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Abstract

The log odds ratio is a well-established met-
ric for evaluating the association between bi-
nary outcome and exposure variables. Despite
its widespread use, there has been limited discus-
sion on how to summarize the log odds ratio as
a function of confounders through averaging. To
address this issue, we propose the Average Ad-
justed Association (AAA), which is a summary
measure of association in a heterogeneous pop-
ulation, adjusted for observed confounders. To
facilitate the use of it, we also develop efficient
double/debiased machine learning (DML) esti-
mators of the AAA. Our DML estimators use
two equivalent forms of the efficient influence
function, and are applicable in various sampling
scenarios, including random sampling, outcome-
based sampling, and exposure-based sampling.
Through real data and simulations, we demon-
strate the practicality and effectiveness of our
proposed estimators in measuring the AAA.

1 INTRODUCTION

There are several statistical measures of association, among
which the (log) odds ratio is one of the most popular ones.
The odds ratio has been frequently used in medicine, bio-
statistics and epidemiology because it is simple, it has a
natural interpretation in the standard logistic regression
model, and it is invariant under various sampling designs
that include case-control studies. See Breslow (1976);
Breslow and Powers (1978); Breslow and Day (1980) for
early work and Bland and Altman (2000); Norton et al.
(2018) for how to use the odds ratio in practice.
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To describe the object of interest and the background more
concretely, let Y denote a binary outcome, T a binary ex-
posure andX a vector of measured confounders/covariates.
The conditional odds ratio between Y and T given X = x,
which we denote by OR(x), provides a complete picture of
the adjusted association between Y and T for different sub-
populations defined by different values of x. Conditioning
on X = x matters for two reasons: first, it is more plausi-
ble to make a causal interpretation out of OR(x) than the
unconditional odds ratio between Y and T (e.g., Holland
and Rubin, 1988; Greenland et al., 1999); second, the asso-
ciation can be heterogeneous over different subpopulations
so that OR(x) is a complicated function of x in general.

There are several approaches to modeling OR(·). It is most
common to parametrize the function OR(·) typically via a
logistic regression model, but it may suffer from misspec-
ification. Therefore, effort has been made to mitigate the
problem from the perspective of doubly robust estimation
(e.g., Chen, 2007; Tchetgen Tchetgen et al., 2010; Tchet-
gen Tchetgen, 2013). On the contrary, some authors have
emphasized heterogeneity, advocating nonparametric esti-
mation of the function OR(·) (e.g., Chen et al., 2011; Hui
and Geenens, 2013). However, fully nonparametric ap-
proaches generally suffer from the curse of dimensionality
and they are often not a practical option in finite samples.
In fact, all the numerical experiments in Chen et al. (2011)
and Hui and Geenens (2013) are limited with the scalar X .

In this paper, we consider the case where the dimension of
X is high. We introduce a new summary measure of as-
sociation, which we call the average adjusted association,
by taking the average of conditional log odds ratios over
covariates. That is, we think of θ0 := E{logOR(X)} as
a summary measure of adjusted association in a heteroge-
neous population. The issues of what to condition on forX
and how to summarize OR(·) have been recognized in the
literature (e.g., Muller and MacLehose, 2014; Greenland
et al., 1999). However, to the best of our knowledge, the
average adjusted association has not been formally studied
in the literature, let alone how to deal with high dimen-
sional X . Indeed, many recently published papers in both
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natural and social sciences have used the odds ratio to re-
port their findings but, to the best of our knowledge, they
are all based on strong parametric assumptions that restrict
heterogeneous association: a logistic regression model is
the most popular, where heterogeneity in association needs
to be pre-specified. For example, recent studies on de-
terminants of callbacks to job applications (Farber et al.,
2016), association of Alzheimer’s dementia with genotypes
(Reiman et al., 2020), and police use of force with respect
to race (Hoekstra and Sloan, 2022) are all based on logistic
regression and pre-specified odds ratios. It is worth noting
that odds ratios are natural in these examples because call-
backs, dementia, and use of force are all rare events that
occur with small probabilities.

As we depart from parametric models, the odds ratio can
be a complicated function of observed characteristics. It is
a natural and common practice to summarize a heteroge-
neous quantity by taking an average. For instance, when
the treatment effect is heterogeneous, we frequently focus
on the average treatment effect (e.g., Hirano et al., 2003;
Ray and Szabo, 2019; Shi et al., 2019) as a summary pa-
rameter. Despite the popularity and usefulness of the av-
erage treatment effect and related quantities, the literature
on such a statistic based on the odds ratios is surprisingly
sparse. The only exception we are aware of is the Mantel-
Haenszel approach that averages the (log) odds ratio across
finite strata. This paper fills this important gap.

Treating the function log{OR(·)} nonparametrically, we
derive two equivalent forms of the efficient influence func-
tion for θ0, which we then explore to construct efficient
double/debiased machine learning (DML) estimators of θ0.
We take this approach because the class of DML estimators
are generally more advocated than conventional plug-in ef-
ficient estimators particularly when X is high-dimensional
(see, e.g., Chernozhukov et al., 2018; Lewis and Syrgkanis,
2021, among many others). The efficient influence function
can be expressed in terms of either prospective probabil-
ities (i.e., the probabilities of the outcome conditional on
the exposure and confounders) or retrospective ones (i.e.,
the probabilities of the exposure given the outcome and
confounders). Therefore, we have two types of DML es-
timators: they are asymptotically equivalent and efficient,
but they are not the same in finite samples. Our work is the
first to derive the forms of the efficient influence function
and to propose suitable DML estimators of θ0. We also
provide easy-to-follow computational and inferential algo-
rithms for implementation. Given the basic nature of this
research, we do not see potential negative societal impacts
of our work, although we should mention that it generally
requires much caution to draw causal inference from statis-
tical association.

Related Literature There are a couple of recent pa-
pers on automatic DML estimators (Chernozhukov et al.,

2022a,b). However, applying automatic orthogonalization
to our setting is not necessarily better because (i) automa-
tion may induce additional approximation errors and (ii)
the explicit formula obtained in this paper can provide use-
ful insight into the estimation problem.

General theory for semiparametric efficiency is well-
developed in the literature (e.g., Ai and Chen, 2012; Acker-
berg et al., 2014). However, if we used the general frame-
work, we would need to verify all the regularity conditions
and our proof would not be self-contained. This type of
verification is not needed for our setting because we can di-
rectly calculate the efficient influence function for θ0 with
a more preliminary proof technique.

Replication Files The replication files for all the nu-
merical results are available at https://github.com/
sokbae/replication-JunLee-2023-AISTATS.

2 AVERAGE ADJUSTED ASSOCIATION

The odds ratio can be expressed by using either prospective
or retrospective probabilities: i.e., for all x in the support
X of X ,

OR(x)

:=
P(Y = 1 | T = 1, X = x)

P(Y = 1 | T = 0, X = x)

P(Y = 0 | T = 0, X = x)

P(Y = 0 | T = 1, X = x)
,

=
P(T = 1 | Y = 1, X = x)

P(T = 1 | Y = 0, X = x)

P(T = 0 | Y = 0, X = x)

P(T = 0 | Y = 1, X = x)
,

where the second equality is known as the invariance prop-
erty of the odds ratio, which can be verified by the Bayes
rule (see, e.g., Cornfield, 1951). The two expressions of
OR can be used to develop two different machine learning
estimators.

Since the function OR is an infinite-dimensional object, it
is generally difficult to estimate with high precision or even
to communicate estimation results in a fully nonparametric
manner, unless the dimension of x is limited to 1 or 2. In
this context, we propose, as a scalar summary measure of
association, to take the expectation of logOR(·) using the
probability distribution of X . Specifically, we define

θ0 := E{logOR(X)}, (2.1)

which can be understood as the Average Adjusted Asso-
ciation (AAA) for the entire population. We have taken
the logarithm before taking expectation because logOR(x)
corresponds to a coefficient in the traditional logistic
model; for instance, if P(Y = 1 | T = t,X = x) =
G(α0 +α1t+α⊺

2x), where G(s) = exp(s)/{1+ exp(s)},
then logOR(x) = α1 for all x ∈ X . But the essence of
our results does not rely on this structure; all of our results
can be straightforwardly modified to the case of aggregat-
ing without the logarithm. Since OR(·) is a nonlinear func-
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tion in general, θ0 differs from the log odds evaluated at the
average value of X .

3 EFFICIENT INFLUENCE FUNCTION

We now characterize the efficient influence function for es-
timating θ0 and present two equivalent expressions. We
first state an assumption that will be used throughout the
paper. Recall that Y and T are binary variables, and let X
be the support of X .

Assumption 3.1. There exists a constant ϵ > 0 such that
for all t, y ∈ {0, 1} and for all x ∈ X , we have ϵ ≤ P(Y =
y, T = t | X = x) ≤ 1− ϵ.

Assumption 3.1 is to ensure that all the four joint outcomes
of (Y, T ) occur with positive probability conditional on any
value of X = x ∈ X . Therefore, conditioning on any out-
come of (Y, T ) does not exclude any value of X from the
support: i.e., assumption 3.1 implies that the joint support
of (Y, T,X) is given by {0, 1}× {0, 1}×X . This require-
ment may not be trivial in some applications, unless we
restrict out attention to a certain subpopulation. For exam-
ple, if Y represents prostate cancer, then it is reasonable to
focus on the subpopulation of men. We are implicit about
this type of (extra) conditioning throughout the analysis.

Also, under assumption 3.1, both of the prospective and ret-
rospective representations of OR are well-defined for any
x ∈ X . Further, the existence of such an ϵ > 0 in Assump-
tion 3.1 guarantees that x 7→ OR(x) is uniformly bounded
from below by zero and from above by infinity.

Below we discuss the efficient influence function for θ0
when assumption 3.1 is the only restriction imposed on the
distribution of (Y, T,X).

For y, t ∈ {0, 1}, define

∆pt(Y, T,X)

:=
T t(1− T )1−t{Y − P(Y = 1 | T = t,X)}
P(Y = 1 | T = t,X)P(Y = 0 | T = t,X)

,

∆ry(Y, T,X)

:=
Y y(1− Y )1−y{T − P(T = 1 | Y = y,X)}
P(T = 1 | Y = y,X)P(T = 0 | Y = y,X)

.

Further, define

Fp(Y, T,X)

:= logOR(X)− θ0 +
∆p1(Y, T,X)

P(T = 1 | X)
− ∆p0(Y, T,X)

P(T = 0 | X)
,

(3.1)

Fr(Y, T,X)

:= logOR(X)− θ0 +
∆r1(Y, T,X)

P(Y = 1 | X)
− ∆r0(Y, T,X)

P(Y = 0 | X)
.

(3.2)

The efficient influence function for θ0 is given in the fol-
lowing theorem.

Theorem 3.1. Suppose that Assumption 3.1 holds. Then,
the semiparametrically efficient influence function for θ0 is
given by Fp(Y, T,X) = Fr(Y, T,X).

Theorem 3.1 includes equality between Fp(Y, T,X) and
Fr(Y, T,X); Fp is based on the prospective expression of
OR, whereas Fr uses the retrospective one. Theorem 3.1
is proved in two steps: (i) by direct calculation, as in Hahn
(1998), θ0 is pathwise differentiable along regular paramet-
ric submodels in the sense of Newey (1990, 1994); (ii) the
pathwise derivative is an element of the tangent space, from
which we can obtain the semiparametric efficiency bound
Veff for θ0:

Veff := E{F 2
p (Y, T,X)} = E{F 2

r (Y, Y,X)}.

The bound Veff can be achieved by double/debiased ma-
chine learning (DML) estimators based on the efficient in-
fluence function, i.e., the representation in either (3.1) or
(3.2). The DML approach has an advantage that it is robust
to local perturbation on the unknown functions that need to
be estimated in the first step, which is known as the Ney-
man orthogonality property (see, e.g., Chernozhukov et al.,
2018).

In the remaining part of this section we formally show
that the moment condition based on either (3.1) or (3.2)
is indeed robust to local perturbation on the nonparametric
components. For this purpose, note first that each of Fp and
Fr depends on three nonparametric elements, i.e.,

ηp0(x) :=

E(Y | T = 0, X = x)
E(Y | T = 1, X = x)

E(T | X = x)

 , (3.3)

ηr0(x) :=

E(T | Y = 0, X = x)
E(T | Y = 1, X = x)

E(Y | X = x)
]

 , (3.4)

respectively. Let G be a space of (measurable) func-
tions on X such that g ∈ G satisfies 0 < inf g(x) ≤
sup g(x) < 1: see Assumption 3.1. Let F̃p(·)[Y, T,X]

and F̃r(·)[Y, T,X] denote the functionals defined on
G3 such that F̃p(ηp0)[Y, T,X] = Fp(Y, T,X) and
F̃r(ηr0)[Y, T,X] = Fr(Y, T,X). Then, Neyman orthogo-
nality is concerned about the Gateaux derivatives of F̃p and
F̃r at ηp0 and ηr0, respectively.

Theorem 3.2. Suppose that Assumption 3.1 holds. Then,
the Gateaux derivative of F̃p(·)[Y, T,X] at ηp0 has condi-
tional mean zero given X almost surely: i.e.,

E
[
∂F̃p{ηp0+γ(η−ηp0)}[Y, T,X]/∂γ

∣∣∣
γ=0

∣∣∣X]
= 0 a.s.

for any direction η. The same is true for F̃r(·)[Y, T,X] at
ηr0 as well.
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Theorem 3.2 says that both Fp(Y, T,X) and Fr(Y, T,X)
provide Neyman orthogonal moments conditional on X .
One implication of the local robustness property is that the
first step nonparametric estimation of ηp0 (or ηr0) in esti-
mating θ0 will not have any first-order consequence, i.e.,
the limiting distribution would be the same as if ηp0 (re-
spectively, ηr0) were known. In other words, all the adjust-
ment terms that are needed to address the effect of the first
step estimation are already reflected in Fp (respectively, in
Fr).

4 DML ESTIMATORS

We now describe a couple of double/debiased machine
learning (DML) estimators of θ0, for which we use the
functions Fp and Fr as estimating equations. We assume
that a random sample {(Yi, Ti, X⊺

i )
⊺ : i = 1, 2, . . . , n} is

available, where Xi is allowed to be high dimensional.

4.1 Computational Algorithms

Let K ≥ 2 be some fixed integer (say, 5, 10 or 20). For
simplicity, assume that n is divisible by K. Let {Ik :
k = 1, . . . ,K} denote a K-fold partition of {1, . . . , n}
such that |Ik| = n/K for each k. Suppose that one es-
timates all the conditional probabilities appearing in (3.1)
or (3.2), depending on which one to use for estimation, via
machine-learning estimators by using observations that be-
long to Ick = {1, . . . , n}\Ik for each k. Using data in Ick to
estimate conditional probabilities evaluated at the points in
Ik is reminiscent of the traditional leave-one-out method.

In using the prospective formula in (3.1), we start with

p̂p,t,k(x)

:= P̂ML,k(Y = 1 | T = t,X = x) for t = 0, 1,

ÔRp,k(x)

:=
P̂ML,k(Y = 1 | T = 1, X = x)

P̂ML,k(Y = 0 | T = 1, X = x)

× P̂ML,k(Y = 0 | T = 0, X = x)

P̂ML,k(Y = 1 | T = 0, X = x)
,

ŵp,k(x)

:= P̂ML,k(T = 1 | X = x),

where P̂ML,k denotes a machine-learning estimator of a
probability model using observations that belong to Ick. We
then define the prospective DML estimator θ̂p of θ0 by

θ̂p :=
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

ψ̂i,p,k, (4.1)

where

ψ̂i,p,k := log ÔRp,k(Xi)

+
Ti

ŵp,k(Xi)

{Yi − p̂p,1,k(Xi)}
p̂p,1,k(Xi){1− p̂p,1,k(Xi)}

− (1− Ti)

{1− ŵp,k(Xi)}
{Yi − p̂p,0,k(Xi)}

p̂p,0,k(Xi){1− p̂p,0,k(Xi)}
. (4.2)

The estimator θ̂p is asymptotically normal and efficient as
we will show in Section 4.2. We have summarized the es-
timation procedure in Algorithm 1.

Algorithm 1: Prospective DML estimator of θ0
Input: {(Yi, Ti, Xi) : i = 1, . . . , n}, integer K ≥ 2,

machine learning methods for estimating
probability models

Output: estimate of θ0 and its standard error
1 Construct a K-fold partition {Ik : k = 1, . . . ,K} of

{1, . . . , n} of approximately equal size;
2 For each k, use observations belonging to Ick to obtain

machine learning estimates of
P(Y = 1 | T = 1, X = x),
P(Y = 1 | T = 0, X = x) and P(T = 1 | X = x),
respectively;

3 For each k, use observations belonging to Ik to
construct ψ̂i,p,k in equation (4.2);

4 Obtain the estimate of θ0 by equation (4.1) and its
standard error σ̂p/

√
n by

σ̂2
p :=

1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

{
ψ̂i,p,k − θ̂p

}2

. (4.3)

The retrospective DML estimator θ̂r of θ0 is defined anal-
ogously. That is, we start with

p̂r,y,k(x)

:= P̂ML,k(T = 1 | Y = y,X = x) for y = 0, 1,

ÔRr,k(x)

:=
P̂ML,k(T = 1 | Y = 1, X = x)

P̂ML,k(T = 0 | Y = 1, X = x)

× P̂ML,k(T = 0 | Y = 0, X = x)

P̂ML,k(T = 1 | Y = 0, X = x)
,

ŵr,k(x)

:= P̂ML,k(Y = 1 | X = x),

and we define

θ̂r :=
1

K

K∑
k=1

1

|Ik|
∑
i∈Ik

ψ̂i,r,k, (4.4)
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where

ψ̂i,r,k := log ÔRr,k(Xi)

+
Yi

ŵr,k(Xi)

{Ti − p̂r,1,k(Xi)}
p̂r,1,k(Xi){1− p̂r,1,k(Xi)}

− (1− Yi)

{1− ŵr,k(Xi)}
{Ti − p̂r,0,k(Xi)}

p̂r,0,k(Xi){1− p̂r,0,k(Xi)}
. (4.5)

The algorithm for the retrospective DML estimator can
be stated easily by making simple modifications in Algo-
rithm 1. We omit details for brevity.

Before we finish this subsection, we remark that the con-
sistency of θ̂p and θ̂r does not require that ŵp,k and ŵr,k

consistently estimate wp and wr; indeed, Fp(Y, T,X) and
Fr(Y, T,X) have mean zero even if wp and wr deviate
from the truth.

4.2 Asymptotic Distributions

Let ∥ · ∥P,2 denote the L2(P )-norm, where P
is the probability distribution of (Y, T,X): i.e.,
∥a∥P,2 := max1≤ℓ≤d

{
E[a2ℓ(Y, T,X)]

}1/2
for a d-

dimensional vector-valued function a := (a1, . . . , ad). For
each k, let

η̂n,p,k(X) :=

P̂ML,k(Y = 1 | T = 0, X)

P̂ML,k(Y = 1 | T = 1, X)

P̂ML,k(T = 1 | X)


denote the vector of machine learning estimators of ηp0 de-
fined in (3.3), using observations belonging to Ick. The first
step estimators η̂n,p,k are inputs to the second step in (4.1).
Likewise, let η̂n,r,k be the vector of machine learning esti-
mators of θr0 defined in (3.4), which will be used for the
retrospective DML estimator of θ0.
Assumption 4.1 (First-Stage Estimation). There exist se-
quences δn ≥ n−1/2 and τn of positive constants both ap-
proaching zero such that for each k = 1, . . . ,K,

∥η̂n,p,k − ηp0∥P,2 ≤ δnn
−1/4,

∥η̂n,r,k − ηr0∥P,2 ≤ δnn
−1/4,

with probability no less than 1− τn.

Assumption 4.1 is a high-level assumption that may not
be trivial if X is high dimensional. For instance, it may
fail even when all the conditional probabilities are logis-
tically specified and they are estimated by the method of
maximum likelihood if X is high dimensional (e.g., Sur
and Candès, 2019; Zhao et al., 2022). However, Assump-
tion 4.1 is known to be attainable for a variety of ma-
chine learning methods. The primitive conditions for ℓ1-
penalized logit estimators are worked out by van de Geer
(2008) and Belloni et al. (2016) among others. A maxi-
mum likelihood approach with some adjustment for the di-
mensionality and signal strength ofX as in e.g., Yadlowsky

et al. (2021) is another possibility although we do not pur-
sue the latter in this paper.

An application of Theorems 3.1 and 3.2 of Chernozhukov
et al. (2018) gives the following result that formally justi-
fies the estimation and inference methods proposed in Sec-
tion 4.1.

Theorem 4.1. Let {Pn : n ≥ 1} be a sequence of sets of
probability distributions of (Y, T,X). Suppose that for all
n ≥ 3 and P ∈ Pn, Assumptions 3.1 and 4.1 hold and that
we have a random sample {(Yi, Ti, X⊺

i )
⊺ : i = 1, . . . , n}.

Then, uniformly over P ∈ Pn,

√
n
(θ̂p − θ0)

σ̂p
→d N (0, 1) and

√
n
(θ̂r − θ0)

σ̂r
→d N (0, 1) .

Furthermore, both σ̂2
p →p Veff and σ̂2

r →p Veff uniformly
over P ∈ Pn.

Theorem 4.1 establishes that both the prospective and ret-
rospective DML estimators are asymptotically normal and
efficient. However, asymptotic equivalence does not imply
that it is irrelevant which one to use between θ̂p and θ̂r in
finite samples. In fact, the first steps of the two estimators
involve different nonparametric regression functions, and
therefore they generally lead to different estimates. Com-
paring the estimates and their standard errors can be a use-
ful diagnostic check in practice; we recommend reporting
inference results based on both estimators.

5 FURTHER DISCUSSIONS

5.1 Nonparametric Estimation and Double
Robustness

Since we do not use any parametric specification to identify
and estimate θ0, potential misspecification is not a concern,
at least asymptotically: it is a concern only to the extent
that our choices of nonparametric estimators must satisfy
Assumption 4.1. However, nonparametric approaches do
rely on several input parameters, which are important for
the performance of the estimators in finite samples. In this
regard we show that there is a nonparametric version of
double robustness.

For every x ∈ X , we implicitly define φp0(x), φr0(x), and
ϑ0(x) by the following equations: for t, y ∈ {0, 1},

P(Y = 1 | T = t,X = x) =
exp{φp0(x) + tϑ0(x)}

1 + exp{φp0(x) + tϑ0(x)}
,

(5.1)

P(T = 1 | Y = y,X = x) =
exp{φr0(x) + yϑ0(x)}

1 + exp{φr0(x) + yϑ0(x)}
.

(5.2)

For instance, equation (5.1) with t = 0 defines φp0(x).
Here, we have four conditional probabilities to define three
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objects. This is because the four conditional probabilities
are restricted by the invariance property of the odds ratio.
Indeed, simple algebra shows that ϑ0(x) = logOR(x), on
which no restrictions have been imposed.

Let H be the class of functions on X , which contains
φp0, φr0, and ϑ0. We then consider the function m :
H3 × {0, 1}2 ×X → R defined by

m(φp, φr, ϑ, Y, T,X)

= {Y−Λ0(φp, X)}{T−Λ0(φr, X)} exp{−ϑ(X)TY },

where Λ0(φ, x) = exp{φ(x)}/
[
1 + exp{φ(x)}

]
.

Theorem 5.1. Suppose that Assumption 3.1 holds. Then,
for any φp, φr ∈ H, we have

E{m(φp0, φr, ϑ0, Y, T,X) | X}
= E{m(φp, φr0, ϑ0, Y, T,X) | X} = 0 a.s.

Further, for any ϑ ∈ H and x ∈ X such that ϑ(x) ̸=
ϑ0(x),

E{m(φp0, φr0, ϑ, Y, T,X) | X = x} ≠ 0 a.s.

Theorem 5.1 is a nonparametric extension of the double ro-
bustness idea of Tchetgen Tchetgen et al. (2010) and Tch-
etgen Tchetgen (2013): i.e., either P(Y = 1 | T = 0, X =
x) = φp0(x) or P(T = 1 | Y = 0, X = x) = φr0(x)
(but not both) needs to be correctly specified to estimate
ϑ0(x) = logOR(x) consistently. Further, the second as-
sertion shows that the function m can be used to iden-
tify ϑ0 once φp0 and φr0 are given by their definition.
It can be shown that the efficiency bound for estimating
θ0 = E{ϑ0(X)} by using the conditional moment equa-
tion in Theorem 5.1 is given by

FDR(Y, T,X) = ϑ0(X)− θ0

+
1

P(Y = 1, T = 1 | X)

m(φp0, φr0, ϑ0, Y, T,X)

m(φp0, φr0, ϑ0, 1, 1, X)
,

which coincides with Fp(Y, T,X) = Fr(Y, T,X). There-
fore, we do not lose anything in terms of semiparametric
efficiency in using the moment function m to estimate θ0.

Therefore, it is possible to have an extra DML-based dou-
bly robust algorithm for efficient estimation of θ0. How-
ever, we do not pursue this possibility in the current pa-
per for a couple of reasons. As we described in Section 4,
the DML approach requires splitting the sample into mul-
tiple subsamples, but it often causes computational issues
in practice when multiple tiers of nonparametric estimation
are involved as in the current setup. Also, since our ap-
proach does not require any parametric specification at all,
double robustness seems to have limited merits; there is no
misspecification in the limit in the approach described in
Section 4.

5.2 Interpretation: Association vs. Causation

One can rely on Theorem 4.1 to conduct statistical infer-
ence on θ0. For instance, using the prospective estimator
θ̂p, a (symmetric two-sided) 95% confidence interval for θ0
can be obtained in the usual manner, i.e., θ̂p±1.96·σ̂p/

√
n.

Here, we emphasize that θ0 is understood as a simple asso-
ciation parameter to which we do not give any causal inter-
pretation at this stage. However, θ0 can be used for causal
inference under a few extra assumptions.

In order to discuss causal inference, let Y (t) denote the po-
tential outcome when the treatment is exogenously fixed
at t; i.e., the observed outcome Y is equal to Y (T ) =
Y (1)T + Y (0)(1 − T ). Then, OR(x) is related with the
following causal parameters:

ϑOR(x) =
P{Y (1) = 1 | X = x}
P{Y (1) = 0 | X = x}

P{Y (0) = 0 | X = x}
P{Y (0) = 1 | X = x}

,

ϑRR(x) =
P{Y (1) = 1 | X = x}
P{Y (0) = 1 | X = x}

.

That is, ϑOR(x) represents the adjusted causal odds ratio,
while ϑRR(x) is the adjusted causal relative risk parame-
ter. Below we summarize some facts that are known in the
literature; see, e.g., Holland and Rubin (1988) and Jun and
Lee (2021) for more detail.

1. (No confounding) Suppose that there is no confound-
ing conditional on X = x: i.e., for t = 0, 1, Y (t)
and T are independent given X = x. Then, OR(x) =
ϑOR(x).

2. (No confounding + MTR) If there is no confounding
conditional on X = x and the treatment is potentially
beneficial but it never hurts, i.e., Y (1) ≥ Y (0) almost
surely, which is termed as the Monotone Treatment
Response (MTR) assumption (e.g., Manski, 1997),
then 1 ≤ θRR(x) ≤ ϑOR(x) = OR(x), where the
inequalities are sharp.

3. (Confounding + MTR/MTS) Suppose that there may
be confounding even if we condition on X = x but
that the treatment is potentially beneficial (MTR). Fur-
ther, suppose that those who have chosen to take the
treatment have no smaller chance of “success” than
those who have opted out, i.e., P{Y (t) = 1 | T =
1, X = x} ≥ P{Y (t) = 1 | T = 0, X = x}, which is
termed as the Monotone Treatment Selection (MTS)
assumption (e.g., Manski and Pepper, 2000). Then,
1 ≤ θRR(x) ≤ OR(x), where the inequalities are
sharp.

Therefore, the average parameter θ0 and Theorem 4.1
can be used for causal inference on the entire popula-
tion. For example, if the researcher is willing to assume
that the treatment was randomly assigned conditional on
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X , then the usual symmetric confidence interval such as
θ̂r ± 1.96 · σ̂r is a confidence interval for E{ϑOR(X)}.
There is no general relationship between E{ϑOR(X)} and
E{ϑRR(X)}, but if P(Y = 1) is close to zero (known as
the rare-disease assumption), then the two causal parame-
ters are known to be close to each other as long as there
is no confounding given X . So, the symmetric confidence
interval of θ0 can also be understood as an approximate
confidence interval of E{ϑRR(X)} in this scenario.

The no-confounding assumption or the rare-disease as-
sumption can be unrealistic in some applications. For in-
stance, many treatments of interest in social sciences such
as education choices are deliberate decisions, and in such
cases the no-confounding assumption is unrealistic. Even
so, if one is willing to assume that education is potentially
beneficial but it never hurts and that those who deliberately
chose to take higher education is generally no less likely to
“succeed” than those who did not, then θ0 can be under-
stood as a sharp upper bound on E{ϑRR(X)}. Therefore,
a one-sided confidence interval such as [1, θ̂r + 1.64 · σ̂r]
can be reported if the causal parameter E{ϑRR(X)} is of
interest.

5.3 Averaging over a Subpopulation

In practice there may be a subpopulation of particular in-
terest, in which case averaging over the entire population
may not provide the most relevant summary statistic. For
example, consider the population of patients with a certain
type of cancer. Suppose that Y and T , respectively, indicate
five-year survival (say, Y = 1 for survival and Y = 0 for
death) and a certain type of treatment (say, T = 1 for treat-
ment and T = 0 for no treatment). Here, it may be relevant
to summarize the association between Y and T for those
who received the treatment, i.e., θT (1) := E{logOR(X) |
T = 1}. Alternatively, the association between Y and T
for those who survived the cancer, which can be captured
by θY (1) := E{logOR(X) | Y = 1}, can be an inter-
esting quantity to look at. Of course, if the average ad-
justed association between T and Y is homogeneous across
X , then there will be no difference among θ0, θT (1), and
θY (1). However, in general, they are all distinct and can be
substantially different, depending on the degree of hetero-
geneity.

Also, θT (1) and θY (1) can be of interest if our access to
a random sample is limited. For example, θT (1) is point
identifiable even when we only have a treatment-based
sample, where a half of the sample comes from the patients
who received the treatment and the other half is from those
who did not. Similarly, an outcome-based sample (e.g.,
case-control studies) is sufficient to identify θY (1). The
statistical analysis of θT (1) and θY (1) is similar to that of
θ0 and we do not repeat it here.

In addition, there has been increasing interest in estimating

individual level treatment effects (e.g., Shalit et al., 2017).
Averaging over the entire population may have a risk of
over-simplification: for example, if the association is posi-
tive for some values ofX , and it is negative for other values
of X , then the overall average association may be close to
zero. With this motivation in mind, suppose that there is a
vector of low-dimensional confounders (say, Z) such that
we are interested in estimating z 7→ E{logOR(X) | Z =
z}. Then it can be estimated by projecting logOR(X) on
a low-dimensional space of Z as in Ogburn et al. (2015),
Lee et al. (2017), and Semenova and Chernozhukov (2020).
However, it is a topic of future research to develop this idea
formally.

6 NUMERICAL STUDIES

In this section, we provide numerical results to illustrate the
usefulness of our approach.

6.1 Top Income and Higher Education

We start with a real-data example. Table 1 summarizes data
from American Community Survey (ACS) 2018, cross-
tabulating the likelihood of top income by educational at-
tainment. The sample is restricted to white males residing
in California with at least a bachelor’s degree. It is ex-
tracted from IPUMS USA (Ruggles et al., 2019). The ACS
is an ongoing annual survey by the US Census Bureau that
provides key information about the US population.

Table 1: Top income and education
Beyond bachelor’s Total

Top income T = 0 T = 1
Y = 0 10,533 6,362 16,895
Y = 1 397 524 921
Total 10,930 6,886 17,816

The binary outcome variable ‘Top income’ (Y ) is defined
to be one if a respondent’s annual total pre-tax wage and
salary income is top-coded. In ACS 2018, the threshold
income for top-coding is different across states. In our
sample extract, the top-coded income bracket has median
income $565,000 and the next highest income that is not
top-coded is $327,000. The binary exposure variable (T ) is
defined to be one if a respondent has a master’s degree, a
professional degree, or a doctoral degree.

To adjust for individual differences, we include age and
industry code as covariates (X). In particular, cubic B-
splines of age with 17 inner knots as well as 254 industry
dummies are included in this specification, which can be
viewed as a high-dimensional setting.

Specifically, we implement ℓ1-penalized logistic estima-
tion with glmnet package in R (Friedman et al., 2010)
to estimate P(Y = 1|T = t,X = x), t = 0, 1 and
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P(T = 1|X = x) for the prospective model (respec-
tively, P(T = 1|Y = y,X = x), y = 0, 1 and P(Y =
1|X = x) for the retrospective model) with 10-fold cross-
fitting. The underlying assumption here is that the B-
spline terms plus the industry dummies are rich enough
to approximate P(Y = 1|T = t,X = x) as well as
P(T = 1|X = x) for the prospective model (respectively,
P(T = 1|Y = y,X = x) as well as P(Y = 1|X = x) for
the retrospective model). The penalization tuning param-
eter is chosen by cross-validation (that is, lambda.min
in the glmnet package). Here, we focus on ℓ1-penalized
estimators among other possible machine learning estima-
tors because the primitive conditions for Assumption 4.1
are well established for ℓ1-penalized logit estimators (e.g.,
van de Geer, 2008; Belloni et al., 2016), as we mentioned
in Section 4.2.

Table 2: Numerical results
Panel A: θ0 Prospective Retrospective
Estimate 0.72 0.71
Standard Error (0.12) (0.10)
Panel B: exp(θ0) Prospective Retrospective
Estimate 2.06 2.04
95% Confidence Interval [1.61,2.63] [1.67,2.49]

Table 2 reports estimation results. Looking at Panel A, the
prospective estimate of θ0 is 0.72, which is almost the same
as the retrospective estimate of 0.71. In Panel B, we present
point estimates of exp(θ0) and its confidence intervals us-
ing asymptotic normality obtained in Theorem 4.1.

The estimates of exp(θ0) are comparable to the usual odds
ratio in terms of its scale; therefore, they can be inter-
preted similarly. Furthermore, as can be seen from Ta-
ble 1, top income is a rare event (that is, the sample pro-
portion of P(Y = 1) is approximately 0.05). When the
outcome of interest is rare, an average of the conditional
odds ratio approximates the average of conditional rela-
tive risk, namely the average of the ratio between P(Y =
1|T = 1, X)/P(Y = 1|T = 0, X). Hence, obtaining a
higher-level degree is associated with doubling the chance
of earning very high incomes. The 95% confidence inter-
val for the prospective estimate is [1.61, 2.63] (respectively,
[1.67,2.49] for the retrospective model). As discussed in
Section 5.2, θ0 can be interpreted as the upper bound on
the causal parameter E{log ϑRR(X)} if one assumes the
MTR/MTS assumptions here.

Recall that the covariates consists of cubic B-splines of age
as well as industry dummies, resulting in 274 regressors.
As n = 17, 816, one may simply try to estimate a paramet-
ric logistic regression model with the same set of regres-
sors. However, it turns out that this flexible parametric ap-
proach suffers from a couple of numerical issues: (i) a very
small number of estimated coefficients are NA due to mul-
ticollinearity; (ii) some of predicted probabilities are nu-

merically zero. As a result, the conditional odds ratios are
not defined for all values of the regressors. To resolve these
problems, we make some ad hoc adjustments: (i) we ignore
the problematic regressors by setting their coefficients to be
zero; (ii) we set a lower bound on the fitted probabilities.
Specifically, any fitted probability less than 1e-6 is set to
be 1e-6. Then, we estimate θ0 by simply plugging the fit-
ted probabilities into the formula of θ0 = E{logOR(X)}.
The parametric plug-in estimates with the ad hoc adjust-
ments turn out to be 0.38 (prospective estimate) and 0.88
(retrospective estimate). The large difference between the
prospective and the retrospective estimates indicates that
there is an anomaly in the plug-in estimates. In addition, we
also consider plug-in estimation of θ0 using ℓ1-penalized
logistic estimation with the same specifications and tun-
ing parameters as in DML estimation. Hence, in this case,
the plug-in estimator is different from the DML estimator
in that (i) it uses a different estimating equation and (ii) it
does not use cross-fitting. The resulting plug-in estimates
are 0.78 (prospective estimate) and 0.68 (retrospective es-
timate). They look more similar to the DML estimators;
however, there is no theoretically proven result regarding
how to conduct inference with the ℓ1-penalized plug-in es-
timators.

6.2 A Monte Carlo Experiment

We turn to a Monte Carlo experiment to make a more sys-
tematic comparison between the plug-in and DML estima-
tors. We generate observations in the following way: (i)
the covariates are randomly drawn from the empirical dis-
tribution of the ACS sample; (ii) the binary exposure vari-
able is generated from a logit model with P(T = 1|X) =
G(α0 + α1Age + α2Age

2), where G(·) is the logit link
function and the parameters (α0, α1, α2) are chosen by
fitting the logit model with the ACS sample; (iii) the bi-
nary outcome variable is drawn from a logit model with
P(Y = 1|T,X) = G(β0+β1T+β2Age+β3Age

2), where
the parameters (β0, β1, β2, β3) are again chosen by fitting a
logit model with the ACS sample. In this experimental de-
sign, the true model is such that θ0 = β1 and the industry
effects are null. However, we fit exactly the same speci-
fications as in the previous real-data example to examine
the differences between the plug-in and DML estimators.
The only change made here is that 5-fold cross-validation
is adopted for DML estimation to speed up Monte Carlo
simulations. The sample size is n = 5, 000 and the number
of Monte Carlo replications is 500.

Table 3 summarizes the results of the experiments. The
prospective DML estimator has a much smaller mean bias
than the prospective plug-in estimator without increasing
the standard deviation. Further, its size (the probability of
excluding the true value of θ0 in the confidence interval)
is close to the 10% nominal level. The retrospective DML
estimator does not perform as well as the prospective DML
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Table 3: Results of the Monte Carlo Experiment
Estimator Mean Standard Size

Bias Deviation (10%)
Prospective plug-in 0.12 0.16 NA
Retrospective plug-in 0.12 0.16 NA
Prospective DML 0.05 0.16 0.89
Retrospective DML 0.09 0.16 0.84

estimator. This is due to the fact that experimental data
are generated from a prospective logit model. Overall, the
results of the experiment verify that the DML estimators
are superior to the plug-in estimators when the underlying
machine learning estimators are the ℓ1-penalized logistic
regression estimators.

7 CONCLUSIONS

Our proposed DML estimators offer a novel way of esti-
mating the summary measure of association, namely the
AAA functional θ0. In particular, we provide a method for
statistical inference on θ0 based on asymptotic normality of
our efficient DML estimators.

This paper has focused on binary outcome and exposure.
However, it is possible to define the AAA functional be-
yond the current setup. For example, following Tchet-
gen Tchetgen et al. (2010), we can define the conditional
odds ratio function as

OR(x) :=
f(y | t, x)
f(y | t0, x)

f (y0 | t0, x)
f (y0 | t, x)

,

where Y and T can take either discrete values, continu-
ous values, or a mixture of both; (y0, t0) is a user specified
point in the sample space; and f(y | t, x) is the conditional
density of Y given T = t and X = x with respect to a
dominating measure µ. It is a topic of future research to
develop this idea formally.
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Supplementary Materials for “Average Adjusted Association:
Efficient Estimation with High Dimensional Confounders”
A Proofs of Theorems

Proof of Theorem 3.1: The proof of Theorem 3.1 has two parts. We first establish the equivalence result in Theorem 3.1
and then show that Fr(Y, T,X) is the efficient influence function of θ0.

Proof of the equivalence result in Theorem 3.1:

The claim of Fp(Y, T,X) = Fr(Y, T,X) can be verified by checking the four cases of (Y, T ) equal to (0, 0), (0, 1), (1, 0),
or (1, 1). Below we will do this and show that

∆p1(Y, T,X)

P(T = 1 | X)
− ∆p0(Y, T,X)

P(T = 0 | X)
=

∆r1(Y, T,X)

P(Y = 1 | X)
− ∆r0(Y, T,X)

P(Y = 0 | X)
. (A.1)

In what follows we will use abbreviations like PT |X(t|x), PY |TX(y|t, x), etc., to denote P(T = t|X = x),P(Y = y|T =
t,X = x), and similar objects. Now, the left-hand side of equation (A.1) can be expressed as

TY aTY (X)− TaT (X)− Y aY (X) + ao(X),

where

aTY (x) =
1

PT |X(1|X)PY |TX(1|1, x)PY |TX(0|1, x)
+

1

PT |X(0|x)PY |TX(1|0, x)PY |TX(0|0, x)
,

aT (x) =
1

PT |X(1|x)PY |TX(0|1, x)
+

1

PT |X(0|x)PY |TX(0|0, x)
,

aY (x) =
1

PT |X(0|x)PY |TX(1|0, x)PY |TX(0|0, x)
,

ao(x) =
1

PT |X(0|x)PY |TX(0|0, x)
.

Similarly, the right-hand side of equation (A.1) is

TY bTY (X)− TbT (X)− Y bY (X) + bo(X),

where

bTY (x) =
1

PY |X(1|X)PT |Y X(1|1, x)PT |Y X(0|1, x)
+

1

PY |X(0|x)PT |Y X(1|0, x)PT |Y X(0|0, x)
,

bY (x) =
1

PY |X(1|x)PT |Y X(0|1, x)
+

1

PY |X(0|x)PT |Y X(0|0, x)
,

bT (x) =
1

PY |X(0|x)PT |Y X(1|0, x)PT |Y X(0|0, x)
,

bo(x) =
1

PT |X(0|x)PT |Y X(0|0, x)
.

Here, ao(x) = bo(x) by the Bayes rule. Also,

aY (x) =
PT |X(0|x)

PY T |X(1, 0|x)PY T |X(0, 0|x)
=
PY T |X(0, 0|x) + PY T |X(1, 0|x)
PY T |X(1, 0|x)PY T |X(0, 0|x)

=
1

PY T |X(1, 0|x)
+

1

PY T |X(0, 0|x)
= bY (X).

Similarly, aT (x) = bT (x) and aTY (x) = bTY (x) follows from simple algebra.
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Therefore, the proof of Theorem 3.1 will be complete if we show that Fr(Y, T,X) is the efficient influence function of θ0.
Before we do this, we prove several lemmas. Let Py(X) = P(T = 1 | Y = y,X) and let γ̃ = (p, γ)⊺ be the parameter
that denotes smooth regular parametric submodels, where γ parametrizes the conditional likelihood

Ly(T,X) = fX|Y (X | y)Py(X)T {1− Py(X)}1−T

and p is the parameter whose true value is p0 = P(Y = 1). So, regular parametric submodels will be denoted by using
fX|Y (x | y; γ) and Py(x; γ), along with the parameter γ. The truth will be denoted by γ̃0 = (p0, γ0)

⊺. We will use the
symbol ∂γg(γ0) to denote the derivative of the function g with respect to γ evaluated at γ0.

For y = {0, 1}, define

SX|Y (X | y) := ∂γ log fX|Y (X | y; γ0) and Ay(X) :=
∂γPy(X; γ0)

Py(X){1− Py(X)}
.

Note that SX|Y (X | y) is restricted only by E{SX|Y (X | y) | Y = y} = 0, while the derivatives ∂γPy(X; γ0) are
unrestricted.

Lemma A.1. The tangent space is given by the set of functions of the form

s(Y, T,X) = (1 − Y )
[
ã0(X) + {T − P0(X)}b̃0(X)

]
+ Y

[
ã1(X) + {T − P1(X)}b̃1(X)

]
+ κ(Y − p0),

where κ is a constant, and the functions ãy and b̃y for y = 0, 1 are such that E{ãy(X) | Y = y} = 0 and
E{s2(Y, T,X)} <∞.

Proof. The score along the regular parametric submodels at γ̃0 can be expressed as S(Y, T,X) =(
Sp(Y, T,X) Sγ(Y, T,X)

)⊺
, where

Sp(Y, T,X) =
Y − p0

p0(1− p0)
, (A.2)

Sγ(Y, T,X) = Y Sγ,1(T,X) + (1− Y )Sγ,0(T,X), (A.3)

where Sγ,y(T,X) = SX|Y (X|y) + {T − Py(X)}Ay(X) for y = 0, 1. Noting that SX|Y (X | y) is only restricted
by the conditional mean zero condition and ∂γPy(X; γ0) is unrestricted, the lemma follows from linear combinations of
Sp(Y, T,X) and Sγ(Y, T,X).

Consider θ0(γ̃) defined by
θ0(γ̃) := θY (1; γ)p+ θY (0; γ)(1− p),

where

θY (y; γ) =

∫
X
logORr(x; γ)fX|Y (x|y; γ)dx.

Lemma A.2. The derivatives of θ0(·) at γ̃0 are given by{
∂pθ0(γ̃0) = θY (1)− θY (0),

∂γθ0(γ̃0) = ∂γθY (1; γ0)p0 + ∂γθY (0; γ0)(1− p0),

where

∂γθY (y; γ0) =

∫
X

{
A1(x)−A0(x) + logORr(x)SX|Y (x | y)

}
fX|Y (x | y)dx (A.4)

Proof. It follows by direct calculation by using

∂γORr(x; γ0) = ∂γP1(x; γ0)
{1− P0(x)}

P0(x){1− P1(x)}2
−∂γP0(x; γ0)

P1(x)

P 2
0 (x){1− P1(x)}

=
{
A1(x)−A0(x)

}
OR(x).
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Proof of the influence function result in Theorem 3.1:

We are now ready to complete the proof of Theorem 3.1; we will show that Fr(Y, T,X) is the efficient influence function
of θ0. First, note that

Fr(Y, T,X) = (Y − p0){θY (1)− θY (0)}+ Y Fr1(T,X) + (1− Y )Fr0(T,X),

where

Fr1(T,X) := logORr(X)− θY (1) +
1

Q(X)

T − P1(X)

P1(X){1− P1(X)}
,

Fr0(T,X) := logORr(X)− θY (0)−
1

1−Q(X)

T − P0(X)

P0(X){1− P0(X)}
,

where Q(X) := P(Y = 1|X). Therefore, by Lemma A.1, Fr is clearly in the tangent space, and hence it suffices by
Lemma A.2 to show that

E{Fr(Y, T,X)Sp(Y, T,X)} = θY (1)− θY (0), (A.5)

and

E{Fr(Y, T,X)Sγ(Y, T,X)}

= E{A1(X)−A0(X)}+ p0

∫
X
logORr(x)SX|Y (x | 1)fX|Y (x | 1)dx

+ (1− p0)

∫
X
logORr(x)SX|Y (x | 0)fX|Y (x | 0)dx, (A.6)

where Sp and Sγ = Y Sγ,1 + (1− Y )Sγ,0 are provided in equations (A.2) and (A.3).

First, by using the fact that (Y − p0)Y = (1− p0)Y and (Y − p0)(1− Y ) = −p0(1− Y ), we obtain

Fr(Y, T,X)Sp(Y, T,X) =
(Y − p0)

2

p0(1− p0)
{θY (1)− θY (0)}+

Y

p0
Fr1(T,X)− 1− Y

1− p0
Fr0(T,X),

of which the expectation shows that equation (A.5) is satisfied.

Now, consider equation (A.6). Note that

Fr(Y, T,X)Sγ(Y, T,X) = Sγ(Y, T,X)(Y − p0){θY (1)− θY (0)}
+ Y Fr1(T,X)Sγ,1(T,X) + (1− Y )Fr0(T,X)Sγ,0(T,X), (A.7)

where the last two terms use the fact that Y (1 − Y ) = 0. Here, by using the fact that (Y − p0)Y = (1 − p0)Y and
(Y − p0)(1− Y ) = −p0(1− Y ) again, we obtain

E{(Y − p0)Sγ(Y, T,X)} = (1− p0)E{Y Sγ,1(T,X)} − p0E{(1− Y )Sγ,0(T,X)} = 0, (A.8)

where the last equality follows from E{Sγ,y(T,X) | Y = y} = 0. So, the first term on the right-hand side of equation (A.7)
has been taken care of.

For the second term on the right-hand side of equation (A.7), note that

E{Y Fr1(T,X)Sγ,1(T,X)}

= p0E
[{

logORr(X) +
1

Q(X)

T − P1(X)

P1(X){1− P1(X)}

}
Sγ,1(T,X)

∣∣∣ Y = 1
]

= p0E
[
logORr(X)SX|Y (X | 1) + 1

Q(X)

{T − P1(X)}2

P1(X){1− P1(X)}
A1(X)

∣∣∣ Y = 1
]

= p0E
{
logORr(X)SX|Y (X | 1)

∣∣ Y = 1
}
+ E

{Y A1(X)

Q(X)

}
= p0E

{
logORr(X)SX|Y (X | 1)

∣∣ Y = 1
}
+ E

{
A1(X)

}
, (A.9)
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where the last equality follows from the fact that E(Y |X) = Q(X). Similarly, the expectation of the third term on the
right-hand side of (A.7) is

E{(1− Y )Fr0(T,X)Sγ,0(T,X)} = (1− p0)E
{
logORr(X)SX|Y (X | 0)

∣∣ Y = 0
}
− E

{
A0(X)

}
. (A.10)

Combining equation (A.7) with (A.8) to (A.10) verifies equation (A.6). So, we are done.

Proof of Theorem 3.2: In the proof, we focus on the prospective estimating equation. The case of retrospective estimating
equation is similar. For simplicity, we suppress subscript p in the notation. Recall that for η = (a, b, c)⊺ ∈ G3, and

F̃ (η)[Y, T,X] = log

[
b(X){1− a(X)}
{1− b(X)}a(X)

]
− θ0 +

T

c(X)

{Y − b(X)}
b(X){1− b(X)}

− 1− T

1− c(X)

{Y − a(X)}
a(X){1− a(X)}

and
η0(x) =

(
P(Y = 1|T = 0, X = x),P(Y = 1|T = 1, X = x),P(T = 1 | X)

)⊺
.

Define

OR(η)[X] :=
b(X){1− a(X)}
{1− b(X)}a(X)

. (A.11)

Now, as in the proof of lemma A.2, we have

∂γ logOR
{
η0 + γ(η − η0)

}
[X]

∣∣
γ=0

=
b(X)− b0(X)

b0(x){1− b0(x)}
− a(X)− a0(X)

a0(x){1− a0(x)}
, (A.12)

where a0(X) := P(Y = 1|T = 0, X) and b0(X) := P(Y = 1|T = 1, X).

Define

∆0(η)[Y, T,X] = − 1− T

1− c(X)

{Y − a(X)}
a(X){1− a(X)}

,

∆1(η)[Y, T,X] =
T

c(X)

{Y − b(X)}
b(X){1− b(X)}

.

Then, we have that

E
(
∂γ∆0{η0 + γ(η − η0)}[Y, T,X]

∣∣
γ=0

∣∣∣ X)
=

a(X)− a0(X)

a0(X){1− a0(X)}
, (A.13)

E
(
∂γ∆1{η0 + γ(η − η0)}[Y, T,X]

∣∣
γ=0

∣∣∣ X)
= − b(X)− b0(X)

b0(X){1− b0(X)}
. (A.14)

Therefore, the conclusion follows from (A.12) to (A.14).

Proof of Theorem 4.1: As in the previous proof, we focus on we focus on the prospective estimating equation. The case
of retrospective estimating equation is similar. As before, we suppress subscript p in the notation.

We verify Assumptions 3.1 and 3.2 of Chernozhukov et al. (2018, C-DML hereafter). Following the notation used in
C-DML, we have ψ(W ; θ, η) = F̃r(η)[Y, T,X] with W = (Y, T,X): so, our case belongs to that of linear scores, namely

ψ(W ; θ, η) = ψa(W ; η)θ + ψb(W ; η),

where

ψa(W ; η) = −1,

ψb(W ; η) = logOR(η)[X] +
T

c(X)

Y − b(X)

b(X){1− b(X)}
− 1− T

1− c(X)

Y − a(X)

a(X){1− a(X)}

and OR(η)[X] is defined in (A.11).
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Verification of Assumption 3.1 of C-DML. Under Assumption 3.1, Specifically, Assumption 3.1 (a) of C-DML is satisfied
by (3.2); part (b) is by the linearity of the score ψ; part (c) is by Assumption 3.1; part (d) is by Theorem 3.2; part (e) follows
because E[ψa(W ; η0)] = −1.

Verification of Assumption 3.2 (b) of C-DML. It holds trivially that |ψa(W ; η)| is bounded by a constant uniformly in η.
Moreover, by Assumption 3.1, there is a constant c1 <∞ such that

|ψ(W ; θ, η)| ≤ c1

uniformly in η almost surely.

Verification of Assumption 3.2 (d) of C-DML. Let b0(X) = P(Y = 1|X,T = 1) and c0 = P(T = 1|X). Note that

E[ψ2(W ; θ, η0)] ≥ E

[
{logOR(X)− θ0}2 +

1

c0(X)

1

b0(X){1− b0(X)}

]
,

which is bounded from below by a constant under Assumption 3.1.

Since Assumption 3.2 (a) of C-DML is the definition of the first stage estimator, Theorem 4.1 follows immediately from
Theorems 3.1 and 3.2 of C-DML, provided that we verify the remaining Assumption 3.2 (c) of C-DML.

Verification of Assumption 3.2 (c) of C-DML. Using the notation used in C-DML, define

rn := sup
η∈TN

|E[ψa(W ; η)− ψa(W ; η0)]|,

r′n := sup
η∈TN

(E[|ψ(W ; θ, η)− ψ(W ; θ, η0)|2])1/2,

λ′n := sup
γ∈(0,1),η∈TN

|∂2γE[ψ(W ; θ, η0 + γ(η − η0))]|,

where TN ⊆ G3 is a nuisance realization set that is discussed in detail in C-DML.

Step 1. Note that rn = 0 since ψa(W ; η) does not depend on η.

Step 2. Now write that[
E
{
|ψ(W ; θ, η)− ψ(W ; θ, η0)|2

}]1/2
= ∥ψ(W ; θ, η)− ψ(W ; θ, η0)∥P,2 ≤ ∥B1∥P,2 + ∥B2∥P,2 + ∥B3∥P,2,

where

B1 := logOR(η)[X]− logOR(X),

B2 :=
T

c(X)

Y − b(X)

b(X){1− b(X)}
− T

c0(X)

Y − b0(X)

b0(X){1− b0(X)}
,

B3 :=
1− T

1− c(X)

Y − a(X)

a(X){1− a(X)}
− 1− T

1− c0(X)

Y − a0(X)

a(X){1− a0(X)}
.

Then, in view of Assumptions 3.1 and 4.1, there exists a sequence δ̃n → 0 such that[
E
{
|ψ(W ; θ, η)− ψ(W ; θ, η0)|2

}]1/2
≤ δ̃n

holds with probability at least 1− τn. This implies that we can take r′n = δ̃n.

Step 3. Define aγ(X) := a0(X) + γ{a(X) − a0(X)}, bγ(X) := b0(X) + γ{b(X) − b0(X)} and cγ(X) := c0(X) +
γ{c(X)− c0(X)}. Note that

∂γ logOR{η0 + γ(η − η0)}[X] =
b(X)− b0(X)

bγ(X){1− bγ(X)}
− a(X)− a0(X)

aγ(X){1− aγ(X)}
.
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In addition,

∂γ

[
{Y − aγ(X)}

aγ(X){1− aγ(X)}

]
= − a(X)− a0(X)

aγ(X){1− aγ(X)}
− {Y − aγ(X)}{1− 2aγ(X)}

a2γ(X){1− aγ(X)}2
{a(X)− a0(X)},

∂γ

[
Y − bγ(X)

bγ(X){1− bγ(X)}

]
= − b(X)− b0(X)

bγ(X){1− bγ(X)}
− {Y − bγ(X)}{1− 2bγ(X)}

b2γ(X){1− bγ(X)}2
{b(X)− b0(X)},

∂γ

[
T

cγ(X)

]
= −T{c(X)− c0(X)}

{cγ(X)}2
,

∂γ

[
1− T

1− cγ(X)

]
=

(1− T ){c(X)− c0(X)}
{1− cγ(X)}2

.

Combining these yields

∂γψ(W ; θ,η0 + γ(η − η0))

=
b(X)− b0(X)

bγ(X){1− bγ(X)}
− a(X)− a0(X)

aγ(X){1− aγ(X)}

− T

cγ(X)

[
b(X)− b0(X)

bγ(X){1− bγ(X)}
+

{Y − bγ(X)}{1− 2bγ(X)}
b2γ(X){1− bγ(X)}2

{b(X)− b0(X)}
]

+
1− T

1− cγ(X)

[
a(X)− a0(X)

aγ(X){1− aγ(X)}
+

{Y − aγ(X)}{1− 2aγ(X)}
a2γ(X){1− aγ(X)}2

{a(X)− a0(X)}
]

− T{c(X)− c0(X)}
{cγ(X)}2

[
Y − bγ(X)

bγ(X){1− bγ(X)}

]
− (1− T ){c(X)− c0(X)}

{1− cγ(X)}2

[
{Y − aγ(X)}

aγ(X){1− aγ(X)}

]
.

If we take the second-order derivative in the equation above, we can see that each term of the second-order derivatives on
the right-hand side can be bounded in absolute value by

χ(X) := C1{a(X)− a0(X)}2 + C2{b(X)− b0(X)}2 + C3{c(X)− c0(X)}2

for some appropriate constants C1, C2, and C3, because η is in G3 and |f(X)g(X)| ≤ {f2(X) + g2(X)}/2 for any
real-valued functions f and g. Therefore, by averaging X out, we obtain∣∣∂2γE[ψ(W ; θ, η0 + γ(η − η0))]

∣∣ ≤ E{χ(X)}.

Then, by Assumption 4.1, there exists a sequence δ̃′n → 0 such that

sup
γ∈(0,1),η∈TN

∣∣∂2γE[ψ(W ; θ, η0 + γ(η − η0))]
∣∣ ≤ δ̃′nn

−1/2

holds with probability at least 1− τn. Therefore, we can take λ′n = δ̃′nn
−1/2.

Proof of Theorem 5.1: We focus on the case, where m is evaluated at φp0, ϑ0, and an arbitrary point φr; the other case
is similar. Recall that

P(Y = 1 | T = 0, X) =
exp{φp0(X)}

1 + exp{φp0(X)}
, (A.15)

P(Y = 0 | T = 0, X) =
1

1 + exp{φp0(X)}
(A.16)

by the definition of φp0. Therefore,

P(Y = 1 | T,X) =
exp{φp0(X)} exp{ϑ0(X)T}

1 + exp{φp0(X)} exp{ϑ0(X)T}
(A.17)

=
P(Y = 1 | T = 0, X) exp{ϑ0(X)T}

P(Y = 0 | T = 0, X) + P(Y = 1 | T = 0, X) exp{ϑ0(X)T}
,
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where the second equality follows by dividing the numerator and the denominator by 1 + exp{φp0(X)}. Also,

P(Y = 0 | T,X) = 1− P(Y = 1 | T,X) (A.18)

=
P(Y = 0 | T = 0, X)

P(Y = 0 | T = 0, X) + P(Y = 1 | T = 0, X) exp{ϑ0(X)T}
.

So, we can combine equations (A.17) and (A.18) by

P(Y = y | T,X) = D−1P(Y = y | T = 0, X) exp{ϑ0(X)Ty}, (A.19)

where
D := P(Y = 0 | T = 0, X) + P(Y = 1 | T = 0, X) exp{ϑ0(X)T}.

Now,

E{m(φp0, φr, ϑ0, Y, T,X) | T,X} =
{
T − Λ0(φr, X)

}
E
[{
Y − Λ0(φp0, X)

}
exp{−ϑ0(X)TY } | T,X

]
,

where the expectation factor on the right-hand side is equal to

1∑
y=0

{y − Λ0(φp0, X)} exp{−ϑ0(X)Ty}P(Y = y | T,X)

= D−1
1∑

y=0

{y − Λ0(φp0, X)}P(Y = y | T = 0, X) = D−1
[
E{Y | T = 0, X} − Λ0(φp0, X)

]
= 0,

where the first equality is by equation (A.19). Therefore, the first assertion has been shown. For the second assertion, note
that

E{m(φp0, φr, ϑ, Y, T,X) | T = 0, X} = −Λ0(φr, X)E
{
Y − Λ0(φp0, X) | T = 0, X

}
= 0.

Further,

E{m(φp0, φr, ϑ, Y, T,X) | T = 1, X} =
{
1− Λ0(φr, X)

}
E
[
{Y − Λ0(φp0, X)} exp{−ϑ(X)Y } | T = 1, X

]
,

where the expectation factor on the right-hand side is equal to

1∑
y=0

{y − Λ0(φp0, X)} exp{−ϑ(X)y}P(Y = y | T = 1, X)

= D−1
1∑

y=0

{y − Λ0(φp0, X)} exp
[
y{ϑ0(X)− ϑ(X)}

]
P(Y = y | T = 0, X)

=
−Λ0(φp0, X) + {1− Λ0(φp0, X)} exp{φp0(X)} exp{ϑ0(X)− ϑ(X)}

D[1 + exp{φp0(X)}]

=

[
exp{ϑ0(X)− ϑ(X)} − 1

]
exp{φp0(X)}

D[1 + exp{φp0(X)}]2
,

where the first equality is by equation (A.19). Then, we note that this is equal to zero if and only if ϑ(X) = ϑ0(X).


