ỹL ← MIXMATCHAUG(xL,yL, x̃U1 , x̃
U
2 , ỹ

U ;α)

5: gL ← ∇w`L(x̃L, ỹL;w)
6: gU ← ∇w`U (x̃U1 , ỹU ;w)

7: w ←

{
w − ε(gL + λig

U ) if
∑
d g

L
d g

U
d > 0

w − εgL o.w.
8: end for
9: return w

Hyperparameters (Values marked † tuned for all baselines
as in App. E. No tuning for Fix-A-Step in any experiment.)
• Temperature τ=0.5 for AUG+PSEUDOLABEL (Alg. C.1)
• Beta dist. shape α=0.5 for MIXMATCHAUG (Alg. C.2)
• Step size ε†, Initial weights w, Max iterations I
• Unlabeled-loss weight per iter λ1, . . . λI†

images. The second takeaway is that MixMatch-style aug-
mentation alone is not enough: beyond 25% mismatch,
the labeled-set only baseline matches or beats MixMatch.
Augmentation does not guard against the possible harm
caused the unlabeled loss term, especially with OOD ex-
amples [Saito et al., 2021].

Fix-A-Step combines augmentation (phase 1) with protec-
tion against accuracy deterioration from the unlabeled loss
(phase 2, described below) to “repair” SSL base models.
A final takeaway from Fig. 2 is that Fix-A-Step can repair
a nine-year-old method, Lee [2013]’s Pseudo-label, to beat
MixMatch across all mismatch levels. While we tune hy-
perparameters for MixMatch here (see App. E), to compare
fairly we do not tune hyperparameters for Fix-A-Step.
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Figure 2: Demo of benefits of Phase 1 (MixMatch using all un-
labeled images, even OOD) and Phase 2 (step direction), on
CIFAR-10 6-animal task (400 examples/class). Results average
across 5 train/test splits (shaded area shows standard deviation).



Phase 2: Step direction modification. We address the pos-
sible harm from the unlabeled loss in phase 2 (lines 5-7 of
Alg. 1), by modifying how neural net weights are updated.
The idea is to only use gradient information from the unla-
beled loss if it improves labeled-set performance.

At each batch, we compute two gradient vectors, one for
each term in the loss: Let gL = ∇w`L and let gU = ∇w`U .
Our Fix-A-Step update for weights w using step size ε is

w ←

{
w − ε(gL + λgU ) if

∑
d g

L
d g

U
d > 0

w − εgL otherwise.
(2)

In the top case, we do the standard steepest descent update
that minimizes the two-term SSL objective in Eq. (1). In the
bottom case, we perform an alternative update, using only
the labeled-term gradient. This two-case construction tries
to ensure that SSL learning does not harm labeled set per-
formance by “turning off” the gradient from an unlabeled
batch when it interferes with the labeled loss. We give geo-
metric intuition below, then formally show that the gradient
update in Eq. (2) always move weights w in a descent di-
rection for the labeled set loss at the current minibatch.

Geometric intuition for Phase 2. Recall that two vectors
gL and gU have positive inner product (top case update)
only if the angle between the vectors is below 90 degrees,
meaning their directions are similar. At angles larger than
90 (bottom case), gL and gU are pointing in different direc-
tions, and minimizing the unlabeled loss would hinder the
labeled loss. In SSL, we care most about (heldout) classifier
accuracy. Any improvement on the unlabeled loss is useful
only if it helps improve accuracy. When gU points in a dif-
ferent direction than gL, our update ignores the unlabeled
gradient and updates weights w using only gL.

Definition 1: Descent direction of loss `. For any loss
function ` for weight parameter vector w ∈ RD, a vector
v ∈ RD is a descent direction of ` at w if the inner product
satisfies vT∇w` < 0 [Boyd and Vandenberghe, 2004].

Lemma 1: The update in Eq. (2) steps in a descent di-
rection of the labeled loss `L at the current minibatch.
We prove for each case in Eq. (2). Top case: By assump-
tion, λ > 0 and the inner product

∑
d g

L
d g

U
d is positive.

This implies that v=− (gL + λgU ) is a descent direction:

vT gL = −
∑
d(g

L
d )

2︸ ︷︷ ︸
always negative

−λ
∑
d g

L
d g

U
d︸ ︷︷ ︸

pos. by assumption

< 0. (3)

Bottom: −gL is a descent direction for `L by definition.

While Lemma 1 provides a justification for our approach,
we cannot guarantee the labeled loss will decrease after
each step, for the same reasons that stochastic gradient de-
scent (SGD) does not always decrease the loss after each
update: First, a descent direction of a minibatch may not
be a descent direction of the entire dataset. Second, step
size matters; if ε > 0 is too large, the loss may increase.
Nevertheless, with proper step size tuning, SGD has been

wildly successful by following minibatch-specific descent
directions. Thus far, we find Fix-A-Step also successful.

Inspiration from multi-task learning. Our step direction
modification in Eq. (2) was developed independently but is
similar to previous algorithms for multi-task learning with
a “main” task and an “auxiliary” task [Du et al., 2020]. Oth-
ers have explored variations of this “gradient surgery” [Yu
et al., 2020b]. To our knowledge, such ideas have not yet
been suggested or validated for closed-set or open-set SSL.

Inspiration from continual learning. Our step modifi-
cation phase is also inspired by the Transfer-Interference
trade-off [Riemer et al., 2018, Lopez-Paz and Ranzato,
2017]. This trade-off measures whether learning from one
example will improve or impair learning on another exam-
ple. These works formally define transfer as the case where
the inner product of each example’s loss gradient with re-
spect to weights is positive, and interference as the case
where the inner product is negative. Other continual learn-
ing work also pursues this direction [Chaudhry et al., 2018,
He and Jaeger, 2018, Zeng et al., 2019, Farajtabar et al.,
2020]. We extend this transfer-interference idea to SSL.

Simplicity compared to related work. We emphasize a
key advantage of Fix-A-Step is extreme simplicity. Beyond
the modest cost of MixMatch-like augmentation, we com-
pute exactly the same losses and gradients as any standard
deep SSL solving Eq. (1). Each possible weight update is
straightforward. Determining which update to use depends
only on an inner product, adding negligible runtime cost.
Table 1 suggests Fix-A-Step is favorable to other open-set
SSL approaches in its simplicity. There is no added com-
plexity from extra backward passes, no extra neural net-
works that must be trained for OOD discrimination, no
need for curriculum learning, and no expensive bi-level op-
timization problem to solve. Simplicity leads to faster train-
ing (App. A.5, B.1) and (hopefully) easier adoption.

Synergy between Phase 1 and 2. One might wonder if
our step direction modification in Phase 2 leads to overfit-
ting the labeled loss. We argue that Phase 1’s augmentation
should protect against overfitting, and our experiments thus
far suggest overfitting is not a major concern.

4 EXPERIMENTS ON CIFAR

Our open source code uses PyTorch [Paszke et al., 2019]
and allows reproducing each experiment (see App. E). Fol-
lowing Oliver et al. [2018], for all methods we use the same
Wide ResNet-28-2 [Zagoruyko and Komodakis, 2016], ap-
ply standard augmentation (random crops, flips) on the la-
beled set, and regularize via weight decay.

Hyperparameters. All baselines use well-tuned hyperpa-
rameters for CIFAR-10 suggested by previous work (see
App. E). If a baseline underperformed, we retuned to max-
imize validation set accuracy. To be sure our reported gains
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Figure 3: Accuracy on CIFAR-10 6 animal task. Accuracy on test images of animals (y-axis) as unlabeled set mismatch (percentage
of non-animal classes represented, x-axis) increases. Column 1 (from left): Previous SSL methods trained in standard fashion. Col. 2:
SSL methods trained with our Fix-A-Step. Col. 3: SSL methods with perfect OOD filtering of the unlabeled set (removing all non-
animal images before training). Col. 4: Previous methods designed for open-set or safe SSL. UASD and CL (marked ∗) taken from its
publication, others from our experiments. Top row: 400 examples/class; Bottom: 50 examples/class.

are meaningful, we did no hyperparameter tuning at all for
Fix-A-Step, fixing α = 0.5, τ = 0.5 throughout and inher-
iting other hyperparameters from the base SSL method.

SSL baselines. We compared to 6 closed-set SSL meth-
ods (Pi-Model, Mean-Teacher, Pseudo-label, VAT, Mix-
Match, and FixMatch) as well as the baseline that mini-
mizes labeled loss `L on the labeled set (“labeled-only”).
We also compare to 5 state-of-the-art methods intended for
open-set/safe SSL: UASD [Chen et al., 2020d], DS3L [Guo
et al., 2020], MTCF [Yu et al., 2020a], OpenMatch [Saito
et al., 2021] and Curriculum-labeling [Cascante-Bonilla
et al., 2021]. If possible, we use our own implementations
of baselines, ensuring architectures, training, and hyper-
parameters are comparable and reproducible. If a result is
copied from another paper, we mark with an asterisk (∗).

Training. Following choices in original implementations,
each method is trained using either Adam with fixed learn-
ing rate or SGD with a cosine-annealing schedule for learn-
ing rate [Sohn et al., 2020]. We found cosine-annealing
and a slow linear ramp-up schedule for the unlabeled-
loss-weight λ particularly helpful for several baselines (see
App. E). Each training run used one NVIDIA A100 GPU.

4.1 CIFAR-10 Protocol and Results

6-animal task for CIFAR-10. We pursue the “6-animal”
task designed by Oliver et al. [2018] to artificially create
unlabeled sets at different levels of mismatch with the la-

beled set. We build a labeled set of the 6 animal classes
(dog, cat, horse, frog, deer, bird) in CIFAR-10, across two
training set sizes: 50 labeled images per class and 400 per
class. We form an unlabeled set of ∼4100 images/class
from 4 selected classes, some animal and some non-animal
(car, truck, ship, airplane). The percentage of non-animal
classes is denoted by ζ. If ζ = 0%, we recover the standard
“closed-set” SSL setting. At ζ = 100%, the unlabeled set
has no classes in common, and the OOD-filtering paradigm
suggests that we should ignore the unlabeled set entirely.
For details on the unlabeled set construction, see App. A.1.

Results on 6-animal. In Fig. 3, we compare the accuracy of
different methods at recognizing the 6 animal classes in the
test set, as the mismatch percentage ζ increases. Across two
different training set sizes (rows), we compare 4 different
training scenarios (columns, best read left to right): meth-
ods trained in the standard way (“off-the-shelf”), methods
trained using Fix-A-Step, methods trained in the standard
fashion but with perfect OOD filtering applied to the unla-
beled set before training so that only known-class samples
remain, and methods intended for safe SSL. The perfect
OOD filtering column essentially shows the best-possible
case for methods under the OOD-is-harmful paradigm.

We highlight several findings from Fig. 3:

1. Fix-A-Step improves all SSL methods in almost all
settings. Despite its relative simplicity, Fix-A-Step is quite
effective, as seen in the raised accuracies from the first to



the second column across almost all methods and ζ values.
Fix-A-Step with FixMatch base outperforms all other safe
SSL methods (4th col.) for all mismatch levels ζ > 0%.
In Fig. A.3, we further demonstrate that Fix-A-Step’s gains
are robust across multiple random train/test splits.

2. Perfect OOD filtering is not enough. The third column
shows that perfect OOD filtering delivers underwhelm-
ing accuracy compared to Fix-A-Step for all ζ > 0. Our
method’s gains over perfect filtering suggest that trying to
benefit from OOD samples is more useful than filtering
them. We suggest several explanations for the poor per-
formance of perfect filtering, such as class imbalance even
among known classes in the unlabeled set [Kim et al., 2020,
Lai et al., 2022], sensitivity to hyperparameters [Su et al.,
2021, Sohn et al., 2020], or perhaps how unlabeled data
may affect the training via batchnorm [Zhao et al., 2020].
More work is needed to understand this phenomenon.

3. Fix-A-Step is faster than alternatives. For example,
in the 400 examples/class ζ = 50% setting, using Fix-A-
Step with a Mean-Teacher base delivers similar accuracy to
OpenMatch (81.08 vs 79.62) while requiring less than half
the training time (22 vs. 47 hr., App A.5).

4.2 CIFAR-100 Protocol and Results

50-class task for CIFAR-100. Using the larger CIFAR-100
dataset, we follow the open-set SSL experimental design of
Chen et al. [2020d] to create a ζ = 50% class distribution
mismatch scenario by using classes 1-50 as labeled classes,
and classes 25-75 as unlabeled classes. To assess a more
extreme level of unlabeled set “contamination”, we further
create a 100% class distribution mismatch scenario: classes
1-50 are labeled classes; classes 51-100 unlabeled.

Results on CIFAR-100 50-class. Fig. 4 compares “off-the-
shelf” SSL methods using standard training (blue bars) and
Fix-A-Step (orange). We see consistent gains at both 50%
and 100% mismatch, even without tuning hyperparameters.

4.3 Ablations and Sensitivity Analysis

Ablations. We quantify how each of Fix-A-Step’s two key
components (Augmentation and Gradient step modifica-
tion) perform in isolation. Tab. 2 compares accuracy on the
6 animal task at 400 examples/class and ζ = 100%. Gradi-
ent step modification alone increases accuracy around 0.5
to 1.5% across five base SSL methods. Augmentation alone
increases accuracy around 2.5 to 4.5%. When combined, we
consistently see the largest gains. Although we didn’t tune
hyperparameters, we expect enlarging batch size may lead
to more gain from gradient step modification, since it gives
less noisy estimates of the gradient alignment. For further
results at other mismatch levels, see App. A.

Sensitivity analysis. There are two hyperparameters
unique to Fix-A-Step: sharpening temperature τ>0 and

Pi-Model MT VAT Pseudo FixMatch
off-the-shelf 73.90 73.75 73.87 75.45 78.45
+G only 74.50 74.33 75.35 75.92 79.73
+A only 77.25 78.38 77.87 77.88 81.53
+A&G (ours) 79.18 79.23 78.52 78.72 82.73

Table 2: Ablations for CIFAR-10 6 animal task, reporting accu-
racy for each SSL method (columns) if we only use our augmen-
tation (+A), only use our gradient step modification (+G), or use
the combination (+A&G) that defines Fix-A-Step. We bold the
best result and all others within 1 percentage point. Setting: 400
examples/class, ζ = 100%.

the Beta shape α>0. For simplicity, we set α=0.5 and
τ=0.5 throughout. Since deep SSL is often sensitive to hy-
perparameters, we further analyse other possible choices:
α∈{0.5, 0.75} and τ∈{0.5, 0.95}. Fig. A.4 shows that
Fix-A-Step delivers consistent and similar accuracy gains
across all tested α, τ settings, and thus does not appear
overly sensitive.

5 EXPERIMENTS ON HEART2HEART

In pursuit of realistic evaluation, we consider a re-
producible, clinically-relevant SSL task that we call
Heart2Heart. The key question is this: can we transfer clas-
sifiers trained on ultrasound images of the heart from one
hospital system to new heart images from unrelated hospi-
tals in other countries. For training, we use the Tufts Med-
ical Echocardiogram Dataset 2 (TMED-2) [Huang et al.,
2022a, 2021b], collected in Boston, USA. TMED-2 has a
small labeled set of echocardiogram studies and a larger un-
curated unlabeled set. Thanks to common device standards,
these images are interoperable with two other datasets of
“echo” images: Unity from 17 hospitals in the UK [Howard
et al., 2021] and CAMUS from a hospital in France [Leclerc
et al., 2019]. We emphasize that all datasets are deidentified
and accessible to any academic researcher.

Classification task: View type of 2D TTE image. Trans-
thoracic echocardiography (TTE) is a gold-standard way to
non-invasively capture the heart’s 3-dimensional anatomy
for measurement and diagnosis. A human sonographer
wields a handheld transducer over the patient’s chest at
different angles in order to provide clear views of each
facet of the heart. A routine TTE scan of a patient, called
a study, produces many images (median=68, 10-90th per-
centile range=27-97 in TMED-2), each showing a canon-
ical 2D view of the heart. No view type annotation is
recorded with any image. In later analysis, clinicians man-
ually search over all images to find a desired view type.
Automated interpretation of echocardiograms must also
be able to pick out specific view types before any use-
ful measurements or diagnosis can be made, making view
classification a prediction task with potential clinical im-
pact [Madani et al., 2018a, Huang et al., 2021b].

TMED-2 provides set of labeled images of four specific
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Figure 4: Accuracy on CIFAR-100 50-class task. Each bar represents the accuracy of a method with either off-the-shelf training (blue)
or Fix-A-Step (orange). We try 2 scenarios: 50% labeled/unlabeled class mismatch (left panel) and 100% class mismatch (right). All
numbers were produced by our implementation except those marked ∗ (UASD).
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Figure 5: Balanced accuracy for echocardiogram view classification (Heart2Heart benchmark). Methods are trained on TMED-2
images to distinguish 4 view types: PLAX, PSAX, A2C, and A4C. TMED2’s 353,500 image unlabeled set is uncurated, representing
a superset of possible view types including the 4 known classes. Bar height gives mean balanced accuracy across 3 models trained on
different splits of TMED-2 (error bars indicate min/max). Left: Evaluation on heldout TMED-2 images. Center: Evaluation of TMED-
2-trained classifiers on PLAX, A2C, and A4C images from Unity dataset (17 sites in the UK). Right: Evaluation of TMED-2-trained
classifiers on A2C and A4C views from CAMUS dataset (1 site in France).

view types, known as PLAX, PSAX, A2C, and A4C, gath-
ered from certified annotators. Reliably identifying these
views would be particularly useful for key valve disease di-
agnostic tasks [Huang et al., 2021b, Wessler et al., 2023].
TMED-2 also contains a truly uncurated unlabeled set of
353,500 images from routine TTEs from 5486 patient-
studies. At least 9 canonical view types frequently appear
in routine TTEs [Mitchell et al., 2019], so this unlabeled set
should contain extra classes not in the labeled set. However,
this view classification problem on TMED-2 is more than
just “open-set” SSL, because TMED-2 labeled and unla-
beled sets were not identically sampled from the same pa-
tient population, which leads to some modest feature dif-
ferences. Unlabeled echos come from all available files for
convenience, while the the labeled set deliberately over-
samples patients with a valve disease called aortic stenosis
(AS). About 50% of all patients in the labeled set have se-
vere AS, compared to less than 10% in the general popula-
tion. For severe AS patients, PLAX and PSAX images will
show heavier calcification (thickening) of the aortic valve.

Protocol. Averaging over TMED-2’s recommended 3
splits, we train each SSL method on images from 56 la-
beled studies as well as all unlabeled studies (353,500 im-
ages). We report balanced accuracy on each split’s test set
of 120 studies (∼2104 images). We then assess generaliza-
tion of these Boston-based classifiers to images from Euro-

pean hospitals. We report balanced accuracy on 7231 avail-
able PLAX, A2C, and A4C images from Unity, as well as
all 2000 images (A2C and A4C views) in CAMUS.

Results on Heart2Heart. Fig. 5 shows classifier perfor-
mance on held-out data from all 3 datasets. TMED-2 eval-
uations (first panel) show that our Fix-A-Step procedure
yields gains across all tested SSL methods (Pi-Model, VAT,
FixMatch). Fix-A-Step helps all three methods convinc-
ingly outperform the labeled-only baseline. Compared to
OpenMatch, a state-of-the-art safe SSL method, Fix-A-
Step yields better accuracy while being much simpler. We
also find that Fix-A-Step delivers competitive accuracy
considerably faster (∼2-3x speedup, See App. B.1).

External evaluation on Unity and CAMUS (Fig. 5 panels
2-3) show that these gains transfer to new hospitals. Each
tested SSL method performs better with Fix-A-Step than
standard training. Across splits we see larger performance
variation on Unity and CAMUS than on TMED-2, which
highlights the difficulty of generalizing across hospitals as
well as importance of external validation. All methods per-
form worse on CAMUS than other datasets; see App. B
for further investigations. Overall, this Heart2Heart bench-
mark task shows the promise of Fix-A-Step to deliver gains
from unlabeled data that generalize better than alternatives.



6 DISCUSSION

In summary, this paper makes three contributions to deep
SSL image classification. First, we argue that uncurated or
OOD data in the unlabeled set can be helpful, and should
not merely be filtered out. Experiments in Fig. 3 show that
even with perfect OOD filtering most SSL methods de-
liver underwhelming accuracy gains. Second, we introduce
a new training procedure called Fix-A-Step that achieves
state-of-the-art SSL performance on uncurated unlabeled
sets while being faster and simpler (no new loss terms or
extra neural nets). Finally, we hope our new Heart2Heart
benchmark for SSL evaluation inspires robust studies of
clinical model transportability across global populations.

Limitations. Our work’s exclusive focus is image classi-
fication. More work is needed to try Fix-A-Step on other
data types like time series. Our experiments on artificial
unlabeled sets in Sec. 4 focused exclusively on mismatch
in the labels. We did not systematically explore how shifts
in the features x between the labeled and unlabeled set im-
pact performance, though we do emphasize that TMED-2’s
uncurated unlabeled set likely has such shifts due differ-
ent acquisition criteria (see Sec. 5). Fix-A-Step’s phase 2
step modification does not guarantee accuracy gains, only
protects against possible deterioration. Omitting unlabeled
loss gradients because of harm to a minibatch labeled loss
may miss a chance to improve accuracy globally. Recently,
Schmutz et al. [2022] found that the optimal choice of the
unlabeled loss coefficient λ depends on the covariance ma-
trix between gL and gU , which might provide another way
to consider the step modification phase.

Impact statement. Work on SSL is often motivated by its
promise in medical imaging [Huang et al., 2021b, Madani
et al., 2018b]. Our Heart2Heart evaluation shows a proof-
of-concept for generalization of ultrasound view classi-
fiers across hospitals. More work is needed to rigorously
assess generalizability and translate to improved patient
care. Extra effort is needed to avoid widening current dis-
parities [Celi et al., 2022], as the data sources in our
Heart2Heart benchmark do not reflect the geographic and
racial diversity of many patient populations.

Outlook. Fix-A-Step is a promising new first-line approach
to SSL that can unlock the promise of uncurated unlabeled
sets. We hope future work explores augmentation and step
direction further, while extending our focus on simplicity,
reproducibility, and possible benefits of OOD images.
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Supplementary Material

In this supplement, we provide:

• Sec. A: CIFAR Experiments: Further Details, Results, and Analysis

• Sec. B: Heart2Heart Experiments: Further Details, Results, and Analysis

• Sec. C: Methods Supplement: Algorithms for AUG+SOFTLABEL and MIXMATCHAUG

• Sec. D: Related Work Supplement: Further Discussion and Analysis

• Sec. E: Reproducibility Supplement: Hyperparameters, Settings, etc.

A CIFAR EXPERIMENTS: Details, Results, and Analysis

A.1 CIFAR-10 6-animal task mismatch description

In Table A.1 we define which classes form the labeled and unlabeled set at each level of mismatch for the CIFAR-10 6
animal task. This exactly follows Oliver et al. [2018] and creates more challenging scenarios than other “mismatch” tasks
on CIFAR-10 tried previously (for example, [Saito et al., 2021] examine a case with all 10 classes in the unlabeled set).

Labeled set Unlabeled set
ζ = 0% Bird, Cat, Deer, Dog, Frog, Horse Deer, Dog, Frog, Horse
ζ = 25% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Dog, Frog, Horse
ζ = 50% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Frog, Horse
ζ = 75% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Ship, Horse
ζ = 100% Bird, Cat, Deer, Dog, Frog, Horse Airplane, Car, Ship, Truck

Table A.1: Definition of labeled/unlabeled class mismatch scenario in CIFAR-10 6 animal task. We bolded the non-animal classes
in unlabeled set that are not in the labeled set. All included classes are represented with equal frequency.

A.2 Ablation Study across different level of contamination

Expanding on the ablation table in the main paper, in Tab. A.2 we show ablation comparisons (augmentation only, gradient
step modification only, or both) across all tested values of the mismatch in labeled-vs-unlabeled class content ζ.

Mismatch ζ = 0% Mismatch ζ = 25%
+A only +G only +A&G (Fix-A-Step)

Pi-Model 78.32 81.90 78.48 82.83
Mean-Teacher 79.57 84.18 80.60 83.02

VAT 79.15 83.88 79.47 83.10
Pseudo-label 77.43 79.03 78.30 79.98

FixMatch 86.40 86.35 86.17 88.00

+A only +G only +A&G (Fix-A-Step)
Pi-Model 77.45 79.12 78.00 79.80

Mean-Teacher 77.70 81.35 78.28 87.77
VAT 76.65 82.27 78.35 82.63

Pseudo-label 76.58 79.28 77.25 79.60
FixMatch 83.20 84.44 83.85 86.63

Mismatch ζ = 50% Mismatch ζ = 75%
+A only +G only +A&G (Fix-A-Step)

Pi-Model 76.03 78.70 76.57 78.97
Mean-Teacher 76.35 82.22 78.18 80.15

VAT 75.90 79.43 77.37 79.56
Pseudo-label 75.42 78.33 75.65 78.77

FixMatch 81.60 83.28 81.80 85.45

+A only +G only +A&G (Fix-A-Step)
Pi-Model 75.00 77.82 74.77 79.35

Mean-Teacher 74.33 79.63 74.52 81.08
VAT 74.87 80.82 75.20 81.20

Pseudo-label 76.85 78.38 77.15 78.83
FixMatch 81.05 83.03 81.33 84.75

Table A.2: Ablation analysis on CIFAR-10 6 animal task, examining how accuracy changes for each SSL method if we only use our
augmentation (+A), only use our gradient step modification (+G), and use the combination (+A&G) which constitutes our Fix-A-Step.
Each panel shows results for a fixed value of the mismatch percentage ζ describing the overlap in classes between labeled and unlabeled
set. For each method, we bold the best result. Setting: 400 examples/class.



A.3 Robustness of results across multiple train/test splits

In the main paper, we report results on CIFAR-10 6 animal task across many baselines methods. For each baseline, we use
only one train/test split due to the huge computation required to compare all baselines. In Fig. A.3, for a subset of methods
we assess the robustness of the conclusions of that experiment across multiple separate training/test splits.

We train the labeled-set-only baseline, FixMatch with and without Fix-A-Step, and Mean-Teacher with and without Fix-
A-Step for 5 random splits of the data, across two levels of mismatch (ζ = 50% and ζ = 100%). Results are in Fig. A.3.
Broadly, we suggest that our conclusion that Fix-A-Step delivers successful accuracy gains holds even across 5 splits: both
FixMatch and MeanTeacher show notable gains across both levels of mismatch ζ. Notably, MeanTeacher plus Fix-A-Step
appears quite competitive with off-the-shelf FixMatch, and FixMatch plus Fix-A-Step is the best of all.
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Figure A.3: CIFAR10, 400 examples/class. Bar height indicates the average across 5 random splits of the data. Error bars show the
standard deviation across 5 splits.

A.4 Sensitivity to hyperparameters

Since Deep SSL methods could be sensitive to hyper-parameters, we conduct sensitivity analysis to see how Fix-A-Step
behave under different choice of sharpening temperature τ and Beta distribution shape α. We analyzed the performance of
Fix-A-Step using a Mean-Teacher base model across several reasonable choices of MixUp parameter α∈{0.5, 0.75} and
sharpening temperature τ∈{0.5, 0.95} (totally 4 combinations). (See. Alg. 1 for hyperparameter definitions). Results in
Fig. A.4 shows that Fix-A-Step’s performance gains over the off-the-shelf (or “vanilla”) Mean Teacher base do not appear
overly sensitive to these hyperparameters.
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Figure A.4: CIFAR10, 400 examples/class. Vanilla MT: Mean teacher SSL base model. Fix-A-Step MT1: MT base Fix-A-Step with
τ = 0.5 , α = 0.5, . Fix-A-Step MT2: MT base Fix-A-Step with τ = 0.95, α = 0.75. Fix-A-Step MT3: MT base Fix-A-Step with
τ = 0.5, α = 0.75. Fix-A-Step MT4: MT base Fix-A-Step with τ = 0.95, α = 0.5. Results average across 5 random split of the data.
Error bar showing standard deviation across the 5 split.



A.5 Comparison of computation cost and performance

Methods ζ = 25% ζ = 50% ζ = 75%
Acc Runtime Acc Runtime Acc Runtime

MT+Fix-A-Step 81.77 1476 80.15 1331 81.08 1333
VAT+Fix-A-Step 82.63 1662 79.56 1691 81.20 1681

OpenMatch 85.45 2728 79.56 2803 79.62 3270

Table A.5: Comparison of runtime and test accuracy on CIFAR-10 6 animal task. Setting: 400 example/class. Mismatch percentage
ζ describes the overlap in classes between labeled and unlabeled set. Runtime (in minutes) is based on training same number of steps on
a Nvidia A100 GPU.

B HEART2HEART EXPERIMENTS: Details, Results, and Analysis

B.1 Comparison of computation cost and performance

Methods split0 split1 split2
Acc Runtime Acc Runtime Acc Runtime

Pi-model+Fix-A-Step 95.33 233 95.08 240 95.73 218
VAT+Fix-A-Step 95.58 392 95.30 343 95.66 356

OpenMatch 94.54 1244 94.59 1282 93.22 879

Table B.1: Comparison of runtime and test balanced accuracy on TMED-2 view classification task. Runtime in minutes. Each
model is trained on a Nvidia A100. In practice, we found OpenMatch converges slower than alternatives compared, we thus train about
2x more iterations for OpenMatch (otherwise its accuracy performance would be worse).

B.2 Preprocessing TMED-2 data

We applied for access to the TMED-2 data via the form on the website (https://TMED.cs.tufts.edu), and down-
loaded the shared folder of data from the provided cloud-based link after approval. Images (as 112x112 PNG images) and
associated view labels (in CSV files) are readily available in the provided shared folder for download.

Train/validation/test splits. To form our labeled sets for training, we used the provided train/test splits of the fully-labeled
set with the smallest training set size (56 studies available for both training and validation). While larger labeled training
sets are possible, we selected this smaller size as the most compelling use case for SSL. We wanted to answer the question:
how well can we do with very little labeled data but a large pile of unlabeled data.

View label selection. Among available view labels, we chose PLAX, PSAX, A4C, and A2C as the 4 classes to focus on for
our Heart2Heart view type classifier. The original TMED-2 labeled set, as described in Huang et al. [2022a], contains an
additional view type label that they called A2CorA4CorOther, which is a super-category that contains possible view types
distinct from PLAX and PSAX (including A2C, A4C, and other possible classes like A5C). For simplicity, we excluded
that class in our Heart2Heart experiments.

B.3 Preprocessing Unity data

We downloaded the Unity data by going to their website (https://data.unityimaging.net). Once at their web-
site, go to the ’Latest Data Release’ section and download the images. For the view labels, go to https://data.
unityimaging.net/additional.html and download the csv file under the ’View’ section.

In the Unity dataset, along with PLAX, A2C, and A4C views, there are also A3C and A5C. For the purposes of these
experiments, we filtered out all A3C and A5C images.

Disclaimer: These view labels were done by one human so there may be some errors in the labeling.

The raw Unity data came in .png format, so first we converted all the pngs to a tiff format. Then we converted them to
gray-scale, padded the shorter axis to achieve a square aspect ratio, and resized it to 112 x 112 pixels.

https://TMED.cs.tufts.edu
https://data.unityimaging.net
https://data.unityimaging.net/additional.html
https://data.unityimaging.net/additional.html


B.4 Preprocessing CAMUS data

We acquired the CAMUS data by going to their website (http://camus.creatis.insa-lyon.fr/
challenge/#challenges). Once you get to their website, link on the first link, register on that website, and then
you’ll be free to download the dataset.

In the CAMUS dataset, in addition to having view labels (’2CH’ in their dataset is ’A2C’ and likewise ’4CH’ is ’A4C’),
they also label whether the view was taken in the end diastolic (ED) or end systolic (ES) portion of the cardiac cycle. We
separated and took note of these labels, but we found no significant differences in the results.

The raw CAMUS data came in .mhd format, a special file types used specifically for medical imaging. Through conversa-
tions with data creators, we discovered that the resolution for these images was lower in the x direction than the y direction
and the way .mhd files compensate for a lower resolution is by adjusting the space between the pixels in that direction
(indicated by the ’Element Spacing’ field). In order to convert to a standardized tiff file representation (where the spacing
between pixels is uniform across width and height) we shrank the image in the y direction as:

y∗ =
y · sy
sx

(4)

where y is the original location (number of pixels) in the y direction, sy and sx are the spacing of pixels in the y and x
directions (as given in the Element Spacing metadata), and y∗ is the new location the y direction.

After this transformaion, the images were converted them to gray-scale, padded the shorter axis to achieve a square aspect
ratio, and resized to 112 x 112 pixels.

B.5 Further investigation of CAMUS performance

In our main paper’s Fig. 5, we assess how well our TMED-2-trained models, which get balanced accuracy in the range
92 − 96% on TMED-2 test set, generalize to other external datasets. The models did reasonably generalize to the Unity
dataset (balanced accuracy ranges from 90− 94%), however on the CAMUS dataset we saw all methods reach somewhat
surprisingly lower overall performance (balanced accuracy 60 − 85%), though the relative ranking of different methods
was similar.

Visualizing differences. To investigate, we visually compared images from TMED-2, Unity, and CAMUS. While Unity
and TMED-2 looked similar, when comparing TMED-2 and CAMUS there are clear discrepancies in pixel intensity, likely
from the use of a different ultrasound machine and different conventions standard intensity values and normalization. Fig.
B.2 below provides sample images of the two datasets and a summary histogram of pixel intensity (aggregated across all
images).

Idea: Simple quantile transformation. To quickly try to remedy this discrepancy, we tried to transform the CAMUS
images such that the pixel intensity distribution more closely resembles that of TMED-2. In this transformation, we first
mapped all the target pixels to its empirical quantile (value between 0-1) and then we mapped that value to a pixel intensity
in the source (TMED-2) images via the empirical inverse CDF. To see the effects of this transformation on the CAMUS
images and on the pixel intensity histogram, look at the right-most panel of Fig. B.2

Figure B.2: A sample of images from the TMED-2 dataset, CAMUS dataset, and the same CAMUS pictures except under a pixel
transformation to match the pixel intensity of TMED-2

http://camus.creatis.insa-lyon.fr/challenge/#challenges
http://camus.creatis.insa-lyon.fr/challenge/#challenges


Results after transform. The accuracy of the TMED-2-trained classifiers on both untransformed and transformed CAMUS
data can be viewed in Fig. B.3. Like we said in the main paper, Fix-a-Step clearly improves SSL models in classifying
CAMUS view types for the untransformed data. However, while the transformation itself seems to help model performance
overall, Fix-a-Step doesn’t seem to help as much in the transformed dataset (some gains for VAT, but both FixMatch and
Pi-model the before-after difference seems negigible). Importantly, Fix-A-Step is still competitive with its base method,
just not notably superior to it. Much more work is needed here. In the future, we hope to explore other ways to improve
performance on the CAMUS dataset so it reaches accuracy levels seen in the Unity dataset.
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Figure B.3: Evaluation of the SSL methods from the paper on untransformed and transformed CAMUS images

Further investigation: Differences across splits. After investigating the results of the three data splits, we noticed that the
first split seemed to significantly under perform on the CAMUS dataset, specifically with the A4C class. When we took a
look at the Unity data for this split, we also noticed that, while the discrepancy wasn’t as drastic, the A4C class did under
perform when compared to the other classes. These results can be clearly seen in Tab. B.4. In all method-dataset pairs,
A4C performs significantly worse than other classes.

A hypothesis we have is that this data split significantly under represents A4C and thus is not able to predict it as well. The
reason why we don’t see TMED-2 and Unity significantly under perform in this split in terms of total balance accuracy
is because the other classes are a significant portion of their test sets so they’re not as affected by A4C under performing;
however, 50% of CAMUS is A4C, so that dataset is affected to a higher degree. However, we are unsure as to why the
A4C class accuracy in CAMUS does significantly worse than the A4C class accuracy in Unity. We will investigate this
discrepancy further in the future. We think this open problem makes our Heart2Heart benchmark especially interesting.

Methods CAMUS Unity
A4C A2C A4C A2C PLAX

Labeled-Only 28.8 98.0 76.9 93.3 96.1
Pi-model 27.1 96.8 81.9 93.1 98.2

Pi-model w/ FAS 45.4 98.0 87.5 94.1 99.6
VAT 26.6 98.3 77.0 93.1 97.7

VAT w/ FAS 27.5 99.4 84.6 96.2 95.5
Fix-Match 34.1 96.0 79.8 94.8 96.9

Fix-Match w/FAS 36.3 97.9 83.5 95.2 99.0

Table B.4: Class accuracies for data split 1 across methods for the Unity dataset and untransformed CAMUS dataset. Bolded are
the lowest class accuracies for each dataset-method pair.

C METHODS SUPPLEMENT

Here, we provide implementation details of the two subprocedures in our Fix-A-Step training (Alg. 1). Both procedures
were originally proposed by MixMatch [Berthelot et al., 2019], we provide them here in common notation as the rest of
our paper for clarity.

First, the algorithm AUG+SOFTLABEL is in Alg. C.1. This procedure consumes a batch of raw images from the unlabeled
set and returns two transformed batches, with a common set of “sharpened” soft (probabilistic) labels.



Second, the algorithm MIXMATCHAUG is in Alg. C.2. This procedure consumes a batch of raw labeled data, and produces
a transformed batch of the same size.

Algorithm C.1: Augment and Soft-Pseudo-Label
Input: Unlabeled batch features xU

Output: Augmented features xU1 ,x
U
2 , Soft pseudo labels ỹU

Hyperparameters

• Sharpening temperature τ>0

Procedure
1: for each image x in xU do
2: x(1) ← BasicImageAugment(xn)
3: x(2) ← BasicImageAugment(xn)
4: ρ(1) ← fw(x

(1)) // Probability vector predicted by neural net
5: ρ(2) ← fw(x

(2))

6: r̃ ←
(
1
2ρ

(1) + 1
2ρ

(2)
)1/τ

// Non-negative vector, sharpened by element-wise power
7: S ←

∑
c r̃c

8: ỹ ← [ r̃1S ,
r̃2
S , . . .

r̃C
S ] // Normalize to ‘‘soft’’ label (proba. vector)

9: Add x(1) to x̃U1
10: Add x(2) to x̃U2
11: Add ỹ to ỹU

12: end for
13: return x̃U1 , x̃U2 , ỹU

Algorithm C.2: MixMatchAug : Transformation of Labeled Set
Input: Labeled batch xL,yL, Unlabeled batch xU , ỹ,
Output: Transformed labeled batch x̃L, ỹL

Hyperparameters

• Shape α>0 of Beta(α, α) dist.

1: for image-label pair x, y in labeled batch xL,yL do
2: x′, y′ ← SAMPLEONEPAIR([xL, x̃U1 , x̃

U
2 ], [y

L, ỹU , ỹU ])
3: β′ ∼ SAMPLEFROMBETA(α, α)
4: β ← MAX(β′, 1− β′)
5: x̃← βx+ (1− β)x′
6: ỹ ← βy + (1− β)y′
7: Add x̃ to x̃L

8: Add ỹ to ỹL

9: end for
10: return x̃L, ỹL

Fix-A-Step with FixMatch. Here, we further clarify how Fix-A-Step works with FixMatch-base. In the original FixMatch,
each unlabeled image generates one weakly augmented version and one strongly-augmented. With Fix-A-Step, an addi-
tional weakly augmented version is generated. The two weak images are used in the Fix-A-Step augmentation phase to
transform the labeled set. The unlabeled loss is calculated using one weak and one strong image as in FixMatch. In this
work, we used the original images for unlabeled loss calculation (not the transformed images from FixAStep augmentation
phase) so that only the unlabeled set affect the labeled set but not vise versa, since we focus on analyzing the value of the
unlabeled set to the labeled set. Network parameters are updated via Algorithm 1 line 5-7.

D RELATED WORK SUPPLEMENT

SSL benchmarks. SSL methods continue to focus a few datasets intended for fully-supervised image classification, such
as SVHN, CIFAR-10, CIFAR-100, and ImageNet. This is a problem because these data are post-hoc repurposed for SSL,



dropping known labels to create unlabeled sets in artificial fashion. The resulting unlabeled sets are too curated: images
usually come from the same classes as the labeled set with similar frequencies. However, real applications that motivate
SSL require an easy-to-acquire unlabeled set that is uncurated.

Recent research has further identified problems with CIFAR and ImageNet. First, 3% of CIFAR-10 and 10% of CIFAR-
100 test images have perceptually-indistinguishable duplicates in the train set [Barz and Denzler, 2020]. This questions
whether high-scoring methods are memorizing rather than truly generalizing. Second, a notable fraction (∼5%) of the
labels in the test sets of CIFAR-100 and ImageNet data are incorrect [Northcutt et al., 2021]. More generally, overuse of
the same benchmarks over decades may lead to over-optimistic assessments of heldout error rates [Yadav and Bottou, 2019]
and may privilege methods that exploit shortcuts or biases in the available data that hurt true generalization [Tsipras et al.,
2020, Geirhos et al., 2020]. Given this background, we argue that new SSL benchmarks motivated by intended applications
are sorely needed to help ensure the next-generation of SSL methods delivers on its promise of generalization.

Gradient step modifications. Recently, across many sub-areas of ML that optimize of a multi-task loss, modifying the
direction of gradient descent updates during training has born fruit.

The idea of gradient matching has been proposed to solve catastrophic forgetting problems in continual learning [Lopez-Paz
and Ranzato, 2017, Chaudhry et al., 2018, Riemer et al., 2018, Zeng et al., 2019, Farajtabar et al., 2020]. In Lopez-Paz and
Ranzato [2017], the author proposed a method called Gradient Episodic Memory (GEM), where they used a memory bank
to store representative samples of previous tasks. While minimizing the loss on current task, they use the inner product of
the gradient between current and previous tasks as an inequality constraint. In Chaudhry et al. [2018], Averaged GEM (A-
GEM) is proposed as an improved version of GEM. A-GEM ensures that at every training step the average episodic memory
loss over the previous tasks does not increase. Riemer et al. [2018] formally proposed the transfer-interference trade-off
perspective for looking at the application of gradient matching in continual learning, which defines whether helpful transfer
or interference occurs between two labeled examples in terms of the inner product of gradients with respect to parameters
evaluated at those examples. Zeng et al. [2019] developed Orthogonal Weights Modification (OWM) method to project the
weight updates to the orthogonal direction to the subspace spanned by previously learned task inputs while Farajtabar et al.
[2020] projects the new task’s gradient to the direction that is perpendicular to the gradient space of previous tasks.

Similar ideas were later used in multi-task learning [Du et al., 2020, Yu et al., 2020b], domain generalization Shi et al.
[2021] and neural architecture search [Gong et al., 2021].

E REPRODUCIBILITY SUPPLEMENT

E.1 Codebase

Our work builds upon several public repositories that represent either official or well-designed third-party implementations
of popular SSL methods.

Method Code URL notes
FixMatch github.com/google-research/fixmatch original

github.com/kekmodel/FixMatch-pytorch PyTorch version
MixMatch github.com/google-research/mixmatch original

github.com/YU1ut/MixMatch-pytorch PyTorch version
Realistic SSL Eval. github.com/perrying/realistic-ssl-evaluation-pytorch

Table E.1: Code repositories that we built upon to perform our experiments and verify the quality of results.

E.2 Hyperparameters for CIFAR-10/ CIFAR-100

Table E.2 lists the experimental settings (dataset sizes, etc.) and hyperparameters used for all CIFAR-10/CIFAR-100 base-
lines. We emphasize that we not tune any hyperparameters specifically for Fix-A-Step: whenever we combined a base
model with Fix-A-Step (e.g. Mean Teacher + Fix-A-Step), we simply copied the relevant hyperparameters for the base
model from Table E.2, and set Fix-A-Step’s unique hyperparameters to defaults α = 0.5, τ = 0.5.

github.com/google-research/fixmatch
github.com/kekmodel/FixMatch-pytorch
github.com/google-research/mixmatch
github.com/YU1ut/MixMatch-pytorch
github.com/perrying/realistic-ssl-evaluation-pytorch


BASIC SETTINGS CIFAR-10 BASIC SETTINGS CIFAR-100
Train labeled set size 2400/300
Train unlabeled set size 16400/17800
Validation set size 3000
Test set size 6000

Train labeled set size 5000
Train unlabeled set size 17500
Validation set size 2500
Test set size 5000

Labeled only VAT
Labeled batch size 64
Learning rate 3e-3
Weight decay 2e-3

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 4e-5
Max consistency coefficient 0.3
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear
VAT ξ 1e-6
VAT ε 6

Pseudo-label Mean Teacher
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 1.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup ischedule linear
Pseudo-label threshold 0.95

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 50.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear

Pi-Model MixMatch
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 10.0
Unlabeled loss warmup iterations 419430
Unlabeled loss warmup schedule linear

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-2
Weight decay 4e-5
Max consistency coefficient 75.0
Unlabeled loss warmup iterations 1048576
Unlabeled loss warmup schedule linear
Sharpening temperature 0.5
Beta shape α 0.75

FixMatch OpenMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3e-2
Weight decay 5e-4
Max consistency coefficient 1.0
Unlabeled loss warmup iterations No warmup
Unlabeled loss warmup schedule No warmup
Sharpening temperature 1.0
Pseudo-label threshold 0.95

Labeled batch size 64
Unlabeled batch size 128
Learning rate 0.03
Weight decay 5e-4
Lambda socr 0.5
Lambda oem 0.1
Warmup epoch before FixMatch 10
Unlabeled loss warmup iterations No warmup
Unlabeled loss warmup schedule No warmup
Sharpening temperature 1.0
Pseudo-label threshold 0.0

MTCF DS3L
Domain batch size 64
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-4
Weight decay 6e-6
Max consistency coefficient 75
Warmup epochs 100
Sharpening temperature 0.5
Beta shape α 0.75

Labeled batch size 64
Unlabeled batch size 64
Learning rate 3e-4
learning rate meta 0.001
learning rate wnet 6e-5
Max consistency coefficient 10.0
Unlabeled loss warmup iterations 200000

Unlabeled loss warmup schedule sigmoid

Table E.2: Hyperparameters used for CIFAR experiments. All settings represent the recommended defaults suggested in implemen-
tations by original authors for the 400 examples/class setting. We did not tune any hyperparameters specifically for Fix-A-Step.



E.3 Hyperparameters for Heart2Heart

As in all other experiments, hyper-parameters were not tuned at all for Fix-A-Step in our Heart2Heart evaluations. Instead,
to ensure fair comparisons (and in fact to make Fix-A-Step prove that its worth comes from something other than hy-
perparameter tuning), we did allow tuning hyperparameters for all other methods except Fix-A-Step: the labeled-set-only
baseline, the Open-Match baseline, and the basic off-the-shelf SSL methods Pi-model, VAT and FixMatch.

For those methods that were allowed tuning, we ran 100 trials2 of Tree-structured Parzen Estimator (TPE) based black box
optimization using an open source AutoML toolkit3 for each algorithm and each data split. The chosen hyper-parameters
are then directly applied to Fix-A-Step without retuning. After hyper-parameter selection, each algorithm is then trained
for 1000 epochs, the balanced test accuracy at maximum validation balanced accuracy is then reported.

Labeled-only: we search learning rate in {0.001, 0.003, 0.01, 0.03, 0.1, 0.3}, weight decay in
{0.0, 0.00005, 0.0005, 0.005, 0.05}, optimizer in {Adam,SGD}, learning rate schedule in {Fixed,Cosine}. Batch
size is set to 64.

Pi-model: We search learning rate in {0.003, 0.01, 0.03, 0.1}, weight decay in {0.0, 0.0005, 0.005, 0.05}, optimizer in
{Adam,SGD}, learning rate schedule in {Fixed,Cosine}, Max consistency coefficient in {1.0, 5.0, 10.0, 20.0, 100.0},
unlabeled loss warmup iterations in {0, 17000, 34000}. Labeled batch size is set to 64 and unlabeled batch size is set to 64.

VAT: We search learning rate in {0.0002, 0.0006, 0.002, 0.006}, weight decay in {0.000004, 0.00004, 0.0004}, opti-
mizer in {Adam,SGD}, learning rate schedule in {Fixed,Cosine}, Max consistency coefficient in {0.3, 0.1, 0.9, 0.03, 3},
unlabeled loss warmup iterations in {0, 17000, 34000}. Labeled batch size is set to 64, unlabeled batch size is set to 64. ξ
is set to 0.000001 and ε is set to 6.

FixMatch: We search learning rate in {0.003, 0.01, 0.03, 0.1}, weight decay in {0.0005, 0.005, 0.05}, optimizer in
{Adam,SGD}, learning rate schedule in {Fixed,Cosine}, Max consistency coefficient in {0.5, 1.0, 5.0, 10.0}, Labeled
batch size is set to 64, unlabeled batch size is set to 320. We set sharpening temperature to 1.0 and pseudo-label threshold
is set to 0.95 (as in CIFAR experiments).

Open-Match: We search learning rate in {0.003, 0.01, 0.03, 0.1, 0.3}, weight decay in
{0.0000005, 0.000005, 0.00005, 0.0005, 0.005, 0.05}, lambda oem in {0.03, 0.1, 0.3, 1.0}, lambda socr in
{0.25, 0.5, 1.0, 2.0} (see OpenMatch paper for hyperparameter definitions). Labeled batch size is set to 64, unla-
beled batch size is set to 128, and all other hyperparameters following the author’s released code.

E.4 Labeled loss implementation: Weighted cross entropy

On many realistic SSL classification tasks, even the labeled set will have noticeably imbalanced class frequencies. For
example, in the TMED-2 view labels, the four view types (PLAX, PSAX, A4C, A2C) differ in the number of available
examples, with the rarest class (A2C) roughly 3x less common than the most common class (PLAX). To counteract the
effect of class imbalance, we use weighted cross-entropy for labeled loss, following prior works [Huang et al., 2021b, Wu
et al., 2021]. Let integer c ∈ {1, 2, . . . C} index the classes in the labeled set, and let Nc denote the number of images
for class c. Then when we compute the labeled loss `L, we assign a weight ωc > 0 to the true class c that is inversely
proportional to the number of images Nc of the class in the training set:

`L(x, c;w) = −ωc log fw(x)[c], ωc =

∏
k 6=cNk∑C

j=1

∏
k 6=j Nk

⇐= ωc ∝
1

Nc
(5)

Here c denotes the integer index of the true class corresponding to image x, w denotes the neural network weight parame-
ters, and fw(x)[c] denotes the c-th entry of the softmax output vector produced by the neural network classifier.

E.5 Cosine-annealing of learning rate.

We found that several baselines were notably improved using the cosine-annealing schedule of learning rate suggested by
[Sohn et al., 2020]. Cosine-annealing sets the learning rate at iteration i to ηcos( 7πi16I ), where η is the initial learning rate,

2in practice, for each trial we train for only 180 epochs to speed up the hyper-parameters selection process
3https://github.com/microsoft/nni



and I is the total iterations.

To be extra careful, we tried to allow all open-set/safe SSL baselines to also benefit from cosine annealing.

• MTCF is trained using Adam following the author’s implementation [Yu et al., 2020a]. Although the author did not
originally use cosine learning rate schedule, we found that adding cosine learning rate schedule substantially improve
MTCF’s performance. We thus report the performance for MTCF with cosine annealing.

• DS3L is trained using Adam following the author’s implementation [Guo et al., 2020]. We tried to add Cosine learning
rate to DS3L, but this results in worse performance. We thus report the performance for DS3L without cosine learning
rate.
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