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Abstract

Bayesian variable selection is a powerful tool for
data analysis, as it offers a principled method for
variable selection that accounts for prior infor-
mation and uncertainty. However, wider adop-
tion of Bayesian variable selection has been ham-
pered by computational challenges, especially in
difficult regimes with a large number of covari-
ates P or non-conjugate likelihoods. To scale
to the large P regime we introduce an efficient
Markov Chain Monte Carlo scheme whose cost
per iteration is sublinear in P (though linear in
the number of data points). In addition we show
how this scheme can be extended to generalized
linear models for count data, which are prevalent
in biology, ecology, economics, and beyond. In
particular we design efficient algorithms for vari-
able selection in binomial and negative binomial
regression, which includes logistic regression as
a special case. In experiments we demonstrate
the effectiveness of our methods, including on
cancer and maize genomic data.

1 Introduction

Generalized linear models are ubiquitous throughout ap-
plied statistics and data analysis (McCullagh and Nelder,
2019). One reason for their popularity is their immediate
interpretability, which results from the introduction of ex-
plicit parameters that encode how the observed response
depends on each covariate. In the scientific setting this in-
terpretability is of central importance. Indeed model fit is
often a secondary concern, and the primary goal is to iden-
tify a parsimonious explanation of the observed data. This
is naturally viewed as a model selection problem, in par-
ticular one in which the model space is defined as a nested
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set of models, with distinct models including distinct sets
of covariates.

The Bayesian formulation of this approach, known as
Bayesian variable selection in the literature, offers a power-
ful set of techniques for realizing Occam’s razor in this set-
ting (George and McCulloch, 1993, 1997; Chipman et al.,
2001; Dellaportas et al., 2002; O’Hara et al., 2009). De-
spite the intuitive appeal of this approach, approximating
the resulting posterior distribution can be computationally
challenging. A principal reason for this is the astronomi-
cal size of the model space that results whenever there are
more than a few dozen covariates. Indeed for P covariates
the total number of distinct models, namely 2P , exceeds the
estimated number of atoms in the known universe (∼1080)
for P ≳ 266. Since, however, large P is common in many
application areas, e.g. genetics, it is essential for methods
to scale to this regime. In addition for many models of in-
terest non-conjugate likelihoods make it infeasible to inte-
grate out real-valued model parameters, resulting in a chal-
lenging high-dimensional inference problem defined on a
transdimensional mixed discrete/continuous latent space.

In this work we develop efficient Markov Chain Monte
Carlo (MCMC) methods for Bayesian variable selection.
Our contributions include the following:

1. We introduce an efficient MCMC sampler for large P
whose cost per iteration is sublinear in P .

2. We develop efficient MCMC samplers for two gener-
alized linear models for count data: i) binomial regres-
sion and the special case of logistic regression; and ii)
negative binomial regression.

3. We show how the algorithmic strategies in 1 and 2
can be combined and how they can accommodate in-
ference over the prior inclusion probability.

4. We provide a unit-tested, easy-to-use, GPU-enabled,
open source implementation of our methods at the
following URL:
https://github.com/BasisResearch/millipede
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2 Background

2.1 Problem Setup

Consider linear regression with X ∈ RN×P and Y ∈ RN

and define the following space of models:

[inclusion variables] γi ∼ Bernoulli(h) (1)

[noise variance] σ2
γ ∼ InvGamma( 12ν0,

1
2ν0λ0)

[coefficients] βγ ∼ N (0, σ2
γτ

−11|γ|)

[responses] Yn ∼ N (βγ ·Xnγ , σ
2
γ)

where i = 1, ..., P and n = 1, ..., N . Here each γi ∈ {0, 1}
controls whether the coefficient βi and the ith covariate are
included (γi = 1) or excluded (γi = 0) from the model. In
the following we use γ to refer to the vector (γ1, ..., γP ).
The hyperparameter h ∈ (0, 1) controls the overall level of
sparsity; in particular hP is the expected number of covari-
ates included a priori. The |γ| coefficients βγ ∈ R|γ| are
governed by a Normal prior with precision proportional to
τ > 0.1 Here |γ| ∈ {0, 1, ..., P} denotes the total num-
ber of included covariates. The response Yn is generated
from a Normal distribution with variance governed by an
Inverse Gamma prior.2 Note that we do not include a bias
term in Eqn. 1, but doing so may be desirable in practice.
An attractive feature of Eqn. 1 is that it explicitly reasons
about variable inclusion and allows us to define posterior
inclusion probabilities or PIPs:

PIP(i) ≡ p(γi = 1|D) ∈ [0, 1] (2)

where D = {X,Y } is the observed dataset.

2.2 Inference

Conjugacy in Eqn. 1 implies that the coefficients β and the
variance σ2 can be integrated out, resulting in a discrete
inference problem over {0, 1}P (Chipman et al., 2001).
Inference over {0, 1}P readily admits a Gibbs sampling
scheme; however, the resulting sampler is notoriously slow
in high dimensions. For example, consider the scenario
in which the two covariates corresponding to i = 1 and
i = 2 are highly correlated and each on its own is sufficient
for explaining the responses Y . In this scenario the poste-
rior concentrates on models with γ = (1, 0, 0, ...) and γ =
(0, 1, 0, ...). Single-site Gibbs updates w.r.t. γi will move
between the two modes very infrequently, since they are
separated by low probability models like γ = (0, 0, 0, ...).

A recently developed inference algorithm—Tempered
Gibbs Sampling (TGS) (Zanella and Roberts, 2019)—
utilizes coordinatewise tempering to cope with this kind

1We usually drop the γ subscript on βγ and σ2
γ to simplify the

notation.
2Throughout we take the limit ν0 → 0 and λ0 → 0, which

corresponds to an improper prior p(σ2) ∝ σ−2.

of problematic stickiness. In the following we describe a
variant of TGS called wTGS that is particularly well-suited
to Bayesian variable selection (Zanella and Roberts, 2019).
As we will see, this algorithm will serve as a powerful sub-
trate for building MCMC samplers for Bayesian variable
selection that can accommodate large P as well as count-
based likelihoods.

2.3 wTGS

Consider the (unnormalized) target distribution

f(γ, i) ≡ p(γ|D)
η(γ−i)U(γi)

p(γi|γ−i,D)
(3)

= U(γi)η(γ−i)p(γ−i|D) (4)

where we have introduced an auxiliary variable i ∈
{1, ..., P}. Here U(·) is the uniform distribution on {0, 1}
and γ−i denotes all components of γ apart from γi. Fi-
nally η(γ−i) is an additional weighting factor to be de-
fined below. The key property of Eqn. 3 is that for any
i the distribution over γi is uniform and factorizes across
{γi, γ−i}. wTGS proceeds by defining a sampling scheme
for the target Eqn. 3 that utilizes Gibbs updates w.r.t. i and
Metropolized-Gibbs updates w.r.t. γi.

i-updates If we marginalize i from Eqn. 3 we obtain

f(γ) = p(γ|D)ϕ(γ) (5)

where we define

ϕ(γ) ≡
P∑
i=1

1
2η(γ−i)

p(γi|γ−i,D)
(6)

As is clear from Eqn. 5, ϕ(γ)−1 is an importance weight
that can be used to obtain samples from the non-tempered
target of interest, i.e. p(γ|D). Additionally Eqn. 3 implies
that we can do Gibbs updates w.r.t. i using the distribution3

f(i|γ) = 1

ϕ(γ)

1
2η(γ−i)

p(γi|γ−i,D)
(7)

γ-updates The auxilary variable i is used to control
which component of γ we update in each step. Since the
posterior conditional w.r.t. γi is the uniform distribution
U(γi), Metropolized-Gibbs (Liu, 1996) updates w.r.t. γi re-
sult in deterministic flips that are accepted with probability
one: γi → 1− γi.

Weighting factor η To finish specifying wTGS we need
to define the weighting factor η(γ−i) in Eqn. 3:

η(γ−i) = p(γi = 1|γ−i,D) + ϵ
P (8)

3Note that Eqn. 6-7-8 depends on conditional PIPs p(γi =
1|γ−i,D); as discussed in Sec. A.4 these can be computed effi-
ciently with careful linear algebra.
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Here p(γi = 1|γ−i,D) is a conditional PIP, and ϵ trades off
between exploitation (ϵ → 0) and exploration (ϵ → ∞).
Indeed since the marginal f(i) is given by

f(i) ∝ Ep(γ−i|D) [η(γ−i)] = PIP(i) + ϵ
P (9)

this choice of η ensures that the sampler focuses its com-
putional effort on large PIP covariates.4 Following Zanella
and Roberts (2019) we typically choose ϵ = 5 and note
that we observe little sensitivity to the precise value of ϵ.
For the full algorithm see Algorithm 3 in the supplement.

Rao-Blackwellization A side benefit of computing con-
ditional PIPs in Eqn. 7 is that they can be repurposed to
compute lower variance Rao-Blackwellized PIP estimates.
See Sec. A.10 for details.

3 The Large P Regime: Subset wTGS

Running wTGS in the large P regime can be prohibitively
expensive, since it involves computing P conditional PIPs
per MCMC iteration. We would like to devise an algo-
rithm that, like wTGS, utilizes conditional PIPs to make
informed moves in γ space while avoiding this prohibitive
O(P ) computational cost.

Subset wTGS To do so we leverage a simple augmen-
tation strategy. In effect, we introduce an auxiliary vari-
able S ⊂ {1, ..., P} that controls which conditional PIPs
are computed in a given MCMC iteration. Since we can
choose the (fixed) size S of S to be much less than P , this
can result in significant speed-ups.

In more detail, consider the following (unnormalized) tar-
get distribution:

f(γ, i, S) ≡ p(γ|D)
η(γ−i)U(γi)

p(γi|γ−i,D)
U(S|i,A) (10)

Here S ranges over all the subsets of {1, ..., P} of size S
that also contain a fixed ‘anchor’ set A ⊂ {1, ..., P} of size
A < S. Moreover U(S|i,A) is the uniform distribution
over all size S subsets of {1, ..., P} that contain both i and
A.5 We choose the same weighting function η as in wTGS
(see Eqn. 8). In practice we adapt A during burn-in, but
for now the reader can suppose that A is chosen at random.
Subset wTGS proceeds by defining a sampling scheme for
the target distribution Eqn. 10 that utilizes Gibbs updates
w.r.t. i and S and Metropolized-Gibbs updates w.r.t. γi.

4See Sec. A.6 for intuition and motivation behind tempering
and Sec. A.7 for further discussion of the mix of exploration and
exploitation that it enables.

5This is reminiscent of the Hamming ball construction in Tit-
sias and Yau (2017).

i-updates Marginalizing i from Eqn. 10 yields

f(γ, S) = p(γ|D)ϕ(γ, S) (11)

where we define

ϕ(γ, S) ≡
∑
i∈S

1
2η(γ−i)

p(γi|γ−i,D)
U(S|i,A) (12)

and have leveraged that U(S|i,A) = 0 if i /∈ S. Crucially,
computing ϕ(γ, S) is O(S) instead of O(P ). We can do
Gibbs updates w.r.t. i using the distribution

f(i|γ, S) ∝ η(γ−i)

p(γi|γ−i,D)
U(S|i,A) (13)

γ-updates Just as for wTGS we utilize Metropolized-
Gibbs updates w.r.t. γi that result in deterministic flips
γi → 1 − γi. Likewise the marginal f(i) is proportional
to PIP(i) + ϵ

P so that the sampler focuses computational
effort on large PIP covariates.

S-updates S is updated with Gibbs moves, S ∼
U(·|i,A). For the full algorithm see Algorithm 1.

Importance weights The Markov chain in Algorithm 1
targets the auxiliary distribution Eqn. 10. To obtain sam-
ples from the desired posterior p(γ|D) we reweight each
sample (γ, S) with an importance weight ρ̃ = ϕ(γ, S)−1

and discard S; see Eqn. 11. Crucially, the importance
weights are upper bounded and exhibit only moderate vari-
ance. Ultimately this moderate variance can be traced to the
coordinatewise tempering, which keeps the tempering to a
modest level; see Sec. A.8 for additional discussion. More-
over, we can show that samples obtained with Algorithm 1
can be used to estimate posterior quantities of interest:

Proposition 1 The Subset wTGS estimator satisfies∑T
t=1ρ

(t)h(γ(t)) → Ep(γ|D) [h(γ)] as T → ∞ (14)

almost surely for every test function h(γ) : {0, 1}P →
R, where ρ(t) ∝ ϕ−1(γ(t), S(t)) are normalized weights.
Moreover, we can use a (partially) Rao-Blackwellized PIP
estimator in Eqn. 14. See Sec. A.9 in the supplement for the
proof and additional details.

4 Binomial Regression: PG-wTGS

For simplicity we focus on the binomial regression case,
leaving a discussion of the negative binomial case to
Sec. A.14 in the supplement. Let X ∈ RN×P , C ∈ ZN>0,
and Y ∈ ZN≥0 with Y ≤ C and consider the following
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Algorithm 1: We outline the main steps in Subset wTGS. See Sec. 3 for details. Subset wTGS reduces to wTGS in the
limit S → P , in which case S becomes redundant. Superscripts indicate MCMC iterations.
Input: Dataset D = {X,Y } with P covariates; prior inclusion probability h; prior precision τ ; subset size S; anchor

set size A; total number of MCMC iterations T ; number of burn-in iterations Tburn.
Output: Approximate weighted posterior samples {ρ(t), γ(t)}Tt=Tburn+1

1 Let γ(0) = (0, ..., 0) and choose A to be the A covariate indices exhibiting the largest correlations with Y .
2 Choose i(0) randomly from {1, ..., P} and S(0) ∼ U(·|i(0),A).
3 for t = 1, ..., T do
4 Sample i(t) ∼ f(·|γ(t−1), S(t−1)) using Eqn. 13
5 Let γ(t) = flip(γ(t−1)|i(t)) where flip(γ|i) flips the ith coordinate of γ: γi → 1− γi.
6 Sample S(t) ∼ U(·|i(t),A) and compute the unnormalized weight ρ̃(t) = ϕ(γ(t), S(t))−1 using Eqn. 12.
7 If t ≤ Tburn adapt A using the scheme described in Sec. A.13.

8 Compute the normalized weights ρ(t) = ρ̃(t)∑
s>Tburn

ρ̃(s)
for t = Tburn + 1, ..., T .

9 return {ρ(t), γ(t)}Tt=Tburn+1

space of generalized linear models:

[inclusion variables] γi ∼ Bernoulli(h) (15)

[bias term] β0 ∼ N (0, τ−1
bias)

[coefficients] βγ ∼ N (0, τ−11|γ|)

[success logits] ψn ≡ β0 + βγ ·Xnγ

[responses] Yn ∼ Binomial(Cn, σ(ψn))

where i = 1, ..., P and n = 1, ..., N . Note that we in-
troduce a bias term β0 governed by a Normal prior with
precision τbias > 0; we assume that β0 is always in-
cluded in the model.6 The response Yn is generated from
a Binomial distribution with total count Cn and success
probability σ(ψn), where σ(·) denotes the logistic func-
tion σ(x) ≡ {1 + exp(−x)}−1. This reduces to logistic
regression with binary responses if Cn = 1 for all n.

4.1 Pòlya-Gamma augmentation

wTGS relies on conditional PIPs to construct informed
moves; unfortunately these cannot be computed in closed
form for non-conjugate likelihoods like that in Eqn. 15. To
get around this we introduce Pòlya-Gamma auxiliary vari-
ables, which rely on the identity

(eψ)a

(1 + eψ)b
= 1

2b
e(a−

1
2 b)ψEPG(ω|b,0)

[
exp(− 1

2ωψ
2)
]

noted by Polson et al. (2013). Here a, ψ ∈ R, b > 0,
and PG(ω|b, 0) is the Pòlya-Gamma distribution, which
has support on the positive real axis. Using this identity
we can introduce aN -dimensional vector of Pòlya-Gamma
(PG) variates ω governed by the prior ωn ∼ PG(Cn, 0) and

6Note that β0 has an implicit γ subscript that we elide (dif-
ferent models have different biases). For simplicity we take
τ = τbias throughout.

rewrite the Binomial likelihood in Eqn. 15 as follows

p(Yn|Cn, σ(ψn)) ∝ σ(ψn)
Yn(1− σ(ψn))

Cn−Yn (16)

=
(exp(−ψn))Cn−Yn

(1 + exp(−ψn))Cn
=

(exp(ψn))
Yn

(1 + exp(ψn))Cn

so that each likelihood term in Eqn. 15 is replaced with

exp(κnψn − 1
2ωnψ

2
n) with κn ≡ Yn − 1

2Cn (17)

This augmentation leaves the marginal distribution
w.r.t. (γ, β) unchanged. Crucially each factor in Eqn. 17 is
Gaussian w.r.t. β, with the consequence that Pòlya-Gamma
augmentation establishes conjugacy.

4.2 PG-wTGS

We can now adapt wTGS to our setting. The augmented
target distribution in Sec. 4.1 is given by

p(Y |β, γ, ω,X,C)p(β)p(γ)p(ω|C) ∝ p(β, γ, ω|D) (18)

where we define D ≡ {X,Y,C}. We marginalize out β to
obtain

p(Y |γ, ω,X,C)p(γ)p(ω|C) ∝ p(γ, ω|D) (19)

Thanks to PG augmentation we can compute
p(Y |γ, ω,X,C) in closed form. Next we introduce
an auxiliary variable i ∈ {0, 1, 2, ..., P} that controls
which variables, if any, are tempered (note the addi-
tional state i = 0). We define the (unnormalized) target
distribution f(γ, ω, i) as follows:

p(γ, ω|D)

{
δi0ξ +

1
P Σ

P
j=1

δijη(γ−j , ω)U(γj)

p(γj |γ−j , ω,D)

}
(20)

Here ξ > 0 is a hyperparameter whose choice we dis-
cuss below. We note two important features of Eqn. 20.
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Algorithm 2: We outline the main steps in PG-wTGS. See Sec. 4 for details.
Input: Dataset D = {X,Y,C} with P covariates; prior inclusion probability h; prior precision τ ; total number of

MCMC iterations T ; number of burn-in iterations Tburn; hyperparameter ξ > 0 (optional)
Output: Approximate weighted posterior samples {ρ(t), γ(t), ω(t)}Tt=Tburn+1

1 Let γ(0) = (0, ..., 0) and ω(0) ∼ PG(C, 0).
2 for t = 1, ..., T do
3 Sample i(t) ∼ f(·|γ(t−1), ω(t−1)) using Eqn. 22.
4 If i(t) > 0 let ω(t) = ω(t−1) and γ(t) = flip(γ(t−1)|i(t)).
5 Otherwise if i(t) = 0 let γ(t) = γ(t−1) and sample ω′(t) ∼ p(·|γ(t−1), β̂(γ(t−1), ω(t−1)),D). Set ω(t) = ω′(t) with

probability α(ω(t)→ω′(t)|γ(t)) given in Eqn. 25 (accept); otherwise set ω(t) = ω(t−1) (reject).
6 Compute the unnormalized weight ρ̃(t) = ϕ(γ(t), ω(t))−1 using Eqn. 21.
7 If ξ is not provided and t ≤ Tburn adapt ξ using the scheme described in Sec. A.12.

8 Compute the normalized weights ρ(t) = ρ̃(t)∑
s>Tburn

ρ̃(s)
for t = Tburn + 1, ..., T .

9 return {ρ(t), γ(t), ω(t)}Tt=Tburn+1

First, by construction when i > 0 the posterior condi-
tional w.r.t. γi is the uniform distribution U(γi). Second, as
we discuss in more detail in Sec. A.4, the posterior condi-
tional p(γi|γ−i, ω,D) in Eqn. 20 can be computed in closed
form thanks to PG augmentation. This is important be-
cause computing p(γi|γ−i, ω,D) is necessary for impor-
tance weighting and Rao-Blackwellization. We proceed to
construct a sampler for the target distribution Eqn. 20 that
utilizes Gibbs updates w.r.t. i, Metropolized-Gibbs updates
w.r.t. γi, and Metropolis-Hastings updates w.r.t. ω.

i-updates If we marginalize i from Eqn. 20 we obtain
f(γ, ω) = p(γ, ω|D)ϕ(γ, ω) where we define

ϕ(γ, ω) ≡ ξ +
1

P

P∑
i=1

1
2η(γ−i, ω)

p(γi|γ−i, ω,D)
(21)

Evidently ϕ(γ, ω)−1 is the importance weight that is used
to obtain samples from the non-tempered target Eqn. 19.
Moreover we can do Gibbs updates w.r.t. i using the distri-
bution

f(i|γ, ω) ∝ δi0ξ +
1

P

P∑
j=1

δij

1
2η(γ−j , ω)

p(γj |γ−j , ω,D)
(22)

To better understand the behavior of the auxiliary variable
i, we compute the marginal distribution w.r.t. i for the spe-
cial case η(·) = 1,

f(i) ∝ δi0ξ +
1
P

∑P
j=1δij (23)

which clarifies that ξ controls how often we visit i = 0.

γ-updates Whenever i > 0 we do a Metropolized-Gibbs
update of γi, resulting in a flip γi → 1− γi.

ω-updates Whenever i = 0 we update ω. To do so we
use a simple proposal that can be computed in closed form.
Importantly f(γ, ω, i = 0) is not tempered by construc-
tion so we can rely on the conjugate structure that is made
manifest when we condition on a value of β. In more de-
tail, we first compute the mean of the conditional posterior
p(β|γ, ω,D) of Eqn. 18:

β̂(γ, ω) ≡ Ep(β|γ,ω,D) [β] (24)

Using this (deterministic) value we then form the con-
ditional posterior distribution p(ω′|γ, β̂,D), which is a
Pòlya-Gamma distribution whose parameters are readily
computed. We then sample a proposal ω′ ∼ p(·|γ, β̂,D)
and compute the corresponding MH acceptance probability
α(ω→ω′|γ). The proposal is then accepted with probabil-
ity α(ω→ ω′|γ); otherwise it is rejected. The acceptance
probability can be computed in closed form and is given by

α(ω→ω′|γ) = min

(
1,
p(Y |γ, ω′, X,C)

p(Y |γ, ω,X,C)
× (25)

p(Y |γ, ω, β̂(γ, ω′), X,C)

p(Y |γ, ω′, β̂(γ, ω), X,C)

p(Y |γ, β̂(γ, ω), X,C)
p(Y |γ, β̂(γ, ω′), X,C)

)
Eqn. 25 is readily computed; conveniently there is no need
to compute the PG density, which can be challenging in
some regimes. See Sec. A.11 for details.

We note that the proposal distribution p(ω′|γ, β̂(γ, ω),D)
can be thought of as an approximation to the posterior
conditional p(ω′|γ,D) =

∫
dβ p(ω′|γ, β,D)p(β|γ,D) that

would be used in a Gibbs update. Since this latter den-
sity is intractable, we instead opt for this tractable option.
One might worry that the resulting acceptance probabil-
ity could be low, since ω is N -dimensional and N can be
large. However, p(ω′|γ, β,D) only depends on β through
ψn = βγ ·Xnγ ; the induced posterior over ψn is typically
somewhat narrow, since the ψn are pinned down by the
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Gamma latent variables. Journal of the American sta-
tistical Association, 108(504):1339–1349, 2013.

Maria C Romay, Mark J Millard, Jeffrey C Glaubitz, Ja-
son A Peiffer, Kelly L Swarts, Terry M Casstevens,
Robert J Elshire, Charlotte B Acharya, Sharon E
Mitchell, Sherry A Flint-Garcia, et al. Comprehensive
genotyping of the USA national maize inbred seed bank.
Genome biology, 14(6):1–18, 2013.

Minsuk Shin, Anirban Bhattacharya, and Valen E John-
son. Scalable Bayesian variable selection using nonlocal
prior densities in ultrahigh-dimensional settings. Statis-
tica Sinica, 28(2):1053, 2018.

Mark FJ Steel and Eduardo Ley. On the effect of prior
assumptions in Bayesian model averaging with applica-
tions to growth regression. The World Bank, 2007.

Yiqing Tian, Howard D Bondell, and Alyson Wilson.
Bayesian variable selection for logistic regression. Sta-
tistical Analysis and Data Mining: The ASA Data Sci-
ence Journal, 12(5):378–393, 2019.

Michalis K Titsias and Christopher Yau. The Hamming ball
sampler. Journal of the American Statistical Association,
112(520):1598–1611, 2017.

Kitty Yuen Yi Wan and Jim E Griffin. An adaptive MCMC
method for Bayesian variable selection in logistic and
accelerated failure time regression models. Statistics and
Computing, 31(1):1–11, 2021.

Giacomo Zanella and Gareth Roberts. Scalable impor-
tance tempering and Bayesian variable selection. Jour-
nal of the Royal Statistical Society: Series B (Statistical
Methodology), 81(3):489–517, 2019.

Ping Zeng and Xiang Zhou. Non-parametric genetic pre-
diction of complex traits with latent Dirichlet process



Martin Jankowiak

regression models. Nature communications, 8(1):1–11,
2017.



Bayesian Variable Selection in a Million Dimensions

Algorithm 3: We outline the main steps in wTGS (Zanella and Roberts, 2019). See Sec. 2.3 for discussion. Note that
we use superscripts to indicate MCMC iterations.
Input: Dataset D = {X,Y } with P covariates; prior inclusion probability h; prior precision τ ; total number of

MCMC iterations T ; number of burn-in iterations Tburn
Output: Approximate weighted posterior samples {ρ(t), γ(t)}Tt=Tburn+1

1 Let γ(0) = (0, ..., 0).
2 for t = 1, ..., T do
3 Sample i(t) ∼ f(·|γ(t−1)) using Eqn. 7
4 Let γ(t) = flip(γ(t−1)|i(t)) where flip(γ|i) flips the ith coordinate of γ: γi → 1− γi.
5 Compute the unnormalized weight ρ̃(t) = ϕ(γ(t))−1 using Eqn. 6.

6 Compute the normalized weights ρ(t) = ρ̃(t)∑
s>Tburn

ρ̃(s)
for t = Tburn + 1, ..., T .

7 return {ρ(t), γ(t)}Tt=Tburn+1

A Appendix

This appendix is organized as follows. In Sec. A.1 we discuss societal impact. In Sec. A.2 we discuss how we infer the
inclusion probability h. In Sec. A.3 we discuss how we combine Subset wTGS and PG-wTGS. In Sec. A.4 we discuss
conditional marginal log likelihood computations. In Sec. A.5 we discuss computational complexity. In Sec. A.6 we
motivate the tempering scheme that underlies wTGS. In Sec. A.7 we discuss the nature of the local moves made by
wTGS. In Sec. A.8 we briefly discuss the role played by importance weighting in our MCMC methods. In Sec. A.9 we
provide a proof of Proposition 1. In Sec. A.10 we discuss Rao-Blackwellized PIP estimators. In Sec. A.11 we discuss
ω-updates. In Sec. A.12 we discuss ξ-adapation. In Sec. A.13 we discuss how we adapt the anchor set A. In Sec. A.14 we
discuss the modifications of PG-wTGS that are needed to accommodate negative binomial likelihoods. In Sec. A.15 we
include additional figures and tables accompanying the experimental results in Sec. 7. In Sec. A.16 we report additional
experimental results. In Sec. A.17 we discuss experimental details.

A.1 Societal impact

We do not anticipate any negative societal impact from the methods described in this work, although we note that they
inherit the risks that are inherent to any algorithm that can be used for hypothesis testing and/or prediction. In more
detail there is the possibility of the following risks. First, predictive algorithms can be deployed in ways that disadvantage
vulnerable groups in a population. Even if these effects are unintended, they can still arise if deployed algorithms are
poorly vetted with respect to their fairness implications. The same applies to any hypotheses investigated with a variable
selection algorithm, especially if variables are correlated with indicators that encode the identity of vulnerable groups.
Second, algorithms that offer uncertainty quantification may be misused by users who place unwarranted confidence in the
uncertainties produced by the algorithm. This can arise, for example, in the presence of undetected covariate shift.

A.2 Inferring the inclusion probability h

Consider the following (unnormalized) target distribution

f(γ, i, h) ≡ p(γ|h,D)p(h|αh, βh)
{
δi0ξ +

1
P Σ

P
j=1

δijη(γ−j , h)U(γj)

p(γj |γ−j , h,D)

}
(26)

where we have introduced a hyperparameter ξ > 0 and αh > 0 and βh > 0 parameterize the prior over h. We define the
inverse importance weight

ϕ(γ, h) ≡ ξ +
1

P

P∑
i=1

1
2η(γ−i, h)

p(γi|γ−i, h,D)
(27)

We can do i updates using the Gibbs distribution

f(i|γ, h) ∝ δi0ξ +
1

P

P∑
j=1

δij

1
2η(γ−j , h)

p(γj |γ−j , h,D)
(28)
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Algorithm 4: We extend wTGS (see Algorithm 3) to allow inference over the inclusion probability h, with h governed
by a Beta(αh, βh) prior. See Sec. A.2 for additional discussion. Note that we use superscripts to indicate MCMC
iterations.
Input: Dataset D = {X,Y } with P covariates; prior precision τ ; hyperparameters (αh, βh); total number of MCMC

iterations T ; number of burn-in iterations Tburn; hyperparameter ξ > 0 (optional)
Output: Approximate weighted posterior samples {ρ(t), γ(t), h(t)}Tt=Tburn+1

1 Let γ(0) = (0, ..., 0) and h(0) ∼ Beta(αh, βh).
2 for t = 1, ..., T do
3 Sample i(t) ∼ f(·|γ(t−1), h(t−1)) using Eqn. 28.
4 If i(t) > 0 let γ(t) = flip(γ(t−1)|i(t)) and h(t) = h(t−1).
5 Otherwise if i(t) = 0 let γ(t) = γ(t−1) and h(t) ∼ f(·|γ(t), i = 0) using Eqn. 29.
6 Compute the unnormalized weight ρ̃(t) = ϕ(γ(t), h(t))−1 using Eqn. 27.
7 If ξ is not provided and t ≤ Tburn adapt ξ using the scheme described in Sec. A.12.

8 Compute the normalized weights ρ(t) = ρ̃(t)∑
s>Tburn

ρ̃(s)
for t = Tburn + 1, ..., T .

9 return {ρ(t), γ(t), h(t)}Tt=Tburn+1

When i = 0 we can do h updates using the Gibbs distribution

f(h|γ, i = 0) = Beta(α = αh + |γ|, β = βh + P − |γ|) (29)

where |γ| is the number of covariates included in the model in the current iteration. See Algorithm 4 for a complete
description of wTGS with inference over h.

The above discussion assumes the linear regression case, Eqn. 1. To accommodate count-based likelihoods we simply use
the untempered i = 0 state to make h updates and ω updates in succession (and in random order).

A.3 Subset PG-wTGS

We show how to combine the algorithmic ideas from Sec. 3 and Sec. 4, i.e. how to scale Bayesian variable selection with
a count-based likelihood to large P . The target distribution is

f(γ, i, ω, S) = p(γ, ω|D)

{
δi0ξ +

1
P Σ

P
j=1

δijη(γ−j , ω)U(γj)

p(γj |γ−j , ω,D)

}
U(S|i,A) (30)

where we assume S ranges over size S subsets of {0, ..., P} and that 0 ∈ A. We define

f(i|γ, ω, S) ∝

δi0ξ + 1

P

∑
j∈S,j>0

δij

1
2η(γ−j , ω)

p(γj |γ−j , ω,D)

U(S|i,A) (31)

and

ϕ(γ, ω, S) ≡

ξ × U(S|0,A) +
1

P

∑
i∈S,i>0

1
2η(γ−i, ω)

p(γi|γ−i, ω,D)
U(S|i,A)

 (32)

The algorithm then follows the same logic as in Subset wTGS and PG-wTGS; see Algorithm 5 for a complete description.

We note an important implementation detail that is common to Algorithm 1 and Algorithm 5. Here we deal with the case
of Algorithm 1 for concreteness. Besides the value of zero, the probability U(S|i,A) takes on two possible values:

U(S|i,A) =
(S −A)!(P − S)!

(P −A)!
if i ∈ A (33)

U(S|i,A) =
(S −A− 1)!(P − S)!

(P −A− 1)!
if i /∈ A

Since, however, we always use normalized weights {ρ(t)} when computing approximate posterior expectations, any overall
constant factor in U(S|i,A) is irrelevant. Consequently we only need to keep track of the ratio of the two values in Eqn. 33,
namely S−A

P−A . In particular there is no need to compute factorials.
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Algorithm 5: We outline the main steps in Subset PG-wTGS, which combines Algorithm 1 & 2. See Sec A.3 for
additional discussion. Note that we use superscripts to indicate MCMC iterations.
Input: Dataset D = {X,Y,C} with P covariates; prior inclusion probability h; prior precision τ ; subset size S;

anchor set size A; total number of MCMC iterations T ; number of burn-in iterations Tburn; hyperparameter
ξ > 0 (optional)

Output: Approximate weighted posterior samples {ρ(t), γ(t), ω(t)}Tt=Tburn+1

1 Let γ(0) = (0, ..., 0) and ω(0) ∼ PG(C, 0).
2 Choose A to include {0} as well as the A− 1 covariate indices exhibiting the largest correlations with the response Y .
3 Choose i(0) randomly from {1, ..., P} and S(0) ∼ U(·|i(0),A).
4 for t = 1, ..., T do
5 Sample i(t) ∼ f(·|γ(t−1), ω(t−1), S(t−1)) using Eqn. 31.
6 If i(t) > 0 let ω(t) = ω(t−1) and γ(t) = flip(γ(t−1)|i(t)).
7 Otherwise if i(t) = 0 let γ(t) = γ(t−1) and sample ω′(t) ∼ p(·|γ(t−1), β̂(γ(t−1), ω(t−1)),D). Set ω(t) = ω′(t) with

probability α(ω(t)→ω′(t)|γ(t)) given in Eqn. 25. Otherwise set ω(t) = ω(t−1).
8 Compute the unnormalized weight ρ̃(t) = ϕ(γ(t), ω(t), S(t))−1 using Eqn. 32.
9 If ξ is not provided and t ≤ Tburn adapt ξ using the scheme described in Sec. A.12.

10 Compute the normalized weights ρ(t) = ρ̃(t)∑
s>Tburn

ρ̃(s)
for t = Tburn + 1, ..., T .

11 return {ρ(t), γ(t), ω(t)}Tt=Tburn+1

A.4 Efficient linear algebra for the (conditional) marginal log likelihood

Here we focus on computing the marginal log likelihood in the case of count-based likelihoods as required for Algorithm 2.
The linear algebra required for the linear regression case is essentially identical. See Chipman et al. (2001); Zanella and
Roberts (2019) for discussion of the linear case.

The conditional marginal log likelihood log p(Y |X,C, γ, ω) can be computed in closed form where, up to irrelevant con-
stants, we have

log p(Y |X,C, γ, ω) = 1
2Z

T
γ+1(X

T
γ+1ΩXγ+1 + τ1γ+1)

−1Zγ+1 (34)

− 1
2 log det(X

T
γ+1ΩXγ+1 + τ1γ+1)− 1

2 log det(τ
−11γ+1)

where Z ∈ RP+1 with Zj =
∑N
n=1 κnXn,j for j = 1, ..., P and the final component ZP+1 =

∑N
n=1 κn corresponds to

the bias. Here and elsewhere X is augmented with a column of all ones where necessary and κn ≡ Yn − 1
2Cn, Ω is the

N × N diagonal matrix formed from ω, and γ + 1 is used to refer to the active indices in γ as well as the bias, which is
always included in the model by assumption. Using a Cholesky decomposition the quantity in Eqn. 34 can be computed
in O(|γ|3 + |γ|2N) time. If done naively this becomes expensive in cases where Eqn. 34 needs to be computed for many
values of γ (as is needed e.g. to compute Rao-Blackwellized PIPs). Luckily, and as is done by (Zanella and Roberts, 2019)
and others in the literature, the computational cost can be reduced significantly since we can exploit the fact that in practice
we always consider ‘neighboring’ values of γ and so we can leverage rank-1 update structure where appropriate. In the
following we provide the formulae necessary for doing so. We keep the derivation generic and consider the case of adding
arbitrarily many variables to γ even though in practice we only make use of the rank-1 formulae.

In more detail we proceed as follows. Let I be the active indices in γ together with the bias index P + 1 (i.e. we
conveniently augment X by an all-ones feature column in the following). Let K be a non-empty set of indices not in I and

let IK = I ∪ K. We let X = Ω
1
2X and rewrite FIK

≡ (XT
IK

XIK
+ τ1IK

)−1 in terms of FI ≡ (XT
I XI + τ1I)

−1 as
follows:

FIK
=

(
XT

I XI + τ1I XT
I XK

XT
KXI XT

KXK + τ1K

)−1

=

(
FI + FIXT

I XKGKXT
KXIFI −FIXT

I XKGK

−GKXT
KXIFI GK

)
(35)

where G−1
K ≡ XT

KXK + τ1K −XT
KXIFIXT

I XK.

To efficiently compute the quadratic term in Eqn. 34 we need to compute ZT
IK
FIK

ZIK
in terms of ZT

I FIZI . Write
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ZIK
= (ZI ,ZK) so we have

ZT
IK
FIK

ZIK
=

(
ZI
ZK

)T(
FI + FIXT

I XKGKXT
KXIFI −FIXT

I XKGK

−GKXT
KXIFI GK

)(
ZI
ZK

)
(36)

= ZT
I FIZI + ZT

I FIXT
I XKGKXT

KXIFIZI (37)

−ZT
I FIXT

I XKGKZK −ZT
KGKXT

KXIFIZI + ZT
KGKZK (38)

= Z̃T
I Z̃I + (X̃T

KX̃IZ̃I)
T(X̃T

KX̃IZ̃I)− 2(X̃T
KX̃IZ̃I)

TZ̃K + Z̃T
KZ̃K (39)

= Z̃T
I Z̃I +

∣∣∣∣∣∣X̃T
KX̃IZ̃I − Z̃K

∣∣∣∣∣∣2 . (40)

where ||·|| is the 2-norm in R|K| and we define

LIL
T
I = XT

I XI + τ1I = F−1
I (41)

LKL
T
K = XT

KXK + τ1K −XT
KXIFIXT

I XK = XT
KXK + τ1K −XT

KX̃IX̃T
I XK = G−1

K

Z̃I ≡ L−1
I ZI Z̃K ≡ L−1

K ZK X̃I ≡ XIL
−T
I X̃K ≡ XKL

−T
K

Here LI and LK are Cholesky factors. This can be rewritten as

ZT
IK
FIK

ZIK
= Z̃T

I Z̃I + ||WK||2 with WK ≡ L−1
K

(
XT

KX̃IZ̃I −ZK

)
(42)

Together these formulae can be used to compute the quadratic term efficiently.

Next we turn to the log determinant in Eqn. 34. We begin by noting that

log det
(
XT

IK
XIK

+ τ1IK

)
+ log det(τ−11IK

) = log det(Ω) + log det
(
XIK

XT
IK
/τ +Ω−1

)
(43)

and

log det
(
XIK

XT
IK
/τ +Ω−1

)
= log det

(
XIX

T
I /τ +Ω−1

)
+ log det (1K/τ) (44)

+ log det
(
τ1K +XT

K(XIX
T
I /τ +Ω−1)−1XK

)
(45)

which together imply

{log det
(
XT

IK
XIK

+ τ1IK

)
+ log det(τ−11IK

)}−
{log det

(
XT

I XI + τ1I
)
+ log det(τ−11I)} = log det

(
XIK

XT
IK
/τ +Ω−1

)
− log det

(
XIX

T
I /τ +Ω−1

)
= log det

(
1K + τ−1XT

K(XIX
T
I /τ +Ω−1)−1XK

)
While these equations can be used to compute the log determinant reasonably efficiently, they exhibit cubic computational
complexity w.r.t. N . So instead we write

det(XT
IK

XIK
+ τ1IK

) = det

(
XT

I XI + τ1I XT
I XK

XT
KXI XT

KXK + τ1K

)
(46)

= det(XT
KXK + τ1K −XT

KXI(XT
I XI + τ1I)

−1XT
I XK)× det(XT

I XI + τ1I)

= det(G−1
K )× det(XT

I XI + τ1I)

This form is convenient because it relies on the termGK that we in any case need to compute the quadratic form. Similarly
det(XT

I XI + τ1I) is easily computed from the Cholesky factor LI .

Above we considered the case of turning on covariates, i.e. γi = 0 → γi = 1. Since we assume that |γ| ≪ P these
computations tend to dominate the computational cost. However, we must also consider the case of turning off covariates,
i.e. γi = 1 → γi = 0. To efficiently compute the required terms we make extensive use of the following identity. Let A,
B, C, and D be appropriate (M − 1)× (M − 1), (M − 1)× 1, 1× (M − 1), and 1× 1 matrices, respectively. Then the
identity (

A B
C D

)−1

=

(
Ã B̃

C̃ D̃

)
=⇒ A−1 = Ã− B̃D̃−1C̃ (47)
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can be used to cheaply compute A−1 if the inverse of the block matrix ((A,B), (C,D)) is available. In other words
once we have computed FI ≡ (XT

I XI + τ1I)
−1 using the Cholesky factor LI we can use submatrices of FI to cheaply

compute the inverse of submatrices of XT
I XI + τ1I , which are precisely the quantities we need to compute Eqn. 34 for

downdates of γ. In particular once the quadratic term has been computed, we can compute the log determinant by again
appealing to Eqn. 46, using Eqn. 47 to compute FI in G−1

K = XT
KXK+ τ1K−XT

KXIFIXT
I XK for redefinitions of I and

K appropriate to a downdate.

A.5 Computational complexity

The primary computational cost in Subset wTGS, PG-wTGS, ASI, and the other MCMC algorithms considered in the main
text arises in computing conditional PIPs of the form p(γj = 1|γ−j ,D) (linear regression case) or p(γj = 1|γ−j , ω,D)
(count-based likelihood case) for j = 1, ..., P , the principal ingredient for which are conditional marginal log likelihoods
as in Eqn. 34. In the case of PG-wTGS, PG-TGS, PG-wGS, and ASI the next largest computational cost is usually sampling
Pòlya-Gamma variables, although this is O(N) and so the cost is moderate in most cases. For PG-wTGS, PG-TGS, PG-
wGS, and ASI computing the MH acceptance probability (e.g. Eqn. 25 for the case of PG-wTGS) is another subdominant
but non-negligible cost.

The precise computational cost of computing p(γj = 1|γ−j ,D) and p(γj = 1|γ−j , ω,D) depends on the details of how the
formulae in Sec. A.4 are implemented. For example in the linear regression setting it can be advantageous to pre-compute
XTX if the result can be stored in memory. In our experiments we do so whenever this is feasible (for a mid-grade GPU
this is typically possible for P ≲ 4 × 104). In the case of PG-wTGS where ω changes every few MCMC iterations, pre-
computing XTX is not advantageous. Note that to avoid possible accumulation of numerical errors we do not compute FI
or other quantities using computations from the previous MCMC iteration, although doing so is possible in principle for
the linear regression case (see e.g. Zanella and Roberts (2019)).

We emphasize that in all cases the computational cost of a MCMC iteration is linear in the number of data points N . Thus
in practice on commonly available hardware the P ⪆ 105 regime is only viable for moderate N ⪅ 104. This is both
because of memory constraints of storing X but also because |γ| tends to increase (slowly) as P increases.9 Nevertheless
running Subset wTGS in the regime with P ⪆ 105 and N ⪆ 104 should become increasingly viable in the near future,
especially on a multi-GPU setup that can fit X in memory.

Linear regression case (wTGS) Using the various rank-1 update/downdate formulae from Sec. A.4 the result is
O(|γ|NP + N |γ|2 + |γ|3) computational complexity per MCMC iteration if pre-computing XTX is not possible. If
pre-computing XTX is possible the computational complexity per MCMC iteration is instead O(P |γ|2+ |γ|3) along with
a one-time O(NP 2) cost to compute XTX .

Linear regression case (Subset wTGS) Using the various rank-1 update/downdate formulae from Sec. A.4 the result
is O(|γ|NS + N |γ|2 + |γ|3) computational complexity per MCMC iteration if pre-computing XTX is not possible. If
pre-computing XTX is possible the computational complexity per MCMC iteration is instead O(S|γ|2 + |γ|3) along with
a one-time O(NP 2) cost to compute XTX .

PG-wTGS for Binomial and Negative Binomial regression Using the various rank-1 update/downdate formulae from
Sec. A.4 the result is O(|γ|NP + N |γ|2 + |γ|3) computational complexity per MCMC iteration with i > 0 and O(N +

N |γ|2 + |γ|3) per MCMC iteration with i = 0. For Subset PG-wTGS the computational complexity per MCMC iteration
with i > 0 is instead O(|γ|NS +N |γ|2 + |γ|3).

We note that the asymptotic formulae reported above are somewhat misleading in practice, since most of the necessary
tensor ops are highly-parallelizable and very efficiently implemented on modern hardware. For this reason Fig. 12 and
Fig. 13 are particularly useful for understanding the runtime in practice, since the various parts of the computation will be
more or less expensive depending on the precise regime and the underlying low-level implementation and hardware.

9Note this expectation may be violated if the response Y cannot be adequately modeled with a sparse set of covariates. In this
regime all wTGS-like algorithms are computationally expensive and Bayesian variable selection is likely poorly suited to analyzing the
relationship between X and Y . This regime is probably better served by other regularization approaches, e.g. ridge regression.
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γ = 0 γ = 1

p(γi = 1|D) ≈ 0 ϵ/P ≪ 1 ϵ/P
p(γi=1|D) ≫ 1

p(γi = 1|D) ≈ 1 1
1−p(γi=1|D) ≫ 1 ≈ 1

Table 1: We explore how the quantity η(γ−i)
p(γi|γ−i,D) =

p(γi=1|D)+
ϵ
P

p(γi|γ−i,D) varies as a function of γ and PIP(i) = p(γi = 1|D)

under the approximation p(γi|γ−i,D) ≈ γip(γi = 1|D) + (1 − γi)(1 − p(γi = 1|D)). We further assume that either
p(γi = 1|D) ≪ ϵ/P or 1− p(γi = 1|D) ≪ ϵ/P . Off-diagonal entries in the table correspond to ‘greedy’ moves that are
given large weight by wTGS. See Sec. A.7 for discussion.

A.6 TGS motivation: binary variables and Metropolized-Gibbs

To provide intuition for the Tempered Gibbs Sampling (TGS) strategy that underlies wTGS, we consider a single latent
binary variable x governed by the probability distribution p(x) = Bernoulli(q). A Gibbs sampler for this distribution
simply samples x ∼ p in each iteration of the Markov chain. An alternative strategy is to employ a so-called Metropolized-
Gibbs move w.r.t. x (Liu, 1996). For binary x this results in a proposal distribution that is deterministic in the sense that it
always proposes a flip: 0 → 1 or 1 → 0. The corresponding Metropolis-Hastings (MH) acceptance probability for a move
x→ x′ is given by

α(x→x′) =

{
min(1, q

1−q ) if x = 0

min(1, 1−qq ) if x = 1
(48)

As is well known, this update rule is more statistically efficient than the corresponding Gibbs move (Liu, 1996). For our
purposes, however, what is particularly interesting is the special case where q = 1

2 . In this case the acceptance probability
in Eqn. 48 is identically equal to one. Consequently the Metropolized-Gibbs chain is deterministic:

...→ 0 → 1 → 0 → 1 → 0 → 1 → ... (49)

Indeed this Markov chain can be described as maximally non-sticky. This shows why building tempering into inference
algorithms for binary latent variable models like that in Bayesian variable selection might be an attractive strategy for
avoiding the stickiness of a vanilla Gibbs sampler.

A.7 The nature of local moves in wTGS

wTGS samples an auxiliary variable i controlled by the Gibbs update in Eqn. 7. To better understand how wTGS and its
variants Subset wTGS and PG-wTGS are designed to efficiently explore regions of high posterior mass it is important to
take a closer look at the form of these i updates. To do so we compute η(γ−i)

p(γi|γ−i,D) ∝ f(i|γ) in four regimes, see Table 1.
We see that if covariate i is not included in the model (γ = 0) and has a small PIP covariate i will be chosen to be updated
only infrequently and, furthermore, that the probability of i being chosen depends on ϵ; thus ϵ controls the amount of
exploration. By contrast if i has a large PIP and is currently excluded from the model (γ = 0) or if i has a small PIP
and is currently included in the model (γ = 1), then f(i|γ) ∼ O(1), with the consequence that i is likely to be flipped in
the next move. This reflects the greedy nature of wTGS, which focuses much of its computational budget on turning on
likely covariates and/or turning off unlikely covariates (i.e. un/likely under the posterior). Finally, if i has a large PIP and
is currently on (γ = 1) it will occasionally be turned off (especially if no other covariates satisfy the ‘greedy’ condition
described in the previous two sentences), which promotes exploration in and around posterior modes. In particular if
covariate i is turned off and covariate i is highly correlated with j then turning off i allows for the possibility that j is
turned on instead in the next MCMC iteration; indeed there will be a ∼ 50% chance of doing so if i and j are the only
covariates that satisfy the greedy condition. Taken together the behavior of f(i|γ) reflected in Table 1 results in a satisfying
balance between exploration and exploitation.
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A.8 Importance weights

Importance weights ρ ∼ ϕ−1 in wTGS and its variants (see e.g. Eqn. 6 and Algorithm 1) are bounded from above. For
example for wTGS in the linear regression case we have

ϕ(γ) = 1
2

P∑
i=1

PIP(i) + ϵ/P

p(γi|γ−i,D)
≥ ϵ

2
(50)

with the consequence that (unnormalized) importance weights are bounded from above by 2
ϵ ; note that in experiments we

typically use ϵ = 5. We also note that the bound in Eqn. 50 is somewhat loose. In practice the variance of importance
weights normalized so that

∑T
t=1 ρ

(t) = T is O(1); see the rightmost panels in Fig. 6-7 for variances observed in practice.

A.9 Proof of Proposition 1

In the main text we made use of an auxiliary variable representation in which the state i is explicitly included in the
state space. For the present purpose it is more convenient to think of Subset wTGS, Algorithm 1, as acting on the space
{0, 1}P × P, where P is the set of all subsets of {1, ..., P} of size S that contain the anchor set A. The transition kernel
can be written as

K((γ, S) → (γ′, S′)) =
∑
i∈S

f(i|γ, S)δ(γ′ − flip(γ|i))U(S′|i,A) (51)

where f(i|γ, S) is the posterior conditional probability in Eqn. 13 and δ(·) is the Dirac delta function. We first show that K
is reversible w.r.t. the auxiliary target f(γ, S) = p(γ|D)ϕ(γ, S), see Eqn. 11. As is evident from Eqn. 51, K is zero unless
γ and γ′ differ in exactly one coordinate—call it i—so that we have γ−i = γ′−i. Thus for non-zero K we have

K((γ, S) → (γ′, S′)) = f(i|γ, S)U(S′|i,A) (52)

= ϕ(γ, S)−1
1
2η(γ−i)

p(γi|γ−i,D)
U(S|i,A)U(S′|i,A) (53)

which implies that

K((γ, S) → (γ′, S′))

K((γ′, S′) → (γ, S))
=
ϕ(γ′, S′)p(γ′i|γ′−i,D)

ϕ(γ, S)p(γi|γ−i,D)
(54)

=
ϕ(γ′, S′)p(γ′|D)

ϕ(γ, S)p(γ|D)
(55)

=
f(γ′, S′)

f(γ, S)
(56)

where we used that p(γ′−i|D) = p(γ−i|D). Since reversibility is trivially satisfied if K((γ, S) → (γ′, S′)) is zero, we have
thus shown that K is reversible w.r.t. f(γ, S) and therefore f -invariant. Since our state space is finite and f(i|γ, S) > 0 if
i ∈ S it is also clear that our Markov chain is both irreducible and Harris recurrent. Thus our Markov chain satisfies the
conditions of Theorem 17.0.1 in Meyn and Tweedie (2012) so that the Law of Large Numbers holds for any test function
h(γ, S) : {0, 1}P × P → R. In particular for any test function h(γ) : {0, 1}P → R we can apply the Law of Large
Numbers twice, once to hϕ−1 and once to ϕ−1 (note that ϕ is bounded away from zero and bounded from above). If we
let Zf be the partition function of f(γ, S), i.e. Zf ≡

∑
γ,S f(γ, S), then

1
T

∑T
t=1h(γ

(t))ϕ−1(γ(t), S(t)) → Ef(γ,S)/Zf

[
h(γ)ϕ−1(γ, S)

]
= Ep(γ|D) [h(γ)] /Zf (57)

and

1
T

∑T
t=1ϕ

−1(γ(t), S(t)) → Ef(γ,S)/Zf

[
ϕ−1(γ, S)

]
= Z−1

f (58)

It follows that

1
T

∑T
t=1h(γ

(t))ϕ−1(γ(t), S(t))
1
T

∑T
t=1ϕ

−1(γ(t), S(t))
→ Ep(γ|D) [h(γ)] (59)
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or equivalently utilizing normalized weights {ρ(t)}∑T
t=1ρ

(t)h(γ(t)) → Ep(γ|D) [h(γ)] as T → ∞ (60)

This finishes the proof of the central claim of Proposition 1. For the specific claim about Rao-Blackwellized PIP estimators
see the next section.

A.10 Rao-Blackwellized PIP estimators

A naive estimator for PIP(i) = p(γi = 1|D) directly uses weighted samples {(ρ(t), γ(t))} provided by Algorithm 3:

PIP(i) ≈
∑
t

ρ(t)γ
(t)
i (61)

However, since wTGS and its variants compute conditional PIPs as part of inference, it is preferable to use a lower variance
Rao-Blackwellized estimator instead:

PIP(i) ≈
∑
t

ρ(t)p(γi = 1|γ(t)−i ,D) (62)

We use the appropriate version of Eqn. 62 in all experiments. In the case of Subset wTGS, Algorithm 1, only S conditional
PIPs are computed in each MCMC iteration. Using the analog of Eqn. 62 would inflate the computational cost from O(S)
to O(P ), entirely defeating the purpose of Subset wTGS. Thus for Subset wTGS we use a partially Rao-Blackwellized
estimator instead:

PIP(i) ≈
∑
t

ρ(t)
{
I(i ∈ S(t))p(γi = 1|γ(t)−i ,D) + I(i /∈ S(t))γ

(t)
i

}
(63)

where I(·) is an indicator function. In other words we use conditional PIPs if they are computed as part of inference
(because i ∈ S) and otherwise use raw γ samples. It is easy to see that the estimator in Eqn. 63 is unbiased, since the test
statistic under consideration factorizes between γ and S. Indeed if we let q(S) denote the uniform distribution on P and
ζ = Eq(S) [I(i ∈ S)] then the proof in Sec. A.9 makes it clear that the partially Rao-Blackwellized estimator in Eqn. 63
converges to

Ep(γ|D)Eq(S) [I(i ∈ S)p(γi = 1|γ−i,D) + (1− I(i ∈ S))γi] (64)
= ζEp(γ|D) [p(γi = 1|γ−i,D)] + (1− ζ)Ep(γ|D) [γi] (65)
= ζPIP(i) + (1− ζ)PIP(i) = PIP(i) (66)

It is also evident that Eqn. 63 is lower variance than the raw estimator Eqn. 61.

A.11 ω-update in PG-wTGS

The acceptance probability for the ω-update in Sec. 4.2 is given by

α(ω→ω′|γ) = min

(
1,
p(Y |γ, ω′, X,C)p(γ)p(ω′|C)
p(Y |γ, ω,X,C)p(γ)p(ω|C)

p(ω|γ, β̂(γ, ω′),D)

p(ω′|γ, β̂(γ, ω),D)

)
(67)

where the ratio of proposal densities is given by

p(ω|γ, β̂(γ, ω′),D)

p(ω′|γ, β̂(γ, ω),D)
=

p(Y |γ, ω, β̂(γ, ω′), X,C)p(γ)p(ω|C)p(β̂(γ, ω′))∫
dω̂ p(Y |γ, ω̂, β̂(γ, ω′), X,C)p(γ)p(ω̂|C)p(β̂(γ, ω′))

×{
p(Y |γ, ω′, β̂(γ, ω), X,C)p(γ)p(ω′|C)p(β̂(γ, ω))∫
dω̂ p(Y |γ, ω̂, β̂(γ, ω), X,C)p(γ)p(ω̂|C)p(β̂(γ, ω))

}−1

(68)
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Simplifying we have that the ratio in α(ω→ω′|γ) is given by

p(Y |γ, ω′, X,C)

p(Y |γ, ω,X,C)
p(Y |γ, ω, β̂(γ, ω′), X,C)∫

dω̂ p(Y |γ, ω̂, β̂(γ, ω′), X,C)p(ω̂|C)

∫
dω̂ p(Y |γ, ω̂, β̂(γ, ω), X,C)p(ω̂|C)

p(Y |γ, ω′, β̂(γ, ω), X,C)

=
p(Y |γ, ω′, X,C)

p(Y |γ, ω,X,C)
p(Y |γ, ω, β̂(γ, ω′), X,C)

p(Y |γ, β̂(γ, ω′), X,C)

p(Y |γ, β̂(γ, ω), X,C)
p(Y |γ, ω′, β̂(γ, ω), X,C)

=
p(Y |γ, ω′, X,C)

p(Y |γ, ω,X,C)
p(Y |γ, ω, β̂(γ, ω′), X,C)

p(Y |γ, ω′, β̂(γ, ω), X,C)

p(Y |γ, β̂(γ, ω), X,C)
p(Y |γ, β̂(γ, ω′), X,C)

which is Eqn. 25 in the main text. Here

p(Y |γ, ω, β̂(γ, ω′), X,C)

p(Y |γ, ω′, β̂(γ, ω), X,C)
=

exp(κ · ψ̂(γ, ω′)− 1
2ω · ψ̂(γ, ω′)2)

exp(κ · ψ̂(γ, ω)− 1
2ω

′ · ψ̂(γ, ω)2)
(69)

and

p(Y |γ, β̂(γ, ω), X,C)
p(Y |γ, β̂(γ, ω′), X,C)

=

∏
n exp(ψ̂(γ, ω)n))

Yn∏
n(1 + exp(ψ̂(γ, ω)n))Cn

∏
n(1 + exp(ψ̂(γ, ω′)n))

Cn∏
n exp(ψ̂(γ, ω

′)n))Yn

(70)

where

(ψ̂(γ, ω))n ≡ β̂(γ, ω)0 + β̂(γ, ω)γ ·Xnγ (71)

and

β̂(γ, ω) = (XT
γ+1ΩXγ+1 + τ1|γ|+1)

−1XT
γ+1κ ∈ R|γ|+1 (72)

where as in Sec. A.4 X is here augmented with a column of all ones. As detailed in (Polson et al., 2013) the (approximate)
Gibbs proposal distribution that results from conditioning on β̂ is given by a Pòlya-Gamma distribution determined by C
and ψ̂:

p(ω′|γ, β̂(γ, ω),D) = PG(ω′|C, ψ̂(γ, ω)) (73)

In practice we do without the MH rejection step for ω in the early stages of burn-in to allow the MCMC chain to more
quickly reach probable states.

A.12 ξ-adaptation in PG-wTGS and other wTGS variants

Here we discuss how ξ > 0 in Eqn. 20 can be adapted during burn-in. The same adaptation scheme (mutatis mutandis) can
also be used for Algorithm 4, where the i = 0 state is introduced to allow for h-updates.

The magnitude of ξ controls the frequency of ω updates. Ideally ξ is such that an O(1) fraction of MCMC iterations result
in a ω update, with the remainder of the computational budget being spent on γ updates. Typically this can be achieved by
choosing ξ in the range ξ ∼ 1− 5. Here we describe a simple scheme for choosing ξ adaptively during burn-in to achieve
the desired behavior.

We introduce a hyperparameter fω ∈ (0, 1) that controls the desired ω update frequency. Here fω is normalized such that
fω = 1 corresponds to a situation in which all updates are ω updates, i.e. all states in the MCMC chain are in the i = 0 state
(something that would be achieved by taking ξ → ∞). Since ω updates are of somewhat less importance for obtaining
accurate PIP estimates than γ updates, we recommend a somewhat moderate value of fω , e.g. fω ∼ 0.1 − 0.4. For all
experiments in this paper we use fω = 0.25.

Our adaptation scheme proceeds as follows. We initialize ξ(0) = 5. At iteration t during the burn-in a.k.a. warm-up phase
we update ξ(t) as follows:

ξ(t+1) = ξ(t) +
fω − ξ(t)

ϕ(γ(t),ω(t))√
t+ 1

(74)
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By construction this update aims to achieve that a fraction fω of MCMC states satisfy i = 0, since the quantity

ϕ(γ, ω) = ξ +
1

P

P∑
i=1

1
2η(γ−i, ω)

p(γi|γ−i, ω,D)
(75)

encodes the total probability mass assigned to states i = 0 and i > 0.

A.13 Anchor set A adaptation in Subset wTGS

We adopt a simple adaptation scheme for the anchor set A. During burn-in we keep a running PIP estimate for each
covariate using the partially Rao-Blackwellized estimator described in Sec. A.10. Periodically—in our experiments every
100 iterations—we update A to be the A covariates exhibiting the largest PIPs according to the current running PIP
estimate. At the end of the burn-in period the anchor set is updated one last time and remains fixed thereafter.

A.14 PG-wTGS for Negative Binomial regression

We specify in more detail how we can accommodate the negative binomial likelihood using Pòlya-Gamma augmentation.
Using the identity

(eψ)a

(1 + eψ)b
= 1

2b
e(a−

1
2 b)ψEPG(ω|b,0)

[
exp(− 1

2ωψ
2)
]

(76)

we write

NegBin(Yn|ψn, ν) =
Γ(Yn + ν)

Γ(Yn + 1)Γ(ν)

(
exp(ψn + ψ0 − log ν)

1 + exp(ψn + ψ0 − log ν)

)Yn
(

1

1 + exp(ψn + ψ0 − log ν)

)ν
(77)

∝ 1

2ν
e
1
2 (Yn−ν)(ψn+ψ0−log ν)Ep(ωn|Yn+ν,0)

[
exp(− 1

2ωn(ψn + ψ0 − log ν)2)
]

where as before ψn = β0 + βγ · Xnγ and ψ0 is a user-specified offset. Here ν > 0 controls the overdispersion of the
negative binomial likelihood. We note that by construction the mean of NegBin(Yn|ψn, ν) is given by exp(ψn+ψ0). Thus
ψ0 (which can potentially depend on n) can be used to specify a prior mean for Y . This is equivalent to adjusting the prior
mean of the bias β0 in the case of constant ψ0.

Comparing to Sec. 4.1 we see that κn is now given by κn = 1
2 (Yn − ν). When computing log p(Y |X, γ, ω, ν, ψ0) the

quantity Z now becomes Zj =
∑
nXn,j (κn − ωn(ψ0 − log ν)), see Sec. A.4. One also picks up an additional factor of

exp(κ · (ψ0 − log ν)− 1
2ω · (ψ0 − log ν)2) (78)

In particular we have the formula

log p(Y |X, γ, ω, ν, ψ0) =
1
2Zγ+1(ω, ν)

T(XT
γ+1ΩXγ+1 + τ1γ+1)

−1Zγ+1(ω, ν) (79)

− 1
2 log det(X

T
γ+1ΩXγ+1 + τ1γ+1)− 1

2 log det(τ
−11γ+1)

+
∑
n (log Γ(Yn + ν)− log Γ(ν)− log 2ν)

+
∑
nκn(ν) (ψ0 − log ν)− 1

2

∑
nωn (ψ0 − log ν)

2

In our experiments we infer ν, which we assume to be unknown. For simplicity we put a flat (i.e. improper) prior on
log ν, although other choices are easily accommodated. To do so we modify the ω update described in Sec. A.11 to a joint
(ω, log ν) update. In more detail we use a simple gaussian random walk proposal for log ν with a user-specified scale (we
use 0.03 in our experiments). Conditioned on a proposal log ν′ we then sample a proposal ω′. Similar to the binomial
likelihood case, we do this by computing

β̂(γ, ω, ν) ≡ Ep(β|γ,ω,ν,D) [β] (80)

and use a proposal distribution ω′ ∼ p(·|γ, β̂, ν′,D). In the negative binomial case the formula for β̂ in Eqn. 72 becomes

β̂(γ, ω, ν) = (XT
γ+1ΩXγ+1 + τ1|γ|+1)

−1XT
γ+1 (κ− ω(ψ0 − log ν)) ∈ R|γ|+1 (81)
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Additionally the proposal distribution is given by

p(ω′|γ, β̂(γ, ω, ν), ν′,D) = PG(ω′|Y + ν′, ψ̂(γ, ω, ν)) (82)

The acceptance probability can then be computed as in Sec. A.11, although in this case the resulting formulae are somewhat
more complicated because of the need to keep track of ν and ν′ as well as the fact that there is less scope for cancellations so
that we need to compute quantities like Γ(ν). Happily, just like in the binomial regression case, the acceptance probability
can be computed without recourse to the Pòlya-Gamma density. In more detail the acceptance probability can be computed
with help of the following expressions.

α(ω, ν→ω′, ν′|γ) = min (1, α̃(ω, ν→ω′, ν′|γ)) (83)

where α̃(ω, ν→ω′, ν′|γ) is given by

α̃(ω, ν→ω′, ν′|γ) = α̃1 × α̃2 × α̃3 (84)

with

α̃1 = 2N(ν′−ν) p(Y |X, γ, ω′, ν′, ψ0)

p(Y |X, γ, ω, ν, ψ0)
(85)

α̃2 =

∏
n

(
eψ̂n(γ,ω,ν)+ψ0−log ν′

)Yn

∏
n

(
eψ̂n(γ,ω

′,ν′)+ψ0−log ν
)Yn

∏
n

(
1 + eψ̂n(γ,ω

′,ν′)+ψ0−log ν
)Yn+ν

∏
n

(
1 + eψ̂n(γ,ω,ν)+ψ0−log ν′

)Yn+ν
′ (86)

α̃3 =

∏
ne
κn(ν)(ψ̂n(γ,ω

′,ν′)+ψ0−log ν)∏
ne
κn(ν

′)(ψ̂n(γ,ω,ν)+ψ0−log ν′)

∏
ne

− 1
2ωn(ψ̂n(γ,ω

′,ν′)+ψ0−log ν)2∏
ne

− 1
2ω

′
n(ψ̂n(γ,ω,ν)+ψ0−log ν′)2

(87)

The correctness of these formulae can be checked numerically by comparing to the Pòlya-Gamma density in regimes where
the density can be easily and reliably computed. This is equally true for the binomial likelihood case.

A.15 Additional figures and tables

Additional figures for the first experiment in Sec. 7.1 are depicted in Fig. 6-7. Additional trace plots for the experiment in
Sec. 7.2 are depicted in Fig. 8. In Table 2 we report PIP estimates for top hits in the cancer experiment in Sec. 7.3; we also
include Fig. 9 and Fig. 10, where the latter is a companion of Fig. 4.

A.16 Additional experiments

A.16.1 Subset wTGS and anchor set size A

We run an additional experiment in which we vary the anchor set size A to complement the experimental results presented
in Sec. 7.1. We use the same maize data with P = 98385 but generate an additional (statistically independent) semi-
synthetic dataset from the same generative process. We report the results in Fig. 11, which complements the top panel in
Fig. 1.

A.16.2 Subset wTGS and cancer data

We run an additional experiment to complement the experimental results presented in Sec. 7.1. We use the same cancer
dataset as in Sec. 7.3 (soN = 907 and P = 17273) except we look at the gene ZEB2. We also use the continuous response
as provided in the dataset (i.e. without quantization). See Fig. 12 for results.

A.16.3 PG-wTGS runtime

In Fig. 13 we depict MCMC iteration times for PG-wTGS for various values of N and P . To make the benchmark realistic
we use semi-synthetic data derived from the DUSP4 cancer dataset (N = 907, P = 17273) used in Sec. 7.3. In particular
forN ̸= 907 and P ̸= 17273 we subsample and/or add noisy data point replicates and/or add random covariates as needed.
As discussed in more detail in Sec. A.5, PG-wTGS, PG-wGS, PG-TGS, and ASI all have similar runtimes, since each is
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Gene PG-wTGS-5M PG-wTGS-250k ASI-250k
DUSP4 1.000 1.000 / 1.000 1.000 / 1.000
PPP2R3A 0.669 0.576 / 0.647 0.466 / 0.318
MIA 0.383 0.338 / 0.365 0.282 / 0.138
KRT80 0.272 0.364 / 0.296 0.502 / 0.482
RELN 0.243 0.286 / 0.219 0.346 / 0.502
ZNF132 0.096 0.124 / 0.093 0.120 / 0.142
TRIM51 0.094 0.075 / 0.099 0.080 / 0.053
ZNF471 0.083 0.107 / 0.081 0.139 / 0.181
S100B 0.063 0.053 / 0.068 0.028 / 0.022
ZNF571 0.062 0.065 / 0.058 0.064 / 0.065
ZNF304 0.060 0.067 / 0.069 0.095 / 0.068
ZNF772 0.040 0.039 / 0.034 0.044 / 0.028
RXRG 0.032 0.026 / 0.025 0.010 / 0.028
ZNF17 0.031 0.033 / 0.037 0.047 / 0.040
ZNF134 0.026 0.026 / 0.029 0.026 / 0.033
KRT7 0.025 0.025 / 0.021 0.016 / 0.206
ZNF71 0.020 0.022 / 0.014 0.045 / 0.023
CCIN 0.019 0.035 / 0.037 0.019 / 0.026
ZNF419 0.018 0.019 / 0.017 0.018 / 0.006
ZMYM3 0.017 0.016 / 0.027 0.014 / 0.036

Gene PG-wTGS-5M PG-wTGS-250k ASI-250k
HNF1B 1.000 1.000 / 1.000 1.000 / 1.000
CAP2 0.323 0.322 / 0.354 0.079 / 0.068
C12orf54 0.172 0.113 / 0.152 0.145 / 0.005
AQP1 0.122 0.127 / 0.128 0.061 / 0.096
FAM43B 0.067 0.059 / 0.050 0.013 / 0.077
KLRF1 0.063 0.059 / 0.065 0.032 / 0.034
ARMC4 0.059 0.062 / 0.035 0.027 / 0.120
SERPINE1 0.050 0.047 / 0.052 0.040 / 0.003
CLIC6 0.049 0.050 / 0.057 0.013 / 0.094
GSDME 0.048 0.056 / 0.050 0.101 / 0.066
UGCG 0.044 0.042 / 0.034 0.108 / 0.093
NEK6 0.039 0.041 / 0.041 0.019 / 0.005
SERPINA10 0.032 0.027 / 0.026 0.007 / 0.017
ECH1 0.029 0.028 / 0.022 0.054 / 0.029
KIF1C 0.029 0.034 / 0.024 0.066 / 0.081
S100A4 0.028 0.029 / 0.025 0.083 / 0.009
MSANTD3 0.023 0.029 / 0.023 0.005 / 0.006
PLIN3 0.023 0.019 / 0.020 0.043 / 0.007
IL4R 0.021 0.018 / 0.021 0.016 / 0.003
SHBG 0.020 0.016 / 0.022 0.005 / 0.027

Table 2: These tables are companions to Fig. 4, Fig. 9, and Fig. 10. We depict PIP estimates for DUSP4 (left) and HNF1B
(right). In each case we include the result from a PG-wTGS run with five million samples as well as two shorter runs
from PG-wTGS and ASI (with the two results separated by a slash). We depict the top 20 genes as determined by the long
PG-wTGS run. The much lower variance and higher accuracy of PG-wTGS are apparent. Indeed if we take the top 20 PIP
estimates from the long run as truth then we can compute the mean absolute error (MAE) of the short run estimates. The
resulting MAEs are 0.007 (0.014) for PG-wTGS and 0.043 (0.061) for ASI for HNF1B (DUSP4), respectively. In other
words the ASI MAE is about five times larger than the PG-wTGS MAE.

data is held-out for testing. As described in the main text, to obtain a dataset with P > 98385 covariates we augment
the maize data with covariates drawn i.i.d. from a unit Normal distribution. We set the prior inclusion probability h to
h = 10/P , the prior precision to τ = 10−4, and ϵ = 5.

The relative statistical efficiency reported in Fig. 2 is defined as a ratio of effective samples sizes per unit time, which is
equivalent to a ratio of time-normalized variances. It is computed as follows:

StatEff(Subset wTGS)

StatEff(wTGS)
=

σ2
wTGSTwTGS

σ2
Subset wTGSTSubset wTGS

(88)

where e.g. TwTGS is the runtime of wTGS and σ2
wTGS is the corresponding variance for the estimator of interest. In Fig. 2

the estimator of interest is the sum of PIPs over all covariates with a PIP that exceeds a threshold of 0.001, of which there
are 53. To determine these “relevant” covariates and compute reference PIPs to compute the required variance in Eqn. 88,
we run 10 independent wTGS chains with 50k samples each and compute a mean PIP across the 10 chains (this requires
about 40 hours of GPU compute). Note that these long chains are independent of the shorter chains used to assess the
statistical efficiency of each method. For each short chain we collect 20k post-adaptation samples, except for wTGS where
we collect 10k. In all cases there are 5k burn-in iterations. For each method we run 10 independent chains; the resulting
variability determines the variance in Eqn. 88. Together with the runtime, this allows us to compute the (relative) statistical
efficiency.

Runtime results are obtained with a NVIDIA Tesla T4 GPU. The predictive and coefficient RMSEs reported in Fig. 2
are normalized by the standard deviation of Y and the euclidean norm of β∗, respectively, for interpretability: with this
normalization a RMSE less than unity is a strict improvement over guessing zero.

PG-wGS/PG-TGS/PG-wTGS/ASI For experiments with count-based likelihoods (unless specified otherwise) we set
the prior precision τ = 0.01 and h = 5/P . We choose the exploration parameter ϵ that enters η(·) to be ϵ = 5. We use the
ξ-adaptation scheme described in Sec. A.12.

We note that PG-TGS uses η(·) = 1 but still utilizes Metropolized-Gibbs moves to update γi; these moves result in
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deterministic flips because of tempering. By contrast PG-wGS uses the same weighting function η(·) as in PG-wTGS
but there is no tempering, with the consequence that γi still undergoes Metropolized-Gibbs moves but the acceptance
probabability is no longer identically equal to one. See Eqn. 48 for the resulting acceptance probability.

ASI has several hyperparameters which we set as follows. We set the exponent λASI that controls adaptation to λASI =
0.75. We set ϵASI = 0.1/P as suggested by the authors. We target an acceptance probability of τASI = 0.25.

Correlated covariates scenario The covariates for p = 3, 4, ..., P are generated independently from a standard Normal
distribution: Xn,p ∼ N (0, 1) for all n. We then generate z ∈ RN with zn ∼ N (0, 1) and set Xn,p=1 ∼ N (zn, 10

−4)
and Xn,p=2 ∼ N (zn, 10

−4). That is the first two covariates are almost identical apart from a small amount of noise.
We then generate the responses Yn using success logits given by ψn = zn. The total count Cn for each data point is set
to 10. Consequently the true posterior concentrates on two modes with γ = (1, 0, 0, ...) and γ = (0, 1, 0, ...). We set
h = 1/P and run each algorithm for 10 thousand burn-in/warmup iterations and use the subsequent 100 thousand samples
for analysis.

Cancer data All chains are run for 25 thousand burn-in/warmup iterations.

Inferring h We follow the discrete time branching process simulator setup described in the supplement of Jankowiak
et al. (2022). We use identical hyperparameters to those used in the reference except we vary the number of causal effects in
each simulation. In addition for each simulation we choose effect sizes from the uniform distribution on [−0.10,−0.02] ∪
[0.02, 0.10]. We choose αh = 0.25 and βh = 250 to define the Beta prior over h; this choice corresponds to a relatively
broad prior with prior mean h = 0.001 (which corresponds to 3 causal mutations expected a priori).

We provide some intuition for the behavior observed in Fig. 5. Note that the diffusion-based likelihood that underlies
Jankowiak et al. (2022) is an approximation of the underlying discrete time branching process dynamics. Consequently the
model is not perfectly well specified. For this reason—and because of the inherent noisiness of the data—as h increases,
there may be a tendency to push h up further, since doing so allows the model to achieve a better fit of the observed
pandemic, even if some of the identified mutations may be spurious. This explains the larger tails observed for simulations
with 10 causal mutations. This is a general reminder that one needs to proceed with caution when placing a prior on h; in
some cases it may be more sensible to assume fixed values of h and do a sensitivity analysis to assess sensitivity to prior
assumptions.

Subset wTGS and cancer experiment The experimental details closely follow the experiment in Sec. 7.1, except in
contrast the data we use here is not semi-synthetic. We run 10 independent chains with wTGS for 500k iterations each
to compute reference PIPs. We then run 20 additional independent chains for each method (i.e. vanilla wTGS and Subset
wTGS for various values of S) for 50k iterations; the results of these chains are then used to compute the relative statistical
efficiency. To do so we use the PIP over all covariates as the estimator of interest. In all cases we allow for 10k burn-in
iterations.

Runtime experiment For each value of N and P we run each MCMC chain for 2000 burn-in iterations and report
iteration times averaged over a subsequent 104 iterations; we report results in Fig. 13.

Hospital data We run PG-wTGS for 10 thousand burn-in iterations and use the subsequent 100 thousand samples for
analysis. The 899 held-out patients are chosen at random. We use a random walk proposal scale for log ν of 0.03. We
set ψ0 to be the logarithm of the mean of the observed Y (this is equivalent to shifting the prior mean of the bias β0; see
Sec A.14).

Health survey data We run PG-wTGS for 10 thousand burn-in iterations and use the subsequent 100 thousand samples
for analysis. We use a random walk proposal scale for log ν of 0.03. We set ψ0 to be the logarithm of the mean of the
observed Y (this is equivalent to shifting the prior mean of the bias β0; see Sec A.14).
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