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Abstract

Convolutional deep sets is a neural network archi-
tecture that can model stationary stochastic pro-
cesses. This architecture uses the kernel smoother
and deep convolutional neural network to con-
struct translation equivariant functional represen-
tations. However, the non-parametric nature of
the kernel smoother can produce ambiguous rep-
resentations when the number of data points is
not given sufficiently. To address this issue,
we introduce Bayesian convolutional deep sets,
which constructs random translation equivari-
ant functional representations with a stationary
prior. Furthermore, we present how to impose the
task-dependent prior for each dataset because a
wrongly imposed prior can result in an even worse
representation than that of the kernel smoother.
Empirically, we demonstrate that the proposed ar-
chitecture alleviates the targeted issue in various
experiments with time-series and image datasets.

1 Introduction

Neural process (NP) and Conditional neural process (CNP)
[Garnelo et al., 2018a,b] are pioneering deep learning frame-
works that can model stochastic processes, i.e., the functions
over a distribution. That is, for any finite pairs of the in-
put and output, referred to as context sets, these models
output the predictive distribution on targeted inputs (target
sets) by extracting the feature from context sets. Specifi-
cally, these models employ Deep sets [Zaheer et al., 2017],
a specific structure of DNN, to reflect the exchangeability
of the stochastic process into a predictive distribution of the
NP. Many variants of NP [Singh et al., 2019, Yoon et al.,
2020, Louizos et al., 2019, Gordon et al., 2019, Foong et al.,
2020, Bruinsma et al., 2021, Kawano et al., 2020, Holder-
rieth et al., 2021] have been proposed to model stochastic
processes elaborately.
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Convolutional conditional neural process (ConvCNP) [Gor-
don et al., 2019] is a NP model that can model a stationary
process in which statistical characteristics of the finite ran-
dom variables, such as the mean and covariance, remain
unchanged even when the time indexes of those random
variables are shifted. ConvCNP employs a specific structure
of DNN, called Convolutional Deep sets (ConvDeepsets), to
construct the translation equivariant functional representa-
tion. This allows ConvCNP to incorporate the inductive bias
of stationarity, which is a desirable property for modeling
stationary processes.

ConvDeepsets employs the RBF kernel smoother [Nadaraya,
1964] to build a discretized functional representation of the
context set. This discretized representation is then mapped
to an abstract representation via a Convolutional neural
network (CNN), which is used to make the predictive dis-
tribution on the target set. This abstract representation can
be used to model stationary processes because the kernel
smoother and convolution operation produce a consistent
representation regardless of the translated inputs of the con-
text sets. However, when the number of context data points
is insufficient, the representation by the kernel smoother
could be ambiguous because the kernel, a non-parametric
model, has the expressive power depending on the amount
of given context data points. This potentially degrades the
CNN representation and the modeling performance of Con-
vCNP, which is analogous to the task ambiguity issue [Finn
et al., 2018] in model-agnostic meta-learning (MAML)
[Finn et al., 2017].

To mitigate the issue of task ambiguity, one intuitive ap-
proach is to incorporate the inductive bias on the representa-
tion for the kernel smoother. In fact, the Bayesian approach,
which imposes prior distribution on the model parameters,
has been effective in addressing task ambiguity in MAML
[Finn et al., 2018]. However, using the prior distribution also
raises the question of which prior distribution should be used
because an incorrect choice for the prior distribution could
degrade the ConvCNP representation and performance.

In this work, we propose Bayesian convolutional Deep sets
that uses a task-dependent stationary prior to construct ran-
dom functional representations. To this end, we first con-
sider a set of stationary kernels, each characterized by its
own distinct spectral density. Then, we construct a task-
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dependent prior using an amortized latent categorical vari-
able modeled by a translate-invariant neural network. Thus,
the latent variable assigns an appropriate kernel out of the
candidate set depending on the task. Next, we generate
Gaussian process (GP) posterior sample functions using
the chosen kernel and forward those sample functions via
CNN. We refer to this as the representation of Bayesian
ConvDeepsets. Importantly, we prove that the representa-
tion of Bayesian ConvDeepsets still satisfies the translation
equivalence necessary for modeling the stationary process.

For training, we use variational inference based on a meta-
learning framework. Additionally, we consider an additional
regularizer that allows the translate-invariant neural network
to select the stationary prior appropriately depending on
the task. Empirically, we demonstrate that the proposed
method relaxes the task ambiguity issue in both time series
and image datasets by utilizing a task-dependent prior. Our
contributions can be summarised as follows:

• We propose Bayesian ConvDeepsets using a task-
dependent stationary prior and ensure that it still satisfies
translation equivariance.

• We demonstrate that Bayesian ConvDeepsets improves
the performance of ConvCNP on various tasks of station-
ary process modeling, especially when the number of
context data points is insufficiently given.

2 Preliminaries

Neural Process. NP uses Deepsets, a specific architecture
of DNN [Zaheer et al., 2017], to reflect the exchangeability
of the stochastic process into the predictive distribution of
the NP and employs the meta-learning for training.

Let Dc={(xc
n, y

c
n)}N

c

n=1 be a context set consisting of the
context inputs Xc={xc

n}N
c

n=1 and outputs Y c={ycn}N
c

n=1.
Similarly, let Dt={(xt

n, y
t
n)}N

t

n=1 be a target set con-
sisting of the target inputs Xt={xt

n}N
t

n=1 and outputs
Y t={ytn}N

t

n=1. Let T = (Dc, Dt) be a task consisting of
the context set and target set and p(T ) be a task distribution.
Then, for any task T ∼ p(T ), NP employs a neural network
gnn to model the predictive distribution on target inputs Xt:

gnn :
(
Dc, Xt

)
7−→

(
µnn(D

c, Xt), σnn(D
c, Xt)

)
, (1)

which maps the context set Dc and the target inputs Xt to
the predictive mean µnn(D

c, Xt) and standard deviation
σnn(D

c, Xt). For training, NP is optimized with respect to
model parameters θg with following objective:

max
θg

EDc,Dt∼p(T )

[
log p

(
Y t|gnn

(
Xt, Dc

))]
. (2)

Translation Equivariance. A stationary process is a
stochastic process where the statistical characteristics of
the finite random variable of the process remain unchanged

even when there is a shift in time. To model a stationary
process, functions should satisfy the special conditions re-
ferred to as Translation Equivariance (TE). Mathematically,
TE can be defined as follows:

Definition 1 ([Gordon et al., 2019]). Let X = Rd and
Y ⊂ Rd′

be space of the inputs and outputs, and let D =
∪∞m=1(X ×Y)m be the joint space of the finite observations.
Also, let H be a space of bounded continuous function on
X , and T and T ∗ be the mappings:

T : X ×D → D, Tτ (D) = {(xn + τ, yn)}Nn=1

T ∗ : X ×H → H, T ∗
τ (h(•)) = h(• − τ)

where D = {(xn, yn)}Nn=1 ∈ D denotes N pairs of the
inputs and outputs, τ ∈ X denotes translation variable for
the inputs, and h(•) ∈ H denote the bounded continuous
function for any input • ∈ X . Then, a functional mapping
Φ:D → H, that maps finite data points D ∈ D to a function
h ∈ H, is translation equivariant if the following holds:

Φ ◦ (Tτ (D)) = T ∗
τ ◦ (Φ(D)). (3)

Roughly speaking, Definition 1 implies that the function
satisfying the TE should produce a consistent functional
representation up to the order of translation.

Convolutional Deep Sets. ConvDeepsets is a specific ar-
chitecture of the neural network satisfying the TE in Eq. (3)
and thus can be used to model stationary process. The fol-
lowing proposition introduces the ConvDeepsets structure.

Proposition 1 ([Gordon et al., 2019]). The representation
Φ(D)(•) is translation equivariant if and only if Φ(D)(•) is
represented as:

E(D)(•)︸ ︷︷ ︸
functional

representation

=
[ N∑

n=1

k(• − xn)︸ ︷︷ ︸
density

,
N∑

n=1

yn k(• − xn)∑N
n=1 k(• − xn)︸ ︷︷ ︸

data representation

]
,

Φ(D)(•)︸ ︷︷ ︸
ConvDeepsets
representation

= ρ︸︷︷︸
mapping via

CNN

◦ E(D)(•)︸ ︷︷ ︸
functional

representation

(4)

where k(•−xn) denotes the stationary kernel centered at xn,
and ρ(•) is the continuous and translation equivariant map-
ping. Here, RBF kernel function is used for k(•), and ρ(•) is
parameterized by Convolutional neural network (CNN).

Neural Process with Convolutional Deepsets. ConvCNP
[Gordon et al., 2019] and ConvLNP [Foong et al., 2020] are
well-known NP models for stationary process modeling by
using ConvDeepsets as the main structure of the NP model.

To employ the functional representation of ConvDeepsets
in practice, these models first consider M discretized in-
puts {tm}Mm=1 ⊂ [minX,maxX] by spacing the range of
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inputs X = Xc ∪ Xt linearly. Then, these models con-
struct the functional representation {Φ(Dc)(tm)}Mm=1 on
M discretized inputs {tm}Mm=1 as follows:

Φ(Dc)(tm) = (ρ ◦ E(Dc)) (tm) m = 1, ..,M. (5)

This discretized representation {Φ(Dc)(tm)}Mm=1 is used to
obtain the parameters of the predictive distribution µnn(X

t)
and σnn(X

t) as shown in Eq. (1). Specifically, the smoothed
representation Φ̃(Dc)(xt

n), represented as

Φ̃(Dc)(xt
n) =

M∑
m=1

Φ(Dc)(tm) k(xt
n − tm), (6)

is used to model the predictive distribution on target inputs
xt
n ∈ Xt. For grid dataset, we can omit the discretization

procedure and employ the CNN directly as described in
[Gordon et al., 2019].

3 Methodology

In this section, we first interpret the representation of the
ConvDeepsets and its motivation in Section 3.1. Then, we
introduce the task-dependent stationary prior in Section 3.2,
Bayesian ConvDeepsets in Section 3.3, and its application to
stationary process modeling in Section 3.4. Fig. 2 outlines
the prediction procedure via Bayesian ConvDeepsets that is
described in Sections 3.2 to 3.4.

3.1 Interpretation of ConvDeepsets Representation

The data representation of E(Dc)(•) in Eq. (4) is constructed
by the RBF kernel smoother known as the non-parametric
model. The lengthscale of the RBF kernel controls the
smoothness of the data representation; when the length-
scale is close to 0, the data representation is expressed as∑Nc

n=1 y
c
n δ(• − xc

n) with a Dirac-delta function δ(•). This
implies that the expressive power of the kernel smoother is
proportional to the number of context points N c. If only a
few context data points (small N c) are available, the data
representation may be ambiguous and thus negatively affect
Φ(Dc)(•) and the overall modeling performance of the NP
models.

To address the issue, we note that the data representation
of E(Dc)(•) in Eq. (4) can also be expressed as the re-
scaled predictive mean of GP posterior with the restricted
covariance Diag(K(Xc, Xc)), as follows:

Nc∑
n=1

ycn k(• − xc
n)∑Nc

n=1 k(• − xc
n)

(7)

=
1∑Nc

n=1 k(• − xc
n)

K(•, Xc)Diag(K(Xc, Xc))−1Y c︸ ︷︷ ︸
predictive mean of GP posterior

where [Diag(K(Xc, Xc))]n,m = 1n=m and K(•, Xc) ∈
R1×Nc

and the stacked context outputs Y c ∈ RNc

. Based

small context set (N c=5)

true ConvDeepset context

large context set (N c=20)

(a) Data representation of ConvDeepsets

spectral density p(s)

kernel1 kernel2 kernel3

stationary functional priors

Prior 1 Prior 2 Prior 3

small context set (N c=5)

true Posterior 2 context

large context set (N c=20)

true Posterior 1 context

(b) Data representation with stationary functional prior

Figure 1: Comparison of data representations over different
N c context points. Fig. 1a shows the data representation of
E(Dc) for ConvDeepsets; the black dots denotes the context
set Dc, and black and blue line denote the true function
and the data representation, respectively. Fig. 1b shows
the stationary priors characterized by each spectral density
pq(s) in Eq. (9), and the improved data representation due
to the reasonably imposed prior, especially for the N c = 5.

on this observation, we hypothesis that (1) employing a
suitable stationary GP prior depending on each task, and
(2) using or adding GP posteriors sample functions to rep-
resent the data part in E(Dc)(•) could alleviate unclear
ConvDeepsets representation when using only a small N c

context data points. Fig. 1 describes our concern for data
representation and a intuitive approach to resolve this issue.

3.2 Amortized Task-Dependent Stationary Prior

To impose the appropriate prior depending on the task, we
employ an amortized latent variable approach. To this end,
we employ Bochner’s theorem [Bochner, 1959] that explains
how the stationary kernel can be constructed as the inverse
Fourier transform of the spectral density. We first consider Q
spectral densities {pq(s)}Qq=1 where the q-th density pq(s) is
modeled as Gaussian distribution with parameters {µq, σ

2
q}:

pq(s) = N
(
s;µq,Diag(σ2

q )
)
. (8)

Then, we construct the q-th stationary kernel kq(τ) by taking
a inverse Fourier transform of pq(s) as follows:

kq(τ) =

∫
ei2πs

T τpq(s)ds

= exp
(
−2π2τT Diag(σ2

q )τ
)
cos (2πµqτ). (9)
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Step6: Predictive distribution 

Step2: Stationary functional priors  Step1: Context set

𝐷𝐶 = 𝑥𝑛
𝑐 , 𝑦𝑛

𝑐
𝑛=1
𝑁𝑐

Step3: Representations by imposed priors

Density channel

Data representations

Step4: Discretization for representations

𝑅𝐸 𝑛 𝐷𝑐 𝑡
𝑛=1

𝑁
∀𝑡 ∈ 𝑡1, . . , 𝑡𝑀

Step5: Mapping representations by CNN

Φ 𝑛
𝐵 𝐷𝑐 = 𝜌 ∘ 𝑅𝐸 𝑛 𝐷𝑐

Figure 2: Prediction procedure: Step 1: Given context set Dc. Step 2: Consider the random stationary functions {ϕq}Qq=1

of Eq. (15). Step 3: Assign the task-dependent kernel by Eqs. (12) and (14) out of stationary priors in Step 2, and construct
N random representations {RE(n)(D

c)(•)}Nn=1 in Eq. (19). Step 4: Discretize the representation as explained in Eq. (5).
Step 5: Map the discredited representation via CNN, i.e., ΦB

(n)(D
c)(•). Step 6: Smooth the mapped representations by

Eq. (6), and make prediction distribution by Eq. (22). For the Step 4 and 5, one random representation is depicted for clarity.

We order {kq}Qq=1 by µ1=0 and µ1 ≤ .. ≤ µQ in element-
wise sense. Then, we consider the categorical latent variable
Zcat = (z1, .., zQ) ∈ {0, 1}Q, with

∑Q
q=1 zq = 1, of which

distribution is defined as follows:

q(Zcat | Dc) = Cat (Zcat ; pnn(D
c)) , (10)

where pnn : Dc −→ ∆Q−1, with Q-dimension simplex
∆Q−1, denotes the translate-invariant NN satisfying

pnn(Tτ (D
c)) = pnn(D

c). (11)

This is designed to make the derived functional representa-
tion satisfy the TE, which is stated in Proposition 2. Specific
structure, used in this work, is described in Appendix A.2.1.

Using the kernels {kq(τ)}Qq=1 in Eq. (9) and the latent vari-
able Zcat in Eq. (10), we build the amortized latent station-
ary kernel depending on the context set Dc:

k(τ) | Zcat, D
c = z1k1(τ) + · · · + zQkQ(τ). (12)

Multi-channel Extension. The latent stationary kernel in
Eq. (12) can be extended for multi-channel processes (K
channels) by considering K-th channel categorical variables
{Zk

cat}Kk=1 with Zk
cat|Dc ∼ Cat(pknn(D

c)), where pknn(D
c)

denotes an amortized parameter for k-th channel.

3.3 Bayesian Convolutional Deep sets.

With the latent stationary kernel in Eq. (12), we present the
Bayesian ConvDeepsets using the task-dependent stationary
prior. We employ the GP posterior path-wise sampling
[Wilson et al., 2020] to build the random data representation
efficiently.

Let f(Dc)(•) be the random data representation for the con-
text set Dc. Then, f(Dc)(•) can be represented via terms of

the prior function and the update function:

f(Dc)(•)︸ ︷︷ ︸
random data
representation

:=

Q∑
q=1

√
zq ϕq(•)︸ ︷︷ ︸

prior term

+

Nc∑
n=1

vn k(• − xc
n)︸ ︷︷ ︸

update term

. (13)

For the prior function, we first construct the random samples
(z1, .., zQ) of the latent categorical variable of Eq. (10), i.e.,

(z1, .., zQ) ∼ Cat (Zcat ; pnn(D
c)) (14)

by applying Gumbel-softmax trick [Jang et al., 2016] to
the output of pnn(D

c). Then, based on random Fourier
feature (RFF) [Rahimi and Recht, 2007, Jung et al., 2022],
we construct the q-th random stationary function ϕq(•) ∼
GP (0, kq) as follows:

{wq,i}li=1∼N(0, I), {sq,i}li=1∼pq(s), {bq,i}li=1∼U [0, 2π],

ϕq(•) =

√
2

l

l∑
i=1

wq,i cos (2π⟨sq,i, •⟩+ bq,i), (15)

where wq,i denotes the random weight samples, sq,i and bq,i
denote the spectral points sampled from pq(s) and phase
sampled from uniform distribution U [0, 2π], respectively.

For the update function, we use the expected kernel, that is
integrated over the latent categorical variable Zcat:

k(• − xc
i ) = Eq(Zcat|Dc)

[
k(• − xc

i ) | Zcat(D
c)
]
. (16)

We use smoothing weight vn ∈ R for n-th context input xc
n:

vn =
[
K(Xc, Xc)+σ2

ϵ I)
−1 (Y c −Ψ(Xc))

]
n
, (17)

where K(Xc, Xc) ∈ RNc×Nc

denotes Gram matrix of the
expected kernel k in Eq. (16), and Y c ∈ RNc

denotes the
stacked vector of the context outputs {ycn}N

c

n=1. Ψ(Xc) ∈
RNc

denotes the values of the random stationary function
on Xc, which is computed by the prior term in Eq. (13).
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Computational Efficiency. The random data represen-
tation in Eq. (13) can be constructed in a more computa-
tionally efficient way. This is because Eq. (13) requires
Cholesky decomposition once for {vn}N

c

n=1 and thus takes
computational cost O((N c)3 +M(Ql)) with l random
Fourier features and Q mixtures. On the other hand, the con-
ventional GP sampling method requires O((N c)3 +M3)
computational cost due to two Cholesky decompositions to
compute predictive parameters and sample the functions on
grid. Hence, the proposed functional representation is more
computationally efficient due to Ql,N c ≪ M in the gen-
eral setting. The details and evidence supporting this claim
are further elaborated in Appendix A.3.2 and demonstrated
in Appendix B.4.

Scalable Approximation for Grid inputs. For grid in-
puts, we present a scalable approximation of Eq. (13):
f(Dc)(•) ≈ (18)

α

Q∑
q=1

√
zqϕq(•)︸ ︷︷ ︸

prior term

+k̃ ∗
( Nc∑

n=1

ycnδ(• − xc
n)︸ ︷︷ ︸

data term

−α
Q∑

q=1

√
zqϕq(•)︸ ︷︷ ︸

prior term

)
,

where α ∈ (0, 1) denotes the hyperparameter that controls
how much the stationary prior is reflected on f(Dc)(•). k̃ de-
notes the filter of convolution, and is set to be the truncated
expected kernel of Eq. (16) with the finite length (filter win-
dow size). This approximation scheme is designed to reflect
the stationary prior and the data term on the data represen-
tation as f(Dc)(•) constructs the representation in Eq. (13).
We demonstrate that Eq. (18) alleviates the task ambiguity
on the large-sized image completion task in Section 4.3.

Bayesian ConvDeepsets. With the random data repre-
sentation f(Dc)(•) in Eqs. (13) and (18), we define a ran-
dom functional representation RE(D)(•) and Bayesian Con-
vDeepsets ΦB(Dc)(•) in the similar way with ConvDeepsets
Φ(Dc)(•) in Eq. (4) as follows:

RE(Dc)(•)︸ ︷︷ ︸
random functional

representation

=
[ Nc∑

n=1

k(• − xc
n)︸ ︷︷ ︸

density

, f(Dc)(•)︸ ︷︷ ︸
random data
representation

]
,

ΦB(Dc)(•)︸ ︷︷ ︸
Bayes ConvDeepsets

representation

= ρ︸︷︷︸
mapping via

CNN

◦ RE(Dc)(•)︸ ︷︷ ︸
random functional

representation

(19)

We prove that Bayesian ConvDeepsets still holds the trans-
lation equivariance (TE) in the following proposition.

Proposition 2. If Bayesian ConvDeepsets ΦB(D)(•) is de-
fined on the finite grid points, ΦB(D)(•) is still translation
equivariant in distribution sense, i.e.,

ΦB ◦ (Tτ (D))
d
= T ∗

τ ◦ (ΦB(D)). (20)

Proof. The proof can be checked in Appendix A.3.1.

3.4 Prediction and Training

Prediction. NP model using the Bayesian ConvDeepsets
builds the predictive distribution p(Y t|Xt, Dc) as follows:

p(Y t|Xt, Dc) (21)

=

∫
p(Y t|Xt,ΦB)p(ΦB|ZCat, D

c) p(ZCat|Dc) dΦBdZCat

≈ 1

N

N∑
n=1

p(Y t|Xt,ΦB
(n)(D

c))

where ΦB(Dc) denotes the random representation of the
Bayesian ConvDeepsets on finite grid {tm}Mm=1, and
ΦB

(n)(D
c) denotes the n-th instance. The n-th predictive

distribution p(Y t|Xt,ΦB
(n)(D

c)) is modeled as follows:

p(Y t|Xt,ΦB
(n)(D

c)) =

Nt∏
i=1

p
(
yti | xt

i,Φ
B
(n)(D

c)
)

(22)

=

Nt∏
i=1

N
(
yti | µ(n)(x

t
i), σ

2
(n)(x

t
i)
)

where the n-th predictive mean µ(n)(x
t
i) and standard de-

viation σ2
(n)(x

t
i) are obtained by forwarding the smoothed

feature Φ̃B
(n)(D

c)(xt
i), described in Eq. (6), by MLP layer.

Training. Let Θ = {θkernels, θpnn
, θρ, θmlp} be the learn-

able parameters for kernels {kq}Qq=1 in Eq. (9), the translate
invariant network pnn in Eq. (11), the CNN ρ in Eq. (19),
and the MLP layer in Eq. (22). Then, based on meta-learning
framework, the NP model is trained by maximizing the fol-
lowing objective with respect to the parameters Θ:

EDc,Dt∼p(T )

[
Lll(Θ;Dc, Dt)− βLreg(Θ;Dc, Dt)

]
(23)

where Lll(Θ;Dc, Dt) denotes the log likelihood, and
Lreg(Θ;Dc, Dt) denotes the regularizer that induces the
network pnn(D

c) in Eq. (10). β denotes the hyperparameter
that controls the effect of the regulaizer.

The log likelihood is expressed as follows:

log

 1

N

N∑
n=1

exp

 Nt∑
i=1

log p
(
yti | xt

i,Φ
B
(n)(D

c)
),

which can be optimized in end-to-end manner based on the
automatic differentiation by [Jang et al., 2016, Jung et al.,
2020].

The regularizer Lreg(Θ;Dc, Dt) is expressed as follows:

KL
(
q(Zcat | Dc) || p(Zcat | Dc, Dt)

)
where q(Zcat|Dc) denotes the amortized categorical distri-
bution in Eq. (10). p(Zcat|Dc, Dt) denotes the posterior dis-
tribution, which will be used as the prior distribution to train
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(f) Predictive distribution of each baseline on each process (Nc = 15)

Figure 3: Stochastic processes modeling beyond training range (gray region [4, 8]): Fig. 3a denotes the trained spectral
density of Eq. (9) with Q = 4 kernels. Figs. 3b to 3e denote the output of pnn(Dc) for 128 context set {Dc

n}128n=1 per each
process. Fig. 3f shows the predictive distributions of the baselines on each process.

network pnn(D
c) in q(Zcat |Dc). Note that p(Zcat|Dc, Dt)

can be computed only during training phase.

The posterior p(Zcat|Dc, Dt) is modeled as a categorical
distribution Cat(Zcat; pprior) with the parameter pprior ∈
∆Q−1, where the q-th element (pprior)q is defined:

(pprior)q =
exp (log p(Y t|Xt, Dc, kq) / τ0)∑Q
q=1 exp (log p(Y

t|Xt, Dc, kq) / τ0)
(24)

where τ0 denotes the temperature parameter. The marginal
likelihood p(Y t|Xt, Dc, kq), using the q-th stationary ker-
nel kq , is computed as

p(Y t|Xt, Dc, kq) = N
(
Y t; µ̂q(X

t),Diag(σ̂2
q (X

t))
)

where µ̂q(X
t) ∈ RNt and Diag(σ̂2

q (X
t)) ∈ RNt×Nt de-

note the empirical predictive mean and diagonal covariance
of the GP posterior distribution on target set Xt. For compu-
tational efficiency, we use GP posterior sample functions in
Eq. (13). The derivation of the training objective and further
details are described in Appendix A.3.3.

4 Experiments
In this section, we validate the following main question:

Does the Bayesian ConvDeepsets alleviate the task ambigu-
ity arising from the small number of context data points?

We validate this question on the 1-d regression in Sec-
tion 4.1, multi-channel regression in Section 4.2, and large-
sized image completion in Section 4.3. The detailed setting

and additional results are given in Appendices B to D. Our
implementation is available at https://github.com/
becre2021/BayesConvdeepset.

4.1 Single-Channel Regression

We conduct the 1-d regression task based on meta learning
framework; given each context set Dc = {(xc

n, y
c
n)}N

c

n=1,
the model constructs the predictive distribution for target
set Dt = {(xt

n, y
t
n)}N

t

n=1. Specially, we consider small
N c for the training context set Dc to investigate how N c

data points affects the ConvDeepsets representation and the
modeling performance. For each task, we set the number
of context points N c ∼ U(5, 25) and target points N t ∼
U(N c, 50), using half the number of context data points
compared to the setting of the ConvCNP [Gordon et al.,
2019]. In addition, we consider different task diversity to
investigate whether task-dependent prior can be effective
even when N c is insufficiently small to recognize each task.

For training and validation, we use the tasks generated on
[0, 4] (training range). For test, we evaluate the trained
models with the tasks on [4, 8] to check the TE in Eq. (20).

Dataset. We use 4 different stochastic processes used in
[Gordon et al., 2019]: GP using the RBF, Matern- 52 , and
Weakly periodic kernel, and sawtooth process that is not
GP. For task diversity, we randomly generate each task
by choosing one of these processes and use it for training.
This setting differs from that conducted in [Gordon et al.,
2019, Foong et al., 2020], where NP models are trained and

https://github.com/becre2021/BayesConvdeepset
https://github.com/becre2021/BayesConvdeepset
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Figure 4: Results of the training with N c ∼ U(5, 25) context points.
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Figure 5: Results of the training with N c ∼ U(10, 50) context points.

evaluated independently on each stochastic process.

Baselines. We use the Attentive NP (ANP) [Kim et al.,
2018], ConvCNP [Gordon et al., 2019], ConvLNP [Foong
et al., 2020], GPConvCNP [Petersen et al., 2021] that uses
the sample function of GP posterior with RBF kernel.

Results. Fig. 3 describes the imposed priors per each pro-
cess and the corresponding prediction results. Fig. 3a dis-
plays the spectral densities {pq(s)}4q=1 for the trained ker-
nels (Q = 4). Figs. 3b to 3e show the output of pnn(Dc), i.e.
the parameters of Cat (Zcat; pnn(D

c)) for 128 context sets
{Dc

n}128n=1 per each process. Fig. 3f shows the prediction
results for one task (N c = 15), where each column and row
shows the task of each process and the NP models.

The proposed model imposes the stationary prior differently
depending on the tasks of each process, and the prediction
on RBF and WeaklyPeriodic task is affected by the different
stationary prior of kernels 1 and 3.

Fig. 4 describes the mean and one-standard error of test
log likelihood for 1024 tasks (beyond training range); for
evaluation, we set the varying number of context data
points N c ∈ {5, 10, 15, 20, 25} and target points N t = 50
to investigate the effectiveness of the proposed method.
Fig. 5 denotes the corresponding result when the models
are trained with the larger number of the context data points
N c ∼ U(10, 50). We obtain the following observations:

• When the small N c context points are allowed for train-
ing, the NP model using Bayesian ConvDeepsets (Q ∈
{3, 4, 5}) predicts the target set most accurately (high log

likelihood) for the tasks of each process; for small context
points N c ∈ {5, 10}, the proposed method outperforms
ConvCNP with a large margin.

• GPConvCNP and ConvCNP show good prediction per-
formance on specific process (GPConvCNP: RBF, Con-
vCNP: Sawtooth), whereas the proposed method show
good prediction performance on all processes. ANP
shows the bad generalization on tasks beyond the training
range, and thus can not be reported together.

• When the large N c context points are allowed for training,
the NP model (Q = 4) still shows superior prediction
performance. However, the performance gap between the
proposed model and ConvCNP is reduced. This indicates
that the proposed Bayesian Convdeepsets is significantly
effective for the targeted issue arising from the small
number of context data points.

Additional studies for the computational efficiency of the
data representation f(Dc)(•) in Eq. (13) and the effect of
the size of amortized neural network pnn(D

c) in Eq. (11)
are investigated in Appendix B.4.

4.2 Multi-Channel Regression
Experiment setting. We conduct the multi-channel regres-
sion task. We consider different task diversities to investi-
gate the effectiveness of the task-dependent prior, especially
for a small number of context points N c ∼ U([5, 25]).

Dataset. We use 3 channels sinusoidal process where i-
channel function fi is represented as

fi(t) = Ai sin (2π(wi + θi)(t− ϕi)) + ϵ, ϵ ∼ N(0, 0.12),
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Figure 6: 3 channel sinusoidal processes modeling: Figs. 6a and 6b denotes test likelihood on sinusoidal processes having
different task diversity. Fig. 6c denote the trained spectral density of Eq. (9) for the Sinusoidal-all process, and Figs. 6d and 6e
show the chosen prior and corresponding prediction for 2 tasks; as the context sets having small frequency characteristics
are given (from first to second row in Fig. 6e), the stationary prior is imposed differently (from top to bottom in Fig. 6d)

where {Ai, wi, ϕi}3i=1 denotes the i-channel amplitude, fre-
quency, and phase parameters. For task diversity, one pro-
cess is generated from the fixed amplitude Ai, frequency wi,
and a varying phase parameter ϕi that is sampled differently
for each task. Another process is generated from the varying
amplitude, frequency, and phase, which is regarded to have
high diversity. For the details, see Appendix C.1.

Results. Figs. 6a and 6b describe the mean and one-
standard error of test log likelihood for 1024 tasks beyond
training range. Fig. 6a shows the less diversity task (vary-
ing phase), and Fig. 6b corresponds to that of the high
diversity task (varying amplitude, frequency, and phase).
These figures show the proposed method can model all si-
nusoidal processes tasks well even with high diversity tasks.
Fig. 6c shows the trained spectral densities {pq(s)}5q=1 for
the high diversity tasks. Fig. 6d denotes the parameters
pnn(D

c) for two tasks (top and bottom), and Fig. 6e shows
the corresponding predictions. This demonstrates how task-
dependent priors are imposed and affect prediction on target
set. We confirm similar results on another dataset (GP with
MOSM kernel [Parra and Tobar, 2017]) in Appendix C.4.

4.3 Image Completion

Experiment setting. We conduct the image completion
task using a monthly land surface temperature set used in
[Remes et al., 2017] because the temperature exhibits dif-
ferent local stationarity depending on the month. Each task
is to predict the image of the temperature when only partial
pixel values are given. The temperature of North Amer-

ica (53×115×3) and Europe (78×102×3) are used for the
training (2018 - 2020), and for the test (2021).

For each task, we set N c and N t to be proportional
to the size of the image by randomly choosing a low
context rate p ∈ {.01, .05, .10, .20} with probability
[4/10, 3/10, 2/10, 1/10]. This setting is indented to investi-
gate how NP models predict the image when trained with a
small number of context points N c in each context set Dc.

We compare the following baselines: ConvCNP, the pro-
posed NP using the scalable approximation of Eq. (18)
with Q=1 (task-independent RBF prior), and Q=4 (task-
dependent prior). We do not compare GPConvCNP and the
proposed NP using the random representation Eq. (13) be-
cause constructing random data representations with large-
sized images (North America: 53×115×3 and Europe:
78×102×3) caused memory issue for conventional and
path-wise GP posterior sampling.

For the prior coefficient α in Eq. (18), we consider α ∈
{.05, .10} and pick α = .10 having the best performance
on the validation set. Additionally, the effect of α is investi-
gated in Appendix D.4.

Results. Fig. 7 shows the Europe images (June and De-
cember of 2021), context sets with p ∈ {.05, 0.10}, and
the corresponding predictive mean of each model. The pa-
rameters, obtained by 10000 training tasks, are used for
prediction results. Compared to the targeted image in the
leftmost column, the proposed NP yields more accurate
predictions than ConvCNP.
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Figure 7: Prediction results for two Europe temperatures (June 2021 and December 2021) that is out of training sets.
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Figure 8: Prediction results of each 256 tasks over context rates p ∈ {.01, .05, .10, .20} and target rate p = .50.

Figs. 8a and 8c describe the log likelihood for North Amer-
ica and Europe datasets (2018 - 2020), respectively; the dot-
ted (·) and straight (-) line denote the results obtained from
training on 5000 and 10000 tasks, respectively. Figs. 8b
and 8d show the corresponding result of out-of-training set
(2021). We compare ConvCNP and the proposed NP with
Q = 1 (task-independent RBF prior) and Q = 4 (task-
dependent prior) using approximation scheme in Eq. (18).
Based on these results, we obtain the following conclusions:

• The proposed NP (Q = 4) outperforms ConvCNP on
small context sets (p ∈ .01, .05) and 5000 training tasks.
This indicates that task-dependent prior is effective when
the small number of the context data points and the con-
text sets are available during the training phase.

• The proposed NP (Q = 4) outperforms the proposed
NP (Q = 1) in general. This indicates the effectiveness
of task-dependent stationary prior because Q=1 (task-
independent RBF prior) can be regarded as the scalable
approximation of the GPConvCNP on grid inputs.

• As the number of training tasks and context data points
increases, the performance gap between ConvCNP and
the proposed NP becomes smaller. This indicates the
task-dependent prior becomes less significant when a
large amount of the training datasets is available.

5 Discussion
Comparison with ConvLNP. Convolutional latent neu-
ral process (ConvLNP) [Foong et al., 2020] considers the
latent variable into ConvDeepsets to relax the conditional
independence assumption of the ConvCNP. However, Con-
vLNP could have the same issue as ConvCNP because it
uses ConvDeepsets. Also, training the ConvLNP is known
to be difficult in Section 7, [Gordon, 2021]; we believe this
difficulty arises because the latent variables are constructed
from the ambiguous representation of ConvDeepsets, and
the randomness of the latent variable prevents the NP model
from fitting the target as well. On the other hand, the pro-
posed method uses the multiple data representations via the
task-dependent stationary prior and uses them.

Comparison with GPConvCNP. GPConvCNP [Petersen
et al., 2021] uses the sample function of GP Posterior (RBF
kernel) as the functional representation, which is similar to
our work. However, our work generalizes the ConvDeepsets
in a Bayesian way; that is, we propose how to impose the
task-dependent prior. Also, we build the data representation
in more computational efficient way and scalable way (grid
inputs). Last, we prove that the Bayesian ConvDeepsets still
holds the TE as shown in Proposition 2.

Limitation. Bayesian ConvDeepsets uses inductive bias
of stationarity and its effectiveness can be limited when the
targeted process cannot be modeled by stationary process.
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A Further Details for Proposed Methodology

A.1 Implementations

We explain how the proposed NP model outputs the predictive distributions on target sets in following algorithm.

Algorithm 1 Forward pass of the NP model via Bayesian ConvDeepsets (off-grid)

Require: Model parameters: Θ
Require: The number of basis stationary kernels Q, the number of sampled spectral points l
Require: Context set Dc = {(xc

n, y
c
n)}N

c

n=1, target inputs Xt = {xt
n}N

t

n=1

1: Compute the discretized inputs {tm}Mm=1 by spacing inputs range [min{Xc, Xt},max{Xc, Xt}] linearly.
2: Select the task-dependent stationary prior as described in Eq. (14).
3: Construct N random functional representation {f(n)(Dc)(•)}Nn=1 on I as described in Eq. (13).
4: Construct N random representations {ΦB

(n)(D
c)(•)}Nn=1 on finite grid points {tm}Mm=1 as described in Eq. (19).

5: Smooth N random representations {ΦB
(n)(D

c)(•)}Nn=1 on target inputs Xt by .
6: Generate N predictive distributions {p

(
Y t | Xt,ΦB

(n)

)
}Nn=1 on target inputs Xt by Eq. (22).

Algorithm 2 Forward pass of the NP model via Bayesian ConvDeepsets (on-grid)

Require: Model parameters: Θ
Require: The number of basis stationary kernels Q, the number of sampled spectral points l
Require: Context set Dc = {(xc

n, y
c
n)}N

c

n=1, target inputs Xt = {xt
n}N

t

n=1 on grid.
1: Extract the context inputs

∑Nc

n=1 δ(• − xc
n) and outputs

∑Nc

n=1 y
c
nδ(• − xc

n) on grid.
2: Construct N random functional representation {f(n)(Dc)(•)}Nn=1 on given grid as described in Eq. (18).
3: Map N random representations on grid where the n-th representation fM

(n) is computed as

fM
(n) = CNN

([
Nc∑
n=1

δ(• − xc
n) , Φ

B
(n)(D

c)(•)

])
.

4: Generate N predictive distributions for target set with the n-th predictive mean µt
(n) and standard deviation σt

(n),

µt
(n) , σ

t
(n) = fM

(n) ◦

 Nt∑
n=1

δ(• − xt
n)

 .
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A.2 Structure of Neural Network

A.2.1 Structure of Translation Invariant NN in Eq. (11).

In this work, we consider the following structure for the translation invariant network pnn(D
c).

Version 1 (off grid). With the q-th stationary kernel kq , we construct the q-th representation hq(•) =
∑N

n=1 y
c
n kq(• − xc

n)
for given context set context set Dc = {(xc

n, y
c
n)}N

c

n=1, and map the concatenated representations via MLPs as follows:

pnn(D
c) := ΦMLP-2

( ∑
(xc,yc)∈Dc

ΦMLP-1

([
h1(x

c), h2(x
c), .., hQ(x

c), yc
]))

. (25)

This structure employs the structure of the kernel smoother and the Deepsets. Since hq(•) function is invariant to the
translation dataset Tτ (D

c), this structure satisfies pnn(Tτ (D
c)) = pnn(D

c) with Tτ (D
c) = {(xc

n + τ, ycn)}N
c

n=1.

Version 2 (off grid). With the RBF kernel function kRBF, we use the data representation of ConvDeepsets on grid
{tm}Mm=1, and map this representation to the parameters of the categorical distribution as follows:

pnn(D
c) := ΦMLP

( ∑
• ∈{tm}M

m=1

CNN1D

(
N∑

n=1

yn kRBF(• − xn)∑N
n=1 kRBF(• − xn)

))
(26)

where CNN1D denotes a stack of convolutional layer with ReLU activation. This structure employs the structure of the
RBF kernel smoother used in ConvDeepsets and the Deepsets that ensures the set invariance. Since adding or averaging the
representation of RBF smoother over the finite grid is invariant to the translation dataset Tτ (D

c), this structure satisfies
pnn(Tτ (D

c)) = pnn(D
c) with Tτ (D

c) = {(xc
n + τ, ycn)}N

c

n=1.

Here, we use the representation of RBF smoother to obtain the parameter pnn(Dc) of a latent Categorical distribution
Cat(ZCat|pnn(Dc)) so that pnn(Dc) assigns a task-dependent stationary prior. This approach is different to the use of
ConvDeepsets in [Gordon et al., 2019] that represents the data.

Version 3 (on grid). We extend version 2 to obtain the parameter of Categorical distribution for the image dataset Dc as
follows:

pnn(D
c) := ΦMLP

(
Pooling

(
CNN2D

(
N∑

n=1

yn δ(• − xn)

)))
(27)

where CNN2D denotes a stack of residual block.

A.2.2 Structure of CNN in Eq. (19)

Shallow and Deep CNN (1d). For regression tasks with time-series dataset, we employ 5-layer CNN using ReLU
activation function as a shallow network. All layers uses 16 channels except for the first layer (8 inchannels) and last layer
(8 outchannels). We use kernels of size 5, stride 1, and zero.

For the structure of Deep CNN, we employ the 1D-Unet [Ronneberger et al., 2015], which is used in [Gordon et al., 2019].
1D-Unet consists of 12-layer architecture with skip connections where the number of channels is doubled every layer for the
first six layers, and halved every layer for the last six layers. The following describes which layers are concatenated, where
Li ← [Lj , Lk] means that the input to layer i is the concatenation of the activations of layers j and k:

• L8 ← [L5, L7], L9 ← [L4, L8], L10 ← [L3, L9], L11 ← [L2, L10], L12 ← [L1, L11].

We use ReLU activation function, kernels of size 5, stride 1, and zero padding for two units on all layers.

Shallow and Deep CNN (2d). For image completion tasks, we use 3-layer of residual block as a shallow network and
6-layer of residual block as a deep network where each block uses 128 channel, and kernels of size 5, stride 1, and zero.

Further details of DNN structure used in this work can be checked in our implementation at the attached github link.
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A.3 Mathematical Details

A.3.1 Proof of Proposition 2

Proposition 2. If Bayesian ConvDeepsets ΦB(D)(•) is defined on the finite grid points, ΦB(D)(•) is still translation
equivariant in distribution sense, i.e.,

ΦB ◦ (Tτ (D))
d
= T ∗

τ ◦ (ΦB(D)). (28)

Proof. Let us first consider the left side of equation in Eq. (28). Then, for given dataset D = {(xn, yn)}Nn=1, its τ -translated
dataset Tτ (D) = {(xn + τ, yn)}Nn=1, and finite grid {tm}Mm=1, we can compute ΦB(Tτ (D))(•) as follows:

ΦB(Tτ (D))(•) = ρ ◦
[ N∑
n=1

kRBF(• − (xn + τ))︸ ︷︷ ︸
density

,

Q∑
q=1

√
zτq ϕτ

q (•) +

N∑
n=1

vτn k(• − xn + τ)︸ ︷︷ ︸
data representation

]
. (29)

where zτq , ϕτ
q (•), and vτn denote the variation of zq, ϕq(•), and vn due to τ -translated dataset Tτ (D). The kernel function

k(•−xn+τ) denotes the expectation of the latent kernel Eq(Zcat|D)[k(•−xn) | Zcat] over q(Zcat|D) = Cat (Zcat ; pnn(D))
with the translated invariant network pnn(D) in Eq. (11). Since it has already been proven in [Gordon et al., 2019] that
mapping of density channel by CNN holds the TE property, we thus focus on validating that mapping of data representation
by CNN holds the TE as well.

Prior term. For the prior term, we check the following equalities:

(zτ1 , .., z
τ
Q)

d
= (z1, .., zQ) (30)

where (zτ1 , .., z
τ
Q) ∼ Cat(Z; pnn(Tτ (D))) and (z1, .., zQ) ∼ Cat(Z; pnn(D). This equality holds because the output of

translated invariant network, i.e., the parameter of categorical distribution satisfies pnn(Tτ (D)) = pnn(D).

For the stationary prior term, each q-th random stationary function ϕτ
q (•) denotes a sample function of GP (f ; 0, kq) obtained

by random Fourier Feature; the q-th kernel kq(τ) is set to be kq(τ) =
∫
ei2πs

T τpq(s)ds. Since the covariance matrix
generated by each stationary kernel function kq(τ) is independent to the translated dataset Tτ (D), thus it is trivial that

ϕτ
q (•)

d
= ϕq(•). (31)

These results of Eqs. (30) and (31) imply that the task-dependent prior function
∑Q

q=1

√
zτqϕ

τ
q (•) is set to be consistent up

to Tτ (D) = {(xn + τ, yn)}Nn=1.

Update term. For the data update term, we check that the expected kernel holds as follow:

Eq(Zcat|Tτ (D))[ k(•) | Zcat ] = Eq(Zcat|Tτ (D))[z1k1(•) + · · · + zQkQ(•)]

= pnn(Tτ (D))(1)k1(•) + · · · + pnn(Tτ (D))(Q)kQ(•) (32)
= pnn(D)(1)k1(•) + · · · + pnn(D)(Q)kQ(•) (33)
= Eq(Zcat|D)[ k(•) | Zcat ], (34)

where pnn(D)(q) denotes q-th element of pnn(D). The third equality holds due to the property of the translated invariant
network pnn(Tτ (D)) = pnn(D).

Also, we confirm that the smoothing weight vτn holds as follows:

vτn := [K(Xτ , Xτ )+σ2
ϵ I)

−1 (Y c −Ψ(Xτ )) ]n = [K(X,X)+σ2
ϵ I)

−1 (Y c −Ψ(X)) ]n = vn, (35)

where Xτ = {xn + τ}Nn=1 and X = {xn}Nn=1. The first equality holds because the expected kernel k(•) is set consistently
up to the translated inputs as described in Eq. (34), the expected kernel k(•) is stationary kernel, and the random stationary
function Ψ(Xτ ) is set consistently up to the translated inputs as described in Prior term.
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Prior term + Update term. Using the above results, we show that if ΦB ◦ (Tτ (D)) and T ∗
τ ◦ (ΦB(D)) are evaluated on

finite grid points {tm}Mm=1 respectively, then ΦB ◦ (Tτ (D))
d
= T ∗

τ ◦ (ΦB(D)) holds as follows:

ΦB(Tτ (D))(•) = ρ ◦
[ N∑
n=1

kRBF(• − (xn + τ)) ,

Q∑
q=1

√
zτq ϕτ

q (•) +

N∑
n=1

vτn k(• − (xn + τ))
]

(36)

d
= ρ ◦

[ N∑
n=1

kRBF(• − (xn + τ)) ,

Q∑
q=1

√
zq ϕq(•) +

N∑
n=1

vn k(• − (xn + τ))
]

(37)

d
= ρ ◦

[ N∑
n=1

kRBF(• − (xn + τ)) ,

Q∑
q=1

√
zq ϕq(• − τ) +

N∑
n=1

vn k(• − (xn + τ))
]

(38)

=

(
ρ ◦
[ N∑
n=1

kRBF(• − xn) ,

Q∑
q=1

√
zq ϕq(•) +

N∑
n=1

vn k(• − xn)
]

︸ ︷︷ ︸
ΦB(D)

)
(• − τ) = T ∗

τ ◦ (ΦB(D)). (39)

The first equality in Eq. (37) holds in distribution sense because (1) Eqs. (30), (34) and (35) hold, and (2) ρ is a continuous
operator and its push forward measure is defined as µ(ρ−1(E)) for a measurable set E in image space of ρ and Gaussian
measure µ(•) for

∑Q
q=1

√
zτq ϕτ

q (•)+
∑N

n=1 v
τ
n k(• − (xn + τ)) and

∑Q
q=1

√
zq ϕq(•)+

∑N
n=1 vn k(• − (xn + τ)) on finite

grid points {tm}Mm=1. Therefore, the mapped random representations hold in distribution sense (each mapped representation
has the same measure on the image space of ρ):

ρ ◦
(

Q∑
q=1

√
zτq ϕτ

q (•) +

N∑
n=1

vτn k(• − (xn + τ))

)
d
= ρ ◦

(
Q∑

q=1

√
zq ϕq(•) +

N∑
n=1

vn k(• − (xn + τ))

)
(40)

The equality in Eq. (38) holds because each q-th stationary random prior function ϕq(•) evaluated on finite grid points
G := {tm}Mm=1 follows the Gaussian distribution as

ϕq(•) ∼ N(0; Φq(G)Φq(G)T ), Φq(G)Φq(G)T ≈ Kq(G,G) (41)

where Φq(G) = [ϕq(t1), .., ϕq(tM )] ∈ RM×l, with the number of the sampled spectral points l, denotes the random feature
matrix obtained by applying the random Fourier feature to q-th stationary kernel kq. Φq(G)Φq(G)T approximates kernel
Gram matrix Kq(G,G) ∈ RM×M . The τ -translated function ϕq(• − τ) follows the same distribution as well:

ϕq(• − τ) ∼ N(0; Φq(G)Φq(G)T ). (42)

This is because ϕq(•) is an instance of the stationary process evaluated on finite points G, and its translated function also
follows the same stationary process.

Therefore, we prove the representation of Bayesian ConvDeepsets holds the TE in distribution sense as stated in Proposition 2.
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A.3.2 Computational Efficiency for Eq. (13)

Construing the functional representation by Eq. (13) is computationally efficient compared to the conventional GP posterior
sampling method. This is because for given M grid points I = {tm}Mm=1 and N c context data points Dc = {(xc

n, y
c
n)}N

c

n=1,
the conventional sampling method first builds the predictive distribution of f(I) = [f(t1), .., f(tM )] on the discretized
inputs I as follows:

p(f(I);Xc, Y c) = N (f(I);m(I),Σ(I))
m(I) = K(I, Xc)(K(Xc, Xc) + σ2

ϵ I)
−1Y c

Σ(I) = K(I, I)−K(I, Xc)(K(Xc, Xc) + σ2
ϵ I)

−1K(Xc, I)

Then, it decomposes the predictive covariance matrix Σ(I) ∈ RM×M as Σ(I) = L(I)L(I)T with the lower triangular
matrix L(I) ∈ RM×M and then builds the sample function f(I) as follows:

f(I) = m(I) + L(I)E (43)

where E = [ϵ1, .., ϵM ] ∈ RM with ϵm ∼ N(0, I). Since this sampling method requires two Cholesky decompositions
related to (K(Xc, Xc) + σ2

ϵ I)
−1 and Σ(I), the computational cost is O((N c)3 +M3).

On the other hand, the sampling method for the proposed random representation builds the sample function as follows:

f(Dc)(•) =

Q∑
q=1

√
zq ϕq(•)︸ ︷︷ ︸

prior term

+

Nc∑
n=1

vn k(• − xc
n)︸ ︷︷ ︸

update term

for • ∈ I, (44)

which is described in Eqs. (14) to (17). Since the proposed sampling method employs Cholesky decomposition once
{vn}N

c

n=1 and takes computational cost O(M(Ql)) for the prior term (l random Fourier features and Q mixtures), the
computational cost is O((N c)3 +M(Ql)).

As considering Ql,N c ≪M in general setting, the proposed functional representation is more computationally efficient.
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A.3.3 Proof of Training objective in Eq. (23)

Let Θ = {θkernels, θpnn
, θρ, θpred} be the learnable parameters for kernels, the translate invariant network, the CNN, and the

network for prediction. To train the model parameters, we optimize following objective w.r.t Θ :

EDc,Dt∼p(T )

[
Lll(Θ;Dc, Dt)− βLreg(Θ;Dc, Dt)

]
(45)

where Lll(Θ;Dc, Dt) denotes the log likelihood, and Lreg(Θ;Dc, Dt) denotes the regularizer that induces the output of
network pnn(D

c) to assign the reasonable stationary prior depending on context set Dc. In the following, we explain how
the log likelihood Lll(Θ;Dc, Dt) and the regulaizer Lreg(Θ;Dc, Dt) are derived.

Likelihood. For each task of the context set Dc = {(xc
n, y

c
n)}N

c

n=1 and target set Dt = {(xt
n, y

t
n)}N

t

n=1 with Dc, Dt ∼
p(T ), the multi-sampled log likelihood estimator Lll(Θ;Dc, Dt) is derived as

log p(Y t|Xt, Dc) = log

∫
p(Y t|Xt,ΦB)p(ΦB|ZCat, D

c) p(ZCat|Dc) dΦBdZCat (46)

≈ log

(
1

N

N∑
n=1

p(Y t | Xt,ΦB
(n))

)
, Z(n) ∼ q(ZCat|pnn(Dc)), ΦB

(n) ∼ p(ΦB(Dc) | ZCat = Z(n))

= log

 1

N

N∑
n=1

Nt∏
i=1

p
(
yti |xt

i, Φ̃
B
(n)(x

t
i)
) (47)

= log

 1

N

N∑
n=1

exp

 Nt∑
i=1

log p
(
yti |xt

i, Φ̃
B
(n)(x

t
i)
) := Lll(Θ;Dc, Dt) (48)

where Z(n) denotes the n-th random sample of q(ZCat|Dc) = Cat(ZCat; pnn(D
c)), and ΦB

(n) denote the n-th sampled
representation of Bayesian ConvDeepsets on finite grid {tm}Mm=1.

In Eq. (47), the conditional independence assumption for given ΦB
(n) is used for the n-th likelihood, i.e., p(Y t|Xt,ΦB

(n)) =∏Nt

i=1 p
(
yti |xt

i, Φ̃
B
(n)(x

t
i)
)

, and the likelihood of each observation p
(
yti |xt

i, Φ̃
B
(n)(x

t
i)
)

is modeled as Gaussian distribution,
i.e.,

p
(
yti | xt

i, Φ̃
B
(n)(x

t
i)
)
= N

(
yti ;µnn

(
xt
i, Φ̃

B
(n)(x

t
i)
)
, σ2

nn

(
xt
i, Φ̃

B
(n)(x

t
i)
))

, (49)

where µnn

(
xt
i, Φ̃

B
(n)(x

t
i)
)

and σnn

(
xt
i, Φ̃

B
(n)(x

t
i)
)

denote the predictive mean and standard deviation on xt
i, which are

parameterized by neural network. In this procedure, we use the smoothed representation Φ̃B
(n) (x

t
i) on target input xt

i, as

described in Eq. (6), and forward Φ̃B
(n) (x

t
i) by MLP layers.

Regularizer. We consider the regulaizerLreg(Θ;Dc, Dt) to allow the output of pnn(Dc) to assign the reasonable stationary
prior for given task. To this end, we employ the result of variational inference for the regulaizer; the optimal distribution
of ZCat is proportional to the posterior distribution of ZCat. That is, let q̃ (ZCat) be a variational distribution in a class of
categorical distribution. Then, the lower bound of log marginal likelihood is represented as

log p(Y t|Xt, Dc) ≥
∫

log

(
p(Y t, ZCat|Xt, Dc)

q̃ (ZCat)

)
q̃ (ZCat) dZCat. (50)

The equality holds when the variational distribution q̃ (ZCat) is a posterior distribution of ZCat within a class of categorical
distribution, i.e., q̃ (ZCat) = p(ZCat|Dc, Dt) = Cat(Zcat; pposterior). Using the fact that the posterior distribution is
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proportional as follows:

p

(
Zcat = (0, .., 1, ...0)︸ ︷︷ ︸

q-th indicator

| Dc, Dt

)
=

p(Dt, Zcat = (0, .., 1, ...0) | Dc)

p(Dt | Dc)
(51)

∝ p(Dt, Zcat = (0, .., 1, ...0) | Dc) (52)

= p(Dt|Zcat = (0, .., 1, ...0), Dc) p(Zcat = (0, .., 1, ...0) | Dc) (53)

∝ p(Y t|Xt, Zcat = (0, .., 1, ...0), Dc) p(Y c|Xc, Zcat = (0, .., 1, ...0))

∝ p(Y t|Xt, Zcat = (0, .., 1, ...0), Dc), (54)

we set the parameter of posterior distribution pposterior such that q-th element of pposterior is represented as

(pposterior)(q) =
exp (log p(Y t|Xt, Dc, kq) / τ0)∑Q
q=1 exp (log p(Y

t|Xt, Dc, kq) / τ0)
(55)

where τ0 denotes the temperature hyperparameter. For log p (Y t|Xt, Dc, kq), we compute the likelihood via empirical
posterior distribution defined as:

p
(
Y t|Xt, Dc, kq

)
= N

(
Y t; µ̂q(X

t) , Diag
(
Σ̂q(X

t)
))

, (56)

which can be computed efficiently. The empirical predictive mean µ̂q(X
t) ∈ RNt and diagonal covariance Diag(Σ̂q(X

t)) ∈
RNt are computed by using the sample functions of GP posterior obtained by Eq. (13).

As a result, we consider the regulaizer Lreg(Θ;Dc, Dt) as the KL divergence between categorical distribution:

Lreg(Θ;Dc, Dt) := KL
(
q(Zcat | Dc) || p(Zcat | Dc, Dt)

)
. (57)

Comparison the proposed training objective with the conventional ELBO. As we consider the conventional ELBO
estimator LN of meta-learning framework, represented as,

EDc,Dt∼p(T )

[ ∫
log p

(
Y t|Xt, Dc,ΦB, ZCat

)
q(ΦB, ZCat) dΦ

B dZCat −KL(q(ΦB, ZCat)||p(ΦB, ZCat))

]
≈ EDc,Dt∼p(T )

[
1

N

N∑
n=1

log p
(
Y t|Xt, Dc,ΦB

(n)

)
︸ ︷︷ ︸

likelihood

−
(
KL(q(ΦB)||p(ΦB)) + KL(q(ZCat)||p(ZCat))

)
︸ ︷︷ ︸

regulaizer

]
:= LN (58)

the proposed objective employs the multi-sampled log likelihood estimator, used in [Burda et al., 2015, Foong et al., 2020],
which is known to be tighter than the likelihood term of LN . In addition, the proposed objective focuses on regularizing
ZCat, and use the posterior distribution p(Zcat|Dt, Dc) in Eq. (57) for training q(ZCat) instead of the prior distribution
p(Zcat) as shown in Eq. (58).
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B Further Details for 1d Regression Task

B.1 Details for Datasets

To train the NP models, we employ the meta-learning framework; for every task, when the given finite observations, referred
as context sets and target sets are assumed to be finite samples of the function sampled from stochastic process, the NP
models first construct the functional representation of the context sets and then generate the predictive distribution on the
target sets.

We consider 4 stationary stochastic processes: RBF, Matern- 52 , Weakly periodic, and Sawtooth, which are used in [Gordon
et al., 2019], to prepare the context and target sets. We describe the each process as follows:

• RBF (large lengthscale): The context and target sets are constructed by randomly choosing Nc data points and Nt data
points from the function sampled from Gaussian Process (GP) with the following kernel function k with the random
lengthscale l ∼ U([1.1, 2.1]), that is randomly sampled per each task:

k(x, x′) = e−
1
2 (

x−x′
l )2 .

• Matern- 52 (small lengthscale): The context and target sets are constructed by randomly Nc data points and Nt data
points from the function sampled from GP with the following kernel function k with d = |x−x′

l | and random lengthscale
l ∼ U([0.19, 0.21]), that is randomly sampled per each task:

k(x, x′) = (1 +
√
5d+

5

3
d2)e−

√
5d.

• Weakly periodic: The context and target sets are constructed by randomly choosing Nc data points and Nt data points
from the function sampled from GP with the following kernel function k with g1(x) = cos(2πfx), g2(x) = sin(2πfx),
and random frequency parameter f ∼ U([2.0, 3.0]), that is randomly sampled per each task:

k(x, x′) = e(−
1
2 (g1(x)−g1(x

′))2− 1
2 (g2(x)−g2(x

′))2− 1
32 (x−x′)2).

• Sawtooth: The context and target sets are constructed by randomly choosing Nc data points and Nt data points from the
sampled function ysawtooth(t) represented as

ysawtooth(t) =
A

2
− A

π

∞∑
k=1

(−1)k sin(2πkf(t+ τ))

k
,

where A denotes the amplitude, f denotes the frequency, τ denotes the shift, and t denotes time. We use truncate the
series at an integer K. We consider the random amplitude A ∼ U([0.8, 1.2]), random frequency f ∼ U([1, 2]), random
truncation integer K ∼ U([10, 20]), and random shift τ ∼ U([−1, 1]), which are randomly sampled for each task.

B.2 Details for Tasks of Training, Validation, and Test

In this experiment, we set the training range [0, 4] and test range [4, 8] (outside of training range). For training, we construct
the context sets and target sets by sampling the data points on training range. Then, we evaluate the trained models with
context sets and target sets, that are sampled on test range. These test sets are used to check whether trained NP models
holds translation equivariance.

We consider the following number of data points for training, validation, and test:

• Small number of context data points: For training, we randomly sample N c ∼ U([5, 25]) as the number of context data
points, and randomly sample N t ∼ U([N c, 50]) as the number of target data points for each task. We use 500×50×16
tasks for training through 500 batches. For validation, we set N c context data points and N t target data points as done in
training, and use 128×16 tasks for validation to choose the parameters of the trained models. For test, we also set N c

context data points and N t target data points for each processes (RBF, Matern- 52 , Weakly periodic, and Sawtooth), as
done in training, and use 128×16 tasks per the process to evaluate the trained models using the chosen parameters in
validation.
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• Large number of context data points: For training, we randomly sample N c ∼ U([10, 50]) as the number of context
data points, and randomly sample N t ∼ U([N c, 50]) as the number of target data points for each task. For validation and
test, we use 128×16 tasks. For test set, we use 128×16 tasks per the process, as done in the case of the small number of
context data points.

Additionally, we consider the same number of tasks per each stochastic process so that the NP models does not fit particular
stochastic process only during training

B.3 Details for Hyperparameters.

Hyperparameters of Kernels. For the hyperparameter of RBF kernels used for ConvCNP and ConvLNP, we conduct the
experiment with l ∈ {0, 01, 0.1, 0.5}, and set the lengthscale l = 0.01 for both models obtaining the best performance out
of those candidates.

For the hyperparameter of GPConvCNP, we conduct the experiment with l ∈ {0.1, 0.5, 1.0}, and set the lengthscale l = 1.0
obtaining the best performance out of those candidates.

For the hyperparameter of the proposed method, we use Q ∈ {3, 4, 5} basis stationary kernels, and set HZmax = Q.
Then, we space the frequency range [0,HZmax] linearly, set each centered value as µq with µ1 = 0 ≤ .. ≤ µQ, and set
σq = 0.5(µ2 − µ1) for q = 1, .., Q. For the noise parameter σ2

ϵ , we set σϵ = 1e-2.

For the number of spectral points, we use l = 10 in Eq. (14).

For the number of sample function, we use N = 5 in Eq. (19).

For training, we use ADAM optimizer [Kingma and Ba, 2014] with learning rate 5e-4 and weight decay 1e-4.

For the regularizer hyperparameter β in Eq. (21), we set β = 0.1 for the proposed method.

B.3.1 Baseline Implementations

For ANP, we employ the deterministic path of the model described by [Kim et al., 2018] for 1d regression experiment. For
ConCNP, ConvLNP, and GPConvCNP, we employ the structure of Deep CNN 1d as described in Appendix A.2.2. For ANP
and ConvCNP, we employ the implementation 1. For ConvLNP, we refer to the implementation 2.

1https://github.com/cambridge-mlg/convcnp
2https://github.com/YannDubs/Neural-Process-Family

https://github.com/cambridge-mlg/convcnp
https://github.com/YannDubs/Neural-Process-Family
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B.4 Additional Results

Training with a small number of context sets. For the completeness of the experiment results, we report additional results
of the training with a small number of context set (N c ∼ U([5, 25])). Figs. 9a to 9d describes the mean and one-standard
error of the log likelihood for 1024 tasks (within training range). For evaluation, we set varying number of context data
points N c ∈ {5, 10, 15, 20, 25} and target points N t = 50. Figs. 9e to 9h corresponds to the results for tasks (beyond
training range). We could not report the results of AttnCNP due to poor generalization performance.
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Figure 9: Prediction result of each processes from training setting of small N c context points.

Training with a large number of context sets. Additionally, we report the results of the training with a large number
of context set (N c ∼ U([10, 50])), and apply the same evaluation procedure with setting of a small number of context set.
Figs. 10a to 10d describes the mean and one-standard error of the log likelihood for 1024 tasks (within training range).
Figs. 10e to 10h corresponds to the results for tasks (beyond training range).
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Figure 10: Prediction result of each processes from training setting of large N c context points .
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Conclusion. The proposed NP model (Q = 3, 4, 5) using a Bayesian ConvDeepsets has shown superior prediction
performances especially when training with a small number of context data points. When a more number of context points is
allowed for training, the performance gap between ConvCNP and proposed method decreases as shown in Figs. 9e and 10e
and Figs. 9f and 10f.

Prediction results for training a large number of context sets. Also, we report prediction results in Fig. 11 and
quantitative analysis of the trained parameters when the NP models are trained with the setting of a large number of context
sets. We see that pnn(Dc) allocates the most of stationary priors as second spectral density (green) that overlaps most
frequency region with the RBF prior (red). This results are quite different to the result of the setting of a small number of
context sets (main). We believe that this implies why the RBF kernel smoother of ConvDeepsets could be effective when
using a sufficient number of context set, and why the task-dependent stationary prior could be effective when using a small
number of context set.
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(f) Predictive distribution of each baseline on each process (Nc = 15)

Figure 11: Stochastic processes modeling beyond training range (gray region [4, 8]): Fig. 11a denotes the trained spectral
density with Q = 4 kernels. Figs. 11b to 11e denote the output of pnn(Dc) for 128 context set {Dc

n}128n=1 of each process.
Fig. 11f shows the predictive distributions of the baselines on each process.

Validation error during training phase. We report the averaged log likelihood evaluated on validation set during training;
the validation set consists of 128 × 16 tasks that have the equal number of task for each process. Fig. 12a and Fig. 12b
shows the validation metric over training epochs when using a small number of context set and large number of context set,
respectively. In each epoch, we use 500 × 16 tasks for training. These figures imply that when the stationary priors are
imposed well like Q = 4, the propose model can achieve good performance while using the less number of training tasks.
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Ablation study for computational efficiency. We investigate the computational efficiency of the proposed representation
in the same experiment setting of Section 4.1 (l = 10 and M = 384). We compare the progress of the training time and the
corresponding log likelihood when using the conventional GP posterior sampling method and path-wise sampling method to
construct the random data representation of Eq. (13), respectively.

Figs. 13a and 13b compare the training time (x-axis) and the progress of the log likelihood (y-axis) on the validation
set during the training phase when using Q = 3 and Q = 4, respectively; exactfull and exactdiag denote the sampling
procedure that uses the predictive distribution and diagonal predictive distribution for the conventional GP posterior sampling,
respectively. This indicates that the proposed representation using the path-wise GP posterior sampling reduces training
time as explained in Appendix A.3.2 while maintaining the performance of the log likelihood.
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Figure 13: Computational efficiency: training time (seconds) VS progress of log likelihood on validation set.

Ablation study for the size of amortized neural network. We investigate how the size of amortized neural network
pnn(D

c) affects the prediction performance in the same experiment setting of Section 4.1. For pnn(Dc) structure, we use
3-layer structure of the Version 2 described in Eq. (26). We consider the different size of the convolution channels, which
results in the different number of pnn(·) parameters.

Fig. 14a compares the number of model parameters (K=103) and the averaged test likelihood (w.r.t context points N c) for
ConvCNP, GPConvCNP, and proposed methods (Q=4) using the different size of channels. This figure indicates using a
few more parameters exploits merit of task-dependent prior.

Ablation study for regularization. We investigate how the hyperparameter β in Eq. (23) affects the trained NP model in
the same experiment setting of Section 4.1. For the case of Q = 4, we consider various cases by setting different regularizer
coefficient λ; λ = 0.0 means the regularizer is not used for training, and λ = 0.1 denotes β = 0.1

∣∣∣ Lll(Θ;Dc,Dt)
Lreg(Θ;Dc,Dt)

∣∣∣ in Eq. (23),
is used every iteration.

Fig. 14b shows the averaged test likelihood with respect to the N c number of context data points. This indicates that the
training without the regularizer (λ = 0) results in poor performance on the weakly-periodic task, whereas the training with
regularizer (λ ∈ {.005, .01}) leads to good performance on all tasks.
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Figure 14: Ablation studies for the size of amortized neural network and the regularizer coefficient λ
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C Further Details for Multi-Channel Regression Task

C.1 Details for Datasets

In this section, we consider two types of the multi-channel stationary process: (1) sinusoidal process and (2) GP using the
Multi-output SM kernel (MOSM) [Parra and Tobar, 2017], that constructs the cross covariance function of two different
processes based on Crammer theorem, i.e., a multi-channel extension of Bochner’s theorem. Additionally, we consider two
types of tasks for each process: (1) a simple task and a difficult task having more diversity to study how the task-dependent
prior on functional representation affects the performance of the corresponding NP model depending on task diversity. We
hypothesis that when the small number of data points is given for the task having more diversity, assigning a reasonable
prior on functional representation could be helpful to solve the targeted tasks. Each process is described as follows:

• Sinusoidal-phase : i-th channel context and target sets are constructed by randomly choosing N
(i)
c data points and N

(i)
t

data points from the sampled function fi(t), that is represented as

fi(t) = Ai sin (2πwi(t− ϕi)) + ϵ, i = 1, 2, 3 ,

where Ai denotes i-th channel amplitude parameter, wi denotes i-th channel frequency parameter, ϕi denotes i-th channel
phase parameters, and ϵ is random noise satisfying ϵ ∼ N(0, 0.12). For frequency parameters, we set w1 = 2.1, w2 = 4.1,
and w3 = 6.1. For the amplitude, we set A1 = 1 + a,A2 = 2 + a, and A3 = 3 + a by using a random amplitude
a ∼ U([−25, 0.25]). For the phase parameter, we consider random phase τ1 ∼ U([−1, 1]), τ2 ∼ U([−1.5, 0.5]), and
τ3 ∼ U([−2, 0]). The random parameters for amplitude a and phases {τ1, τ2, τ3} are randomly sampled for each task.

• Sinusoidal-all : i-th channel context and target sets are constructed by randomly choosing N
(i)
c data points and N

(i)
t data

points from the sampled function fi(t), that is represented as that is represented as

fi(t) = Ai sin (2π(wi + θi)(t− ϕi)) + ϵ i = 1, 2, 3,

where θi denotes i-th channel random frequency parameter. In this generation procedure, we consider random frequency
parameters additionally; we first sample θ ∼ U([0, 5]), and set θ1 = θ, θ2 = 2θ, and θ3 = 3θ. This is intended to let the
task of this process have more diversity. For other parameters {Ai, wi, ϕi}3i=1, we set the same setting as described in
Sinusoidal.

• MOSM: : i-th channel context and target sets are constructed by randomly choosing N
(i)
c data points and N

(i)
t data

points from i-th channel function of the multi-output function sampled from Gaussian Process (GP) with the following
kernel function {kij}3i,j=1 of which the cross kernel kij between i-th channel and j-th channel is represented as

kij(x, x
′) = exp

(
−1

2
(x− x′ + θij)

⊤Σij(x− x′ + θij)

)
cos
(
2π(x− x′ + θij)

⊤µij + ϕij

)
,

where µij = (Σi+Σj)
−1(Σiµj +Σjµi), Σij = 2Σi(Σi+Σj)

−1Σj , ϕij = ϕi−ϕj , and ϕij = ϕi−ϕj when µi denote
i-th channel mean parameter, Σi denotes i-th channel covariance parameter, θi denotes i-th channel delay parameter,
and ϕi denotes i-th channel phase parameter, respectively. In this experiment, we set µ1 = 0.1, µ2 = 3.0, µ3 = 5.0 for
mean parameters and Σ1 = 0.1, Σ2 = 0.1, Σ3 = 0.1 for covariance parameters. We set θi = 1 with i = 1, 2, 3 for delay
parameters and ϕi = 0 with i = 1, 2, 3 for phase parameters. We employ the following implementation [de Wolff et al.,
2020] 3.

• MOSM-varying: i-th channel context and target sets are constructed by randomly choosing N
(i)
c data points and N

(i)
t

data points from i-th channel function of the multi-output function as described in MOSM with different hyperparameter
setting. We consider random mean parameters to generate the diverse tasks. We consider the random mean parameters; we
first sample perturb noises {nj}3j=1 ∼ N(0, .52I) every task, and then set µ1 = 0.1+n1, µ2 = 3.0+n2, µ3 = 5.0+n3,
which are reinitialized every task. Since this trick generates the data points observed from a new multi-output stationary
process every task by considering the different cross correlation function between different two processes, the generated
tasks are more diverse.

3https://github.com/GAMES-UChile/mogptk

https://github.com/GAMES-UChile/mogptk
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C.2 Details for Tasks of Training, Validation, and Test

In this experiment, we set the training range [0, 3] and test range [3, 6] (outside of training range). For training, we construct
the context sets and target sets by sampling the data points on training range. Then, we evaluate the trained models with
context sets and target sets, that are sampled on test range as described in Appendix B.2.

We consider the following number of data points for training, validation, and test:

• For training, we randomly sample N c ∼ U([5, 25]) as the number of context data points, and randomly sample
N t ∼ U([Nc, 50]) as the number of target data points for each task. We use 500×50×16 tasks for training through 500
batches. For validation, we set N c context data points and N t target data points as done in training, and use 64×16 tasks for
validation to choose the parameters of the trained models. For test, we consider the varying N c ∈ {5, 10, 15, 20, 25, 30}
context data points and N t = 50 target data points per a task, and use 64×16 tasks per given N c context points to study
how the number of context data points affects the predictive performance of the trained models using the parameters
obtained in validation procedure.

C.3 Details for Hyperparameters.

For the hyperparameter of RBF kernels used for ConvCNP and ConvLNP, we conduct the experiment with l ∈ {0.1, 0.5, 1.0},
and set the lengthscale l = 0.1 for both models obtaining the best performance out of those candidates.

For the hyperparameter of GPConvCNP, we set l = 1.0 for each channel respectively.

For the hyperparameter of the proposed method, we use 5 basis stationary kernels (Q = 5), and set HZmax = Q. Then,
we space the frequency range [0,HZmax] linearly, and set each centered value as µq with µ1 = 0 ≤ .. ≤ µ5, and set
σq = 0.5(µ2 − µ1) for q = 1, .., 5. For the noise parameter σ2

ϵ , we set σϵ = 1e-2.

For the number of spectral points, we use l = 10 in Eq. (14).

For the number of sample function, we use N = 10 in Eq. (19).

For training, we use ADAM optimizer [Kingma and Ba, 2014] with learning rate 5e-4 and weight decay 1e-4.

For the regularizer hyperparameter β in Eq. (21), we set β = 0.1 for the proposed method.

C.4 Additional Results

Results of Sinusoidal dataset. For completeness of results, we report additional prediction results of other baseline on
theh tasks of Sinusoidal-all as shown in Figs. 15f and 15g.

Results of MOSM dataset. We report additional results on GP-MOSM dataset. Figs. 16a and 16b describes the mean and
one-standard error of the log likelihood for 1024 tasks (beyond training range); Fig. 16a shows the result of the less diversity
task (varying phase), and Fig. 16b corresponds to that of the high diversity (varying amplitude, frequency, and phase). These
figures show that the proposed method could model processes well on both less and more diverse tasks.

Fig. 16c shows the trained spectral density of {kq}5q=1 on high diversity task. Figs. 16d and 16e denote the parameters
pnn(D

c) for two tasks (top and bottom), and THE corresponding predictions of the proposed method. Figs. 16f and 16g
show the prediction results of ConvCNP and GPConvCNP, respectively.
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(f) ConvCNP: Prediction for 2 different tasks (Nc = 10) of the Sinusoidal-all
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(g) GPConvCNP: Prediction for 2 different tasks (Nc = 10) of the Sinusoidal-all

Figure 15: 3-channel sinusoidal processes modeling: Figs. 15a and 15b denotes test likelihood on sinusoidal processes
having different task diversity. Fig. 15c denote the trained spectral density {pq(s)}5q=1 for the Sinusoidal-all process, and
Figs. 15d and 15e show the chosen prior and corresponding prediction for 2 tasks; as the context sets having small frequency
characteristics are given (from first to second row in Fig. 15e), the stationary prior is imposed differently (from top to bottom
in Fig. 15d). Figs. 15f and 15g show the prediction results using the same context set with Fig. 15e.
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(f) ConvCNP: Prediction for 2 different tasks (Nc = 10) of the MOSM-varying
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(g) GPConvCNP: Prediction for 2 different tasks (Nc = 10) of the MOSM-varying

Figure 16: 3-channel GP-MOSM processes modeling: Figs. 16a and 16b denotes test likelihood having different task
diversity. Fig. 16c denote the trained spectral density for the MOSM-varying process, and Figs. 16d and 16e show the
chosen prior and corresponding prediction for 2 tasks; check that the stationary prior is imposed differently (from top to
bottom in Fig. 16d), when context are given differently (from first to second row in Fig. 16e). Figs. 16f and 16g show the
prediction results using the same context set with Fig. 16e.
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D Further Details for Image Completion Task

D.1 Details for Datasets

For image completion task, each task is defined to predict the randomly chosen pixel values of image when using given
partial pixel values as context set. To do this, we use a subset of monthly land surface temperature set used in [Remes et al.,
2017]. We use the surface temperature of North America (53×115×3) and Europe (78×102×3).

D.2 Details for Tasks of Training, Validation, and Test

We use the datasets (2018 - 2020) for the training, and datasets (2021) for the test.

For training, we randomly sample the context and target set by choosing a small context rate p ∈ {.01, .05, .10, .20}
randomly with probability [4/10, 3/10, 2/10, 1/10]. We use 2500× 5 tasks for training, and 256× 4 tasks as validation set.

For test, we set the varying context rate p ∈ {.01, .05, .10, .20} as done in training phase, and set target set by choosing a
target rate p = .5 We use each 256 tasks per context rate p ∈ {.01, .05, .10, .20} to evaluate the trained models.

D.3 Details for Hyperparameters.

For stationary kernels, we set µ1 = [0.0, 0.0] and σ1 = [0.5, 0.5] for Q = 1.

For Q = 4, we set µ1 = [0.0, 0.0], µ2 = [2.0, 0.0], µ3 = [0.0, 2.0], and µ4 = [2.0, 2.0] and σq = [0.5, 0.5] for q = 1, .., 4.

For the number of spectral points, we use l = 10 in Eq. (14).

For the number of sample function, we use N = 4 in Eq. (19).

For the prior hyperparameter of approximate scheme α, we use α ∈ {.05, 0.1}.
For training, we use ADAM optimizer [Kingma and Ba, 2014] with learning rate 5e-4 and weight decay 1e-4.

For the regularizer hyperparameter β in Eq. (21), we set β = 0.1 for the proposed method.

D.4 Additional Results

We report additional prediction results for image completion tasks of North America dataset in Fig. 17.
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Figure 17: Prediction results for North America temperatures (June 2021 and December 2021) that are out of training sets.

Additionally, we report the progress of the test log likelihood during training phase in Figs. 18 and 19. These figures compare
the prediction improvement of the models depending on the number of used training tasks.

Figs. 18a to 18d shows the test log likelihood on the dataset of North America (2018-2020) over varying training tasks
{2500, 5000, 7500, 10000}. Figs. 18e to 18h shows the corresponding results on the dataset of North America (2021).

With the same protocol of North America experiment results, Figs. 19a to 19d shows the corresponding results on Europe
temperature (2018-2020), and Figs. 19e to 19h shows the corresponding results on Europe temperature (2018-2020),
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Figure 18: Test log likelihood of North America dataset over the varying number of training tasks.
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Figure 19: Test log likelihood of Europe dataset over the varying number of training tasks.
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Figure 20: Effect of prior coefficient α.

Ablation study for prior coefficient. We investigate
the effect of the prior coefficient α in Eq. (18) that con-
trols how much the random stationary prior is reflected
on data representation in the same experiment setting of
Section 4.3.

Fig. 20 compares the proposed method (Q = 4) with
varying alpha α ∈ {.00, .05, .10, .20} on Europe set (out-
train); α = 0 denotes that the random stationary prior does
not the data representation, which is similar to ConvCNP.
This figure indicates that employing the proper station-
ary prior (α = .05, .10) for training could improve the
prediction performance on the image completion tasks.
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