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Abstract

We study policy evaluation of offline contextual
bandits subject to unobserved confounders. Sen-
sitivity analysis methods are commonly used to
estimate the policy value under the worst-case
confounding over a given uncertainty set. How-
ever, existing work often resorts to some coarse
relaxation of the uncertainty set for the sake of
tractability, leading to overly conservative estima-
tion of the policy value. In this paper, we propose
a general estimator that provides a sharp lower
bound of the policy value. It can be shown that
our estimator contains the recently proposed sharp
estimator by Dorn and Guo (2022) as a special
case, and our method enables a novel extension
of the classical marginal sensitivity model using
f-divergence. To construct our estimator, we lever-
age the kernel method to obtain a tractable approx-
imation to the conditional moment constraints,
which traditional non-sharp estimators failed to
take into account. In the theoretical analysis, we
provide a condition for the choice of the kernel
which guarantees no specification error that biases
the lower bound estimation. Furthermore, we pro-
vide consistency guarantee of policy evaluation
and extend the result to policy learning. In the
experiments with synthetic and real-world data,
we demonstrate the effectiveness of the proposed
method.

1 INTRODUCTION

The offline contextual bandit is a simple but powerful model
for decision-making with a wide range of applications such
as data-driven personalized medical treatment, recommen-
dations, and advertisements on online platforms. In the
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evaluation of its policy value, the inverse probability weight-
ing (IPW) method (Hirano and Imbens, 2001; Hirano et al.,
2003) or its variant is commonly used. This method relies
on a so-called unconfoundedness assumption, which essen-
tially requires full observability of all relevant variables so
that there exist no unobserved variables that influence the
selection of action and resulting reward (Rubin, 1974). How-
ever, in practice, such an assumption can easily be violated
due to the existence of unobserved confounders that are not
recorded in the logged data.

A common way to address this problem is resorting to the
worst-case lower bound of the policy value, namely, we
minimize the policy value over a plausible uncertainty set
that contains all the possible confounding situations. With
such a lower bound, we can make an informed decision that
is robust to confounding. The estimation and inference of
such a lower bound are called sensitivity analysis and it has
been extensively studied over the years (Rosenbaum, 2002;
Tan, 2006; Rosenbaum et al., 2010; Liu et al., 2013).Among
a wide range of existing sensitivity models, a popular choice
is the marginal sensitivity model by Tan (2006) and its ex-
tensions. Recently, Zhao et al. (2019) introduced an elegant
algorithm for Tan’s marginal sensitivity model using the
linear fractional programming, which has revitalized the
study of this model. This approach was further extended to
policy learning in Kallus and Zhou (2018, 2021).

However, these sensitivity analysis methods rely on algo-
rithms using linear programming that finds an overly conser-
vative lower bound of policy value. This is a fundamental
problem, as these loose lower bound estimators are only
guaranteed to be lower than or equal to the true lower bound
of the uncertainty set, but they are not necessarily the con-
sistent estimator of the true lower bound. Even so, these
algorithms have been widely adopted for their tractabil-
ity. To obtain a sharp lower bound, conditional moment
constraints, which consist of infinite-dimensional linear con-
straints, must be leveraged. Recently, Dorn and Guo (2022)
analyzed these constraints and characterized a sharp lower
bound of Tan’s marginal sensitivity model using a condi-
tional quantile function of the reward distribution. With this
characterization, they proposed the first tractable algorithm
to obtain the sharp lower bound that converges to the true
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lower bound of the policy value.

In this paper, we address the same problem of sharp estima-
tion from a new perspective. Instead of using the conditional
quantile function, we employ the kernel method (Schölkopf
et al., 2002), a rich and flexible modeling paradigm in ma-
chine learning. We develop a tractable kernel approximation
of the conditional moment constraints and propose an effi-
cient algorithm to obtain the sharp lower bound.

Our contributions. We summarize our contributions in
several aspects below.

First, we extend the existing sensitivity analysis models by
considering uncertainty sets characterized by more general
convex constraints. Our model includes the original sensi-
tivity model by Tan (2006) as the special case but it also
includes a new f-sensitivity model that extends Tan (2006)’s
sensitivity model using f-divergence.

Second, we provide efficient algorithms based on the ker-
nel method and low-rank approximation to obtain sharp
estimators of the worst-case lower bound for the extended
model. Our new estimator is very general and it includes
the previous sharp estimator by Dorn and Guo (2022) as
a special case. Using the duality of the associated convex
optimization problem, we further identify conditions for
zero specification error guarantees and establish consistency
guarantees of our estimator in policy evaluation.

Third, we show that our method can naturally be extended
to policy learning, as it offers a very simple way to compute
the policy gradient. This is an advantage of our estimator
compared to the previous sharp estimator (Dorn and Guo,
2022), which does not offer the possibility of policy learning.
We provide a consistency guarantee for policy learning with
a sharp lower bound, which is similar to the guarantee for
the non-sharp estimator by Kallus and Zhou (2018, 2021).

Last but not least, we demonstrate the effectiveness of im-
posing the kernel conditional moment constraints in several
numerical experiments on both synthetic and real-world
data. We cover a wide range of problems in sensitivity anal-
ysis such as the generalized sensitivity models defined with
f-divergence and policy learning, and our estimator consis-
tently outperforms the conventional non-sharp estimators in
these settings.

Related work. Similar to our paper, Kremer et al. (2022)
used the kernel method for parameter estimation of mod-
els characterized by conditional moment restrictions. They
solved the dual of their original problem by using the dual
representation of the L2-norm of the conditional moment.
Though we solve a primal problem in this paper, we take
great advantage of such a dual formulation in our theoret-
ical analysis. Muandet et al. (2020) considered hypothe-
sis testing for conditional moment conditions. They con-
structed their test statistic using a quadratic form of ker-

nel matrix similar to the one we use. The idea of using
the kernel method to impose constraints has also been ex-
plored in other contexts such as fair regression (Pérez-Suay
et al., 2017), distributionally-robust optimization (Staib
and Jegelka, 2019), worst-case risk quantification (Zhu
et al., 2020), and shape constraints to derivatives (Aubin-
Frankowski and Szabó, 2020). Recently, the kernel method
has found various novel applications in causal inference, in-
cluding instrumental variable regression (Singh et al., 2019),
negative controls (Singh, 2020; Kallus et al., 2021; Mastouri
et al., 2021), and conditional mean squared error minimiza-
tion for policy evaluation (Kallus, 2018).

2 BACKGROUNDS AND PROBLEM
SETTINGS

2.1 Confounded Offline Contextual Bandits

Confounded offline contextual bandits are an extension of
the standard offline contextual bandits that have an addi-
tional unobserved confounding variable. We are interested
in evaluating the value of policy π from the offline data
following base policy πbase, which is generated according
to the following model:

X,U ∼ p(x, u),
T |X,U ∼ πbase(t|X,U),
Y |T,X,U ∼ p(y|T,X,U),

(1)

where only Y , T , and X are observable and policy
πbase(t|x, u) is unknown. Action t ∈ T is chosen by the
(stochastic) base policy given context X ∈ X and unob-
served variable U ∈ U . Reward Y is randomly generated
conditionally on the values of T , X , and U .

In the offline evaluation of policy π, we are interested in the
expectation of Y under the modified process of (1) where
πbase(t|x, u) is replaced by π(t|x). Thus, the desired policy
value of π can be written as

V (π) = ET∼π(·|X) [Y ]

= ET∼πbase(·|X,U)

[(
π(T |X)

πbase(T |X,U)

)
Y

]
.

Here, we only consider an observable policy π(t|x),
because it is trivially impossible to evaluate a pol-
icy that depends on unobserved variable U only us-
ing the offline data. For simplicity of notations, we
denote ET∼πbase(·|X,U)[f(Y, T,X,U)] as the expecta-
tions of f(Y, T,X,U) under generative process (1) and
ET∼π(·|X)[f(Y, T,X,U)] as its modification where πbase is
replaced by π. Hereafter, we assume that πbase(T |X,U) >
0 holds almost surely so that the inverse probability weights
are always well-defined.

In unconfounded offline contextual bandits, we can use the
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inverse probability weighting (IPW) estimator

V̂IPW(π) :=
1

n

n∑
i=1

(
π(Ti|Xi)

π̂base(Ti|Xi)

)
Yi

with estimated base policy π̂base to evaluate the policy π
consistently. However, when πbase depends on U , we can
no longer construct such a consistent estimator, as the ob-
servable variables are only Y , T , and X , and any valid
estimator must depend only on them.

To indicate a part of model (1) that can be approximated
by the offline data, we use pobs to indicate the observable
distribution of (1) such that

pobs(y, t, x) =

∫
p(y|t, x, u)πbase(t|x, u)p(x, u) du.

Similarly, pobs(t|x) and pobs(x) denote the corre-
sponding conditional and marginal distributions, and
Eobs[f(Y, T,X)] represents the expectation of f(Y, T,X)
with respect to pobs(y, t, x). To represent the empiri-
cal average that approximates Eobs, we use Ên so that
Ên[f(Y, T,X)] := 1

n

∑n
i=1 f(Yi, Ti, Xi) for any f(y, t, x).

Finally, we use abbreviation Eobs[f |t, x] to represent con-
ditional expectation Eobs[f(Y, T,X)|T = t,X = x]. Here-
after, these observable distributions are assumed to be avail-
able for constructing estimators.

2.2 Uncertainty Sets of Base Policies

A practical workaround to the above-mentioned issue is
partial identification of policy value under some reasonable
assumption about confounding. More specifically, we first
define some uncertainty set E of πbase(t|x, u) in the form
of constraint conditions. Then we find the infimum policy
value Vinf (or the supremum Vsup) within the uncertainty
set as

Vinf(π) := inf
πbase∈E

ET∼πbase(·|X,U)

[(
π(T |X)

πbase(T |X,U)

)
Y

]
.

In the following, we list a few types of constraints used for
the construction of the uncertainty sets.

Box Constraints

The box constraints have been widely adopted in the sensi-
tivity analysis, and they can be written as

aπ(t, x) ≤ πbase(t|x, u) ≤ bπ(t, x) (2)

for some aπ(t, x) and bπ(t, x). This assumption is used in
the well-known marginal sensitivity model by Tan (2006) as
well as many of its extensions (Zhao et al., 2019; Kallus and
Zhou, 2018; Dorn and Guo, 2022). Tan (2006) considered
a binary action space and assumed that the odds ratio of

observational conditional probability pobs(t|x) and the true
base policy πbase(t|x, u) is not too far from 1 so that

Γ−1 ≤ pobs(t|x)(1− πbase(t|x, u)
(1− pobs(t|x))πbase(t|x, u)

≤ Γ.

As pobs(t|x) can be estimated from the observational data,
we can enforce such constraints by choosing aπ and bπ in
(2) as aπ(t, x) = 1/(1+Γ(1/pobs(t|x)−1)) and bπ(t, x) =
1/(1 + Γ−1(1/pobs(t|x)− 1)).

f-divergence Constraint

The f-divergence is a measure of dissimilarity between two
distributions. For probability mass function (or density
function) p(t) and q(t), the f-divergence between them is
defined as Df [p||q] :=

∑∫
f
(

p(t)
q(t)

)
q(t) dt for some convex

function f : R → R satisfying f(1) = 0. 1 It is a rich
class of divergence between probability distributions that
includes many divergences such as the Kullback–Leibler
(KL) divergence. Using the f-divergence, we introduce a
new class of sensitivity assumption 2

EX,U [Df [pobs(t|X)||πbase(t|X,U)]] ≤ γ, (3)

where the expectation EX,U is taken with respect to p(x, u)
in (1) regardless of the policy. By encoding the proximity of
πbase(t|x, u) from pobs(t|x) using the f-divergence instead
of the box constraints, we can construct a flexible class
of the uncertainty sets. As we see later, this formulation is
computationally convenient, as it can be expressed as simple
expectation

EX,U [Df [pobs(t|X)||πbase(t|X,U)]]

= ET∼πbase(·|X,U)

[
f

(
pobs(T |X)

πbase(T |X,U)

)]
.

Compared to the marginal sensitivity model (Tan,
2006) that imposes uniform bounds on the odds ratio
pobs(t|x)/πbase(t|x, u) for any x, u, our f-sensitivity model
upper bounds its average deviations from 1 (i.e. the uncon-
founded case). Thus, when the odds ratio is locally very
far from 1 around some x, u but is close to 1 elsewhere,
the f-sensitivity model is a more reasonable choice than the
conventional model.

Conditional f-constraint

The above f-sensitivity model can be extended to an even
more general case by letting convex function f depend on
T and X . Let f : R× T ×X → R be a function satisfying
that ft,x(·) := f(·, t, x) is convex and ft,x(1) = 0 for any

1We use ∑∫ because our method can handle both discrete and
continuous treatment spaces in the same way.

2Jin et al. (2022) proposed a similar uncertainty set based on
f-divergence, but their model is different from ours. See more
discussion in the supplementary material.
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fixed t ∈ T and x ∈ X . Then, we introduce a conditional
f-constraint defined as

ET∼πbase(·|X,U)

[
fT,X

(
pobs(T |X)

πbase(T |X,U)

)]
≤ γ. (4)

Clearly, this uncertainty set generalizes f-divergence con-
straint (3). Moreover, this model contains the box constraint
(2) as a special case. By choosing

ft,x(w̃) =

{
0 if aw̃(t, x) ≤ w̃ ≤ bw̃(t, x)

∞ otherwise
(5)

for aw̃(t, x) = pobs(t|x)/bπ(t, x) and bw̃(t, x) =
pobs(t|x)/aπ(t, x), it becomes equivalent to box constraints
(5). To provide a systematic treatment of different types of
uncertainty sets and unify the theoretical analysis, we will
hereafter assume that the uncertainty sets of inverse prob-
ability weights always have some conditional f-constraint
unless otherwise specified.

2.3 Relaxed Uncertainty Sets of Inverse Probability
Weights

Let us introduce re-parametrization w(y, t, x) =

ET∼πbase(·|X,U)

[
1

πbase(T |X,U) |y, t, x
]

to obtain tractable
uncertainty sets. The uncertainty set for πbase described
earlier requires reparametrized weight w(y, t, x) to satisfy
the following two conditions:

ET∼πbase(·|X,U)

[
fT,X

(
pobs(T |X)

πbase(T |X,U)

)]
≤ γ

and

w(y, t, x) = ET∼πbase(·|X,U)

[
1

πbase(T |X,U)
|y, t, x

]
for some proper policy πbase. In general, both conditions
are intractable. Therefore, we will consider the relaxation
of these conditions.

Relaxation of the Conditional f-constraint

Let us first consider conditional f-constraint (4). With
Jensen’s inequality, we have

ET∼πbase(·|X,U)

[
fT,X

(
pobs(T |X)

πbase(T |X,U)

)]
≥ ET∼πbase(·|X,U)

[
fT,X

(
E
[

pobs(T |X)

πbase(T |X,U)
|Y, T,X

])]
.

Therefore, we can relax the condition (4) to

Eobs [fT,X (pobs(T |X)w(Y, T,X))] ≤ γ. (6)

Relaxation of the Distributional Constraints

Now we consider the relaxation of the second constraint,
i.e., there exists proper underlying distribution πbase(t|x, u)
that yields w(y, t, x). This constraint is usually relaxed to a
one-dimensional linear constraint in previous work. Here,
we present a tighter relaxation using infinite-dimensional
linear constraints called conditional moment constraints. In
the following, we present these two types of relaxation.

First, we describe the simple relaxation adopted in previous
work (Zhao et al., 2019; Kallus and Zhou, 2018, 2021).
When action space T is discrete and finite, the distributional
constraint can be relaxed to

Eobs[1T=tw(Y, T,X)] = 1 for any t ∈ T (7)

and

w(y, t, x) ≥ 0 for any y ∈ Y, t ∈ T , and x ∈ X (8)

where 1 denotes the indicator function for event A. Follow-
ing the naming convention in Dorn and Guo (2022), we will
call constraint (7) the ZSB constraint after the authors of
Zhao et al. (2019).

Combining the above with the relaxation of the conditional
f-constraint as in (6), the following uncertainty set with the
ZSB constraint can be defined:

WZSB
ft,x :=

{
w ≥ 0 :

EX,U [fT,X (pobs(T |X)w)] ≤ γ,
Eobs[1T=tw] = 1 for any t ∈ T

}
.

For this uncertainty set, the associated lower bound is

V ZSB
inf (π) := inf

w∈WZSB
ft,x

Eobs [w(Y, T,X)π(T |X)Y ] . (9)

Now, we discuss the other relaxation based on conditional
moment constraints. It can be shown that it is possible to
relax the distributional constraints to

Eobs[w(Y, T,X)|T = t,X = x] · pobs(t|x) = 1 (10)

for any t ∈ T and x ∈ X plus a non-negativity constraint
(8). The derivation of the above constraints is deferred
to the supplementary material. Note that, unlike the ZSB
constraints, conditional moment constraints do not require
that action space T is discrete and finite. We can again
combine these conditional moment constraints (CMC) with
relaxed conditional f-constraint (6) to obtain

WCMC
ft,x :=

w ≥ 0 :
EX,U [fT,X (pobs(T |X)w)] ≤ γ,

Eobs[w|t, x] · pobs(t|x) = 1
for any t ∈ T and x ∈ X


and its corresponding lower bound

V CMC
inf (π) := inf

w∈WCMC
ft,x

Eobs [w(Y, T,X)π(T |X)Y ] .

(11)
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Indeed, it can be shown that the conditional moment con-
straints are strictly sharper than the ZSB constraints as
discussed in the supplementary material. Therefore, one
can naturally obtain Wft,x ⊆ WCMC

ft,x
⊆ WZSB

ft,x
and

Vinf ≥ V CMC
inf ≥ V ZSB

inf .

3 KERNEL CONDITIONAL MOMENT
CONSTRAINTS

In this section, we introduce a empirical approximation of
the conditional moment constraints using the kernel method
(Schölkopf et al., 2002). The key idea is to approximate con-
ditional moment Eobs[w(Y, T,X)pobs(T |X)|T = t,X =
x] using the kernel ridge regression. By constraining the es-
timated conditional moment to be close to 1, we impose the
conditional moment constraints to the empirical weightw =
(w1, . . . , wn)

T = (w(Y1, T1, X1), . . . , w(Yn, Tn, Xn))
T .

In the following, we introduce three types of kernel con-
ditional moment constraints (KCMC), namely, Gaussian
process constraints, low-rank Gaussian process constraints,
and low-rank hard constraints. These kernel conditional mo-
ment constraints are all convex constraints, and they enable
us to define a tractable uncertainty set and an associated
estimator of lower bound as

ŴKCMC
ft,x =

{
w ≥ 0 :

Ên [fT,X (pobs(T |X)w)] ≤ γ,
w(y, t, x) satisfies the KCMC

}
and

V̂ KCMC
inf := min

w∈ŴKCMC
ft,x

Ên[w(Y, T,X)π(T |X)Y ].

3.1 Gaussian Process Constraints

In this subsection, we derive our first kernel conditional
moment constraints, which we call the Gaussian process
constraints. We begin by formally formulating the idea of
using the kernel ridge regression for the conditional moment
constraints and then motivate its interpretation as a Gaussian
process to obtain reasonable kernel conditional moment
constraints.

Estimation of Conditional Expectation by Kernel Ridge
Regression

Let us introduce kernel k : (T × X )× (T × X ) → R with
associated reproducing kernel Hilbert space (RKHS) H of
functions h : T × X → R, inner product ⟨·, ·⟩H, and norm
∥ · ∥H. Let us further introduce re-parametrization

e(y, t, x) := pobs(t|x)w(y, t, x)− 1,

so that conditional moment constraints (10) can be written
as

Eobs[e(Y, T,X)|T = t,X = x] = 0

for any t ∈ T and x ∈ X .

Then, using the kernel ridge regression, one can estimate
conditional expectation g(t, x) := Eobs[e(Y, T,X)|T =
t,X = x] as

ĝ = argmin
g∈H

Ên|g(T,X)− e(Y, T,X)|2 + σ2∥g∥2H.

for some σ2 > 0. The above problem yields an analytical
solution, and we can get

ĝ = K(K + σ2In)
−1e

for ĝ := (ĝ(T1, X1), . . . , ĝ(Tn, Xn))
T and e :=

(e(Y1, T1, X1), . . . , e(Yn, Tn, Xn))
T . Here, K denotes the

kernel matrix such that Ki,j = k((Ti, Xi), (Tj , Xj)) and
In is the identity matrix of order n. To impose the condi-
tional moment constraints, we can consider the constraint
ĝ ≈ 0. Note that we cannot impose the exact equality,
i.e., K(K + σ2In)

−1e = 0, as this leads to only solution
w = 1/pobs,T |X , 3 whose resulting policy value estimator
is exactly the confounded IPW estimator. Therefore, we
need to find a reasonable way to impose this close-to-zero
constraint.

Construction of Uncertainty Set With a Credible Set of
Gaussian Process

Now, by interpreting the kernel ridge regression as the Gaus-
sian processes regression (Rasmussen, 2003), we make an
intuitive association of the close-to-zero constraint with the
credible set in Bayesian statistics. Consider the following
Gaussian process regression model (Rasmussen, 2003):

g ∼ GP(0, k(·, ·)), e = g + ε, ε ∼ N (0, σ2In),

where g := (g(T1, X1), . . . , g(Tn, Xn)). GP and N indi-
cate the Gaussian process and the multivariate normal distri-
bution with the specified mean and covariance parameters.
Under this model, the posterior of g given e is a multi-
variate normal distribution with mean and variance µg|e =
K(K+σ2In)

−1e = ĝ and Σg|e = K−K(K+σ2I)−1K.
For the posterior of g, we now define a (1 − α) credible
set. As the posterior of g given e is a multivariate normal
distribution, we can take highest posterior density set

Cg|e = {g : (g − µg|e)
TΣ−1

g|e(g − µg|e) ≤ χ2
n(1− α)}.

(12)
as the credible set. Here, χ2

n(1 − α) denotes the (1 − α)-
percentile of χ2 distribution with degrees of freedom n.
Now, as we want estimated conditional moment function
g(t, x) to be close to zero, we can require that g = 0 to be
included in the (1−α) credible set and obtain the Gaussian
process kernel conditional moment constraints as follows:

KCMCGP
def⇔ 0 ∈ Cg|e

⇔ eTMGPe ≤ χ2
n(1− α)

3Here, pobs,T |X := (pobs(T1|X1), . . . , pobs(Tn|Xn))
T and

1 := (1, . . . , 1) ∈ Rn. The division is taken element-wise.
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where MGP := (K + σ2In)
−1K(K − K(K +

σ2In)
−1K)−1K(K+σ2In)

−1. As e = pobs,T |X⊙w−1,4

this is a quadratic constraint for w, which makes it possible
to compute the associated lower bound by solving convex
programming.

3.2 Low-rank Gaussian Process Constraints

A practical downside of the above formulation is the linear
growth of the number of constraints to sample size n. Addi-
tionally, the calculation of the matrix inverse takes O(n3),
which can be impractically slow for a large sample size.
To mitigate these issues, we propose the use of low-rank
approximation to the kernel matrix.

Let’s consider spectral decomposition of the kernel matrix,
K = V ΛV T with orthonormal matrix V ∈ Rn×n and di-
agonal matrix Λ = diag(λ1, . . . , λn) ∈ Rn×n satisfying
λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. By truncating the spectrum after
the first D dimensions, we approximate the kernel matrix
as K ≈ K̃ := Ṽ Λ̃Ṽ T , where Λ̃ = diag(λ1, . . . , λD) ∈
RD×D and Ṽ ∈ Rn×D is the first D columns of matrix V .
Then, we can substitute K̃ in place of K to obtain the ap-
proximate posterior of g, which is a multivariate normal dis-
tribution with mean and variance µ̃g|e = K̃(K̃+σ2In)

−1e

and Σ̃g|e = K̃ − K̃(K̃ + σ2I)−1K̃. Thus, we can anal-
ogously define the credible set and the kernel conditional
moment constraints as

C̃g|e = {g : (g − µ̃g|e)
T Σ̃−1

g|e(g − µ̃g|e) ≤ χ2
D(1− α)}.

(13)
and

KCMClow-rank GP
def⇔ 0 ∈ C̃g|e

⇔ eTMlow-rank GPe ≤ χ2
D(1− α)

(14)

where Mlow-rank GP := (K̃ + σ2In)
−1K̃(K̃ − K̃(K̃ +

σ2In)
−1K̃)−1K̃(K̃ + σ2In)

−1.

One big difference of the credible set of original Gaussian
process (12) and low-rank Gaussian process (13) is the de-
gree of freedom of the χ2 distribution. We will discuss the
reason for it in the supplementary material, but this is essen-
tially due to the fact that the distribution of the g is restricted
to the D-dimensional subspace spanned by columns of Ṽ .

3.3 Low-rank Hard Constraints

Indeed, when we use the low-rank approximation, it is pos-
sible to impose the hard constraint to the solution of the low-
rank kernel ridge regression as ĝ = K̃(K̃ + σ2In)e = 0
without suffering from the issue of feasibility set reducing
to singleton {1/pobs,T |X}.

Using the interpretation of the spectral decomposition as
the kernel principal component analysis (PCA) (Schölkopf

4The element-wise product operator is denoted by ⊙.

et al., 1997), the above hard constraints can be reformulated
as the following empirical orthogonality condition

Ên[e(Y, T,X)φKPCA(T,X)] = 0

of error e(Y, T,X) and kernel principal components
φKPCA(t, x) :=

(
φKPCA
1 , . . . , φKPCA

D

)T
obtained of

the kernel PCA applied to {Ti, Xi}ni=1. This condi-
tion is obviously a relaxation of the conditional moment
constraints (10), as they imply orthogonality condition
Eobs[e(Y, T,X)ψ(T,X)] = 0 for any ψ(t, x). By slightly
generalizing the above condition, we introduce the follow-
ing low-rank hard constraints.

KCMClow-rank orth
def⇔ Ên[e(Y, T,X)ψ(T,X)] = 0, (15)

for orthogonal function class ψ(t, x) := (ψ1, . . . , ψD)
T .

In our theoretical analysis, constraints (15) provide the most
suitable estimator for our studies. This is because choosing
{φd}Dd=1 independently from the samples enables us to de-
couple the discussion on the goodness of the constraints and
the goodness of the policy value estimator.

In practice, these low-rank estimators of the lower bound
have a trade-off between sharpness and credibility. Low-
rank Gaussian process constraints (14) only impose soft
quadratic constraints and can sometimes produce a too pes-
simistic lower bound. On the other hand, low-rank hard
constraints (15) produce a tighter lower bound but require
careful selection of the number of constraints, as excessively
strong constraints would lead to a too optimistic estimate.

4 THEORETICAL ANALYSIS

In this section, we study the property of the kernel condi-
tional moment constraints for confounding robust inference.
For the convenience of the analysis, we only consider low-
rank orthogonality condition (15) as the kernel conditional
moment constraints in this section. Thus, we will focus on
the property of the following population lower bound

V KCMC
inf (π) = inf

w∈WKCMC
ft,x

Eobs[w(Y, T,X)π(T |X)Y ]

(16)
for

WKCMC
ft,x =

{
w ≥ 0 :

Eobs[fT,X(wpobs(T |X))] ≤ γ,
Eobs[(wpobs(T |X)− 1)ψ] = 0

}
and its empirical version

V̂ KCMC
inf (π) = inf

w∈ŴKCMC
ft,x

Ên[w(Y, T,X)π(T |X)Y ]

for

ŴKCMC
ft,x =

{
w ≥ 0 :

Ên[fT,X(wpobs(T |X))] ≤ γ,

Ên[(wpobs(T |X)− 1)ψ] = 0

}
.



Kei Ishikawa, Niao He

In the theoretical analysis, we characterize the properties of
our estimator with the dual solution of our original problem.
We first analyze specification error of the kernel conditional
moment constraints

∣∣V CMC
inf − V KCMC

inf

∣∣ and provide a con-
dition on orthogonal function class {ψd(t, x)}Dd=1 under
which the specification error becomes zero. Additionally,
we study empirical estimator V̂ KCMC

inf and prove consistency
guarantees for policy evaluation and learning.

Due to the space limitation, we will defer the proofs and
the precise assumptions for the following statements to the
supplementary material.

4.1 Specification Error

First, we present the condition under which the specification
error of estimator V KCMC

inf (π) becomes zero for policy π
such that

∣∣V KCMC
inf (π)− V CMC

inf (π)
∣∣ = 0.

Theorem 1 (No specification error) Let η∗CMC : T ×
X → R be the solution to the dual problem of (11). Then
V KCMC
inf (π) has zero specification error if

η∗CMC ∈ span ({ψ1, . . . , ψD}) .

Using this lemma, it is possible to prove that the previous
sharp estimator for box constraints by Dorn and Guo (2022)
is a special case of estimator that uses our kernel conditional
moment constraints. They identified the analytical form
for optimal orthogonal function class {ψ1} = {η∗CMC} to
derive a one-dimensional linear constraint to impose the con-
ditional moment constraints, which are originally infinite-
dimensional. More details on their estimator are discussed
in the supplementary material.

4.2 Consistency of Policy Evaluation and Learning

Now, we study empirical estimator V̂ KCMC
inf and provide

consistency guarantees for policy evaluation and learning
in the case of finite-dimensional concave policy class. We
prove both consistency results by a reduction of our problem
to the M-estimation (Van de Geer, 2000) using the dual
formulation.

Let us define Lθ,π : Y ×T ×X → R as the loss function of
the dual objective of (16) so that the dual problem becomes
maxθ∈Θ E[−Lθ,π(Y, T,X)] for dual parameter θ ∈ Θ. Ad-
ditionally, let us introduce the following assumption:

Assumption 1 (Regularity of loss function) Loss func-
tion ℓθ : Y × T × X → R satisfies 1) θ 7→ ℓθ
is continuous, 2) E |ℓθ| < ∞ for any θ ∈ Θ, 3)
θ0 ∈ argminθ∈Θ E[ℓθ] is unique, and 4) E[Gε] < ∞ for
Gε := supθ∈Θ: ∥θ−θ0∥≤ε |ℓθ| for some ε > 0.

With this assumption, we can immediately show the consis-
tency guarantee for policy evaluation:

Theorem 2 (Consistency of policy evaluation) For fixed
policy π, if ℓθ := Lθ,π satisfies Assumption 1, then we
have V̂ KCMC

inf (π)
p.→V KCMC

inf (π).

The above theorem can be extended to policy learning,
by considering joint parameter space Θ′ := Θ × B of
θ′ := (θ, β) for policy class {πβ(t|x) : β ∈ B}
and introducing joint loss function L′

θ′ := Lθ,πβ
so that

maxβ∈B V
KCMC
inf (πβ) = maxθ′∈Θ′ E[−L′

θ′(Y, T,X)].

Theorem 3 (Consistency of concave policy learning)
Assume the policy class is concave so that β 7→ πβ(t|x)y
is concave. Define β0 ∈ argmaxβ∈B V

KCMC
inf (πβ) and its

estimator β̂ ∈ argmaxβ∈B V̂
KCMC
inf (πβ). If L′

θ′ satisfies
Assumption 1, then, we have V̂ KCMC

inf (πβ̂)
p.→V KCMC

inf (πβ0
).

An example of concave policy is mixed policy πβ(t|x) :=∑
k βkπk(t|x) for

∑
k βk = 1, βk ≥ 0. Indeed, policy

learning with such a concave policy class is concave; there-
fore, the globally optimal policy can be found by convex
optimization algorithms.

5 NUMERICAL EXPERIMENTS

In this section, we present numerical examples to compare
our estimators with the existing estimators. In addition
to the standard policy evaluation, we also consider policy
learning and the f-sensitivity model.

5.1 Experimental Settings

In the first three experiments, we use the synthetic data
adapted from Kallus and Zhou (2018, 2021). We repeat the
experiment 10 times with different random seeds and report
the mean and one standard deviation range by a line and a
band around it. The last experiment uses subsamples of data
from the 1966-1981 National Longitudinal Survey (NLS)
of Older and Young Men, which was also used in Dorn and
Guo (2022).

In the experiments, four types of estimators are compared.
As the baseline, we consider the conventionally used ZSB
estimator which solves the empirical version of (9). To this
baseline, we compare the proposed estimators based on two
types of kernel conditional moment constraints (KCMC),
which are (14) and (15). We call them the low-rank GP
KCMC and the low-rank hard KCMC, respectively. For
low-rank hard KCMC, the orthogonal function class was
chosen by the kernel PCA. Lastly, as a reference, we include
the quantile balancing (QB) estimator by Dorn et al. (2021),
which is a special case of low-rank hard KCMC. More
details on the experimental settings and additional results
can be found in the supplementary material.5

5The code can be found at https://github.com/
kstoneriv3/confounding-robust-inference.

https://github.com/kstoneriv3/confounding-robust-inference
https://github.com/kstoneriv3/confounding-robust-inference
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Figure 1: Estimated upper and lower bounds using different types of estimators for sensitivity analysis: (a) Tan’s marginal
sensitivity model for policy value on synthetic data; (b) The KL sensitivity model for policy value on synthetic data; (c)
Tan’s marginal sensitivity model (Γ = 1.5) for average treatment effect on NLS data.

5.2 Policy Evaluation

Figure 1a compares the tightness of the bounds obtained by
different estimators in policy evaluation. Clearly, the sharper
estimators (KCMC and QB) are producing tighter bounds
than the ZSB estimator. Here, we can see that the low-rank
hard KCMC’s bounds are much tighter than those of the
other sharp estimators. This exemplifies the aforementioned
trade-off between the sharpness and the credibility of bounds
obtained by the soft and hard KCMC.

5.3 Extension to f-divergence Sensitivity Model

Next, to illustrate application of the f-sensitivity models
(3), we present an example of the KL-sensitivity model
in Figure 1b. We can see that the KL-sensitivity model
can provide continuous control of the level of confounding
by the sensitivity parameter, similarly to Tan’s marginal
sensitivity model.

5.4 Extension to Policy Learning

Figure 2 shows the learning curves during the max-min
policy optimization with Tan’s marginal sensitivity model.
Though order V̂ KCMC

inf ≥ V̂ ZSB
inf is still maintained, the

KCMC lower bounds estimated from training data are ac-
tually higher than the ground truth. This can be interpreted
as an overfitting phenomenon in the joint maximization of
learning and the inner dual problem. Since V CMC

inf estimated
by test data is still lower than the ground truth, improvement
of policy learning may be possible with more careful control
of test errors such as cross validation.

5.5 Treatment Effect Estimation on NLS Data

Lastly, in Figure 1c, we show the upper and lower bounds
of the average treatment effect (E[Y |T = 1]−E[Y |T = 0])
of union membership (T ) on log wages (Y ) estimated from
the NLS dataset. Similarly to the previous examples, the
low-rank GP KCMC and quantile balancing estimates are

6Ground truth V was estimated by unconfounded Monte Carlo
simulation of the true data-generating process. Lower bound
V CMC
inf was estimated by the low-rank hard KCMC estimators

on test data.

0 50 100 150 200

The number of training steps

3.4

3.6

3.8

4.0

4.2

4.4

4.6

4.8

5.0

P
o
lic

y
 v

a
lu

e

low rank GP KCMC (D=100)

low rank hard KCMC (D=100)

ZSB

Figure 2: The value of V̂inf on training data during the
policy learning. The dotted lines represent ground truth
policy values V . The star symbols (⋆) at the end of the
learning curves indicate the average lower bound V CMC

inf of
the learned policy. 6

very close while the ZSB and the low-rank hard KCMC
produce looser and (possibly overly) tighter bounds.

6 CONCLUSION

In this paper, we proposed kernel approximation of the con-
ditional moment constraints to achieve sharp and general
sensitivity analysis. We theoretically studied the property of
the kernel conditional moment constraints and established
consistency guarantees for policy evaluation and learning.
We also confirmed the effectiveness of our approach empir-
ically, with numerical examples covering various types of
problems in the sensitivity analysis.
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A Derivation of ZSB Constraints and Conditional Moment Constraints

Here, we discuss the two ways to relax the distributional constraint of the original uncertainty set for base policy πbase. The
condition that πbase(t|x, u) is a proper distribution is equivalent to∑∫

T

πbase(t
′|x, u) dt′ = 1 and πbase(t|x, u) ≥ 0 for any t ∈ T , x ∈ X , and u ∈ U . (17)

These constraints have traditionally been relaxed to the ZSB constraints, which are used in the well-known Hájek estimator
(Zhao et al., 2019; Kallus and Zhou, 2018, 2021). However, there is also a tighter relaxation called conditional moment
constraints, which we employ in our work. In the following, we present these two types of relaxation.

A.1 ZSB Constraint

When action space T is discrete and finite, a well-known relaxation of (17) is

Eobs[1T=tw(Y, T,X)] = 1 for any t ∈ T (18)

and
w(y, t, x) ≥ 0 for any y ∈ Y, t ∈ T , and x ∈ X , (19)

where 1 denotes the indicator function for event A. Following the naming convention in Dorn and Guo (2022), we will call
this constraint the ZSB constraint after the authors of Zhao et al. (2019). Condition (18) can be obtained as

Eobs[w(Y, T,X)1T=t] = ET∼πbase(·|X,U)

[
1T=t

πbase(T |X,U)

]
= EX,U

[∫
R

∑
T

(
1t′=t

πbase(t′|X,U)

)
p(y|t′, X, U)πbase(t

′|X,U) dy dt′

]

= EX,U

[∑
T
1t′=t

∫
R
p(y|t′, X, U) dt′ dy

]
= 1,

and the non-negativity condition is trivial from the definition of w(y, t, x). Combining the above with the relaxation of the
conditional f-constraint, the following uncertainty set with the ZSB constraint can be defined:

WZSB
ft,x :=

w(y, t, x) ≥ 0 :
EX,U [fT,X (pobs(T |X)w(Y, T,X))] ≤ γ

and
Eobs[1T=tw(Y, T,X)] = 1 for any t ∈ T

 .

This uncertainty set has been traditionally adopted by many works such as Tan (2006); Zhao et al. (2019); Kallus and Zhou
(2018, 2021). For this uncertainty set, associated lower bound

V ZSB
inf (π) := inf

w∈WZSB
Eobs [w(Y, T,X)π(T |X)Y ]

can be consistently approximated straightforwardly. By approximating the expectations by empirical average, we get a
linear program with parameter w = (w1, . . . , wn)

T = (w(Y1, T1, X1), . . . , w(Yn, Tn, Xn))
T ,

V̂ ZSB
inf (π) := min

w∈ŴZSB
ft,x

Ên[w(Y, T,X)π(T |X)Y ] (20)

where

ŴZSB
ft,x :=

w ≥ 0 :
Ên[fT,X (pobs(T |X)w(Y, T,X))] ≤ γ

and
Ên[1T=tw(Y, T,X)] = 1 for all t ∈ T

 .

Here we should note that (20) is not exactly the estimator used in Zhao et al. (2019) and its recent extensions. Instead, they
solved minw≥0

Ên[w(Y,T,X)π(T |X)Y ]

Ên[w(Y,T,X)]
such that Ên[fT,X(pobs(T |X)w(Y, T,X))] ≤ γ, by the linear fractional program-

ming.
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A.2 Conditional Moment Constraints

Now, we introduce the sharper constraints that we leverage in our work. We relax constraint (17) as conditional moment
constraints

Eobs[w(Y, T,X)|T = t,X = x] · pobs(t|x) = 1 for any t ∈ T and x ∈ X (21)

plus non-negativity constraint (19). For this relaxation, we do not require that action space T is discrete and finite. We can
check the validity of this relaxation from

Eobs[w(Y, T,X)|T = t,X = x] · pobs(t, x)

= Eobs

[
ET∼πbase(·|X,U)

[
1

πbase(T |X,U)
|Y, T,X

]
|T = t,X = x

]
· pobs(t, x)

= ET∼πbase(·|X,U)

[
1

πbase(T |X,U)
|T = t,X = x

]
· pobs(t, x)

=
∑∫
U

1

πbase(t|x, u)
pπbase

(u|t, x) du · pobs(t, x)

=
∑∫
U

1

πbase(t|x, u)
pπbase

(t, x, u) du

=
∑∫
U

p(x, u) du = pobs(x)

and the fact that pobs(t|x) = pobs(t, x)/pobs(x). Here, pπbase
(t, x, u) and pπbase

(u|t, x) denote the joint and conditional
distribution of T , X , and U under confounded contextual bandits model. We again combine these conditional moment
constraints (CMC) with the relaxed conditional f-constraint to obtain

WCMC
ft,x :=

w(y, t, x) ≥ 0 :
EX,U [fT,X (pobs(T |X)w(Y, T,X))] ≤ γ

and
Eobs[w(Y, T,X)|T = t,X = x] · pobs(t|x) = 1 for any t ∈ T and x ∈ X


and its corresponding lower bound

V CMC
inf (π) := inf

w∈WCMC
Eobs [w(Y, T,X)π(T |X)Y ] . (22)

Naturally, for these uncertainty sets, one can show inclusion relations Wft,x ⊆ WCMC
ft,x

⊆ WZSB
ft,x

. The former inclusion
follows from the definition of WCMC

ft,x
. We can show the latter inclusion by taking the (conditional) expectation of conditional

moment constraints (21) with respect to pobs(x|t) to obtain ZSB constraint (18).

Here, we can also show that there exist cases where strict inclusion holds so that these sets are not equivalent. For the
latter inclusion, it is trivial to show that strict inclusion holds when the conditional moment constraints are stronger
than the ZSB constraint. For the former inclusion, we can construct the following toy example where there exists some
w(y, t, x) ∈ WCMC

ft,x
\Wft,x .

Example 1 (A non-realizable element in WCMC) Let us assume that the context space is a singleton and the action
space and the reward space are binary so that X = {x} and T = Y = {−1,+1}. Then, observational distribution

pobs(Y = ±1, T = ±1, X = x) = 1/4

and inverse probability weight

w(y, t, x) =

{
3.1 if y = −1
0.9 if y = +1

satisfy conditional moment constraints (21) as well as non-negativity constraints (19) since

Eobs[w(Y, T,X)|T = +1, X = x] · pobs(T = +1|X = x) =

(
0.9 · 1

2
+ 3.1 · 1

2

)
· 1
2
= 1
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and

Eobs[w(Y, T,X)|T = −1, X = x] · pobs(T = −1|X = x) =

(
0.9 · 1

2
+ 3.1 · 1

2

)
· 1
2
= 1.

By considering some conditional f-constraint that contains the above parameter values, we can construct some uncertainty
set WCMC

ft,x
that contains this w(y, t, x) given above observational distribution pobs(y, t, x). However, there exists no proper

policy πbase(t|x, u) and underlying model p(y|t, x, u) and p(x, u) that satisfy both

pobs(y, t, x) =
∑∫
U

p(y|t, x, u)πbase(t|x, u)p(x, u) du

and

w(y, t, x) · pobs(y, t, x)

= ET∼πbase(·|X,U)

[
1

πbase(T |X,U)
|Y = y, T = t,X = x

]
· pobs(y, t, x)

=
∑∫
U

p(y|t, x, u)p(x, u) du.

Indeed,

pobs(Y = +1, t, x) =
∑∫
U

p(y|t, x, u)πbase(t|x, u)p(x, u) du

≤
∑∫
U

p(y|t, x, u)p(x, u) du

= w(+1, t, x) · pobs(Y = +1, t, x)

contradicts our assumptions on the model parameters pobs(Y = +1, t, x) = 1/4 and w(+1, t, x) = 0.9. In other words,
such element w(y, x, t) in uncertainty set WCMC

ft,x
is not realizable, and thus, the strict inclusion holds for Wft,x ⊆ WCMC

ft,x
in this case. This example exploits the too much flexibility of the conditional f-constraint by taking the unrealizable case
where w(+1, t, x) < 1. In the case of discrete action space, we know that w ≥ 1 because the inverse probability of discrete
action is always no less than 1.

Having shown the inclusion relations of the uncertainty sets, we can discuss the relations among the lower bounds. Assuming
that the true base policy is contained in the original sensitivity model, we have V ≥ Vinf ≥ V CMC

inf ≥ V ZSB
inf . One important

question to ask here is under what kind of constraints the second equality holds so that the lower bound of the conditional
moment constraints is tight. Surprisingly, recent work by Dorn and Guo (2022) showed that equality Vinf = V CMC

inf

holds for average treatment effect estimation with Tan’s marginal sensitivity model (Tan, 2006). They showed that there
exists minimizer w∗(y, t, x) of ATE(w) := Eobs[w(Y, T,X)1T=1Y ]− Eobs[w(Y, T,X)1T=0Y ], which is realizable so
that there exists p(y|t, x, u), πbase(t|x, u), and p(x, u) that is compatible with any pobs(y, t, x) and minimizer w∗(y, t, x).
However, they did not provide any realizability results for more general settings such as the evaluation of general policy,
non-binary action spaces, and general box and f-divergence constraints. Clearly, Example 1 shows that the same equality
does not always hold for any box constraints, as it can be the minimizer for some box constraints and some policies.
However, the question of which constraint class yields a tight bound with a realizable minimizer is an open question.

B Alternative f-sensitivity Models by Jin et al. (2022)

Here, we describe the difference between our f-sensitivity models and the f-sensitivity models proposed by Jin et al. (2022)
that also uses uncertainty sets defined with the f-divergence. They proposed a similar uncertainty set that relaxes the
condition

Df [p (Y (1)|X,T = 1) ||p (Y (1)|X,T = 0)] ≤ γ,

where variable Y (1) is the potential outcome variable for treatment T = 1 in Rubin’s potential outcome framework (Rubin,
2005) with binary treatment. Under the assumption of unconfoundedness, the potential outcome variable Y (1) must satisfy
Y (1) ⊥⊥ T |X , and thus it must satisfy Df [p (Y (1)|X,T = 1) ||p (Y (1)|X,T = 0)] = 0 almost surely with respect to pobs.
Their sensitivity model can be interpreted as a relaxation of this assumption by allowing the violation of it up to γ.
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In terms of the modeling paradigm, our f-sensitivity model follows the same modeling framework as Tan (2006), which
takes into account the difference between observational policy pobs(t|x) and underlying confounded policy πbase(t|x, u).
On the other hand, the model by (Jin et al., 2022) considers the distributional shift between observation Y (1)|X = x, T = 1
and counterfactual Y (1)|X = x, T = 0, and therefore, their way of modeling is different from the one that Tan (2006) and
its extension is based on.

C Quantile Balancing Estimator by Dorn and Guo (2022)

In this section, we discuss the recently proposed tractable estimators for lower bound V CMC
inf by Dorn and Guo (2022). As

the optimization for V CMC
inf involves infinite dimensional constraints for all t ∈ T and x ∈ X , we cannot apply the method

analogous to (20) to obtain the empirical version of the lower bound. They studied box constraints aw(t, x) ≤ w(y, t, x) ≤
bw(t, x) in the case of discrete finite action space and proposed the first tractable method to impose such constraints. They
showed that we can solve (22) in the case of box constraints as

V CMC
inf, box = min

aw(t,x)≤w(y,t,x)≤bw(t,x)
Eobs[w(Y, T,X)π(T |X)Y ]

subject to

Eobs[w(Y, T,X)π(T |X)Q(T,X)] = Eobs

[(
π(T |X)

pobs(T |X)

)
Q(T,X)

]
, (23)

where Q(t, x) denotes the τ(t, x)-quantile of the conditional distribution of Y given T = t and X = x for τ(t, x) :=
1/pobs(t|x)−aw(t,x)
bw(t,x)−aw(t,x) . In the case of the marginal sensitivity model by Tan (2006), the expression for τ(t, x) can be simplified

as τ(x) = 1
1+Γ . They leveraged the above characterization for V CMC

inf by plugging in estimate Q̂(t, x) of the conditional
quantile function and empirically approximating the expectation to obtain a tractable linear programming problem for the
quantile balancing (QB) estimator,

V̂ QB
inf, box = min

aw(t,x)≤wi≤bw(t,x)
Ên[w(Y, T,X)π(T |X)Y ]

subject to

Ên[w(Y, T,X)π(X|T )Q̂(T,X)] = Ên

[(
π(T |X)

pobs(T |X)

)
Q̂(T,X)

]
.

Indeed, we will show later that this quantile balancing estimator is a special case of our estimator where we have a nearly
optimal choice of orthogonal function class {ψ1} where ψ1(x, t) =

(
π(t|x)

pobs(t|x)

)
Q̂(t, x). Therefore, the KCMC estimator is

guaranteed to be no looser than QB estimator when
(

π(t|x)
pobs(t|x)

)
Q̂(t, x) ∈ span

(
{ψd(t, x)}Dd=1

)
. To put it in another way,

if we estimate the quantile by linear quantile regression with feature vectors
{(

pobs(t|x)
π(t|x)

)
ψd(x, t)

}D

d=1
, the QB estimator is

no tighter than the KCMC estimator.

As our estimator generalizes the previous work, our estimator overcomes some drawbacks of the quantile balancing
estimators. For example, the quantile balancing estimator cannot handle policy learning and the f-divergence constraint.
Policy learning is difficult with the quantile balancing estimator because taking the derivative with respect to policy requires
differentiability of the solution of the above linear programming with respect to parameter Q̂. Moreover, the quantile
balancing method is designed only for box constraints and does not have a proper extension to the f-sensitivity model. In
contrast, our estimator of sharper bound V CMC

inf based on the kernel method can naturally handle the above-mentioned
generalized cases of sensitivity analysis.

D More Detail on Low-rank Gaussian Process Constraints

Here, we provide more discussion on the derivation and interpretations of the low-rank Gaussian process kernel conditional
moment constraints.

D.1 Derivation

Let’s consider spectral decomposition of the kernel matrix K = V ΛV T with orthonormal matrix V ∈ Rn×n and diagonal
matrix Λ = diag(λ1, . . . , λn) ∈ Rn×n satisfying λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0. By truncating the spectrum after the first
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D dimensions, we approximate the kernel matrix as K ≈ K̃ := Ṽ Λ̃Ṽ T , where Λ̃ = diag(λ1, . . . , λD) ∈ RD×D and
Ṽ ∈ Rn×D is the first D columns of matrix V . Then, we can obtain the low-rank version of the Gaussian process regression
model as

z ∼ N (0, Λ̃)

g = Ṽ z,
e = g + ε,
ε ∼ N (0, σ2In).

Here, we can verify that this model is a valid low-rank approximation, by checking that the prior mean and covariance of g
are 0 and K̃ respectively.

For this low-rank model, the posterior distribution of g given e is again a multivariate normal distribution with mean and
variance µ̃g|e = K̃(K̃ + σ2In)

−1e and Σ̃g|e = K̃ − K̃(K̃ + σ2I)−1K̃. Therefore, we can analogously define the credible
set and the kernel conditional moment constraints as

C̃g|e = {g : (g − µ̃g|e)
T Σ̃−1

g|e(g − µ̃g|e) ≤ χ2
D(1− α)}.

and

KCMClow-rank GP
def⇔ 0 ∈ C̃g|e

⇔ (w ⊙ pobs,T |X − 1)TMlow-rank GP(w ⊙ pobs,T |X − 1) ≤ χ2
D(1− α)

where Mlow-rank GP := (K̃ + σ2In)
−1K̃(K̃ − K̃(K̃ + σ2In)

−1K̃)−1K̃(K̃ + σ2In)
−1.

A big difference between the credible set of the original Gaussian process and the low-rank Gaussian process is the degree
of freedom of the χ2 distribution. This is because the distribution of the g is essentially restricted to the D-dimensional
subspace spanned by columns of Ṽ . The condition that the credible set of g includes 0 ∈ Rn is equivalent to the condition
that 0 ∈ RD is contained in the credible set of z, whose posterior is D-dimensional multivariate normal distribution.

D.2 A Spectral Interpretation of Low-rank and Full-rank Constraints

With the spectral decomposition, we can obtain more intuitive expressions for quadratic forms eTMGPe and eTMlow-rank GPe,
which are

eTMGPe =
1

σ2
(V Te)Tdiag

(
λ1

λ1 + σ2
, . . . ,

λn
λn + σ2

)
(V Te),

eTMlow-rank GPe =
1

σ2
(Ṽ Te)Tdiag

(
λ1

λ1 + σ2
, . . . ,

λD
λD + σ2

)
(Ṽ Te).

Now we can interpret the above quantities from the perspective of the kernel principal component analysis (KPCA)
(Schölkopf et al., 1997). Let φKPCA

1 , . . . , φKPCA
n be the empirically normalized principal components in RKHS cor-

responding to the empirical spectrum λ1/n, . . . , λn/n, which satisfy Ên

∣∣φKPCA
i (Y, T,X)

∣∣2 = 1 for any i. Then,

it can be shown that φKPCA
d (Ti, Xi) =

√
nVd,i, and therefore, V Te/

√
n =

(
Ên[φ

KPCA
1 e], . . . , Ên[φ

KPCA
n e]

)T
and

Ṽ Te/
√
n =

(
Ên[φ

KPCA
1 e], . . . , Ên[φ

KPCA
D e]

)T
. Using these relations, we can re-write the above quadratic forms as

eTMGPe =
1

σ2

n∑
d=1

λd/n

λd/n+ σ2/n

∣∣∣√nÊn[φ
KPCA
d (T,X)e(Y, T,X)]

∣∣∣2
eTMlow-rank GPe =

1

σ2

D∑
d=1

λd/n

λd/n+ σ2/n

∣∣∣√nÊn[φ
KPCA
d (T,X)e(Y, T,X)]

∣∣∣2 . (24)

These expressions provide several intuitions of the kernel conditional moment constraints. First, the difference in the degree
of freedom for the χ2 upper bounds clearly corresponds to the number of summands for individual constraints. Second, when

we decompose the individual summand into weight λd/n
λd/n+σ2/n and squared penalty

∣∣∣√nÊn[φ
KPCA
d (T,X)e(Y, T,X)]

∣∣∣2,
the weight term discounts the squared penalty as the magnitude of the spectrum λd decays. Especially, the summand
becomes negligible when λd is significantly smaller than σ2. If λD is small enough compared to σ2, both quadratic forms are
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approximately equal, and thus, the low-rank constraints can be tighter than its full-rank counterpart owing to the smaller χ2

upper bound. This is a side benefit of low-rank constraints that can also justify its use in practice. Third, the squared penalty
term can be interpreted as a soft version of constraint Eobs[e(Y, T,X)φKPCA

d (T,X)] = 0. Lastly, we can approximately
apply the central limit theorem to

√
nÊn[φ

KPCA
d (T,X)e(Y, T,X)] and obtain its asymptotic distribution. For the sake

of approximation, let us assume that Vobs[e(Y, T,X)|T,X] = Eobs[|e(Y, T,X)|2|T,X] = σ2 and that φKPCA
d (t, x) is

fixed for any n and it satisfies Eobs|φKPCA
d |2 ≈ 1. Then,

√
nÊn[φ

KPCA
d (T,X)e(Y, T,X)] is asymptotically normal

with mean zero and variance Vobs[φ
KPCA
d e] = Eobs|φKPCA

d e|2 = Eobs

[
|φKPCA

d (T,X)|2Eobs[|e(Y, T,X)|2|T,X]
]
=

σ2Eobs|φKPCA(T,X)|2 ≈ σ2. Therefore, we see that the above quadratic forms are the discounted sum of squares of
asymptotically standard normal random variables, which again gives an intuition for the χ2 upper bound.

D.3 Choice of Parameter σ2 > 0

Finally, we discuss a practice consideration on the choice of σ2. From (24), we can see that the quadratic constraint gets
tighter when we reduce the value of σ2, as scaling factor 1

σ2 of the summation, as well as discounting weight λd/n
λd/n+σ2/n ,

gets larger as we decrease σ2. In the sensitivity analysis, we are mostly interested in extreme cases, and thus, it is better to
have overly loose constraints than overly tight constraints. Therefore, when choosing σ2, we can take the largest possible
value of supt∈T ,x∈X Vobs[e|T = t,X = x]. In the case of the box constraints, we can calculate the upper and lower bound
of e(y, t, x), and therefore, the difference between both bounds can be a good guess of the supremum. With regard to the
f-sensitivity model, there is no way to obtain such a bound. For this issue, a practical workaround may be to define the
uncertainty set by combining both the f-divergence constraints and the box constraints, so that we can still use the choice of
σ2 for the box constraints.

E Theoretical Analysis

In this section, we study the property of the kernel conditional moment constraints in the confounding robust inference. For
the convenience of the analysis, we only consider low-rank orthogonality condition Ên[e(Y, T,X)ψ(T,X)] = 0 as the
kernel conditional moment constraints in this section. Thus, we focus on the property of the following population lower
bound

V KCMC
inf (π) = inf

w∈WKCMC
ft,x

Eobs[w(Y, T,X)π(T |X)Y ]

for

WKCMC
ft,x =

w(y, t, x) ≥ 0 :
Eobs[fT,X(w(Y, T,X)pobs(T |X))] ≤ γ

and
Eobs[(w(Y, T,X)pobs(T |X)− 1)ψd] = 0 for any d = 1, . . . , D


and its empirical version

V̂ KCMC
inf (π) = inf

w∈ŴKCMC
ft,x

Ên[w(Y, T,X)π(T |X)Y ]

for

ŴKCMC
ft,x =

w(y, t, x) ≥ 0 :
Ên[fT,X(w(Y, T,X)pobs(T |X))] ≤ γ

and
Ên[(w(Y, T,X)pobs(T |X)− 1)ψd] = 0 for any d = 1, . . . , D

 .

We first study the property of the minimizers for the above problems. Then, we analyze the specification error of the kernel
conditional moment constraints

∣∣V CMC
inf − V KCMC

inf

∣∣. We then provide a condition on orthogonal function set {ψd(t, x)}Dd=1

under which the specification error becomes zero. Finally, we study empirical estimator V̂ KCMC
inf and prove consistency

guarantees for both policy evaluation and learning.

Before further discussion, we introduce several simplifications of notations. We omit subscripts of WCMC
ft,x

, WKCMC
ft,x

,

ŴKCMC
ft,x

and Eobs, unless they are unclear from the context. We also introduce r(y, t, x) =
(

π(t|x)
pobs(t|x)

)
· y and re-

parametrization w̃(y, t, x) = pobs(t|x)w(y, t, x).

Furthermore, we introduce the subgradient and the Fenchel conjugate here, as we will make heavy use of them in this section.
The subgradient of convex function f is represented by ∂f . When we apply the addition operator to the subgradient, it
represents the Minkowski sum. Other operations to the subgradient such as multiplication are similarly defined. The Fenchel
conjugate of f : R → R is defined as f∗(v) := supu{uv − f(u)}. There are a few important properties of the Fenchel
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conjugate. The Fenchel conjugate is always convex because the supremum of a family of convex functions is convex. 7

Additionally, there exists maximizer u∗ that solves f∗(v) = maxu {vu− f(u)} and it satisfies

u∗ ∈ ∂f∗(v) (25)

if f is closed and convex. Function f is closed and convex if its epigraph epi(f) := {(u, t) : u ∈ dom(f), f(u) ≤ t} is
closed and convex, and these conditions are satisfied in our problem. A more thorough treatment of the subgradient and the
Fenchel conjugate can be found in (Boyd et al., 2004).

E.1 Characterization of Solutions

In this section, we derive explicit formulae for the minimizers that give three lower bounds V CMC
inf , V KCMC

inf , and V̂ KCMC
inf ,

which are

w∗
CMC = arg min

w∈WCMC
E[w(Y, T,X)π(T |X)Y ],

w∗
KCMC = arg min

w∈WKCMC
E[w(Y, T,X)π(T |X)Y ],

ŵKCMC = arg min
w∈ŴKCMC

Ên[w(Y, T,X)π(T |X)Y ].

(26)

Here, we know that these problems have the minimizers because the above problems are minimizations of linear objectives
under convex constraints. Furthermore, we know that the strong duality holds for the above convex optimizations, as their
feasibility sets have a non-empty relative interior, satisfying Slater’s constraint qualification. Using these properties, we
obtain the following lemma:

Lemma 1 (Characterization of solutions) Let w∗
CMC, w∗

KCMC, and ŵKCMC be defined as in (26). Then, there exist
function ηCMC : T × X → R, vectors ηKCMC, η

′
KCMC ∈ RD, and constants ηf , η′f , η

′′
f > 0 such that

w∗
CMC(y, t, x) ∈

(
1

pobs(t|x)

)
∂f∗t,x

(
ηCMC(t, x)− r(y, t, x)

ηf

)
, (27)

w∗
KCMC(y, t, x) ∈

(
1

pobs(t|x)

)
∂f∗t,x

(
ηKCMC

Tψ(t, x)− r(y, t, x)

η′f

)
, (28)

ŵKCMC(y, t, x) ∈
(

1

pobs(t|x)

)
∂f∗t,x

(
η′KCMC

T
ψ(t, x)− r(y, t, x)

η′′f

)
. (29)

Proof See below. □

E.1.1 Characterization of w∗
CMC

By using the strong duality, we can transform the original problem for V CMC
inf as

V CMC
inf = inf

w∈WCMC
E[w̃(Y, T,X)r(Y, T,X)]

= inf
w̃

sup
ηCMC:T ×X→R,

ηf≥0

E[w̃r]− E [ηCMC(T,X)E[w̃ − 1|T,X]] + ηf (E[fT,X(w̃)]− γ)

= sup
ηCMC:T ×X→R,

ηf≥0

inf
w̃

E[w̃r]− E [ηCMC(T,X)(w̃ − 1)] + ηf (E[fT,X(w̃)]− γ)

= sup
ηCMC:T ×X→R,

ηf>0

−ηfγ + E[ηCMC]− ηfE
[
sup
w̃

{(
ηCMC − r

ηf

)
w̃ − fT,X(w̃)

}]

= sup
ηCMC:T ×X→R,

ηf>0

−ηfγ + E[ηCMC]− ηfE
[
f∗T,X

(
ηCMC − r

ηf

)]
. (30)

7In this case, v 7→ vu− f(u) is linear, and therefore, is convex.
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In the second last line, we assumed ηf > 0, as the inner minimization achieves −∞ if we take ηf = 0 (unless r(Y, T,X)
does not depend on Y almost surely).

Now, as primal solution w∗
CMC must satisfy the Karush–Kuhn–Tucker (KKT) conditions, we can take the maximizers of

(30) as η∗f and η∗CMC(t, x). Using property (25) of the Fenchel conjugate, we can obtain solution form of w∗
CMC

w∗
CMC(y, t, x) ∈

(
1

pobs(t|x)

)
∂f∗t,x

(
η∗CMC(t, x)− r(y, t, x)

η∗f

)
,

which proves (27). Here, factor 1/pobs(t|x) in front of the subgradient appears because of reparametrization w̃(y, t, x) =
pobs(t|x)w(y, t, x).

Now we are interested in dual solutions η∗f and η∗CMC. To characterize the dual solution, we take the stationary conditions
for the dual problem as

0 ∈ ∂ηf

(
−ηfγ + E[ηCMC]− ηfE

[
f∗T,X

(
ηCMC − r

ηf

)])
= −γ − E

[
f∗T,X

(
ηCMC − r

ηf

)]
+ E

[(
ηCMC − r

ηf

)
· ∂f∗T,X

(
ηCMC − r

ηf

)]
and

0 ∈ ∂ηCMC

(
−ηfγ + E[ηCMC]− ηfE

[
f∗T,X

(
ηCMC − r

ηf

)])
= 1− E

[
∂f∗T,X

(
ηCMC − r

ηf

)
|T = t,X = x

]
, (31)

where we used the functional gradient on measure pobs in the second subgradient condition. As w̃∗
CMC(y, t, x) :=

pobs(t|x) ·w∗
CMC(y, t, x) ∈ ∂f∗t,x

(
η∗
CMC(t,x)−r(y,t,x)

η∗
f

)
, we can see that the second condition corresponds to the conditional

moment constraints.

In general cases, it is difficult to derive analytical expressions for solutions η∗f and η∗CMC, as well as w∗
CMC. However, we

can actually obtain their explicit expressions in the case of box constraints.

Example 2 (Solutions for box constraints) Let us consider the box constraints in the form of the conditional f-constraint.
Here, for notational simplicity, we omit the subscript of aw̃ and bw̃. For example, we will simply write ft,x(w̃) =
I[a(t,x),b(t,x)](w̃). Then, for this choice of function ft,x, we can derive its conjugate and its subgradient as

f∗t,x(v) =


a(t, x)v if v < 0,

0 if v = 0,

b(t, x)v if v > 0,

and

∂f∗t,x(v) =


a(t, x) if v < 0,

[a(t, x), b(t, x)] if v = 0,

b(t, x) if v > 0.

Substituting the above expression of ∂f∗t,x in the subgradient term of condition (31), we can derive more explicit expression

E
[
∂f∗T,X

(
ηCMC − r

ηf

)
|T = t,X = x

]
= P(r < ηCMC(t, x)) · b(t, x) + P(r = ηCMC(t, x)) · [a(t, x), b(t, x)] + P(r > ηCMC(t, x)) · a(t, x).

Here, we used the box constraints’ property a(t, x) ≤ 1 ≤ b(t, x), which follows from the requirement that ft,x must satisfy
ft,x(1) = 0 for any t ∈ T and x ∈ X . Assuming that the conditional distribution of r(Y, T,X) given T = t and X = x
yields continuous distribution for any t ∈ T and x ∈ X , the second subgradient condition becomes

1 = P(r ≤ ηCMC(t, x)) · b(t, x) + P(r > ηCMC(t, x)) · a(t, x).
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This implies that P(r ≤ ηCMC(t, x)) =
1−a(t,x)

b(t,x)−a(t,x) =: τ(t, x), and therefore,

η∗CMC(t, x) =

(
π(t|x)
pobs(t|x)

)
Q(t, x)

where Q(t, x) was defined as the τ(t, x)-th quantile of the conditional distribution of Y given T = t and X = x. From this
dual solution, the primal solution can also be recovered using (27) as

w∗
CMC(y, t, x) =

{
b(t, x) if y ≤ Q(t, x),

a(t, x) otherwise.

E.1.2 Characterization of w∗
KCMC

Now, we derive the characterization of w∗
KCMC. Let ψ(t, x) = (ψ1(T,X), . . . , ψD(T,X))

T . We can use exactly the same
technique as above and reach a similar characterization of the solution as

V KCMC
inf = inf

w∈WKCMC
E[w̃(Y, T,X)r(Y, T,X)]

= inf
w̃

sup
ηKCMC∈RD,

ηf≥0

E[w̃r]− E
[
(w̃ − 1)ηKCMC

Tψ
]
+ ηf (E[fT,X(w̃)]− γ)

= sup
ηKCMC∈RD,

ηf≥0

E[w̃r]− E
[
(w̃ − 1)ηKCMC

Tψ
]
+ ηf (E[fT,X(w̃)]− γ)

= sup
ηKCMC∈RD,

ηf>0

−ηfγ + ηKCMC
TE[ψ]− ηfE

[
sup
w̃

{(
ηKCMC

Tψ − r

ηf

)
w̃ − fT,X(w̃)

}]

= sup
ηKCMC∈RD,

ηf>0

−ηfγ + ηKCMC
TE[ψ]− ηfE

[
f∗T,X

(
ηKCMC

Tψ − r

ηf

)]
. (32)

Now, using the maximizers of dual problem (32) η∗f and η∗KCMC, we can obtain a characterization of w∗
KCMC as

w∗
KCMC(y, t, x) ∈

(
1

pobs(t|x)

)
∂f∗

(
η∗KCMC

Tψ(t, x)− r(y, t, x)

η∗f

)
,

which proves (28).

Now we study the characterization of dual solutions η∗f and η∗CMC. Again, we take the stationary conditions as

0 ∈ ∂ηf

(
−ηfγ + ηKCMC

TE[ψ]− ηfE
[
f∗T,X

(
ηKCMC

Tψ − r

ηf

)])
= −γ − E

[
f∗T,X

(
ηKCMC

Tψ − r

ηf

)]
+ E

[(
ηKCMC

Tψ − r

ηf

)
· ∂f∗T,X

(
ηKCMC

Tψ − r

ηf

)]
and

0 ∈ ∂ηKCMC

(
−ηfγ + ηKCMC

TE[ψ]− ηfE
[
f∗T,X

(
ηKCMC

Tψ − r

ηf

)])
= E

[
ψ

(
1− ∂f∗T,X

(
ηKCMC

Tψ − r

ηf

))
|T = t,X = x

]
.

Again, as w̃∗
KCMC(y, t, x) = pobs(t|x) · w∗

KCMC(y, t, x) ∈ ∂f∗t,x

(
η∗
KCMC

Tψ(t,x)−r(y,t,x)
η∗
f

)
, we can see that the second

condition corresponds to the kernel conditional moment constraints.
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E.1.3 Characterization of ŵKCMC

Again, using the same techniques, we can derive the characterization of ŵKCMC. By exchanging E with Ên in the proof for
w∗

KCMC above and writing the maximizers of dual problem

sup
ηKCMC∈RD,

ηf>0

−ηfγ + ηKCMC
T Ên[ψ]− ηf Ên

[
f∗T,X

(
ηKCMC

Tψ − r

ηf

)]
. (33)

as η̂f and η̂KCMC, we get

ŵKCMC(y, t, x) ∈
(

1

pobs(t|x)

)
∂f∗t,x

(
η̂KCMC

Tψ(t, x)− r(y, t, x)

η̂f

)
,

which proves (29).

E.2 Specification Error

Using the above characterization of the solutions, we can find a condition under which the specification error of estimator
V̂ KCMC
inf (π) becomes zero for policy π so that

∣∣V KCMC
inf (π)− V CMC

inf (π)
∣∣ = 0.

Theorem 1 (No specification error) Let η∗CMC(t, x) be the solution of dual problem (30) for V CMC
inf (π). Then, if

η∗CMC ∈ span ({ψ1, . . . , ψD}) , (34)

we have
V CMC
inf (π) = V KCMC

inf (π).

Proof Take η∗f such that
(
η∗CMC(t, x), η

∗
f

)
is the solution of dual problem (30) for V CMC

inf . Then, we can take multiplier

η∗KCMC that satisfies η∗CMC = η∗KCMC
Tψ. Now, we can see that dual problem (32) for V KCMC

inf can be considered as the
restricted version of dual problem (30) for V CMC

inf where ηCMC is constrained to the subspace spanned by {ψ1, . . . , ψD}.

Therefore, as restricted solution
(
η∗KCMC, η

∗
f

)
achieves the same value as the solution of the non-restricted problem, it is

clearly a solution of restricted problem (32). Finally, owing to the strong duality, we can calculate the values of V CMC
inf and

V KCMC
inf by the values of the dual problems, which implies V CMC

inf = V KCMC
inf . □

Interestingly, with the above result, we can derive quantile balancing constraint (23) for the previously proposed sharp
estimator by Dorn and Guo (2022).
Example 3 (Derivation of quantile balancing estimator (Dorn and Guo, 2022)) Let us consider the same box con-
straints as Example 2. For this problem, we know the analytical form of dual solution η∗CMC(t, x) =

(
π(t|x)

pobs(t|x)

)
Q(t, x).

Therefore, we can take D = 1 and set ψ1(t, y) =
(

π(t|x)
pobs(t|x)

)
Q(t, x) to meet condition (34) in Theorem 1 to obtain the

kernel conditional moment constraint with no specification error.

E.3 Consistency of Policy Evaluation and Learning

Lastly, we study empirical estimator V̂ KCMC
inf and provide convergence guarantees for policy evaluation and learning. First,

we prove the consistency of our estimator for fixed policy π by reduction of our problem to the M-estimation (Van de
Geer, 2000) using the dual formulation. We similarly show a reduction of policy learning problem maxπ∈Π V̂

KCMC
inf to the

M-estimation and prove the consistency of the learned policy parameter when policy class is finite-dimensional and concave.
This reduction to the M-estimation significantly simplified our proof compared to the proof in Kallus and Zhou (2021) using
uniform convergence, because we can take advantage of the well-studied theory of M-estimation. Though their approach
using uniform convergence is very powerful, we found it not immediately applicable to our work, due to the difficulty of
taking the empirical moment constraints into account.

E.3.1 Consistency of Policy Evaluation

To prove the consistency of policy evaluation and learning, we will make use of the two following convergence lemmas for
loss function ℓ : Θ×Z → R, where Θ ⊆ RK for some K and Z := Y × T × X . We assume that for Z := (Y, T, Z), the
loss function satisfies E|ℓθ(Z)| <∞ for any θ ∈ Θ.
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Lemma 2 (Uniform convergence on compact space, Van de Geer (2000, Lemma 5.2.2.)) Assume that parameter space
(Θ, ∥ · ∥) is compact. Also assume that θ 7→ ℓθ, θ ∈ Θ is continuous and it has an L1 envelope so that E[G(Z)] <∞ for

G(z) := supθ∈Θ |ℓθ(z)|. Then, supθ∈Θ

∣∣∣Ên[ℓθ(Z)− E[ℓθ(Z)
∣∣∣ p.→0.

Lemma 3 (Consistency of convex M-estimation, Van de Geer (2000, Lemma 5.2.3.)) Let us define θ0 ∈
argmin

θ∈Θ E[ℓθ(Z)] and its M-estimator θ̂n ∈ argminθ∈Θ Ên[ℓθ(Z)]. Suppose that θ0 is the unique minimizer
and that Θ ⊆ Rk is convex. Also assume that θ 7→ ℓθ, θ ∈ Θ is continuous and convex, satisfying E[Gε] < ∞ for
Gε(z) := supθ∈Θ: ∥θ−θ0∥≤ε |ℓθ(z)| for some ε > 0. Then, θ̂n

p.→θ0.

As our dual problem for policy evaluation (32) and (33) are concave maximization, we can immediately apply the above
lemma as follows.

Theorem 2 (Consistency of policy evaluation) Define parameter space of (ηf , ηKCMC) as Θ ⊆ R+ × RD. Further,
define θ0 := (η∗f , η

∗
KCMC) as the solution of dual problem (32) for V KCMC

inf and θ̂n := (η̂f , η̂KCMC) as the solution to dual
problem (33) for V̂ KCMC

inf . Now, assume that θ0 is unique and that θ0 ∈ Θ. Also assume that f∗t,x : R → R is continuous for
any t ∈ T and x ∈ X . Define ℓ : Θ×Z → R as

ℓθ(t, y, x) := ηfγ − ηKCMC
Tψ(t, x) + ηff

∗
t,x

(
ηKCMC

Tψ(t, x)− r(y, t, x)

ηf

)
so that it is the negative version of the inside of the expectation of dual objectives (32) and (33). Furthermore, assume
ℓ satisfies E |ℓθ| < ∞ for any θ ∈ Θ and E[Gε] < ∞ for Gε := supθ∈Θ: ∥θ−θ0∥≤ε |ℓθ| for some ε > 0. Then, we have

θ̂n
p.→θ0 and V̂ KCMC

inf

p.→V KCMC
inf .

Proof We can immediately apply Lemma 3 and get θ̂n
p.→θ0. Thus, θ̂n tend to the inside of compact set {θ ∈ Θ :

∥θ − θ0∥ ≤ ε}, in which we have the uniform convergence of Ên[ℓθ(Z)] to E[ℓθ(Z)]. Therefore, we have V̂ KCMC
inf =

−Ên[ℓθ̂n(Z)]
p.→− E[ℓθ̂n(Z)]

p.→− E[ℓθ0(Z)] = V KCMC
inf . □

In practice, it is difficult to check the assumption of integrability condition E|ℓθ| < ∞ for any θ ∈ Θ as well as the
uniqueness of the solution. However, it is possible in some cases to check L1 envelope condition E[Gε] <∞, because local
Lipschitzness of f∗ implies the existence of such ε. For example, for the box constraints of Example 2, we know that f∗ is
upper bounded by bw̃(t, x). For the f-divergence constraints, the conjugate function f∗ for many choices of f-divergence is
locally Lipschitz, as shown in Table 1.

E.3.2 Consistency of Concave Policy Learning by M-estimation

Now we consider policy learning. Instead of providing the standard uniform convergence proof, our theoretical result
leverages the preceding lemmas.

Theorem 3 (Consistency of concave policy learning) Assume concave policy class {πβ(t|x) : β ∈ B} with convex
parameter space B satisfying that β 7→ πβ(t|x)y is concave for any y ∈ Y , t ∈ T and x ∈ X . Define the parameter space
of θ = (β, ηf , ηKCMC) as Θ = B × Θη for some convex Θη ⊆ R+ × RD. Define also θ0 := (β∗, η∗f , η

∗
KCMC) so that

β∗ ∈ argmaxβ∈B V
KCMC
inf (πβ) and

(
η∗f , η

∗
KCMC

)
is the solution of dual problem (32) for V KCMC

inf at policy πβ∗ . Similarly,

define θ̂n := (β̂, η̂f , η̂KCMC) so that β̂ ∈ argmaxβ∈B V̂
KCMC
inf (πβ) and (η̂f , η̂KCMC) is the solution of dual problem (33)

for V̂ KCMC
inf at policy πβ̂ . Now, assume that θ0 is unique and that θ0 ∈ Θ. Also assume that f∗t,x : R → R and β → πβ is

continuous for any t ∈ T and x ∈ X . Define ℓ : Θ×Z → R as

ℓθ(t, y, x) := ηfγ − ηKCMC
Tψ(t, x) + ηff

∗
t,x

ηKCMC
Tψ(t, x)−

(
πβ(t|x)
pobs(t|x)

)
y

ηf


so that it is the negative version of the inside of the expectation of dual objectives (32) and (33). Furthermore, assume
ℓ satisfies E |ℓθ| < ∞ for any θ ∈ Θ and E[Gε] < ∞ for Gε := supθ∈Θ: ∥θ−θ0∥≤ε |ℓθ| for some ε > 0. Then, we have

θ̂n
p.→θ0 and V̂ KCMC

inf (πβ̂)
p.→V KCMC

inf (πβ∗).

Proof Due to the concavity of policy class {πβ(t|x) : β ∈ B}, we know that β 7→ E
[
w̃(Y, T,X)

(
πβ(T |X)
pobs(T |X)

)
Y
]

is
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concave for any t ∈ T and x ∈ X . Then, we can see that

max
β∈B

V KCMC
inf = max

β∈B
max

ηKCMC∈RD

ηf>0

min
w̃

E
[
w̃(Y, T,X)

(
πβ(T |X)

pobs(T |X

)
Y

]
− E

[
(w̃ − 1)ηKCMC

Tψ
]
+ ηf (E[fT,X(w̃)]− γ)

= max
β∈B

max
ηKCMC∈RD

ηf>0

E[−ℓθ(Y, T,X)]

= max
θ∈Θ

E[−ℓθ(Y, T,X)]

is a concave maximization problem, because E[ℓθ] is the pointwise infimum of concave functions. Thus, we can apply Lemma
3 and get θ̂n

p.→ θ0, which implies θ̂n tend to the inside of compact set {θ ∈ Θ : ∥θ − θ0∥ ≤ ε}, where we have uniform
convergence guarantee of Ên[ℓθ(Z)]. Therefore, we have V̂ KCMC

inf (πβ̂) = −Ên[ℓθ̂n(Z)]
p.→− E[ℓθ̂n(Z)]

p.→− E[ℓθ0(Z)] =
V KCMC
inf (πβ∗). □

F Experimental Settings and Additional Numerical Examples

Lastly, we provide the details of our numerical experiments and provide more experimental results of the f-sensitivity
models.

F.1 Datasets

In the experiment, we used two types of data, one is synthetic and the other is real-world data. We base most of the
experiments on the first synthetic data adopted from Kallus and Zhou (2018, 2021). The second dataset is a real-world
example used in Dorn and Guo (2022), and it is used to illustrate the application of our methods to a real-world dataset.

Now we explain our first dataset. We use the following data-generating process for this synthetic data.

ξ ∼ Bern(1/2),

X ∼ N (µx, I5),

Y0|X, ξ ∼ N (βT
x,0X + βξ,0ξ + βconst,0, 1),

Y1|X, ξ ∼ N (βT
x,1X + βξ,1ξ + βconst,1, 1),

U = 1Y0>Y1 ,

T |X,Y1, Y2, U ∼ Bern(e(X,U)),

Y = YT ,

where e(X,U) := 6e(X)
4+5U+e(X)(2−5U) and e(x) := σ(βT

e x). Here, σ(u) := exp(u)
1+exp(u) indicates the sigmoid function. The

parameters we used are

µx = [−1, 0.5,−1, 0,−1],

βx,0 = [0, .5,−0.5, 0, 0],

βx,1 = [−1.5, 1.5,−2, 1, 0.5],

βξ,0 = 1,

βξ,1 = −1,

βconst,0 = 2.5,

βconst,1 = −0.5,

βe = [0, 0.75,−0.5, 0,−1].

For the policy evaluation task, we used policy π(t = 1|x) := e(x).

For the real-world data example, we use the same dataset as Dorn and Guo (2022), which is 668 subsamples of data from the
1966-1981 National Longitudinal Survey (NLS) of Older and Young Men. The subsamples consist of the 1978 cross-section



Kei Ishikawa, Niao He

of Young Men who are craftsmen or laborers and are not enrolled in school. We estimate the average treatment effect
(E[Y |T = 1] − E[Y |T = 0]) of union membership (T ) on log wages (Y ), and eight other covariates are used as X . For
the average treatment effect estimation, we substitute 1t=1 − 1t=0 in place of π(t|x). Note that this substituted quantity is
a difference of policy π1(t|x) := 1t=1 and π0(t|x) := 1t=0, and therefore it is not a proper policy. Nevertheless, such a
substitution is still possible, as our method can accommodate any function π(t|x) in place of the evaluated policy. 8

For synthetic data, we generate a dataset of 500 samples for individual experimental configurations, unless otherwise
specified. We repeat the experiment 10 times using different random seeds and report the mean of the 10 experiments.
Additionally, we indicate plus/minus one standard deviation from the mean by the colored band around the line representing
the mean value.

Lastly, conditional probability pobs(t|x) used to construct the estimators was estimated from the data using the logistic
regression with covariate X .

F.2 Compared Estimators

In the numerical examples, we consider four types of estimators.

First, as the baseline method, we consider the conventionally used ZSB estimator. We impose the ZSB constraints on other
estimators, in order to see the additional improvements by these constraints. To impose ZSB constraints while ensuring
the feasibility of the associated convex programming, we applied appropriate rescaling to the estimates of pobs(t|x). 9 As
discussed above, this estimator is conventionally used (Tan, 2006; Kallus and Zhou, 2018; Zhao et al., 2019) but is known to
provide too conservative bounds.

Against this baseline, we compared two types of the proposed estimators based on the kernel moment constraints (KCMC),
which are the low-rank Gaussian process KCMC and the low-rank hard KCMC using the orthogonal function class obtained
by the kernel PCA. In the following, we call them ”low-rank GP KCMC” and ”low-rank hard KCMC”, respectively. For
both of the low-rank KCMC estimators, we used 100-rank approximation so that D = 100, unless otherwise specified.

Additionally, we compared the quantile balancing (QB) estimator by Dorn and Guo (2022). As discussed in Example 3,
this estimator can be considered as a special case of the low-rank hard KCMC estimators that uses the optimal orthogonal
function class, in the case of box constraints.

To solve the convex programming involved in the above estimators, we used MOSEK (ApS, 2019) and ECOS (Domahidi
et al., 2013) through the API of CVXPY (Diamond and Boyd, 2016).

F.3 Additional Numerical Experiments with f-divergence Sensitivity Models

Here, we list more examples of the f-sensitivity analysis with various types of f-divergences using the synthetic dataset. The
f-divergences considered here are listed in Table 1.

Table 1: Commonly used f-divergence, corresponding convex function f : R+ → R, and its Fenchel conjugate f∗ :
dom(f∗) → R.

f-divergence f(u) f∗(v) dom(f∗)

KL u log u exp(v − 1) R
Reverse KL − log u −1− log(−v) R−
Jensen-Shannon −(u+ 1) log

(
u+1
2

)
+ u log u − log(2− exp(v)) v < log 2

Squared Hellinger (
√
u− 1)2 v

1−v v < 1

Pearson χ2 (u− 1)2 1
4v

2 + v R
Neyman χ2 1

u − 1 −2
√
−v + 1 R−

Total Variation 1
2 |u− 1| v − 1

2 ≤ v ≤ 1
2

8If we re-define the reward and the evaluated policy as Y ′ := 2(1T=1Y − 1T=0Y ) and π(t|x) := 1
2

, the offline policy evaluation of
such a setup is equivalent to the average treatment effect estimation.

9We multiplied estimate p̂obs(t|Xi) by 1
n

∑n
i=1[1Ti=t/p̂obs(Ti|Xi)]. When all the constraints can be expressed as linear constraints,

fractional linear programming can be used to impose the ZSB constraints in a more natural manner (Zhao et al., 2019). However, the
quadratic constraints of GP KCMC make it impossible to use the linear fractional programming approach.
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Similarly to the case of Tan’s marginal sensitivity models, the sharp estimators are tighter than the ZSB estimator. The
low-rank hard KCMC is also providing (potentially excessively) tighter bounds than the low-rank Gaussian process KCMC
and the quantile balancing estimators.

Interestingly, the quantile balancing constraint 10 is providing almost as sharp bound as the GP KCMC-based methods,
even though it is no longer the theoretically optimal constraint. Still, it is possible to give some intuition on the use of
orthogonal function class {φ1} with φ1(t, x) :=

(
π(t|x)
pobs(t|x

)
Ŷ (t, x) as follows: If we have a good regressor of Y satisfying

Ŷ (T,X) ≈ Y and if w̃ follows constraint Eobs

[
(w̃(Y, T,X)− 1)

(
π(T |X)

pobs(T |X)

)
Ŷ (T,X)

]
= 0, we have

Eobs

[
w̃(Y, T,X)

(
π(T |X)

pobs(T |X)

)
Y (T,X)

]
= Eobs

[
w̃(Y, T,X)

(
π(T |X)

pobs(T |X)

)
{(Y − Ŷ (T,X)) + Ŷ (T,X)}

]
= Eobs

[
w̃(Y, T,X)

(
π(T |X)

pobs(T |X)

)
((Y − Ŷ (T,X))

]
+ Eobs

[(
π(T |X)

pobs(T |X)

)
Ŷ (T,X)

]
≈ Eobs

[(
π(T |X)

pobs(T |X)

)
Ŷ (T,X)

]
.

This implies that if Y is easy to predict with X and T , the orthogonal constraint using the regressor Ŷ (t, x) gives a similar
value to the IPW estimator of Ŷ (T,X) as long as w̃ is not too far from 1.

10We used Γ = 1.5, which corresponds to finding Ŷ (t, x) that approximates the 40 percentile.
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Figure 3: Estimated upper and lower bounds of policy value using different estimators for different f-sensitivity models. The
synthetic data is used.
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