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Abstract

Bayesian variable selection is a powerful tool for
data analysis, as it offers a principled method for
variable selection that accounts for prior infor-
mation and uncertainty. However, wider adop-
tion of Bayesian variable selection has been ham-
pered by computational challenges, especially in
difficult regimes with a large number of covari-
ates P or non-conjugate likelihoods. To scale
to the large P regime we introduce an efficient
Markov Chain Monte Carlo scheme whose cost
per iteration is sublinear in P (though linear in
the number of data points). In addition we show
how this scheme can be extended to generalized
linear models for count data, which are prevalent
in biology, ecology, economics, and beyond. In
particular we design efficient algorithms for vari-
able selection in binomial and negative binomial
regression, which includes logistic regression as
a special case. In experiments we demonstrate
the effectiveness of our methods, including on
cancer and maize genomic data.

1 Introduction

Generalized linear models are ubiquitous throughout ap-
plied statistics and data analysis (McCullagh and Nelder]
2019). One reason for their popularity is their immediate
interpretability, which results from the introduction of ex-
plicit parameters that encode how the observed response
depends on each covariate. In the scientific setting this in-
terpretability is of central importance. Indeed model fit is
often a secondary concern, and the primary goal is to iden-
tify a parsimonious explanation of the observed data. This
is naturally viewed as a model selection problem, in par-
ticular one in which the model space is defined as a nested
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set of models, with distinct models including distinct sets
of covariates.

The Bayesian formulation of this approach, known as
Bayesian variable selection in the literature, offers a power-
ful set of techniques for realizing Occam’s razor in this set-
ting (George and McCulloch, 1993|1997} (Chipman et al.,
2001; Dellaportas et al., 2002; |(O’Hara et al., [2009). De-
spite the intuitive appeal of this approach, approximating
the resulting posterior distribution can be computationally
challenging. A principal reason for this is the astronomi-
cal size of the model space that results whenever there are
more than a few dozen covariates. Indeed for P covariates
the total number of distinct models, namely 2P exceeds the
estimated number of atoms in the known universe (~ 1030)
for P 2 266. Since, however, large P is common in many
application areas, e.g. genetics, it is essential for methods
to scale to this regime. In addition for many models of in-
terest non-conjugate likelihoods make it infeasible to inte-
grate out real-valued model parameters, resulting in a chal-
lenging high-dimensional inference problem defined on a
transdimensional mixed discrete/continuous latent space.

In this work we develop efficient Markov Chain Monte
Carlo (MCMC) methods for Bayesian variable selection.
Our contributions include the following:

1. We introduce an efficient MCMC sampler for large P
whose cost per iteration is sublinear in P.

2. We develop efficient MCMC samplers for two gener-
alized linear models for count data: i) binomial regres-
sion and the special case of logistic regression; and ii)
negative binomial regression.

3. We show how the algorithmic strategies in 1 and 2
can be combined and how they can accommodate in-
ference over the prior inclusion probability.

4. We provide a unit-tested, easy-to-use, GPU-enabled,
open source implementation of our methods at the
following URL.:

https://github.com/BasisResearch/millipede
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2 Background

2.1 Problem Setup

Consider linear regression with X € R¥*P and Y € RV
and define the following space of models:

inclusion variables] ~i ~ Bernoulli(h) (N
noise variance]

[
[
[coefficients]
[

By NN(OvU"Q/TillM)
responses| Y, ~ N(By - Xnqy, ai)
wherei =1,...,Pandn = 1,..., N. Here each; € {0,1}

controls whether the coefficient 5; and the i*" covariate are
included (v; = 1) or excluded (; = 0) from the model. In
the following we use +y to refer to the vector (1, ..., vp).
The hyperparameter h € (0, 1) controls the overall level of
sparsity; in particular & P is the expected number of covari-
ates included a priori. The || coefficients 3, € Rl are
governed by a Normal prior with precision proportional to
T > 0 Here |y| € {0,1,..., P} denotes the total num-
ber of included covariates. The response Y,, is generated
from a Normal distribution with variance governed by an
Inverse Gamma priorE] Note that we do not include a bias
term in Eqn. [T} but doing so may be desirable in practice.
An attractive feature of Eqn. [I]is that it explicitly reasons
about variable inclusion and allows us to define posterior
inclusion probabilities or PIPs:

PIP(i) = p(% = 1D) € [0, 1] @)

where D = {X, Y} is the observed dataset.

2.2 Inference

Conjugacy in Eqn. [I|implies that the coefficients 5 and the
variance o2 can be integrated out, resulting in a discrete
inference problem over {0,1}¥ (Chipman et al., 2001).
Inference over {0,1}% readily admits a Gibbs sampling
scheme; however, the resulting sampler is notoriously slow
in high dimensions. For example, consider the scenario
in which the two covariates corresponding to ¢ = 1 and
1 = 2 are highly correlated and each on its own is sufficient
for explaining the responses Y. In this scenario the poste-
rior concentrates on models with v = (1,0,0,...) and v =
(0,1,0,...). Single-site Gibbs updates w.r.t. y; will move
between the two modes very infrequently, since they are
separated by low probability models like v = (0, 0,0, ...).

A recently developed inference algorithm—Tempered
Gibbs Sampling (TGS) (Zanella and Roberts, 2019)—
utilizes coordinatewise tempering to cope with this kind

'We usually drop the y subscript on 3, and 03 to simplify the
notation.

“Throughout we take the limit o — 0 and A\g — 0, which
corresponds to an improper prior p(o?) oc o 2.

2 1, 1
o, ~ InvGamma(510, 5v0A0)

of problematic stickiness. In the following we describe a
variant of TGS called wTGS that is particularly well-suited
to Bayesian variable selection (Zanella and Roberts}, 2019).
As we will see, this algorithm will serve as a powerful sub-
trate for building MCMC samplers for Bayesian variable
selection that can accommodate large P as well as count-
based likelihoods.

2.3 wTIGS

Consider the (unnormalized) target distribution

N n(v=1)U (1)
fy,i) = p(ﬂp)ip(wlv—iﬂ) 3)

= U(yi)n(v-i)p(7-i|D) “)

where we have introduced an auxiliary variable i €
{1,..., P}. Here U(-) is the uniform distribution on {0, 1}
and ~y_; denotes all components of v apart from ;. Fi-
nally 7(vy_;) is an additional weighting factor to be de-
fined below. The key property of Eqn. 3] is that for any
1 the distribution over +; is uniform and factorizes across
{7i,v7—:i}. wTGS proceeds by defining a sampling scheme
for the target Eqn. [3]that utilizes Gibbs updates w.r.t. 7 and
Metropolized-Gibbs updates w.r.t. ;.

i-updates If we marginalize ¢ from Eqn. 3] we obtain

f(v) =p(v[D)o(7) (5)

where we define

=3

(6)
~p %Iv_z, D)

As is clear from Eqn. |5} ¢(v)~! is an importance weight
that can be used to obtain samples from the non-tempered
target of interest, i.e. p(y|D). Additionally Eqn. [3|implies
that we can do Gibbs updates w.r.t. ¢ using the distributio

1 n(y=s)
() p(vilv—4, D)

flily) = ©)

v-updates The auxilary variable ¢ is used to control
which component of v we update in each step. Since the
posterior conditional w.r.t. y; is the uniform distribution
U (:), Metropolized-Gibbs (Liu,|1996) updates w.r.t. ; re-
sult in deterministic flips that are accepted with probability
one: y; = 1 — ;.

Weighting factor » To finish specifying wTGS we need
to define the weighting factor n(y—;) in Eqn.

=p(yi =1v-,D)+ 5 ®)

*Note that Eqn. l-l-l depends on conditional PIPs p(y; =
1|y—i, D); as discussed in Sec. [A.4] these can be computed effi-
ciently with careful linear algebra.

n(v=4)
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Here p(vy; = 1]v—;, D) is a conditional PIP, and € trades off
between exploitation (¢ — 0) and exploration (¢ — o).
Indeed since the marginal f(7) is given by

f(i) < Ep(y_, 10y (7)) = PIP(i) + § ©

this choice of 7 ensures that the sampler focuses its com-
putional effort on large PIP covariatesﬂ Following |Zanella
and Roberts| (2019) we typically choose ¢ = 5 and note
that we observe little sensitivity to the precise value of e.
For the full algorithm see Algorithm [3in the supplement.

Rao-Blackwellization A side benefit of computing con-
ditional PIPs in Eqn. [/|is that they can be repurposed to
compute lower variance Rao-Blackwellized PIP estimates.
See Sec.[A.10/for details.

3 The Large P Regime: Subset wTGS

Running wTGS in the large P regime can be prohibitively
expensive, since it involves computing P conditional PIPs
per MCMC iteration. We would like to devise an algo-
rithm that, like wTGS, utilizes conditional PIPs to make
informed moves in v space while avoiding this prohibitive
O(P) computational cost.

Subset wTGS To do so we leverage a simple augmen-
tation strategy. In effect, we introduce an auxiliary vari-
able 8 C {1,..., P} that controls which conditional PIPs
are computed in a given MCMC iteration. Since we can
choose the (fixed) size S of S to be much less than P, this
can result in significant speed-ups.

In more detail, consider the following (unnormalized) tar-
get distribution:

oy n=)U (%) ;g1
f(,4,8) fp(’le)pmM,D) U(sli,A)  (10)

Here 8 ranges over all the subsets of {1, ..., P} of size S
that also contain a fixed ‘anchor’ set A C {1, ..., P} of size
A < 8. Moreover U(8]i,A) is the uniform distribution
over all size S subsets of {1, ..., P} that contain both ¢ and
AE] We choose the same weighting function 7 as in wTGS
(see Eqn. [8). In practice we adapt A during burn-in, but
for now the reader can suppose that A is chosen at random.
Subset wTGS proceeds by defining a sampling scheme for
the target distribution Eqn. [I0] that utilizes Gibbs updates
w.r.t. ¢ and 8§ and Metropolized-Gibbs updates w.r.t. ;.

“See Sec. for intuition and motivation behind tempering
and Sec. [A7]for further discussion of the mix of exploration and
exploitation that it enables.

3This is reminiscent of the Hamming ball construction in Tit-
sias and Yau! (2017).

i-updates Marginalizing ¢ from Eqn. [I0]yields

f(v,8) =p(vID)é(v,8) an

where we define

$(1,8) =

€8

1
31(7-1) .

———U(8i, A (12)

p(ilv-i, D) (5t 4)

and have leveraged that U (8|i, A) = 0if ¢ ¢ 8. Crucially,

computing ¢(v,8) is O(S) instead of O(P). We can do

Gibbs updates w.r.t. ¢ using the distribution

n(y-i)

T b i)

U(8li, A) (13)

~v-updates Just as for wITGS we utilize Metropolized-
Gibbs updates w.r.t. ; that result in deterministic flips
~vi — 1 — ~;. Likewise the marginal f(¢) is proportional

to PIP(i) + § so that the sampler focuses computational

effort on large PIP covariates.

S-updates S is updated with Gibbs moves, § ~
U(:|i,.A). For the full algorithm see Algorithm 1}

Importance weights The Markov chain in Algorithm [T]
targets the auxiliary distribution Eqn. [I0] To obtain sam-
ples from the desired posterior p(y|D) we reweight each
sample (7, 8) with an importance weight p = ¢(v,8)~!
and discard §; see Eqn. Crucially, the importance
weights are upper bounded and exhibit only moderate vari-
ance. Ultimately this moderate variance can be traced to the
coordinatewise tempering, which keeps the tempering to a
modest level; see Sec. [A.8|for additional discussion. More-
over, we can show that samples obtained with Algorithm
can be used to estimate posterior quantities of interest:

Proposition 1 The Subset wTGS estimator satisfies
S p WD) = Epyipy [(4)] s T — o0 (14)

almost surely for every test function h(y) : {0,1}F —
R, where p) oc ¢~ (v, 8®)) are normalized weights.
Moreover, we can use a (partially) Rao-Blackwellized PIP
estimator in Egn. See Sec.[A.9in the supplement for the
proof and additional details.

4 Binomial Regression: PG-wTGS

For simplicity we focus on the binomial regression case,
leaving a discussion of the negative binomial case to
Sec.in the supplement. Let X € RV*F C e Z¥,
and Y € Z¥, with Y < C and consider the following
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Algorithm 1: We outline the main steps in Subset wTGS. See Sec. [3|for details. Subset wTGS reduces to wTGS in the
limit S — P, in which case 8 becomes redundant. Superscripts indicate MCMC iterations.

Input: Dataset D = {X, Y} with P covariates; prior inclusion probability h; prior precision 7; subset size S; anchor
set size A; total number of MCMC iterations T'; number of burn-in iterations T} yrn-

Output: Approximate weighted posterior samples {p(t)7 V(t)}tT:Tbm 11

Let (0 = (0,...,0) and choose A to be the A covariate indices exhibiting the largest correlations with Y.

Choose i(*) randomly from {1, ..., P} and 8(9) ~ U(-|i(®) A).

fort=1,...,T do
Sample i) ~ f(-|y*=D, 81 using Eqn.

Let v = flip(y(*=1]i(*)) where flip(v|i) flips the i*" coordinate of v: 7; — 1 — ;.
Sample 8() ~ U(-[iV), A) and compute the unnormalized weight 5(*) = ¢(y®), 8())~1 using Eqn.
If t < Thuen adapt A using the scheme described in Sec.

Compute the normalized weights p(*) = = e
5>Thurn

return {p(t)a ’y(t) }$:Tb|xrn+1

)
piﬁ(s) fort = Tburn + ].7 71—‘

space of generalized linear models:

inclusion variables] ~i ~ Bernoulli(h) (15)
bias term] Bo ~ N(0,7:L)
ﬁ,y ~ N(O, 7-711|'y|)

success logits] o = Bo + By - Xy

[
[
[coefficients]
[
[ Y., ~ Binomial(C,,, o(1y,))

responses|

where ¢ = 1,...,Pand n = 1,..., N. Note that we in-
troduce a bias term [y governed by a Normal prior with
precision Thias > 0; we assume that [y is always in-
cluded in the modelE] The response Y, is generated from
a Binomial distribution with total count C,, and success
probability o(1,,), where o(-) denotes the logistic func-
tion o(z) = {1 + exp(—z)}~!. This reduces to logistic
regression with binary responses if C,, = 1 for all n.

4.1 Polya-Gamma augmentation

wTGS relies on conditional PIPs to construct informed
moves; unfortunately these cannot be computed in closed
form for non-conjugate likelihoods like that in Eqn. [I5] To
get around this we introduce Polya-Gamma auxiliary vari-
ables, which rely on the identity

e¥)e ot
o = e Epcino ol fur)]

noted by [Polson et al.|(2013). Here a,v» € R, b > 0,
and PG(wlb,0) is the Pdlya-Gamma distribution, which
has support on the positive real axis. Using this identity
we can introduce a N-dimensional vector of Polya-Gamma
(PG) variates w governed by the prior w,, ~ PG(C,,,0) and

®Note that o has an implicit  subscript that we elide (dif-
ferent models have different biases). For simplicity we take
T = Tbias throughout.

rewrite the Binomial likelihood in Eqn.[I5]as follows

P(Yn|Cryo (1)) o o(0n) ¥ (1 — o(0,))" Y (16)
_(exp(=n) T (exp(¢ha))

— (I +exp(=1n))9 (14 exp(¥,)) O

so that each likelihood term in Eqn. [15]is replaced with

eXp(Hnwn - %wnwi) with Kn = KL - %Cn (17)

This augmentation leaves the marginal distribution
w.r.t. (7, 3) unchanged. Crucially each factor in Eqn.[17)is
Gaussian w.r.t. 3, with the consequence that Polya-Gamma
augmentation establishes conjugacy.

42 PG-wTGS

We can now adapt wTGS to our setting. The augmented
target distribution in Sec.[4.1]is given by

p(Y1B,v,w, X, C)p(B)p(7)p(w|C) o< p(B,v,w|D)

where we define D = {X,Y, C'}. We marginalize out 3 to
obtain

(18)

p(Yly,w, X, C)p(7)p(w|C) o< p(v,w|D)

Thanks to PG augmentation
p(Y|v,w, X,C) in closed form. Next we introduce
an auxiliary variable ¢ € {0,1,2,..., P} that controls
which variables, if any, are tempered (note the addi-
tional state ¢ = (). We define the (unnormalized) target
distribution f(~y,w, ) as follows:

19)

we can compute

6¢'n(v*7w)U(7‘)}
w[D) { Gig& + Lxp BT o @
p(y,wl ){ of + p2j=1 p(vjly-j,w, D) ¢

Here £ > 0 is a hyperparameter whose choice we dis-
cuss below. We note two important features of Eqn.
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Algorithm 2: We outline the main steps in PG-wTGS. See Sec. [ for details.

Input: Dataset D = {X,Y, C'} with P covariates; prior inclusion probability ; prior precision 7; total number of
MCMC iterations T'; number of burn-in iterations Tim; hyperparameter £ > 0 (optional)
Output: Approximate weighted posterior samples {p("), ") W} .

Let (O = (0, ...,0) and w(©
fort=1,....,T do

Sample i) ~ f(-|y*~D, w1 using Eqn.
If i > 0let w® = w1 and 4*) = flip(y

~ PG(C,0).

. . . 5(H)
Compute the normalized weights p(*) =
5>Thurn

return {p("), v, O} .

t—1) |i(t))_

Otherwise if i(!) = 0 let (! = 4(t=1) and sample w'®) ~ p(-|y(E=D, B(y
probability a(w®) — w'()|y(*)) given in Eqn. 25| (accept); otherwise set w(*) = w=1) (reject).

Compute the unnormalized weight () = (7, w(®)~

If £ is not provided and ¢ < T, adapt € using the scheme described in Sec.

D, wt=1D) D). Set w® = w'® with

! using Eqn.

ﬁ fort = Tburn + ].7 71—‘

First, by construction when ¢ > 0 the posterior condi-
tional w.r.t. 7; is the uniform distribution U (+y;). Second, as
we discuss in more detail in Sec.[A.4] the posterior condi-
tional p(7;|v—;,w, D) in Eqn.[20]can be computed in closed
form thanks to PG augmentation. This is important be-
cause computing p(~;|y—;,w, D) is necessary for impor-
tance weighting and Rao-Blackwellization. We proceed to
construct a sampler for the target distribution Eqn. [20] that
utilizes Gibbs updates w.r.t. 7, Metropolized-Gibbs updates
w.r.t. 7;, and Metropolis-Hastings updates w.r.t. w.

i-updates If we marginalize ¢ from Eqn. we obtain

f(v,w) = p(v,w|D)d(v,w) where we define
P
¢( Z 277 V=i, W (21)

Vil V=i, w, D)

Evidently ¢(v,w) ™! is the importance weight that is used
to obtain samples from the non-tempered target Eqn. [I9]
Moreover we can do Gibbs updates w.r.t. ¢ using the distri-
bution

' 1 - %U(’Y—j;w)
f(zh/vw) X 6i0€ + F Zélj(—

(22)
= r(yh-w D)

To better understand the behavior of the auxiliary variable
1, we compute the marginal distribution w.r.t. ¢ for the spe-
cial case n(-) = 1,

f(@) o< ;o€ + %Zf:ﬁij (23)
which clarifies that £ controls how often we visit ¢ = 0.

v-updates Whenever ¢ > 0 we do a Metropolized-Gibbs
update of ;, resulting in a flip v; — 1 — ;.

w-updates Whenever ¢ = 0 we update w. To do so we
use a simple proposal that can be computed in closed form.
Importantly f(y,w,i = 0) is not tempered by construc-
tion so we can rely on the conjugate structure that is made
manifest when we condition on a value of 5. In more de-
tail, we first compute the mean of the conditional posterior

p(Bly,w, D) oqun.

B(7,w) = Ep(g}yw.m) 18] (24)

Using this (deterministic) value we then form the con-
ditional posterior distribution p(w’ |7,B,D), which is a
Polya-Gamma distribution whose parameters are readily
computed. We then sample a proposal w’ ~ p(-|y, 8, D)
and compute the corresponding MH acceptance probability

a(w—w'|). The proposal is then accepted with probabil-
ity a(w — w'|y); otherwise it is rejected. The acceptance
probability can be computed in closed form and is given by

a(w—w'|y) = min (1 (g/nﬁ;”i ; g))
p(Y,w, BA(’Y:“J,)?X? c) p(Y\%lj’(% w), X, C) )
p(Y[y, o', B(y,w), X, C) p(Y]y, B(v,w'), X, C)

Eqn. 25]is readily computed; conveniently there is no need

to compute the PG density, which can be challenging in
some regimes. See Sec.[A.TT|for details.

(25)

We note that the proposal distribution p(w’|, B (v,w), D)
can be thought of as an approximation to the posterior
conditional p(w'|y, D) = [dB p(w'|7, 8, D)p(B|y, D) that
would be used in a Gibbs update. Since this latter den-
sity is intractable, we instead opt for this tractable option.
One might worry that the resulting acceptance probabil-
ity could be low, since w is N-dimensional and N can be
large. However, p(w’|7y, 8, D) only depends on § through
Yn, = By - Xyn~; the induced posterior over vy, is typically
somewhat narrow, since the 1, are pinned down by the
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observed data, and consequently p(w’|7, 3, D) is a reason-
ably good approximation to the exact posterior conditional.
In practice we observe high mean acceptance probabilities
~ 50% — 95% for all the experiments in this Workﬂ even
for N >> 102

Weighting factor n We choose n(v_;,w) = p(y; =
1|y—j,w) + . For the full algorithm see A]gorithm

5 Further Extensions

We briefly discuss how to accommodate inference over the
prior inclusion probability & in Eqn.[T|and Eqn.[T5} It is nat-
ural to place a Beta prior on & (Steel and Leyl, 2007)), since
in the non-tempered setting this allows for conjugate Gibbs
updates of h. Unfortunately this is spoiled by the tem-
pering in wTGS, in particular the denominator in Eqn. [3]
which exhibits complex dependence on h. We adopt a sim-
ple workaround. For example in the case of linear regres-
sion, Eqn. |1} we add an additional state © = 0 to wTGS
analogous to the ¢ = 0 state in PG-wTGS in Sec.d By
construction when ¢ = 0 the target distribution is not tem-
pered, thus allowing for conjugate updates of h. See Al-
gorithm [d]in the supplement for details. Subset wTGS and
PG-wTGS are also readily combined; see Algorithm [3]in
the supplement for details.

6 Related Work

Some of the earliest approaches to Bayesian variable se-
lection (BVS) were introduced by |George and McCulloch
(1993}, 1997). |Chipman et al| (2001) provide an in-depth
discussion of BVS for linear regression and CART mod-
els. Nikooienejad et al. (2016) and |Shin et al.| (2018)
advocate the use of non-local priors in the BVS set-
ting. (Garcia-Donato and Martinez-Beneito} |2013) com-
pare non-MCMC search methods for BVS to MCMC-
based methods. [Zanella and Roberts|(2019) introduce Tem-
pered Gibbs Sampling (TGS) and apply it to BVS for linear
regression. (Griffin et al.[(2021) introduce an efficient adap-
tive MCMC method for BVS in linear regression. Wan and
Griffin| (2021)) extend this approach to logistic regression
and accelerated failure time models. We include this ap-
proach (ASI) in our empirical validation in Sec. Tian
et al| (2019) introduce an approach to BVS for logistic
regression that relies on joint credible regions. [Lamnisos
et al.| (2009) develop transdimensional MCMC chains for
BVS in probit regression. |[Dellaportas et al.| (2002) and
O’Hara et al.| (2009) review various methods for BVS. [Pol-
son et al.| (2013) introduce Polya-Gamma augmentation
and use it to develop efficient Gibbs samplers.

"For the experiment in Sec.[A.16.3| N varies between 100 and
4000 and P varies between 134 and 69092 and the average ac-
ceptance prob. ranges between 49% and 89%.
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Figure 1: We report results for the experiment in Sec.
with P = 98385. (Top) We depict the relative statistical
efficiency of Subset wTGS with subset size .S compared to
wTGS. Here statistical efficiency is defined such that it is
proportional to both estimator variance and to runtime; see
Sec. for details. (Bottom) We depict the number of
iterations per second (IPS) for Subset wTGS as a function
of S. The green dotted line depicts the IPS that would be
expected if the latter scaled like S~1.

7 Experiments

We validate the performance of Algorithms [T] & [2] on syn-
thetic and real world data. We implement all algorithms
using PyTorch (Paszke et al.l|2017) and the polyagamma
package for sampling from Polya-Gamma distributions
(Blekil 2021). See Sec. for additional experi-
mental details and experiments (e.g. negative binomial re-

sults in Sec. and Sec. [A.3]for discussion of

computational complexity.

7.1 Subset wTGS performance for large P

We conduct two semi-synthetic experiments using maize
genomic data from|/Romay et al.|(2013) that have also been
analyzed by [Zeng and Zhou! (2017); |Biswas et al.| (2022)).
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Figure 2: We report results for the Subset wTGS experiment in Sec. with P ranging from 1.5 x 10° to 7.5 x 10° and
S = 16384. We report 95% confidence intervals across 5 train/test splits. (Left) We depict the sensitivity and precision
obtained if covariates with PIPs above a threshold of 0.5 are declared hits. (Middle) We depict the root mean squared
error (RMSE) for held out responses Y * and the inferred posterior mean over coefficients 8. (Right) We depict runtimes

obtained on a NVIDIA Tesla T4 GPU for collecting 50k MCMC samples.

This dataset serves as a good benchmark for our method,
since it has large P (P = 98385), moderately large NV
(N = 2267), and complex correlation structure in the co-
variates X. We use synthetic responses Y so we have ac-
cess to ground truth. Note that we do not include compar-
isons to ASI (Griffin et al.l [2021)), since we were unable
to obtain results using ASI that were remotely competitive
with wTGS.

In the first experiment we examine statistical efficiency
and runtime, see Fig. E} We find that Subset wTGS ex-
hibits large speed-ups over wTGS and that these speed-
ups translate to improved statistical efficiency. Indeed
Subset wTGS with anchor set size A = %S—which is
our default choice—exhibits a relative statistical efficiency
~ 20x larger than wTGS. Subset wTGS with no anchor set
(A = 0) exhibits somewhat marginal efficiency improve-
ments above wTGS, highlighting the importance of the an-
chor set A in Algorithm [I} For an additional experiment
that varies the anchor set size A see Fig.[I]in the supple-
ment.

We note that the lower panel in Fig. |l|indicates that GPU
resources are approximately saturated for S ~ 4000; in-
creasing S beyond this point results in linear increases in
runtime per MCMC iteration. Not surprisingly, the largest
relative gain in statistical efficiency is observed precisely
at this saturation point. Consequently we advise users to
choose S to saturate available computational resources. In-
deed we expect Subset wT'GS to deliver significant perfor-
mance gains precisely in the regime where wTGS saturates
computational resources and choosing S < P results in
many more MCMC iterations for a fixed runtime budget.
Thus when P is moderate, performance gains may be lim-
ited (see Fig.[I2]in the supplement).

Next we demonstrate the feasibility of scaling Subset
wTGS to P ~ 10%, see Fig. 2| for results. To extend
the maize data to P > 98385 we append random covari-

ates drawn from a unit Normal distribution. Thanks to the
O(S) iteration cost of Subset wTGS, GPU memory is the
main bottleneck to accommodating large(r) datasets. In-
deed the time needed to obtain 50k MCMC samples for
P = 7.5x10% is ~ 35 minutes on a Tesla T4 GPU. By con-
trast wTGS does not scale to this regime unless conditional
PIPs are computed sequentially in batches (we estimate a
~ 24 hour runtime). We find high precision and sensitivity
in identifying causal covariates across the entire range of
P considered, highlighting the value of scalable Bayesian
variable selection algorithms.

7.2 PG-wTGS and correlated covariates

We consider simulated Binomial regression datasets in
which two covariates (i € {1, 2}) are highly correlated and
each alone can explain the response. This can be a chal-
lenging regime, since it is easy to get stuck in one mode and
fail to explore the other mode. We consider four datasets
with 32 < N <512, 32 < P <4096, and C,, = 10 for all
data points. See Fig. [3|for the results.

To better understand the performance of PG-wTGS, we
consider two variants, PG-TGS and PG-wGS, which do
without weighting by 7n(v_;,w) and tempering, respec-
tively. In addition we compare to ASI (Wan and Griffin,
2021), an adaptive MCMC scheme that also uses Polya-
Gamma augmentation.

We see that PG-wGS does poorly on all datasets, includ-
ing the smallest one with P = 32 covariates. PG-TGS
does well for P = 32 and P = 128 but exhibits large
variance for P > 1024. By contrast PG-wTGS yields
low-variance PIP estimates in all cases, demonstrating the
benefits of 7-weighting and tempering. ASI estimates ex-
hibit low variance for P = 32 (apart from a single outlier)
but are high variance for larger P. This outcome is easy
to understand. Since ASI adapts its proposal distribution
during warmup using a running estimate of each PIP, it is
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Figure 3: We depict violin plots for PIP (posterior inclusion probability) estimates for the first covariate obtained with
105 MCMC samples for four different methods on four datasets with varying numbers of data points N and covariates P.
Horizontal bars denote the minimum, median, and maximum PIP estimates obtained from 100 independent MCMC runs.
See Sec. for details and Fig.|8|in the supplement for corresponding trace plots.

vulnerable to a rich-get-richer phenomenon in which co-
variates with large initial PIP estimates tend to crowd out
covariates with which they are highly correlated. In the
present case the result is that the ASI PIP estimates for the
first two covariates are strongly anti-correlated. That this
anti-correlation is ultimately due to suboptimal adaptation
is easily verified. For example for P = 1024 (P = 4096)
the Pearson correlation coefficient between the difference
of final PIP estimates, i.e. PIP(1) - PIP(2), and the differ-
ence of the corresponding initial PIP estimates that define
the proposal distribution is 0.904 (0.998), respectively.

7.3 PG-wTGS and cancer data

We consider data collected from 900+ cancer cell lines in
the Cancer Dependency Map project (Meyers et al., 2017
Behan et al., [2019; [Pacin1 et al., 2021). Each cell line has
been subjected to a loss-of-function genetic screen that uses
CRISPR-Cas9 genetic editing to identify genes essential
for cancer proliferation and survival. Genes identified by
such screens are thought to be promising candidates for ge-
netic vulnerabilities that can be used to guide the develop-
ment of treatment strategies and novel therapeutics.

In more detail, we consider a subset of the data that in-
cludes N = 907 cell lines and P = 17273 covariates, with
each covariate encoding the RNA expression level for a
given gene. We consider two gene knockouts: DUSP4 and
HNF1BE| For each knockout the dataset contains a real-
valued response that encodes the effect of knocking out that
particular gene. We binarize this response variable by using
the 20% quantile as a cutoff.

What makes this dataset particularly challenging is that the
covariates are strongly correlated. For example, DUSP4
RNA expression exhibits a correlation greater than 0.40
(0.30) with 19 (203) other covariates, respectively. Sim-
ilarly the HNF1B covariate has a correlation greater than
0.70 (0.50) with 2 (33) other covariates, respectively. In
Fig.[d] we compare PIP estimates obtained with PG-wTGS

8This choice serves as a sanity check, since for both knockouts
the RNA expression level of the corresponding gene is known to
be highly predictive of cell viability.

and ASI, in both cases comparing to estimates obtained
with long PG-wTGS runs. The much lower variance of
PG-wTGS estimates as compared to ASI estimates is ap-
parent. Indeed the mean absolute PIP error in the top hits is
about ~ 5z larger for ASI (see Table[2]in the supplemental
materials for details and a list of all the top hits).

7.4 Inferring the inclusion probability h

We consider an application of Bayesian variable selection
to viral transmission (Jankowi1ak et al.,[2022). Each covari-
ate encodes the presence or absence of a particular mutation
in a virus like SARS-CoV-2, only a small number of which
are assumed to affect viral fitness. Modeling viral trans-
mission as a diffusion process results in a tractable Gaus-
sian likelihood. We consider a virus with P = 3000 muta-
tions and simulate a pandemic occurring in 30 geographic
regions. We place a Beta prior on h and vary the number
of causal mutations (i.e. those with non-zero effects) and
investigate whether the inferred posterior inclusion proba-
bility A reflects the true number of causal mutations. As
we would expect, see Fig. [5] this is indeed the case. See
Sec.[A I7for additional details.

8 Discussion

We have shown that Bayesian variable selection can be ef-
ficiently scaled to P ~ 10% and can accommodate count-
based likelihoods. Given the extremely large N and P
that can be found in some genomics datasets, an interest-
ing direction for future work would be to devise algorithms
that can support IV and P in the tens of millions. Doing
so would likely require new algorithmic ideas (e.g. deter-
ministic screening of covariates) as well as linear algebra
speed-ups (e.g. incrementally caching computations as y
space is explored). Furthermore, while the augmentation
strategy used to accommodate non-conjugate likelihoods in
PG-wTGS can be generalized to other likelihoods that ad-
mit similar auxiliary variable constructions, other inference
strategies are likely required to accommodate a broader set
of non-conjugate likelihoods.
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Figure 4: We compare PIP estimates obtained from PG-wTGS and ASI chains with 2.5 x 10° samples to a long PG-wTGS
chain with 5 x 10° samples. For each method we depict the top 20 PIPs from the long chain paired with estimates from
the short chain. The PG-wTGS estimates are significantly more accurate than is the case for ASI. See Sec. [7.3]for details

and Fig. 910]in the supplement for additional comparisons.

s
.t

e
o
o
N

PR
----
avt
et

Posterior inclusion prob.

0.000 : . . |
2 4 6 8 10
Number of causal mutations

Figure 5: We depict posterior estimates of the inclusion
probability A for the experiment in Sec. Middle hor-
izontal bars depict median posterior estimates across 20
simulations. The black dotted line indicates the proportion
of mutations that are causal.
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Algorithm 3: We outline the main steps in wT'GS (Zanella and Roberts, [2019). See Sec. @]for discussion. Note that
we use superscripts to indicate MCMC iterations.

Input: Dataset D = {X, Y} with P covariates; prior inclusion probability h; prior precision 7; total number of
MCMC iterations T'; number of burn-in iterations 7},yrn
Output: Approximate weighted posterior samples {p(t)7 V(t)}tT:Tbm 11
Let 49 = (0, ...,0).
fort=1,...,T do
Sample i) ~ f(-|y*~1) using Eqn.
Let v = flip(y(*#=1]i(®)) where flip(v|i) flips the i*" coordinate of v: 7; — 1 — ;
Compute the unnormalized weight () = ¢ ("))~ using Eqn. @
Compute the normalized weights p(*) = % fort = Thum +1,..., 7.

o " s>Thurn
t) t
return {p{") A} .

A Appendix

This appendix is organized as follows. In Sec. we discuss societal impact. In Sec. we discuss how we infer the
inclusion probability h. In Sec. we discuss how we combine Subset wTGS and PG-wTGS. In Sec. we discuss
conditional marginal log likelihood computations. In Sec.[A.5] we discuss computational complexity. In Sec. [A.6] we
motivate the tempering scheme that underlies wTGS. In Sec. we discuss the nature of the local moves made by
wTGS. In Sec. we briefly discuss the role played by importance weighting in our MCMC methods. In Sec. we
provide a proof of Proposition [1] In Sec. we discuss Rao-Blackwellized PIP estimators. In Sec. we discuss
w-updates. In Sec.[A.12] we discuss £-adapation. In Sec.[A.13| we discuss how we adapt the anchor set A. In Sec.[A.14] we
discuss the modifications of PG-wTGS that are needed to accommodate negative binomial likelihoods. In Sec. [A.T5| we
include additional figures and tables accompanying the experimental results in Sec.[7] In Sec.[A.16] we report additional
experimental results. In Sec.[A.T7|we discuss experimental details.

A.1 Societal impact

We do not anticipate any negative societal impact from the methods described in this work, although we note that they
inherit the risks that are inherent to any algorithm that can be used for hypothesis testing and/or prediction. In more
detail there is the possibility of the following risks. First, predictive algorithms can be deployed in ways that disadvantage
vulnerable groups in a population. Even if these effects are unintended, they can still arise if deployed algorithms are
poorly vetted with respect to their fairness implications. The same applies to any hypotheses investigated with a variable
selection algorithm, especially if variables are correlated with indicators that encode the identity of vulnerable groups.
Second, algorithms that offer uncertainty quantification may be misused by users who place unwarranted confidence in the
uncertainties produced by the algorithm. This can arise, for example, in the presence of undetected covariate shift.

A.2 Inferring the inclusion probability &

Consider the following (unnormalized) target distribution

o P 0in(y—5, MU (v;)
f(v,i,h) =p(7h,D)p(h|ah,ﬁh){§io§+ 31 J(ijwh D)j } (26)

where we have introduced a hyperparameter £ > 0 and oy, > 0 and /3;, > 0 parameterize the prior over h. We define the
inverse importance weight

by ) =€+ L EP: 31(v—i,h) on
=+ ) A
P i—1 p(771|r)/—17 ha D)
We can do 7 updates using the Gibbs distribution
P
, n(v—j,h
FGily, h) o 8i0€ + Z a0 h)_ (28)

p(vjlv-j:h. D)
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Algorithm 4: We extend wTGS (see Algorithm[3)) to allow inference over the inclusion probability &, with h governed
by a Beta(ap, f1,) prior. See Sec. for additional discussion. Note that we use superscripts to indicate MCMC
iterations.
Input: Dataset D = {X, Y} with P covariates; prior precision 7; hyperparameters («y,, 8y,); total number of MCMC
iterations 7; number of burn-in iterations Tty ; hyperparameter £ > 0 (optional)
Output: Approximate weighted posterior samples {p(*), v(*), h(t)},tT:Tburn 1
Let (0 = (0,...,0) and 2(9) ~ Beta(ay, B1).
fort=1,...,T do
Sample i) ~ f(-|y*=D, R(t=1) using Eqn.
If i > 0 let vy = flip(y*=1|i®) and h® = 1),
Otherwise if i) = 0 let v() = =D and A ~ f(-|y®),i = 0) using Eqn.
Compute the unnormalized weight (¥ = gb(*y(t) h®)~1 using Eqn.
If € is not provided and ¢ < T3, adapt € using the scheme described in Sec.
Compute the normalized weights p*) = % fort = Toum + 1, ..., 7.

s>Thuem P

return {p(), (), h(t)}tT:Tbuerl

When i = 0 we can do h updates using the Gibbs distribution
f(hly,i=0) = Beta(a = an + 4|, 6 = B + P —7l) 29)

where || is the number of covariates included in the model in the current iteration. See Algorithm (4] for a complete
description of wT'GS with inference over h.

The above discussion assumes the linear regression case, Eqn. |1l To accommodate count-based likelihoods we simply use
the untempered ¢ = 0 state to make h updates and w updates in succession (and in random order).

A.3 Subset PG-wTGS

We show how to combine the algorithmic ideas from Sec. [3]and Sec. 4] i.e. how to scale Bayesian variable selection with
a count-based likelihood to large P. The target distribution is

: _ sp 90—, @)U () :
Fv08) = D) B + o, 02T s 0 60)

where we assume 8 ranges over size S subsets of {0, ..., P} and that 0 € A. We define

. $n(7—j,w) .
iy, w,8) o | 9; —|— 8y —2—~"T 7 N U(8)i, A (31
f(‘7 ) dio€ ji: J 7”7 W In ( | )
j68]>0
and
b(1w,8) = | ExUBI,A) + = 3 MU(su A) (32)
Y ’ P p(yily—i,w, D) ’

i€8,i>0
The algorithm then follows the same logic as in Subset wTGS and PG-wTGS; see Algorithm [5]for a complete description.

We note an important implementation detail that is common to Algorithm [I]and Algorithm[5] Here we deal with the case
of Algorithm for concreteness. Besides the value of zero, the probability U(8|i, A) takes on two possible values:

U(8li, A) = (5 (ﬁ)i(i)! S)! if icA (33)
Uslia) = _(ﬁ — 2!_(]31)7 5 if Q¢ A

Since, however, we always use normalized weights { p(”} when computing approximate posterior expectations, any overall
constant factor in U(8]i,.A) is irrelevant. Consequently we only need to keep track of the ratio of the two values in Eqn.
namely A . In particular there is no need to compute factorials.
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Algorithm 5: We outline the main steps in Subset PG-wTGS, which combines Algorithm [T & 2] See Sec [A.3] for
additional discussion. Note that we use superscripts to indicate MCMC iterations.

Input: Dataset D = {X,Y, C} with P covariates; prior inclusion probability h; prior precision 7; subset size .S;
anchor set size A; total number of MCMC iterations 7'; number of burn-in iterations Ti,,,,; hyperparameter
& > 0 (optional)
Output: Approximate Weighted posterior samples {p(*), (1), (®) | S
Let 49 = (0, ...,0) and w(® ~ PG(C,0).
Choose A to include {0} as well as the A — 1 covariate indices exhibiting the largest correlations with the response Y.
Choose i(*) randomly from {1, ..., P} and 8(9) ~ U(-|i(®), A).
fort=1,...,T do
Sample i ~ f(-]y*¢=1, w1 8(=1)) ysing Eqn.
If i > 0 let w® = w1 and 4 = flip(y*~D}i(1)
Otherwise if /(") = 0 let v(!) = 4(*=1) and sample w'®) ~ p(-|y=1, F(4¢=D WD) D). Set w® = w'(®) with
probability a(w® — w'®|y(®) given in Eqn. 25 Otherwise set w(®) = w*=1).
Compute the unnormalized weight 5(*) = ¢((), w®), §(1))~1 using Eqn.
If £ is not provided and ¢ < Tj,., adapt £ using the scheme described in Sec.
Compute the normalized weights p(*) = % fort = Thyen +1,..., T

s>Thurn

return {p(t) ’ ’y(t) ) w(® }Z:Tburn"rl

A.4 Efficient linear algebra for the (conditional) marginal log likelihood

Here we focus on computing the marginal log likelihood in the case of count-based likelihoods as required for Algorithm 2]
The linear algebra required for the linear regression case is essentially identical. See|Chipman et al. (2001); Zanella and
Roberts| (2019)) for discussion of the linear case.

The conditional marginal log likelihood log p(Y'| X, C,~,w) can be computed in closed form where, up to irrelevant con-
stants, we have

logp(Y|X,C, 7, )—QZEH( XX +710) T 2 (34)

— Zlog det(X7+lQX7+1 +71,41) — 3 log det(7711,41)

where Z € RPF! with Z; = ZnN:1 kn X, ; for j =1, ..., P and the final component Zpq = 25:1 Ky, corresponds to
the bias. Here and elsewhere X is augmented with a column of all ones where necessary and ,, = Y,, — %C”, Q) is the
N x N diagonal matrix formed from w, and v + 1 is used to refer to the active indices in y as well as the bias, which is
always mCluded in the model by assumption. Using a Cholesky decomposition the quantity in Eqn. [34] can be computed
in (’)(|7| + M N) time. If done naively this becomes expensive in cases where Eqn. needs to be computed for many
values of v (as is needed e.g. to compute Rao-Blackwellized PIPs). Luckily, and as is done by (Zanella and Roberts, |2019))
and others in the literature, the computational cost can be reduced significantly since we can exploit the fact that in practice
we always consider ‘neighboring’ values of v and so we can leverage rank-1 update structure where appropriate. In the
following we provide the formulae necessary for doing so. We keep the derivation generic and consider the case of adding
arbitrarily many variables to v even though in practice we only make use of the rank-1 formulae.

In more detail we proceed as follows. Let Z be the active indices in ~ together with the bias index P + 1 (i.e. we

conveniently augment X by an all-ones feature column in the following). Let K be a non-empty set of indices not in Z and
1

let Ie = ZU K. Welet X = Q2 X and rewrite Fr, = (X7 Xz, + 71z, )" " in terms of Fz = (X X7 + 717) " as

follows:

_ FI+FIXEX3<G:KX£XIFI 7FIX%1X5<G3<

. XEXI+T11 XgXx B
b = ( - —Gy XL X Py G %3)

X%XI X%Xj{ + 71y

where Gt = XX + 1o — XEXTPrXF Xy,

To efficiently compute the quadratic term in Eqn. |34 we need to compute ZITK Fr, 27, in terms of ZYFrZ7. Write
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Zz, = (21, Zx) so we have

Z%;CFIK 2, = (§I)T (FI + Fzggij%GXKFX%XIFI —FIXC%XKGK> (§I> 36)
x —GgAgAzlT x %K
= 2] Fr27 + 2] Fr X] X5 Gy Xy X1 Fr 21 (37)
— ZT P X} Xy Goc Zoc — 290G Xp X1 Fr 27 + 208Gy 2 (38)
= ZT 20 4+ (XX Z0) Y (XE XL Z) — 2(XE X 21) T Zoc + 205 2 39)
= 22+ || WA - A (40)
where ||-|| is the 2-norm in RI*I and we define
L7L} = XfXr+ 7117 = F; ! (41)
Ly L} = Xf Xy + 71 — XX Fr X Xy = X Xoe + 71 — XX XF Xoe = G
Zr=L7'2; Zya=Ly'Zx  Xp=X7L70 Xy = XecLyh
Here Lz and Ly are Cholesky factors. This can be rewritten as
2 FroZr, = 2820 +||Wl?  with Wi = Ly (X%)EIZ} _ Zx) (42)
Together these formulae can be used to compute the quadratic term efficiently.
Next we turn to the log determinant in Eqn. [34] We begin by noting that
log det (X7, Xz, + 71z,.) + logdet(r™ "1z, ) = logdet(R) + log det (X7, X7, /7 + Q") 43)
and
logdet (X7, X7, /7 + Q") =logdet (X7 X7 /7 + Q") +logdet (1x /7) 44)
+logdet (T1x + Xoc(Xz X7 /7 + Q7)) ' Xx) (45)
which together imply

{log det (X7, Xz, +71z7,) +logdet(r 1z, )}—
{log det (X7 X1 + 71z) + logdet(r7'17)} = log det (X7, X7, /7 + Q') —logdet (X7 X7 /7 + Q")
=logdet (1x + 7 "X (Xz X7 /7 + Q)" Xu)

While these equations can be used to compute the log determinant reasonably efficiently, they exhibit cubic computational
complexity w.r.t. N. So instead we write

(46)

T T
det(X] Xz, +7lz,) = det (XI Az + 7z A7 A )

X%XI X%X(K +7lx
= det (X Xy + 7lac — Xy Xz (X X7 + 717) 7' X7 Xoc) x det (X7 X7 + 717)
= det(Gy') x det(X] X7 + 717)

This form is convenient because it relies on the term G that we in any case need to compute the quadratic form. Similarly
det(X} X7 + 717) is easily computed from the Cholesky factor Lz.

Above we considered the case of turning on covariates, i.e. 7; = 0 — 7; = 1. Since we assume that |y| < P these
computations tend to dominate the computational cost. However, we must also consider the case of turning off covariates,
ie.7; = 1 — ~; = 0. To efficiently compute the required terms we make extensive use of the following identity. Let A,
B, C, and D be appropriate (M — 1) x (M —1), (M —1) x 1,1 x (M — 1), and 1 x 1 matrices, respectively. Then the
identity

—1 ~ ~
(g [B)) :(g g) . A'—Ai-BDC 1)
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can be used to cheaply compute A~! if the inverse of the block matrix ((4, B), (C, D)) is available. In other words
once we have computed Fr = (XIT X7+ 7-11)_1 using the Cholesky factor L7 we can use submatrices of F7 to cheaply
compute the inverse of submatrices of Xg Xz + 717, which are precisely the quantities we need to compute Eqn. [34|for
downdates of ~y. In particular once the quadratic term has been computed, we can compute the log determinant by again
appealing to Eqn. @ using Eqn. to compute Fr in Gg_<1 = Xk X +71loc — Xok Xz Fr XF X for redefinitions of Z and
IC appropriate to a downdate.

A.5 Computational complexity

The primary computational cost in Subset wTGS, PG-wTGS, ASI, and the other MCMC algorithms considered in the main
text arises in computing conditional PIPs of the form p(y; = 1|y_;, D) (linear regression case) or p(vy; = 1|y_;,w, D)
(count-based likelihood case) for 5 = 1, ..., P, the principal ingredient for which are conditional marginal log likelihoods
as in Eqn.[34] In the case of PG-wTGS, PG-TGS, PG-wGS, and ASI the next largest computational cost is usually sampling
Polya-Gamma variables, although this is O(/N) and so the cost is moderate in most cases. For PG-wTGS, PG-TGS, PG-
wGS, and ASI computing the MH acceptance probability (e.g. Eqn. 23] for the case of PG-wTGS) is another subdominant
but non-negligible cost.

The precise computational cost of computing p(vy; = 1|y—;, D) and p(~y; = 1|y—;,w, D) depends on the details of how the
formulae in Sec.[A.4]are implemented. For example in the linear regression setting it can be advantageous to pre-compute
XT X if the result can be stored in memory. In our experiments we do so whenever this is feasible (for a mid-grade GPU
this is typically possible for P < 4 x 10%). In the case of PG-wTGS where w changes every few MCMC iterations, pre-
computing X'T X’ is not advantageous. Note that to avoid possible accumulation of numerical errors we do not compute Fr
or other quantities using computations from the previous MCMC iteration, although doing so is possible in principle for
the linear regression case (see e.g.|Zanella and Roberts| (2019)).

We emphasize that in all cases the computational cost of a MCMC iteration is linear in the number of data points N. Thus
in practice on commonly available hardware the P 2, 10° regime is only viable for moderate N < 10%. This is both
because of memory constraints of storing X but also because || tends to increase (slowly) as P increasesﬂ Nevertheless
running Subset wTGS in the regime with P 2 10° and N 2 10* should become increasingly viable in the near future,
especially on a multi-GPU setup that can fit X in memory.

Linear regression case (WI'GS) Using the various rank-1 update/downdate formulae from Sec. the result is
O(7|NP + N|y|* + |7/*) computational complexity per MCMC iteration if pre-computing X T X is not possible. If
pre-computing X T X is possible the computational complexity per MCMC iteration is instead O(P|y|* 4 |7|*) along with
a one-time O(N P?) cost to compute X * X

Linear regression case (Subset wI'GS) Using the various rank-1 update/downdate formulae from Sec. the result
is O(|y|NS + N> + |y|*) computational complexity per MCMC iteration if pre-computing X T X is not possible. If
pre-computing X T X is possible the computational complexity per MCMC iteration is instead O(S |fy|2 + |7|3) along with
a one-time O(N P?) cost to compute X T X

PG-wTGS for Binomial and Negative Binomial regression Using the various rank-1 update/downdate formulae from
Sec. the result is O(|y|NP + N|v|> + |y|*) computational complexity per MCMC iteration with i > 0 and O(N +
Nv|" + |7|3) per MCMC iteration with ¢ = 0. For Subset PG-wTGS the computational complexity per MCMC iteration
with i > 0 is instead O(|y|NS + N|y|* + [4[%).

We note that the asymptotic formulae reported above are somewhat misleading in practice, since most of the necessary
tensor ops are highly-parallelizable and very efficiently implemented on modern hardware. For this reason Fig. [12] and
Fig.|13|are particularly useful for understanding the runtime in practice, since the various parts of the computation will be
more or less expensive depending on the precise regime and the underlying low-level implementation and hardware.

Note this expectation may be violated if the response Y cannot be adequately modeled with a sparse set of covariates. In this
regime all wTGS-like algorithms are computationally expensive and Bayesian variable selection is likely poorly suited to analyzing the
relationship between X and Y. This regime is probably better served by other regularization approaches, e.g. ridge regression.
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7=0 1=1
e/P

n(y—:) _ p(’)’i:l"D)'i'%
p(vily-:,P) = p(vilv-:,D)
under the approximation p(v;|v—;, D) = vip(y: = 1|P) + (1 — v;)(1 — p(v: = 1|D)). We further assume that either
p(v: = 1|D) < ¢/Por1— p(vy; = 1|D) < €/ P. Off-diagonal entries in the table correspond to ‘greedy’ moves that are
given large weight by wTGS. See Sec. for discussion.

Table 1: We explore how the quantity varies as a function of y and PIP(i) = p(y; = 1|D)

A.6 TGS motivation: binary variables and Metropolized-Gibbs

To provide intuition for the Tempered Gibbs Sampling (TGS) strategy that underlies wTGS, we consider a single latent
binary variable x governed by the probability distribution p(x) = Bernoulli(g). A Gibbs sampler for this distribution
simply samples x ~ p in each iteration of the Markov chain. An alternative strategy is to employ a so-called Metropolized-
Gibbs move w.r.t. z (Liu, |1996). For binary x this results in a proposal distribution that is deterministic in the sense that it
always proposes a flip: 0 — 1 or 1 — 0. The corresponding Metropolis-Hastings (MH) acceptance probability for a move
x — z' is given by

min(l, L) ifz=0

min(1, =4) ifz =1

=
|

(4%)

R

a(lz—a') = {

As is well known, this update rule is more statistically efficient than the corresponding Gibbs move (Liu, [1996). For our
purposes, however, what is particularly interesting is the special case where ¢ = % In this case the acceptance probability
in Eqn. [48]is identically equal to one. Consequently the Metropolized-Gibbs chain is deterministic:

. ¥ 0—21—-0—-21—-0—1— ... 49)

Indeed this Markov chain can be described as maximally non-sticky. This shows why building tempering into inference
algorithms for binary latent variable models like that in Bayesian variable selection might be an attractive strategy for
avoiding the stickiness of a vanilla Gibbs sampler.

A.7 The nature of local moves in wTGS

wTGS samples an auxiliary variable ¢ controlled by the Gibbs update in Eqn.[/| To better understand how wTGS and its
variants Subset wTGS and PG-wTGS are designed to efficiently explore regions of high posterior mass it is important to
take a closer look at the form of these 7 updates. To do so we compute % o f(i]y) in four regimes, see Table
We see that if covariate ¢ is not included in the model (v = 0) and has a small PIP covariate ¢ will be chosen to be updated
only infrequently and, furthermore, that the probability of ¢ being chosen depends on ¢; thus € controls the amount of
exploration. By contrast if ¢ has a large PIP and is currently excluded from the model (y = 0) or if 7 has a small PIP
and is currently included in the model (y = 1), then f(i|y) ~ O(1), with the consequence that i is likely to be flipped in
the next move. This reflects the greedy nature of wTGS, which focuses much of its computational budget on turning on
likely covariates and/or turning off unlikely covariates (i.e. un/likely under the posterior). Finally, if ¢ has a large PIP and
is currently on (7 = 1) it will occasionally be turned off (especially if no other covariates satisfy the ‘greedy’ condition
described in the previous two sentences), which promotes exploration in and around posterior modes. In particular if
covariate ¢ is turned off and covariate 7 is highly correlated with j then turning off ¢ allows for the possibility that j is
turned on instead in the next MCMC iteration; indeed there will be a ~ 50% chance of doing so if 7 and j are the only
covariates that satisfy the greedy condition. Taken together the behavior of f(i|v) reflected in Tableresults in a satisfying
balance between exploration and exploitation.
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A.8 Importance weights

Importance weights p ~ ¢! in wTGS and its variants (see e.g. Eqn. E] and Algorithm |1)) are bounded from above. For
example for wT'GS in the linear regression case we have

P
1 PIP(i) +€/P _ €
7§ > £ (50)
St 'Yz|’Y—17 D) ~ 2

with the consequence that (unnormalized) importance weights are bounded from above by % note that in experiments we
typically use € = 5. We also note that the bound in Eqn. [50]is somewhat loose. In practice the variance of importance
weights normalized so that Zt 1 p = Tis O(1); see the rightmost panels in Fig. E for variances observed in practice.

A.9 Proof of Proposition 1

In the main text we made use of an auxiliary variable representation in which the state 7 is explicitly included in the
state space. For the present purpose it is more convenient to think of Subset wTGS, Algorithm [I] as acting on the space
{0,1}F x P, where P is the set of all subsets of {1, ..., P} of size S that contain the anchor set A. The transition kernel
can be written as

K((v,8) = (+/,8") = > f(il,8)3(+' — flip(4]2)) U (S'[i, A) (51
€S

where f(i|7,8) is the posterior conditional probability in Eqn.[I3]and §(-) is the Dirac delta function. We first show that K
is reversible w.r.t. the auxiliary target f(7,8) = p(y|D)#(7, 8), see Eqn.[[1} As is evident from Eqn.[51] K is zero unless
v and ' differ in exactly one coordinate—call it -—so that we have y_; = ' .. Thus for non-zero K we have

K((’Y?‘S) - (’7/78/)) = f(z"%S)U(‘S/'Z?‘A) (52)
3 G . "
= 60081 210U (515 AU (ST ) 3

which implies that

K((7.8) = (+/.,8))  ¢(v,8)p(vilv ;D)

K((7:5) = (1.8) ~ 6(1.8)p(h—0. D) oY
oy, 8 )p(v'|D)
~ 9(7,8)p(v|D) 43
— f(7/7s/) (56)

f(7,8)

where we used that p(y’_;|D) = p(y—;|D). Since reversibility is trivially satisfied if K ((y,8) — (v/,8’)) is zero, we have
thus shown that K is reversible w.r.t. f(v,8) and therefore f-invariant. Since our state space is finite and f(i|]v,8) > 0 if
i € S itis also clear that our Markov chain is both irreducible and Harris recurrent. Thus our Markov chain satisfies the
conditions of Theorem 17.0.1 in Meyn and Tweedie (2012) so that the Law of Large Numbers holds for any test function
h(v,8) : {0,1}F x P — R. In particular for any test function h(y) : {0,1} — R we can apply the Law of Large
Numbers twice, once to h¢~! and once to ¢! (note that ¢ is bounded away from zero and bounded from above). If we
let Zy be the partition function of f(v,8),ie. Zy =3 5 f(7,8), then

IS by D)o (YD, 80) = Ef(y 59,2, [ (7,8)] = Epgyip) [R(1)] /25 (57)
and
L0 (v, 8M) = Epysy/z, [071(7.8)] = 27 (58)
It follows that
£ h(1D)e *1( 1, 3)
D DA CTORL0))

Ep(vyip) [R(7)] (59)
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or equivalently utilizing normalized weights {p(*)}

S PPR(YD) = Epiyipy [h(7)] as T — oo (60)

This finishes the proof of the central claim of Proposition[I] For the specific claim about Rao-Blackwellized PIP estimators
see the next section.

A.10 Rao-Blackwellized PIP estimators

A naive estimator for PTP (i) = p(v; = 1|D) directly uses weighted samples {(p(*), y(¥))} provided by Algorithm

PIP(i Z pyD ©61)

However, since wT'GS and its variants compute conditional PIPs as part of inference, it is preferable to use a lower variance
Rao-Blackwellized estimator instead:

PIP(i Zp“’ p(yi =141, D) (62)

We use the appropriate version of Eqn. [62]in all experiments. In the case of Subset wTGS, Algorithm([I] only S conditional
PIPs are computed in each MCMC iteration. Using the analog of Eqn.|[62|would inflate the computational cost from O(S)
to O(P), entirely defeating the purpose of Subset wTGS. Thus for Subset wTGS we use a partially Rao-Blackwellized
estimator instead:

PIP(i Zp“){ (i € S)p(s = 10", D) + Z(i ¢ 8O ("} (63)

where Z(-) is an indicator function. In other words we use conditional PIPs if they are computed as part of inference
(because i € 8) and otherwise use raw ~ samples. It is easy to see that the estimator in Eqn. [63]is unbiased, since the test
statistic under consideration factorizes between v and 8. Indeed if we let ¢(8) denote the uniform distribution on P and
¢ = Eg(s) [Z(i € 8)] then the proof in Sec. makes it clear that the partially Rao-Blackwellized estimator in Eqn.
converges to

Ep(vp)Eq(s) [Z(i € 8)p(vi = 1|y, D) + (1 = Z(i € 8))i] (64)
- CEp('y\D) [p(% - 1|’771a )} + (1 - C)Ep(’y\D) [’Vz] (65)
= (PIP(i) + (1 — ¢)PIP(i) = PIP(3) (66)

It is also evident that Eqn. [63]is lower variance than the raw estimator Eqn.

A.11 w-update in PG-wTGS

The acceptance probability for the w-update in Sec.[d.2]is given by

(67)

p(Y|y,w', X, C)p(7)p(w'|C) p(wly, By, w'), D))

a(w—w'ly) = min (17 p(Yly,w, X, C)p(7)pw|C) p(w'|y, B(v,w), D)

where the ratio of proposal densities is given by
P, B(1:«),D) _  p(Y|y,w, B(1,w), X, C)p(7)p(w]
Py, B(v,w), D) [dop(Yly,@, B(v,w'), X, C)p(7)p(@

{ p(Y|y,0', B(v,w), X, C)p(7)p(w'|C)p(B ( ,w)) }1 68)
[dsp(Y|y, @, B(y,w ) C)p(y)p(@|C)p(B(y,w))

C)p( ( "))
|C
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Simplifying we have that the ratio in o(w —w’|7y) is given by

p(Yy, ', X, C) p(Y]y,w, B(7,w"),X,C) Jdap(Y]r, &, B(v,w), X, C)p(@|C)
p(Y|y,w, X, C) [dop(Y]y,@,B(y,w'), X, C)p(@|C) p(Y|y,w', B(7,w), X, C)
~ p(Y,w', X, C) p(Y]y,w, B(v,0'),X,C) p(Y],B(r,w),X,C)
(Y, w, X,C) p(Yly,B(v,w'),X,C) p(Y|y,o, B(v,w), X, C)
_ p(Y[,w', X, C) p(Yy,w, B(v,w'), X, O) p(Y 7, By, @), X, C)
p(Y1v,w, X, C) p(Y|y,w', B(y,w), X,C) p(Y |7, B(7, '), X, C)

which is Eqn.[25]in the main text. Here

p(Y|’Yvw7 BA(’%w/)a Xa C) _ GXp(FC : 1/2(77(*}/) - %w ) 1[2(77 w/)Q) (69)
p(Y|y,w', B(7,w), X,C)  exp(k - (y,w) — s’ - (v,w)?)
and
p(Y]7,501,9), X,0) _ [aexp(@(r,@)n)™ L (1+exp(®(y,w)n) a0
p(Y]y, B(7,w), X,C) L, (L +exp(¥(y,w)n)) I, exp(¥(y,w)n))¥"
where
(zﬁ(’va))’ﬂ = B(P}/uw)o + B(Py’w)'y : Xn'y (71)
and
Bly,w) = (XL QX1 + 7y 40) Xk € RPIH (72)

where as in Sec.[A.4] X is here augmented with a column of all ones. As detailed in (Polson et al., 2013) the (approximate)
Gibbs proposal distribution that results from conditioning on 3 is given by a Polya-Gamma distribution determined by C
and v:

p(W'|7, B(y,w), D) = PG(w'|C, (7, w)) (73)

In practice we do without the MH rejection step for w in the early stages of burn-in to allow the MCMC chain to more
quickly reach probable states.

A.12 (-adaptation in PG-wTGS and other wT'GS variants

Here we discuss how £ > 0 in Eqn. [20|can be adapted during burn-in. The same adaptation scheme (mutatis mutandis) can
also be used for Algorithm[4] where the ¢ = 0 state is introduced to allow for h-updates.

The magnitude of £ controls the frequency of w updates. Ideally £ is such that an O(1) fraction of MCMC iterations result
in a w update, with the remainder of the computational budget being spent on v updates. Typically this can be achieved by
choosing ¢ in the range £ ~ 1 — 5. Here we describe a simple scheme for choosing & adaptively during burn-in to achieve
the desired behavior.

We introduce a hyperparameter f,, € (0,1) that controls the desired w update frequency. Here f,, is normalized such that
fw = 1 corresponds to a situation in which all updates are w updates, i.e. all states in the MCMC chain are in the ¢ = 0 state
(something that would be achieved by taking £ — oc0). Since w updates are of somewhat less importance for obtaining
accurate PIP estimates than « updates, we recommend a somewhat moderate value of f,, e.g. f, ~ 0.1 — 0.4. For all
experiments in this paper we use f,, = 0.25.

Our adaptation scheme proceeds as follows. We initialize £(?) = 5. At iteration ¢ during the burn-in a.k.a. warm-up phase
we update £(*) as follows:

g(f)
Jo = sEmm

(1) _ (®) 4
¢ ¢ VE+1

(74)
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By construction this update aims to achieve that a fraction f,, of MCMC states satisfy ¢ = 0, since the quantity

P

o Z %Iv o D) 75)

encodes the total probability mass assigned to states ¢ = 0 and ¢ > 0.

A.13 Anchor set A adaptation in Subset wT'GS

We adopt a simple adaptation scheme for the anchor set A. During burn-in we keep a running PIP estimate for each
covariate using the partially Rao-Blackwellized estimator described in Sec. Periodically—in our experiments every
100 iterations—we update A to be the A covariates exhibiting the largest PIPs according to the current running PIP
estimate. At the end of the burn-in period the anchor set is updated one last time and remains fixed thereafter.

A.14 PG-wTGS for Negative Binomial regression

We specify in more detail how we can accommodate the negative binomial likelihood using Polya-Gamma augmentation.
Using the identity

P\a 1
(l(j—e)w)b = 55¢" 72 Epgupno) [exp(—3wi?)] (76)
we write
. TV, +v) exp(¥n + o — logv) \' ( 1 )
NegBin(Yalvn,v) = 55— 370 (1 + exp(tn, + o — log 1/)) 1+ exp(dm + G0 — logv) 77)

L 3V (ntio-log )

(8 p(wn |Yn+1,0) [exp( an(ﬂ}n + ¢0 - 1Og V) )]

where as before 1,, = fy + 3y - Xy, and 7y is a user-specified offset. Here v > 0 controls the overdispersion of the
negative binomial likelihood. We note that by construction the mean of NegBin(Y}, |1y, V') is given by exp(t),, +¢). Thus
1o (which can potentially depend on n) can be used to specify a prior mean for Y. This is equivalent to adjusting the prior
mean of the bias [ in the case of constant ).

(Y,, — v). When computing log p(Y|X,~,w, v, 1) the

N[

Comparing to Sec. we see that x,, is now given by k,, =

quantity Z now becomes Z; = > X, ; (kn — wn (o — logv)), see Sec. One also picks up an additional factor of
exp(k - (Yo — logv) — $w - (tho — logv)?) (78)
In particular we have the formula
log p(Y|X,v,w,v,%0) = 22, 41(w,v)" (XWJFIQXWH +71,01) 241 (w, V) (79)

— 2 log det( ,Y+1QX7+1 +71,41) — logdet(77'1,41)

+>°,, (logT'(Y,, + v) —logT'(v) — log 2¥)

+ 3k () (Y0 — logv) = 53,6 (Yo — log)®
In our experiments we infer v, which we assume to be unknown. For simplicity we put a flat (i.e. improper) prior on
log v, although other choices are easily accommodated. To do so we modify the w update described in Sec. to a joint
(w, log v) update. In more detail we use a simple gaussian random walk proposal for log v with a user-specified scale (we

use 0.03 in our experiments). Conditioned on a proposal log ' we then sample a proposal w’. Similar to the binomial
likelihood case, we do this by computing

B(’%wa V) = Ep(ﬂh,w,u,'D) [/6] (80)
and use a proposal distribution w’ ~ p(-|7, 3, /, D). In the negative binomial case the formula for /3 in Eqn. [72|becomes

By, w,v) = (X141 QX i1 + 7L 11) " X (k — w(thg — logv)) € RO (81)
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Additionally the proposal distribution is given by
P17, B(v,w,v),v", D) = PG(W'|Y +1/,4)(v,w,v)) (82)

The acceptance probability can then be computed as in Sec.[A.TT] although in this case the resulting formulae are somewhat
more complicated because of the need to keep track of v and v/ as well as the fact that there is less scope for cancellations so
that we need to compute quantities like I'(/). Happily, just like in the binomial regression case, the acceptance probability
can be computed without recourse to the Polya-Gamma density. In more detail the acceptance probability can be computed
with help of the following expressions.

a(w,v—=w',V|y) = min (1, &(w,v—u’, V' |7y)) (83)
where &(w, v —w',V'|7) is given by
alw,v—w' V|y) = a1 x g x az (84)

with

&1 — 2N(u’—u)p(Y‘Xa’y’w/7 VlawO)

(85)
p(Y|X7 v, W, V, 7/)0)
H (eﬂ}n("ﬁw»’/)JﬂZJO*log V’)Yn H (1 + elzln(’Y,w',u/)eroflog u)YnJrV
Qo = - Ya, ~ (86)
Hn (e¢n(7,w’,u’)+w0710gy) H (1 + 61[)71,(’)'7&)7V)+’¢'0—10g u’)Y"Jr
b 1 7 o 2
#in () (P (7,0 ") +4bo —log v) — 3wn (W (v’ V)0 —log v)
Qs = H”e Hne &

[L €% () @a () vo—log ) Hne%w;(z&nm,w,u)woqog V)2

The correctness of these formulae can be checked numerically by comparing to the Polya-Gamma density in regimes where
the density can be easily and reliably computed. This is equally true for the binomial likelihood case.

A.15 Additional figures and tables

Additional figures for the first experiment in Sec. are depicted in Fig. Additional trace plots for the experiment in
Sec.[7.2]are depicted in Fig.[8] In Table[2] we report PIP estimates for top hits in the cancer experiment in Sec. [7.3} we also
include Fig.[9]and Fig.[I0] where the latter is a companion of Fig.

A.16 Additional experiments
A.16.1 Subset wTGS and anchor set size A

We run an additional experiment in which we vary the anchor set size A to complement the experimental results presented
in Sec. We use the same maize data with P = 98385 but generate an additional (statistically independent) semi-
synthetic dataset from the same generative process. We report the results in Fig. [IT] which complements the top panel in

Fig.[T}
A.16.2 Subset wTGS and cancer data

We run an additional experiment to complement the experimental results presented in Sec. We use the same cancer
dataset as in Sec.[/.3|(so N = 907 and P = 17273) except we look at the gene ZEB2. We also use the continuous response
as provided in the dataset (i.e. without quantization). See Fig.|12|for results.

A.16.3 PG-wTGS runtime

In Fig.[T3]we depict MCMC iteration times for PG-wTGS for various values of NV and P. To make the benchmark realistic
we use semi-synthetic data derived from the DUSP4 cancer dataset (N = 907, P = 17273) used in Sec. In particular
for N # 907 and P # 17273 we subsample and/or add noisy data point replicates and/or add random covariates as needed.
As discussed in more detail in Sec.[A.5] PG-wTGS, PG-wGS, PG-TGS, and ASI all have similar runtimes, since each is
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Figure 6: We report additional results for the experiment in Sec.[7.1|with P = 98385. These results are directly analogous
to the results reported in the main text except we use synthetic data with a lower signal to noise ratio. In addition to Subset
wTGS with our default setting of A = S/2, we also report results with A = 0 (i.e. no anchor set) and a fixed anchor set
with A = 5/2 (i.e. the anchor set is not updated during burn-in; instead A is chosen with the initialization heuristic in
Algorithm[I). See Sec.[A.T7|for additional details. (Left) We depict the relative statistical efficiency of Subset wTGS with
subset size S compared to wTGS. As in the main text, we restrict our focus to covariates with PIPs above a threshold of
0.001. Subset wTGS with A = S/2 exhibits large gains in statistical efficiency relative to wTGS. The benefits of adapting
A are also apparent: we expect A adapation to be particularly important for noisy datasets. (Middle) We depict the number
of iterations per second (IPS) for Subset wTGS as a function of S. The green dotted line depicts the IPS that would be
expected if the latter scaled like S—!. (Right) We depict the variance of weights {p(*)} obtained by running Subset wTGS.
For the purposes of this figure, the weights are normalized so that the mean weight is equal to unity. We see that Subset
wTGS with A = 0 has substantially higher variance. Moreover, in this regime (which is characterized by larger observation
noise) the variance of Subset wTGS weights for A = S/2 is nearly identical to the variance of wTGS weights; importantly,
both these variances are moderate.

dominated by the O(P) cost of computing p(v; = 1|y—;,w, D) for j = 1,..., P. As can be seen in Fig.[13|for any given N
the iteration time is lower on CPU for small P, but GPU parallelization is advantageous for sufficiently large PET] We also
note that the computational complexity of PG-wTGS is no worse than linear in /N, with the consequence that PG-wTGS
can be applied to datasets with large N and large P in practice, at least if the sparsity asumption holds (i.e. most variables
are excluded in the posterior: || < P).

A.16.4 Hospital visit data and negative binomial regression

We consider a hospital visit dataset with N = 1798 considered in (Hilbe} 201 1)) and gathered from Arizona Medicare data.
The response variable is length of hospital stay for patients undergoing a particular class of heart procedure and ranges
between 1 and 53 days. We expect the hospital stay to exhibit significant dispersion and so we use a negative binomial
likelihood. There are three binary covariates: sex (female/male), admission type (elective/urgent), and age (over/under 75).
To make the analysis more challenging we add 97 superfluous covariates drawn i.i.d. from a unit Normal distribution so
that P = 100.

Running PG-wTGS on the full dataset we find strong evidence for inclusion of two of the covariates: sex (PIP ~ 0.95)
and admission type (PIP ~ 1.0). The corresponding coefficients are negative (—0.15 4= 0.02) and positive (0.63 £ 0.03),
respectively This corresponds to shorter hospital stays for males and longer hospital stays for urgent admissions. In
Fig.[T4](left) we depict trace plots for a few latent variables, each of which is consistent with good mixing; see also Fig.[I3]
for a zoomed-in view.

Next we hold-out half of the dataset in order to assess the quality of the model-averaged predictive distribution. We use the
mean predicted hospital stay to rank the held-out patients and then partition them into two groups of equal size. Comparing
this predicted partition to the observed partition of patients into short- and long-stay patients, we find a classification
accuracy of 66.6%. In Fig. [[4] (right) we depict a more fine-grained predictive diagnostic, namely Dawid’s Probability
Integral Transform (PIT) (Dawid, |1984). Since the PIT values are approximately uniformly distributed, we conclude that
the predictive distribution is reasonably well-calibrated, although probably somewhat overdispersed.

10All Polya-Gamma sampling is done on CPU.
"Each estimate is conditioned upon inclusion of the corresponding covariate in the model.
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Figure 7: We report additional results for the experiment in Sec. with P = 98385. See Sec. [7|and Sec. for
additional details. (Left) We report a statistical efficiency ratio (relative to wTGS) for the inferred coefficients 5. (Middle)
This figure is identical to the top panel in Fig. |1} except the reported statistical efficiency is w.r.t. all covariates, instead of
those with PIP above 0.001. Since the resulting (relative) statistical efficiency is somewhat less than that in Fig. |1} we see
that some of the improved statistical efficiency of Subset wTGS is due to a variance trade-off between large PIP and small
PIP covariates. We hypothesize that this is largely driven by the partial Rao-Blackwellization of the PIP estimator used in
Subset wTGS: since low PIP covariates ¢ are in S only infrequently, the corresponding PIP estimate does not benefit much
from Rao-Blackwellization and is consequently higher variance. Since there is generally no compelling need to obtain
precise PIP estimates of low PIP covariates (e.g. distinguishing a PIP of 1.1 x 1075 from 1.2 x 10~°), this trade-off is well
worth the resulting speed-ups. (Right) We depict the variance of weights { p(t)} obtained by running Subset wTGS. For the
purposes of this figure, the weights are normalized so that the mean weight is equal to unity. We see that Subset wTGS with
A = 0 has substantially higher variance, which explains its suboptimal performance. Importantly the variance of Subset
wTGS with A = %S is moderate and is indeed less than that of wT'GS. We also note that a variance of 4 corresponds to a
situation in which roughly half the weights are equal to 2 and the remainder are very small; this is indeed approximately
what we observe in practice. A non-negligible number of low weight samples is the price we pay for the exploration
enabled by tempering.

A.16.5 Health survey data and negative binomial regression

We consider the German health survey with N = 1127 considered in (Hilbe and Greene) |2007). The response variable
is the annual number of visits to the doctor and ranges from 0 to 40 with a mean of 2.35. As in Sec.[A.16.4] we expect
significant dispersion and thus use a negative binomial likelihood. There are two covariates: i) a binary covariate for self-
reported health status (not bad/bad); and ii) an age covariate, which ranges from 20 to 60. We normalize the age covariate
so that it has mean zero and standard deviation one. To make the analysis more challenging we add 198 superfluous
covariates drawn i.i.d. from a unit Normal distribution so that P = 200.

Running PG-wTGS on the full dataset we find strong evidence for inclusion of the health status covariate (PIP ~ 1.0).
The health status coefficient is positive (1.15 £ 0.10), suggesting that patients whose health is self-reported as bad have
e!1® ~ 3.17 times as many visits to the doctor as compared to those who report otherwise. This is consistent with the raw
empirical ratio, which is about 3.16. We find that the data are very overdispersed and infer the dispersion parameter to be
v =0.99 £ 0.07. See Sec.[A.14]for additional details on PG-wTGS for negative binomial regression.

A.17 Experimental details

Large P experiments For both experiments we create semi-synthetic datasets as follows. We first shuffle the covariate
indices. Next we divide the covariates into 20 approximately equally sized blocks. Within each block we compute the
correlation between each pair of covariates and randomly select a pair with absolute correlation between 0.5 and 0.9; we
then randomly choose one of the two indices. In this way we select 20 covariates, each of which exhibits non-trivial
correlations with at least one other covariate. We then draw 20 coefficients from the uniform distribution on [—1.0, —0.1]U
[0.1,1.0]. We then use our synthetic coefficient vector 5* with 20 non-zero coefficients to generate a response Y,, as
Y, = 3" X, +¢€, forn=1,..., N and where ¢, ~ N (0, 03) is i.i.d. gaussian noise. We generate two datasets: one with
oo = 0.5 (these results are reported in Fig. [T]in the main text) and one with oy = 2.5 (these results are reported in Fig. [6).

For the first experiment with P = 98385 we use all N = 2267 datapoints and a single fixed dataset. For the second
experiment with P > 98385 we also use a single fixed dataset, but run experiments for 5 train/test splits, where half the
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Gene PG-wTGS-5M | PG-wTGS-250k | ASI-250k Gene PG-wTGS-5M | PG-wTGS-250k | ASI-250k

DUSP4 1.000 1.000 / 1.000 1.000 / 1.000 HNF1B 1.000 1.000/ 1.000 1.000/ 1.000
PPP2R3A | 0.669 0.576/0.647 0.466/0.318 CAP2 0.323 0.322/0.354 0.079/0.068
MIA 0.383 0.338/0.365 0.282/0.138 Cl12orf54 0.172 0.113/0.152 0.145/0.005
KRTS80 0.272 0.364 /0.296 0.502/0.482 AQP1 0.122 0.127/0.128 0.061 /0.096
RELN 0.243 0.286/0.219 0.346/0.502 FAMA43B 0.067 0.059/0.050 0.013/0.077
ZNF132 0.096 0.124 /0.093 0.120/0.142 KLRF1 0.063 0.059 /7 0.065 0.032/0.034
TRIMS1 0.094 0.075/0.099 0.080/0.053 ARMC4 0.059 0.062/0.035 0.027 /0.120
ZNF471 0.083 0.107 /0.081 0.139/0.181 SERPINE1 0.050 0.047/0.052 0.040/0.003
S100B 0.063 0.053/0.068 0.028 /0.022 CLIC6 0.049 0.050/0.057 0.013/0.094
ZNF571 0.062 0.065/0.058 0.064 /0.065 GSDME 0.048 0.056 / 0.050 0.101 / 0.066
ZNF304 0.060 0.067 / 0.069 0.095/0.068 UGCG 0.044 0.042/0.034 0.108 / 0.093
ZNFT772 0.040 0.039/0.034 0.044/0.028 NEK6 0.039 0.041/0.041 0.019 /0.005
RXRG 0.032 0.026 /0.025 0.010/0.028 SERPINA10 | 0.032 0.027/0.026 0.007/0.017
ZNF17 0.031 0.033/0.037 0.047/0.040 ECH1 0.029 0.028 /0.022 0.054 /0.029
ZNF134 0.026 0.026 /0.029 0.026/0.033 KIF1C 0.029 0.034/0.024 0.066 / 0.081
KRT7 0.025 0.025/0.021 0.016/0.206 S100A4 0.028 0.029/0.025 0.083/0.009
ZNF71 0.020 0.022/0.014 0.045/0.023 MSANTD3 | 0.023 0.029/0.023 0.005 / 0.006
CCIN 0.019 0.035/0.037 0.019/0.026 PLIN3 0.023 0.019/0.020 0.043/0.007
ZNF419 0.018 0.019/0.017 0.018 /0.006 IL4R 0.021 0.018/0.021 0.016/0.003
ZMYM3 | 0.017 0.016/0.027 0.014/0.036 SHBG 0.020 0.016/0.022 0.005 7 0.027

Table 2: These tables are companions to Fig. 4} Fig. @ and Fig. We depict PIP estimates for DUSP4 (left) and HNF1B
(right). In each case we include the result from a PG-wTGS run with five million samples as well as two shorter runs
from PG-wTGS and ASI (with the two results separated by a slash). We depict the top 20 genes as determined by the long
PG-wTGS run. The much lower variance and higher accuracy of PG-wTGS are apparent. Indeed if we take the top 20 PIP
estimates from the long run as truth then we can compute the mean absolute error (MAE) of the short run estimates. The
resulting MAEs are 0.007 (0.014) for PG-wTGS and 0.043 (0.061) for ASI for HNF1B (DUSP4), respectively. In other
words the ASI MAE is about five times larger than the PG-wTGS MAE.

data is held-out for testing. As described in the main text, to obtain a dataset with P > 98385 covariates we augment
the maize data with covariates drawn i.i.d. from a unit Normal distribution. We set the prior inclusion probability h to
h = 10/ P, the prior precision to 7 = 104, and € = 5.

The relative statistical efficiency reported in Fig. [2]is defined as a ratio of effective samples sizes per unit time, which is
equivalent to a ratio of time-normalized variances. It is computed as follows:

StatEff (Subset wTGS)
StatEff(wTGS)

_ U\%VTGSTWTGS (88)

2
O&ubset wT'Gs L Subset wTGS

where e.g. Tyres is the runtime of wTGS and 02 1. is the corresponding variance for the estimator of interest. In Fig.
the estimator of interest is the sum of PIPs over all covariates with a PIP that exceeds a threshold of 0.001, of which there
are 53. To determine these “relevant” covariates and compute reference PIPs to compute the required variance in Eqn. [8§]
we run 10 independent wTGS chains with 50k samples each and compute a mean PIP across the 10 chains (this requires
about 40 hours of GPU compute). Note that these long chains are independent of the shorter chains used to assess the
statistical efficiency of each method. For each short chain we collect 20k post-adaptation samples, except for wTGS where
we collect 10k. In all cases there are 5k burn-in iterations. For each method we run 10 independent chains; the resulting
variability determines the variance in Eqn.[88] Together with the runtime, this allows us to compute the (relative) statistical
efficiency.

Runtime results are obtained with a NVIDIA Tesla T4 GPU. The predictive and coefficient RMSEs reported in Fig.
are normalized by the standard deviation of Y and the euclidean norm of 3*, respectively, for interpretability: with this
normalization a RMSE less than unity is a strict improvement over guessing zero.

PG-wGS/PG-TGS/PG-wTGS/ASI For experiments with count-based likelihoods (unless specified otherwise) we set
the prior precision 7 = 0.01 and h = 5/P. We choose the exploration parameter e that enters 7)(-) to be e = 5. We use the
&-adaptation scheme described in Sec.

We note that PG-TGS uses 7(-) = 1 but still utilizes Metropolized-Gibbs moves to update 7;; these moves result in



Bayesian Variable Selection in a Million Dimensions

deterministic flips because of tempering. By contrast PG-wGS uses the same weighting function 7(-) as in PG-wTGS
but there is no tempering, with the consequence that ; still undergoes Metropolized-Gibbs moves but the acceptance
probabability is no longer identically equal to one. See Eqn. 48| for the resulting acceptance probability.

ASI has several hyperparameters which we set as follows. We set the exponent A gy that controls adaptation to Aagy =
0.75. We set easr = 0.1/ P as suggested by the authors. We target an acceptance probability of 7os; = 0.25.

Correlated covariates scenario The covariates for p = 3,4, ..., P are generated independently from a standard Normal
distribution: X,, , ~ A(0,1) for all n. We then generate = € RY with z, ~ N(0,1) and set X, p—1 ~ N (z,,,107%)
and X,, ,—o ~ N(z,,107%). That is the first two covariates are almost identical apart from a small amount of noise.
We then generate the responses Y, using success logits given by ,, = z,. The total count C,, for each data point is set
to 10. Consequently the true posterior concentrates on two modes with v = (1,0,0,...) and v = (0, 1,0, ...). We set
h = 1/P and run each algorithm for 10 thousand burn-in/warmup iterations and use the subsequent 100 thousand samples
for analysis.

Cancer data All chains are run for 25 thousand burn-in/warmup iterations.

Inferring n  We follow the discrete time branching process simulator setup described in the supplement of Jankowiak:
et al.|(2022). We use identical hyperparameters to those used in the reference except we vary the number of causal effects in
each simulation. In addition for each simulation we choose effect sizes from the uniform distribution on [—0.10, —0.02] U
[0.02,0.10]. We choose o, = 0.25 and S, = 250 to define the Beta prior over h; this choice corresponds to a relatively
broad prior with prior mean = 0.001 (which corresponds to 3 causal mutations expected a priori).

We provide some intuition for the behavior observed in Fig. 5] Note that the diffusion-based likelihood that underlies
Jankowiak et al.[(2022) is an approximation of the underlying discrete time branching process dynamics. Consequently the
model is not perfectly well specified. For this reason—and because of the inherent noisiness of the data—as h increases,
there may be a tendency to push h up further, since doing so allows the model to achieve a better fit of the observed
pandemic, even if some of the identified mutations may be spurious. This explains the larger tails observed for simulations
with 10 causal mutations. This is a general reminder that one needs to proceed with caution when placing a prior on h; in
some cases it may be more sensible to assume fixed values of A and do a sensitivity analysis to assess sensitivity to prior
assumptions.

Subset wTGS and cancer experiment The experimental details closely follow the experiment in Sec. except in
contrast the data we use here is not semi-synthetic. We run 10 independent chains with wTGS for 500k iterations each
to compute reference PIPs. We then run 20 additional independent chains for each method (i.e. vanilla wTGS and Subset
wTGS for various values of .S) for 50k iterations; the results of these chains are then used to compute the relative statistical
efficiency. To do so we use the PIP over all covariates as the estimator of interest. In all cases we allow for 10k burn-in
iterations.

Runtime experiment For each value of NV and P we run each MCMC chain for 2000 burn-in iterations and report
iteration times averaged over a subsequent 10* iterations; we report results in Fig.

Hospital data We run PG-wTGS for 10 thousand burn-in iterations and use the subsequent 100 thousand samples for
analysis. The 899 held-out patients are chosen at random. We use a random walk proposal scale for log v of 0.03. We
set ¥ to be the logarithm of the mean of the observed Y (this is equivalent to shifting the prior mean of the bias [5y; see

Sec|A.14).

Health survey data We run PG-wTGS for 10 thousand burn-in iterations and use the subsequent 100 thousand samples
for analysis. We use a random walk proposal scale for log v of 0.03. We set ¢y to be the logarithm of the mean of the
observed Y (this is equivalent to shifting the prior mean of the bias fg; see Sec[A.14).
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Figure 8: This is a companion figure to Fig. in the main text. We depict posterior inclusion probability (PIP) estimates
for the first covariate in the scenario described in Sec. for four different MCMC methods and four different values of
(N, P). At each iteration ¢ the PIP is computed using all samples obtained through iteration ¢. The mean PIP is depicted
with a solid black line and light and dark grey confidence intervals denote 10%—90% and 30%—70% quantiles, respectively.
The true PIP is almost exactly % In each case we run 100 independent chains. For each method we also report the final
PIP estimate (mean and standard deviation) in parentheses.
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Figure 9: We depict PIP estimates for two independent MCMC chains for two cancer datasets (left: DUSP4; right: HNF1B)
using two MCMC methods. For each method we depict the top 20 PIPs from chain #1 paired with the estimate from chain
#2. The PG-wTGS estimates show much better inter-chain concordance. For example, the PIPs obtained with ASI for
KRT?7 on the DUSP4 dataset (marked with a purple caret ”) differ by a factor of 12.8 between the two chains, while the
two PG-wTGS estimates are 0.025 and 0.021. Similarly the PIPs obtained with ASI for C120rf54 on the HNF1B dataset

PIP estimate (chain #1)

PIP estimate (chain #1)

PIP estimate (chain #1)

differ by a factor of 26.9, while the two PG-wTGS estimates are 0.113 and 0.152. See Sec. for details.

< DUSP4 DUSP4>»
1% o powtes T MO e s e
£ 08 0.8
)
206 PPP2RIA >4 0.6
b r KRT80 s%e<— REEN
0.4 0.4
E KRT80->9"". A o < PPP2RBA
= 4 < RELN oy
Gz 027 4= 0-21°4." oM
% 0.0 ’ 0.0 =
0.0 0.5 1.0 0.0 0.5 1.0

PIP estimate (long chain)

Figure 10: In this companion figure to Fig. E] we compare PIP estimates obtained from short PG-wTGS and ASI chains
with 2.5 x 10° samples to a long PG-wTGS chain with 5 x 10% samples. For each method we depict the top 20 PIPs
from the long chain paired with estimates from the short chains. Note that this figure is identical to Fig. ] except the two
short chains are independent of the two short chains in Fig. i} The PG-wTGS estimates obtained with the short chains are
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significantly more accurate than is the case for ASI. See Sec.[7.3|for details.

PIP estimate (long chain)
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Figure 11: We explore the impact of varying the anchor set size A for two subset sizes S € [4000, 16000]. The ratio

A/ S, which is depicted along the horizontal axis, ranges from 0 to %. On the vertical axis we report the relative statistical

efficiency compared to wT'GS. On the left the relative statistical efficiency for estimating PIPs for all covariates is computed
using Eqn. [88] while on the right the relative statistical efficiency metric is computed for covariates with a PIP above 0.001.
We see that Subset wTGS exhibits sizable efficiency gains above wTGS provided that A is not too close to 0 or S. This
observation motivates our default choice of A = g With this choice, provided S is sufficiently large, the anchor set A
is expected to contain all (or at least most) covariates with non-trivial PIPs after adaptation. Moreover, with A = g half
the ‘PIP budget® is spent on exploration, which is important for marginalizing out small PIP ‘background’ covariates and

obtaining accurate PIP estimates for important covariates. Results are obtained with a NVIDIA Tesla K80. See Sec.[A.T6.1]
for additional details.
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Figure 12: We explore the moderately large P regime using cancer data from a ZEB2 gene knockout experiment. Since
P = 17273 is somewhat moderate, and since we are doing linear regression and not generalized linear regression with a
non-linear link function, the covariate covariance matrix X T X can be pre-computed and stored in memory on a mid-grade
GPU; this leads to iteration speed-ups of a factor of ~ 2—3. See Sec. [A.16.2) for additional details on the experiment.
(Left) We depict the relative statistical efficiency of Subset wTGS with subset size S compared to wT'GS. The gain in
statistical efficiency is largest when X T X cannot be pre-computed (blue), which would be the case for Negative Binomial
and Binomial Regression. Note that the moderate gain in statistical efficiency in ths regime is not surprising; the runtime
results in the rightmost panel make it clear that GPU utilization is only moderate and so the speed-ups that result in
switching from wTGS to Subset wTGS are limited. (Right) We depict the number of iterations per second (IPS) for Subset
wTGS as a function of .S as well as wT'GS. Results are obtained with a NVIDIA Tesla T4 GPU.
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Figure 13: We depict MCMC iteration times in milliseconds for PG-wTGS on CPU and GPU as the number of covariates
P is varied. We also vary the number of data points N € {100,907,4000}. See Sec. for details. Note that the
figure on the left is a magnified version of the figure on the right. The CPU has 24 cores (Intel Xeon Gold 5220R 2.2GHz)
and the GPU is a NVIDIA Tesla K80 GPU.
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Figure 14: Left: We depict trace plots for log(v) and two randomly chosen Polya-Gamma variates w; and wo for a PG-

wTGS run on the data in Sec.

data in Sec. m

The data is quite dispersed, with the posterior mean of the dispersion parameter v
being about 5.4. Right: We depict the Probability Integral Transform histogram for 899 held-out test points for the hospital
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Figure 15: In this zoomed-in companion figure to Fig. we depict trace plots for log(v) and two randomly chosen Polya-
Gamma variates wy and wo for a PG-wTGS run on the hospital data in Sec. m
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