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Abstract

The recently proposed identifiable variational au-
toencoder (iVAE) framework provides a promis-
ing approach for learning latent independent com-
ponents (ICs). iVAEs use auxiliary covariates
to build an identifiable generation structure from
covariates to ICs to observations, and the poste-
rior network approximates ICs given observations
and covariates. Though the identifiability is ap-
pealing, we show that iVAEs could have local
minimum solution where observations and the ap-
proximated ICs are independent given covariates.–
a phenomenon we referred to as the posterior
collapse problem of iVAEs. To overcome this
problem, we develop a new approach, covariate-
informed iVAE (CI-iVAE) by considering a mix-
ture of encoder and posterior distributions in the
objective function. In doing so, the objective func-
tion prevents the posterior collapse, resulting la-
tent representations that contain more informa-
tion of the observations. Furthermore, CI-iVAE
extends the original iVAE objective function to
a larger class and finds the optimal one among
them, thus having tighter evidence lower bounds
than the original iVAE. Experiments on simula-
tion datasets, EMNIST, Fashion-MNIST, and a
large-scale brain imaging dataset demonstrate the
effectiveness of our new method.

1 INTRODUCTION

Representation learning aims to identify low-dimensional
latent representation that can be used to infer the structure
of data generating process, to cluster observations by se-
mantic meaning, and to detect anomalous patterns (Bengio
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et al., 2009, 2013). Recent progress on computer vision
has shown that deep neural networks are effective in learn-
ing representations from rich high-dimensional data (LeCun
et al., 2015). Now there is emerging interest in utilizing deep
neural networks in scientific exploratory analysis to learn
the representation of high-dimensional genetic/brain imag-
ing data associated with phenotypes (Huang et al., 2017;
Pinaya et al., 2019; Han et al., 2019; Qiang et al., 2020;
Kim et al., 2021; Lu et al., 2021). In these scientific applica-
tions, autoencoder (AE, Bengio et al. 2007) and variational
autoencoder (VAE, Kingma and Welling 2014) are popu-
lar representation learning methods. Compared to VAEs,
the recently proposed identifiable VAE (iVAE, Khemakhem
et al. 2020) provides appealing properties for scientific data
analysis (Zhou and Wei, 2020; Schneider et al., 2022): (i)
the identifiability of the learned representation; (ii) the rep-
resentations are assumed to be associated with observed
covariates. For example, in human health researches, (i) and
(ii) are essential to identify latent independent components
and learn representations associated with gender, age, and
ethnicity, respectively. However, we find that when applying
iVAEs to various datasets including a human brain imaging
dataset, iVAEs sometimes converge to a bad local optimum
where representations depend only on covariates (e.g., age,
gender, and disease type), thus it is not a good representa-
tion for the observations (e.g., genetics, brain imaging data).
Therefore, it is necessary to modify the objective function
of iVAEs to learn better representations for scientific appli-
cations.

VAE consists of two networks: (i) the decoder network maps
the prior latent independent components (ICs) to generate
observations; (ii) the encoder network approximates the dis-
tribution of ICs given observations. iVAEs extend VAEs by
introducing auxiliary covariates into the encoder and prior
distributions, and construct identifiable data generation pro-
cesses from covariates to ICs to observations. Inspired by
the iVAE framework, recently, some identifiable genera-
tive models have been proposed. Kong et al. (2022) and
Wang et al. (2022) founded identifiable generative models
for domain-adaptation and causal inference, respectively.
Zhou and Wei (2020) extended the data generation struc-
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ture of iVAEs from continuous observation noise cases to
Poisson. Sorrenson et al. (2020) explicitly imposed the in-
verse relation between encoders and decoders via general
incompressible-flow networks (GIN), volume-preserving
invertible neural networks. Mita et al. (2021) combined two
identifiable autoencoders, one is to learn the conditional
distribution of observations given covariates as in iVAEs
and the other is learn the marginal distribution of covariates
from a regularization purpose. Moran et al. (2021) proposed
an identifiable deep generative models under the sparse con-
nectivity constraints between ICs and observations to learn
more interpretable representations. In this work, we focus
on a problem of the current iVAEs implementation that
could converge to a bad local optimum that lead to uninfor-
mative representations, and we propose a new approach that
solves this problem by modifying objective functions.

Though the identifiability is appealing, we observe that rep-
resentations from iVAEs ignore observations in many cases
with experiments. The main reason is the Kullback-Leibler
(KL) term in the evidence lower bounds (ELBOs, Bishop
2006) enforcing the posterior distribution of iVAEs to be
prior distributions. This phenomenon is similar to the pos-
terior collapse problem of VAEs where estimated ICs by
encoders are independent of observations (Bowman et al.,
2016; Lucas et al., 2019; He et al., 2019; Dai et al., 2020).
A detailed review on the posterior collapse problem is pro-
vided in Section 2.2. We extend the notion of posterior
collapse problem of VAEs to formulate this undesirable
property of iVAEs, and coin it as the posterior collapse prob-
lem of iVAEs. With the formulation, we theoretically derive
that iVAEs occur this problem under some conditions.

To overcome the limitation of iVAEs, we have developed a
new method, the Covariate-Informed Identifiable VAE (CI-
iVAE). Our new method leverages encoders in addition to
the original posterior distribution considered in the previous
iVAE to derive a new family of objective functions (ELBOs)
for model fitting.1 Crucially, in doing so, our objective
function prevents the posterior collapse CI-iVAEs extend
the iVAE objective function to a larger class and finds the
samplewise optimal one among them.

We demonstrate that our method can more reliably learn
features of various synthetic datasets, two benchmark image
datasets, EMNIST (Cohen et al., 2017) and Fashion-MNIST
(Xiao et al., 2017), and a large-scale brain imaging dataset
for adolescent mental health research. Especially, we apply
our method and iVAEs to a brain imaging dataset, Adoles-
cent Brain Cognitive Development (ABCD) study (Jernigan
et al., 2018).2 Our real data analysis on the ABCD dataset

1We distinguish encoders qϕ(z|x) and posterior qϕ(z|x, u) to
avoid confusion where z, x, u, and ϕ indicate representations,
observations, covariates, and network parameters, respectively.
The posterior networks in iVAEs are different from encoders in
usual VAEs.

2The ABCD dataset can be found at https://abcdstudy.
org, held in the NIMH Data Archive (NDA).

is the first application of identifiable neural networks in
human brain imaging. Our method successfully learns rep-
resentations from brain imaging data associated with the
characteristics of subjects while the iVAE will learn non-
informative representation due to posterior collapse problem
on this real-data application.

Our contributions can be summarized as follows:

• We formulate the posterior collapse problem of iVAEs
and derive that iVAEs may learn collapsed posteriors.

• We propose CI-iVAEs to learn better representations
than iVAE by modifying the ELBO to prevent the pos-
terior collapse.

• Experiments demonstrate that our method out per-
formed iVAEs by preventing the posterior collapse
problem.

• Our work is the first to learn ICs of human brain imag-
ing with identifiable generative models.

All proofs of theoretical results are provided in Appendix A.
Implementation details are provided in Appendix B.

2 RELATED PRIOR WORK

2.1 Generative Autoencoders

Generative autoencoders are one of the prominent direc-
tions for representation learning (Higgins et al., 2017). They
usually describe data generation processes with joint dis-
tributions of latent ICs and observations (Kingma et al.,
2014), and optimize reconstruction error with penalty terms
(Kingma and Welling, 2014). The reconstruction error is
a distance between observations and their reconstruction
results by encoders and decoders. For example, ELBO, the
objective function of VAEs is a summation of the recon-
struction probability (negative reconstruction error) and the
KL divergence between encoder and prior distributions.

In the cases where auxiliary covariates are available, a num-
ber of conditional generative models have been proposed
to incorporate covariates in generators in addition to latent
variables. In conditional VAEs (Sohn et al., 2015) and con-
ditional adversarial AEs (Makhzani et al., 2015), covariates
are feed-forwarded by both encoder and decoder. Auxiliary
classifiers for covariates are often applied to learn repre-
sentations that can generate better results (Kameoka et al.,
2018). While the aforementioned methods have shown
promising results, these models can learn the distribution
of observations with many different prior distributions of
latent variables, i.e., they are not identifiable (Khemakhem
et al., 2020).

https://abcdstudy.org
https://abcdstudy.org
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2.2 Posterior Collapse

The representations by VAEs are often poor due to the poste-
rior collapse, which has been pointed as a practical drawback
of VAEs and their variations (Kingma et al., 2016; Yang
et al., 2017; Dieng et al., 2019). The posterior collapse
refers to the phenomenon that the posterior converges to
the prior. In this case, approximated ICs are independent
of observations, i.e., representations lose the information in
observations. One reason for this is that the KL divergence
term in the ELBO enforces the encoders to be close to prior
distributions (Huang et al., 2018; Razavi et al., 2019).

A line of works has focused on posterior distributions and
the KL term to alleviate this issue. He et al. (2019) ag-
gressively optimized the encoder whenever the decoder is
updated, Kim et al. (2018) introduced stochastic variational
inference (Hoffman et al., 2013) to utilize instance-specific
parameters for encoders, and Fu et al. (2019) monotonically
increased the coefficient of the KL term from zero to ensure
that posteriors are not collapsed in early stages. However,
Dai et al. (2020) derived that VAEs sometimes have lower
values of ELBOs than posterior collapse cases. It means
that the surface of ELBOs naturally results in a bad local
optima, posterior collapse cases. We will extend this the-
ory, and show that iVAEs may result in local optima with
collapsed posteriors, in which case the representations are
independent to observations given covariates in Section 3.2.
Recently, Wang et al. (2021) prevented the posterior col-
lapse of VAEs with the latent variable identifiability, which
refers to that distributions identify latent variables for given
model parameters. It is important to note that latent vari-
able identifiability is different from the model identifiability
as discussed in the iVAE framework. The latter refers to
that distributions identify model parameters. For brevity,
we will use the term identifiability to refer to the model
identifiability in this paper.

3 PROPOSED METHOD

3.1 Preliminaries

3.1.1 Basic Notations and Assumptions

We denote observations, covariates, and latent variables by
X ∈ RdX , U ∈ RdU , and Z ∈ RdZ , respectively. The
dimension of latent variables is lower than that of observa-
tions, i.e., dZ < dX . For a given random variable (e.g., Z),
its realization and probability density function (p.d.f.) is
denoted by lower case (e.g., z) and p (e.g., p(z)), respec-
tively. We distinguish encoder and posterior distributions
and denote them by qϕ(z|x) and qϕ(z|x, u), respectively.

3.1.2 Identifiable Variational Autoencoders

The identifiability is an essential property to recover the
true data generation structure and to conduct correct infer-
ence (Lehmann et al., 2005; Casella and Berger, 2021). A

generative model is called identifiable if the distribution of
generation results identifies parameters (Rothenberg, 1971;
Koller and Friedman, 2009). The iVAE framework provides
an appealing approach for learning latent ICs. The iVAE
assumes the following data generation structure:{

Z|U ∼ pT0,λ0(z|u)
X = f0(Z) + ϵ

(1)

where Z denotes the IC (or source) and f0 denotes the non-
linear mixing function. Here, pT0,λ0

is a conditionally facto-
rial exponential family distribution with sufficient statistics
T0 and natural parameters λ0, and ϵ is an observation noise.
The iVAE models the mixing function with neural networks,
a flexible nonlinear model, and its generation process is iden-
tifiable under certain conditions. Key components of iVAEs
include label prior, decoder, and posterior networks. The
label prior and decoder, respectively, models the conditional
distribution of latent variables given covariates, pT0,λ0

(z|u),
and observations given latent variables, pf0(x|z). The poste-
rior networks qϕ(z|x, u) approximates the posterior distribu-
tion of the ICs, pf0,T0,λ0(z|x, u). Again, we distinguish en-
coders qϕ(z|x) and posteriors qϕ(z|x, u) to avoid confusion.
The posterior networks in iVAEs approximate distributions
of ICs given observations and covariates, which is different
from encoders in usual VAEs.

An essential condition on the label prior to ensure the
identifiability is the conditionally factorial exponential
family distribution assumption. The label prior net-
work is denoted by pT,λ(z|u) and can be expressed as
pT,λ(z|u) =

∏dZ

i=1 pTi,λi
(zi|u) where pTi,λi

(zi|u) =
exp

(
λi(u) · Ti(zi) − A(u) + B(zi)

)
is the exponential

family distribution with parameters λi(u), sufficient statis-
tics Ti(zi), and known functions A and B. We denote
T := (T1, . . . , TdZ

) and λ := (λ1, . . . , λdZ
). The de-

coder network is denoted by pf (x|z) := p(ϵ = x − f(z))
where f is the modeled mixing function and p(ϵ) is the
p.d.f. of noise variables E . With label prior and decoder
networks, the data generation process can be expressed as
pθ(x, z|u) := pf (x|z)pT,λ(z|u) where θ = (f, T, λ) is all
the parameters for the data generation process. The posterior
network is denoted by qϕ(z|x, u). The encoder can be es-
timated by qϕ(z|x) =

∫
qϕ(z|x, u)p(u|x)du or separately

modeled. In the implementation, iVAEs model pT,λ(z|u)
and qϕ(z|x, u) with Gaussian distributions.

Khemakhem et al. (2020) defined the model identifiability
of the generation process by pθ(x, z|u).
Definition 1. (Identifiability, Khemakhem et al. 2020) The
pθ(x, z|u) is called identifiable if the following holds: for
any θ = (f, T, λ) and θ̃ = (f̃ , T̃ , λ̃), pθ(x|u) = pθ̃(x|u)
implies θ ∼ θ̃. Here, θ ∼ θ̃ is defined as T (f−1(x)) =
T̃ (f̃−1(x)) up to a invertible affine transformation.

With the identifiability, finding the maximum likelihood
estimators (MLEs) implies learning the true mixing func-
tion and ICs in (1). Khemakhem et al. (2020) showed that
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the identifiability holds and the affine transformation is
component-wise one-to-one transformations as in ICA if λ
can make invertible matrix (λ(u1)− λ(u0), . . . , λ(unk)−
λ(u0)) with some nk + 1 distinct u0, . . . , unk, and some
mild conditions hold.

The objective function of iVAEs, ELBO is with respect to
(w.r.t.) the conditional log-likelihood of observations given
covariates log pθ(x|u). The ELBO can be expressed as

Eqϕ(z|x,u) log pf (x|z)−DKL(qϕ(z|x, u)||pT,λ(z|u)) (2)

which equals to log pθ(x|u)−DKL(qϕ(z|x, u)||pθ(z|x, u)).
When the space of qϕ(z|x, u) includes pθ(z|x, u) for any
θ, (2) can approximate log pθ(x|u), which justifies that
iVAEs learn the ground-truth data generation structure (Khe-
makhem et al., 2020). However, we show in the next section
that Equation (3) has a bad local optimum due to the KL
term and iVAEs sometimes yield representations depending
only on covariates by converging to this local optimum.

3.2 Motivation

In this section, we describe how the objective function used
in previous iVAEs produces bad local optimums for pos-
terior qϕ(z|x, u). We further show how modifying the ob-
jective function with encoders qϕ(z|x) can alleviate this
problem.

We first describe the posterior collapse problem of VAEs,
and then formulate the bad local optimums of (2). In the
usual VAEs using only observations, the objective function
is Eqϕ(z|x) log pf (x|z)−DKL(qϕ(z|x)||p(z)) where p(z) is
the prior distribution. The posterior collapse of VAEs can
be expressed as qϕ(z|x) = p(z), and one reason of this
phenomenon is the KL term enforcing qϕ(z|x) be close
to p(z). Similarly, the KL term in (2) enforces posterior
distributions qϕ(z|x, u) to be close to label prior pT,λ(z|u).
We extend the notion of the posterior collapse of VAEs
to formulate a bad local solution of (2), and coin it as the
posterior collapse problem of iVAEs.
Definition 2. (Posterior collapse of iVAEs) For a given
dataset {(xi, ui)}ni=1, we call the posterior qϕ(z|x, u) in
iVAEs is collapsed if qϕ(z|xi, ui) = pT,λ(z|ui) holds for
all i = 1, . . . , n.

While this work focuses on the posterior collapse problem
of iVAEs, the problem defined above is valid in a general
framework using conditional generative models, including
cases where only some of the true covariates that generate
observations are available.

In the following, we use the term posterior collapse to refer
the posterior collapse of iVAEs. Under the posterior col-
lapse, approximated ICs are independent of observations
given covariates, i.e., we lose all the information in obser-
vations independent of covariates. Furthermore, we derive
that the posterior collapse is a local optimum of (2) under
some conditions, which is consistent with that the posterior

collapse problem of VAEs is a local optimum of the objec-
tive function of VAEs (Dai et al., 2020). In the following
theorem, we assume two conditions formulated by Dai et al.
(2020): (C1) the derivative of reconstruction error is Lip-
schitz continuous and (C2) the reconstruction error is an
increasing function w.r.t. the uncertainty of latent variables.
A detailed formulation of (C1) and (C2) is provided in
Appendix A.

Theorem 1. Let D = {(xi, ui)}ni=1 be samples from (1)
when ϵ ∼ N(0, γI) and the loss be the negative expectation
of (2) over D. For any iVAEs satisfying (C1) and (C2),
there is a posterior collapse case whose loss value is lower
than that of the iVAEs when γ is sufficiently large.

That is, the objective function of existing iVAEs evalu-
ates posterior collapse cases as better solutions than iVAEs.
Roughly speaking, when the noise of the observation, γ, is
large, the KL term in (2) dominates the first term.

Our method modifies ELBOs to alleviate the posterior
collapse problem of iVAEs. We note that the KL term
DKL(qϕ(z|x, u)||pT,λ(z|u)) is a main reason of the poste-
rior collapse and change qϕ(z|x, u) to linear mixtures of
posterior qϕ(z|x, u) and encoder qϕ(z|x). For a motivating
example, we can consider an alternative objective function
(which can be shown to be an ELBO):

Eqϕ(z|x) log pf (x|z)−DKL(qϕ(z|x)||pT,λ(z|u)). (3)

It is equivalent to log pθ(x|u)−DKL(qϕ(z|x)||pθ(z|x, u)).
It can be viewed as using encoder qϕ(z|x) to approxi-
mate the posterior of label prior distributions pθ(z|x, u).
We name (2) and (3) by ELBOs with qϕ(z|x, u) and with
qϕ(z|x), respectively. We derive that (3) prevents the
posterior collapse problem of iVAEs. We say a label
prior pT,λ non-trivial if pT,λ(z|u) ̸=

∫
pT,λ(z|u)p(u)du

holds with positive probability w.r.t. p(u), i.e., the label
prior does not ignore covariates. All the label prior of
iVAEs are non-trivial since λ should make invertible matrix
(λ(u1) − λ(u0), . . . , λ(unk) − λ(u0)) with some nk + 1
distinct u0, . . . , unk.

Proposition 1. For any non-trivial label prior pT,λ,
qϕ(z|x) ̸= pT,λ(z|u) holds with positive probability w.r.t.
p(x, u).

That is, the qϕ(z|x) can not collapse to non-trivial pT,λ(z|u)
since it uses only observations. However, we derive that (3)
can not approximate log pθ(x|u).
Proposition 2. We assume that, for any θ, there is ϕ satis-
fying qϕ(z|x) = pθ(z|x) with probability 1 w.r.t. p(x). For
any θ forming non-trivial label prior,

max
ϕ

Ep(x,u)

(
Eqϕ(z|x) log pf (x|z)−DKL(qϕ(z|x)||pT,λ(z|u))

)
< Ep(x,u) log pθ(x|u).

Thus, although the ELBO with qϕ(z|x) prevents the poste-
rior collapse problem, it is strictly smaller than log pθ(x|u)
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Algorithm 1 Training CI-iVAEs
Input: Training samples {(xi, ui)}ni=1 and batch size B
Output: CI-iVAEs with (f∗, T ∗, λ∗, ϕ∗).

1: Initialize (f, T, λ, ϕ)
2: While (f, T, λ, ϕ) did not converge Do
3: Sample {(xi(b), ui(b))}Bb=1 from training samples
4: Calculate samplewise optimal α∗(xi(b), ui(b))
5: Update (f, T, λ, ϕ) by ascending

B−1
B∑

b=1

ELBOθ,ϕ(α
∗(xi(b), ui(b));xi(b), ui(b))

6: (f∗, T ∗, λ∗, ϕ∗)← (f, T, λ, ϕ)

even with the global optimum of ϕ. In contrast, the ELBO
with qϕ(z|x, u) can approximate the log-likelihood if we
find the global optimum based on the data, but it may con-
verge to the posterior collapse cases. Thus, in practice, it is
desirable to find a good balance between these two consid-
erations. In the next section, we develop a new method by
modifying the ELBOs to achieve such a goal.

3.3 Covariate-informed Identifiable VAE

In this section, we provide our method, CI-iVAE. We use the
same network architecture of iVAEs described in Section
3.1.2 to inherit the identifiability of the likelihood model.
Our key innovation is the development of a new class of ob-
jective functions (ELBOs) to prevent the posterior collapse.

We consider mixtures of distributions by encoders qϕ(z|x)
and the posterior in the original iVAE, qϕ(z|x, u),

{α(x, u)qϕ(z|x)+(1−α(x, u))qϕ(z|x, u)|α(x, u) ∈ [0, 1]},
(4)

to derive ELBOs avoiding posterior collapse while approx-
imating log-likelihoods. For simplicity, we use α to refer
α(x, u), when there is no confusion. Any element in (4) can
provide a lower bound of log-likelihood. We first formulate
a set of ELBOs using (4) and then provide our method.

Proposition 3. For any sample (x, u), θ = (f, T, λ), ϕ,
and α ∈ [0, 1], ELBOθ,ϕ(α;x, u) defined as

Eαqϕ(z|x)+(1−α)qϕ(z|x,u) log pf (x|z)
−DKL(αqϕ(z|x) + (1− α)qϕ(z|x, u)||pT,λ(z|u))

is a lower bound of log pθ(x|u).

Proposition 3 can be derived by performing variational infer-
ence with α(x, u)qϕ(z|x) + (1− α(x, u))qϕ(z|x, u). A set
of ELBOs, {ELBOθ,ϕ(α;x, u)|α ∈ [0, 1]} is a continuum
of ELBOs whose endpoints are ELBOs with qϕ(z|x, u) and
with qϕ(z|x).
Next, we introduce our CI-iVAE method. For a given
identifiable generative model, CI-iVAE uses covariates

to find the samplewise optimal elements α∗(x, u) :=
argmax
α∈[0,1]

ELBOθ,ϕ(α;x, u) in (4) and utilizes it to maximize

the tightest ELBOs. We refer to α∗(x, u)qϕ(z|x) + (1 −
α∗(x, u))qϕ(z|x, u) as the samplewise optimal posterior dis-
tributions. The objective function of the CI-iVAE method is
given by

ELBOθ,ϕ(α
∗(x, u);x, u) (5)

or ELBOθ,ϕ(argmax
α∈[0,1]

ELBOθ,ϕ(α;x, u);x, u). Here,

the KL term is DKL(α
∗(x, u)qϕ(z|x) + (1 −

α∗(x, u))qϕ(z|x, u)||pT,λ(z|u)) whose bad local so-
lutions are α∗(x, u)qϕ(z|x) + (1− α∗(x, u))qϕ(z|x, u) =
pT,λ(z|u). We find that the posterior collapse problem does
not occur at this local solution.

Theorem 2. For any θ forming non-trivial label prior
and ϕ, if α∗(x, u) > 0 and α∗(x, u)qϕ(z|x) + (1 −
α∗(x, u))qϕ(z|x, u) = pT,λ(z|u), then qϕ(z|x, u) ̸=
pT,λ(z|u) holds with positive probability.

That is, even in the worst case where the KL term dominates
(5), the qϕ(z|x, u) does not collapse to pT,λ(z|u).
Furthermore, we find that our ELBO can approximate the
log-likelihood.

Proposition 4. We assume that, for any θ, there is ϕ sat-
isfying qϕ(z|x, u) = pθ(z|x, u) with probability 1 w.r.t.
p(x, u).3 Then, max

ϕ
Ep(x,u)ELBOθ,ϕ(α

∗(x, u);x, u) =

Ep(x,u) log pθ(x|u).

Proposition 4 implies that maximizing our ELBO is equiv-
alent to learning MLEs with tighter lower bounds than
(2). We also derive that the difference between our opti-
mal ELBO and the ELBO of existing iVAE is significant
under some conditions in Theorem 3 in Appendix A.

Though the CI-iVAE allows learning better representations,
numerical approximation for α∗(x, u) in (5) may lead to
burdensome computational costs. To overcome this tech-
nical obstacle, we provide an alternative expression of our
ELBO that allows us to approximate α∗(x, u) within twice
the computation time of the ELBO of the existing iVAE.

Proposition 5. For any sample (x, u), θ = (f, T, λ), ϕ,
and α ∈ [0, 1], ELBOθ,ϕ(α;x, u) can be expressed as

αELBOθ,ϕ(1;x, u) + (1− α)ELBOθ,ϕ(0;x, u)

+ αD1−α
Skew (qϕ(z|x)||qϕ(z|x, u)) + (1− α)Dα

Skew(qϕ(z|x, u)||qϕ(z|x)),

where Dα
Skew is the skew divergence defined as

Dα
Skew(p||q) := DKL(p||(1− α)p+ αq) (Lin, 1991).

Details on using samplewise optimal posterior distri-
butions to maximize (5) is described in Algorithm 1.
The main bottleneck is on computing ELBOθ,ϕ(0;x, u),

3Again, Khemakhem et al. (2020) assumed this condition to
justify iVAEs using qϕ(z|x, u).
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ELBOθ,ϕ(1;x, u), and conditional means and standard de-
viations of the label prior and encoder distributions, which
requires roughly twice the computation time of the ELBO
of iVAE. With Proposition 5 and reparametrization trick, for
any α, the remaining process to compute ELBOθ,ϕ(α;x, u)
is completed in a short time.

4 EXPERIMENTS

We have validated and applied our method on synthetic,
EMNIST, Fashion-MNIST, and ABCD datasets. As in Zhou
and Wei (2020), we model the posterior distribution by
qϕ(z|x, u) ∝ qϕ(z|x)pT,λ(z|u). The label prior pT,λ(z|u)
and encoder qϕ(z|x) is modeled as Gaussian distributions.
Implementation details, including data descriptions and net-
work architectures, are provided in Appendix B.1.4

4.1 Simulation Study

We first examine the effectiveness of samplewise optimal
posteriors by comparing iVAEs and CI-iVAEs on synthetic
datasets. We use three data generation schemes and named
them by shapes of distributions of latent variables given
covariates: (i) sine, (ii) quadratic, and (iii) two circles.

Table 1 and Figure 1 show the results from the syn-
thetic datasets. We consider coefficient of determination
(COD, Schneider et al. 2022), mean correlation coefficient
(MCC, Khemakhem et al. 2020), and log-likelihood as
evaluation metrics. Higher values of CODs and MCCs
indicate closer to the GT. The log-likelihood is used to
evaluate the whole data generation scheme. All methods
use the same network architectures to use the same family
of density functions. The log-likelihood is calculated by
log pθ(x|u) = log

∫
pf (x|z)pT,λ(z|u)dz with Monte Carlo

approximation and is averaged over samples.

According to Table 1, iVAEs are worse than CI-iVAEs in all
datasets and all evaluation metrics. When the iVAE is com-
pared with the CI-iVAE, most of p-values for all datasets
and all evaluation metrics are less .001. The only exception
is the MCCs on qϕ(z|x) on the two circles dataset whose
p-value is .22. That is, our sharper ELBO with sample-
wise optimal posteriors enhances performances on learning
GT ICs and MLEs for mixing functions. We also observe
that encoder distributions of CI-iVAEs yield performances
comparable to posterior distributions.

Visualization of latent variables and results is presented in
Figure 1. In the left panel, the GT posterior and prior dis-
tributions are presented. In the middle and right panels, re-
sults from iVAEs and CI-iVAEs are presented, respectively.
Points indicate conditional expectations of each distribu-
tions and are colored by covariates. For the two circles
structure, we color datapoints by angles, U1. In all latent

4The implementation code is provided at the following link:
http://github.com/kyg0910/CI-iVAE.

structures, iVAEs learn qϕ(z|x, u) closer to pT,λ(z|u). The
GT posterior distribution of ICs has variations by observa-
tions, and the qϕ(z|x, u) of iVAEs tends to underestimate
these variations. In contrast, CI-iVAEs alleviate this phe-
nomenon, consequently better recovering the GT posterior
and prior distributions than iVAEs. Especially in the two
circles dataset, we sample the angle U1 from [−π, π] to
check whether each model can recover the connection at
U1 = −π and U1 = π. The points at U1 = −π and π by
CI-iVAEs locate closer to each other than those by iVAEs.
For the conditional variances, all methods fail to recover the
true conditional variances of observations given covariates.

4.2 Applications to Real Datasets

4.2.1 EMNIST and Fashion-MNIST

We compare the proposed CI-iVAE with (i) GIN, (ii) iVAE,
(iii) iVAE with KL-annealing (Bowman et al., 2016), (iv)
iVAE with aggressive posterior (He et al., 2019), and (v)
identifiable double VAE (IDVAE, Mita et al. 2021) on two
benchmark image datasets: EMNIST and Fashion-MNIST.
GIN is a state-of-the-art identifiable deep image generative
model using convolutional coupling blocks (Sorrenson et al.,
2020). GIN does not incorporate covariates, so we compare
representations from encoders qϕ(z|x) from various meth-
ods. The (iii) and (iv), respectively, apply KL-annealing and
aggressive posterior learning techniques used in VAEs train-
ing to prevent the posterior collapse.5 The (v) is a recently
proposed VAEs-based identifiable model. In EMNIST and
Fashion-MNIST, we use labels of digits and fashion-items
as covariates.

The experimental results are presented in Table 2 and Figure
2. Further generation results are provided in Figures 1 and 2
in Appendix B.2. We consider the ratio of the within-cluster
sum of squares (SSW) over the total sum of squares (SST),
the accuracy of 5-NN classifiers using representations, the
best validation epoch, and the training time as evaluation
metrics. The SSW/SST and 5-NN classifier accuracies mea-
sure how well representations are clustered by covariates.
The best validation epoch and training time, respectively,
measures the empirical convergence and the computational
burden.

Results presented in Table 2 show that our method yields
SSW/SST and accuracy comparable to or better than all the
baselines in all datasets, and our method empirically conver-
gences within about three times the training time of most
baselines. At the significance level of .0001, for SSW/SST,
the CI-iVAE is better than all the baselines in all datasets.
For the 5-NN classifier accuracy, in the EMNIST dataset,
our method is better than GIN, iVAE, and iVAE with KL-

5We modified KL-annealing and aggressive posterior learning
techniques for iVAEs, respectively, by linearly increasing the co-
efficient of the KL term in the iVAEs’ ELBO during the first 10
epochs and by updating posterior up to 50 times for each update
of label prior and decoder.

http://github.com/kyg0910/CI-iVAE
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Figure 1: Visualization of latent variables from simulation datasets. In all datasets, the posterior qϕ(z|x, u) of iVAEs are
close to the label prior pT,λ(z|u), and tend to underestimate the variability by observations. In contrast, by addressing
samplewise optimal posteriors, CI-iVAEs learn posterior and prior distributions closer to GT.

Table 1: Means of evaluation metrics with standard errors from iVAEs and CI-iVAEs on various latent structures. For all
metrics, higher values are better. CI-iVAEs outperform iVAEs in all datasets and all metrics. The number of repeats is 20.

Latent Structure Method Evaluation Metric
COD (qϕ(z|x, u)) COD (qϕ(z|x)) MCC (qϕ(z|x, u)) MCC (qϕ(z|x)) Log-likelihood

Sine iVAE .9285 (.0009) .9692 (.0004) .7364 (.0286) .7531 (.0266) -131.8387 (1.7467)
CI-iVAE .9823 (.0002) .9782 (.0003) .8898 (.0114) .8716 (.0117) -111.2823 (0.5576)

Quadratic iVAE .5238 (.0059) .8256 (.0112) .5467 (.0086) .6966 (.0097) -105.4009 (0.1260)
CI-iVAE .9177 (.0006) .8755 (.0013) .8463 (.0192) .8424 (.0192) -101.0430 (0.2420)

Two Circles iVAE .2835 (.0119) .7753 (.0186) .6233 (.0108) .8171 (.0106) -114.9876 (1.2964)
CI-iVAE .9156 (.0007) .9440 (.0008) .8278 (.0194) .8347 (.0196) -102.9267 (0.3198)

annealing with, and comparable to iVAE with aggressive
posterior and IDVAE. In the Fashion-MNIST dataset, the ac-
curacy of ours is better than that from all the baselines. That
is, the CI-iVAE is better than iVAE for extracting covariates-
related information from observations, and comparable to
or better than some state-of-the-art identifiable generative
models. For the best validation epoch and training time,
our method empirically converges within a similar training
time to GIN and iVAE with aggressive posterior, and within
about three times the training time of iVAE, iVAE with
KL-annealing, and iDVAE.

A visualization of latent variables using t-SNE (Van der
Maaten and Hinton, 2008) embeddings is presented in Fig-
ure 2. In all datasets, CI-iVAEs yield more separable repre-
sentations of the covariates than GIN and iVAEs.

We present generation results in Figure 3. iVAEs and CI-
iVAEs tend to generate more plausible images than GIN.
In the third row in EMNIST, GIN fails to produce some
digits. When we compare iVAEs and CI-iVAEs, iVAEs
tend to generate more blurry results. In the 6th column in

Fashion-MNIST, iVAEs fail to generate the sandal image in
the second row and generate blurry results in other rows.

4.2.2 Application to Brain Imaging Data

Here we present the application of the CI-iVAE on the
ABCD study dataset, which is the largest single-cohort
prospective longitudinal study of neurodevelopment and
children’s mental health in the United States. The ABCD
dataset provides resources to address a central scientific
question in Psychiatry: can we find the brain imaging rep-
resentations that are associated with phenotypes. For this
purpose, the proposed CI-iVAE is appealing and more effi-
cient in that it incorporates the information in demographics,
symptoms, which, by domain knowledge, are associated
with brain imaging. In this application, observations are
the MRI mean thickness and functional connectivity data
from Gorden Atlas (Gordon et al., 2016), and the covariates
are interview age, gender, puberty level, and total Child
Behavior Checklist (CBCL) scores. To find the brain imag-
ing representations that can be interpreted with covariates,
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Table 2: Means of SSW over SST, accuracy from 5-NN classifier using representations, and the best validation epoch with
standard errors (SEs) on EMNIST and Fashion-MNIST datasets. The number of repeats is 20. The training time (mins) to
complete one repetition is measured with 64 CPU cores and one GPU (RTX 3090).

Method SSW/SST (↓) Accuracy (↑) Best Validation Epoch (↓) Training Time (↓)
EMNIST Fashion-MNIST EMNIST Fashion-MNIST EMNIST Fashion-MNIST EMNIST Fashion-MNIST

GIN .6130 (.0075) .8503 (.0026) .9510 (.0017) .8340 (.0013) 99.0 (0.4) 98.9 (0.2) 92 23
iVAE .5486 (.0037) .6157 (.0046) .9864 (.0004) .8086 (.0013) 96.2 (1.1) 90.8 (1.9) 36 9

iVAE with
KL-annealing .6416 (.0031) .5951 (.0031) .9885 (.0002) .8311 (.0009) 96.1 (1.0) 92.4 (1.2) 36 9

iVAE with
aggressive posterior .5838 (.0033) .6230 (.0032) .9927 (.0001) .8424 (.0011) 92.9 (1.6) 92.2 (2.0) 107 22

IDVAE .5884 (.0071) .5857 (.0057) .9931 (.0001) .8337 (.0010) 95.9 (0.9) 94.3 (1.5) 36 9
CI-iVAE .4117 (.0032) .4926 (.0024) .9931 (.0011) .8518 (.0006) 95.5 (0.9) 93.9 (1.7) 100 25

Table 3: Means of prediction performances with standard errors from 5-fold cross-validation. We train support vector
regression for age and CBCL scores, and support vector machine for sex and puberty. The representation from CI-iVAEs
outperform that from AEs and iVAEs baselines. Prediction performances with our representations are comparable to or
better than those with raw observations.

Input Covariates
Age (MSE ↓) Sex (Error rate ↓) Puberty (F1 score ↑) CBCL scores (MSE ↓)

x .165 (.012) .105 (.007) .531 (.023) .072 (.006)
Representations from AE .336 (.005) .368 (.006) .188 (.009) .135 (.006)
Representations from iVAE .361 (.005) .479 (.010) .046 (.005) .148 (.006)
Representations from CI-iVAE .153 (.017) .086 (.009) .563 (.053) .073 (.008)

Figure 2: Visualization of the t-SNE embeddings of en-
coders qϕ(z|x) from various methods on EMNIST and
Fashion-MNIST datasets.

we train iVAEs and evaluate representations from encoders
qϕ(z|x) using only test brain imaging. With qϕ(z|x), we
can extract information contained only in brain imaging.
We consider vanilla AEs and iVAEs as baselines.

The experimental results are presented in Figure 4 and Table
3. We quantify prediction performance using representa-
tions from various methods to evaluate how much covariate-
related information in observations is extracted from brain
measures. We use conditional expectations of encoders,
qϕ(z|x), as representations. For the puberty level, we over-

Figure 3: Generation results from various methods on EM-
NIST and Fashion-MNIST datasets. We generate five syn-
thetic images in each class. Both iVAEs and CI-iVAEs
produce clearer images than GIN.

sample minority classes to balance classes.

Visualization of t-SNE embeddings of latent variables is
presented in Figure 4. The result from iVAEs demonstrates
that qϕ(z|x, u) collapses to pT,λ(z|u) and iVAEs tend to
learn less diverse representations than CI-iVAEs, which is
consistent to previous results.

Table 3 shows that, for all covariates, representations from
CI-iVAEs outperform those from AEs and iVAEs and are
comparable to raw observations. The CI-iVAE is signif-
icantly better than the iVAE, p-values for age, sex, pu-
berty level, and CBCL scores are 1.1× 10−6, 8.4× 10−10,
4.6 × 10−6, and 3.1 × 10−5, respectively. Due to the col-
lapsed posterior, representations from encoders in iVAEs
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Figure 4: Visualization of the t-SNE embeddings of latent
variables from iVAEs and CI-iVAEs on the ABCD dataset.
Red and blue points indicate female and male, respectively.
The posterior of iVAEs collapses to the label prior while
that of CI-iVAEs learn variations by observations.

do not extract much information from brain imaging. In
contrast, the encoder of CI-iVAEs extracts representations
which are very informative of the covariates. Thus, our rep-
resentations extracted from brain measures preserve more
covariates-related information than the other methods.

5 DISCUSSION

We deveoped a new representation learning approach, CI-
iVAEs, to overcome the limitations of iVAEs. Our objective
function uses samplewise optimal posterior distributions
to prevent the posterior collapse problem. Representations
learned using our methods on various synthetic and real
datasets were better than those from existing methods by
extracting covariates-associated information in observations.
Our work is the first to adapt identifiable generative mod-
els to human brain imaging data. One interesting future
direction is to extract interpretable features from minimally-
processed images. Another direction is to apply/develop
interpretable machine learning tools creating feature impor-
tance scores (Ribeiro et al., 2019; Molnar, 2020; Guidotti
et al., 2018) to reveal scientific insights from our representa-
tions.
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A Details on Theoretical Results

A.1 Further Theoretical Results

Our method introduces both qϕ(z|x) and qϕ(z|x, u) in consisting posterior distributions to conduct variational inference.
We derive that the proposed ELBOs are concave, are sharper lower bounds than the ELBO of the existing iVAE, and prevent
the posterior collapse issue in the existing iVAE.

We first show the concavity of the proposed ELBO and a necessary and sufficient condition for the concavity.
Proposition 6. For any sample (x, u) and α ∈ [0, 1], ELBOθ,ϕ(α;x, u) is concave w.r.t. α. It is strictly concave if and only
if qϕ(z|x) ̸= qϕ(z|x, u) for some z.

Note that the first two terms in Proposition 5 are linear w.r.t. α, so the concavity comes from the last two terms. That is, the
difference between qϕ(z|x) and qϕ(z|x, u) induces the concavity.

Next, we show that our method uses strictly sharper lower bounds than the existing iVAE. Let ∆1−0(x, u) :=
ELBOθ,ϕ(1;x, u)− ELBOθ,ϕ(0;x, u) and

SNR(g) :=
(Eqϕ(z|x)g(z)− Eqϕ(z|x,u)g(z))

2

max(V arqϕ(z|x)g(z), V arqϕ(z|x,u)g(z))
. (6)

Here, SNR(g) is the signal-to-noise ratio between qϕ(z|x) and qϕ(z|x, u) w.r.t. g quantifying the discrepancy between the
two distributions. The proof of Theorem 3 is provided in Appendix A.3.
Theorem 3. For any sample (x, u), θ = (f, T, λ), ϕ, and ϵ > 0, if there is a function g : Z → R satisfying SNR(g) ≥ 1/ϵ
and |∆1−0(x, u)| ≤ − log ϵ+O(ϵ log ϵ), then

ELBOθ,ϕ(α
∗(x, u);x, u)− ELBOθ,ϕ(0;x, u) ≥

−1 +
√
1 + 4ϵ

2
|∆1−0(x, u)|+ o(|∆1−0(x, u)|) +O(ϵ log ϵ)

as |∆1−0(x, u)| → ∞ and ϵ→ 0+.

That is, if qϕ(z|x) and qϕ(z|x, u) are different so that SNR(g) is large enough for some g, then α∗(x, u) > 0 and our bound
is sharper than that of iVAE with positive margins. In the simulation study in Table 2 in Appendix B.2, α∗(x, u) > 0 holds
with positive probability and α∗(x, u) can be approximated by a formula based on our theory. Under the same conditions in
Theorem 3, we derived that

α∗
approx(ϵ,∆1−0(x, u)) :=

1−
√
1 + 4ϵ

2
+

√
1 + 4ϵ

1 + e−
√
1+4ϵ∆1−0(x,u)

(7)

is in [0, 1] and ELBOθ,ϕ(α
∗
approx(ϵ,∆1−0(x, u));x, u) − ELBOθ,ϕ(0;x, u) is greater than or equal to the positive margin

in Theorem 3. Details are provided in Lemma 5 in Appendix A.3. The calculated values by this formula were similar to
numerically approximated α∗, which supports the validity of our theory.

A.2 Proofs of Propositions

A.2.1 Proof of Proposition 1

We provide a proof by contradiction. We assume that qϕ(z|x, u) ̸= pT,λ(z|u) holds w.p. 0, which is equivalent to assume
that the posterior collapse occurs, i.e., qϕ(z|x, u) = pT,λ(z|u) holds w.p. 1. Since qϕ(z|x, u) = qϕ(z|x), it implies that
qϕ(z|x) = pT,λ(z|u) holds w.p. 1. Now, pT,λ(z|u) = qϕ(z|x) =

∫
qϕ(z|x)p(u)du =

∫
pT,λ(z|u)p(u)du contradicts to

that pT,λ is non-trivial.

A.2.2 Proof of Proposition 2

We provide a proof by contradiction. Since Eqϕ(z|x) log pf (x|z) − DKL(qϕ(z|x)||pT,λ(z|u)) is equal to
log pθ(x|u) − DKL(qϕ(z|x)||pθ(z|x, u)), max

ϕ
Ep(x,u)ELBOθ,ϕ(1;x, u) is equal to Ep(x,u) log pθ(x|u) if and only

if min
ϕ
DKL(qϕ(z|x)||pθ(z|x, u)) = 0. It implies pθ(z|x, u) = pθ(z|x). By Bayes’ theorem, pθ(z|x, u) =

pθ(x|z, u)pT,λ(z|u)/pθ(x|u) = pf (x|z)pT,λ(z|u)/pθ(x|u) and pθ(z|x) = pf (x|z)pθ(z)/pθ(x). Thus, pT,λ(z|u)pθ(x) =
pθ(z)pθ(x|u). Now, pT,λ(z|u) =

∫
pT,λ(z|u)pθ(x)dx =

∫
pθ(z)pθ(x|u)dx = pθ(z) contradicts to that the label prior is

non-trivial.
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A.2.3 Proof of Proposition 3

For any sample (x, u), θ = (f, T, λ), ϕ, and α ∈ [0, 1],

log pθ(x|u) = log
(∫

pθ(x, z|u)
αqϕ(z|x) + (1− α)qϕ(z|x, u)

(
αqϕ(z|x) + (1− α)qϕ(z|x, u)

)
dz

)
≥

∫ (
log

pθ(x, z|u)
αqϕ(z|x) + (1− α)qϕ(z|x, u)

)(
αqϕ(z|x) + (1− α)qϕ(z|x, u)

)
dz

= Eαqϕ(z|x)+(1−α)qϕ(z|x,u)[log pθ(x, z|u)− pT,λ(z|u)]−DKL(αqϕ(z|x) + (1− α)qϕ(z|x, u)||pT,λ(z|u))

holds by Jensen’s inequality. Now, pθ(x, z|u) = pf (x|z)pT,λ(z|u) concludes the proof.

A.2.4 Proof of Proposition 4

By the definition of α∗(x, u) and the existence of ϕ satisfying qϕ(z|x, u) = pθ(z|x, u) with probability (w.p.) 1 w.r.t.
p(x, u),

max
ϕ

Ep(x,u)ELBOθ,ϕ(α
∗(x, u);x, u) ≥ max

ϕ
Ep(x,u)ELBOθ,ϕ(0;x, u)

= Ep(x,u) log pθ(x|u)−min
ϕ
DKL(qϕ(z|x, u)||pθ(z|x, u))

= Ep(x,u) log pθ(x|u).

Since ELBOθ,ϕ(α
∗(x, u);x, u) is a lower bound of log pθ(x|u), the proof is concluded.

A.2.5 Proof of Proposition 5

For any sample (x, u), θ = (f, T, λ), ϕ, and α ∈ [0, 1], ELBOθ,ϕ(α;x, u) can be expressed as

αEqϕ(z|x) log pf (x|z) + (1− α)Eqϕ(z|x,u) log pf (x|z)

−
∫ (

log
αqϕ(z|x) + (1− α)qϕ(z|x, u)

pT,λ(z|u)

)
(αqϕ(z|x) + (1− α)qϕ(z|x, u))dz

= α
(

ELBOθ,ϕ(1;x, u) +

∫ (
log

qϕ(z|x)
pT,λ(z|u)

)
qϕ(z|x)dz

)
+ (1− α)

(
ELBOθ,ϕ(0;x, u) +

∫ (
log

qϕ(z|x, u)
pT,λ(z|u)

)
qϕ(z|x, u)dz

)
− α

∫ (
log

αqϕ(z|x) + (1− α)qϕ(z|x, u)
pT,λ(z|u)

)
qϕ(z|x)dz − (1− α)

∫ (
log

αqϕ(z|x) + (1− α)qϕ(z|x, u)
pT,λ(z|u)

)
qϕ(z|x, u)dz

= αELBOθ,ϕ(1;x, u) + (1− α)ELBOθ,ϕ(0;x, u) + αDKL(qϕ(z|x)||αqϕ(z|x) + (1− α)qϕ(z|x, u))
+ (1− α)DKL(qϕ(z|x, u)||αqϕ(z|x) + (1− α)qϕ(z|x, u))

= αELBOθ,ϕ(1;x, u) + (1− α)ELBOθ,ϕ(0;x, u) + αD1−α
skew (qϕ(z|x)||qϕ(z|x, u)) + (1− α)Dα

skew(qϕ(z|x, u)||qϕ(z|x)).

A.2.6 Proof of Proposition 6

For any sample (x, u) and α ∈ [0, 1], the first derivative of ELBOθ,ϕ(α;x, u) can be expressed as

ELBO(1)
θ,ϕ(α;x, u)

= Eqϕ(z|x) log pf (x|z)− Eqϕ(z|x,u) log pf (x|z)

− d

dα

∫ (
log

αqϕ(z|x) + (1− α)qϕ(z|x, u)
pT,λ(z|u)

)
(αqϕ(z|x) + (1− α)qϕ(z|x, u))dz

=
(

ELBOθ,ϕ(1;x, u) +DKL(qϕ(z|x)||pT,λ(z|u))
)
−
(

ELBOθ,ϕ(0;x, u) +DKL(qϕ(z|x, u)||pT,λ(z|u))
)

−
[ ∫ qϕ(z|x)− qϕ(z|x, u)

αqϕ(z|x) + (1− α)qϕ(z|x, u)
(αqϕ(z|x) + (1− α)qϕ(z|x, u))dz

+

∫ (
log

αqϕ(z|x) + (1− α)qϕ(z|x, u)
pT,λ(z|u)

)
(qϕ(z|x)− qϕ(z|x, u))dz

]
= ELBOθ,ϕ(1;x, u)− ELBOθ,ϕ(0;x, u) +DKL(qϕ(z|x)||αqϕ(z|x) + (1− α)qϕ(z|x, u))
−DKL(qϕ(z|x, u)||αqϕ(z|x) + (1− α)qϕ(z|x, u)).
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With this, the second derivative of ELBOθ,ϕ(α;x, u) can be expressed as

ELBO(2)
θ,ϕ(α;x, u) = −

d

dα

∫ (
log

αqϕ(z|x) + (1− α)qϕ(z|x, u)
pT,λ(z|u)

)
(qϕ(z|x)− qϕ(z|x, u))dz

= −
∫ (

log
qϕ(z|x)− qϕ(z|x, u)

αqϕ(z|x) + (1− α)qϕ(z|x, u)

)
(qϕ(z|x)− qϕ(z|x, u))dz

= −
∫

(qϕ(z|x)− qϕ(z|x, u))2

αqϕ(z|x) + (1− α)qϕ(z|x, u)
dz.

Thus, ELBO(2)
θ,ϕ(α;x, u) ≤ 0 for any α ∈ [0, 1]. The equality holds if and only if qϕ(z|x) = qϕ(z|x, u) for all z, which

concludes the proof.

A.3 Proofs of Theorems

A.3.1 Proof of Theorem 1

The proof is extended from the proof of Proposition 2 in Dai et al. (2020). We first provide detailed formulations
of conditions for Theorem 1, and then derive Theorem 1. We denote the parameter in decoder networks by ψ. The
reconstruction error at x with posterior N(µ, σ) can be expressed as EZ∼N(µ,σ2)||x− f(Z;ψ)||22. We formulate conditions
(C1) and (C2) (Dai et al., 2020).

(C1) ∂
∂µEZ∼N(µ,σ2)||x− f(Z;ψ)||22 and ∂

∂σEZ∼N(µ,σ2)||x− f(Z;ψ)||22 are L-Lipschitz continuous.
(C2) ∂

∂σEZ∼N(µ,σ2)||x− f(Z;ψ)||22 ≥ c for some c > 0.

The (C1) means that the reconstruction error is sufficiently smooth and its partial derivatives have bounded slopes w.r.t.
(µ, σ). The (C2) means that the decoder increases the reconstruction error as the uncertainty of latent variables increases.
The (C2) does not hold when the decoder is degenerated, i.e., f(z;ψ) is constant.

Now, we derive Theorem 1. We show that for any iVAEs satisfying (C1) and (C2), there is a posterior
collapse case having larger value of ELBO. As in Dai et al. (2020), we consider that the observation noise
ϵ follows a Gaussian distribution N(0, γIdX

). We reparametrize the decoder network with a scale parameter
w ∈ [0, 1] and denote the parameter for the decoder by ψ = (w,ψ\w). The output of the decoder with ψ
can be expressed as f(z;ψ) = f(wz;ψ\w). We denote means and standard deviations of posterior distribu-
tions by mZ|X,U ({(xi, ui)}ni=1;ϕ) := (µZ|X,U (x1, u1;ϕ), . . . , µZ|X,U (xn, un;ϕ)) and sZ|X,U ({(xi, ui)}ni=1;ϕ) :=
(σZ|X,U (x1, u1;ϕ), . . . , σZ|X,U (xn, un;ϕ)), respectively, where µZ|X,U (xi, ui;ϕ) and σZ|X,U (xi, ui;ϕ) denote the mean
and standard deviations of posterior distributions at i-th datum, respectively.

For any iVAEs with decoder parameter ψ̃ satisfying (C1) and (C2), posterior parameter ϕ̃, and label prior parameter
(T̃ , λ̃), values evaluated at ϕ̃ are denoted by m̃Z|X,U and s̃Z|X,U . For simplicity, we use mZ|X,U , sZ|X,U , m̃Z|X,U , and
s̃Z|X,U if there is no confusion and use mZ|X,U,i, sZ|X,U,i, m̃Z|X,U,i, and s̃Z|X,U,i, respectively, to indicate their i-th
components. In a similar manner, means and standard deviations by label prior networks are denoted by mZ|U and
sZ|U , respectively. We denote (mScale

Z|X,U,i)j = ((mZ|X,U,i)j − (m̃Z|U,i)j)/(s̃Z|U,i)j , (sScale
Z|X,U,i)j = (sZ|X,U,i)j/(s̃Z|U,i)j ,

(m̃Scale
Z|X,U,i)j = ((m̃Z|X,U,i)j − (m̃Z|U,i)j)/(s̃Z|U,i)j , and (s̃Scale

Z|X,U,i)j = (s̃Z|X,U,i)j/(s̃Z|U,i)j . With these terms,

we can express the reconstruction error at the i-th datum as r(w(mScale
Z|X,U,i + m̃Z|U,i/s̃Z|U,i), ws

Scale
Z|X,U,i, ψ̃\w̃, xi) =

Eϵ∼N(0,Id)∥xi−f
(
s̃Z|U (w(m

Scale
Z|X,U,i+m̃Z|U,i/s̃Z|U,i))+s̃Z|U,i(ws

Scale
Z|X,U,i)ϵ; ψ̃\w̃

)
∥22 and the average reconstruction error

by r̄(w(mScale
Z|X,U+m̃Z|U/s̃Z|U ), ws

Scale
Z|X,U ). Here, all the parameters in decoder and label prior butw are fixed. Then, the aver-

age of the negative ELBO of iVAE evaluated with {(xi, ui)}ni=1 is the same as h(mZ|X,U , sZ|X,U , w) := γ−1r̄(w(mScale
Z|X,U+

m̃Z|U/s̃Z|U ), ws
Scale
Z|X,U ) + dX log γ + n−1

∑n
i=1 2DKL(N(mScale

Z|X,U,i, (s
Scale
Z|X,U,i)

2)||N(0, 1)) up to constant addition and
multiplication since DKL(N(mZ|X,U,i, s

2
Z|X,U,i)||N(m̃Z|U,i, s̃

2
Z|U,i)) = DKL(N(mScale

Z|X,U,i, (s
Scale
Z|X,U,i)

2)||N(0, 1)). We de-
fine happr, an approximation of an upper bound of h based on the Taylor series of r̄ in Lemma 1. The happr is equal to h
when (mZ|X,U , sZ|X,U , w) = (m̃Z|X,U , s̃Z|X,U , w̃) and is an upper bound of h when w(sZ|X,U,i)j ∈ {0, w̃(s̃Z|X,U,i)j}
for all i = 1, . . . , n and j = 1, . . . , dZ .
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Lemma 1. For any {(xi, ui)}ni=1, we define

happr(mZ|X,U , sZ|X,U , w; m̃Z|X,U , s̃Z|X,U , w̃)

:= γ−1r̄appr(w(mScale
Z|X,U + m̃Z|U/s̃Z|U ), ws

Scale
Z|X,U ; w̃(m̃

Scale
Z|X,U + m̃Z|U/s̃Z|U ), ws̃

Scale
Z|X,U )

+ dX log γ + n−1
n∑

i=1

2DKL(N(mScale
Z|X,U,i, (s

Scale
Z|X,U,i)

2)||N(0, 1))

where r̄appr(u, v; ũ, ṽ) := r̄(ũ, ṽ) + (u − ũ)T ∂
∂u r̄(ũ, ṽ) +

L
2 ||u − ũ||

2
2 +

∑D
j=1 g

appr
(
vj , ṽj ,

∂
∂vj

r̄(ũ, ṽ)
)

for any u, v, ũ

and ṽ ∈ RD and gappr : R3 → R is defined as follows:

gappr(v, ṽ, δ) =


− δ2

2L + δ2

2Lṽ2 v
2 if v ≥ ṽ − δ

L and {v, ṽ, δ} ≥ 0,(
Lṽ2

2 − δṽ
)
+
(
δ
ṽ −

L
2

)
v2 if v < ṽ − δ

L and {v, ṽ, δ} ≥ 0,

∞ otherwise.
(8)

Then, happr(m̃Z|X,U , s̃Z|X,U , w̃; m̃Z|X,U , s̃Z|X,U , w̃) = h(m̃Z|X,U , s̃Z|X,U , w̃) and
happr(mZ|X,U , sZ|X,U , w; m̃Z|X,U , s̃Z|X,U , w̃) ≥ h(mZ|X,U , sZ|X,U , w) if w(sZ|X,U,i)j ∈ {0, w̃(s̃Z|X,U,i)j} for
all i = 1, . . . , n and j = 1, . . . , dZ .

Proof of Lemma 1. Section 3 in the supplementary file of Dai et al. (2020) showed that r̄appr(ũ, ṽ; ũ, ṽ) = r̄(ũ, ṽ) and
r̄appr(u, v; ũ, ṽ) ≥ r̄(u, v) if vj ∈ {0, ṽj} for all j. It concludes the proof since the difference of happr from h is changing r̄
to r̄appr.

Let ci,j be coefficients of v2 in (8) determined by (v, ṽ, δ) = (w(sScale
Z|X,U,i)j , w̃(s̃

Scale
Z|X,U,i)j , δ̃i,j) where δ̃i,j :=

∇r̄(w̃(m̃Scale
Z|X,U + m̃Z|U/s̃Z|U ), w̃s̃

Scale
Z|X,U )(n+i−1)dZ+j . The ci,j is positive and finite since w(sScale

Z|X,U,i)j ≥ 0,

w̃(s̃Scale
Z|X,U,i)j ≥ 0, and 0 < δ̃i,j ≤ L by (C1) and (C2).

We denote the minimizer of happr by (m∗
Z|X,U (w), s

∗
Z|X,U (w)). Since

happr(mZ|X,U , sZ|X,U , w; m̃Z|X,U , s̃Z|X,U , w̃)

= Const. + n−1
n∑

i=1

dZ∑
j=1

(
γ−1

(
w(mScale

Z|X,U,i + m̃Z|U,i/s̃Z|U,i)j δ̃i,j

+
L

2

(
w2(mScale

Z|X,U,i + m̃Z|U,i/s̃Z|U,i)
2
j − 2w(mScale

Z|X,U,i + m̃Z|U,i/s̃Z|U,i)jw̃(m̃
Scale
Z|X,U,i + m̃Z|U,i/s̃Z|U,i)j

)
+ ci,jw

2(sScale
Z|X,U,i)

2
j

)
+ (mScale

Z|X,U,i)
2
j + (sScale

Z|X,U,i)
2
j − log

(
sScale
Z|X,U,i

)2

j

)
,

happr is a quadratic function w.r.t. (mScale
Z|X,U,i + m̃Z|U,i/s̃Z|U,i)j and coefficients of second-order and first-order

terms are n−1(γ−1Lw2/2 + 1) and n−1
(
γ−1w(δ̃i,j − Lw̃(m̃Z|X,U,i)j) − 2m̃Z|U,i/s̃Z|U,i

)
, respectively. This implies

(m∗
Z|X,U,i(w))j =

(
w(s̃Z|U,i)j

(
Lw̃(m̃Z|X,U,i)j − δ̃i,j

)
+ 2γ(m̃Z|U,i)j

)
/(2γ + Lw2).

For (sZ|X,i)j , ∂happr/∂(sScale
Z|X,i)

2
j = n−1(γ−1ci,jw

2 +1− 1/(sScale
Z|X,i)

2
j ) and ∂2happr/∂

(
(sScale

Z|X,i)
2
j

)2
= n−1/(sScale

Z|X,i)
4
j > 0

imply (s∗Z|X,U,i(w))
2
j = (s̃Z|U,i)

2
j (γ

−1ci,jw
2 + 1)−1. By substituting (m∗

Z|X,U (w), s
∗
Z|X,U (w)), we have

∂happr(m∗
Z|X(w), s∗Z|X(w), w; m̃Z|X , s̃Z|X , w̃)/∂w

2

= n−1
n∑

i=1

dZ∑
j=1

(
ci,j

γ + ci,jw2
+O(γ−2)

)
.

Since ci,j is positive, this partial derivative is positive for all w ∈ [0, 1] when γ is sufficiently large. In this case, the
optimal w is zero and

(
(m∗

Z|X,U,i)j(0), (s
∗
Z|X,U,i)j(0)

)
= ((m̃Z|U,i)j , (s̃Z|U,i)j), i.e., posterior collapse cases. By Lemma

1, h(m̃Z|U , s̃Z|U , 0) ≤ happr(m̃Z|U , s̃Z|U , 0; m̃Z|X,U , s̃Z|X,U , w̃) and happr(m̃Z|X,U , s̃Z|X,U , w̃; m̃Z|X,U , s̃Z|X,U , w̃) =
h(m̃Z|X,U , s̃Z|X,U , w̃). Since (m̃Z|U , s̃Z|U , 0) is the global optima of happr, h(m̃Z|U , s̃Z|U , 0) < h(m̃Z|X,U , s̃Z|X,U , w̃).
That is, there is a posterior collapse case whose value of ELBO is better than current networks. Thus, the iVAEs are worse
than the posterior collapse case.
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A.3.2 Proof of Theorem 2

We provide a proof by contradiction. Let qϕ(z|x, u) = pT,λ(z|u) holds w.p. 1. Since α∗(x, u) > 0 and α∗(x, u)qϕ(z|x) +
(1 − α∗(z|x, u)qϕ(z|x, u) = pT,λ(z|u) w.p. 1, we have qϕ(z|x) = pT,λ(z|u), which contradicts to that pT,λ(z|u) is
non-trivial by Proposition 1.

A.3.3 Proof of Theorem 3

We first provide lemmas with proofs, and then derive the theorem.

Lemma 2. (Equation (18) in Nishiyama (2019)) For any t ∈ [0, 1], real-valued function g, and probability density functions
p(z) and q(z), ∂DKL(p(z)||(1 − t)p(z) + tq(z))/∂t is greater than or equal to t(Eq(z)[g(z)] − Ep(z)[g(z)])

2/
(
t(1 −

t)(Eq(z)[g(z)]− Ep(z)[g(z)])
2 + (1− t)V arp(z)[g(z)] + tV arq(z)[g(z)]

)
.

Lemma 3. For any datum (x, u) and positive number ϵ, if there is a function g : Z → R satisfying SNR(g) ≥ 1/ϵ, then

ELBOθ,ϕ(α;x, u)− ELBOθ,ϕ(0;x, u) ≥ LB(α, ϵ,∆1−0(x, u))

where LB(α, ϵ,∆1−0(x, u)) := α∆1−0(x, u) + α
∫ 1

α
(1− t)/(t(1− t) + ϵ)dt+ (1− α)

∫ α

0
t/(t(1− t) + ϵ)dt.

Proof of Lemma 3. By Proposition 5,

ELBOθ,ϕ(α;x, u)− ELBOθ,ϕ(0;x, u) = α∆1−0(x, u) + αDKL(qϕ(z|x)||αqϕ(z|x) + (1− α)qϕ(z|x, u))
+ (1− α)DKL(qϕ(z|x, u)||αqϕ(z|x) + (1− α)qϕ(z|x, u)).

(9)

By substituting qϕ(z|x) and qϕ(z|x, u) to q and p in Lemma 2, respectively, and integrating both sides from 0 to α, we have

DKL(qϕ(z|x, u)||αqϕ(z|x) + (1− α)qϕ(z|x, u))

≥
∫ α

0

((
t(Eqϕ(z|x,u)[g(z)]− Eqϕ(z|x)[g(z)])

2
)
/
(
t(1− t)(Eqϕ(z|x,u)[g(z)]− Eqϕ(z|x)[g(z)])

2

+ (1− t)V arqϕ(z|x)[g(z)] + tV arqϕ(z|x,u)[g(z)]
))
dt.

Since SNR(g) ≥ 1/ϵ, DKL(qϕ(z|x, u)||αqϕ(z|x) + (1 − α)qϕ(z|x, u)) ≥
∫ α

0
t

t(1−t)+ϵdt and DKL(qϕ(z|x)||αqϕ(z|x) +
(1− α)qϕ(z|x, u)) ≥

∫ 1

α
1−t

t(1−t)+ϵdt hold. These and (9) conclude the proof.

Lemma 4. The first and second partial derivatives of LB(α, ϵ,∆1−0(x, u)) w.r.t. α, respectively, can be expressed as

∂LB(α, ϵ,∆1−0(x, u))

∂α
= ∆1−0(x, u) +

1√
1 + 4ϵ

log

∣∣∣∣∣∣α−
1+

√
1+4ϵ
2

α− 1−
√
1+4ϵ
2

∣∣∣∣∣∣
and ∂2LB(α, ϵ,∆1−0(x, u))/∂α

2 = −1/
(
α(1 − α) + ϵ

)
. Thus, LB(α, ϵ,∆1−0(x, u)) is strictly concave w.r.t. α when

α ∈ [0, 1].

Proof of Lemma 4. The ∂LB(α, ϵ,∆1−0(x, u))/∂α can be expressed as ∆1−0(x, u) +
∫ 1

α
(1 − t)/(t(1 − t) + ϵ)dt −∫ α

0
t/(t(1 − t) + ϵ)dt. Let t+ = 1+

√
1+4ϵ
2 and t− = 1−

√
1+4ϵ
2 . Since

∫
t

t(1−t)+ϵdt = − t+
t+−t−

log |t− t+| +
t−

t+−t−
log |t− t−|+ C where C is the constant of integration and

∫
(1− t)/(t(1− t) + ϵ)dt =

∫
t/(t(1− t) + ϵ)dt, we

can derive

∂LB(α, ϵ,∆1−0(x, u))

∂α
= ∆1−0(x, u) +

1√
1 + 4ϵ

log

∣∣∣∣∣∣α−
1+

√
1+4ϵ
2

α− 1−
√
1+4ϵ
2

∣∣∣∣∣∣.
By differentiating the first derivative w.r.t. α again, we have ∂2LB(α, ϵ,∆1−0(x, u))/∂α

2 = −1/
(
α(1− α) + ϵ

)
.

Lemma 5. The maximizer of LB(α, ϵ,∆1−0(x, u)) over α ∈ [0, 1] is α∗
approx(ϵ,∆1−0(x, u)) := 1−

√
1+4ϵ
2 +

√
1+4ϵ

1+e−
√

1+4ϵ∆1−0(x,u) if and only if
∣∣∆1−0(x, u)

∣∣ ≤ 1√
1+4ϵ

log (
√
1+4ϵ+1)2

4ϵ = − log ϵ+O(ϵ log ϵ) as ϵ→ 0+.
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Proof of Lemma 5. By Lemma 4, the first partial derivative of LB(α, ϵ,∆1−0(x, u)) w.r.t. α is zero if and only if
α = α∗

approx(ϵ,∆1−0(x, u)). The solution of α∗
approx(ϵ,∆1−0(x, u)) ∈ [0, 1] can be expressed as

∣∣∆1−0(x, u)
∣∣ ≤

1√
1+4ϵ

log (
√
1+4ϵ+1)2

4ϵ . Next, we prove 1√
1+4ϵ

log (
√
1+4ϵ+1)2

4ϵ = − log ϵ + O(ϵ log ϵ) as ϵ → 0+. We have(
1√
1+4ϵ

log (
√
1+4ϵ+1)2

4ϵ − (− log ϵ)
)

1
ϵ log ϵ = 4√

1+4ϵ(
√
1+4ϵ+1)

− 2√
1+4ϵ

log 2/(
√
1+4ϵ+1)

ϵ log ϵ . Here, the first term in RHS

converges to 2 as ϵ → 0+ and, by L’Hospital’s rule, the limit of the second term is lim
ϵ→0+

log 2/(
√
1+4ϵ+1)

ϵ log ϵ =

lim
ϵ→0+

−2/(
√
1+4ϵ+1)

√
1+4ϵ

log ϵ+1 = 0, which concludes the proof.

Now, we prove Theorem 3. Let t+ = 1+
√
1+4ϵ
2 and t− = 1−

√
1+4ϵ
2 . Since

∫
t

t(1−t)+ϵdt = − t+
t+−t−

log |t− t+| +
t−

t+−t−
log |t− t−|+ C where C is the constant of integration and

∫
(1− t)/(t(1− t) + ϵ)dt =

∫
t/(t(1− t) + ϵ)dt, we

can derive

LB(α, ϵ,∆1−0(x, u))

= α∆1−0(x, u)−
αt+

t+ − t−
log |α− 1 + t+|+

αt−
t+ − t−

log |α− 1 + t−|

− (1− α)t+
t+ − t−

log |α− t+|+
(1− α)t−
t+ − t−

log |α− t−|+
t+

t+ − t−
log |t+| −

t−
t+ − t−

log |t−|

= α∆1−0(x, u) +
1

t+ − t−
(α− t+) log |α− t+| −

1

t+ − t−
(α− t−) log |α− t−|+

t+
t+ − t−

log |t+| −
t−

t+ − t−
log |t−|.

Here, the last equality is derived by using t+ + t− = 1. By Lemma 5, the maximizer is α∗
approx(ϵ,∆1−0(x, u)) =

t−+
√
1 + 4ϵσ(

√
1 + 4ϵ∆1−0(x, u)) where σ(x) := 1/(1+e−x) is the sigmoid function, so α∗

approx(ϵ,∆1−0(x, u))−t+ =
−(t+ − t−)(1− σ((t+ − t−)∆1−0(x, u))) and α∗

approx(ϵ,∆1−0(x, u))− t− = (t+ − t−)σ((t+ − t−)∆1−0(x, u)). Now,
substituting these equations and (t+ − t−)∆1−0(x, u) = log σ((t+ − t−)∆1−0(x, u))/(1 − σ((t+ − t−)∆1−0(x, u)))
gives

LB(α∗
approx(ϵ,∆1−0(x, u)), ϵ,∆1−0(x, u))

= t−∆1−0(x, u) + σ((t+ − t−)∆1−0(x, u)) log
σ((t+ − t−)∆1−0(x, u))

1− σ((t+ − t−)∆1−0(x, u))

− σ((t+ − t−)∆1−0(x, u)) log
(
(t+ − t−)σ((t+ − t−)∆1−0(x, u))

)
− (1− σ((t+ − t−)∆1−0(x, u))) log

(
(t+ − t−)(1− σ((t+ − t−)∆1−0(x, u)))

)
+

t+
t+ − t−

log |t+| −
t−

t+ − t−
log |t−|

= t−∆1−0(x, u)− log
(
1− σ((t+ − t−)∆1−0(x, u))

)
+
(
− log |t+ − t−|+

t+
t+ − t−

log |t+| −
t−

t+ − t−
log |t−|

)
=

1 +
√
1 + 4ϵ

2
∆1−0(x, u)− log σ(

√
1 + 4ϵ∆1−0(x, u))) +

(
− log

(√
1 + 4ϵ

)
+

1

2
√
1 + 4ϵ

log
(
√
1 + 4ϵ+ 1)2

4ϵ
+

1

2
log ϵ

)
.

Thus, sup
α∈[0,1]

ELBOθ,ϕ(α;x, u)−ELBOθ,ϕ(0;x, u) ≥ LB(α∗
approx(ϵ,∆1−0(x, u)), ϵ,∆1−0(x, u)) =

1+
√
1+4ϵ
2 ∆1−0(x, u)−

log σ(
√
1 + 4ϵ∆1−0(x, u))) + O(ϵ log ϵ) as ϵ → 0+. Now, − log σ(

√
1 + 4ϵ∆1−0(x, u))) = o(∆1−0(x, u)) as

∆1−0(x, u) → ∞ and − log σ(
√
1 + 4ϵ∆1−0(x, u))) = −

√
1 + 4ϵ∆1−0(x, u) + o(∆1−0(x, u)) as ∆1−0(x, u) → −∞

conclude the proof.

B Details on Experiments

B.1 Implementation Details

B.1.1 Dataset Description and Experimental Setting

We present in Table 1 the three data generation schemes used in the simulation study, which include: 1) distributions
of covariates (U ), 2) conditional distributions of latent variables given covariates (Z|U ), and 3) conditional distributions
of observations given latent variables (X|Z). Here, uniform and categorical distributions are denoted by Unif and Cat,
respectively, and RealNVP (Dinh et al., 2017) is a flexible and invertible neural network mapping low-dimensional latent
variables to high-dimensional observations. As in Zhou and Wei (2020), we use randomly initialized RealNVP networks as
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Table 1: A summary of distributions of variables in the simulation study. Examples can be founded at the first column in
Figure 1 in the manuscript.

LATENT STRUCTURE VARIABLES

COVARIATES (U ) LATENT VARIABLES GIVEN
COVARIATES (Z|U )

OBSERVATIONS GIVEN
LATENT VARIABLES (X|Z)

SINE UNIF(0, 2π) N
(
(U, 2SINU)T , (U/4π)I2

)
N(REALNVP(Z), I100)

QUADRATIC UNIF(−π/2, π/2) N
(
(U,U2)T , (2U + π)/4πI2

)
N(REALNVP(Z), I100)

TWO CIRCLES UNIF(−π, π)× CAT2(0.5, 0.5) N
(
(U2COSU1, U2SINU1)

T , (−|U1|+ π)/10πI2
)

N(REALNVP(Z), I100)

Table 2: Contingency tables to display the number of data by their α∗ computed by grid search (column) and formula (row)
on sine latent structure. Correlation coefficients between α∗ by grid search and by formula are presented at the top-left
corner.

LATENT STRUCTURE = SINE
FORMULA

CORRELATION COEFFICIENT:
0.99 (0.00) 0 IN-BETWEEN 0 AND 1 1

G
R

ID 0 26.85% (0.18%) 1.88% (0.06%) 0.00% (0.00%)
IN-BETWEEN 0 AND 1 0.19% (0.01%) 0.14% (0.02%) 0.01% (0.00%)

1 0.00% (0.00%) 1.99% (0.05%) 68.95% (0.19%)

LATENT STRUCTURE = QUADRATIC
FORMULA

CORRELATION COEFFICIENT:
0.99 (0.00) 0 IN-BETWEEN 0 AND 1 1

G
R

ID 0 30.95% (0.19%) 2.61% (0.06%) 0.00% (0.00%)
IN-BETWEEN 0 AND 1 0.30% (0.02%) 0.28% (0.02%) 0.04% (0.01%)

1 0.00% (0.00%) 2.68% (0.08%) 63.14% (0.26%)

LATENT STRUCTURE = TWO CIRCLES
FORMULA

CORRELATION COEFFICIENT:
0.99 (0.00) 0 IN-BETWEEN 0 AND 1 1

G
R

ID 0 36.05% (0.19%) 3.44% (0.08%) 0.00% (0.00%)
IN-BETWEEN 0 AND 1 0.39% (0.02%) 0.29% (0.02%) 0.02% (0.01%)

1 0.00% (0.00%) 3.46% (0.08%) 56.36% (0.27%)

ground-truth mixing functions. The sample size is 30, 000 and the proportion of training, validation, and test samples are
80%, 10%, and 10%, respectively. The dimension of observations is 100. The number of repeats is 20, and for all datasets
and methods, we train five models with different initial weights. All reported results are from models yielding the minimum
validation loss and evaluated on the test dataset.

We provide descriptions on real datasets with implementation details.

EMNIST: An image dataset consisting of handwritten digits whose data format is the same as MNIST (LeCun, 1998) and
has six split types. We use EMNIST split by digits to use images as observations (X) and digit labels as covariates (U ). The
official training dataset contains 240,000 images of digits from 0 to 9 in 28× 28 gray-scale, and the test dataset contains
40,000 images. We randomly split the official training images by 200,000 and 40,000 images to make training and validation
datasets for our experiments, and the number of repeats is 20.

Fashion-MNIST: An image dataset consisting of fashion-item images with item labels. There are ten classes such as ankle
boot, bag, and coat, and we use images as observations (X) and item labels as covariates (U ). The official training and test
datasets contain 60,000 and 10,000 images in 28× 28 gray-scale, respectively, and we randomly split the official training
images by 50,000 and 10,000 images to make training and validation datasets. The number of repeats is 20.

ABCD: The ABCD study recruited 11,880 children aged 9–10 years (and their parents/guardians) were across 22 sites with
10-year-follow-up. For this analysis, we are using the baseline measures. After list-wise deletion for missing values, the
sample size is 5,053, and the dimension of observations is 1,178. We conduct 5-fold cross-validation. For all data splits and
methods, we train four models with different initial weights. All reported results are from the model yielding the minimum
loss on the validation fold and evaluated on the test fold.
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Figure 1: Generation results on EMNIST by varying top three latent attributes having the largest standard deviations. We
calculate mean vector of latent variables and controlling the selected attribute from −2 to +2 standard deviations.

B.1.2 Network Architectures

In all experiments, iVAEs and CI-iVAEs use the same architectures of the label prior, encoder, and decoder networks for the
purpose of fair comparison.

In the simulation study, we modify the official implementation code of pi-VAE. The architectures of label prior and encoder
networks are Dense(60)-Tanh-Dense(60)-Tanh-Dense(2) for the sine latent structure and Dense(60)-Tanh-Dense(60)-
Tanh-Dense(60)-Tanh-Dense(2) for quadratic and two circles latent structures. As in pi-VAE, we assume q(z|x, u) ∝
qϕ(z|x)pT,λ(z|u). The q(z|x, u) is a Gaussian distribution since both label prior and encoder are Gaussian. The means and
variances of q(z|x, u) can be computed with those of label prior and encoder. The architecture of the decoder is the same as
the modified GIN used in pi-VAE to guarantee injectivity. We use Adam optimizer (Kingma and Ba, 2014). The number of
epochs, batch size, and the learning rate is 100, 300, and 5× 10−4, respectively.

In experiments on EMNIST and Fashion-MNIST datasets, we modify the official implementation code of GIN. For
GIN, we use the same architecture used in the GIN paper. For iVAEs and CI-iVAEs, the architecture of encoders is
Conv(32, 3, 1, 1)-BN-LReLU-Conv(64, 4, 2, 1)-BN-LReLU-Conv(128, 4, 2, 1)-BN-LReLU-Conv(128, 7, 1, 0)-BN-LReLU-
Dense(64), that of decoders is ConvTrans(128, 1, 1, 0)-BN-LReLU-ConvTrans(128, 7, 1, 0)-BN-LReLU-ConvTrans(64, 4, 2,
1)-BN-LReLU-ConvTrans(32, 4, 2, 1)-BN-LReLU-ConvTrans(1, 3, 1, 1)-Sigmoid, and that of the label prior is Dense(256)-
LReLU-Dense(256)-LReLU-Dense(64). Here, Conv(f , k, s, p) and ConvTrans(f , k, s, p) denote the convolution layer and
transposed convolution layer (Zeiler et al., 2010), respectively, where f , k, s, and p are the number of output channel, kernel
size, stride, and padding, respectively. BN denotes the batch normalization layer (Ioffe and Szegedy, 2015), and LReLU
denotes the Leaky ReLU activation layer (Xu et al., 2015). The initialized decoders are not injective, but our objective
functions encourage them to be injective by enforcing the inverse relation between encoders and decoders. The number
of learnable parameters of GIN architectures is 2,620,192, and that of iVAEs and CI-iVAEs is 2,062,209. We use Adam
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Figure 2: Generation results on Fashion-MNIST by varying top three latent attributes having the largest standard deviations.
We calculate mean vector of latent variables and controlling the selected attribute from −2 to +2 standard deviations.

optimizer. The number of epochs and batch size is 100 and 240, respectively. The learning rate is 3× 10−4 for the first 50
epochs and is 3× 10−5 for the remaining epochs.

In the experiment on the ABCD dataset, the architecture of the label prior is Dense(256)-LReLU-Dense(256)-LReLU-
Dense(128), that of encoders is Dense(4096)-BN-LReLU-Dense(4096)-BN-LReLU-Dense(4096)-BN-LReLU-Dense(4096)-
BN-LReLU-Dense(128)-BN-LReLU-Dense(128), and that of decoders is Dense(4096)-LReLU-Dense(4096)-LReLU-
Dense(4096)-LReLU-Dense(4096)-LReLU-Dense(128)-LReLU-Dense(128). We use Adam optimizer. The number of
epochs, batch size, and the learning rate is 100 and 64, and 2× 10−4, respectively.

B.2 Further Experimental Results

We present further experimental results on the simulation study in Table 2.

We present contingency tables for samplewise optimal α computed by grid search and by using approximating formula
(Equation (7)) in Table 2. For grid search, we calculate ELBOθ,ϕ(α;x, u) for α ∈ {0, 0.001, ..., 0.999, 1} and pick the
maximizer. For formula, we approximate ϵ with f(z) = zj and f(z) = z2j for j = 1, ..., dZ and calculate α∗

approx. For all
three settings, the correlation coefficients are high, which indicates the consistency of α∗ from the proposed algorithm with
theoretical approximation. Moreover, α∗ does not degenerate at 0 or 1, so the proposed ELBO using samplewise optimal
posteriors is different from the two ablation cases, ELBOs with qϕ(z|x, u) and with qϕ(z|x).
Generation results according to attributes having the largest standard deviations are provided in Figures 1 and 2. For all
methods, the generated result changes as the value of attributes are changed. In Fashion-MNIST, iVAE-based methods
change the contrast of fashion items while GIN does not.
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