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Abstract

Diffusion generative models have recently been
applied to domains where the available data can
be seen as a discretization of an underlying func-
tion, such as audio signals or time series. How-
ever, these models operate directly on the dis-
cretized data, and there are no semantics in the
modeling process that relate the observed data to
the underlying functional forms. We generalize
diffusion models to operate directly in function
space by developing the foundational theory for
such models in terms of Gaussian measures on
Hilbert spaces. A significant benefit of our func-
tion space point of view is that it allows us to
explicitly specify the space of functions we are
working in, leading us to develop methods for
diffusion generative modeling in Sobolev spaces.
Our approach allows us to perform both uncon-
ditional and conditional generation of function-
valued data. We demonstrate our methods on
several synthetic and real-world benchmarks.

1 Introduction

Diffusion models (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have recently emerged as a powerful class of gen-
erative models on a wide array of domains, ranging from
images (Ho et al., 2020; Dhariwal and Nichol, 2021; Sa-
haria et al., 2022; Ramesh et al., 2022) and video (Ho et al.,
2022; Yang et al., 2022) to molecular conformation (Xu
et al., 2022). At an intuitive level, these methods work by it-
eratively perturbing the data distribution towards a tractable
prior via additive Gaussian noise, and generation is per-
formed by learning to undo this transformation.

Existing methods largely assume that the data distribution
of interest is supported on a finite-dimensional Euclidean
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space. However, in many domains, the underlying signal
is inherently infinite-dimensional, where the observed data
can be seen as a collection of discrete observations of some
underlying function. Such datasets are often dubbed func-
tional (Ramsay and Silverman, 2008). For instance, a time
series dataset consisting of the temperature collected at a
particular location every 24 hours can be seen as a uniform
discretization of an underlying continuous-time temperature
curve (Febrero-Bande and de la Fuente, 2012).

Although diffusion models have empirically demonstrated
strong performance on some functional domains, such as
audio signals (Kong et al., 2021; Chen et al., 2021) and time
series (Rasul et al., 2021; Tashiro et al., 2021; Alcaraz and
Strodthoff, 2022), existing approaches work directly on an
explicit discretization of the input space. It is thus unclear
how existing methods relate to the underlying functions of
interest. For instance, existing methods can not account for
function-level assumptions about the data, such as continuity
or smoothness constraints.

Motivated by a functional perspective, we propose a novel
theoretical framework for diffusion generative modeling
which operates directly in function space. Our primary
contributions are as follows:

• In Section 4, we develop a framework for diffusion
generative modeling in terms of Gaussian measures on
Hilbert spaces. Our method operates by adding Gaus-
sian process noise directly to our infinite-dimensional
functions. We learn to reverse this process by perform-
ing variational inference in function space, in which
we minimize the KL divergence between a known
Gaussian measure and a variational family of Gaus-
sian measures. We discuss the necessary background
on Gaussian measures in Section 3.

• In Section 5, we propose practical methods for ap-
proximating functional KL divergences by discretizing
the underlying operators. The practical details depend
heavily on the choice of function space, and we develop
methods for the space of square-integrable functions
as well as Sobolev spaces.

• In Section 6, we empirically verify our framework on
several synthetic and real-world benchmarks. In our
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experiments, our diffusion models are implemented
via neural networks that parametrize mappings be-
tween function spaces, i.e. neural operators (Li et al.,
2021, 2020; Kovachki et al., 2021). We propose
methods that allow for both unconditional and condi-
tional generation of function-valued data. Importantly,
our approach allows us to work with arbitrary non-
uniform discretizations, thereby allowing us to train on
datasets where the observation set varies across func-
tions. Moreover, we are able to query our generated
functions at arbitrary input locations.

2 Related Work

Diffusion models are most typically applied to data living
in a Euclidean space having a fixed, finite dimension (e.g.,
see Sohl-Dickstein et al. (2015); Ho et al. (2020); Dhariwal
and Nichol (2021); Ho et al. (2020) amongst others). More
recent work has extended these methods to Riemannian
manifolds, but still with a finite-dimensional assumption
(Bortoli et al., 2022; Huang et al., 2022).

Most relevant to our work are diffusion models for sig-
nals, such as audio (Chen et al., 2021; Kong et al., 2021),
time series (Rasul et al., 2021; Tashiro et al., 2021; Alcaraz
and Strodthoff, 2022), or neural processes (Dutordoir et al.,
2022). However, these current approaches for functional
data all perform diffusion modeling by employing standard
finite-dimensional diffusion modeling on the discretized
functions. Concurrent to our work, Biloš et al. (2022) pro-
pose a diffusion model for temporal data, but do not take a
function space perspective. As we will show in Section 5.3,
existing approaches can be viewed as special cases within
the general theoretical framework we develop.

Subsequent to our work in this paper, Lim et al. (2023)
and Pidstrigach et al. (2023) in follow-up work proposed
methodologies which are closely related and conceptually
similar to our approach. As in our work, Lim et al. (2023)
and Pidstrigach et al. (2023) both perturbed the function
space distribution corresponding to the data via a trace-class
Gaussian measure. Our work can be seen as extending the
discrete time DDPM model (Ho et al., 2020) to function
spaces, while the works of Lim et al. (2023) and Pidstrigach
et al. (2023) can be seen as extending score-matching tech-
niques (Vincent, 2011; Song and Ermon, 2019) to function
spaces. In particular, Lim et al. (2023) developed tech-
niques for function space score matching in discrete time,
and Pidstrigach et al. (2023) developed function space score
matching techniques from a continuous time perspective.

Beyond diffusion models, a recent line of work has proposed
deep generative models of functions (Garnelo et al., 2018;
Kim et al., 2019; Dupont et al., 2022b,a). In particular,
generative models of functions based on neural operators
have been proposed from a GAN approach (Rahman et al.,
2022). However, ours is the first work to combine diffusion

models with neural operators.

Our approach is also broadly related to the general class of
previous works that propose function-space perspectives in
machine learning. In particular, such a point of view has
proved useful for developing and understanding techniques
used in Gaussian processes (Matthews et al., 2016; Wynne
and Wild, 2022) and Bayesian deep learning (Sun et al.,
2019; Wild et al., 2022; Rudner et al., 2021; Tran et al.,
2022; Burt et al., 2021). Our work extends this function-
space perspective to diffusion models.

3 Notation and Background

We begin by setting up the notation for our problem and in-
troducing the necessary background on Gaussian measures
in Hilbert spaces, as well as their connection to the more fa-
miliar notion of Gaussian processes. In addition, we derive
a closed-form expression for the KL divergence between
Gaussian measures with equal covariance operators – this
KL divergence plays a key role in our approach.

3.1 Notation and Data

Let (X ,A, µ) be a measure space where X ⊆ Rdx , and let
F be a separable Hilbert space of measurable real-valued
functions on X with inner product ⟨−,−⟩F . Note that we
will often simply write ⟨−,−⟩ if the choice of F is clear
from context. We equip F with its Borel σ-algebra B(F).
The prototypical example is X = [0, 1] equipped with the
Lebesgue measure and F = L2(X , µ) equipped with its
usual inner product ⟨f, g⟩L2(X ,µ) =

∫
X fg dµ. However,

our general framework is agnostic to the choice of F – see
Section 5 for more details on this choice.

We assume that we have a dataset of the form D =
{u(1), u(2), . . . , u(n)}, where each u(j) ∈ F is an i.i.d.
draw from an unknown probability measure Pdata on F .
In practice, we typically only have noisy measurements
of our functions on a finite subset of X . We let x⃗(j) =
{x(1j), . . . , x(mj)} ⊂ X be a discrete subset of X with cor-
responding observations y⃗(j) = {y(1j), . . . , y(mj)}, where
y(ij) = u(j)(x(ij)) + ϵ(ij) is the output of the unknown jth
function u(j) at the ith observation point and ϵ(ij) represents
i.i.d. observation noise. Generally, both the location x⃗(j)

and number m = mj of observation points may vary across
the functions in our dataset.

The focus of this work is to develop the theory and practice
behind building a diffusion generative model for sampling
from the function-space probability measure Pdata.

3.2 Gaussian Measures

We now introduce some key background material on Gaus-
sian measures (Da Prato and Zabczyk, 2014).
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Definition 1.
Let (Ω,B,P) be a probability space. A measurable function
F : Ω→ F is called a Gaussian random element (GRE) if
for any g ∈ F , the random variable ⟨g, F ⟩ has a Gaussian
distribution on R. The pushforward of P along F , denoted
PF = F#P is a Gaussian (probability) measure on F .

Gaussian random elements F ∼ PF are random functions
in F . Note that Gaussian measures exactly coincide with
the standard notion of Gaussian distributions in the special
case of F = Rn equipped with the usual inner product.

For every GRE F ∼ PF , there exists a unique mean element
m ∈ F given by

m =

∫
F
F dPF . (3.1)

Similarly, there exists a unique linear covariance operator
C : F → F given by

Cg =

∫
F
⟨g, F ⟩F dPF − ⟨g,m⟩m ∀g ∈ F . (3.2)

A Gaussian measure is uniquely determined by its mean
element and covariance operator. Note that for any g ∈
F , we have that ⟨g, F ⟩ ∼ N (⟨g,m⟩, ⟨Cg, g⟩) follows a
Gaussian distribution on R with mean ⟨g,m⟩ ∈ R and
variance σ2 = ⟨Cg, g⟩ ∈ R≥0 (Wild et al., 2022).

The covariance operator C is symmetric, positive semidef-
inite, and compact. Moreover, C has finite trace, i.e.
tr(C) = E[||F ||2] < ∞. Conversely, given any m′ ∈ F
and any symmetric, positive semidefinite, trace-class linear
operator C ′ : F → F , there exists a Gaussian measure
having mean m′ and covariance operator C ′. Thus, Gaus-
sian measures are in one-to-one correspondence with their
mean functions and covariance operators. We will write
PF = N (m,C) for such a Gaussian measure. We refer
to Da Prato and Zabczyk (2014, Chapter 2) and Bogachev
(1998) for the proofs of these claims.

3.3 KL Divergence between Gaussian Measures

In our framework, we will perform variational inference
in function space. However, one major challenge is that
there is no analogue of the Lebesgue measure on infinite
dimensional spaces (Eldredge, 2016), and so we must resort
to a measure-theoretic definition of the KL divergence. To
that end, for probability measures P,Q on F , we define

KL[P ∥ Q] =

∫
F
log

(
dP
dQ

)
dP (3.3)

if P≪ Q, where dP/dQ is the Radon-Nikodym derivative.
We define this quantity to be infinite if P is not absolutely
continuous with respect to Q.

We now consider the special case that P,Q are Gaussian
measures on F with equal covariance operators. In this
case, a version of the Feldman-Hájek Theorem gives us
explicit control over the Radon-Nikodym derivative in terms
of the parameters of P and Q (Da Prato and Zabczyk, 2014,
Theorem 2.23).

Theorem 1 (The Feldman-Hájek Theorem).
Let P = N (m1, C) and Q = N (m2, C) be Gaussian
measures on F with equal covariance operators, and de-
fine ∆m = m1 − m2 ∈ F . Then, P and Q are equiv-
alent (i.e. mutually absolutely continuous) if and only if
∆m ∈ C1/2(F). In this case, for any f ∈ F , the Radon-
Nikodym derivative dP/ dQ is given by

dP
dQ

(f) = exp
[ 〈

∆m,C−1(f −m2)
〉
F

− 1

2
||C−1/2∆m||2F

]
, (3.4)

where C−1 is the pseudoinverse of C and C−1/2 is the
pseudoinverse of C1/2.

As a straightforward consequence of the Feldman-Hájek
theorem, we derive a closed-form expression for the KL di-
vergence between Gaussian measures with equal covariance
operators.

Proposition 1.
Let P,Q,∆m be defined as in Theorem 1. Then,

KL[P ∥ Q] =
1

2

〈
∆m,C−1∆m

〉
F . (3.5)

Proof. Appendix A.1.

In Section 4, we make use of this result in order to develop
diffusion models in function space. In Section 5, we explore
various practical methods for computing this functional KL
divergence under various choices of the space F .

3.4 Gaussian Processes

Gaussian processes (GPs) (Williams and Rasmussen, 2006)
are a popular class of models for specifying and learning
distributions over functions. Formally, given a probability
space (Ω,B,P), a GP on X is a jointly measurable map G :
Ω×X → R whose finite dimensional marginal distributions
are Gaussian.

In practice, a Gaussian process is typically specified by a
mean function m : X → R specifying m(x) = E[G(x)]
and a kernel function k : X 2 → R specifying the covariance
structure of G via k(x, x′) = E[(G(x) −m(x))(G(x′) −
m(x′))]. We will write G ∼ GP (m, k) for such a Gaussian
process.

Gaussian processes give us a practical way of specifying
Gaussian measures, as we only need to specify a mean
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function and a kernel. The kernel k plays an essential role
in determining the sample path properties of a GP, such
as continuity, differentiability, and periodicity (Williams
and Rasmussen, 2006, Chapter 4). In the case that m ∈ F
and k is chosen such that G ∈ F with probability one,
we may identify G with a GRE on F . For instance, if
m ∈ L2(X , µ) and

∫
X k(x, x) dµ(x) < ∞, then we may

identify GP (m, k) with a Gaussian measure on L2(X , µ).
See Wild et al. (2022) and Section 5 for further details.

4 Diffusion Models in Function Space

Equipped with the necessary background, we now construct
our diffusion generative model on F . Our construction mir-
rors that of DDPMs (Ho et al., 2020), with the key difference
being that our diffusion process takes place in a space of
infinite dimensions. We note that the constructions of Ho
et al. (2020) rely heavily on properties of Gaussian densi-
ties in Rn, and thus are not directly applicable to infinite-
dimensional spaces as these spaces lack a reference measure
from which to define such densities (Eldredge, 2016). Note
further that F = Rn equipped with its usual inner product
is a special case of our framework.

4.1 Forward Process

We begin by defining the forward process, a discrete-time
Markov chain in F which iteratively perturbs our data dis-
tribution Pdata towards a fixed Gaussian measure N (m,C).
In what follows, we will choose m = 0 for simplicity. The
choice of covariance operator C is a hyperparameter which
can be tuned.

We fix a finite number of timesteps T ∈ Z>0 and a variance
schedule β : {1, 2, . . . , T} → R>0, where we write βt

for β(t). For any u0 ∈ F , we iteratively sample from the
forward process via

ut =
√
1− βtut−1 +

√
βtξt t = 1, 2, . . . , T (4.1)

where ξt ∼ N (0, C) are i.i.d. Gaussian random elements
on F .

Given a fixed value of ut−1, our forward process gives us
conditional probability measures Pt|t−1(− | ut−1). We will
write Pt for the marginal distribution on F obtained at time
step t from this process, i.e.

Pt(−) =
∫
F
Pt|t−1(− | ut−1) dPt−1(ut−1)] (4.2)

where P0 = Pdata. The value of T and the variance sched-
ule β are chosen such that the final distribution is ap-
proximately equal to our specified Gaussian measure, i.e.
PT ≈ N (0, C).

In the following proposition, we derive expressions for sev-
eral distributions related to our forward process.

Proposition 2.
Let γt =

∏t
i=1(1− βi). For the forward process defined in

Equation (4.1) with m = 0 and fixed values of u0, ut−1:

Pt|t−1(− | ut−1) = N (
√
1− βtut−1, βtC) (4.3)

Pt|0(− | u0) = N (
√
γtu0, (1− γt)C). (4.4)

Proof. Appendix A.1.

4.2 Reverse Process and Loss

Our generative model is then obtained by reversing the
forward process, where we iteratively perturb the Gaussian
measure N (0, C) towards the data distribution P0.

More specifically, to generate samples from our data distri-
bution, we would like sample uT ∼ N (0, C) and iteratively
sample ut−1 ∼ Pt−1|t(− | ut) from the time-reversal of
our forward process for t = T − 1, . . . , 1. However, while
the posterior probability measure Pt−1|t(− | ut) is well-
defined1, it is intractable.

Most notably, using Bayes’ rule here would require that
the family of measures Pt|t−1(− | ut−1) be simultaneously
dominated by some fixed reference measure on F for ev-
ery choice of ut−1. As these measures are Gaussian, the
Feldman-Hájek theorem tells us that this is not possible
(see Appendix A.1). Even if such technical difficulties were
overcome (e.g. as in the Euclidean setting), computing
Bayes’ rule here would require computing an intractable
normalization constant.

We instead take a variational approach, and approximate
the posterior measures with a variational family of mea-
sures on F parametrized by θ ∈ Rp. In particular, we set
Qθ

T = N (0, C) and we approximate Pt−1|t(− | ut) by the
Gaussian measure

Qθ
t−1|t(− | ut) = N

(
mθ

t (ut), C
θ
t (ut)

)
. (4.5)

Here, mθ
t (ut) = mθ

t (− | ut) ∈ F is shorthand for a mean
function in F and Cθ

t (ut) = Cθ
t (− | ut) : F → F is

shorthand for a covariance operator. That is, the mean
function and covariance operators depend on parameters θ
as well as the timestep t and function ut ∈ F .

Although the reverse-time measures are intractable, the fol-
lowing proposition states that the reverse-time measures are
tractable when conditioned on a starting function u0 ∈ F .

1This is because we assume F is separable, which implies
that F is a Polish space. See Ghosal and Van der Vaart (2017,
Chapter 1).
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Proposition 3.
Let γt be defined as in Proposition (2), and consider fixed
values of u0, ut ∈ F . For t = 2, 3, . . . , T , let β̃t =

1−γt−1

1−γt

and let m̃t(ut, u0) = m̃t(− | ut, u0) ∈ F be defined by

m̃t(ut, u0) =

√
γt−1βt

1− γt
u0 +

√
1− βt(1− γt−1)

1− γt
ut.

(4.6)

Then, Pt−1|t,0(− | ut, u0) = N (m̃t(ut, u0), β̃tC).

Proof. Appendix A.1.

We now tie our function-space Markov chain back to our
observed data in order to obtain a loss function. Recall
that our observations y⃗ ⊂ R are assumed to be a vector
of noisy observations of a function u0 ∈ F at some finite
collection of points x⃗ ⊂ X . We thus set the likelihood of
our observed data to be qθ(y | x, u0) = N (y;u0(x), σ

2I)
where σ2 ∈ R≥0 is some fixed constant. Note that qθ is a
Gaussian density on a finite dimensional space.

In the following proposition, we obtain a variational lower
bound on the log-likelihood of our observations. This will
serve as our loss function, which we seek to maximize over
θ. Although this lower bound is analogous to the standard
DDPM lower bound (Ho et al., 2020), the proof is non-trivial
as we must work directly with the underlying probability
measures rather than their densities.

Proposition 4.
The marginal likelihood of y⃗ given x⃗ is lower bounded by

log qθ(y⃗ | x⃗) ≥ (4.7)

EP

[
log q(y⃗ | x⃗, u0)− KL[PT (− | x⃗, y⃗) ∥ Qθ

T (−)]

−
T∑

t=1

KL[Pt−1|t(− | ut, x⃗, y⃗) ∥ Qθ
t−1|t(− | ut))]

]
.

Proof. Appendix A.2.

Since we assume Qθ
T has no trainable parameters, we may

ignore the term KL[PT (− | x⃗, y⃗) ∥ Qθ
T (−)] during training.

Mean and Covariance Parametrization We now make
several further choices for our variational family. First, we
analyze the terms

Lt−1 = KL[Pt−1|t(− | ut, u0) ∥ Qθ
t−1|t(− | ut))]. (4.8)

Note that the first measure here is Gaussian by Proposition
(3), and the second is Gaussian by assumption. A more
general form of the Feldman-Hájek theorem (see Appendix

A.1) places strict requirements on the corresponding covari-
ance operators in order to obtain a finite KL divergence. In
particular, the term Lt−1 will be infinite if

β̃−1
t

(
C−1/2Cθ

t (ut)
1/2

)(
C−1/2Cθ

t (ut)
1/2

)∗
− I (4.9)

is not a Hilbert-Schmidt operator on the closure of C1/2(F).
For instance, even the seemingly innocuous choice of
Cθ

t (ut) = αβ̃tC for any non-negative α ̸= 1 will result
in an infinite KL divergence. Thus, motivated by necessity,
we will choose Cθ

t (ut) = β̃tC.

Under this choice of Cθ
t (ut), a consequence of Propositions

(1) and (3) is that

Lt−1 =
1

2β̃t

||C−1/2(m̃t(ut, u0)−mθ
t (ut))||2F . (4.10)

Similar to DDPM (Ho et al., 2020), we further choose to
parametrize the mean function via

mθ
t (ut) =

1√
1− βt

(
ut −

βt√
1− γt

ξθt (ut)

)
(4.11)

where ξθt (ut) ∈ F is the output of a model parametrized
by θ which takes in (t, ut) as inputs and has function-
valued outputs. In other words, our model is a parametrized
mapping ξθ : {1, 2, . . . , T} × F → F specified via
(t, ut) 7→ ξθt (− | ut). Under this choice, we have that

Lt−1 = λt||C−1/2(ξt − ξθt (ut))||2F (4.12)

where λt = β2
t /(2β̃t(1 − βt)(1 − γt)) ∈ R is a time-

dependent constant. See Appendix A.2 for details. In light
of Proposition (1), we see that Lt−1 is (up to a multiplicative
constant) the KL divergence between two Gaussian mea-
sures on F having covariance operators C and respective
means ξt, ξ

θ
t (ut). As is standard in diffusion generative

modeling, we drop the constant λt when training in order
to obtain a re-weighted variational lower bound (Ho et al.,
2020) for improved quality.

In Section 6, we provide a practical instantiation of the map-
ping ξθt via neural operators (Li et al., 2021, 2020; Kovachki
et al., 2021).

Following our work, Lim et al. (2023) noted that the
parametrization of the loss given in Equations 4.11 and
4.12 results in an infinite quantity when the dimension of
F is infinite. However, it is straightforward to remedy this
by considering an alternative parametrization, where the
model directly predicts a rescaled version of u0 rather than
predicting ξt, e.g., see Appendix E and Appendix I of Lim
et al. (2023) for additional details. In our experiments in
this paper we used the parametrization given in Equations
4.11 and 4.12, and note that the corresponding quantities are
only infinite in the limit corresponding to a discretization
size of zero.
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5 Function Spaces and KL Approximations

We have thus far described our framework in terms of ab-
stract Gaussian measures on Hilbert spaces. We can obtain
a concrete instantiation of our framework by choosing an ap-
propriate space of functions to work on, as well as a choice
of Gaussian measure which specifies our forward process.

In this section, we explore two choices for F : the space
of square-integrable functions L2(X , µ) and the Sobolev
spaces Hk(X , µ) = W k,2(X , µ). We derive practical meth-
ods for estimating the KL divergence between Gaussian
measures in these spaces, which is necessary for evaluating
the terms in our loss function given in Equation (4.12).

To compute the functional KL divergence in Proposition
(1), we derive discrete approximations of both the inverse
covariance operator C−1 and the associated inner product.
Suppose that m1 and m2 are known on a common discretiza-
tion x⃗ = {x(1), . . . , x(n)} ⊂ X which is drawn from the
measure µ on X . For any function f : X → R, we write
f(x⃗) ∈ Rn to represent the vector corresponding to eval-
uating f at the points contained in x⃗. We assume further
that our Gaussian measure ξ ∼ GP (0, k) is specified by
a mean-zero Gaussian process with kernel k, with appro-
priate restrictions on k such that ξ ∈ F (see Section 3.4).
In Appendix A.6, we explore estimating these KL diver-
gences with spectral methods, but find that it is sensitive
to the discretization size, even when the eigenfunctions are
analytically known.

5.1 Square-Integrable Functions

We first consider the space F = L2(X , µ) of measurable,
square-integrable functions f : X → R equipped with the
inner product ⟨f, g⟩L2 =

∫
X fg dµ.

For many applications, this is a natural choice of function
space as square integrability is a relatively weak assump-
tion. Moreover, p = 2 is the unique choice such that the
Banach space Lp(X , µ) is also a Hilbert space, and the asso-
ciated inner product structure is a useful tool for performing
calculations.

In L2(X , µ), the covariance operator associated with our
kernel function k can be explicitly described via

[Cg](x) =

∫
X
k(x, x′)g(x′) dµ(x′) ∀g ∈ F . (5.1)

We provide a derivation of this formula for C in Ap-
pendix A.3. Let Kx⃗x⃗ ∈ Rn×n be the covariance ma-
trix specified by k and evaluated on x⃗, i.e. the (i, j)th
entry of Kx⃗x⃗ is given by k(xi, xj). Then, upon replac-
ing µ with the empirical measure specified by x⃗, we have
[Cg] (x⃗) ≈ n−1Kx⃗x⃗g(x⃗) ∈ Rn, so that the (scaled) covari-
ance matrix K is a discrete approximation of the covariance
operator C which may inverted. Replacing µ once more

with the empirical measure specified by x⃗, we then have

KL[N (m1, C) ∥ N (m2, C)] ≈ 1

2
∆m(x⃗)TK−1

x⃗x⃗ ∆m(x⃗).

(5.2)

Interestingly, this is precisely the KL divergence between
two finite-dimensional Gaussians with equal covariance ma-
trices Kx⃗x⃗ and means m1(x⃗),m2(x⃗).

Furthermore, we note that Sun et al. (2019) prove that the KL
divergence between two stochastic processes is the supre-
mum of the KL divergences between their finite-dimensional
marginals. Our approximation in Equation (5.2) is increas-
ing under refinements of the observation set x⃗, and thus is a
lower bound on the true KL divergence.

Proposition 5.
Equation (5.2) is strictly increasing under refinements of the
observation set x⃗. In particular, if z⃗ ⊂ x⃗, then

∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) ≤ ∆m(x⃗)TK−1

x⃗x⃗ ∆m(x⃗). (5.3)

Proof. Appendix A.3.

5.2 Sobolev Spaces

A second choice of function spaces that have many practical
applications are the Sobolev spaces Hk(X , µ) consisting
of functions in L2(X , µ) whose mixed αth-order partial
derivatives of order at most k exist (in a weak sense) and are
also in L2(X , µ) (Evans, 2010, Chapter 5). Of particular
interest is the setting where X ⊂ R and k = 1, where the
inner product is given by

⟨f, g⟩H1 = ⟨f, g⟩L2 + ⟨∂xf, ∂xg⟩L2 . (5.4)

When the Gaussian process associated with the kernel func-
tion k lies in H1 with probability one, the corresponding
covariance operator can be expressed as

[Cg](x) =

∫
X
k(x, x′) dµ(x′) (5.5)

+

∫
X
[∂x′k(x, x′)] [∂x′g(x′)] dµ(x′).

See Appendix A.3 for a derivation. Our discretization in
this setting follows closely that of our techniques for the
space L2(X , µ), with the additional necessity of employing
a discrete differential operator. To that end, let D ∈ Rn×n

be any discrete approximation to the first-order differenti-
ation operator. In practice we use a discretization based
on finite-difference equations. Let K ′

x⃗x⃗ ∈ Rn×n be the
covariance matrix corresponding to the differeniated ker-
nel ∂x′k(x, x′). That is, the (i, j)th entry of K ′

x⃗x⃗ is given
by ∂

∂x′ k(xi, xj). Then, the covariance operator C can be
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Figure 1: Unconditional function generation on a synthetic (MoGP) and real-world (AEMET) dataset. For each dataset, a
GNO model was trained on the plotted functions (first column), and a total of 500 functions were sampled from the model
(second column). The generated curves closely match the training curves in both perceptual quality and pointwise statistics.

discretized via [Cg](x⃗) ≈ n−1 [Kx⃗x⃗ +K ′
x⃗x⃗D] g(x⃗) ∈ Rn,

and moreover,

KL[N (m1, C) ∥ N (m2, C)] ≈ (5.6)
1

2
∆m(x⃗)T

[
I +DTD

]
[Kx⃗x⃗ +K ′

x⃗x⃗D]
−1

∆m(x⃗).

Although the covariance operator C is guaranteed to be
positive semidefinite in theory, discretizing this operator
often results in a non-PSD matrix approximation which may
cause training to diverge. In practice, we project the matrix
[I+DTD][Kx⃗x⃗+K ′

x⃗x⃗D]−1 to the nearest symmetric PSD
matrix (in terms of the Frobenius norm) (Higham, 1988;
Cheng and Higham, 1998). See Appendix A.3 for details.

5.3 Existing Methods in Terms of Our Theory

In terms of our methodology, existing methods (Kong
et al., 2021; Chen et al., 2021; Tashiro et al., 2021; Du-
tordoir et al., 2022) can be viewed as operating in the space
F = L2(X , µ), with the discretization employed in Equa-
tion (5.2). In all of these methods, the forward process
is defined via a white noise prior. However, such a prior
can not be seen as a Gaussian measure. In particular, the
white noise process is not jointly measurable (Kallianpur,
2013, Example 1.2.5), and thus one is unable to consider
the corresponding sample paths as elements of some func-
tion space. A GRE corresponding to this prior would have
infinite variance, as the corresponding covariance operator
would be the identity operator. Nonetheless, despite these
foundational concerns, existing methods show strong em-
pirical performance. Explaining this performance from a
functional point of view, for example through the theory
of generalized functions (Grubb, 2008), is an interesting
challenge for future work.

6 Experiments

In this section, we perform several experiments in order to il-
lustrate how our theoretical framework can be implemented
as a practical estimation methodology. In all experiments,
we parametrize ξθt (ut) via a graph neural operator (GNO)
(Li et al., 2020; Kovachki et al., 2021). See Appendix A.4
for our model configurations and hyperparameter settings.
Our models are trained by minimizing the reweighted nega-
tive ELBO as described in Section 4. In all plots, our func-
tional diffusion model is denoted FuncDiff. Pseudocode and
additional details for all of our algorithms is available in
Appendix A.5.

Code for all of our experiments is available at
https://github.com/GavinKerrigan/
functional_diffusion.

A key property of the GNO is the ability to condition on
arbitrary discretizations of X . This allows us to train our
models on functions that are observed at different points, as
well as to condition on arbitrary function observations when
performing conditional generation. Moreover, as neural
operators parametrize mappings between function spaces,
we are able to query our model at arbitrary input locations.
Thus, our model is not tied to any particular discretization.

Datasets We use both a synthetic and a real-world dataset
in the main paper to illustrate our approach, with results on
additional real-world datasets in Appendix A.6. Our syn-
thetic dataset is a mixture of Gaussian processes (MoGP)
with a squared-exponential kernel with variance σ2 = 0.4
and length scale ℓ = 0.1, where the first mixture compo-
nent has mean m1 = 10x − 5 and the second has mean
m2 = −10x + 5. These functions are observed on a uni-
form discretization of [0, 1] ⊂ R. We use 64 observation

https://github.com/GavinKerrigan/functional_diffusion
https://github.com/GavinKerrigan/functional_diffusion
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points unless otherwise specified. Our real-world dataset
(AEMET) is a well-known dataset in the functional data
analysis literature. This dataset consists of 73 curves, where
each curve is the mean daily temperature at a particular
Spanish weather station, so that each curve has a total of
365 discrete observations (Febrero-Bande and de la Fuente,
2012). See Figure 1 for an illustration of these datasets.

6.1 Unconditional Generation

In this experiment, we sample curves unconditionally from
our trained model. In Figure 1, the generated curves closely
match the training data in terms of perceptual qualities.
We additionally compute the pointwise mean, pointwise
variance, and mean autocorrelation of both the real and
generated curves. The summary statistics of the generated
data closely match those of the real data, indicating that the
model has successfully learned to sample from the func-
tional distribution. See Appendix A.6 for a comparison to
a simple baseline based on functional PCA (Ramsay and
Silverman, 2008, Chapter 6) and additional datasets.

6.2 Conditional Generation

Our proposed approach for conditional generation is an ex-
tension of the ILVR method (Choi et al., 2021) to functional
data. This method works by perturbing conditioning infor-
mation via the forward process, and during generation we
set the values of the generated function at the condition-
ing locations to these perturbed values. In particular note
that we are able to condition a pre-trained unconditional
model on arbitrary function observations. Thus, this method
may potentially be applied to a wide array of tasks, such as
extrapolation, upsampling, or data imputation.

In Figure 2, we demonstrate this by conditioning our gener-
ation on a known segment of the function. We see that our
method is able to leverage the learned functional distribu-
tion in order to accurately extrapolate the given conditioning
information. We compare to a Gaussian process regression
(GPR) baseline, where we fit a Gaussian process only to the
conditioning information. Unsurprisngly, the GPR method
is not able to accurately extrapolate the conditioning infor-
mation, as it has no additional information regarding the
underlying functional distribution.

Moreover, our conditioning method allows us to do soft con-
ditioning, where the diffusion process is not conditioned on
the observed values for some number of the final diffusions
steps. This allows us to generate curves that are similar to a
given observation, but not exactly matching. For example,
this can be used to select a particular mode to sample from
in a multimodal dataset. We demonstrate this in Figure 3.
As a potential future application, soft conditioning could be
applied as a data augmentation method for functional data.

Figure 2: Conditional samples of our model (FuncDiff) are
compared against Gaussian process regression (GPR). In
each plot, both models are conditioned on the black curves.

Figure 3: An illustration of our soft conditioning method.
We condition the generative process on the black curves
for all but the final 150 diffusion steps. This allows us to
generate functions that are qualitatively similar to the given
conditioning information (in black), such that the generated
function values do not necessarily exactly match those of
the conditioning information.

6.3 Function Spaces

Lastly, we experiment with the choice of function space.
In particular, we compare the use of the L2(X , µ) inner
product against the use of the H1(X , µ) inner product. In-
tuitively, the derivative term in Sobolev inner product will
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penalize generated functions that are not smooth. In Ta-
ble 2, we measure the smoothness of generated curves by
computing the mean standard deviation of the derivatives of
said curves. We find empirically that using the Sobolev loss
can result in significantly smoother generations when the
underlying functional dataset is highly regular. As smooth-
ness is not a desirable property for the AEMET dataset, we
include here a dataset consisting of linear functions (Linear)
instead. See Appendix A.6 for more on this dataset. We use
the Matérn kernel with ν = 3/2 when working with the the
Sobolev norm as this kernel has differentiable sample paths.

Table 1: Mean smoothness of generated functions as mea-
sured by the standard deviation of the function derivatives,
averaged across 500 samples. Using the Sobolev norm over
the L2 norm can significantly increase the smoothness of
generated functions, while not harming performance if the
generated functions are already sufficiently smooth.

Dataset L2(X , µ) H1(X , µ)
Linear 0.753 0.203
MoGP 24.73 24.74

7 Conclusion

We propose a framework for diffusion generative modeling
in infinite-dimensional spaces of functions and develop prac-
tical techniques for realizing this framework on real-world
data. Enabled by our framework, future functional diffu-
sion models may be able move beyond the typical L2-space
assumption in order to incorporate informative prior infor-
mation. A remaining challenge for functional diffusion mod-
els is to consider the continuous-time limit and elucidating
connections with score-based methods (Song et al., 2021).
For instance, it may be possible to view continuous-time
functional diffusion models as stochastic PDEs, potentially
enabling more efficient sampling methods.
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Diffusion Generative Models in Infinite Dimensions:
Supplementary Materials

Summary of the Appendix

The appendix is organized as follows:

• In Section A.1, we discuss additional properties of Gaussian measures not contained in the main paper. In particular,
we show that the space of Gaussian measures is closed under affine transformations and independent sums. We
leverage these facts to prove Propositions (2), (3). In addition, we provide a statement of the general formulation of the
Feldman-Hájek theorem, and use this theorem to prove Proposition (1).

• In Section A.2, we provide a proof of the ELBO in Proposition (4), as well as a detailed derivation of the reparametriza-
tion and simplified loss of Section 4.

• In Section A.3, we derive expressions for the covariance operator associated with a Gaussian process under the
assumptions that F = L2(X , µ) or F = H1(X , µ). In addition, we prove Proposition (5).

• In Section A.4, we provide the details of the model architectures and training procedures used in our experiments, as
well as an ablation on the choice of kernel in the forward process.

• In Section A.5 we provide pseudocode for training our model as well as both unconditional and conditional sampling.

• In Section A.6, we include additional experiments not detailed in the main paper. These include unconditional
generation results on additional datasets, a comparison to a simple baseline based on functional PCA, and a comparison
between the discrete approximations of the KL divergence proposed in Section 5 to a method based on computing the
spectrum of the corresponding covariance operator.
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A.1 Gaussian Measures

In this section, we include some useful facts and additional details regarding Gaussian measures, as well as proofs of
Propositions (1), (2), (3).

A.1.1 Basic Properties

Lemma 1 (Affine Transformations of GREs).
Let F ∼ N (m,C) be a GRE on F . Then, for α ∈ R and g ∈ F , we have that αF + g ∼ N (αm+ g, α2C).

Proof. Fix any h ∈ F , and note that
⟨h, αF + g⟩ = α⟨h, F ⟩+ ⟨h, g⟩. (A.1.1)

Since ⟨h, F ⟩ ∼ N (⟨h,m⟩, ⟨Ch, h⟩), it follows that ⟨h, αF + g⟩ must follow a Gaussian distribution on R with mean

α⟨h,m⟩+ ⟨h, g⟩ = ⟨h, αm+ g⟩ (A.1.2)

and variance
α2⟨Ch, h⟩ = ⟨α2Ch, h⟩. (A.1.3)

Thus, we have shown that αF + g is a GRE on F , as its inner product with arbitrary h ∈ F is Gaussian on R. Moreover, we
have computed its mean and covariance operator as claimed.

Lemma 2 (Sum of Independent GREs).
If F ∼ N (m1, C1) and G ∼ N (m2, C2) are independent GREs on F , then F +G ∼ N (m1 +m2, C1 + C2).

Proof. Let Z = F +G. Write PF ,PG,PZ for the probability measures of F,G,Z respectively. The Fourier transform of
PF is given by

P̂F (λ) =

∫
F
exp [i⟨λ, F ⟩] dPF ∀λ ∈ F , (A.1.4)

and is given analogously for our other measures. By Bogachev (1998, A.3.17) and the subsequent discussion, a probability
measure is uniquely determined by its Fourier transform. Moreover, we have that

P̂Z(λ) = P̂F (λ)P̂G(λ) ∀λ ∈ F . (A.1.5)

Using the expression for the Fourier transform of a Gaussian measure given in Da Prato and Zabczyk (2014, Chapter 2), we
see that that

P̂Z(λ) = exp

[
i⟨λ,m1⟩ −

1

2
⟨C1λ, λ⟩

]
exp

[
i⟨λ,m2⟩ −

1

2
⟨C2λ, λ⟩

]
(A.1.6)

= exp

[
i⟨λ,m1 +m2⟩ −

1

2
⟨(C1 + C2)λ, λ⟩

]
(A.1.7)

which is precisely the Fourier transform of the measure N (m1 +m2, C1 + C2).

A.1.2 Diffusion Process Measures

In this subsection we derive various closed-form measures related to our diffusion process in Section (4).

Proof of Proposition (2).

Proof. The first and second claims are special cases of Lemma (1).

For the third claim, we proceed by induction on t. The case t = 1 is clear from Lemma (1). Now, suppose

ut−1 | u0 ∼ N (
√
γt−1u0, (1− γt−1)C). (A.1.8)
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By the definition of the forward process and our inductive assumption, we have that ut =
√
1− βtut−1 +

√
βtξt is the sum

of two independent GREs: the first is√
1− βtut−1 ∼ N (

√
γtu0, (1− βt)(1− γt−1)C) (A.1.9)

and the second is
√
βtξt ∼ N (0, βtC). By Lemma (2), we obtain the result, as

(1− βt)(1− γt−1) + βt = 1− (1− βt)γt−1 = 1− γt. (A.1.10)

Proof of Proposition (3).

Proof. By Proposition (2) and Lemma (1), we may write

ut−1 =
√
γt−1u0 +

√
1− γt−1ξ ξ ∼ N (0, C) (A.1.11)

and by construction we have
ut =

√
1− βtut−1 +

√
βtξ

′ ξ′ ∼ N (0, C) (A.1.12)

where ξ, ξ′ ∼ N (0, C) are independent GREs. Our strategy is to manipulate these expressions to obtain a reparametrized
expression for ut−1. By Equation (A.1.11),

βt
√
γt−1u0 = βt

[
ut−1 −

√
1− γt−1ξ

]
, (A.1.13)

and similarly by Equation (A.1.12),

(1− γt−1)
√
1− βtut = (1− γt−1)

[
(1− βt)ut−1 +

√
βt

√
1− βtξ

′
]
. (A.1.14)

Upon summing Equations (A.1.13)-(A.1.14) and isolating the ut−1 terms,

(βt + (1− γt−1)(1− βt))ut−1 = βt
√
γt−1u0 + (1− γt−1)

√
1− βtut (A.1.15)

+ βt

√
1− γt−1ξ − (1− γt−1)

√
βt

√
1− βtξ

′.

On the LHS, we have

(βt + (1− γt−1)(1− βt))ut−1 = (βt + (1− βt)− (1− βt)(γt−1))ut−1

= (1− γt)ut−1 (A.1.16)

thereby allowing us to obtain

ut−1 =
βt
√
γt−1

1− γt
u0 +

√
1− βt(1− γt−1)

1− γt
ut (A.1.17)

+
βt
√
1− γt−1

1− γt
ξ − (1− γt−1)

√
βt

√
1− βt

1− γt
ξ′. (A.1.18)

We now analyize the noise terms (i.e. only those terms depending on ξ, ξ′). By Lemmas (1)-(2) and the independence of
ξ, ξ′, the sum of the noise terms follows a mean zero Gaussian measure with covariance(

βt
√
1− γt−1

1− γt

)2

+

(
(1− γt−1)

√
βt

√
1− βt)

1− γt

)2

=

(
βt(1− γt−1)

1− γt

)(
βt + (1− βt)(1− γt−1)

1− γt

)
=

βt(1− γt−1)

1− γt
.

where the last line follows from the calculation in Equation (A.1.16). Thus, we see that ut−1 | ut, u0 follows a Gaussian
measure with the claimed mean and covariance.
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A.1.3 The Feldman-Hájek Theorem and its Consequences

Here we state the Feldman-Hájek Theorem in its general form, and discuss a few of its consequences. We include here only
a statement of the theorem – see Da Prato and Zabczyk (2014, Theorem 2.23, Theorem 2.25) for a proof.

Theorem 2 (The Feldman-Hájek Theorem, General Case).
Let P = N (m1, C1) and Q = N (m2, C2) be Gaussian measures on F . Then,

1. The measures P and Q are either equivalent (i.e. P ≪ Q and Q ≪ P) or mutually singular (i.e. P is not absolutely
continuous with respect to Q and vice-versa).

2. The measures P and Q are equivalent if and only if:

(a) C
1/2
1 (F) = C

1/2
2 (F) = H0

(b) m1 −m2 ∈ H0

(c) The operator (C−1/2
1 C

1/2
2 )(C

−1/2
1 C

1/2
2 )∗ − I is Hilbert-Schmidt on the closure H0.

3. If P and Q are equivalent and C1 = C2 = C, then Q-a.s. the Radon-Nikodym derivative dP/ dQ is given by

dP
dQ

(f) = exp

[
⟨C−1/2(m1 −m2), C

−1/2(f −m2)⟩ −
1

2
||C−1/2m1 −m2)||2

]
∀f ∈ F (A.1.19)

An important consequence of the Feldman-Hájek theorem that we repeatedly make use of throughout our work is that it
allows is to compute the KL between Gaussian measures having equal covariance operators.

Proof of Proposition (1).

Proof. Suppose P = N (m1, C) and Q = N (m2, C) and that m1 −m2 ∈ C1/2(F). It follows from the Feldman-Hájek
theorem that P and Q are equivalent. We now use the Radon-Nikodym expression from the Feldman-Hájek theorem to
compute the KL divergence.

We have that

KL[P ∥ Q] =

∫
F
log

dP
dQ

(f) dP(f) (A.1.20)

= −1

2
||C−1/2(m1 −m2))||+

∫
F
⟨C−1/2(m1 −m2), C

−1/2(f −m2) dP(f). (A.1.21)

We now analyze the integral term via a spectral decomposition. Let {(λj , ej)}∞j=1 be the eigenvalues and eigenvectors of C.
Note that the eigenvectors of C form an orthonormal basis for F by the spectral theorem, as C is a self-adjoint compact
operator. Then, we may evaluate the second integral as∫

F
⟨C−1/2(m1 −m2), C

−1/2(f −m2) dP(f) (A.1.22)

=

∫
F

∞∑
j=1

⟨m1 −m2, ej⟩⟨f −m2, ej⟩λ−1
j dP(f) (A.1.23)

=

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩

∫
F
⟨f −m2, ej⟩dP(f) (A.1.24)

=

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2 (A.1.25)

= ⟨C−1/2(m1 −m2), C
−1/2(m1 −m2)⟩. (A.1.26)

Combining this computation with the KL expression above completes the proof.
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A.2 Loss Function

In this section we provide additional details regarding the derivation and parametrization of our loss function.

A.2.1 Functional ELBO

Proof of Proposition (4).

Proof. First, we apply the usual functional ELBO (Wild et al., 2022; Matthews et al., 2016; Sun et al., 2019), treating u0:T

as latent variables and using the assumption that the reverse-time chain is Markov to obtain

log qθ(y⃗ | x⃗) ≥ EP
[
log qθ(y⃗ | x⃗, u0)

]
− KL[P( du0:T | x⃗, y⃗) ∥ Qθ( du0:T )]. (A.2.1)

By the chain rule for KL divergences (Dupuis and Ellis, 2011), we may condition on uT to obtain

log qθ(y⃗ | x⃗) ≥ EP
[
log qθ(y⃗ | x⃗, u0)

]
− KL[PT ( duT | x⃗, y⃗) ∥ Qθ( duT )] (A.2.2)

− EP
[
KL[P( du0:T−1 | x⃗, y⃗, uT ) ∥ Qθ( du0:T | uT )]

]
.

Repeatedly applying the KL divergence chain rule to condition on uT−1, uT−2, . . . , u1 and using the Mavkov assumption
yields

= EP
[
log qθ(y | x, u0)

]
− KL[PT ( duT | x⃗, y⃗) ∥ Qθ( duT )] (A.2.3)

−
T∑

t=1

EP
[
KL[P( dut−1 | ut, x⃗, y⃗) ∥ Qθ( dut−1 | ut)]

]
. (A.2.4)

A.2.2 Parametrization and Re-Weighting

By Equation (4.10), our loss function depends on terms of the form

Lt−1 =
1

2β̃t

||C−1/2(m̃t(ut, u0)−mθ
t (ut))||2F . (A.2.5)

That is, our model must predict the mean function m̃t(ut, u0) given (t, ut). By Proposition (3) and Proposition (2),

m̃t(ut, u0) =

√
γt−1βt

1− γt
u0 +

√
1− βt(1− γt−1)

1− γt
ut (A.2.6)

u0 =
1
√
γt

(
ut −

√
1− γtξ

)
(A.2.7)

where ξ ∼ N (0, C). Combining these two expressions, we see that

m̃t(ut, u0) =

√
γt−1βt

(1− γt)
√
γt

(
ut −

√
1− γt

)
+

√
1− βt(1− γt−1)

1− γt
ut (A.2.8)

=
1√

1− βt

(
ut −

βt√
1− γt

ξ

)
. (A.2.9)

We thus parametrize the variational mean via

mθ
t (ut) =

1√
1− βt

(
ut −

βt√
1− γt

ξθt (ut)

)
. (A.2.10)
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Because C is a linear operator, C−1/2 must also be a linear operator. Thus, plugging in our reparametrized expressions for
m̃t(ut, u0) and mθ

t (ut), we see that

Lt−1 =
β2
t

2β̃t(1− βt)(1− γt)
||C−1/2(ξ − ξθt (ut))||2F . (A.2.11)

We thus have obtained Equation (4.12).

A.3 Covariance Operators

Recall that for a Gaussian measure F ∼ PF = N (m,C) on a separable Hilbert spaceF , the covariance operator C : F → F
is defined via

Cg =

∫
F
⟨g, F ⟩F dPF − ⟨g,m⟩m ∀g ∈ F . (A.3.1)

We now focus on the case where our Gaussian measure is specified by a Gaussian process with mean m ∈ F and kernel
k : X 2 → R. Note that k(x, x′) = E[(F (x)−m(x)) (F (x′)−m(x′))] specifies the covariance at points x, x′ ∈ X .

A.3.1 Square-Integrable Case

Consider first F = L2(X , µ). In this setting, we have that

[Cg](x) =

∫
X
k(x, x′)g(x′) dµ(x′). (A.3.2)

This can be derived from Equation (A.3.1) via

[Cg](x) =

∫
F
⟨g, F ⟩L2(X ,µ)F (x) dPF − ⟨g,m⟩L2(X ,µ)m(x) (A.3.3)

=

∫
F

[∫
X
g(x′)F (x′) dµ(x′)

]
F (x) dPF − ⟨g,m⟩L2(X ,µ)m(x) (A.3.4)

=

∫
X
g(x′)

[∫
F
F (x)F (x′) dPF

]
dµ(x′)− ⟨g,m⟩L2(X ,µ)m(x) (A.3.5)

=

∫
X
g(x′) [k(x, x′) +m(x)m(x′)] dµ(x′)−

∫
X
g(x′)m(x′)m(x) dµ(x′) (A.3.6)

=

∫
X
g(x′)k(x, x′) dµ(x′). (A.3.7)

where we apply Fubini’s theorem in the third equality.

Proof of Proposition (5).

Proof. Set z⃗ = {z(1), . . . , z(n)} ⊂ X . If suffices to check the case that x⃗ = x ∪ z⃗ is increased by a single point x ∈ X .

Let Kz⃗z⃗ ∈ Rn×n be the covariance matrix corresponding to z⃗, and let Kx⃗x⃗ ∈ R(n+1)×(n+1) be the covariance matrix
corresponding to x⃗, i.e. in both cases the covariance matrix is given by evaluating the kernel k at all combinations of points
in z⃗ or x⃗. Let kz⃗(x) ∈ Rn be the covariance between the points of z⃗ and our new point x. Lastly, let ∆m(z⃗) ∈ Rn be
any vector and be ∆m(x) ∈ R any scalar. We will write ∆m(x⃗) = [∆m(z⃗),∆m(x)]T ∈ Rn+1 for the vector extending
∆m(z⃗) by the single entry ∆m(x).

Then, we have that

Kx⃗x⃗ =

[
Kz⃗z⃗ kz⃗(x)

kz⃗(x)
T k(x, x)

]
, (A.3.8)
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i.e. the extended covariance matrix corresponding to x⃗ can be written as a block matrix containing the covariance matrix for
z⃗. Our goal is to show that

∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) ≤ ∆m(x⃗)TK−1

x⃗x⃗ ∆(x⃗). (A.3.9)

Using the block matrix inversion formula (see e.g. Williams and Rasmussen (2006, Appendix A.3)), we may express K−1
x⃗x⃗

as

K−1
x⃗x⃗ =

[
K−1

z⃗z⃗ +K−1
z⃗z⃗ kz⃗(x)Mkz⃗(x)

TK−1
z⃗z⃗ −K−1

z⃗z⃗ kz⃗(x)M
−Mkz⃗(x)

TK−1
z⃗z⃗ M

]
(A.3.10)

where

M =
(
k(x, x)− kz⃗(x)

TK−1
z⃗z⃗ kz⃗(x)

)−1 ∈ R. (A.3.11)

Note that M is exactly the posterior variance at x ∈ X of a GP with covariance function k (Williams and Rasmussen, 2006,
Eqn. 2.26). In particular, we must have M ≥ 0.

We now proceed to directly compute the quadratic form on the right-hand side of Equation (A.3.9). We have:

[∆m(z⃗),∆m(x)]K−1
x⃗x⃗

[
∆m(z⃗)
∆m(x)

]
(A.3.12)

=

〈[
∆m(z⃗)T

(
K−1

z⃗z⃗ +K−1
z⃗z⃗ kz⃗(x)Mkz⃗(x)

TK−1
z⃗z⃗

)
−∆m(x)Mkz⃗(x)

TK−1
z⃗z⃗

−∆m(z⃗)TK−1
z⃗z⃗ kz⃗(x)M +∆m(x)M

]
,

[
∆m(z⃗)
∆m(x)

]〉
(A.3.13)

= ∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) + ∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)Mkz⃗(x)
TK−1

z⃗z⃗ ∆m(z⃗) (A.3.14)

−∆m(x)Mkz⃗(x)
TK−1

z⃗z⃗ ∆m(z⃗)−∆m(z⃗)TK−1
z⃗z⃗ kz⃗(x)M∆m(x) + ∆m(x)2M (A.3.15)

= ∆m(z⃗)TK−1
z⃗z⃗ ∆m(z⃗) +M

(
∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)−∆m(x)
)2

. (A.3.16)

We now plug Equation (A.3.16) back into Equation (A.3.9). Noting the first term in (A.3.16) is precisely the LHS of (A.3.9),
we only need to check

0 ≤M
(
∆m(z⃗)TK−1

z⃗z⃗ kz⃗(x)−∆m(x)
)2

. (A.3.17)

However, note that we already observed that M ≥ 0, and the other term is the square of a scalar, whence it is positive.

A.3.2 Sobolev Case

We now consider the first-order Sobolev space F = H1(X , µ).

We claim that

[Cg](x) =

∫
X
k(x, x′)g(x′) dµ(x′) +

∫
X
∂x′k(x, x′)∂x′g(x′) dµ(x′) (A.3.18)

where we use the shorthand

∂x′k(x, x′) =
∂

∂x′ k(x, x
′) and ∂x′g(x′) =

∂

∂x′ g(x
′). (A.3.19)

Note that the mean element is not dependent on the inner product – it is merely an arbitrary element m ∈ F . Now, from
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Equation (A.3.1),

[Cg](x) =

∫
F
⟨g, F ⟩H1(X ,µ)F (x) dPF − ⟨g,m⟩H1(X ,µ) (A.3.20)

=

∫
F

[
⟨g, F ⟩L2(X ,µ) + ⟨∂x′g(x′), ∂x′F (x′)⟩L2(X ,µ)

]
F (x) dPF − ⟨g,m⟩H1(X ,µ)m(x) (A.3.21)

=

∫
X
k(x, x′)g(x′) dµ(x′) +

∫
F
⟨∂x′g(x′), ∂x′F (x′)⟩L2(X ,µ)F (x) dPF − ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X ,µ)m(x)

(A.3.22)

=

∫
X
k(x, x′)g(x′) dµ(x′) +

∫
X
∂x′g(x′)E[F (x)∂x′F (x′)] dµ(x′)− ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X ,µ)m(x)

(A.3.23)

=

∫
X
k(x, x′)g(x′) dµ(x′) +

∫
X
∂x′g(x′) (∂x′k(x, x′) +m(x)∂x′m(x′)) dµ(x′) (A.3.24)

− ⟨∂x′g(x′), ∂x′m(x′)⟩L2(X ,µ)m(x)

=

∫
X
k(x, x′)g(x′) dµ(x′) +

∫
X
∂x′k(x, x′)∂x′g(x, x′) dµ(x′). (A.3.25)

The third equality follows from the corresponding L2(X , µ) calculation. The fifth equality follows from the fact that if
F ∼ GP (m, k) is differentiable with probability one, then ∂x′F is also a Gaussian process with mean ∂x′m (Williams
and Rasmussen, 2006; Papoulis and Pillai, 2002), and moreover the covariance between F and its derivative is given by
differentiating the kernel:

Cov(F (x), ∂x′F (x′)) = E [(F (x)−m(x)) (∂x′F (x′)− ∂x′m(x′))] = ∂x′k(x, x′). (A.3.26)

See e.g. Williams and Rasmussen (2006, Chapter 9.4).

PSD Projection Details In Sobolev space, our discrete approximation to the KL divergence is given in terms of a quadratic
form (see Section 5)

KL[N (m1, C) ∥ N (m2, C)] ≈ ∆m(x⃗)T
[
I +DTD

]
[Kx⃗x⃗ +K ′

x⃗x⃗D]
−1

∆m(x⃗). (A.3.27)

In practice, we parametrize D by a first-order difference operator when X = [0, 1]. For example, one choice of D can be
constructed by using the forward difference equation at the left boundary, the backward difference equation at the right
boundary, and the central difference equation on the interior of [0, 1].

Although the covariance operator C is symmetric and positive semi-definite (with respect to the H1(X , µ) inner product) in
theory, upon discretization we often obtain a non-PSD quadratic form. Thus, when naively used as a loss function, this
quadratic form is unbounded from below, which leads to divergent training. We overcome this by projecting

A =
[
I +DTD

]
[Kx⃗x⃗ +K ′

x⃗x⃗D]
−1 (A.3.28)

to a symmetric PSD matrix. In particular, we apply the methods of Cheng and Higham (1998); Higham (1988) to find

Ã = argmin
B
{||B −A||F : B is symmetric, PSD} (A.3.29)

i.e. the closest symmetric PSD matrix to A in terms of the Frobenius norm. This has a unique solution, which can be
computed in a straightforward manner. We briefly review this method here for the sake of completeness. First, set

C =
1

2
(A+AT ) (A.3.30)

to be the symmetric part of A. Then, compute the usual spectral decomposition

C = Qdiag(λi)Q
T (A.3.31)

where Q is a matrix containing the eigenvectors of C with corresponding eigenvalues {λi}. Set τi = max(0, λi). Then,

Ã = Qdiag(τi)QT . (A.3.32)

We will write Ã = πPSD(A) for this projection.
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A.4 Model Details

In all of our experiments, our model architecture is the Graph Neural Operator (GNO) of Li et al. (2020). We use a width of
64, a kernel width of 256, and a depth of 6. Inputs to the GNO are graphs, constructed from discrete functional observations.
In particular, for every function we construct a graph where each node corresponds to a single observation of the function.
Each node has features corresponding to the observation location (i.e. point in X ), function value (i.e. scalar in R), and
additionally time step t ∈ [1, T ]. Nodes are connected if the Euclidean distance between their observation locations is
smaller than a fixed radius r. We use r = 0.5 in all of our experiments, and we additionally scale X to [0, 1] ⊂ R. Each
edge in our graph has features corresponding to the observation locations and function values of the respective nodes. While
using r = 1 would be ideal in this setting, we find this to be prohibitively expensive in terms of computation and memory
usage. The Fourier Neural Operator (FNO) (Li et al., 2021) has a significantly reduced computation and memory cost
compared to the GNO, but this model is limited to functional observations which are on a uniform gridding of X .

Our models are all trained for 50 epochs and a learning rate of 0.001.

We use T = 1000 time steps in all of our experiments. We set β1 = 10−4 and βT = 0.02, and we linearly interpolate
between these two values for other settings of βt. We parametrize the Gaussian measure in our forward process via a
mean-zero Gaussian process with a Matérn kernel of unit variance and lengthscale ℓ = 0.1. In particular, we use a Matérn
kernel with ν = 1/2 (i.e. the exponential kernel) when F = L2(X , µ) and ν = 3/2 when F = H1(X , µ). This choice was
made to ensure that the Gaussian measure was sufficiently rough to remove any information contained in the functional data,
yet regular enough to be square-integrable (and differentiable in the ν = 3/2 case) such that we obtain a valid Gaussian
measure on F .

A.4.1 Kernel Ablation

In Tables 2-3, we study the effect of the kernel choice in the forward process on the MoGP and AEMET datasets. In
particular, we train models as above (using the discrete L2(X , µ) loss function), but choose between values of ν = 1/2
and ν = 3/2 and sweep across various length scales between 0.005 and 0.5. We then sample 500 generated functions from
our model, and compute the average pointwise mean and variance curves, as well as the average autocorrelation curve –
see Figures (1) and (4) for a visualization. We report the MSE between these generated functional statistics and the true
functional statistics given by the training data.

We see that choosing a length scale that is either significantly larger or smaller than the length scale of the underlying
functional data can have negative effects on the statistics, but for reasonable choices of the length scale, the statistics are
comparable. Although ℓ = 0.1 does not produce the best MSE values on the AEMET datsaet, we still use ℓ = 0.1 in our
main experiments as this produced the most qualitatively realistic generated curves.

Table 2: Effect of kernel choice on the MoGP dataset. We report the MSE between various functional statistics on the
training data and data generated via our model with the listed kernel hyperparameters.

ν ℓ Mean Var. Autocorr.

1/2 0.005 3.0333 6.1184 1.211e-4
0.01 0.4474 1.2174 5.552e-06
0.1 0.0032 0.2328 9.169e-06
0.2 0.4496 1.2752 9.183e-06
0.5 0.0318 0.2772 1.080e-05

3/2 0.005 0.5225 0.5783 3.638e-05
0.01 1.6557 4.7887 5.699e-05
0.1 0.4645 0.1239 1.928e-05
0.2 0.1046 0.2300 3.947e-06
0.5 0.2651 0.2586 6.677e-05
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Table 3: Effect of kernel choice on the AEMET dataset. We report the MSE between various functional statistics on the
training data and data generated via our model with the listed kernel hyperparameters. For ν = 3/2 with a length scale of
ℓ = 0.5 our training failed to produce a reasonable model.

ν ℓ Mean Var Autocorr

1/2 0.005 0.1118 74.8143 1.813-06
0.01 0.0646 2.2001 4.563e-06
0.1 0.7284 2.2519 5.805e-05
0.2 0.0152 1.0748 2.551e-06
0.5 0.0832 3.0590 1.516e-05

3/2 0.005 0.1393 8.5001 1.700e-05
0.01 0.0899 1.28130 5.638-06
0.1 0.9317 148.4542 0.0021
0.2 7.3748 15634.6889 0.0398
0.5 - - -

A.5 Pseudocode

In this section we detail pseudocode for model training, unconditional sampling, and conditional sampling. Note that during
training, we assume u0(x⃗) = y⃗, i.e. we treat the observations as if they were noiseless. Thus the likelihood term q(y⃗ | x⃗, u0)
does not contribute to the loss, and we need only optimize the terms Lt−1 (see Equation (4.12). Moreover, as mentioned in
the main paper, we set λt = 1 as is standard in diffusion modeling (Ho et al., 2020).

Note that the given pseudocode for conditional generation covers both hard and soft conditioning. Hard conditioning is
obtained when nfree = 0, and soft conditioning is obtained by setting nfree ≥ 1, i.e. the parameter nfree indicates how many
generation steps are not conditioned on the given information.

Algorithm 1: Training Step

1 Sample (x⃗, y⃗) from training data;
2 Sample t uniformly from {2, . . . , T};
3 Sample ξ ∼ GP (0, k), evaluated at x⃗ to obtain ξ(x⃗);
4 Construct ut | u0, evaluated at x⃗, via Lemma (2): ut(x⃗) =

√
γtu0(x⃗) +

√
1− γtξ(x⃗) ;

5 Compute model output ξθ(x⃗ | ut, t);

6 Take a θ-gradient step on Lt−1 =
(
ξ(x⃗)− ξθ(x⃗ | ut, t)

)T
A
(
ξ(x⃗)− ξθ(x⃗ | ut, t)

)
, where

A =

{
K−1

x⃗x⃗ F = L2(X , µ)
πPSD

(
[I +DTD][Kx⃗x⃗ +K ′

x⃗x⃗D]−1
)
F = H1(X , µ)

(A.5.1)

Algorithm 2: Unconditional Sampling

1 Specify query points x⃗ ⊂ X ;
2 Sample uT ∼ GP (0, k), evaluated at x⃗ to obtain uT (x⃗);
3 for t = T, T − 1, . . . , 1 do
4 Sample ξt ∼ GP (0, k), evaluated at x⃗ to obtain ξt(x⃗);

5 ut−1(x⃗)← 1√
1−βt

(
ut(x⃗)− βt√

1−γt
ξθ(x⃗ | ut, t)

)
+

√
β̃tξt(x⃗) ;

6 end for
7 Return u0(x⃗)



Diffusion Generative Models in Infinite Dimensions

Algorithm 3: Conditional Sampling

1 Given: conditioning information D = {(x(i)
c , y

(i)
c )}nc

i=1 = {x⃗c, y⃗c} ;
2 Specify query points x⃗ = {x(1), x(2), . . . , x(n)} ⊂ X ;
3 Create augmented support z⃗ = {x(1), x(2), . . . , x(n), x

(1)
c , . . . , x

(nc)
c };

4 Sample uT ∼ GP (0, k), evaluated at z⃗ to obtain uT (z⃗);
5 for t = T, T − 1, . . . , 1 do
6 Sample ξt ∼ GP (0, k), evaluated at z⃗ and x⃗c to obtain ξt(z⃗);
7 Sample reverse process unconditionally on z⃗:

ũt−1(z⃗)←
1√

1− βt

(
ut(z⃗)−

βt√
1− γt

ξθ(z⃗ | ut, t)

)
+

√
β̃tξt(z⃗) (A.5.2)

8 if t > nfree then
9 Sample ξ′t ∼ GP (0, k), and evaluate at x⃗c to obtain ξ′t(x⃗c);

10 Perturb conditioning information via the forward process:

y⃗c,t =
√
γty⃗c +

√
1− γtξ

′
t(x⃗c) (A.5.3)

11 For each x ∈ z⃗, conditioned on perturbed conditioning information by setting

ut−1(x) =

{
ũt−1(x) x /∈ D
yc,t(x) x ∈ D

(A.5.4)

12 else
13 Do no conditioning: ut−1(z⃗)← ũt−1(z⃗);
14 end for
15 Return u0
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A.6 Additional Experiments

A.6.1 Unconditional Samples

In Figure (4), we provide additional examples of our model on various datasets not discussed in the main paper. The
first dataset (Linear) is a synthetic dataset consisting of random linear functions u0(x) = ax+ b where a ∼ N (2, 0.252)
and b ∼ N (−1, 0.072). Note that, although the pointwise variance of the generated samples in this dataset appear to be
significantly smaller than the that of the true samples, this is largely due to the small scale of the variance. The other datasets
(Growth, Canadian, Octane) are well-known functional data analysis datasets, which are available in the Python package
scikit-fda (Ramos-Carreño et al., 2019).

Figure 4: Unconditional function generation on a synthetic (Linear) and several real-world (Growth, Canadian, Octane)
datasets. For each dataset, a GNO model was trained on the plotted functions (first column), and a total of 500 functions
were sampled from the model (second column).

A.6.2 FPCA Baseline

We additionally include a simple unconditional baseline based on functional principal component analysis (FPCA). In
particular, we approximate the first M = 5 functional principal components by discretizing the training data (see Ramsay
and Silverman (2008, Chapter 6) for details and Ramos-Carreño et al. (2019) for an implementation), followed by fitting a
multivariate Gaussian to the resulting scores. To sample from this model, we sample from the Gaussian distribution over
scores and project back to function space by taking linear combinations of the principal components with these sampled
scores.

See Figure 5 for an illustration of this approach on all of the datasets we have thus far considered. We see that while the
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FPCA baseline is able to accurately match the functional statistics of the training data, the generated samples often fail to
match the qualitative performance of our FuncDiff model (Figures 1 and 4). Note that, unlike our FuncDiff model, we are
unable to perform conditional generation with this FPCA baseline.

Figure 5: Unconditional samples from an FPCA-based model on various datasets. For each dataset, we estimate the first
M = 5 functional principal components and fit a Gaussian distribution to the resulting scores. Generation is performed by
sampling from said Gaussian and taking the resulting linear combination of functional principal components. Although the
functional statistics closely match those of the training data, the perceptual quality of the generated curves is worse than our
FuncDiff model.
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A.6.3 Spectral Loss

In the main paper, we approximate the functional KL divergence by discretizing the underlying operators. In this section,
we experiment with an alternative approach based on the spectrum of the covariance operator. We focus here on the setting
F = L2(X , µ) with X = [0, 1] equipped with the Lebesgue measure µ = dx. Consider a Gaussian measure on F with
covariance operator C. Since C is self-adjoint and compact, the spectral theorem tells us that the eigenfunctions of C
form an orthonormal basis of F . We denote the eigenvalues and eigenfunctions of C by {(λj , ej)}∞j=1. We then have that
(Da Prato and Zabczyk, 2014, Remark 2.24)

KL[N (m1, C) ∥ N (m2, C)] =
1

2
⟨m1 −m2, C

−1(m1 −m2)⟩L2(X ,µ) (A.6.1)

=
1

2

∞∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2L2(X ,µ) ≈

1

2

J∑
j=1

λ−1
j ⟨m1 −m2, ej⟩2L2(X ,µ). (A.6.2)

Thus, an alternative method for approximating the KL divergence between Gaussian measures with equal covariance
operators is to truncate the above sum at some specified number of terms J . For some choices of C, the eigenvalues and
eigenfunctions are analytically known – for example, see Williams and Rasmussen (2006, Chapter 4) for the squared-
exponential kernel, and see Le Maı̂tre and Knio (2010, Chapter 2) or Burt (2018, Section 2.5) for the exponential kernel.

In Figure 6, we compare this spectral approach to the discrete approach proposed in Section (5). In particular, we specify
C via a Gaussian process with a Matérn kernel with ν = 1/2, unit variance, and lengthscale ℓ = 0.1. This is done to
match the settings in our other experiments. Moreover, the eigenvalues and eigenfunctions are analytically available in
this case (Le Maı̂tre and Knio, 2010; Burt, 2018). In each row of Figure 6, we specify particular functions for m1 and m2.
We vary the discretization size (i.e. the number of function observations) on the horizontal axis for discretization sizes of
10, 50, 100, 300, and plot the estimated KL divergence between N (m1, C) and N (m2, C) on the vertical axis.

We observe that the discrete approximation to the KL divergence (in blue) is monotonically increasing, as was proved in
Proposition (5). However, we see that the spectral approximation is sensitive to both the number of terms in the series
expansion and the discretization size. In particular, when using J = 10 terms, the spectral approximation underestimates the
true KL divergence. In contrast, when J ≥ 50, we see that the spectral approximation overestimates the true KL divergence
by several orders of magnitude if the discretization of X is not sufficiently fine. This effect worsens as we increase the
number of terms J . We conjecture that this is because the eigenfunctions ej are sinusoidal in this case, and thus without a
sufficiently fine discretization of X , the inner product in the spectral approximation is a poor numerical estimate of the true
inner product.
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Figure 6: Various synthetic functions (first column) and estimates of the KL divergence between Gaussian measures with
these means, having covariance operator given by an exponential kernel. For columns 2-5, the horizontal axis corresponds to
discretization size (i.e. number of function observations), and the vertical axis corresponds to the corresponding estimated
KL divergence. The discrete method (in blue) has KL estimates that are monotonically increasing (see also Proposition (5)),
but the spectral method (in orange) is sensitive to the choice of terms in the series expansion as well as the discretization
size.
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