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Abstract

Graph neural networks are widely used tools for
graph prediction tasks. Motivated by their em-
pirical performance, prior works have developed
generalization bounds for graph neural networks,
which scale with graph structures in terms of the
maximum degree. In this paper, we present gener-
alization bounds that instead scale with the largest
singular value of the graph neural network’s fea-
ture diffusion matrix. These bounds are numer-
ically much smaller than prior bounds for real-
world graphs. We also construct a lower bound
of the generalization gap that matches our upper
bound asymptotically. To achieve these results,
we analyze a unified model that includes prior
works’ settings (i.e., convolutional and message-
passing networks) and new settings (i.e., graph
isomorphism networks). Our key idea is to mea-
sure the stability of graph neural networks against
noise perturbations using Hessians. Empirically,
we find that Hessian-based measurements corre-
late with observed generalization gaps of graph
neural networks accurately; Optimizing noise sta-
bility properties for fine-tuning pretrained graph
neural networks also improves the test perfor-
mance on several graph-level classification tasks.

1 Introduction

A central measure of success for a machine learning model
is the ability to generalize well from training data to test
data. For linear and shallow models, the generalization gap
between their training performance and test performance
can be quantified via complexity notions such as the Vap-
nik–Chervonenkis dimension and Rademacher complexity.
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However, formally explaining the empirical generalization
performance of deep models remains a challenging prob-
lem and an active research area (see, e.g., Hardt and Recht
[25]). There are by now many studies for fully-connected
and convolutional neural networks that provide an explana-
tion for their superior empirical performance [4, 43]. Our
work seeks to formally understand generalization in graph
neural networks (GNN) [45], which are commonly used for
learning on graphs [23].

A concrete example for motivating this study of general-
ization performance is the fine-tuning of pretrained graph
neural networks [27]. Given a pretrained GNN learned on a
diverse range of graphs, fine-tuning the pretrained GNN on
a specific prediction task is a common approach for transfer
learning on graphs. An empirical problem with fine-tuning
is that, on the one hand, pretrained GNNs use lots of param-
eters to ensure representational power. On the other hand,
fine-tuning a large GNN would overfit the training data and
suffer poor test performance without proper algorithmic in-
tervention. Thus, a better understanding of generalization
in graph neural networks can help us identify the cause
of overfitting and, consequently, inspire designing robust
fine-tuning methods for graph neural networks.

Naively applying the generalization bounds from fully-
connected feedforward networks [4, 42] to GNNs would
imply an extra term in the generalization bound that scales
with𝑛𝑙−1, where𝑛 is the number of nodes in the graph, hence
rendering the error bounds vacuous. Besides, Scarselli et al.
[46] shows that the VC dimension of GNN scales with 𝑛.
Thus, although the VC dimension is a classical notion for
deriving learning bounds, it is oblivious to the graph struc-
ture. Recent works have taken a step towards addressing this
issue with better error analyses. Verma and Zhang (2019)
find that one-layer GNNs satisfy uniform stability properties
[49], following the work of Hardt et al. [26]. The gener-
alization bound of Verma and Zhang [49] scales with the
largest singular value of the graph diffusion matrix of the
model. However, their analysis only applies to a single layer
and node predictions. Garg et al. (2020) analyze an 𝑙 layer
message-passing neural network — with 𝑙 − 1 graph diffu-
sion layers and 1 pooling layer — for graph prediction tasks



Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion

IMDB-B IMDB-M COLLAB REDDIT-B REDDIT-M

20

23

26

29

212
Max Degree of G

Spectral Norm of A

Spectral Norm of D̃−
1
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Figure 1: Left: Our spectral norm bounds for graph diffusion matrices are orders of magnitude smaller than maximum
degree bounds on real-world graphs; In Figure 1a, we measure the spectral norm and the max degree for five graph
datasets. Right: In Figure 1b, our Hessian-based generalization measure (plotted in green, scaled according to the left axis)
matches observed generalization gaps of GNNs (plotted in yellow, scaled according to the left axis). The blue line shows a
uniform-convergence bound (scaled according to the right axis) that is orders of magnitude larger than the observed gaps.

[16]. Their result scales with 𝑑𝑙−1, where 𝑑 is the maximum
degree of the graph. Subsequently, Liao et al. (2021) de-
velop a tighter bound but still scales with 𝑑𝑙−1 [37]. For both
results, the graph’s maximum degree is used to quantify the
complexity of node aggregation in each diffusion step.

In this paper, our major contribution is to show generaliza-
tion bounds for GNNs by reducing the max degree depen-
dence to the spectral norm of the graph diffusion matrix. We
analyze the stability of a GNN against noise injections. De-
note an 𝑙-layer GNN by 𝑓 . Based on PAC-Bayesian analysis
[39], the generalization gap of 𝑓 will be small if 𝑓 remains
stable against noise injections; otherwise, the generalization
gap of 𝑓 will be large. By quantifying the noise stability
of 𝑓 via Lipschitz-continuity properties of its activation
functions, one can get PAC-Bayes bounds for feedforward
networks that correlate with their observed generalization
gaps [12, 2, 31, 34]. We use a refined stability analysis
of GNNs through Hessians and show tight generalization
bounds on the graph diffusion matrix.

Our Contributions. The goal of this work is to improve the
theoretical understanding of generalization in graph neural
networks, and in that vein, we highlight two results below:

• First, we prove sharp generalization bounds for message-
passing neural networks [9, 17, 33], graph convolutional
networks [35], and graph isomorphism networks [54].
Our bounds scale with the spectral norm of 𝑃𝑙−1

𝐺
for an

𝑙-layer network, where 𝑃
𝐺

denotes a diffusion matrix
on a graph 𝐺 and varies among different models (see
Theorem 3.1 for the full statement). We then show a
matching lower bound instance where the generalization
gap scales with the spectral norm of 𝑃𝑙−1

𝐺
(Theorem 3.2).

• Second, our stability analysis of graph neural networks
provides a practical tool for measuring generalization.
Namely, we show that the noise stability of GNN can be
measured by the trace of the loss Hessian matrix. The

formal statement is given in Lemma 4.3. Our techniques,
which include a uniform convergence of the Hessian
matrix, may be of independent interest. We note that
the proof applies to twice-differentiable and Lipschitz-
continuous activation functions (e.g., tanh and sigmoid).

Taken together, these two results provide a sharp understand-
ing of generalization in terms of the graph diffusion matrix
for graph neural networks. We note that the numerical value
of our bounds in their dependence on the graph is much
smaller than prior results [16, 37], as is clear from Figure
1a. Moreover, the same trend holds even after taking weight
norms into account (see Figure 2, Section 3.3). Further,
the Hessian-based bounds (see Lemma 4.3, Section 4) are
non-vacuous, matching the scale of empirically observed
generalization gaps in Figure 1b.

Finally, motivated by the above analysis, we present an algo-
rithm that performs gradient updates on perturbed weights
of a graph neural network. The key insight is that mini-
mizing the average loss of multiple perturbed models with
independent noise injections is equivalent to regularizing
𝑓 ’s Hessian in expectation. We conduct experiments on
several graph classification tasks with Molecular graphs that
show the benefit of this algorithm in the fine-tuning setting.

2 Related Work

Generalization Bounds: An article by Zhang et al. (2017)
finds that deep nets have enough parameters to memorize
real images with random labels, yet they still generalize
well if trained with true labels. This article highlights the
overparametrized nature of modern deep nets (see also a
recent article by Arora [1]), motivating the need for com-
plexity measures beyond classical notions. In the case of
two-layer ReLU networks, Neyshabur et al. (2019) show
that (path) norm bounds better capture the “effective number
of parameters” than VC dimension—which is the number
of parameters for piecewise linear activations [5].
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For multilayer networks, subsequent works have developed
norm, and margin bounds, either via Rademacher complexi-
ties [4, 20, 38], or PAC-Bayesian bounds [2, 42, 36, 34]. All
of these bounds apply to the fine-tuning setting following
the distance from the initialization perspective. Our analysis
approach builds on the work of Arora et al. (2018) and Ju
et al. (2022). The latter work connects perturbed losses and
Hessians for feedforward neural networks, with one limita-
tion Hessians do not show any explicit dependence on the
data. This is a critical issue for GNN as we need to incor-
porate the graph structure in the generalization bound. Our
result instead shows an explicit dependence on the graph
and applies to message-passing layers that involve addi-
tional nonlinear mappings. We will compare our analysis
approach and prior analysis in more detail when we present
the proofs in Section 4 (see Remark 4.4).

Graph Representation Learning: Most contemporary
studies of learning on graphs consider either node-level
or graph-level prediction tasks. Our result applies to graph
prediction while permitting an extension to node prediction:
see Remark 4.2 in Section 4. Most graph neural networks
follow an information diffusion mechanism on graphs [45].
Early work takes inspiration from ConvNets and designs lo-
cal convolution on graphs, e.g., spectral networks [6], GCN
[35], and GraphSAGE [24] (among others). Subsequent
works have designed new architectures with graphs atten-
tion [48] and isomorphism testing [54]. Gilmer et al. (2017)
synthesize several models into a framework called message-
passing neural networks. Besides, one could also leverage
graph structure in the pooling layer (e.g., differentiable pool-
ing and hierarchical pooling [59, 62]). It is conceivable
that one can incorporate the model complexity of these ap-
proaches into our analysis. Recent work applies pretraining
to large-scale graph datasets for learning graph represen-
tations [27]. Despite being an effective transfer learning
approach, few works have examined the generalization of
graph neural nets in the fine-tuning step.

Besides learning on graphs, GNNs are also used for combi-
natorial optimization [47] and causal reasoning [55]. There
is another approach for graph prediction using kernels [50,
11]. There are also alternative graph diffusion processes
besides GNN [18, 19, 61]. We refer interested readers to the
review articles [23, 7, 13, 53].

Generalization in GNN: Recent work explores general-
ization by formalizing the role of the algorithm, and the
alignment between networks and tasks [56]. Esser et al.
[14] finds that transductive Rademacher complexity-based
bound provides insights into the behavior of GNNs (e.g., un-
der stochastic block models). Besides, there are works about
size generalization, which refer to performance degradation
when models extrapolate to graphs of different sizes from
the input [47, 58]. It is conceivable that the new tools we
have developed may be useful for studying extrapolation.

Expressivity of GNN: The expressivity of GNN for graph
classification can be related to graph isomorphism tests and
has connections to one-dimensional Weisfeiler-Lehman test-
ing of graph isomorphism [41, 54]. This implies limitations
of GNN for expressing tasks such as counting cycles [44,
8, 3]. The expressiveness view seems orthogonal to gen-
eralization, which instead concerns the sample efficiency
of learning. For further discussions and references, see a
recent survey by Jegelka [30].

3 Sharp Generalization Bounds for Graph
Neural Networks

We first introduce the problem setup for analyzing graph
neural networks. Then, we state our generalization bounds
for graph neural networks and compare them with the prior
art. Lastly, we construct a matching lower bound to argue
that our bounds are tight.

3.1 Problem setup

Consider a graph-level prediction task. Suppose we have 𝑁

examples in the training set; each example is an independent
sample from a distribution denoted as D, which is jointly
supported on the feature space X times the label space Y.
In each example, we have an undirected graph denoted
as 𝐺 = (𝑉 , 𝐸), which describes the connection between 𝑛

entities, represented by nodes in 𝑉 . For example, a node
could represent a molecule, and an edge between two nodes
is a bond between two molecules. Each node also has a list
of 𝑑 features. Denote all node features as an 𝑛 by 𝑑 matrix
𝑋 . For graph-level prediction tasks, the goal is to predict
a graph label 𝑦 for every example. We will describe a few
examples of such tasks later in Section 5.2.

Message-passing neural networks (MPNN). We study a
model based on several prior works for graph-level predic-
tion tasks [9, 17, 16, 37]. Let 𝑙 be the number of layers: the
first 𝑙 − 1 layers are diffusion layers, and the last layer is a
pooling layer. Let 𝑑𝑡 denote the width of each layer for 𝑡
from 1 up to 𝑙 . There are several nonlinear mappings in layer
𝑡 , denoted as 𝜙𝑡 , 𝜌𝑡 , and 𝜓𝑡 ; further, they are all centered
at zero. There is a weight matrix 𝑊 (𝑡 ) of dimension 𝑑𝑡−1
by 𝑑𝑡 for transforming neighboring features, and another
weight matrix 𝑈 (𝑡 ) of dimension 𝑑 by 𝑑𝑡 for transforming
the anchor node feature.

For the first 𝑙 − 1 layers, we recursively compute the node
embedding from the input features 𝐻 (0) = 𝑋 :

𝐻 (𝑡 ) = 𝜙𝑡

(
𝑋𝑈 (𝑡 ) + 𝜌𝑡

(
𝑃
𝐺
𝜓𝑡 (𝐻 (𝑡−1) )

)
𝑊 (𝑡 )

)
. (1)

For the last layer 𝑙 , we aggregate the embedding of all nodes:
let 1𝑛 be a vector with 𝑛 values of one:

𝐻 (𝑙) =
1
𝑛
1⊤𝑛𝐻

(𝑙−1)𝑊 (𝑙) . (2)
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Note that this setting subsumes many existing GNNs. Sev-
eral common designs for the graph diffusion matrix 𝑃

𝐺

would be the adjacency matrix of the graph (denoted as 𝐴).
𝑃
𝐺

can also be the normalized adjacency matrix, 𝐷−1𝐴, with
𝐷 being the degree-diagonal matrix. Adding an identity
matrix in 𝐴 is equivalent to adding self-loops in 𝐺 . In GCN,
we can set 𝑈 (𝑡 ) as zero, 𝜌𝑡 and𝜓𝑡 as identity mappings.

Notations. For any matrix 𝑋 , let ∥𝑋 ∥ denote the largest
singular value (or spectral norm) of 𝑋 . Let ∥𝑋 ∥𝐹 denote the
Frobenius norm of 𝑋 . We use the notation 𝑓 (𝑁 ) ≲ 𝑔(𝑁 )
to indicate that there exists a fixed constant 𝑐 that does not
grow with 𝑁 such that 𝑓 (𝑁 ) ≤ 𝑐 · 𝑔(𝑁 ) for large enough
values of 𝑁 . Let 𝑾 and 𝑼 denote the union of the𝑊 and 𝑈
matrices in a model 𝑓 , respectively.

3.2 Main results

Given a message-passing neural network denoted as 𝑓 ,
what can we say about its generalization performance? Let
𝑓 (𝑋,𝐺) denote the output of 𝑓 , given input with graph 𝐺 ,
node feature matrix 𝑋 , and label 𝑦. The loss of 𝑓 for this
input example is denoted as ℓ (𝑓 (𝑋,𝐺), 𝑦). Let 𝐿̂(𝑓 ) denote
the empirical loss of 𝑓 over the training set. Let 𝐿(𝑓 ) denote
the expected loss of 𝑓 over a random example of distribution
D. We are interested in the generalization gap of 𝑓 , i.e.,
𝐿(𝑓 ) − 𝐿̂(𝑓 ). How would the graph diffusion matrix 𝑃

𝐺

affect the generalization gap of graph neural networks?

To motivate our result, we examine the effect of incorpo-
rating graph diffusion in a one-layer linear neural network.
That is, we consider 𝑓 (𝑋,𝐺) to be 1

𝑛
1⊤𝑛 𝑃𝐺

𝑋𝑊 (1) , which
does not involve any nonlinear mapping for simplicity of
our discussion. In this case, by standard spectral norm in-
equalities for matrices, the Euclidean norm of 𝑓 (which is a
vector) satisfies:

∥ 𝑓 (𝑋,𝐺)∥ =




 1
𝑛
1⊤𝑛 𝑃𝐺𝑋𝑊

(1)






≤




 1
𝑛
1⊤𝑛





 · 

𝑃𝐺 

 · ∥𝑋 ∥ ·



𝑊 (1)




 (3)

Thus, provided that the loss function ℓ (·, 𝑦) is Lipschitz-
continuous, standard arguments imply that the generaliza-
tion gap of 𝑓 scales with the spectral norm of 𝑃

𝐺
(divided

by
√
𝑁 ) [40]. Let us compare this statement with a fully-

connected neural net that averages the node features, i.e.,
the graph diffusion matrix 𝑃

𝐺
is the identity matrix. The

spectral norm of 𝑃
𝐺

becomes one. Together, we conclude
that the graph structure affects the generalization bound of
a single layer GNN by adding the spectral norm of 𝑃

𝐺
.

Our main result is that incorporating the spectral norm of
the graph diffusion matrix 𝑃𝑙−1

𝐺
is sufficient for any 𝑙 layer

MPNN. We note that the dependence is a power of 𝑙 − 1
because there are 𝑙 − 1 graph diffusion layers: see equation
(1). Let 𝑓 be an 𝑙-layer network whose weights 𝑾 , 𝑼 are
defined within a hypothesis set H .

For every layer 𝑖 from 1 up to 𝑙 , we have that:


𝑊 (𝑖)



 ≤𝑠𝑖 ,




𝑊 (𝑖)




𝐹
≤ 𝑠𝑖𝑟𝑖 ,


𝑈 (𝑖)




 ≤𝑠𝑖 ,



𝑈 (𝑖)





𝐹

≤ 𝑠𝑖𝑟𝑖 , (4)

where 𝑠1, 𝑠2, . . . , 𝑠𝑙 and 𝑟1, 𝑟2, . . . , 𝑟𝑙 are bounds on the spec-
tral norm and stable rank which are not less than one, with-
out loss of generality. We now present the full statement.

Theorem 3.1. Suppose all of the nonlinear activations in
{𝜙𝑡 , 𝜌𝑡 ,𝜓𝑡 : ∀ 𝑡} and the loss function ℓ (·, 𝑦) (for any fixed
label 𝑦 ∈ Y) are twice-differentiable, Lipschitz-continuous,
and their first-order and second-order derivatives are both
Lipschitz-continuous.

With probability at least 1 − 𝛿 over the randomness of 𝑁
independent samples from D, for any 𝛿 > 0, and any 𝜖 > 0
close to zero, any model 𝑓 with weight matrices in the set
H satisfies:

𝐿(𝑓 ) ≤ (1 + 𝜖)𝐿̂(𝑓 ) + O
(

log(𝛿−1)
𝑁 3/4

)
(5)

+
𝑙∑︁

𝑖=1

√√√√√
𝐶𝐵𝑑𝑖

(
max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2 ∥𝑃𝐺 ∥2(𝑙−1)

) (
𝑟2
𝑖

𝑙∏
𝑗=1

𝑠2
𝑗

)
𝑁

,

where 𝐵 is an upper bound on the value of the loss function
ℓ (𝑥,𝑦) for any (𝑥,𝑦) ∼ D, and 𝐶 is a fixed Lipchitz con-
stant depending on the activation’s and the loss function’s
Lipschitz-continuity (see equation (43), Appendix A.2.4).

As a remark, prior works by Garg et al. [16] and Liao et al.
[37] consider an MPNN with𝑊 (𝑡 ) and 𝑈 (𝑡 ) being the same
for 𝑡 from 1 up to 𝑙 , motivated by practical designs [17,
33]. Thus, their analysis needs to be conducted separately
for GCN and MPNN with weight tying. By contrast, our
result allows𝑊 (𝑡 ) and 𝑈 (𝑡 ) to be arbitrarily different across
different layers. This unifies GCN and MPNN without
weight tying in the same framework, so that we can unify
their analysis. We defer the proof sketch and a discussion
of our results to Section 4.

3.3 Comparison with prior art

In Table 1, we compare our result with prior results. We first
illustrate the effects of graph properties on the generalization
bounds. Then we will also show a numerical comparison to
incorporate the other components of the bounds.

• Suppose 𝑃
𝐺

is the adjacency matrix of 𝐺 . Then, one can
show that for any undirected graph 𝐺 , the spectral norm
of 𝑃

𝐺
is less than the maximum degree 𝑑 (cf. Fact A.1,

Appendix A for a proof). This explains why our result is
strictly less than prior results for MPNN in Table 1.

• Suppose 𝑃
𝐺

is the normalized and symmetric adjacency
matrix of 𝐺 : 𝑃

𝐺
= 𝐷̃−1/2𝐴̃𝐷̃−1/2, where 𝐴̃ is 𝐴 + Id and

𝐷̃ is the degree-diagonal matrix of 𝐴̃. Then, the spectral
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Table 1: How does the generalization gap of graph neural networks scale with graph properties? In this work, we show
spectrally-normalized bounds on 𝑃

𝐺
and compare our results with prior results in the following table. We let 𝐴 denote the

adjacency matrix, 𝐷 be the degree-diagonal matrix of 𝐴, and 𝑙 be the depth of the GNN. Previous generalization bounds
scale with the graph’s maximum degree denoted as 𝑑 . Our result instead scales with the spectral norm of 𝑃

𝐺
and applies to

new settings, including graph isomorphism networks (GIN) [54] and GraphSAGE with mean aggregation [24].

Graph Dependence GCN MPNN GIN GraphSAGE-Mean

Garg et al. (2020) 𝑑𝑙−1 𝑑𝑙−1 - -
Liao et al. (2021) 𝑑

𝑙−1
2 𝑑𝑙−1 - -

Ours (Theorems 3.1 and 4.5) 1 ∥𝐴∥𝑙−1 ∑𝑙−1
𝑖=1

∥𝐴 ∥𝑖
𝑙−1



𝐷−1𝐴


𝑙−1

norm of 𝑃
𝐺

is at most one (cf. Fact A.1, Appendix A
for a proof). This explains why the graph dependence of
our result for GCN is 1 in Table 1. Thus, it provides an
exponential improvement compared to the prior results.

Thus, for the above diffusion matrices, we conclude that the
spectral norm of 𝑃

𝐺
is strictly smaller than the maximum

degree of graph 𝐺 (across all graphs in the distribution D).

Numerical Comparison. Next, we conduct an empirical
analysis to compare our results and prior results numerically.
Following the setting of prior works, we use two types of
models that share their weight matrices across different
layers, including GCN [35] and the MPNN specified in Liao
et al. [37]. For both models, we evaluate the generalization
bounds by varying the network depth 𝑙 between 2, 4, and 6.

We consider graph prediction tasks on three collaboration
networks, including IMDB-B, IMDB-M, and COLLAB
[57]. IMDB-B includes a collection of movie collaboration
graphs. In each graph, a node represents an actor or an
actress, and an edge denotes a collaboration in the same
movie. The task is to classify each graph into the movie
genre as Action or Romance. The IMDB-M is a multi-class
extension with the movie graph label Comedy, Romance, or
Sci-Fi. COLLAB includes a list of ego-networks of scien-
tific researchers. Each graph includes a researcher and her
collaborators as nodes. An edge in the graph indicates a col-
laboration between two researchers. The task is to classify
each ego-network into the field of the researcher, including
High Energy, Condensed Matter, and Astro Physics.

We report the numerical comparison in Figure 2. We report
the averaged result over three random seeds. Our results
are consistently smaller than previous results. As explained
in Table 1, the improvement comes from the spectral norm
bounds on graphs compared with the max degree bounds.

3.4 A matching lower bound

Next, we show an instance with the same dependence on the
graph diffusion matrix as our upper bound. In our example:

• The graph 𝐺 is the complete graph with self-loops in-
serted in each node. Thus, the adjacency matrix of 𝐺 is

precisely a square matrix with all ones. We will set 𝑃
𝐺

as the adjacency matrix of 𝐺 .
• In the first 𝑙 − 1 graph diffusion layers, the activation

functions 𝜙, 𝜌,𝜓 are all linear functions. Further, we fix
all the parameters of 𝑼 as zero.

• The loss function ℓ is the logistic loss.

Then, we demonstrate a data distribution such that there
always exists some weight matrices within H whose gen-
eralization gap must increase in proportion to the spectral
norm of 𝑃𝑙−1

𝐺
and the product of the spectral norm of every

layer 𝑠1, 𝑠2, . . . , 𝑠𝑙 .

Theorem 3.2. Let 𝑁0 be a sufficiently large value. For
any norms 𝑠1, 𝑠2, . . . , 𝑠𝑛, there exists a data distribution D
on which with probability at least 0.1 over the randomness
of 𝑁 independent samples from D, for any 𝑁 ≥ 𝑁0, the
generalization gap of 𝑓 is greater than the following:

��𝐿(𝑓 ) − 𝐿̂(𝑓 )
�� ≳

√√√√√ (
max

(𝑋,𝐺,𝑦)∼D



𝑃
𝐺



2(𝑙−1) ) ( 𝑙∏
𝑖=1

𝑠2
𝑖

)
𝑁

. (6)

Notice that the lower bound in (6) exhibits the same scaling
in terms of 𝐺—



𝑃
𝐺



𝑙−1—as our upper bound from equation
(5). Therefore, we conclude that our spectral norm bound is
tight for multilayer MPNN. The proof of the lower bound
can be found in Appendix A.3.

Remark 3.3. Our results from Theorem 3.1 and 3.2 together
suggest the generalization error bound scales linearly in 𝑙 .
To verify whether this is the case, we conducted an empirical
study on three architectures (GCN, GIN-Mean, and GIN-
Sum) that measured the growth of generalization errors as
the network depth 𝑙 varies. We find that the generalization
error grows sublinearly with 𝑙 to



𝑃
𝐺



. We also note that this
sublinear growth trend has been captured by our Hessian-
based generalization bound (cf. Figure 1a). It would be
interesting to understand better why the sublinear trend
happens and provide insight into the behavior of GNNs.

Remark 3.4. Theorem 3.2 suggests that in the worst case,
the generalization bound would have to scale with the spec-
tral norms of the graph and the weight matrices. Although
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Figure 2: Comparing our result and prior results [16, 37] on three graph classification tasks. Upper: The experiments are
conducted on GCNs. Lower: The experiments are conducted on MPNNs following the setup of Liao et al. [37].

this is vacuous for large 𝑙 , later in Lemma 4.1, we show
a data-dependent generalization bound using the trace of
the Hessians, which is non-vacuous. In Figure 1a, Hessian-
based measurements match the scale of actual generalization
errors: the green line, calculated from the trace of the loss
Hessian matrix (cf. equation (7)), matches the scale of the
actual generalization error plotted in the yellow line.

4 Proof Techniques and Extensions

Our analysis for dealing with the graph structure seems
fundamentally different from the existing analysis. In the
margin analysis of Liao et al. [37], the authors also incor-
porate the graph structure in the perturbation error. For
bounding the perturbation error, the authors use a triangle
inequality that results in a (1,∞) norm of the matrix 𝑃

𝐺
(see

Lemma 3.1 of Liao et al. [37] for GCN). We note that this
norm can be larger than the spectral norm by a factor of

√
𝑛,

where 𝑛 is the number of nodes in 𝐺 : in the case of a star
graph, this norm for the graph diffusion matrix of GCN is√
𝑛. By comparison, the spectral norm of the same matrix is

less than one (see Fact A.1, Appendix A).

How can we tighten the perturbation error analysis and the
dependence on 𝑃

𝐺
in the generalization bounds, then? Our

proof involves two parts:

• Part I: By expanding the perturbed loss of a GNN, we
prove a bound on the generalization gap using the trace
of the Hessian matrix associated with the loss.

• Part II: Then, we explicitly bound the trace of the Hes-
sian matrix with the spectral norm of the graph using the
Lipschitzness of the activation functions.

Part I: Measuring noise stability using the Hessian. We
first state an implicit generalization bound that measures
the trace of the Hessian matrix. Let H(𝑖) denote the Hessian
matrix of the loss ℓ (𝑓 (𝑋,𝐺), 𝑦) with respect to layer 𝑖’s
parameters, for each 𝑖 from 1 up to 𝑙 . Particularly, H(𝑖) is a
square matrix whose dimension depends on the number of
variables within layer 𝑖. Let H denote the Hessian matrix of
the loss ℓ (𝑓 (𝑋,𝐺), 𝑦) over all parameters of 𝑓 .

Lemma 4.1. In the setting of Theorem 3.1, with probability
at least 1−𝛿 over the randomness of the 𝑁 training examples,
for any 𝛿 > 0 and 𝜖 close to 0, we get:

𝐿(𝑓 ) ≤ (1 + 𝜖)𝐿̂(𝑓 ) + O
(

log(𝛿−1)
𝑁 3/4

)
(7)

+ (1 + 𝜖)
𝑙∑︁

𝑖=1

√√√√√
𝐵 ·

(
max

(𝑋,𝐺,𝑦)∼D
Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

] )
𝑠2
𝑖
𝑟2
𝑖

𝑁
.

Proof Sketch. At a high level, the above result follows
from Taylor’s expansion of the perturbed loss. Suppose
each parameter of 𝑓 is perturbed by an independent noise
drawn from a Gaussian distribution with mean zero and
variance 𝜎2. Let ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) be the perturbed loss value of
an input example 𝑋,𝐺 with label 𝑦. Let E denote the noise
injections organized in a vector. Using Taylor’s expansion
of the perturbed loss ℓ̃ , we get:

ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) (8)

= E⊤∇ℓ (𝑓 (𝑋,𝐺), 𝑦) + 1
2
E⊤H

[
ℓ (𝑓 (𝑋,𝐺), 𝑦)

]
E + O(𝜎3).

Notice that the expectation of the first-order expansion term
above is equal to zero. The expectation of the second-order
expansion term becomes 𝜎2 times the trace of the loss Hes-
sian. To derive equation (7), we use a PAC-Bayes bound
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of McAllester [39, Theorem 2]. There are two parts to this
PAC-Bayes bound:

• The expectation of the noise perturbation in equation
(8), taken over the injected noise E;

• The KL divergence between the prior and the posterior,
which is at most 𝑠2

𝑖 𝑟
2
𝑖 for layer 𝑖, for 𝑖 from 1 up to 𝑙 ,

within the hypothesis set H .

Thus, one can balance the two parts by adjusting the noise
variance at each layer—this leads to the layerwise Hessian
decomposition in equation (7).

A critical step is showing the uniform convergence of the
Hessian matrix. We achieve this based on the Lipschitz-
continuity of the first and twice derivatives of the nonlinear
activation mappings. With these conditions, we prove the
uniform convergence with a standard 𝜖-cover argument. The
complete proof can be found in Appendix A.2.1.

Remark 4.2. Our argument in Lemma 4.1 applies to graph-
level prediction tasks, which assume an unknown distribu-
tion of graphs. A natural question is whether the analysis ap-
plies to node-level prediction tasks, which are often treated
as semi-supervised learning problems. The issue with di-
rectly applying our analysis to semi-supervised learning is
that the size of a graph is only finite. Instead, a natural exten-
sion would be to think about our graph as a random sample
from some population and then argue about generalization
in expectation of the random sample. It is conceivable that
one can prove a similar spectral norm bound for node predic-
tion in this extension. This would be an interesting question
for future work.

Part II: Spectral norm bounds of the trace of the Hessian.
Next, we explicitly analyze the trace of the Hessian at each
layer. We bound the trace of the Hessian using the spectral
norm of the weight matrices and the graph based on the
Lipschitz-continuity conditions from Theorem 3.1. Notice
that the last layer is a linear pooling layer, which can be
deduced from layer 𝑙 − 1. Hence, we consider the first 𝑙 − 1
layers below.

Lemma 4.3. In the setting of Theorem 3.1, the trace of the
loss Hessian matrix H(𝑖) taken over𝑊 (𝑖) and 𝑈 (𝑖) satisfies
the following, for any 𝑖 = 1, 2, · · · , 𝑙 − 1,

���Tr
[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦) ] ] ���

≲ 𝑠2
𝑙

(
𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1







 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2








𝐹

+
𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1







 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2








𝐹

+





 𝜕𝐻 (𝑙−1)

𝜕𝑊 (𝑖)






2

𝐹

+





 𝜕𝐻 (𝑙−1)

𝜕𝑈 (𝑖)






2

𝐹

)
(9)

≲ ∥𝑋 ∥2 

𝑃
𝐺



2(𝑙−1)∏𝑙

𝑗=1: 𝑗≠𝑖
𝑠2
𝑗 . (10)

Proof Sketch. Equation (9) uses the chain rule to expand
out the trace of the Hessian and then applies the Lipschitz-
ness of the loss function. Based on this result, equation (10)
then bounds the first and second derivatives of 𝐻 (𝑙−1) . This
step is achieved via an induction of 𝜕𝐻 ( 𝑗) and 𝜕2𝐻 ( 𝑗) over
𝑊 (𝑖) and 𝑈 (𝑖) , for 𝑗 = 1, . . . , 𝑙 − 1 and 𝑖 = 1, . . . , 𝑗 . The
induction relies on the feedforward architecture and the Lip-
schitzness of the first and second derivatives. We leave out
a few details, such as the constants in equations (9) and (10)
that can be found in Appendix A.2.2 and A.2.3. Combining
both parts together, we get equation (1).

Remark 4.4. We compare our analysis with the approach
of Liao et al. [37]. Both our analysis and Liao et al. [37]
follow the PAC-Bayesian framework. But additionally, we
explore Lipschitz-continuity properties of the first and sec-
ond derivatives of the activation functions (e.g., examples
of such activations include tanh and sigmoid). This allows
us to measure the perturbation loss with Hessians, which
captures data-dependent properties much more accurately
than the margin analysis of Liao et al. [37]. It would be
interesting to understand if one could achieve spectral norm
bounds on graphs under weaker smoothness conditions (see,
e.g., Wei and Ma [51]). This is left for future work.

4.1 Extensions

Graph isomorphism networks. This architecture concate-
nates every layer’s embedding together for more expressive-
ness [54]. A classification layer is used after the layers. Let
𝑉 (𝑖) be a 𝑑𝑖 by 𝑘 matrix (recall 𝑘 is the output dimension).
Denote the set of these matrices by V. We average the loss
of all of the classification layers. Let 𝐿̂

𝐺𝐼𝑁
(𝑓 ) be the average

loss of 𝑓 over 𝑁 independent samples of D. Let 𝐿
𝐺𝐼𝑁

(𝑓 ) be
the expected loss of 𝑓 over a random sample of D. See also
equation (44) in Appendix A.4 for their precise definitions.

Next, we state a generalization bound for graph isomor-
phism networks. Let 𝑓 be any 𝑙-layer MPNN with weights
defined in a hypothesis space H : the parameters of 𝑓 reside
within the constraints from equation (4); further, for every
𝑖 from 1 up to 𝑙 , the spectral norm of 𝑉 (𝑖) is less than 𝑠𝑙 .
Building on Lemma 4.3, we show a bound that scales with
the spectral norm generalization of the averaged graph diffu-
sion matrices. Let 𝑃

𝐺𝐼𝑁
denote the average of 𝑙 − 1 matrices:

𝑃
𝐺
, 𝑃2

𝐺
, . . . , 𝑃𝑙−1

𝐺
. We state the result below.

Corollary 4.5. Suppose the nonlinear activation mappings
and the loss function satisfy the conditions stated in Theorem
3.1. With probability at least 1 − 𝛿 for any 𝛿 ≥ 0, and any 𝜖
close to zero, any 𝑓 in H satisfies:

𝐿
𝐺𝐼𝑁

(𝑓 ) ≤ (1 + 𝜖)𝐿̂
𝐺𝐼𝑁

(𝑓 ) + O
(

log(𝛿−1)
𝑁 3/4

)
(11)

+
𝑙∑︁

𝑖=1

√√√√√
𝐵𝐶𝑑𝑖 ·

(
max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥2 

𝑃

𝐺𝐼𝑁



2
) (

𝑟2
𝑖

𝑙∏
𝑗=1

𝑠2
𝑗

)
𝑁

,
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where 𝐵 is an upper bound on the value of the loss function ℓ

across the data distribution D, and𝐶 is a fixed constant that
only depends on the Lipschitz-continuity of the activation
mappings and the loss.

The proof can be found in Appendix A.4. In particular, we
apply the trace norm bound over the model output of every
layer. The classification layer, which only uses a linear
transformation, can also be incorporated.

Fine-tuned Graph Neural Networks. We note that all of
our bounds can be applied to the fine-tuning setting, where
a graph neural network is initialized with pretrained weights
and then fine-tuned on the target task. The results can be
extended to this setting by setting the norm bounds within
equation (4) as the distance between the pretrained and fine-
tuned model.

5 Noise Stability Optimization for
Fine-tuning GNNs

A common practice to apply graph and deep learning is to
adopt a pretrained GNN and fine-tune it for a target problem.
Typically, only a small amount of data is available for fine-
tuning. Thus, the fine-tuned model may overfit the training
data, incurring a large generalization gap. A central insight
from our analysis is that maintaining a small perturbed loss
ensures lower generalization gaps. Motivated by this obser-
vation, we present an optimization algorithm to minimize
the perturbed loss of a model.

Let 𝑓 denote a model and ℓ̃ (𝑓 ) be the perturbed loss of 𝑓 ,
with noise injected inside 𝑓 ’s weight matrices. Recall from
step (8) that ℓ̃ (𝑓 ) is equal to ℓ (𝑓 ) plus several expansion
terms. In particular, minimizing the expectation of ℓ̃ (𝑓 ) is
equivalent to minimizing 𝐿̂(𝑓 ) plus the trace of the Hessian
matrix. To estimate this expectation, we sample several
noise perturbations independently. Because Taylor’s expan-
sion of ℓ̃ (𝑓 ) also involves the gradient, we cancel this out by
computing the perturbed loss with the negated perturbation.
Algorithm 1 describes the complete procedure.

We evaluate the above algorithm for fine-tuning pretrained
GNNs. Empirical results reveal that this algorithm achieves
better test performance compared with existing regulariza-
tion methods for five graph classification tasks.

5.1 Experimental setup

We focus on graph classification tasks, including five
datasets from the MoleculeNet benchmark [52]. In each
dataset, the goal is to predict whether a molecule has a cer-
tain chemical property given its graph representation. We
use pretrained GINs from Hu et al. [27] and fine-tune the
model on each downstream task. Following their experi-
mental setup, we use the scaffold split for the dataset, and
the model architecture is fixed for all five datasets. Each

Algorithm 1 Noise stability optimization for fine-tuning
graph neural networks
Input: A training dataset {(𝑋𝑖 ,𝐺𝑖 , 𝑦𝑖 )}𝑁𝑖=1 with node feature 𝑋𝑖 ,
graph 𝐺𝑖 , and graph-level label 𝑦𝑖 , for 𝑖 = 1, . . . , 𝑁 .
Require: Number of perturbations 𝑚, noise variance 𝜎2, learning
rate 𝜂, and number of epochs 𝑇 .
Output: A trained model 𝑓 (𝑇 ) .
1: At 𝑡 = 0, initialize the parameters of 𝑓 (0) with pretrained GNN

weight matrices.
2: for 1 ≤ 𝑡 ≤ 𝑇 do
3: for 1 ≤ 𝑖 ≤ 𝑚 do
4: Add perturbation E𝑖 drawn from a normal distribution

with mean zero and variance 𝜎2.
5: Let 𝐿̃𝑖 (𝑓 (𝑡−1) ) be the training loss of the model 𝑓 (𝑡−1)

with weight matrix perturbed by E𝑖 .
6: Let 𝐿̃

′
𝑖
(𝑓 (𝑡−1) ) be the training loss of the model 𝑓 (𝑡−1)

with weight matrix perturbed by −E𝑖 .
7: end for
8: Use stochastic gradient descent to update 𝑓 (𝑡 ) as 𝑓 (𝑡−1) −

𝜂
2𝑚

∑𝑚
𝑖=1

(
∇𝐿̃𝑖

(
𝑓 (𝑡−1) ) + ∇𝐿̃′

𝑖

(
𝑓 (𝑡−1) ) ) .

9: end for

model has 5 layers; each layer has 300 hidden units and uses
average pooling in the readout layer. We set the parameters,
such as the learning rate and the number of epochs following
their setup.

We compare our algorithm with previous regularization
methods that serve as benchmark approaches for improving
generalization. This includes early stopping, weight de-
cay, dropout, weight averaging [29], and distance-based
regularization [21]. For implementing our algorithm,
we set the number of perturbations as 10 and choose
the noise standard deviation 𝜎 with a grid search in
{0.01, 0.02, 0.05, 0.1, 0.2, 0.5}. Our code is available online.

5.2 Experimental results

Table 2 reports the test ROC-AUC performance averaged
over multiple binary prediction tasks in each dataset. Com-
paring the average ranks of methods across datasets, our
algorithm outperforms baselines on all five molecular prop-
erty prediction datasets. The results support our theoretical
analysis that the noise stability property of GNN is a strong
measure of empirical generalization performance. Next, we
provide details insights from applying our algorithm.

First, we hypothesize that our algorithm is particularly ef-
fective when the empirical generalization gap is large. To
test the hypothesis, we vary the size of the training set in
the BACE dataset; we compare the performance of our al-
gorithm with early stopping until epoch 100. We plot the
generalization gap between the training and test losses dur-
ing training, shown in Figure 3a-3b. As the trend shows,
our algorithm consistently reduces the generalization gap,
particularly when the training set size 𝑁 is 600.

https://github.com/NEU-StatsML-Research/Noise-Stability-Optimization-for-Fintuning-GNNs
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Table 2: Test ROC-AUC (%) score for five molecular property prediction datasets with different regularization methods.
The reported results are averaged over five random seeds.

Dataset SIDER ClinTox BACE BBBP Tox21
Avg. Rank# Molecule Graphs 1,427 1,478 1,513 2,039 7,831

# Binary Prediction Tasks 27 2 1 1 12

Early Stopping 61.06±1.48 68.25±2.63 82.86±0.95 67.80±1.05 77.52±0.23 5.8
Weight Decay 61.30±0.21 67.43±2.88 83.72±0.99 67.98±2.41 78.23±0.35 5.0
Dropout 63.90±0.90 73.70±2.80 84.50±0.70 68.07±1.30 78.30±0.30 3.6
Weight Averaging 63.67±0.34 78.78±1.49 83.93±0.36 70.26±0.24 77.59±0.11 3.4
Distance-based Reg. 64.36±0.48 76.68±1.19 84.65±0.48 70.37±0.44 78.62±0.24 2.2

Ours (Alg. 1) 65.13±0.18 80.18±0.82 85.07±0.43 71.22±0.36 79.31±0.24 1.0

Figure 3: In Figures 3a and 3b, we show that our algorithm is particularly effective at reducing the generalization gap for
small training dataset sizes 𝑁 . In Figures 3c and 3d, we find that both the trace and the largest eigenvalue of the loss Hessian
matrix decreased during training.
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(d) Largest Eigenvalue

Second, we hypothesize that our algorithm helps reduce
the trace of the Hessian matrix (associated with the loss).
We validate this by plotting the trace of the Hessian as the
number of epochs progresses during training, again using
the BACE dataset as an example. Specifically, we average
the trace over the training dataset. Figure 3c shows the
averaged trace values during the fine-tuning process. The
results confirm that noise stability optimization reduces the
trace of the Hessian matrix (more significantly than early
stopping). We note that noise stability optimization also
reduces the largest eigenvalue of the Hessian matrix, along
with reducing the trace. This can be seen in Figure 3d.

Lastly, we study the number of perturbations used in our
algorithm. While more perturbations would lead to a better
estimation of the noisy stability, we observe that using 10
perturbations is sufficient for getting the most gain. We
also validate that using negated perturbations consistently
performs better than not using them across five datasets.
This is because the negated perturbation cancels out the
first-order term in Taylor’s expansion. In our ablation study,
we find that adding the negated perturbation performs better
than not using it by 1% on average over the five datasets.

Remark. We note that noise stability optimization is closely
related to sharpness-aware minimization (SAM) [15]. Noise
stability optimization differs in two aspects compared with
SAM. First, SAM requires solving constrained minimax
optimization, which may not even be differentiable [10].
Our objective remains the same after perturbation. Second,
SAM reduces the largest eigenvalue of the Hessian matrix,

which can be seen from Taylor’s expansion of ℓ̃ (𝑓 ). We
reduce the trace of the Hessian matrix, which includes re-
ducing the largest eigenvalue as part of the trace. There is
another related work that regularizes noise stability in NLP
[28]. Their approach adds noise perturbation in the input
and regularizes the loss change in the output. Our approach
directly adds the perturbation in the weight matrices.

6 Conclusion

This work develops generalization bounds for graph neural
networks with a sharp dependence on the graph diffusion
matrix. The results are achieved within a unified setting
that significantly extends prior works. In particular, we
answer an open question mentioned in Liao et al. [37]: a
refined PAC-Bayesian analysis can improve the generaliza-
tion bounds for message-passing neural networks. These
bounds are obtained by analyzing the trace of the Hessian
matrix with the Lipschitz-continuity of the activation func-
tions. Empirical findings suggest that the Hessian-based
bound matches observed gaps on real-world graphs. Thus,
our work also develops a practical tool to measure the gen-
eralization performance of graph neural networks. The
algorithmic results with noise stability optimization further
demonstrate the practical implication of our findings.

Our work opens up many interesting questions for future
work. Could the new tools we have developed be used
to study generalization in graph attention networks [48]?
Could Hessians be used for measuring out-of-distribution
generalization gaps of graph neural networks?
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A Proofs

This section provides the complete proofs for all of our results in Section 3. First, we state several notations and facts that
will be needed in the proofs. Then we provide the proof of the Hessian-based generalization bound for MPNN, which is
stated in Lemma 4.1. After that, in Appendix A.2, we provide the proof of Theorem 3.1, a key step of which is the proof of
Lemma 4.3. Next, in Appendix A.3, we state the proof of the lower bound. Lastly, in Appendix A.4, we will provide proof
for the case of graph isomorphism networks.

First, we state several facts about graphs and provide a short proof of them.

Fact A.1. Let 𝐺 = (𝑉 , 𝐸) be an undirected graph. Let 𝑑𝐺 be the maximum degree of 𝐺 .

a) Let 𝐴 be the adjacency matrix of 𝐺 . Then, the adjacency matrix satisfies:
√
𝑑𝐺 ≤ ∥𝐴∥ ≤ 𝑑𝐺 .

b) The symmetric and degree-normalized adjacency matrix satisfies


𝐷−1/2𝐴𝐷−1/2



 ≤ 1.

Proof. Based on the definition of the spectral norm, we get

∥𝐴∥ = max
∥𝑥 ∥=1

𝑥⊤𝐴𝑥 = max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗 ≤ max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

1
2
(𝑥2

𝑖 + 𝑥2
𝑗 ) ≤ 𝑑𝐺

∑︁
𝑖∈𝑉

𝑥2
𝑖 = 𝑑𝐺 .

Assume that node 𝑖 has the maximum degree 𝑑𝐺 . Denote edges set 𝐸𝑖 = {(𝑖, 𝑖𝑘 )}𝑑𝐺𝑘=1 ⊆ 𝐸. Let 𝑥𝑖 = 1√
2
, 𝑥𝑖𝑘 = 1√

2𝑑𝐺
for all

𝑘 = 1, . . . , 𝑑𝐺 . The rest entries of 𝑥 are equal to zero. Thus, 𝑥 is a normalized vector. Next, we have

∥𝐴∥ = max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗 ≥ max
∥𝑥 ∥=1

2
∑︁

(𝑖, 𝑗) ∈𝐸𝑖

𝑥𝑖𝑥 𝑗 = 2𝑑𝐺 · 1
√

2
1

√
2𝑑𝐺

=
√︁
𝑑𝐺 .

An example in which ∥𝑃𝐺 ∥ gets close to
√
𝑑𝐺 is the star graph. An example in which ∥𝑃𝐺 ∥ gets close to 𝑑𝐺 is the complete

graph.

Next, we focus on case b). From the definition of the spectral norm, we know


𝐷−1/2𝐴𝐷−1/2



 = max

∥𝑥 ∥=1
𝑥⊤

(
𝐷−1/2𝐴𝐷−1/2)𝑥 = max

∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥𝑖𝑥 𝑗√︁
𝑑𝑖𝑑 𝑗

≤ max
∥𝑥 ∥=1

∑︁
(𝑖, 𝑗) ∈𝐸

𝑥2
𝑖

2𝑑𝑖
+

𝑥2
𝑗

2𝑑 𝑗

=
∑︁
𝑖∈𝑉

𝑥2
𝑖 = 1.

During the middle of the above step, we used the Cauchy-Schwartz inequality. The proof of this result is now completed. □

Notations: For two matrices 𝑋 and 𝑌 that are both of dimension 𝑑1 by 𝑑2, the Hadamard product of 𝑋 and 𝑌 , denoted as
𝑋 ⊙ 𝑌 , is equal to the entrywise product of 𝑋 and 𝑌 .

A.1 Proof of our PAC-Bayesian bound (Lemma 4.1)

To be precise, we will restate the conditions required in Theorem 3.1 separately below. The conditions are exactly the same
as stated in Section 3.

Assumption A.2. Assume that all the activation functions 𝜙𝑖 (·), 𝜌𝑖 (·),𝜓𝑖 (·) for any 1 ≤ 𝑖 ≤ 𝑙 − 1 and the loss function
ℓ (𝑥,𝑦) over 𝑥 are twice-differentiable and 𝜅0-Lipschitz. Their first-order derivatives are 𝜅1-Lipschitz and their second-order
derivatives are 𝜅2-Lipschitz.

Based on the above assumption, we provide the precise statement for Taylor’s expansion, used in equation (8).
Proposition A.3. In the setting of Theorem 3.1, suppose each parameter in layer 𝑖 is perturbed by an independent noise
drawn from N(0, 𝜎2

𝑖 ). Let ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) be the perturbed loss function with noise perturbation injection vector E on all
parameters 𝑾 and 𝑼 . There exist some fixed value 𝐶1 that do not grow with 𝑁 and 1/𝛿 such that�����ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) − 1

2

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

] ����� ≤ 𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 .
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Proof. By Taylor’s expansion, the following identity holds

ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) − ℓ (𝑓 (𝑋,𝐺), 𝑦) = E
E

[
E⊤∇ℓ (𝑓 ) + 1

2
E⊤H[ℓ (𝑓 )]E + 𝑅(ℓ (𝑓 ), E)

]
.

where 𝑅(ℓ (𝑓 ), E) is the rest of the first order and the second order terms. Since each entry in E follows the normal
distribution, we have EE [E⊤∇ℓ (𝑓 )] = 0. The Hessian term turns to

E⊤H[ℓ (𝑓 )]E =

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]
.

Since the readout layer is linear, by Proposition A.4, there exists a fixed constant 𝐶 that does not grow with 𝑁 and 𝛿−1 such
that |𝑅(ℓ (𝑓 ), E)| ≤ 𝐶 ∥E∥3. Based on Jin et al. [32, Lemma 2], for any 𝑥 drawn from a normal distribution N(0, 𝜎2), we
have E

[
𝑥3] ≤ 6𝜎3. Hence, we get E [𝑅(ℓ (𝑓 ), E)] ≤ 𝐶1

∑𝑙
𝑖=1 𝜎

3
𝑖 , where 𝐶1 = O(ℎ2𝐶) is a fixed constant. Thus, we have

finished the proof. □

Next, we state a Lipschitz-continuity upper bound of the network output at each layer. This will be needed in the 𝜖-covering
argument later in the proof of Theorem 3.1. To simplify the notation, we will abbreviate explicit constants that do not grow
with 𝑁 and 1/𝛿 in the notation ≲; more specifically, we use 𝐴(𝑛) ≲ 𝐵(𝑛) to indicate that there exists a function 𝑐 that does
not depend on 𝑁 and 1/𝛿 such that 𝐴(𝑛) ≤ 𝑐 · 𝐵(𝑛) for large enough values of 𝑛.
Proposition A.4. In the setting of Theorem 3.1, for any 𝑗 = 1, . . . , 𝑙 − 1, the change in the Hessian of output of the 𝑗 layer
network 𝐻 ( 𝑗) with respect to𝑊𝑖 and 𝑈𝑖 under perturbation on𝑊 and 𝑈 can be bounded as follows:


H(𝑖)

𝑾 [𝐻̃ ( 𝑗) ] − H(𝑖)
𝑾 [𝐻 ( 𝑗) ]





𝐹
≲

𝑗∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (12)




H(𝑖)
𝑼 [𝐻̃ ( 𝑗) ] − H(𝑖)

𝑼 [𝐻 ( 𝑗) ]




𝐹
≲

𝑗∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (13)

Above, the notation H(𝑖)
𝑾 [𝐻̃ ( 𝑗) ] is the perturbation of the Hessian matrix of 𝐻 ( 𝑗) by Δ𝑾 and Δ𝑼 , specific to the variables of

𝑾 ; likewise, H(𝑖)
𝑼 [𝐻̃ ( 𝑗) ] is the perturbation of the Hessian matrix specific to the variables of 𝑼 .

The proof of Proposition A.4 will be deferred until Appendix A.1.1. Based on Propositions A.3 and A.4, now we are ready
to present the proof of Lemma 4.1.

Proof of Lemma 4.1. First, we separate the gap of 𝐿(𝑓 ) and 1
𝛽
𝐿̂(𝑓 ) into three parts:

𝐿(𝑓 ) − 1
𝛽
𝐿̂(𝑓 ) = E

(𝑋,𝐺,𝑦)∼D
[ℓ (𝑓 (𝑋,𝐺), 𝑦)] − E

(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
︸                                                                 ︷︷                                                                 ︸

𝐸1

+ E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]

− 1
𝛽

( 1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 )
)
+ 1
𝛽

( 1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 )
)
− 1
𝛽

( 1
𝑁

𝑁∑︁
𝑖=1

ℓ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 )
)

︸                                                                   ︷︷                                                                   ︸
𝐸2

.

for any 𝛽 ∈ (0, 1). Above, ℓ̃ (𝑓 (𝑋,𝐺), 𝑦) is the perturbed loss from ℓ (𝑓 (𝑋,𝐺), 𝑦) with noise injections E added to all the
parameters in 𝑾 and 𝑼 . By Taylor’s expansion from Proposition A.3, we can bound the difference between ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)
and ℓ (𝑓 (𝑋,𝐺) with the trace of the Hessian. Therefore

𝐿(𝑓 ) − 1
𝛽
𝐿̂(𝑓 ) ≤ − E

(𝑋,𝐺,𝑦)∼D

[
1
2

𝑙∑︁
𝑖=1

𝜎2
𝑖 Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

] ]
+

𝑙∑︁
𝑖=1

𝐶1𝜎
3
𝑖 (by Prop. A.3 for 𝐸1)

+
(

E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽

( 1
𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 )
))

+ 1
2𝛽

𝑙∑︁
𝑖=1

𝜎2
𝑖

( 1
𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗 ), 𝑦 𝑗 )]

] )
+ 1
𝛽

𝑙∑︁
𝑖=1

𝐶1𝜎
3
𝑖 . (by Prop. A.3 for 𝐸2)
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By rearranging the above equation, we get the following:

𝐿(𝑓 ) − 1
𝛽
𝐿̂(𝑓 ) ≤ 1

2

𝑙∑︁
𝑖=1

𝜎2
𝑖

(
1
𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗 ), 𝑦 𝑗 )]

]
− E

(𝑋,𝐺,𝑦)∼D

[
Tr

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

] ]
︸                                                                                            ︷︷                                                                                            ︸

𝐸3

)

+ 1
2

( 1
𝛽
− 1

) 𝑙∑︁
𝑖=1

𝜎2
𝑖

𝑁

𝑁∑︁
𝑗=1

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗 ), 𝑦 𝑗 )]

]
︸                                           ︷︷                                           ︸

𝐸4

+
(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 + E

(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 )︸                                                              ︷︷                                                              ︸
𝐸5

.

Based on Proposition A.4, the Hessian operator H(𝑖) is Lipschitz-continuous for some parameter that does not depend on 𝑁

and 1/𝛿 , for any 𝑖 = 1, 2 . . . , 𝑙 . Therefore, from Ju et al. [34, Lemma 2.4], there exist some fixed values 𝐶2, 𝐶3 that do not
grow with 𝑁 and 1/𝛿 , such that with probability at least 1 − 𝛿 over the randomness of the training set. Therefore, the matrix
inside the trace of 𝐸3 satisfies




 1

𝑁

𝑁∑︁
𝑗=1

H(𝑖) [ℓ (𝑓 (𝑋 𝑗 ,𝐺 𝑗 ), 𝑦 𝑗 )] − E
(𝑋,𝐺,𝑦)∼D

[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]





𝐹

≤
𝐶2

√︁
log(𝐶3𝑁 /𝛿)
√
𝑁

, (14)

for any 𝑖 = 1, . . . , 𝑙 . Thus, by the Cauchy-Schwartz inequality, 𝐸3 is less than
√

2ℎ2 times the RHS of equation (14). Suppose
the loss function ℓ (𝑓 (𝑋,𝐺), 𝑦) lies in a bounded range [0, 𝐵] given any (𝑋,𝐺,𝑦) ∼ D. By the PAC-Bayes bound of
McAllester [39, Theorem 2] (see also Guedj [22]), we choose 𝑼 as a prior distribution and 𝑾 + 𝑼 as a posterior distribution.
For any 𝛽 ∈ (0, 1) and 𝛿 ∈ [0, 1), with probability at least 1 − 𝛿 , 𝐸5 satisfies:

E
(𝑋,𝐺,𝑦)∼D

[
ℓ̃ (𝑓 (𝑋,𝐺), 𝑦)

]
− 1
𝛽𝑁

𝑁∑︁
𝑖=1

ℓ̃ (𝑓 (𝑋𝑖 ,𝐺𝑖 ), 𝑦𝑖 ) ≤
𝐵

2𝛽 (1 − 𝛽)𝑁

( 𝑙∑︁
𝑖=1



𝑊 (𝑖)

2
𝐹
+



𝑈 (𝑖)

2
𝐹

2𝜎2
𝑖

+ log
1
𝛿

)
≤ 𝐵

2𝛽 (1 − 𝛽)𝑁

( 𝑙∑︁
𝑖=1

𝑠2
𝑖 𝑟

2
𝑖

𝜎2
𝑖

+ log
1
𝛿

)
. (15)

The above is because 𝑾 and 𝑼 are inside the hypothesis set H . For any 𝑖 = 1, . . . , 𝑙 , let

𝛼𝑖 = max
(𝑋,𝐺,𝑦)∼D

Tr
[
H(𝑖) [ℓ (𝑓 (𝑋,𝐺), 𝑦)]

]
.

Lastly, we use 𝜎2
𝑖 𝛼𝑖 above to upper bound 𝐸4. Combined with equations (14) and (15), with probability at least 1− 2𝛿 , we get

𝐿(𝑓 ) − 1
𝛽
𝐿̂(𝑓 ) ≤

𝐶2
√︁

2ℎ2 log(𝐶3𝑁 /𝛿)
√
𝑁

𝑙∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖

+ 1
2

( 1
𝛽
− 1

) 𝑙∑︁
𝑖=1

𝛼𝑖𝜎
2
𝑖 +

𝐵

2𝛽 (1 − 𝛽)𝑁

(
𝑙∑︁

𝑖=1

𝑠2
𝑖 𝑟

2
𝑖

𝜎2
𝑖

+ log
1
𝛿

)
.

Next, we will select 𝜎𝑖 to minimize the last line above. One can verify that this is achieved when

𝜎2
𝑖 =

𝑠𝑖𝑟𝑖

1 − 𝛽

√︂
𝐵

𝛼𝑖𝑁
, for every 𝑖 = 1, 2, . . . , 𝑙 .

With this setting of the noise variance, the gap between 𝐿(𝑓 ) and 𝐿̂(𝑓 )/𝛽 becomes:

𝐿(𝑓 ) − 1
𝛽
𝐿̂(𝑓 ) ≤ 1

𝛽

𝑙∑︁
𝑖=1

√︄
𝐵𝛼𝑖𝑠

2
𝑖
𝑟 2
𝑖

𝑁
+
𝐶2

√︁
2ℎ2 log(𝐶3𝑁 /𝛿)

√
𝑁

𝐿∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 +

𝐶

2𝛽 (1 − 𝛽)𝑁 log
1
𝛿
.
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Let 𝛽 be a fixed value close to 1 and independent of 𝑁 and 𝛿−1; let 𝜖 = (1 − 𝛽)/𝛽. We get

𝐿(𝑓 ) ≤ (1 + 𝜖)𝐿̂(𝑓 ) + (1 + 𝜖)
𝑙∑︁

𝑖=1

√︄
𝐵𝛼𝑖𝑟

2
𝑖
𝑠2
𝑖

𝑁
+ 𝜉, where

𝜉 =
𝐶2

√︁
2ℎ2 log(𝐶3𝑁 /𝛿)

√
𝑁

𝐿∑︁
𝑖=1

𝜎2
𝑖 +

(
1 + 1

𝛽

)
𝐶1

𝑙∑︁
𝑖=1

𝜎3
𝑖 +

𝐶

2𝛽 (1 − 𝛽)𝑁 log
1
𝛿
.

Notice that 𝜉 is of order O(𝑁 −3/4 + log(𝛿−1)𝑁 −1) ≤ O(log(𝛿−1)/𝑁 3/4). Therefore, we have finished the proof of equation
(5). □

A.1.1 Proof of Proposition A.4

For any 𝑗 = 1, 2, . . . , 𝑙 , let 𝐻̃ ( 𝑗) be the perturbed network output after layer 𝑗 , with perturbations given by Δ𝑾 and Δ𝑼 . We
show the following Lipschitz-continuity property for 𝐻 ( 𝑗) .
Claim A.5. Suppose that Assumption A.2 holds. For any 𝑗 = 1, . . . , 𝑙 − 1, the change in the output of the 𝑗 layer network
𝐻 ( 𝑗) with perturbation added to 𝑾 and 𝑼 can be bounded as follows:


𝐻̃ ( 𝑗) − 𝐻 ( 𝑗)





𝐹
≲

𝑗∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (16)

Proof. We will prove using induction with respect to 𝑗 . If 𝑗 = 1, we have


𝜙1

(
𝑋

(
𝑈 (1) + Δ𝑈 (1) ) + 𝜌1

(
𝑃
𝐺
𝜓1

(
𝑋

) ) (
𝑊 (1) + Δ𝑊 (1) ) ) − 𝜙1

(
𝑋𝑈 (1) + 𝜌1

(
𝑃
𝐺
𝜓1

(
𝑋

) )
𝑊 (1)

)



𝐹

≤𝜅0




𝑋Δ𝑈 (1) + 𝜌1
(
𝑃
𝐺
𝜓1

(
𝑋

) )
Δ𝑊 (1)





𝐹
≲




Δ𝑈 (1)



 + 


Δ𝑊 (1)




 .
Hence, we know that equation (16) will be correct when 𝑗 = 1. Assuming that equation (16) is correct for any 𝑗 ≥ 1, the
perturbation of layer 𝑗 + 1’s network output 𝐻 ( 𝑗+1) is less than


𝐻̃ ( 𝑗+1) − 𝐻 ( 𝑗+1)





𝐹

≤𝜅0




𝑋Δ𝑈 ( 𝑗+1) + 𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1

(
𝐻̃ ( 𝑗) ) ) (𝑊 ( 𝑗+1) + Δ𝑊 ( 𝑗+1) ) − 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1

(
𝐻 ( 𝑗) ) )𝑊 ( 𝑗+1)





𝐹

≲



Δ𝑈 ( 𝑗+1)




 + 


Δ𝑊 ( 𝑗+1)



 + 


𝐻̃ ( 𝑗) − 𝐻 ( 𝑗)





𝐹
.

Thus, we have finished the proof of the induction step. □

Next, for any 𝑖 and 𝑗 , let 𝜕𝐻̃ ( 𝑗 )

𝜕𝑊 (𝑖 ) be the perturbation of the partial derivative of 𝐻 ( 𝑗) with perturbations given by Δ𝑾 and Δ𝑼 .
Claim A.6. Suppose that Assumption A.2 holds. For any 𝑗 = 1, . . . , 𝑙 − 1, the change in the Jacobian of the 𝑗-th layer’s
output 𝐻 ( 𝑗) with respect to𝑊 (𝑖) and 𝑈 (𝑖) satisfies:




 𝜕𝐻̃ ( 𝑗)

𝜕𝑊 (𝑖) −
𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)







𝐹

≲

𝑗∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (17)




 𝜕𝐻̃ ( 𝑗)

𝜕𝑈 (𝑖) − 𝜕𝐻 ( 𝑗)

𝜕𝑈 (𝑖)







𝐹

≲

𝑗∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (18)

Proof. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1. We focus on the proof of equation
(17), while the proof of equation (18) will be similar. To simplify the derivation, we use two notations for brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 ( 𝑗−1) )𝑊 ( 𝑗) and 𝐸 𝑗 = 𝑋𝑈 ( 𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

First, we consider the base case when 𝑗 = 𝑖. By the chain rule, we have:



 𝜕𝐻̃ (𝑖)

𝜕𝑊 (𝑖) −
𝜕𝐻 (𝑖)

𝜕𝑊 (𝑖)






𝐹

=





𝜙 ′
𝑖

(
𝐸𝑖

)
⊙ 𝜕𝐸𝑖

𝜕𝑊 (𝑖) − 𝜙 ′
𝑖

(
𝐸𝑖

)
⊙ 𝜕𝐸𝑖

𝜕𝑊 (𝑖)






𝐹

≲


𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)


𝐹
+





 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)






𝐹

.



Haotian Ju, Dongyue Li, Aneesh Sharma, Hongyang R. Zhang

From Claim A.5, we know 

𝜙 ′
𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)


𝐹
≤ 𝜅1



𝐸𝑖 − 𝐸𝑖



𝐹
≲




Δ𝑊 (𝑖)



 + 


Δ𝑈 (𝑖)




 .
By the chain rule again, we get:



 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)






𝐹

≲


𝜌 ′

𝑖

(
𝐹𝑖

)
− 𝜌 ′

𝑖

(
𝐹𝑖

)


𝐹
+





 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)






𝐹

≲



Δ𝑊 (𝑖)




 + 


Δ𝑈 (𝑖)



. (by Claim A.5 again)

Hence, we know that equation (17) will be correct when 𝑗 = 𝑖. Assuming that equation (17) will be correct for any 𝑗 up to
𝑗 ≥ 𝑖, we have



 𝜕𝐻̃ ( 𝑗+1)

𝜕𝑊 (𝑖) − 𝜕𝐻 ( 𝑗+1)

𝜕𝑊 (𝑖)






𝐹

≲


𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)


𝐹
+






 𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖)







𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) + 

𝜌 ′
𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)


𝐹
+






 𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐹 𝑗+1

𝑊 (𝑖)







𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) + 


𝜓 ′
𝑗+1

(
𝐻̃ ( 𝑗) ) −𝜓 ′

𝑗+1
(
𝐻 ( 𝑗) )




𝐹
+





 𝜕𝐻̃ ( 𝑗)

𝜕𝑊 (𝑖) −
𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)






𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (by Claim A.5 and the induction step)

The above steps all use Claim A.5. The last step additionally uses the induction hypothesis. From repeatedly applying the
above beginning with 𝑗 = 𝑖 along with the base case of equation (17), we conclude that equation (17) holds.

Next, we consider the base case for equation (18). For the base case 𝑗 = 𝑖, from the chain rule, we get:



 𝜕𝐻̃ (𝑖)

𝜕𝑈 (𝑖) −
𝜕𝐻 (𝑖)

𝜕𝑈 (𝑖)






𝐹

≲


𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)


𝐹
+





 𝜕𝐸𝑖

𝜕𝑈 (𝑖) −
𝜕𝐸𝑖

𝜕𝑈 (𝑖)






𝐹

≲



Δ𝑊 (𝑖)




 + 


Δ𝑈 (𝑖)



. (by Claim A.5)

Hence, we know that equation (18) will be correct when 𝑗 = 𝑖. Assuming that equation (18) will be correct for any 𝑗 up to
𝑗 ≥ 𝑖, we have



 𝜕𝐻̃ ( 𝑗+1)

𝜕𝑈 (𝑖) − 𝜕𝐻 ( 𝑗+1)

𝜕𝑈 (𝑖)






𝐹

≲


𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)


𝐹
+






 𝜕𝐸 𝑗+1

𝜕𝑈 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑈 (𝑖)







𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) + 

𝜌 ′
𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′

𝑗+1
(
𝐹 𝑗+1

)


𝐹
+






 𝜕𝐹 𝑗+1

𝜕𝑈 (𝑖) −
𝜕𝐹 𝑗+1

𝜕𝑈 (𝑖)







𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) + 


𝜓 ′
𝑗+1

(
𝐻̃ ( 𝑗) ) −𝜓 ′

𝑗+1
(
𝐻 ( 𝑗) )




𝐹
+





 𝜕𝐻̃ ( 𝑗)

𝜕𝑈 (𝑖) − 𝜕𝐻 ( 𝑗)

𝜕𝑈 (𝑖)






𝐹

≲

𝑗+1∑︁
𝑡=1

(


Δ𝑈 (𝑡 )



 + 


Δ𝑊 (𝑡 )




) . (by Claim A.5 and the induction step)

The second and third steps are based on Claim A.5. From repeatedly applying the above beginning with 𝑗 = 𝑖 along with the
base case of equation (18), we conclude that equation (18) holds. The proof of claim A.6 is complete. □

Proof of Proposition A.4. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1. We focus on the
proof of equation (12), while the proof of equation (13) will be similar. To simplify the derivation, we use two notations for
brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 ( 𝑗−1) )𝑊 ( 𝑗) and 𝐸 𝑗 = 𝑋𝑈 ( 𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

First, we consider the base case when 𝑗 = 𝑖. By the chain rule, we have: We use the chain rule to get:

𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 = 𝜙 ′′
𝑖 (𝐸𝑖 ) ⊙

𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑖 (𝐸𝑖 ) ⊙ 𝜌 ′′

𝑖 (𝐹𝑖 ) ⊙
𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

.
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Hence, the Frobenius norm of the Hessian of 𝐻 (𝑖) with respect to𝑊𝑖 under perturbation on𝑊 and 𝑈 turns to


H(𝑖)
𝑾 [𝐻̃ (𝑖) ] − H(𝑖)

𝑾 [𝐻 (𝑖) ]




𝐹
≲



𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)


𝐹
+





 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)






𝐹

+


𝜙 ′

𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)


𝐹

+


𝜌 ′′

𝑖

(
𝐹𝑖

)
− 𝜌 ′′

𝑖

(
𝐹𝑖

)


𝐹
+





 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)






𝐹

.

From Claim A.5, we know 

𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)


𝐹
≤ 𝜅2



𝐸𝑖 − 𝐸𝑖



𝐹
≲




Δ𝑊 (𝑖)



 + 


Δ𝑈 (𝑖)




 ,

𝜙 ′
𝑖

(
𝐸𝑖

)
− 𝜙 ′

𝑖

(
𝐸𝑖

)


𝐹
≤ 𝜅1



𝐸𝑖 − 𝐸𝑖



𝐹
≲




Δ𝑊 (𝑖)



 + 


Δ𝑈 (𝑖)




 ,

𝜌 ′′
𝑖

(
𝐹𝑖

)
− 𝜌 ′′

𝑖

(
𝐹𝑖

)


𝐹
≤ 𝜅2



𝐹𝑖 − 𝐹𝑖



𝐹
≲




Δ𝑊 (𝑖)



 + 


Δ𝑈 (𝑖)




 .
From Claim A.6, we have 



 𝜕𝐸𝑖

𝜕𝑊 (𝑖) −
𝜕𝐸𝑖

𝜕𝑊 (𝑖)






𝐹

≲



Δ𝑊 (𝑖)




 + 


Δ𝑈 (𝑖)



 ,



 𝜕𝐹𝑖

𝜕𝑊 (𝑖) −
𝜕𝐹𝑖

𝜕𝑊 (𝑖)






𝐹

≲



Δ𝑊 (𝑖)




 + 


Δ𝑈 (𝑖)



 .

Hence, we know that equation (12) will be correct when 𝑗 = 𝑖. Assuming that equation (12) will be correct for any 𝑗 up to
𝑗 ≥ 𝑖, we can get the following steps, by taking another derivative of the first-order derivative, we can get the following
steps:

𝜕2𝐻 ( 𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 =𝜙 ′′
𝑗+1 (𝐸 𝑗+1) ⊙

𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙
𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑗+1 (𝐸 𝑗+1) ⊙ 𝜌 ′′𝑗+1 (𝐹 𝑗+1) ⊙

𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙
𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑗+1 (𝐸 𝑗+1) ⊙ 𝜌 ′𝑗+1 (𝐹 𝑗+1) ⊙ 𝑃

𝐺

(
𝜓 ′′
𝑗+1 (𝐻

( 𝑗) ) ⊙ 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞

+𝜓 ′
𝑗+1 (𝐻

( 𝑗) ) ⊙ 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

)
𝑊 ( 𝑗+1) .

Thus, the Frobenius norm of the Hessian of 𝐻 ( 𝑗+1) with respect to𝑊 (𝑖) satisfies:


H(𝑖)
𝑾 [𝐻̃ ( 𝑗+1) ] − H(𝑖)

𝑾 [𝐻 ( 𝑗+1) ]




𝐹
≲




𝜙 ′′
𝑗+1

(
𝐸 𝑗+1

)
− 𝜙 ′′

𝑗+1
(
𝐸 𝑗+1

)



𝐹︸                               ︷︷                               ︸

𝐴1

+





 𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐸 𝑗+1

𝜕𝑊 (𝑖)







𝐹︸                   ︷︷                   ︸

𝐵1

+



𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)
− 𝜙 ′

𝑗+1
(
𝐸 𝑗+1

)



𝐹︸                               ︷︷                               ︸

𝐴2

+



𝜌 ′′𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′′𝑗+1

(
𝐹 𝑗+1

)



𝐹︸                              ︷︷                              ︸

𝐴3

+





 𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖) −
𝜕𝐹 𝑗+1

𝜕𝑊 (𝑖)







𝐹︸                   ︷︷                   ︸

𝐵2

+



𝜌 ′𝑗+1

(
𝐹 𝑗+1

)
− 𝜌 ′𝑗+1

(
𝐹 𝑗+1

)



𝐹︸                              ︷︷                              ︸

𝐴4

+



𝜓 ′′

𝑗+1
(
𝐻̃ ( 𝑗) ) −𝜓 ′′

𝑗+1
(
𝐻 ( 𝑗) )




𝐹︸                                ︷︷                                ︸
𝐴5

+





 𝜕𝐻̃ ( 𝑗)

𝜕𝑊 (𝑖) − 𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)







𝐹︸                   ︷︷                   ︸

𝐵3

+



𝜓 ′

𝑗+1
(
𝐻̃ ( 𝑗) ) −𝜓 ′

𝑗+1
(
𝐻 ( 𝑗) )




𝐹︸                                ︷︷                                ︸
𝐴6

+



H(𝑖)

𝑾 [𝐻̃ ( 𝑗) ] − H(𝑖)
𝑾 [𝐻 ( 𝑗) ]





𝐹︸                               ︷︷                               ︸

𝐶1

.

Similarly, by Claim A.5, we get

𝐴𝑖 ≲

𝑗+1∑︁
𝑡=1

(


Δ𝑊 (𝑡 )



 + 


Δ𝑈 (𝑡 )




), for 1 ≤ 𝑖 ≤ 6.

By Claim A.6, we get

𝐵𝑖 ≲

𝑗+1∑︁
𝑡=1

(


Δ𝑊 (𝑡 )



 + 


Δ𝑈 (𝑡 )




), for 1 ≤ 𝑖 ≤ 3.
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By the induction hypothesis, 𝐶1 is also less than the above quantity. From repeatedly applying the above beginning with
𝑗 = 𝑖 along with the base case of equation (12), we conclude that equation (12) holds.

Next, we consider the base case for equation (13). For the base case 𝑗 = 𝑖, from the chain rule, we get:


H(𝑖)
𝑼 [𝐻̃ (𝑖) ] − H(𝑖)

𝑼 [𝐻 (𝑖) ]




𝐹
≲



𝜙 ′′
𝑖

(
𝐸𝑖

)
− 𝜙 ′′

𝑖

(
𝐸𝑖

)


𝐹
+





 𝜕𝐸𝑖

𝜕𝑈 (𝑖) −
𝜕𝐸𝑖

𝜕𝑈 (𝑖)






𝐹

≲𝜅2


𝐸𝑖 − 𝐸𝑖




𝐹
+




Δ𝑊 (𝑖)



 + 


Δ𝑈 (𝑖)




 (by Claim A.6)

≲



Δ𝑊 (𝑖)




 + 


Δ𝑈 (𝑖)



. (by Claim A.5)

Hence, we know that equation (13) will be correct when 𝑗 = 𝑖. Assuming that equation (13) will be correct for any 𝑗 up
to 𝑗 ≥ 𝑖, we obtain the induction step similar to the proof of equation (12), by Claim A.5, Claim A.6, and the induction
hypothesis, we conclude that equation (13) holds. □

A.2 Proof for message passing graph neural networks

Next, we present proof for message-passing graph neural networks. First, in Appendix A.2.1, we derive the trace bound,
which separates the trace of the Hessian matrix into each entry of the weight matrices. Then in Appendix A.2.2 and A.2.3,
we provide bounds on the first-order and second-order derivatives of the Hessian matrix. Last, in Appendix A.2.4, building
on these results, we finish the proof of Theorem 3.1.

A.2.1 Proof of Lemma 4.3

Proof of Lemma 4.3. Notice that 𝑓 (𝑋,𝐺) = 𝐻 (𝑙) . Recall that in each layer for 1 ≤ 𝑖 ≤ 𝑙 − 1, there are two weight matrices,
a 𝑑𝑖−1 by 𝑑𝑖 matrix denoted as𝑊 (𝑖) , and a 𝑑0 by 𝑈 (𝑖) matrix denoted as 𝑈 (𝑖) . To deal with the trace of the Hessian H(𝑖) , we
first notice that there are two parts in the trace:���Tr

[
H(𝑖) [ℓ (𝐻 (𝑙) , 𝑦)]

] ��� ≤ �����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

�����︸                     ︷︷                     ︸
𝑇1

+
����� 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2

�����︸                     ︷︷                     ︸
𝑇2

.

We can inspect 𝑇1 and 𝑇2 in the above step separately. First, we expand out the second-order derivatives in 𝑇1. This will
involve two terms by the chain rule.

𝑇1 =

�����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

〈
𝜕ℓ (𝐻 (𝑙) , 𝑦)

𝜕𝐻 (𝑙) ,
𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2

〉����� +
�����𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1

〈
𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝐻 (𝑙) )2

𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

,
𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞

〉�����
≤

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1





 𝜕ℓ (𝐻 (𝑙) , 𝑦)
𝜕𝐻 (𝑙)





 




 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






 + 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2ℓ (𝐻 (𝑙) , 𝑦)
𝜕
(
𝐻 (𝑙) )2












 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

≤𝜅0
√
𝑘

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






 + 𝜅1𝑘

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

. (19)

The last step is because ℓ (·) is 𝜅0-Lipschitz continuous and ℓ ′(·) is 𝜅1-Lipschitz continuous, under Assumption A.2.
Thus, the Euclidean norm of 𝜕ℓ (𝐻 (𝑙 ) ,𝑦)

𝜕𝐻 (𝑙 ) is at most 𝜅0
√
𝑘, since 𝐻 (𝑙) is a 𝑘-dimensional vector. Recall from step (2) that

𝐻 (𝑙) = 1
𝑛
1⊤𝑛𝐻 (𝑙−1)𝑊 (𝑙) . Hence, we have




 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑖)
𝑝,𝑞






 =





 1
𝑛
1⊤𝑛

𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝑊 (𝑙)







≤





 1
𝑛
1⊤𝑛





 




 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞

𝑊 (𝑙)






 ≤ 1
√
𝑛






 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞






 


𝑊 (𝑙)



 . (20)
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In a similar vein, the Euclidean norm of 𝜕2ℓ (𝐻 (𝑙 ) ,𝑦)
𝜕 (𝐻 (𝑙 ) )2 is at most 𝜅1𝑘 , since the second-order derivatives become a 𝑘 by 𝑘 matrix.

Then, we get 




 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






 =





 1
𝑛
1⊤𝑛

𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2𝑊
(𝑙)







≤





 1
𝑛
1⊤𝑛





 




 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2𝑊
(𝑙)






 ≤ 1
√
𝑛






 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






 


𝑊 (𝑙)



 . (21)

After substituting equations (20) and (21) into equation (19), we get:

𝑇1 ≤ 𝜅0
√
𝑘

√
𝑛




𝑊 (𝑙)



 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






 + 𝜅1𝑘

𝑛




𝑊 (𝑙)



2 𝑑𝑖−1∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

.

≤ 𝜅0
√
𝑘

√
𝑛




𝑊 (𝑙)



 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

+ 𝜅1𝑘

𝑛




𝑊 (𝑙)



2 𝑑𝑖−1∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑙−1)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

.

The proof for the case of 𝑇2 concerning 𝑈 (𝑖) follows the same steps as above. Without belaboring all the details, one can get
that

𝑇2 ≤ 𝜅0
√
𝑘

√
𝑛




𝑊 (𝑙)



 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 (𝑙−1)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2







𝐹

+ 𝜅1𝑘

𝑛




𝑊 (𝑙)



2 𝑑0∑︁

𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑙−1)

𝜕𝑈
(𝑖)
𝑝,𝑞






2

𝐹

. (22)

This completes the proof of Lemma 4.3. □

A.2.2 Dealing with first-order derivatives

Based on Lemma 4.3, the analysis involves two parts, one on the first-order derivatives of 𝐻 ( 𝑗) for all layers 𝑗 , and the other
on the second-order derivatives of 𝐻 ( 𝑗) for all layers 𝑗 .
Proposition A.7. In the setting of Theorem 3.1, the first-order derivative of 𝐻 ( 𝑗) with respect to𝑊 (𝑖) and 𝑈 (𝑖) satisfies the
following, for any 𝑖 = 1, . . . , 𝑙 − 1 and 𝑗 ≥ 𝑖:



 𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)






𝐹

≤𝜅
3( 𝑗−𝑖+1)
0

√︁
𝑑𝑖



𝑃
𝐺



𝑗−𝑖+1



𝐻 (𝑖−1)





𝐹

𝑗∏
𝑡=𝑖+1




𝑊 (𝑡 )



 , (23)



 𝜕𝐻 ( 𝑗)

𝜕𝑈 (𝑖)






𝐹

≤𝜅
3( 𝑗−𝑖)+1
0

√︁
𝑑𝑖



𝑃
𝐺



𝑗−𝑖+1 ∥𝑋 ∥𝐹
𝑗∏

𝑡=𝑖+1




𝑊 (𝑡 )



 . (24)

Proof. We will consider a fixed 𝑖 = 1, . . . , 𝑙 − 1 and take induction over 𝑗 = 𝑖, . . . , 𝑙 − 1. We focus on the proof of equation
(23), while the proof of equation (24) will be similar. First, we consider the base case when 𝑗 = 𝑖. Let𝑊 (𝑖)

𝑝,𝑞 be the (𝑝, 𝑞)-th
entry of 𝑊 (𝑖) , for any valid indices 𝑝 and 𝑞. Recall that 𝜙𝑖 (·) is 𝜅0-Lipschitz continuous from Assumption A.2, for any
𝑖 = 1, . . . , 𝑙 − 1. Therefore, 

𝜙 ′

𝑖 (𝑥)



∞ ≤ 𝜅0,



𝜓 ′
𝑖 (𝑥)




∞ ≤ 𝜅0, and



𝜌 ′
𝑖 (𝑥)




∞ ≤ 𝜅0 . (25)

For each (𝑝, 𝑞)-entry of𝑊 (𝑖) , by the chain rule, we have:




 𝜕𝐻 (𝑖)

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

=






𝜙 ′
𝑖

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) ) ) ⊙ 𝜕

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) ) )

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

(26)

≤ 𝜅0






 𝜕𝜌𝑖 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) )
𝜕𝑊

(𝑖)
𝑝,𝑞







𝐹

(by equation (25))

= 𝜅0






𝜌 ′
𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) ) ⊙ 𝜕

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) )

𝑊
(𝑖)
𝑝,𝑞







𝐹

≤ 𝜅2
0






 𝜕 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) )

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

. (again by equation (25))
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Notice that only the 𝑞-th column of the derivative 𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) is nonzero, which is equal to the 𝑝’th column of

𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) ). Thus, the Jacobian of 𝐻 (𝑖) over𝑊 (𝑖) satisfies:





 𝜕𝐻 (𝑖)

𝜕𝑊 (𝑖)






𝐹

=

√√√√𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑖)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤ 𝜅2
0

√√√√𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕 (𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) )

𝑊
(𝑖)
𝑝,𝑞






2

𝐹

= 𝜅2
0

√︁
𝑑𝑖




𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1) )





𝐹
. (27)

Therefore, the above equation (27) implies that equation (23) holds in the base case. Next, we consider the induction step
from layer 𝑗 to layer 𝑗 + 1. The derivative of 𝐻 ( 𝑗+1) with respect to𝑊 (𝑖)

𝑝,𝑞 satisfies:




 𝜕𝐻 ( 𝑗+1)

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

=






𝜙 ′
𝑗+1

(
𝑋𝑈 ( 𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) ) ) ⊙ 𝜕

(
𝑋𝑈 ( 𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) ) )

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

≤ 𝜅0






 𝜕𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) )
𝜕𝑊

(𝑖)
𝑝,𝑞







𝐹

(by equation (25))

≤ 𝜅0






𝜌 ′
𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) ) ⊙ 𝜕

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) )

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

≤ 𝜅2
0






𝑃𝐺

𝜕𝜓 𝑗+1 (𝐻 ( 𝑗) )
𝜕𝑊

(𝑖)
𝑝,𝑞

𝑊 ( 𝑗+1)







𝐹

(again by equation (25))

By applying equation (25) w.r.t. 𝜓 ′
𝑗+1, The above is less than:

𝜅2
0


𝑃

𝐺



 




𝜓 ′
𝑗+1 (𝐻 ( 𝑗) ) ⊙ 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹




𝑊 ( 𝑗+1)



 ≤ 𝜅3

0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 




 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞







𝐹

.

Hence, the Jacobian of 𝐻 ( 𝑗+1) with respect to𝑊 (𝑖) satisfies:



 𝜕𝐻 ( 𝑗+1)

𝜕𝑊 (𝑖)






𝐹

≤ 𝜅3
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 



 𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)






𝐹

.

From repeatedly applying the above beginning with 𝑗 = 𝑖 along with the base case of equation (27), we conclude that
equation (23) holds.

Next, we consider the base case for equation (24). For each (𝑝, 𝑞)-th entry of 𝑈 (𝑖) , from the chain rule we get:






 𝜕𝐻 (𝑖)

𝜕𝑈
(𝑖)
𝑝,𝑞







𝐹

=








𝜙 ′
𝑖

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) ) ) ⊙ 𝜕

(
𝑋𝑈 (𝑖) + 𝜌𝑖

(
𝑃
𝐺
𝜓𝑖 (𝐻 (𝑖−1) )𝑊 (𝑖) ) )

𝜕𝑈
(𝑖)
𝑝,𝑞









𝐹

≤ 𝜅0






 𝜕(𝑋𝑈 (𝑖) )
𝜕𝑈

(𝑖)
𝑝,𝑞







𝐹

. (by equation (25))

Therefore, by summing over 𝑝 = 1, . . . , 𝑑0 and 𝑞 = 1, . . . , 𝑑𝑖 , we get:





 𝜕𝐻 (𝑖)

𝜕𝑈 (𝑖)






𝐹

=

√√√√ 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 (𝑖)

𝜕𝑈
(𝑖)
𝑝,𝑞






2

𝐹

≤ 𝜅0

√√√√ 𝑑0∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕(𝑋𝑈 (𝑖) )
𝜕𝑈

(𝑖)
𝑝,𝑞






2

𝐹

= 𝜅0
√︁
𝑑𝑖 ∥𝑋 ∥𝐹 . (28)
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Going from layer 𝑖 to layer 𝑗 + 1, the derivative of 𝐻 ( 𝑗+1) with respect to 𝑈
(𝑖)
𝑝,𝑞 satisfies:




 𝜕𝐻 ( 𝑗+1)

𝜕𝑈
(𝑖)
𝑝,𝑞







𝐹

=






𝜙 ′
𝑗+1

(
𝑋𝑈 ( 𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) ) ) ⊙ 𝜕

(
𝑋𝑈 ( 𝑗+1) + 𝜌 𝑗+1

(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) ) )

𝜕𝑈
(𝑖)
𝑝,𝑞







𝐹

≤ 𝜅0






 𝜕𝜌 𝑗+1
(
𝑃
𝐺
𝜓 𝑗+1 (𝐻 ( 𝑗) )𝑊 ( 𝑗+1) )
𝜕𝑈

(𝑖)
𝑝,𝑞







𝐹

(by equation (25) w.r.t. 𝜙 ′
𝑗+1)

≤ 𝜅3
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 




 𝜕𝐻 ( 𝑗)

𝜕𝑈
(𝑖)
𝑝,𝑞







𝐹

. (by equation (25) w.r.t. 𝜌 ′
𝑗+1,𝜓

′
𝑗+1)

Hence, the Jacobian of 𝐻 ( 𝑗+1) with respect to 𝑈 (𝑖) satisfies:



 𝜕𝐻 ( 𝑗+1)

𝜕𝑈 (𝑖)






𝐹

≤ 𝜅3
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 



 𝜕𝐻 ( 𝑗)

𝜕𝑈 (𝑖)






𝐹

.

By repeatedly applying the above step beginning with the base case of equation (28), we have proved that equation (24)
holds. The proof of Proposition A.7 is complete. □

A.2.3 Deal with second-order derivatives

In the second part towards showing Theorem 3.1 for MPNNs, we look at second-order derivatives of the embeddings. This
will appear later when we deal with the trace of the Hessian. A fact that we will use throughout the proof is

𝜙 ′′

𝑖 (𝑥)



∞ ≤ 𝜅1,



𝜓 ′′
𝑖 (𝑥)




∞ ≤ 𝜅1, and



𝜌 ′′
𝑖 (𝑥)




∞ ≤ 𝜅1, (29)

for any 𝑥 and 𝑖 = 1, . . . , 𝑙 − 1. This is because 𝜙 ′
𝑖 ,𝜓

′
𝑖 , and 𝜌 ′

𝑖 are all 𝜅1-Lipschitz continuous from Assumption A.2.

Proposition A.8. In the setting of Theorem 3.1, the second-order derivative of 𝐻 (𝑙) with respect to𝑊 (𝑖) and 𝑈 (𝑖) satisfies
the following, for any 𝑖 = 1, . . . , 𝑙 − 1 and any 𝑗 = 𝑖, . . . , 𝑙 − 1:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 ( 𝑗)(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(


𝑃

𝐺



𝑗−𝑖+2
,


𝑃

𝐺



2( 𝑗−𝑖+1) )



𝐻 (𝑖−1)




2

𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (30)

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 ( 𝑗)(
𝑈

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(


𝑃

𝐺



𝑗−𝑖 , 

𝑃
𝐺



2( 𝑗−𝑖) ) ∥𝑋 ∥2
𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (31)

where 𝐶𝑖, 𝑗

𝐶𝑖, 𝑗 =


𝜅

3( 𝑗−𝑖+1)
0

𝜅
3( 𝑗−𝑖)+2
0 − 1
𝜅0 − 1

, 𝜅0 ≠ 1,

3( 𝑗 − 𝑖) + 2, 𝜅0 = 1,

and 𝐶𝑖, 𝑗

𝐶𝑖, 𝑗 =


𝜅

3( 𝑗−𝑖)
0

𝜅
3( 𝑗−𝑖)+1
0 − 1
𝜅0 − 1

, 𝜅0 ≠ 1,

3( 𝑗 − 𝑖) + 1, 𝜅0 = 1.

are fixed constants that depend on the Lipschitz-continuity of the activation mappings.

Proof. First, we will consider equation (30). To simplify the derivation, we introduce two notations for brevity. Let

𝐹 𝑗 = 𝑃
𝐺
𝜓 𝑗

(
𝐻 ( 𝑗−1) )𝑊 ( 𝑗) and 𝐸 𝑗 = 𝑋𝑈 ( 𝑗) + 𝜌 𝑗

(
𝐹 𝑗

)
.

In the base case when 𝑗 = 𝑖, from the first-order derivative in equation (26), we use the chain rule to get:

𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2 =𝜙 ′′
𝑖 (𝐸𝑖 ) ⊙

𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

+ 𝜙 ′
𝑖 (𝐸𝑖 ) ⊙ 𝜌 ′′

𝑖 (𝐹𝑖 ) ⊙
𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞

. (32)
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Using equation (29), the maximum entries of 𝜙 ′′
𝑖 (·), 𝜌 ′′

𝑖 (·) are at most 𝜅1. Using equation (25), the maximum entry of 𝜙 ′
𝑖 (·)

is at most 𝜅0. Notice that the derivative of 𝐸𝑖 can be reduced to the derivative of 𝐹𝑖 as follows:




 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

=






𝜌 ′
𝑖 (𝐹𝑖 ) ⊙

𝜕𝐹1

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤ 𝜅2
0






 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

. (33)

Therefore, based on the conditions for first- and second-order derivatives (cf. (25) and (29)), the Frobenius norm of the
above equation (32) is at most:




 𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝜅1






 𝜕𝐸𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅0𝜅1






 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤ (𝜅0 + 1)𝜅0𝜅1






 𝜕𝐹𝑖

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

.

Notice that the derivative of 𝐹𝑖 with respect to𝑊 (𝑖)
𝑝,𝑞 is nonzero only in the 𝑞-th column of 𝐹𝑖 , and is equal to the 𝑝-th column

of 𝑃
𝐺
𝑔𝑖 (𝐻 (𝑖−1) ). Therefore, by summing over 𝑝 = 1, . . . , 𝑑𝑖−1 and 𝑞 = 1, . . . , 𝑑𝑖 , we get:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐹𝑖

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2






2

𝐹

≤ 𝑑𝑖




𝑃𝐺
𝜓𝑖 (𝐻 (𝑖−1) )




2

𝐹
.

Therefore, we have derived the base case when 𝑗 = 𝑖 as:




 𝜕2𝐻 (𝑖)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ (𝜅0 + 1)𝜅3
0𝜅1𝑑𝑖



𝑃
𝐺



2



𝐻 (𝑖−1)




2

𝐹
. (34)

Next, we consider the induction step from layer 𝑗 to layer 𝑗 +1. This step is similar to the base case but also differs since 𝐻 ( 𝑗)

is now dependent on𝑊 (𝑖) . Recall that the second-order derivatives satisfy equation (29). Based on the Lipschitz-continuity
conditions, the Frobenius norm of the second-order derivatives satisfies:




 𝜕2𝐻 ( 𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝜅1






 𝜕𝐸 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅0𝜅1






 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅2
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 (

𝜅1






 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅0






 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

)
≤ (𝜅0 + 1)𝜅0𝜅1






 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅2
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 (

𝜅1






 𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅0






 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

)
. (35)

The last step follows similarly as equation (33). For the derivative of 𝐹 𝑗+1, using the chain rule, we get:




 𝜕𝐹 𝑗+1

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

=






𝑃𝐺

𝜕𝜓 𝑗+1 (𝐻 ( 𝑗) )
𝜕𝑊

(𝑖)
𝑝,𝑞

𝑊 ( 𝑗+1)






2

𝐹

≤


𝑃

𝐺



2



𝑊 ( 𝑗+1)




2





 𝜕𝜓 𝑗+1 (𝐻 ( 𝑗) )

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤


𝑃

𝐺



2



𝑊 ( 𝑗+1)




2





𝜓 ′

𝑗+1 (𝐻 ( 𝑗) ) ⊙ 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤ 𝜅2
0


𝑃

𝐺



2



𝑊 ( 𝑗+1)




2





 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

.

Therefore, combining the above with equations (35) together, we get the following result:




 𝜕2𝐻 ( 𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤
(
(𝜅0 + 1)𝜅3

0𝜅1


𝑃

𝐺



2



𝑊 ( 𝑗+1)




2
+ 𝜅2

0𝜅1


𝑃

𝐺



 


𝑊 ( 𝑗+1)



) 




 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅3
0


𝑃

𝐺



 


𝑊 ( 𝑗+1)



 




 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ max
(

𝑃

𝐺



 , 

𝑃
𝐺



2
)
𝑠2
𝑗+1

(
(𝜅2

0 + 𝜅0 + 1)𝜅2
0𝜅1






 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

+ 𝜅3
0






 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

)
.



Generalization in Graph Neural Networks: Improved PAC-Bayesian Bounds on Graph Diffusion

Based on equation (23) of Proposition (A.7), the first-order derivative of 𝐻 ( 𝑗) satisfies:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕𝐻 ( 𝑗)

𝜕𝑊
(𝑖)
𝑝,𝑞






2

𝐹

≤ 𝜅
6( 𝑗−𝑖+1)
0 𝑑𝑖



𝑃
𝐺



2( 𝑗−𝑖+1)



𝐻 (𝑖−1)




2 𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 . (36)

Applying equation (36) to the above (and summing over 𝑝 = 1, . . . , 𝑑𝑖−1 and 𝑞 = 1, . . . , 𝑑𝑖) forms the induction step for
showing equation (30):

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1







 𝜕2𝐻 ( 𝑗+1)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2








𝐹

≤
𝜅3

0 − 1
𝜅0 − 1

𝜅
6( 𝑗−𝑖+1)+2
0 𝜅1𝑑𝑖 max

(

𝑃
𝐺



2( 𝑗−𝑖)+3
,


𝑃

𝐺



2( 𝑗−𝑖)+4
) 


𝐻 (𝑖−1)




2

𝐹

𝑗+1∏
𝑡=𝑖+1

𝑠2
𝑡

+ 𝜅3
0 max

(

𝑃
𝐺



 , 

𝑃
𝐺



2)
𝑠2
𝑗+1

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1







 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2








𝐹

.

By repeatedly applying the induction step along with the base case in equation (34), we have shown that equation (30) holds:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 ( 𝑗)(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(


𝑃

𝐺



𝑗−𝑖+2
,


𝑃

𝐺



2( 𝑗−𝑖+1) )



𝐻 (𝑖−1)




2

𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 , (37)

where 𝐶𝑖, 𝑗 satisfies the following equation:

𝐶𝑖, 𝑗 =


𝜅

3( 𝑗−𝑖+1)
0

𝜅
3( 𝑗−𝑖)+2
0 − 1
𝜅0 − 1

, 𝜅0 ≠ 1,

3( 𝑗 − 𝑖) + 2, 𝜅0 = 1.

In the second part of the proof, we consider equation (31) similar to the first part. However, the analysis will be significantly

simpler. We first consider the base case. Similar to equation (32), the second-order derivative of 𝐻 (𝑖) over𝑊 (𝑖)
𝑝,𝑞 satisfies, for

any 𝑝 = 1, . . . , 𝑑0 and 𝑞 = 1, . . . , 𝑑𝑖 :




 𝜕2𝐻 (𝑖)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2







𝐹

=






𝜙 ′′
𝑖 (𝐸𝑖 ) ⊙

𝜕𝐸𝑖

𝜕𝑈
(𝑖)
𝑝,𝑞

⊙ 𝜕𝐸𝑖

𝜕𝑈
(𝑖)
𝑝,𝑞






 ≤ 𝜅1






 𝜕(𝑋𝑈 (𝑖) )
𝜕𝑈

(𝑖)
𝑝,𝑞






2

𝐹

.

Therefore, by summing up the above over all 𝑝 and 𝑞, we get the base case result:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 (𝑖)

𝜕
(
𝑈

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝜅1𝑑𝑖 ∥𝑋 ∥2
𝐹 . (38)

Next, we consider the induction step from layer 𝑗 to layer 𝑗 + 1. This step follows the same analysis until equation (37),
from which we can similarly derive that:

𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 ( 𝑗)(
𝑈

(𝑖)
𝑝,𝑞

)2







𝐹

≤ 𝐶𝑖, 𝑗𝜅1𝑑𝑖 max(


𝑃

𝐺



𝑗−𝑖 , 

𝑃
𝐺



2( 𝑗−𝑖) ) ∥𝑋 ∥2
𝐹

𝑗∏
𝑡=𝑖+1

𝑠2
𝑡 . (39)

where 𝐶𝑖, 𝑗 satisfies the following equation:

𝐶𝑖, 𝑗 =


𝜅

3( 𝑗−𝑖)
0

𝜅
3( 𝑗−𝑖)+1
0 − 1
𝜅0 − 1

, 𝜅0 ≠ 1,

3( 𝑗 − 𝑖) + 1, 𝜅0 = 1.

□
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A.2.4 Proof of Theorem 3.1

Based on Propositions A.7 and A.8, we are ready to present the proof of Theorem 3.1 for message passing GNNs. First,
we will apply the bounds on the derivatives back in Lemma 4.3. After getting the trace of the Hessians, we then use the
PAC-Bayes bound from Lemma 4.1 to complete the proof.

Proof of Theorem 3.1. By applying equations (23) and (30) into Lemma 4.3’s result, we get that the trace of H(𝑙) with
respect to𝑊 (𝑖) is less than:

𝜅0

√
𝑘

√
𝑛
𝐶𝑖,𝑙−1𝜅1𝑑𝑖 max

( 

𝑃
𝐺



𝑙−𝑖+1
,


𝑃

𝐺



2(𝑙−𝑖) ) 


𝐻 (𝑖−1)



2

𝐹

( 𝑙∏
𝑡=𝑖+1

𝑠2
𝑡

)
+ 𝜅1

𝑘

𝑛
𝜅

6(𝑙−𝑖)
0 𝜅1𝑑𝑖



𝑃
𝐺



2(𝑙−𝑖)



𝐻 (𝑖−1)




2

𝐹

𝑙∏
𝑡=𝑖+1

𝑠2
𝑡

≤ (𝜅0𝐶𝑖,𝑙−1 + 𝜅
6(𝑙−𝑖)
0 )

√︂
𝑘

𝑛
𝜅1𝑑𝑖 max

(

𝑃
𝐺



𝑙−𝑖+1
,


𝑃

𝐺



2(𝑙−𝑖) ) 


𝐻 (𝑖−1)



2

𝐹

𝑙∏
𝑡=𝑖+1

𝑠2
𝑡 , (40)

for any 𝑖 = 1, 2, · · · , 𝑙 − 1. Here we have

𝜅0𝐶𝑖,𝑙−1 + 𝜅6(𝑙−𝑖)
0 =


𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

, 𝜅0 ≠ 1,

3(𝑙 − 𝑖) − 1, 𝜅0 = 1.

It remains to consider the Frobenius norm of 𝐻 (𝑖−1) . Notice that this satisfies the following:


𝐻 (𝑖−1)




𝐹
≤ 𝜅0




𝑋𝑈 (𝑖−1) + 𝜌𝑖−1 (𝑃𝐺
𝜓𝑖−1 (𝐻 (𝑖−2) ))𝑊 (𝑖−1)





𝐹

≤ 𝜅0




𝑈 (𝑖−1)



 ∥𝑋 ∥𝐹 + 𝜅3

0


𝑃

𝐺



 


𝑊 (𝑖−1)



 


𝐻 (𝑖−2)





𝐹

≤ 𝜅0𝑠𝑖 ∥𝑋 ∥𝐹 + 𝜅3
0


𝑃

𝐺



 𝑠𝑖 


𝐻 (𝑖−2)




𝐹
.

By induction over 𝑖 for the above step, we get that the Frobenius norm of 𝐻 (𝑖−1) must be less than:

(
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)√
𝑘 max

(𝑋,𝐺,𝑦)∼D
∥𝑋 ∥ max

(
1,



𝑃
𝐺



𝑖−1) 𝑖−1∏
𝑗=1

𝑠 𝑗 . (41)

By applying the above (41) back in (40), we have shown that the trace of H(𝑙) with respect to𝑊 (𝑖) is less than:

𝐶 ′ max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2 𝜅1𝑑𝑖𝑘 max(1, ∥𝑃
𝐺
∥2(𝑙−1) )

𝑙∏
𝑡=1:𝑡≠𝑖

𝑠2
𝑡 , (42)

where 𝐶 ′ satisfies the following equation:

𝐶 ′ =


(𝜅3𝑙

0 − 1) (𝜅3(𝑙−1)/2
0 − 1)2

(𝜅0 − 1)3 , 𝜅0 ≠ 1,

4
9
𝑙3, 𝜅0 = 1.

To be specific, when 𝜅0 = 1, (3(𝑙 − 𝑖) − 1)𝑖2 ≤ 4
9𝑙

3 . If 𝜅0 ≠ 1 and 𝑖 ≥ 2, we have

(
𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

) (
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2 ≤ 𝜅
3(𝑙−𝑖)+3
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

(𝜅3(𝑖−1)
0 − 1)2

(𝜅0 − 1)2

=
𝜅3𝑙

0 − 𝜅
3(𝑙−𝑖+1)
0

(𝜅0 − 1)3

(
(𝜅3(𝑙−𝑖)

0 − 1) (𝜅3(𝑖−1)
0 − 1)

)
≤

(𝜅3𝑙
0 − 1) (𝜅3(𝑙−1)/2

0 − 1)2

(𝜅0 − 1)3 .
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If 𝜅0 ≠ 1 and 𝑖 = 1, we obtain(
𝜅

3(𝑙−𝑖)+1
0

𝜅
3(𝑙−𝑖)
0 − 1
𝜅0 − 1

) (
𝜅

3(𝑖−1)
0 +

𝑖−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2
= 𝜅3𝑙−2

0
𝜅

3(𝑙−1)
0 − 1
𝜅0 − 1

≤
(𝜅3𝑙

0 − 1) (𝜅3(𝑙−1)/2
0 − 1)2

(𝜅0 − 1)3 .

The above works for the layers from the beginning until layer 𝑙 − 1. Last, we consider the trace of H(𝑙) with respect to𝑊 (𝑙)

(notice that 𝑼 is not needed in the readout layer). Similar to equation (19), one can prove that the trace of the Hessian with
respect to𝑊 (𝑙) satisfies:���Tr

[
H(𝑙) [ℓ (𝐻 (𝑙) , 𝑦)]

] ��� ≤𝜅0
√
𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1






 𝜕2𝐻 (𝑙)

𝜕
(
𝑊

(𝑙)
𝑝,𝑞

)2






 + 𝜅1𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1






 𝜕𝐻 (𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞






2

≤𝜅0
√
𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1






 1
𝑛
1⊤𝑛𝐻

(𝑙−1) 𝜕2𝑊 (𝑙)

𝜕
(
𝑊

(𝑙)
𝑝,𝑞

)2






 + 𝜅1𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1






 1
𝑛
1⊤𝑛𝐻

(𝑙−1) 𝜕𝑊
(𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞






2

≤𝜅1𝑘

𝑑𝑙−1∑︁
𝑝=1

𝑑𝑙∑︁
𝑞=1





 1
𝑛
1𝑛





2





𝐻 (𝑙−1) 𝜕𝑊

(𝑙)

𝜕𝑊
(𝑙)
𝑝,𝑞






2

=𝜅1
𝑘

𝑛
𝑑𝑙




𝐻 (𝑙−1)



2

𝐹

By equation (41), the above is bounded by

𝜅1
𝑘

𝑛
𝑑𝑙

(
𝜅

3(𝑙−1)
0 +

𝑙−2∑︁
𝑗=0

𝜅
3𝑗+1
0

)2 max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2
𝐹 max

(
1,



𝑃
𝐺



2(𝑙−1) ) 𝑙−1∏
𝑗=1

𝑠2
𝑗

≤ 𝐶𝑙 max
(𝑋,𝐺,𝑦)∼D

∥𝑋 ∥2 𝜅1𝑑𝑙𝑘 max
(
1,



𝑃
𝐺



2(𝑙−1)
) 𝑙∏
𝑡=1:𝑡≠𝑙

𝑠2
𝑡 ,

since ∥𝑋 ∥2
𝐹

𝑛
≤ ∥𝑋 ∥2, where 𝐶𝑙 satisfies the following equation:

𝐶𝑙 =


𝜅2

0
(𝜅3(𝑙−1)

0 − 1)2

(𝜅0 − 1)2 , 𝜅0 ≠ 1,

𝑙2, 𝜅0 = 1.

Finally, let

𝐶 = max(𝐶 ′,𝐶𝑙 ). (43)

From the value of 𝐶 ′ above and the value of 𝐶𝑙 , we get that 𝐶 is equal to

𝐶 =


(𝜅3𝑙

0 − 1) (𝜅3(𝑙−1)/2
0 − 1)2

(𝜅0 − 1)3 , 𝜅0 ≠ 1,

1
2
𝑙3, 𝜅0 = 1.

Similarly by applying equations (24) and (31) into Lemma 4.3, the trace of H(𝑙) with respect to𝑈 (𝑖) is also less than equation
(42). Therefore, we have completed the proof for message-passing neural networks. □

A.3 Proof of matching lower bound (Theorem 3.2)

For simplicity, we will exhibit the instance for a graph ConvNet, that is, we ignore the parameters in 𝑼 and also set
the mapping 𝜌𝑡 and 𝜓𝑡 as the identity mapping. Further, we set the mapping 𝜙𝑡 (𝑥) = 𝑥 as the identity mapping, too, for
simplifying the proof. In the proof, we show that for an arbitrary configuration of weight matrices𝑊 (1) ,𝑊 (2) , . . . ,𝑊 (𝑙) , there
exists a data distribution such that for this particular configuration, the generation gap with respect to the data distribution
satisfies the desired equation (6).
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Proof of Theorem 3.2. Recall that the underlying graph for the lower bound instance is a complete graph. Next, we will
specify the other parts of the data distribution D. Let 𝑍 =

∏𝑙
𝑖=1𝑊

(𝑖) denote the product of the weight matrices. We are
going to construct a binary classification problem. Thus, the dimension of 𝑍 will be equal to 𝑛 by 2. Let 𝑍 = 𝑈𝐷𝑉⊤ be the
singular value decomposition of 𝑍 . Let 𝜆max (𝑍 ) be the largest singular value of 𝑍 , with corresponding left and right singular
vectors 𝑢1 and 𝑣1, respectively. Within the hypothesis set H , 𝜆max (𝑍 ) can be as large as

∏𝑙
𝑖=1 𝑠𝑖 . Denote a random draw

from D as 𝑋,𝐺,𝑦, corresponding to node features, the graph, and the label:

1. The feature matrix 𝑋 is is equal to 1𝑛𝑢⊤
1 ;

2. The class label 𝑦 is drawn uniformly between +1 and −1;

3. Lastly, the diffusion matrix 𝑃 is the adjacency matrix of 𝐺 , which has a value of one in every entry of 𝑃 .

Given the example and the weight matrices, we will use the logistic loss to evaluate 𝑓 ’s loss. Notice that 𝑃 = 1𝑛1⊤𝑛 . Thus,
one can verify 𝜆max (𝑃) = 𝑛. Crucially, the network output of our GCN is equal to

𝐻 (𝑙) =
1
𝑛
1⊤𝑛 𝑃

𝑙−1𝑋𝑊 (1)𝑊 (2) · · ·𝑊 (𝑙) = 𝑛𝑙−1
(1⊤𝑛𝑋

𝑛
𝑍

)
= 𝑛𝑙−1

(
𝑢⊤

1 𝑈𝐷𝑉⊤
)
=

(
𝑛𝑙−1𝜆max (𝑍 )

)
𝑣⊤1 .

Let us denote 𝛼 = 𝑛𝑙−1𝜆max (𝑍 )—the spectral norms of the diffusion matrix and the layer weight matrices. Let 𝑣1,1, 𝑣1,2 be the
first and second coordinate of 𝑣1, respectively. Notice that 𝑦 is drawn uniformly between +1 or −1. Thus, with probability
1/2, the loss of this example is log(1 + exp(−𝛼 · 𝑣1,1)); with probability 1/2, the loss of this example is log(1 + exp(𝛼 · 𝑣1,2)).
Let 𝑏𝑖 be a random variable that indicates the logistic loss of the 𝑖-th example. The generalization gap is equal to

𝜖 =
1
𝑁

𝑁∑︁
𝑖=1

𝑏𝑖 −
1
2

(
log(1 + exp(−𝛼 · 𝑣1,1)) + log(1 + exp(𝛼 · 𝑣1,2))

)
.

By the central limit theorem, as 𝑁 grows to infinity, the generalization gap 𝜖 converges to a normal random variable whose
mean is zero and variance is equal to

1
4𝑁

(
log(1 + 𝑒𝑥𝑝 (−𝛼 · 𝑣1,1)) − log(1 + exp(𝛼 · 𝑣1,2))

)2
≳

𝛼2

𝑁
,

for large enough values of 𝑛. As a result, with probability at least 0.1, when 𝑁 is large enough, the generalization gap 𝜖 must
be at least

O

(√︂
𝛼2

𝑁

)
, where 𝛼 =



𝑃
𝐺



𝑙−1
𝜆max

(
𝑙∏

𝑖=1
𝑊 (𝑖)

)
.

Notice that the spectral norm of the product matrix can be realized at most as
∏𝑙

𝑖=1 𝑠𝑖 . Thus, we have completed the proof of
equation (6). □

A.4 Proof for graph isomorphism networks (Corollary 4.5)

To be precise, we state the loss function for learning graph isomorphism networks as the averaged loss over all the
classification layers:

ℓ̄ (𝑓 (𝑋,𝐺), 𝑦) = 1
(𝑙 − 1)

𝑙−1∑︁
𝑖=1

ℓ

( 1
𝑛
1⊤𝑛𝐻

(𝑖)𝑉 (𝑖) , 𝑦
)
. (44)

Thus, 𝐿̂𝐺𝐼𝑁 (𝑓 ) is equivalent to the empirical average of ℓ̄ over 𝑁 samples from D. 𝐿𝐺𝐼𝑁 (𝑓 ) is then equivalent to the
expectation of ℓ̄ over a random sample from D.

Proof of Corollary 4.5. This result follows the trace guarantee from Lemma 4.3. For any 𝑖 = 1, . . . , 𝑙 − 1 and any 𝑗 =

𝑖, . . . , 𝑙 − 1, we can derive the following result with similar arguments:����Tr
[
H(𝑖)
𝑾

[
ℓ

( 1
𝑛
1⊤𝑛𝐻

( 𝑗)𝑉 ( 𝑗) , 𝑦
)] ] ���� ≤ 𝜅0

√
𝑘

√
𝑛




𝑉 ( 𝑗)



 𝑑𝑖−1∑︁
𝑝=1

𝑑𝑖∑︁
𝑞=1






 𝜕2𝐻 ( 𝑗)

𝜕
(
𝑊

(𝑖)
𝑝,𝑞

)2







𝐹

+ 𝜅1𝑘

𝑛




𝑉 ( 𝑗)



2





 𝜕𝐻 ( 𝑗)

𝜕𝑊 (𝑖)





2

𝐹

.
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Next, we repeat the steps in Propositions A.7 and A.8, for any 𝑖 = 1, . . . , 𝑙 − 1 and any 𝑗 = 𝑖, . . . , 𝑙 − 1:
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Based on the above step, the trace of the Hessian matrix of the loss function with respect to𝑊 (𝑖) ,𝑈 (𝑖) satisfies:
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Within the above step, the propagation matrix satisfies:
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in equation (11). □

B Experiment Details

For our result, we measure 𝐵 as an upper bound on the loss value taken over the entire data distribution. Across five datasets
in our experiments, setting 𝐵 = 5.4 suffices for all the training and testing examples in the datasets.

For comparing generalization bounds, we use two types of model architectures, including GCN [35] and the MPGNN in
Liao et al. [37]. Following the setup in Liao et al. [37], we apply the same network weights across multiple layers in one
model, i.e.,𝑊 (𝑡 ) =𝑊 and𝑈 (𝑡 ) = 𝑈 across the first 𝑙 − 1 layers. For GCNs, we set 𝑼 as zero, 𝜌𝑡 and𝜓𝑡 as identity mappings,
𝜙𝑡 as ReLU function. For MPGNNs, we specify 𝜙𝑡 as ReLU, 𝜌𝑡 and𝜓𝑡 as Tanh function. For both model architectures, we
set the width of each layer 𝑑𝑡 = 128 and vary the network depth 𝑙 in 2, 4, and 6. On the three collaboration network datasets,
we use one-hot encodings of node degrees as input node features. We train the models with Adam optimizer with a learning
rate of 0.01 and set the number of epochs as 50 and batch size as 128 on all three datasets. We compute the generalization
bounds following the setup in Liao et al. [37]. We state the results with our notations in the following.

• Theorem 3.4 from Liao et al. [37]:√√√
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where 𝜁 = min(𝑠1, 𝑠𝑙 ), 𝜆 = 𝑠1𝑠𝑙 , 𝜉 =
(𝑑𝑠1)𝑙−1−1
𝑑𝑠1−1 , 𝑑 is the max degree, ℎ is the max hidden width, and 𝛾 is the desired margin

in the margin loss. Note that 𝑠𝑖 = 𝑠1 and 𝑟𝑖 = 𝑟1 for 1 ≤ 𝑖 ≤ 𝑙 − 1 since the first 𝑙 − 1 layers apply the same weight.

• Proposition 7 from Garg et al. [16]:
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