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Abstract

Optimal transport (OT) is a popular and powerful
tool for comparing probability measures. How-
ever, OT suffers a few drawbacks: (i) input mea-
sures required to have the same mass, (ii) a high
computational complexity, and (iii) indefiniteness
which limits its applications on kernel-dependent
algorithmic approaches. To tackle issues (ii)–
(iii), Le et al. (2022) recently proposed Sobolev
transport for measures on a graph having the same
total mass by leveraging the graph structure over
supports. In this work, we consider measures that
may have different total mass and are supported
on a graph metric space. To alleviate the disad-
vantages (i)–(iii) of OT, we propose a novel and
scalable approach to extend Sobolev transport for
this unbalanced setting where measures may have
different total mass. We show that the proposed
unbalanced Sobolev transport (UST) admits a
closed-form formula for fast computation, and it
is also negative definite. Additionally, we derive
geometric structures for the UST and establish
relations between our UST and other transport
distances. We further exploit the negative definite-
ness to design positive definite kernels and evalu-
ate them on various simulations to illustrate their
fast computation and comparable performances
against other transport baselines for unbalanced
measures on a graph.

1 INTRODUCTION

Optimal transport (OT) has become a popular approach
and its theory lays out a compelling toolkit for data anal-
ysis on probability distributions. OT has been leveraged
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in several research areas such as machine learning (Peyré
and Cuturi, 2019; Nadjahi et al., 2019; Titouan et al., 2019;
Bunne et al., 2019, 2022; Janati et al., 2020; Muzellec et al.,
2020; Paty et al., 2020; Mukherjee et al., 2021; Altschuler
et al., 2021; Fatras et al., 2021; Le et al., 2021a,b; Liu et al.,
2021; Nguyen et al., 2021b; Scetbon et al., 2021; Si et al.,
2021; Takezawa et al., 2022; Fan et al., 2022), computer
vision (Nguyen et al., 2021a; Saleh et al., 2022; Wang et al.,
2022b), and statistics (Mena and Niles-Weed, 2019; Weed
and Berthet, 2019; Liu et al., 2022; Nguyen et al., 2022;
Nietert et al., 2022; Wang et al., 2022a) to name a few.
Nevertheless, it has some fundamental disadvantages.

One drawback of OT is that it requires input measures hav-
ing the same mass for the transportation. To address this
problem, several proposals have been developed in the re-
cent literature. For examples, the partial optimal transport
(POT) (Caffarelli and McCann, 2010; Figalli, 2010) con-
straints a fixed amount of mass for transportation; the op-
timal entropy transport (OET) (Liero et al., 2018; Chizat
et al., 2018b; Kondratyev et al., 2016) optimizes a sum of
a transport functional and two convex entropy functionals.
Additionally, there are various other approaches, e.g., the
Kantorovich-Rubinstein discrepancy (Hanin, 1992; Guittet,
2002; Lellmann et al., 2014; Sato et al., 2020), the unbal-
anced mass transport (Benamou, 2003), the generalized
Wasserstein distance (Piccoli and Rossi, 2014, 2016), the
unnormalized optimal transport (Gangbo et al., 2019), and
the entropy partial transport (Le and Nguyen, 2021). These
approaches are either special cases of the OET (e.g., by
using some specific instances of entropy functional such
as the total variation distance, ℓ2 distance), or a variant of
OET (e.g., by using the ℓp distance, partial transport in
place of the entropy functional, transport functional respec-
tively). It is worth pointing out that the unbalanced setting
for measures with unequal mass has been applied in several
application domains and learning problems, e.g., color trans-
fer and shape matching (Bonneel et al., 2015); multi-label
learning (Frogner et al., 2015); positive-unlabeled learn-
ing (Chapel et al., 2020); natural language processing and
topological data analysis (Le and Nguyen, 2021). In par-
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ticular, the unbalanced approach becomes essential when
supports of input measures are subject to noise or have out-
liers since such supports are not desirably aligned in the
matching problem (Frogner et al., 2015; Balaji et al., 2020;
Mukherjee et al., 2021).

Another drawback of standard OT is that it has a high com-
putational complexity. This disadvantage also exists in the
unbalanced optimal transport (UOT), which hinders its ap-
plications, especially for large-scale settings. For examples,
let us consider the OET with Kullback-Leibler divergence
for the entropy functional which is widely used in appli-
cations. For this, one can leverage the entropic regular-
ization to derive efficient Sinkhorn-based algorithmic ap-
proach (Frogner et al., 2015; Chizat et al., 2018a; Séjourné
et al., 2019) which has a quadratic complexity (Pham et al.,
2020). Another popular approach to scale up UOT is to ex-
ploit geometric structures of supports, e.g., one-dimensional
structure (Bonneel and Coeurjolly, 2019; Séjourné et al.,
2022), tree structure (Le and Nguyen, 2021; Sato et al.,
2020). More concretely, Bonneel and Coeurjolly (2019)
proposed the sliced partial optimal transport (SPOT) by pro-
jecting supports into a random one-dimensional space. By
assuming a unit mass on each support, they developed an
efficient algorithmic approach with a quadratic complexity
for the worst case. Nonetheless, SPOT suffers a curse of
dimensionality since using one-dimensional projections for
supports limits its ability to capture topological structures
of distributions, especially in a high-dimensional space. Le
and Nguyen (2021) proposed the entropy partial transport
(EPT) by exploiting a tree structure to remedy the curse of
dimensionality for SPOT. Moreover, EPT yields the first
closed-form solution among various variants of UOT (i.e.,
its complexity is linear to the number of edges in a tree) for
fast computation which is applicable for large-scale settings.
However, tree structure may be a restricted condition which
narrows down its practical usage in applications.

The aforementioned circumstances motivate us to consider
measures with unequal mass and supported on a graph met-
ric space which has more degrees of freedom (i.e., graph
structure rather than tree structure) and appears more popu-
larly in applications. Inspired by the Sobolev transport (Le
et al., 2022) for probability measures on a graph, we propose
a novel and scalable approach to leverage graph structure
and extend Sobolev transport for the unbalanced setting. At
a high level, our contributions are three-fold as follow:

• we propose a novel p-order unbalanced Sobolev trans-
port (UST) (p ≥ 1) for measures with unequal mass
and supported on a graph metric space. We prove that
UST admits a closed-form formula for a fast computa-
tion and it is negative definite;

• we derive geometric structures for the UST and pro-
pose positive definite kernels built upon the UST. Ad-
ditionally, we establish relations between UST and the
EPT on a graph;

• we empirically illustrate that UST is fast for compu-
tation (i.e., closed-form solution of UST). Also vari-
ous simulations demonstrate that the performances of
the proposed kernels for UST compare favorably with
other unbalanced transport baselines for measures with
unequal mass on a graph.

The paper is organized as follows: we introduce notations
and the problem setup in §2. In §3, we extend and derive the
EPT for unbalanced measures on a graph. We then present
our main contribution: the UST for measures with unequal
mass on a graph in §4 and derive its properties in §5. In
§6, we evaluate the proposed kernel for UST against other
unbalanced transport baselines for measures with unequal
mass on a graph on various simulations. We conclude our
work in §7. The detailed proofs for our theoretical results are
placed in Appendix §A.2. Furthermore, we have released
code for our proposals.1

2 PRELIMINARIES

In this section, we introduce our problem setting, notations,
and review relevant definitions.

We consider the same graph setting G = (V,E) where
V,E are sets of nodes and edges respectively as in (Le
et al., 2022) for Sobolev transport. More precisely, G is an
undirected, connected and physical graph in the sense that
V ⊂ Rn and each edge e ∈ E is the standard line segment
in Rn connecting the two corresponding end-points of e.
Graph G has positive edge lengths {we}e∈E and is imposed
a graph metric dG(·, ·) which equals to the length of the
shortest path on G. Following a convention in (Le et al.,
2022), by graph G, we mean the set of all nodes in V and all
points forming the edges in E, i.e., the continuous setting for
graph G. We also assume that there exists a fixed root node
z0 ∈ V such that for every x ∈ G, dG(x, z0) is attained
by the unique shortest path connecting x and z0, i.e., the
uniqueness property of the shortest paths (Le et al., 2022).

Given a point x ∈ G (resp. an edge e ∈ E in G), we denote
Λ(x) (resp. γe) as the collection of all points y ∈ G such
that the unique shortest path in G connecting the root node
z0 and y contains the point x (resp. the edge e). That is,

Λ(x) ≜
{
y ∈ G : x ∈ [z0, y]

}
, (1)

γe ≜
{
y ∈ G : e ⊂ [z0, y]

}
, (2)

where we write [z0, y] for the shortest path in G connecting
the root node z0 and y.

We denote M(G) (resp. M(G×G)) as the set of all nonneg-
ative Borel measures on G (resp. G×G) with a finite mass.
By continuous function f on G, we mean that f : G → R

1https://github.com/lttam/UnbalancedSobol
evTransport
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is continuous w.r.t. the topology on G induced by the Eu-
clidean distance. Similar adoption is also applied for contin-
uous functions on G×G. We denote C(G) as the collection
of all continuous functions on G.

Given a scalar b > 0, a function w : G → R is called
b-Lipschitz w.r.t. the graph metric dG if

|w(x)− w(y)| ≤ b dG(x, y),∀x, y ∈ G.

For 1 ≤ p ≤ ∞, we denote p′ as its conjugate, i.e., p′ ∈
[1,∞] s.t., 1

p + 1
p′ = 1. For a nonnegative Borel measure ω

on G, let Lp(G, ω) denote the space of all Borel measurable
functions f : G → R satisfying

∫
G |f(y)|pω(dy) < ∞.

When p = ∞, we assume that f is bounded ω-a.e. instead.
Functions f1, f2 ∈ Lp(G, ω) are considered to be the same
if f1(x) = f2(x) for ω-a.e. x ∈ G. Then, Lp(G, ω) is a
normed space with the norm defined by

∥f∥Lp(G,ω) ≜

(∫
G
|f(y)|pω(dy)

) 1
p

for 1 ≤ p < ∞, and

∥f∥L∞(G,ω) ≜ inf {t ∈ R : |f(x)| ≤ t for ω-a.e. x ∈ G} .

Recall that Sobolev transport for probability measures
on a graph is an instance of integral probability metrics
(IPM) (Müller, 1997). Intuitively, the definition of Sobolev
transport is based on the dual form of the 1-order Wasser-
stein distance, but its Lipschitz constraint for the critic func-
tion is considered in the graph-based Sobolev space (see (Le
et al., 2022, §3) for the detail). As a consequence, it may
not possible to directly leverage approaches for standard
OT (e.g., partial OT, entropy (partial) transport) to extend
Sobolev transport for unbalanced measures on a graph.

In this paper, we propose a detour to develop unbalanced
Sobolev transport for measures with unequal mass on a
graph. We first take a step back to leverage the EPT (for
unbalanced measures on a tree) (Le and Nguyen, 2021)
and extend it for unbalanced measures on a graph (§3).
Although it is still a great challenge to efficiently compute
the EPT for unbalanced measures on a graph, this novel
extension (especially its dual form) plays a cornerstone in
deriving a scalable approach for the proposed unbalanced
Sobolev transport (UST) (§4).

3 ENTROPY PARTIAL TRANSPORT ON
A GRAPH

The entropy partial transport (EPT) (Le and Nguyen, 2021)
is developed for unbalanced measures on a tree. In this
section, we propose an extension of EPT for unbalanced
measures on a graph. Intuitively, EPT optimizes a sum of
a transport function and two convex entropy functions in a
similar spirit to the OET (Liero et al., 2018; Chizat et al.,
2018b). We first consider the primal formulation of EPT

on a graph. We then derive its dual formulation which is
the main result of this section. This novel dual formulation
paves the way for our development of the UST (§4).

Given two measures µ, ν ∈ M(G) which may have differ-
ent total mass, consider the set

Π≤(µ, ν) ≜ {γ ∈ M(G×G) : γ1 ≤ µ, γ2 ≤ ν}

where γ1 and γ2 respectively denote the first and second
marginals of γ; by γ1 ≤ µ, we mean that γ1(B) ≤ µ(B)
for every Borel set B ⊂ G. Similar convention is used when
we write γ2 ≤ ν.

For γ ∈ Π≤(µ, ν), let f1 and f2 respectively be the Radon-
Nikodym derivatives of γ1 w.r.t. µ and of γ2 w.r.t. ν, i.e.,
γ1 = f1µ and γ2 = f2ν. Then, we have 0 ≤ f1 ≤ 1 µ-a.e.,
and 0 ≤ f2 ≤ 1 ν-a.e. The weighted relative entropies of
γ1 w.r.t. µ and of γ2 w.r.t. ν are defined by

F1(γ1|µ) ≜
∫
G
w1(x)F1(f1(x))µ(dx),

F2(γ2|ν) ≜
∫
G
w2(x)F2(f2(x))ν(dx),

where F1, F2 : [0, 1] → (0,∞) are convex and lower semi-
continuous entropy functions; and w1, w2 : G → [0,∞) are
given nonnegative weight functions.

Given a continuous cost function c : G × G → R with
c(x, x) = 0, a constant b ≥ 0 and a fixed scalar m ∈ [0, m̄]
where m̄ ≜ min{µ(G), ν(G)}, we consider the primal for-
mulation of EPT problem on a graph:

Wc,m(µ, ν) ≜ inf
γ∈Π≤(µ,ν), γ(G×G)=m

[
F1(γ1|µ) + F2(γ2|ν)

+ b

∫
G×G

c(x, y)γ(dx, dy)
]
. (3)

Following (Le and Nguyen, 2021), we consider

F1(s) = F2(s) = |s− 1|

for the entropy functions in (3) and form a Lagrange multi-
plier λ ∈ R conjugate to the constraint γ(G×G) = m. As
a result, we instead study the problem

ETc,λ(µ, ν) = inf
γ∈Π≤(µ,ν)

Cλ(γ), (4)

where Cλ(γ) is defined as

Cλ(γ) ≜
∫
Gw1µ(dx) +

∫
Gw2ν(dx)−

∫
Gw1γ1(dx)

−
∫
Gw2γ2(dx) + b

∫
G×G[c(x, y)− λ]γ(dx, dy). (5)

The connection between problem (3) with mass constraint
m and problem (4) with Lagrange multiplier λ is given in
Theorem A.1 (Appendix §A.1). Also, from Theorem A.1,
we see that solving the auxiliary problem (4) gives us a
solution to the original problem (3). We now derive a novel
dual formulation for problem (4) which paves the way for
our proposed UST (§4).
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Theorem 3.1 (Dual formula for general cost). For λ ≥ 0,
nonnegative weights w1, w2, and two input measures µ, ν ∈
M(G), we have

ETc,λ(µ, ν) = sup
(u,v)∈K

[ ∫
G
u(x)µ(dx) +

∫
G
v(x)ν(dx)

]
,

where K ≜
{
(u, v) : u ≤ w1, −bλ + infx∈G[b c(x, y) −

w1(x)] ≤ v(y) ≤ w2(y), u(x) + v(y) ≤ b[c(x, y)− λ]
}

.

The main idea of proving this result is to attach to the graph
G a new point ŝ, and then suitably and carefully extend the
cost c and the input distributions µ, ν to the set Ĝ ≜ G ∪
{ŝ} inspired by an observation in (Caffarelli and McCann,
2010). The key point of this extension is to ensure that the
extended input distributions on Ĝ have the same total mass
and the value of the new balanced OT between extended
input distributions on Ĝ is equal to that of the original EPT
on graph G (i.e., the unbalanced setting). We then exploit
the dual theory for the new balanced OT problem on Ĝ
to establish the dual formulation for our EPT problem on
graph G (see Appendix §A.2 for detailed proof). When
the ground cost c is the graph metric dG, the dual formula
in Theorem 3.1 can be rewritten in a simpler and more
symmetric form as follows.

Corollary 3.2 (Dual formula for graph metric). Assume
that λ ≥ 0 and the nonnegative weight functions w1, w2

are b-Lipschitz w.r.t. dG. For simplicity, let ETλ ≜ ETdG,λ.
Then, we have

ETλ(µ, ν) = sup
f∈U

∫
G
f(µ− ν)− bλ

2

[
µ(G) + ν(G)

]
, (6)

where U ≜
{
f ∈ C(G) : −w2 − bλ

2 ≤ f ≤ w1 +
bλ
2 , |f(x)− f(y)| ≤ b dG(x, y)

}
.

Remark 3.3. We remark that one cannot directly use the
dual formulation in (Le and Nguyen, 2021), or that of (Pic-
coli and Rossi, 2014, 2016) for unbalanced measures on
a graph since the considered problem does not satisfy the
conditions imposed in these approaches for duality.

In principal, for input unbalanced measures on a graph, it is
simpler to learn the optimal f∗ in dual form (6) than to learn
the optimal γ∗ in primal form (4). This is due to the fact that
the critic f∗ is a function on the lower dimensional space
compared to γ∗. Moreover, the Lipschitz constraint for
f∗ is easier to handle than the constraint Π≤(µ, ν) for γ∗.
Nevertheless, it is still a challenge to effectively compute
ETλ using (6).

As illustrated in (Le et al., 2019; Le and Nguyen, 2021) for
transport problems on a tree, the Lipschitz constraint for the
critic f can be effectively optimized by leveraging the tree
structure supports. Furthermore, the Lipschitz constraint is
linked with the 1-order Wasserstein distance via the Kan-
torovich duality formulation. Due to the different nature

of duality for p-order Wasserstein distance when p > 1, it
is however unknown that one can extend the fast computa-
tional results in (Le et al., 2019; Le and Nguyen, 2021) to
p-order Wasserstein distance with p > 1, even for measures
on a tree.

To alleviate this, we propose in the next section an efficient
p-order unbalanced Sobolev transport for measures with
unequal mass on a graph for any p ≥ 1.

4 UNBALANED SOBOLEV TRANSPORT

As pointed out in §3, it is a great challenge to efficiently
compute ETλ (i.e., the EPT problem) for unbalanced mea-
sures on a graph using either the primal form (4) or the
dual form (6). To overcome this issue, we propose in this
section an efficient variant called unbalanced Sobolev trans-
port (UST) distance. We further derive a novel closed-form
formula which allows a fast computation for the proposed
transport distance, especially for large-scale settings.

Our strategy in defining the UST is based on the dual formu-
lation (6) (in Corollary 3.2) but by simultaneously relaxing
the two constraints for critic function f in the set U. This
approach is partially adopted in (Le and Nguyen, 2021) for
the EPT problem for measures on a tree, but they only relax
the first corresponding constraint for f in the set U (i.e.,
the bounded constraint for the critic function f ). However,
keeping the Lipschitz constraint for f limits the approach
in (Le and Nguyen, 2021) to be extended to more general
structures rather than tree structure (e.g., graph structure).
We note that the Lipschitz constraint is about bounding the
derivative of f and hence it is more fundamental and rele-
vant than the first constraint. In this paper, we propose to
also relax the Lipschitz constraint by leveraging a notion of
Sobolev functions. This approach relies on the following
concept of derivatives for functions on graphs introduced
by Le et al. (2022), which can be viewed as a generalized
version of the fundamental theorem of calculus for a graph.
Definition 4.1 (Graph-based Sobolev space (Le et al.,
2022)). Let ω be a nonnegative Borel measure on G, and
let 1 ≤ p ≤ ∞. A continuous function f : G → R is
in the Sobolev space W 1,p(G, ω) if there exists a function
h ∈ Lp(G, ω) satisfying

f(x)− f(z0) =

∫
[z0,x]

h(y)ω(dy),∀x ∈ G.

Such function h is unique in Lp(G, ω) and is called the
graph derivative of f w.r.t. the measure ω. Hereafter, this
graph derivative of f is denoted by f ′.

From Definition 4.1 and the property of Lp(G, ω) space, we
have

W 1,p2(G, ω) ⊂ W 1,p1(G, ω),

whenever 1 ≤ p1 ≤ p2 ≤ ∞. In particular, W 1,∞(G, ω) is
the smallest space and W 1,1(G, ω) is the largest space. Ad-
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ditionally, we prove that W 1,∞(G, ω∗) contains the space
of all Lipschitz continuous functions, and both spaces coin-
cide when G is a tree (see Lemma A.2 in Appendix §A.1 for
the detail). Hereafter, let ω∗ denote the length measure on
G as defined in (Le et al., 2022, §4.1) (see Appendix §B.1
for a review). We propose to regularize the transport ETλ

in (6) by relaxing the constraint set U for critic function f
in two ways:

• Firstly, we replace the Lipschitz condition for the critic
function f in the set U (in Corollary 3.2) by instead consid-
ering this constraint in the graph-based Sobolev space, i.e.,
f ∈ W 1,p′

(G, ω) with ∥f ′∥Lp′ (G,ω) ≤ b. This has the fol-
lowing advantages: (i) we can enlarge the constraint set on
the Sobolev space W 1,p′

(G, ω) by decreasing the value of
parameter p′; (ii) we can vary the constraint set by choosing
a suitable measure ω on G. The measure ω can be inter-
preted as a cost of moving a unit mass from one location
to another, and this cost is the same as the graph metric
dG when ω is chosen as the length measure ω∗ of G. Even
when p = 1 and ω = ω∗, this relaxation viewpoint still has
the fundamental benefit: it allows us to extend most of the
main results in (Le and Nguyen, 2021) for tree structure to
graph structure.

We emphasize that extending the approach in (Le and
Nguyen, 2021) (i.e., EPT problem for measures on a tree)
to EPT problem for measures on a graph G is problem-
atic. In this special case, we know from Lemma A.2 (Ap-
pendix §A.1) that our corresponding Sobolev constraint is
equivalent the Lipschitz constraint when G is a tree. How-
ever, Lemma A.2 also implies that the Sobolev constraint
set is possibly larger for a general graph G. This flexibility
of Sobolev functions enables us to overcome the limitation
of the approach in (Le and Nguyen, 2021) (i.e., for a tree
structure) and gives us an effective way to exploit the graph
structure by working with critic function f of a specific
form in Sobolev space (see Definition 4.1). Our obtained
results in this section reveal that critic of Sobolev type in the
sense of Definition 4.1 is more suitable for EPT problem for
measures on a graph than critic of the Lipschitz type.

• Secondly, we relax the first condition for f in the set U
(i.e., the bounded constraint for the critic function f ) by us-
ing the following observation. According to Definition 4.1,
any function f ∈ W 1,p′

(G, ω) can be represented as

f(x) = f(z0) +

∫
[z0,x]

f ′(y)ω(dy).

If in addition ∥f ′∥Lp′ (G,ω) ≤ b, then by Hölder inequality,
the second term on the right hand side is controlled by

b ω
(
[z0, x]

) 1
p . Thus, instead of requiring

−w2(x)−
bλ

2
≤ f(x) ≤ w1(x) +

bλ

2
, ∀x ∈ G

as in the definition of U, we suggest to constrain only the
first term f(z0).

Putting these two ways of regularization together, we pro-
pose to consider the following constraint set Uα

p′ as a re-
laxation of the constraint set U for the critic function f in
Corollary 3.2. Note that the choice of α=0 corresponds to
our above discussion. Here, we generalize our theoretical
development for a more general α to allow an extra degree
of freedom which might be potentially useful in practical
applications, e.g., by tuning α for further improvement.
Definition 4.2 (The regularized set Uα

p′ for critic function).
For 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1

2 [bλ + w1(z0) + w2(z0)],
let Uα

p′ be the collection of all functions f ∈ W 1,p′
(G, ω)

satisfying

f(z0) ∈ Iα ≜
[
− w2(z0)−

bλ

2
+ α,w1(z0) +

bλ

2
− α

]
and

∥f ′∥Lp′ (G,ω) ≤ b.

Equivalently, Uα
p′ is the collection of all functions f of the

form

f(x) = s+

∫
[z0,x]

h(y)ω(dy) (7)

with s ∈ Iα and with h : G → R being some function
satisfying

∥h∥Lp′ (G,ω) ≤ b.

It is clear from Definition 4.2 that U ⊂ U0
p′ (see Corol-

lary 3.2 for set U). The requirement α ≤ 1
2 [bλ+ w1(z0) +

w2(z0)] is to ensure that the interval Iα is nonempty. By
constraining critic f to the relaxed set Uα

p′ and noting that
the last term in (6) is simply a constant depending on the
total masses of µ and ν, we propose the following regu-
larization of the transport ETλ in Corollary 3.2, namely
unbalanced Sobolev transport (UST).
Definition 4.3 (Unbalanced Sobolev transport). Let ω be a
nonnegative Borel measure on graph G. Given 1 ≤ p ≤ ∞
and 0 ≤ α ≤ 1

2 [bλ+w1(z0)+w2(z0)]. For µ, ν ∈ M(G),
the unbalanced Sobolev transport is defined as follow

USαp (µ, ν) ≜ sup
f∈Uα

p′

[ ∫
G
f(x)µ(dx)−

∫
G
f(x)ν(dx)

]
.

The measure ω used for representing critic f in Uα
p′ (see

(7)) acts as the ground cost of moving masses on graph G
from one location to another. Especially, when ω is chosen
as the length measure ω∗ of graph G, we have ω([x, y]) =
dG(x, y) (see Lemma B.2 in Appendix §B.1).

We then show the connection between 1-order UST and
the dual formulation of EPT on graph G with the Lipschitz
constraint, but the bounded constraint only applied on the
critic function at root node z0. Precisely, we obtain:
Lemma 4.4. Recall that ω∗ be the length measure of graph
G. For ω = ω∗, we have

US01(µ, ν) ≥ sup
[ ∫

G
f(µ− ν) : f ∈ U0

]
(8)
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where U0 ≜
{
f ∈ C(G) : −w2(z0) − bλ

2 ≤ f(z0) ≤

w1(z0) +
bλ
2 , |f(x)− f(y)| ≤ b dG(x, y)

}
. Moreover, the

inequality in (8) becomes the equality if G is a tree.

We next state our fundamental result, which demonstrates
that the proposed UST (Definition 4.3) for measures with
unequal mass on a graph is computationally effective. We
in fact obtain a closed-form formula for UST in terms of an
integral explicitly depending on the input measures. This
yields a substantial computational advantage in comparison
with the EPT approach for unbalanced measures on a graph
(i.e., ETλ) which requires to solve sophisticated optimiza-
tion problems either in the primal (4) or its dual (6). To our
knowledge, the proposed UST is the first approach which
yields a closed-form solution among available variants of
unbalanced OT for measures with unequal mass on a graph.

Proposition 4.5. Let ω be a nonnegative measure on graph
G. Let 1 ≤ p ≤ ∞ and 0 ≤ α ≤ 1

2 [bλ+w1(z0)+w2(z0)].
Then, for two input measures µ, ν ∈ M(G), we have

USαp (µ, ν) = b
[ ∫

G |µ(Λ(x))− ν(Λ(x))|p ω(dx)
] 1

p

+Θ|µ(G)− ν(G)|,

where Λ(x) is defined by (1) and

Θ ≜

{
w1(z0) +

bλ
2 − α if µ(G) ≥ ν(G),

w2(z0) +
bλ
2 − α if µ(G) < ν(G).

(9)

The constant Θ depends on µ and ν unless µ(G) = ν(G) or
w1(z0) = w2(z0). The integral in the above expression can
be computed explicitly and efficiently as in the following
corollary when the two input distributions are supported on
nodes of the graph (i.e., the node set V of graph G).

Corollary 4.6. Under the same assumptions as in Proposi-
tion 4.5 and assume in addition that ω({x}) = 0 for every
x ∈ G. Suppose that µ, ν ∈ M(G) are supported on nodes
in V of graph G.2 Then, we have

USαp (µ, ν) = b
(∑

e∈E we |µ(γe)− ν(γe)|p
) 1

p

+Θ|µ(G)− ν(G)|. (10)

Remark 4.7 (UST for non-physical graph). We have as-
sumed that G is a physical graph as in §2. However, Corol-
lary 4.6 shows that the p-order unbalanced Sobolev trans-
port USαp does not depend on this physical assumption when
input measures are supported on nodes. Precisely, it only
depends on the graph structure (V,E) and edge weights we.
Thus, USαp can be applied for non-physical graph G.

We next describe a preprocessing step on graph G and ana-
lyze the time complexity in computing USαp .

2We discuss an extension for measures supported in G in Ap-
pendix §B.2.

Preprocessing step. To compute USαp , we apply a prepro-
cessing step to form the set γe for each edge e ∈ E in graph
G by identifying shortest paths from the root node z0 to
other nodes (e.g., by Dijkstra algorithm with a complex-
ity O(|E| + |V | log |V |) where |E|, |V | are the numbers
of egdes and nodes of graph G respectively). Especially,
observe that any edge e with γe = ∅ does not contribute to
the computation of USαp . Therefore, one can remove such
edge e in the summation in (10). We emphasize that this
preprocessing step only involves the graph structure itself
and is independent of input measures.

Computational complexity. Let Eµ,ν ≜
{e ∈ E | e ⊂ [z0, z] for some z ∈ supp(µ) ∪ supp(ν)},
where supp(µ), supp(ν) are respectively the support of
measures µ, ν. Then, the computational complexity of
USαp (µ, ν) is linear to the number of edges in Eµ,ν .

Related work. Beyond the pure graph of supports, the
metric structure inherited from the graph metric space plays
an important role in our work. More precisely, an edge
weight we is considered as a cost to move a unit mass from
one node to the other node of edge e (i.e., graph metric
distance between two edge nodes). Therefore, one should
distinguish our approach with the unbalanced diffusion earth
mover’s distance (Tong et al., 2022) which uses an affinity
between two edge nodes in their graph.

• Relation with Sobolev transport (ST) (Le et al., 2022).
We emphasize that ST is only valid for measures with equal
mass on a graph. It cannot be applied for our considered
problem where input measures may have different total mass.
Even though both ST and the proposed UST are instances
of integral probability metrics (IPM), it is nontrivial to ef-
fectively extend ST for unbalanced measures on a graph
by defining a function set for the critic. The theoretical
results of EPT on a graph in §3 play the fundamental role
in developing our proposed UST.

Remark 4.8 (The special case of balanced mass). When
input measures have the same mass, from Lemma A.6 of
§A.1.5, the proposed unbalanced Sobolev transport (with
b = 1) coincides with the balanced Sobolev transport (Le
et al., 2022, Definition 3.2).

• Relation with EPT on a tree (Le and Nguyen, 2021).
As we discussed previously, extending the approach in (Le
and Nguyen, 2021) for EPT on a tree to our considered
problem (i.e., EPT on a graph) is problematic. We see
from Lemma A.2 (Appendix §A.1) and Lemma 4.4 that the
Sobolev constraint set in our approach is possibly larger
than the Lipschitz constraint set for a general graph G, but
these two constraint sets coincide when G is a tree. Our
results illustrate that it is more efficient to exploit graph
structure for critic of Sobolev type (as in our approach) than
critic of the Lipschitz type (as in EPT on a tree).
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5 PROPERTIES OF UNBALANCED
SOBOLEV TRANSPORT

In this section, we derive geometric structures together with
bounds for UST and prove its negative definiteness. Con-
sequently, we develop positive definite kernels upon UST,
required in many kernel-dependent frameworks.

We first show that USαp possess the metric property. More-
over, it makes the space of measures M(G) a geodesic
space. Thus, (M(G),USαp ) inherits all geometric proper-
ties of the geodesic space.

Proposition 5.1 (Geometric structures of USαp ). Let ω
be a nonnegative Borel measure on G. Assume that
λ,w1(z0), w2(z0) ≥ 0. For 1 ≤ p ≤ ∞ and 0 ≤ α <
bλ
2 +min{w1(z0), w2(z0)}, then we have

i) USαp (µ+ σ, ν + σ) = USαp (µ, ν), ∀µ, ν, σ ∈ M(G).

ii) USαp is a divergence3 and satisfies the triangle inequal-
ity:

USαp (µ, ν) ≤ USαp (µ, σ)+USαp (σ, ν),∀µ, ν, σ ∈ M(G).

iii) If in addition w1(z0) = w2(z0), then USαp is a metric
and (M(G),USαp ) is a complete metric space. More-
over, it is a geodesic space in the sense that for ev-
ery two points µ and ν in M(G) there exists a path
φ : [0, a] → M(G) with a ≜ USαp (µ, ν) such that
φ(0) = µ, φ(a) = ν, and

USαp (φ(t), φ(s)) = |t− s|, for all t, s ∈ [0, a].

In Proposition A.4 (Appendix §A.1), we also establish a
comparison between USαp for different exponent p. We
next derive a lower bound for US01 in terms of ETλ. In
fact, a more general estimate holds true for every p ≥ 1
and is given in Proposition A.5 (Appendix §A.1). As a
consequence of Corollary 3.2 and Lemma 4.4 and since
U ⊂ U0, we obtain:

Proposition 5.2 (Lower bound for US01). Recall that ω∗

is the length measure on G. Assume that w1, w2 are b-
Lipschitz w.r.t. dG. For ω = ω∗, µ, ν ∈ M(G), we have

US01(µ, ν) ≥ ETλ(µ, ν) +
bλ

2

[
µ(G) + ν(G)

]
.

We emphasize that when G is a tree, our EPT on a graph
(i.e., ETc,λ and ETλ) coincide with the ones defined in (Le
and Nguyen, 2021). Furthermore, we have:

Proposition 5.3 (Lower bounds). Assume that G is a tree
and ω = ω∗. The followings hold true:

3I.e., USα
p ≥ 0, and USα

p (µ, ν) = 0 if and only if µ = ν.

i) USα1 (µ, ν) = dα(µ, ν). Also for 1 ≤ p ≤ ∞, we have

USαp (µ, ν) ≥ ω∗(G)
− 1

p′ dα(µ, ν)

+Θ
[
1− ω∗(G)

− 1
p′
]
|µ(G)− ν(G)| ,

where dα is defined in (Le and Nguyen, 2021, Eq. (9)).

ii) If µ(G) = ν(G), then for 1 ≤ p ≤ ∞, we have

USαp (µ, ν) ≥ b ω∗(G)
− 1

p′

[
sup
x,y∈G

dG(x, y)

]1−p

Wp
p (µ, ν),

where Wp is the p-order Wasserstein distance4 with
cost dpG. Moreover, the equality is attained when p = 1.

We next prove the negative definiteness for UST. This im-
portant property allows us to build positive definite kernels
upon UST, required for kernel-dependent machine learning
algorithmic approaches.

Proposition 5.4. Under the same assumptions as in Corol-
lary 4.6 and w1(z0) = w2(z0). Then, USαp is negative
definite on M(G) for any 1 ≤ p ≤ 2.

From Proposition 5.4 and by using (Berg et al., 1984, Theo-
rem 3.2.2), we obtain that the kernel

kUSα
p
(µ, ν) ≜ exp(−tUSαp (µ, ν))

is positive definite on M(G) for any given t > 0 and 1 ≤
p ≤ 2.

6 EXPERIMENTS

In this section, we illustrate the fast computation (i.e.,
closed-form solution) of the proposed UST and comparable
performances of the proposed positive definite kernel asso-
ciated to UST against other popular unbalanced transport
baselines and their corresponding kernels. More concretely,
we evaluate for measures with unequal mass on a given
graph under two simulations: document classification and
topological data analysis (TDA).

Document classification. We consider four traditional
document datasets: TWITTER, RECIPE, CLASSIC, and
AMAZON. Their characteristics are summarized in Figure 1.
We represent each document as a measure by considering
each word in the document as its support with a unit mass.
Therefore, documents with different lengths have different
total mass. We employ the same word embedding procedure
as in (Le and Nguyen, 2021) to embed words into vectors
in R300.

TDA. We carry out two tasks: orbit recognition on Orbit
dataset and object shape recognition on MPEG7 dataset. For

4The definition of Wp is recalled in Appendix §B.1.
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Figure 1: SVM results and time consumption for kernel matrices in document classification with graph GSqrt. For each
dataset, the numbers in the parenthesis are the number of classes; the number of documents; and the maximum number of
unique words for each document respectively.
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Figure 2: SVM results and time consumption for kernel
matrices in TDA with graph GSqrt. For each dataset, the
numbers in the parenthesis are respectively the number of
PD; and the maximum number of points in PD.

Orbit dataset, it is synthesized as in (Adams et al., 2017)
for link twist map which are discrete dynamical systems to
model flows in DNA microarrays (Hertzsch et al., 2007).
There are five classes of orbits in the dataset. For each class,
we generated 1000 orbits where each orbit contains 1000
points. For MPEG7 dataset (Latecki et al., 2000), we con-
sider its 10-class subset where each class has 20 samples
as in (Le and Yamada, 2018). The characteristics of the
considered Orbit and MPEG7 datasets are summarized in
Figure 2. We use the same procedure as in (Le and Nguyen,
2021) to extract persistence diagram (PD) for orbits and
object shapes. PD are multisets of points in R2. Each point
in PD summarizes the lifespan (i.e., birth and death time) of
a topological feature (e.g., connected component, ring, cav-

ity). We represent each PD as a measure by regarding each
2-dimensional point in PD as its support with a unit mass.
Consequently, persistence diagrams having a different num-
ber of topological features are represented as measures with
different total mass.

Notice that supports in document classification simulations
are in high-dimensional spaces (i.e., in R300) while supports
in TDA simulations are in low-dimensional spaces (i.e., in
R2). Therefore, we can observe the effects of dimensions to
the proposed UST and other unbalanced transport baselines
from these simulations. We next describe various graph
settings (i.e., the assumed graph metric spaces for measures)
considered in our experiments.

Graph settings. We use the same graph settings (i.e., GLog
and GSqrt) employed in (Le et al., 2022, §5) for our simula-
tions on document classification and TDA. For these graphs,
we consider the number of nodes: M=102, 103, 104, 4×104.
We note that these graphs satisfy the assumptions in §2. Sim-
ilar to the observations in (Le et al., 2022), each node in
these graphs has a high probability to satisfy the root node
condition, i.e., the uniqueness property of the shortest path
(see Appendix §B.2 for a further discussion).

Root node z0 for UST. The UST is defined over graph G
with a root node z0. From Definition 4.1, the root node
z0 imposes its own geometry by characterizing the graph
derivative of functions on G. To alleviate this dependency,
we follow the sliced approach in (Le et al., 2022) for Sobolev
transport by averaging over different choices of the root
node z0 in graph G, which can be viewed as a sliced variant
for UST.

Baselines, and experimental setup. We consider two typi-
cal UOT approaches for measures with unequal mass and
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Figure 3: SVM results and time consumption for kernel
matrices of slice variants in TDA with graph GSqrt.

supported on a graph metric space as baselines: (i) the
Sinkhorn-based UOT (Frogner et al., 2015; Chizat et al.,
2018a) (SUOT)5 with a graph metric ground cost, and (ii)
the distance dα of EPT on a tree (Le et al., 2022, Eq. (9))
(see Proposition 5.3 for its relation with USαp ) where the
tree structures are randomly sampled from graph G. From
results in Lemma 4.4 and Proposition 5.2 and for simplicity,
we consider α = 0 and p = 1 (and d0 for EPT on a tree
as in (Le and Nguyen, 2021))6. We further note that there
are different approaches for simulations on document classi-
fication and TDA. However, that is not the purpose of our
empirical simulations which compare different unbalanced
transports for measures with unequal mass on a graph in the
same settings.

We apply the kernel approach in the form exp(−td̄), where
d̄ is a discrepancy for unbalanced measures on a graph and
t > 0, with support vector machines (SVM) for the simula-
tions on document classification and TDA. Note that kernels
for USαp and dα are positive definite, but kernels for SUOT

is empirically indefinite (see (Peyré and Cuturi, 2019, §8.3)).
Similar to (Le and Nguyen, 2021), we regularized the Gram
matrices for kernels with SUOT by adding a sufficiently
large diagonal term.

For simplicity, we employ the same setup for the EPT prob-
lem in (Le and Nguyen, 2021), i.e., using λ=b=1 for the
EPT. From Corollary 4.6 and Proposition 5.4, we consider
the weight functions w1(x) = w2(x) = a1dG(z0, x) + a0
where a1=b and a0=1.

For kernel SVM, we use the same setting as in (Le and
Nguyen, 2021). In each dataset, we randomly split it into
70%/30% for training and test with 10 repeats. We use
1-vs-1 strategy for SVM with multiclass data. Hyperparam-
eters are typically chosen by cross validation. For kernel
hyperparameter, we choose 1/t from {qs, 2qs, 5qs} with

5Séjourné et al. (2019) derived a debiased version for SUOT

which may be helpful in applications. The debiased version is also
empirically indefinite and has the same complexity as SUOT.

6One may tune these parameters for further improvements.

s = 10, 20, . . . , 90 where qs is the s% quantile of a ran-
dom subset of corresponding distances on training data.
For SVM regularization hyperparameter, we choose it from
{0.01, 0.1, 1, 10, 100}. For SUOT, we choose the entropic
regularization from {0.01, 0.1, 1, 10}. The reported time
consumption for each kernel matrices also includes the cor-
responding preprocessing, e.g., compute shortest paths on
graph G for USαp and SUOT, or sampling random tree struc-
tures from G for dα of EPT on a tree.

Results of SVM, time consumption and discussions. We
illustrate the SVM results and time consumption for kernel
matrices for document classification and TDA in Figure 1
and Figure 2 with M=104 for document datasets, M=103

for Orbit and M =102 for MPEG7 for graph GSqrt. The
performances of kernels for our proposed UST compare fa-
vorably with other approaches (except SUOT on RECIPE).
Additionally, the time consumption of US01 and d0 is several-
order faster than that of SUOT. Recall that kernels for SUOT

is indefinite, which may affect performances of SUOT in
some datasets (e.g., Orbit, TWITTER). In Figure 3, we
illustrate the effects of the number of slices (i.e., the number
of root nodes used for averaging) for US01 and d0 for TDA.
Generally, performances of those approaches are improved
with more slices but with a trade-off on time consumption.
We observe that 10 slices give a good trade-off in applica-
tions. Extensive further empirical results can be seen in
Appendix §B.3, e.g., for various graph structures, graph
sizes M , and different orders p of UST.

7 CONCLUSION

In this work, we proposed unbalanced Sobolev transport
(UST) for measures with unequal mass on a graph. UST is
the first variant of UOT having a closed-form formula for
a fast computation. Additionally, UST is negative definite
which allows to build positive definite kernels, required for
kernel-dependent frameworks. Since UST exploits the graph
metric structure of supports, it may restrict to applications
with prior graph structures, or applications where one can
build graphs from supports. On the other hand, we have not
forseen any negative societal impacts of our work.
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In the appendix, we give further theoretical results and detailed proofs in §A. Additionally, we also give brief reviews about
important definitions used in our work, additional discussions and further empirical results in §B.

Notations. Besides the notations in the main manuscript, we further denote ⟨x1, x2⟩ as the line segment in Rn connecting
two points x1, x2 and (x1, x2) as the same line segment but without its two end-points.

A PROOFS AND ADDITIONAL THEORETICAL RESULTS

In this section, we give detailed proofs for the theoretical results in the main manuscript. We also provide some additional
results for the unbalanced Sobolev transport (UST).

A.1 Further Theoretical Results

We include here some additional results for the transport problems and the unbalanced Sobolev transport USαp .

A.1.1 The Connection between Problem (3) and Problem (4)

We show the connection between problem (3) and problem (4) for EPT on a graph by following a similar reasoning as EPT
on a tree (Le and Nguyen, 2021). It is a direct extension of results in (Le and Nguyen, 2021).

Theorem A.1. Let H(λ) ≜ −ETc,λ(µ, ν) for λ ∈ R, and denote

∂H(λ) ≜
{
p ∈ R : H(t) ≥ H(λ) + p(t− λ),∀t ∈ R

}
for the set of all subgradients of H at λ. Also, set ∂H(R) ≜ ∪λ∈R∂H(λ). Then, we have

i) H is a convex function on R, and

∂H(λ) =
{
b γ(G×G) : γ ∈ Γ0(λ)

}
∀λ ∈ R,

where we write Γ0 for a set of all optimal plans γ. Also if λ1 < λ2, then m1 ≤ m2 for every m1 ∈ ∂H(λ1) and
m2 ∈ ∂H(λ2).

ii) H is differentiable at λ if and only if every optimal plan in Γ0(λ) has the same mass. When this happens, we also have

H ′(λ) = b γ(G×G),

for any γ ∈ Γ0(λ).

iii) If there exists a constant M > 0 such that

w1(x) + w2(y) ≤ b [c(x, y) +M ],

for all x, y ∈ G, then ∂H(R) = [0, b m̄]. Moreover,

H(λ) = −
∫
G
w1µ(dx)−

∫
G
w2ν(dx),

when λ < −M , and H ′(λ) = b m̄ for λ > ∥c∥L∞(G×G).

The proof is placed in §A.2.1.

For any m ∈ [0, m̄], part iii) of Theorem A.1 implies that there exists λ ∈ R such that bm ∈ ∂H(λ). It then follows
from part i) of this theorem that m = γ∗(G×G) for some γ∗ ∈ Γ0(λ). It is also clear that this γ∗ is an optimal plan for
Wc,m(µ, ν), and

Wc,m(µ, ν) = ETc,λ(µ, ν) + λbm.
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Thus solving the auxiliary problem (4) gives us a solution to the original problem (3). When H is differentiable, the relation
between m and λ is given explicitly as

H ′(λ) = bm.

Note that the above selection of λ is unique only if the function H is strictly convex. Nevertheless, it enjoys the following
monotonicity regardless of the uniqueness: if m1 < m2, then λ1 ≤ λ2. Indeed, we have m1 = γ1(G × G) and
m2 = γ2(G × G) for some γ1 ∈ Γ0(λ1) and γ2 ∈ Γ0(λ2). Since γ1(G × G) < γ2(G × G), one has λ1 ≤ λ2 by i) of
Theorem A.1.

A.1.2 W 1,∞(G, ω∗) versus Lipschitz space

We describe the connection between the Sobolev space W 1,∞(G, ω∗) and the space of Lipschitz continuous functions. The
definition of the length measure ω∗ is reviewed in §B.1.1).
Lemma A.2. Let ω∗ be the length measure on graph G, and let f : G → R be a function. We have:

i) If |f(x)− f(y)| ≤ b dG(x, y), ∀x, y ∈ G, then f ∈ W 1,∞(G, ω∗) with ∥f ′∥L∞(G,ω∗) ≤ b.

ii) Assume in addition that G is a tree. Then, f ∈ W 1,∞(G, ω∗) with ∥f ′∥L∞(G,ω∗) ≤ b implies that |f(x) − f(y)| ≤
b dG(x, y) for every x, y ∈ G.

The proof is placed in §A.2.2.
Remark A.3. Our proof for Lemma A.2 (in §A.2.2) also shows that the result in part ii) of Lemma A.2 in fact holds for
every measure ω. Precisely, let ω be a nonnegative Borel measure on a tree G. Then, we have f ∈ W 1,∞(G, ω) with
∥f ′∥L∞(G,ω) ≤ b implies that |f(x)− f(y)| ≤ b ω([x, y]) for every x, y ∈ G.

A.1.3 Comparison between Sobolev Spaces with Diferent Exponents

We derive a comparison between UST with different exponent p, and its proof is a direct consequence of our closed-form
formula given in Proposition 4.5.
Proposition A.4 (Relation for different p). Assume that ω is a nonnegative Borel measure on G. Then for any 1 ≤ p ≤ q ≤
∞ and µ, ν ∈ M(G), we have

USαp (µ, ν)−Θ|µ(G)− ν(G)| ≤ ω(G)
1
p−

1
q

[
USαq (µ, ν)−Θ|µ(G)− ν(G)|

]
,

where Θ is the constant defined by (9).

Proof of Proposition A.4. The case p = q is trivial, so let us consider 1 ≤ p < q ≤ ∞. Then by using Proposition 4.5 and
Hölder’s inequality, we obtain

USαp (µ, ν)−Θ|µ(G)− ν(G)| = b

(∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

≤ b ω(G)
1
p−

1
q

(∫
G
|µ(Λ(x))− ν(Λ(x))|q ω(dx)

) 1
q

= ω(G)
1
p−

1
q

[
USαq (µ, ν)−Θ|µ(G)− ν(G)|

]
.

A.1.4 Lower Bound for US0p

We derive a lower bound for US0p which is a generalization of the result for p = 1 in Proposition 5.2.

Proposition A.5 (Lower bound for US0p). Let ω∗ be the length measure on G, and assume that w1 and w2 are b-Lipschitz
w.r.t. dG. Then by taking ω = ω∗, we have for every 1 ≤ p ≤ ∞ that

US0p(µ, ν) ≥ ω∗(G)
− 1

p′
{
ETλ(µ, ν) +

bλ

2

[
µ(G) + ν(G)

]}
+Θ[1− ω∗(G)

− 1
p′ ]|µ(G)− ν(G)|

for every µ, ν ∈ M(G). Here Θ is the constant defined by (9).

Proof. This is a consequence of Corollary 3.2, Lemma 4.4, and Proposition A.4.
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A.1.5 The Special Case of Balanced Mass

Observe that for the case µ(G) = ν(G), the constraint f(z0) ∈ Iα in the definition of Uα
p′ is redundant. Indeed, we have:

Lemma A.6. Let ω be a nonnegative Borel measure on G. Assume that µ, ν ∈ M(G) satisfy µ(G) = ν(G). Then,

USαp (µ, ν) = sup
{∫

G
f(µ− ν) : f ∈ W 1,p′

(G, ω), ∥f ′∥Lp′ (G,ω) ≤ b
}
.

In particular, USαp (µ, ν) is independent of the parameters α, λ and the weights w1, w2.

Proof. This follows from the fact that Definition 4.3 is unchanged in the case µ(G) = ν(G) when the critic function f is
translated by a constant.

From Lemma A.6, we see that for the case µ(G) = ν(G), our proposed unbalanced Sobolev transport USαp with b = 1
coincides with the balanced Sobolev transport Sp (defined in (Le et al., 2022, Definition 3.2)).

A.1.6 Infinite Divisibility for Unbalanced Sobolev Transport Kernel

Recall that given t > 0 and 1 ≤ p ≤ 2, the unbalanced Sobolev transport kernel kUSα
p
(µ, ν) ≜ exp(−tUSα

p (µ, ν)) is
positive definite (see §5 and Proposition 5.4).

For i ∈ N∗, the kernel kUSα
pi
(µ, ν) ≜ exp(− t

iUSα
p (µ, ν)) is positive definite. Additionally, kUSα

p
(µ, ν) =

[
kUSα

pi
(µ, ν)

]i
.

Therefore, kUSα
p

is indefinitely divisible following (Berg et al., 1984, Definition 2.6 in §3).

Hence, one does not need to recompute the Gram matrix for unbalanced Sobolev transport kernel kUSα
p

for different values
of t. Indeed, it is suffice to compute the Gram matrix of kUSα

p
once for some fixed t and leverage its indefinite divisibility for

other values of t.

A.2 Detailed Proofs

In this section, we give detailed proofs for our theoretical results.

A.2.1 Proof of Theorem A.1

Proof of Theorem A.1. We employ a similar reasoning for EPT on a tree (Le and Nguyen, 2021) to prove the relation
between problem (3) and problem (4) for EPT on a graph as follow:

i) Note that λ 7→ ETc,λ(µ, ν) is a concave function since it is the infimum of a family of concave functions in λ. Therefore,
H is convex on R. In particular, H is differentiable almost everywhere on R.

Let λ ∈ R, recall the definition of Cλ(γ) in Equation (5). Then for any γ ∈ Γ0(λ), we have

ETc,λ+δ(µ, ν) ≤ Cλ+δ(γ) = Cλ(γ)− bδγ(G×G) = ETc,λ(µ, ν)− bδγ(G×G) ∀δ ∈ R. (11)

This implies that {
b γ(G×G) : γ ∈ Γ0(λ)

}
⊂ ∂H(λ).

We next show that the opposite inclusion is also true, i.e.,
{
b γ(G×G) : γ ∈ Γ0(λ)

}
= ∂H(λ). This is obviously holds if

∂H(λ) is singleton, which holds for example when H is differentiable at λ. Hence we only need to consider λ for which the
convex set ∂H(λ) has more than one element.

Let m ∈ ∂H(λ), then m can be expressed as a convex combination of extreme points m1, . . . ,mN of ∂H(λ), i.e.,
m =

∑N
i=1 timi with 0 ≤ ti ≤ 1 and

∑N
i=1 ti = 1. As mi is an extreme point of ∂H(λ), there exists a sequence λn → λ

such that λn is a differentiable point of H and H ′(λn) → mi.

Let γn ∈ Γ0(λn), then b γn(G × G) = H ′(λn) → mi. By compactness, there exists a subsequence {γnk} and
γ̃i ∈ Π≤(µ, ν) such that γnk → γ̃i weakly. It follows that γnk(G × G) → γ̃i(G × G), and hence we must have
b γ̃i(G×G) = mi. We have

Cλnk
(γλnk ) = Cλ(γλnk ) + b(λ− λnk

)γnk(G×G) ≥ ETc,λ(µ, ν) + b(λ− λnk
)γnk(G×G)

≥ ETc,λ(µ, ν)− bm̄|λ− λnk
|
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and for any γ ∈ Γ0(λ), there holds

Cλnk
(γλnk ) ≤ Cλnk

(γ) = Cλ(γ) + b(λ− λnk
)γ(G×G) = ETc,λ(µ, ν) + b(λ− λnk

)γ(G×G).

We thus deduce that limk→∞ Cλnk
(γλnk ) = ETc,λ(µ, ν). These together with the lower semicontinuity of Cλ give

ETc,λ(µ, ν) = lim inf
k→∞

Cλnk
(γλnk ) = lim inf

k→∞

[
Cλ(γλnk ) + b(λ− λnk

)γnk(G×G)
]

= lim inf
k→∞

Cλ(γλnk ) ≥ Cλ(γ̃i).

Therefore, γ̃i ∈ Γ0(λ) with mass b γ̃i(G × G) = mi. Due to the convexity of Γ0(λ), we have γ̄ :=
∑N

i=1 tiγ̃
i ∈ Γ0(λ)

with b γ̄(G×G) =
∑N

i=1 timi = m. That is,

∂H(λ) ⊂
{
b γ(G×G) : γ ∈ Γ0(λ)

}
,

and we thus infer that
{
b γ(G×G) : γ ∈ Γ0(λ)

}
= ∂H(λ) for all λ ∈ R.

In order to prove the second part of i), let γ ∈ Γ0(λ1) and γ̃ ∈ Γ0(λ2) be arbitrary. We have

ETc,λ2
(µ, ν) = Cλ2

(γ̃) = Cλ1
(γ̃)− b(λ2 − λ1)γ̃(G×G)

≥ ETc,λ1
(µ, ν)− b(λ2 − λ1)γ̃(G×G). (12)

Hence by combining with (11), we deduce that

ETc,λ1
(µ, ν)− b(λ2 − λ1)γ̃(G×G) ≤ ETc,λ2

(µ, ν) ≤ ETc,λ1
(µ, ν)− b(λ2 − λ1)γ(G×G),

which yields γ(G×G) ≤ γ̃(G×G). This together with the above characterization of ∂H(λ) implies the second part of i).

ii) If H is differentiable at λ, then ∂H(λ) is a singleton set. However, as ∂H(λ) =
{
b γ(G×G) : γ ∈ Γ0(λ)

}
by i), we

thus infer that the mass γ(G×G) must be the same for every γ ∈ Γ0(λ).

Next assume that every element in Γ0(λ) has the same mass, say m. For δ ̸= 0, let γλ+δ ∈ Γ0(λ + δ) and m(λ + δ) ≜
γλ+δ(G×G). Then, we claim that

lim
δ→0

m(λ+ δ) = m. (13)

Assume the claim for the moment, and let δ > 0. Then, as in (11)–(12), we have

ETc,λ+δ(µ, ν) ≤ ETc,λ(µ, ν)− bδm and ETc,λ+δ(µ, ν) ≥ ETc,λ(µ, ν)− bδm(λ+ δ).

It follows that

−bm(λ+ δ) ≤ ETc,λ+δ(µ, ν)− ETc,λ(µ, ν)

δ
≤ −bm.

This together with claim (13) gives limδ→0+
ETc,λ+δ(µ,ν)−ETc,λ(µ,ν)

δ = −bm. By the same argument, we also have
limδ→0−

ETc,λ+δ(µ,ν)−ETc,λ(µ,ν)
δ = −bm. Thus, we infer that H is differentiable at λ with H ′(λ) = bm. Therefore, it

remains to prove claim (13).

Indeed, by compactness there exists a subsequence, still labeled by γλ+δ, and γ ∈ Π≤(µ, ν) such that γλ+δ → γ weakly
as δ → 0. As in i), we can show that γ ∈ Γ0(λ). Then, as the mass functional is weakly continuous, we obtain
m(λ+ δ) = γλ+δ(G×G) → γ(G×G) = m. We in fact have shown that any subsequence of {m(λ+ δ)}δ has a further
subsequence converging to the same number m. Therefore, the full sequence {m(λ+ δ)}δ must converge to m, and hence
(13) is proved.

iii) For any λ ∈ R, we have by i) that ∂H(λ) =
{
b γ(G × G) : γ ∈ Γ0(λ)

}
⊂ [0, b m̄]. Thus, we only need to prove

[0, b m̄] ⊂ ∂H(R). First, note that as ∂H(λ) ⊂ R is a compact and convex set, it must be a finite and closed interval.
Therefore, if we let

γλ
min := argmin

γ∈Γ0(λ)

γ(G×G) and γλ
max := argmax

γ∈Γ0(λ)

γ(G×G),

then it follows from ii) that ∂H(λ) =
[
b γλ

min(G × G), b γλ
max(G × G)

]
for every λ ∈ R. From Equation (5), it is clear

that ∂H(λ) = {0} for λ negative enough. Indeed, if we take λ < −M , then as w1(x) + w2(y) ≤ b [c(x, y) + M ], we
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have 0 < b [c(x, y) − λ] − w1(x) − w2(y) for all x, y ∈ G. Then, we obtain from Equation (5) that Cλ(0) ≤ Cλ(γ)
for every γ ∈ Π≤(µ, ν) and the strict inequality holds if γ ̸= 0. Thus, Γ0(λ) = {0} which gives ∂H(λ) = {0} and
H(λ) = −

∫
G w1µ(dx)−

∫
G w2ν(dx).

We next show that ∂H(λ) = {b m̄} for λ positive enough. Since c(x, y) is bounded due to its continuity on G × G,
we can choose λ ∈ R such that c(x, y) − λ < 0 for all x, y ∈ G. Let γ ∈ Γ0(λ). We claim that either γ1 = µ or
γ2 = ν. Indeed, since otherwise we have γ1(A0) < µ(A0) and γ2(B0) < ν(B0) for some Borel sets A0, B0 ⊂ G. Let
γ̃ := γ + [(µ− γ1)χA0

]⊗ [(ν − γ2)χB0
]. Then, for any Borel set A ⊂ G we have

γ̃1(A) = γ1(A) + µ(A ∩A0)− γ1(A ∩A0) = γ1(A \A0) + µ(A ∩A0)

≤ µ(A \A0) + µ(A ∩A0) = µ(A).

Likewise, γ̃2(B) ≤ ν(B) for any Borel set B ⊂ G. Thus γ̃ ∈ Π≤(µ, ν). On the other hand, it is clear from (5) and the facts
γ1 ≤ γ̃1, γ2 ≤ γ̃2, and c− λ < 0 that Cλ(γ̃) < Cλ(γ). This is impossible and so the claim is proved. That is, either γ1 = µ
or γ2 = ν. It follows that γ(G×G) = m̄ for every γ ∈ Γ0(λ), and hence ∂H(λ) = {b m̄} due to i). This also means that
H is differentiable at λ with H ′(λ) = b m̄.

Therefore, it remains to show that

(0, b m̄) ⊂ ∂H(R) =
⋃
λ∈R

[
b γλ

min(G×G), b γλ
max(G×G)

]
. (14)

Assume by contradiction that there exists m ∈ (0, b m̄) such that m ̸∈ ∂H(λ) for every λ ∈ R. For convenience, we adopt
the following notation: for sets A,B ⊂ R and r ∈ R, we write A < r if a < r for every a ∈ A, and A < B if a < b for
every a ∈ A and b ∈ B. Let us consider the following two sets

S1 := {λ : ∂H(λ) < m} and S2 := {λ : ∂H(λ) > m}.

Then λ ∈ S1 if λ is negative enough, and λ ∈ S2 if λ is positive enough. For any λ1 ∈ S1 and λ2 ∈ S2, we have
∂H(λ1) < m < ∂H(λ2), and hence λ1 < λ2 by the monotonicity in i). That is, S1 < S2 and so we obtain

λ∗ := sup{λ : λ ∈ S1} ≤ inf{λ : λ ∈ S2} =: λ∗∗.

If λ∗ < λ∗∗, then for any λ ∈ (λ∗, λ∗∗) we have λ ̸∈ S1 and λ ̸∈ S2. Therefore, ∂H(λ) ̸< m and ∂H(λ) ̸> m. Hence, we
can find m1,m2 ∈ ∂H(λ) such that m1 ≥ m and m2 ≤ m. Thus, m ∈ [m2,m1] ⊂ ∂H(λ) due to the convexity of the set
∂H(λ). This contradicts our hypothesis, and we conclude that λ∗ = λ∗∗.

We next select sequences {λ1
n} ⊂ S1 and {λ2

n} ⊂ S2 such that λ1
n → λ∗ and λ2

n → λ∗∗ = λ∗. For each n, let

γn
min := argmin

γ∈Γ0(λ1
n)

γ(G×G) and γn
max := argmax

γ∈Γ0(λ2
n)

γ(G×G).

By compactness, there exist subsequences, still labeled as {γn
min} and {γn

max}, and γ∗, γ∗∗ ∈ Π≤(µ, ν) such that
γn
min → γ∗ weakly and γn

max → γ∗∗ weakly. By arguing exactly as in i), we then obtain γ∗, γ∗∗ ∈ Γ0(λ∗), γn
min(G×G) →

γ∗(G×G), and γn
max(G×G) → γ∗∗(G×G). As b γn

min(G×G) < m due to λ1
n ∈ S1, we must have b γ∗(G×G) ≤ m.

Likewise, we have b γ∗∗(G × G) ≥ m as b γn
max(G × G) > m for all n. Hence, m ∈ [b γ∗(G × G), b γ∗∗(G × G)].

Since γ∗, γ∗∗ ∈ Γ0(λ∗), we infer that m ∈ ∂H(λ∗). This is a contradiction and the proof is complete. We note that since
λ1
n ≤ λ∗ ≤ λ2

n, we have from the monotonicity in i) that

γn
min(G×G) ≤ γ(G×G) ≤ γn

max(G×G)

for every γ ∈ Γ0(λ∗). By sending n to infinity, it follows that γ∗(G×G) ≤ γ(G×G) ≤ γ∗∗(G×G) for every γ ∈ Γ0(λ∗).
That is, γ∗ = γλ∗

min and γ∗∗ = γλ∗

max.

A.2.2 Proof of Lemma A.2

Proof of Lemma A.2. Let us define

A ≜
{
f ∈ C(G) : |f(x)− f(y)| ≤ b dG(x, y)

}
.



Scalable Unbalanced Sobolev Transport for Measures on a Graph

and

B ≜
{
f ∈ W 1,∞(G, ω∗) : ∥f ′∥L∞(G,ω∗) ≤ b

}
i) The statement of this part is equivalent to showing that A ⊂ B. Let f ∈ A. Then f is continuous on G, and

|f(x)− f(y)| ≤ b dG(x, y) ∀x, y ∈ G. (15)

On each edge e and similar to the real line, the Lipschitz condition (15) implies that there exists a function he : e → R with
the following properties: |he(z)| ≤ b for ω∗-a.e. z ∈ e, and

f(x) = f(y) +

∫
⟨y,x⟩

he(z)ω
∗(dz) ∀x, y ∈ e,

where we recall that ⟨y, x⟩ denotes the line segment in Rn connecting y and x (noting that for general graph, ⟨y, x⟩ might
not be the same as the shortest path [y, x]). Let us glue them together by taking h(z) = he(z) if z is an interior point
of an edge e. Then h : G → R is a function satisfying: |h(z)| ≤ b for ω∗-a.e. z ∈ G. That is, h ∈ L∞(G, ω∗) with
∥h∥L∞(G,ω∗) ≤ b. Moreover, for every edge e in G we have

f(x) = f(y) +

∫
⟨y,x⟩

h(z)ω∗(dz) ∀x, y ∈ e. (16)

Now let x ∈ G be arbitrary. Let us break the unique shortest path [z0, x] connecting z0 and x into sub line segments
⟨z0, y0⟩, ⟨y0, y1⟩, ..., ⟨ym−1, ym⟩, ⟨ym, x⟩ such that each of them is contained in exactly one edge. Then by applying (16)
to each of these sub line segments, we obtain

f(x)− f(z0) = [f(x)− f(ym)] + [f(ym)− f(ym−1)] + · · ·+ [f(y0)− f(z0)]

=

∫
⟨ym,x⟩

h(z)ω∗(dz) +

∫
⟨ym−1,ym⟩

h(z)ω∗(dz) + · · ·+
∫
⟨z0,y0⟩

h(z)ω∗(dz)

=

∫
[z0,x]

h(z)ω∗(dz).

Thus, we have proved that

f(x) = f(z0) +

∫
[z0,x]

h(z)ω∗(dz) ∀x ∈ G.

Therefore, according to Definition 4.1 we conclude that f ∈ W 1,∞(G, ω∗) with ∥f ′∥Lp′ (G,ω∗) ≤ b. It then follows that
f ∈ B, and hence A ⊂ B as desired.

ii) Assume that G is a tree. We can and will assume that z0 is the root of this tree. We need to show that B ⊂ A. For this, let
f ∈ B. Then by Definition 4.1, we have ∥f ′∥L∞(G,ω∗) ≤ b and

f(x) = f(z0) +

∫
[z0,x]

f ′(z)ω∗(dz) ∀x ∈ G.

Thus for any two points x, y ∈ G, we obtain

|f(x)− f(y)| =

∣∣∣∣∣
∫
[z0,x]

f ′(z)ω∗(dz)−
∫
[z0,y]

f ′(z)ω∗(dz)

∣∣∣∣∣ . (17)

Let ẑ be the deepest node on the tree that belongs to both path [z0, x] and path [z0, y]. Due to the tree structure, the joining
of path [x, ẑ] and path [ẑ, y] constitutes the shortest path [x, y] connecting the points x and y. These together with (17) imply
that

|f(x)− f(y)| =

∣∣∣∣∣
∫
[ẑ,x]

f ′(z)ω∗(dz)−
∫
[ẑ,y]

f ′(z)ω∗(dz)

∣∣∣∣∣
≤
∫
[x,ẑ]

|f ′(z)|ω∗(dz) +

∫
[ẑ,y]

|f ′(z)|ω∗(dz)

=

∫
[x,y]

|f ′(z)|ω∗(dz) ≤ ∥f ′∥L∞(G,ω∗)ω
∗([x, y]) ≤ b ω∗([x, y]).

By the property of the length measure given in Lemma B.2, we then infer that |f(x)−f(y)| ≤ b dG(x, y) for every x, y ∈ G.
It follows that f ∈ A. Therefore, we have proved that B ⊂ A as desired.
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A.2.3 Proof of Theorem 3.1

The proof of Theorem 3.1 is based on two auxiliary lemmas. Before stating these lemmas, let us describe the the setting and
associated problem.

First, in order to investigate problem (4), we recast it as the standard complete OT problem by using an observation in
(Caffarelli and McCann, 2010). More precisely, let ŝ be a point outside graph G and consider the set Ĝ := G ∪ {ŝ}. We
next extend the cost function to Ĝ× Ĝ as follow

ĉ(x, y) ≜


b[c(x, y)− λ] if x, y ∈ G,
w1(x) if x ∈ G and y = ŝ,
w2(y) if x = ŝ and y ∈ G,
0 if x = y = ŝ.

The measures µ, ν are extended accordingly by adding a Dirac mass at the isolated point ŝ: µ̂ = µ + ν(G)δŝ and
ν̂ = ν + µ(G)δŝ. As µ̂, ν̂ have the same total mass on Ĝ, we can consider the standard complete OT problem between µ̂, ν̂
as follow

KT(µ̂, ν̂) ≜ inf
γ̂∈Γ(µ̂,ν̂)

∫
Ĝ×Ĝ

ĉ(x, y)γ̂(dx, dy), (18)

where
Γ(µ̂, ν̂) ≜

{
γ̂ ∈ M(Ĝ× Ĝ) : µ̂(U) = γ̂(U × Ĝ), ν̂(U) = γ̂(Ĝ× U) for all Borel sets U ⊂ Ĝ

}
.

This reformulation under an observation in (Caffarelli and McCann, 2010) helps us to transform an unbalanced optimal
transport (EPT) on a graph into a corresponding standard complete OT. Therefore, we can not only bypass all the issues
coming from the unbalanced setting, but also rely on many results in the standard setting for OT.

We then adapt the procedure in (Caffarelli and McCann, 2010) to derive the dual formulation for the EPT on a graph.

Additionally, we have a one-to-one correspondence between γ ∈ Π≤(µ, ν) and γ̂ ∈ Γ(µ̂, ν̂) as follow

γ̂ = γ + [(1− f1)µ]⊗ δŝ + δŝ ⊗ [(1− f2)ν] + γ(G×G)δ(ŝ,ŝ). (19)

Indeed, if γ ∈ Π≤(µ, ν), then it is clear that γ̂ defined by (19) satisfies γ̂ ∈ Γ(µ̂, ν̂). The converse is guaranteed by the next
technical result.

Lemma A.7. For γ̂ ∈ Γ(µ̂, ν̂), let γ be the restriction of γ̂ to G. Then, relation (19) holds and γ ∈ Π≤(µ, ν).

Proof. We first observe for any Borel set A ⊂ G that

γ̂(A× {ŝ}) = γ̂(A× Ĝ)− γ̂(A×G) = µ̂(A)− γ(A×G) = µ(A)− γ1(A) =

∫
A

(1− f1)µ(dx).

For the same reason, we have γ̂({ŝ} ×B) =
∫
B
(1− f2)ν(dx) for any set Borel set B ⊂ G. Also,

γ̂({ŝ} × {ŝ}) = γ̂(Ĝ× {ŝ})− γ̂(G× {ŝ})

= γ̂(Ĝ× Ĝ)− γ̂(Ĝ×G)−
[
γ̂(G× Ĝ)− γ̂(G×G)

]
= µ̂(Ĝ)− ν̂(G)− µ̂(G) + γ(G×G) = γ(G×G).

Since (19) is obviously true for sets of the form A×B with A,B ⊂ G being Borel sets, we only need to verify it for sets of
the following three forms: (A ∪ {ŝ})×B, A× (B ∪ {ŝ}), (A ∪ {ŝ})× (B ∪ {ŝ}) for Borel sets A,B ⊂ G. We check it
case by case as follows.

• (i) For (A ∪ {ŝ})×B: Using the above observation, we have

γ̂((A ∪ {ŝ})×B) = γ̂(A×B) + γ̂({ŝ} ×B) = γ(A×B) +

∫
B

(1− f2)ν(dx).

Therefore, (19) holds in this case.
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• (ii) For A× (B ∪ {ŝ})): (19) is also true for this case because

γ̂(A× (B ∪ {ŝ})) = γ̂(A×B) + γ̂(A× {ŝ}) = γ(A×B) +

∫
A

(1− f1)µ(dx).

• (iii) For (A ∪ {ŝ})× (B ∪ {ŝ}): (19) is true as well since

γ̂((A ∪ {ŝ})× (B ∪ {ŝ})) = γ̂(A×B) + γ̂(A× {ŝ}) + γ̂({ŝ} ×B) + γ̂({ŝ} × {ŝ})

= γ(A×B) +

∫
A

(1− f1)µ(dx) +

∫
B

(1− f2)ν(dx) + γ(G×G).

Now as (19) holds, we obviously have γ(U × G) ≤ γ̂(U × G) ≤ γ̂(U × Ĝ) = µ̂(U) = µ(U) for any Borel set U ⊂ G.
Likewise, γ(G× U) ≤ ν(U) for any Borel set U ⊂ G. Therefore, γ ∈ Π≤(µ, ν).

These observations in particular display the following connection between the EPT problem on a graph (4) and the
corresponding standard complete OT problem (18).

Lemma A.8 (EPT on a graph versus its corresponding complete OT). For every µ, ν ∈ M(T ), we have ETc,λ(µ, ν) =
KT(µ̂, ν̂). Moreover, relation (19) gives a one-to-one correspondence between optimal solution γ for EPT problem (4) and
optimal solution γ̂ for standard complete OT problem (18).

Proof. We derive two parts as follow:

• (i) We show that KT(µ̂, ν̂) ≤ ETc,λ(µ, ν):

For any γ ∈ Π≤(µ, ν), let γ̂ be given by (19). Then, γ̂ ∈ Γ(µ̂, ν̂) and

KT(µ̂, ν̂) ≤
∫
Ĝ×Ĝ

ĉ(x, y)γ̂(dx, dy) = b

∫
G×G

[c(x, y)− λ]γ(dx,dy)

+

∫
G
w1[1− f1(x)]µ(dx) +

∫
G
w2[1− f2(x)]ν(dx).

It follows that KT(µ̂, ν̂) ≤ ETc,λ(µ, ν).

• (ii) We show that KT(µ̂, ν̂) ≥ ETc,λ(µ, ν):

To see this, for any γ̂ ∈ Γ(µ̂, ν̂) we let γ be the restriction of γ̂ to T . Then by Lemma A.7, we have γ ∈ Π≤(µ, ν) and (19)
holds. Consequently,∫

Ĝ×Ĝ
ĉ(x, y)γ̂(dx, dy) = b

∫
G×G

[c(x, y)− λ]γ(dx, dy)

+

∫
G
w1[1− f1(x)]µ(dx) +

∫
G
w2[1− f2(x)]ν(dx)

≥ ETc,λ(µ, ν).

By taking the infimum over γ̂, we infer that KT(µ̂, ν̂) ≥ ETc,λ(µ, ν).

Thus, from the above two parts, we obtain
KT(µ̂, ν̂) = ETc,λ(µ, ν).

The relation about the optimal solutions also follows from the above arguments.

Given the above two lemmas, we are ready to present the proof of Theorem 3.1.

Proof of Theorem 3.1 . From Lemma A.8 and the dual formulation for KT(µ̂, ν̂) proved in (Caffarelli and McCann, 2010,
Corollary 2.6), we have

ETc,λ(µ, ν) = sup
û∈L1(µ̂), v̂∈L1(ν̂)
û(x)+v̂(y)≤ĉ(x,y)

∫
Ĝ
û(x)µ̂(dx) +

∫
Ĝ
v̂(x)ν̂(dx) =: I.
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Therefore, it is enough to prove that I = J where

J ≜ sup
(u,v)∈K

[ ∫
G
u(x)µ(dx) +

∫
G
v(x)ν(dx)

]
.

For (u, v) satisfying u ≤ w1, v ≤ w2 and u(x)+ v(y) ≤ b[c(x, y)−λ], we extend it to Ĝ by taking û(ŝ) = 0 and v̂(ŝ) = 0.
Then, it is clear that û(x) + v̂(y) ≤ ĉ(x, y) for x, y ∈ Ĝ, and

I ≥
∫
Ĝ
û(x)µ̂(dx) +

∫
Ĝ
v̂(x)ν̂(dx) =

∫
G
u(x)µ(dx) +

∫
G
v(x)ν(dx).

It follows that I ≥ J . In order to prove the converse, let (û, v̂) be a maximizer for I . Then, by considering (û−û(ŝ), v̂+û(ŝ)),
we can assume that û(ŝ) = 0. Also, if we let v(y) := infx∈Ĝ[ĉ(x, y)− û(x)], then (û, v) is still in the admissible class for
I and v̂(y) ≤ v(y). This implies that (û, v) is also a maximizer for I . For these reasons, we can assume w.l.g. that the
maximizer (û, v̂) has the following additional properties: û(ŝ) = 0 and

v̂(y) = inf
x∈Ĝ

[ĉ(x, y)− û(x)] ∀y ∈ Ĝ.

In particular, v̂(ŝ) = infx∈Ĝ[ĉ(x, ŝ)− û(x)]. For convenience, define w1(ŝ) = 0 and consider the following two possibilities.

• (i) For infx∈Ĝ[w1(x)− û(x)] ≥ 0:

Since ĉ(ŝ, ŝ)− û(ŝ) = 0 and infx∈G[ĉ(x, ŝ)− û(x)] = infx∈G[w1(x)− û(x)] ≥ 0, we have v̂(ŝ) = 0.

Also, v̂(y) ≤ ĉ(ŝ, y) − û(ŝ) ≤ w2(y) for all y ∈ Ĝ. For each y ∈ G, by using the facts û ≤ w1 and ĉ(ŝ, y) − w1(ŝ) =
w2(y) ≥ 0 we get

v̂(y) ≥ inf
x∈Ĝ

[ĉ(x, y)− w1(x)] = inf
x∈G

{b[c(x, y)− λ]− w1(x)} = −bλ+ inf
x∈G

[b c(x, y)− w1(x)].

Thus (û, v̂) ∈ K and

I =

∫
Ĝ
û(x)µ̂(dx) +

∫
Ĝ
v̂(x)ν̂(dx) =

∫
G
û(x)µ̂(dx) +

∫
G
v̂(x)ν̂(dx) + v̂(ŝ)µ(G)

=

∫
G
û(x)µ(dx) +

∫
G
v̂(x)ν(dx) ≤ J.

• (ii) For infx∈Ĝ[w1(x)− û(x)] < 0:

By arguing as in the above case (i), we have v̂(ŝ) = infx∈G[w1(x)− û(x)] < 0 and

I =

∫
G
v̂(x)ν(dx) +

∫
G
û(x)µ(dx) + µ(G) inf

G
[w1 − û]. (20)

Let ũ(x) := min{û(x), w1(x)}. Then, it is obvious that ũ(x)+v̂(y) ≤ ĉ(x, y) and ũ(ŝ) = 0. Since infx∈G[w1(x)−û(x)] <
0, there exists x0 ∈ G such that w1(x0) < û(x0). Thus, ũ(x0) = w1(x0) and hence infG[w1 − ũ] ≤ 0. As ũ ≤ w1, we
infer further that infG[w1 − ũ] = 0. We also have∫

G
û(x)µ(dx) + µ(G) inf

G
[w1 − û]

=

∫
G
ũ(x)µ(dx) +

∫
G:û>w1

[û(x)− w1(x)]µ(dx) + µ(G) inf
G
[w1 − û] ≤

∫
G
ũ(x)µ(dx).

This together with (20) gives

I ≤
∫
G
ũ(x)µ(dx) +

∫
G
v̂(x)ν(dx).

Now let ṽ(y) = infx∈Ĝ[ĉ(x, y) − ũ(x)] for y ∈ G. Then, v̂(y) ≤ ṽ(y) ≤ ĉ(ŝ, y) − ũ(ŝ) = w2(y) for y ∈ G. For each
y ∈ G, by using the facts ũ ≤ w1 and ĉ(ŝ, y)− w1(ŝ) = w2(y) ≥ 0 we also get

ṽ(y) ≥ inf
x∈Ĝ

[ĉ(x, y)− w1(x)] = inf
x∈G

{b[c(x, y)− λ]− w1(x)} = −bλ+ inf
x∈G

[b c(x, y)− w1(x)].
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It follows that (ũ, ṽ) ∈ K and

I ≤
∫
G
ũ(x)µ(dx) +

∫
G
ṽ(x)ν(dx) ≤ J.

Thus we conclude that I = J and the theorem follows.

A.2.4 Proof of Corollary 3.2

Proof of Corollary 3.2. Notice that as wi (i = 1, 2) is b-Lipschitz w.r.t. dG, we have for every x ∈ G that

− wi(x) ≤ inf
y∈G

[
b dG(x, y)− wi(y)

]
. (21)

Let K be the set defined in the statement of Theorem 3.1. Then for each (u, v) ∈ K, let

v∗(x) := inf
y∈G

{
b[dG(x, y)− λ]− v(y)

}
= −bλ+ inf

y∈G

[
b dG(x, y)− v(y)

]
≥ u(x),

v∗∗(y) := inf
x∈G

{
b[dG(x, y)− λ]− v∗(x)

}
= −bλ+ inf

x∈G

[
b dG(x, y)− v∗(x)

]
≥ v(y).

By using −bλ+ infx∈G[b dG(x, y)− w1(x)] ≤ v(y) ≤ w2(y) and (21), we obtain for every x ∈ G that

v∗(x) ≤ −bλ− v(x) ≤ − inf
y∈G

[b dG(x, y)− w1(y)] ≤ w1(x),

v∗(x) ≥ −bλ+ inf
y∈G

[
b dG(x, y)− w2(y)

]
≥ −bλ− w2(x).

We also have v∗ is b-Lipschitz, i.e., |v∗(x1)− v∗(x2)| ≤ b dG(x1, x2). Indeed, let x1, x2 ∈ G. Then for any ϵ > 0, there
exists y1 ∈ G such that

b dG(x1, y1)− v(y1) < v∗(x1) + bλ+ ϵ.

It follows that

v∗(x2)− v∗(x1) ≤ b dG(x2, y1)− v(y1) + ϵ− [b dG(x1, y1)− v(y1)] ≤ b dG(x1, x2) + ϵ.

Since this holds for every ϵ > 0, we get

v∗(x2)− v∗(x1) ≤ b dG(x1, x2).

By interchanging the role of x1 and x2, we also obtain v∗(x1)− v∗(x2) ≤ b dG(x1, x2). Thus,

|v∗(x1)− v∗(x2)| ≤ b dG(x1, x2).

Hence, we have shown that v∗ ∈ U∗ with

U∗ :=
{
f ∈ C(G) : −bλ− w2 ≤ f ≤ w1, |f(x)− f(y)| ≤ b dG(x, y)

}
.

We next claim v∗∗ = −bλ− v∗. For this, it is clear from the definition that v∗∗(y) ≤ −bλ− v∗(y). On the other hand, from
the Lipschitz property of v∗ we obtain

−v∗(y) ≤ b dG(x, y)− v∗(x) ∀x ∈ G,

which gives −bλ− v∗(y) ≤ v∗∗(y). Thus, we conclude that v∗∗ = −bλ− v∗ as claimed.

From these, we obtain that∫
G
u(x)µ(dx) +

∫
G
v(x)ν(dx) ≤

∫
G
v∗(x)µ(dx) +

∫
G
v∗∗(x)ν(dx)

=

∫
G
v∗(x)µ(dx)−

∫
G
v∗(x)ν(dx)− bλν(G)

≤ −bλν(G) + sup

{∫
G
f(µ− ν) : f ∈ U∗

}
.
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This together with Theorem 3.1 in the main text implies that

ETλ(µ, ν) ≤ −bλν(G) + sup

{∫
G
f(µ− ν) : f ∈ U∗

}
.

To prove the converse, let f ∈ U∗. Define u := f and v := −bλ− f . Then, we have

u(x) ≤ w1(x),

v(x) ≤ −bλ− [−bλ− w2(x)] = w2(x),

and
v(x) ≥ −bλ− w1(x) ≥ −bλ+ inf

y∈G
[b dG(x, y)− w1(y)].

Also, the Lipschitz property of f gives

u(x) + v(y) = −bλ+ f(x)− f(y) ≤ b[dG(x, y)− λ] ∀x, y ∈ G.

Thus (u, v) ∈ K, and hence we obtain from Theorem 3.1 in the main text that

−bλν(G) +

∫
G
f(µ− ν) =

∫
G
u(x)µ(dx) +

∫
G
v(x)ν(dx) ≤ ETλ(µ, ν).

As this holds for every f ∈ U∗, we get

−bλν(G) + sup

{∫
G
f(µ− ν) : f ∈ U∗

}
≤ ETλ(µ, ν).

Thus, we have shown that

ETλ(µ, ν) = −bλν(G) + sup

{∫
G
f(µ− ν) : f ∈ U∗

}
. (22)

Now consider f = f̃ − bλ
2 . Then, f ∈ U∗ if and only if f̃ ∈ U. Moreover,∫

G
f(µ− ν) = −bλ

2

[
µ(G)− ν(G)

]
+

∫
G
f̃(µ− ν).

Therefore, the conclusion of the corollary follows from (22).

A.2.5 Proof of Lemma 4.4

Proof of Lemma 4.4. By using part i) of Lemma A.2, we see that

U0 ⊂
{
f ∈ W 1,∞(G, ω∗) : −w2(z0)−

bλ

2
≤ f(z0) ≤ w1(z0) +

bλ

2
, ∥f ′∥L∞(G,ω∗) ≤ b

}
= U0

∞. (23)

As a consequence, we obtain

US01(µ, ν) = sup
[ ∫

G
f(µ− ν) : f ∈ U0

∞

]
≥ sup

[ ∫
G
f(µ− ν) : f ∈ U0

]
.

Thus the first statement of the lemma is proved. Now if G is a tree. Then Lemma A.2 implies that the inclusion in (23) is
actually the equality. That is, U0 = U0

∞. Therefore, we get the desired identity

US01(µ, ν) = sup
[ ∫

G
f(µ− ν) : f ∈ U0

]
.
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A.2.6 Proof of Proposition 4.5

Proof of Proposition 4.5. It follows from Definition 4.3 and the representation (7) for f that

USαp (µ, ν) = sup
{
s[µ(G)− ν(G)] : s ∈

[
− bλ

2
− w2(z0) + α,w1(z0) +

bλ

2
− α

]}
+ sup

{∫
G

[ ∫
[z0,x]

h(y)ω(dy)
]
(µ− ν)(dx) : ∥h∥Lp′ (G,ω) ≤ b

}
.

The first supremum equals to [w1(z0)+
bλ
2 −α][µ(G)−ν(G)] if µ(G) ≥ ν(G) and equals to −[w2(z0)+

bλ
2 −α][µ(G)−ν(G)]

if µ(G) < ν(G).

On the other hand, by the same arguments as in the proof of (Le et al., 2022, Proposition 3.5) we see that the second

supremum equals to b
(∫

G |µ(Λ(x))− ν(Λ(x))|p ω(dx)
) 1

p . Putting them together, we obtain the desired formula for
USαp (µ, ν).

A.2.7 Proof of Corollary 4.6

Proof of Corollary 4.6. We first recall that ⟨u, v⟩ denotes the line segment in Rn connecting two points u, v, while (u, v)
means the same line segment but without its two end-points. Then as ω({x}) = 0 for every x ∈ G, we have∫

G
|µ(Λ(x))− ν(Λ(x))|p ω(dx) =

∑
e=⟨u,v⟩∈E

∫
(u,v)

|µ(Λ(x))− ν(Λ(x))|p ω(dx).

Since µ and ν are supported on nodes, we can rewrite the above identity as∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx) =

∑
e=⟨u,v⟩∈E

∫
(u,v)

|µ(Λ(x) \ (u, v))− ν(Λ(x) \ (u, v))|p ω(dx).

For e = ⟨u, v⟩ and x ∈ (u, v), we observe that y ∈ G \ (u, v) belongs to Λ(x) if and only if y ∈ γe. It follows that
Λ(x) \ (u, v) = γe, and thus we deduce from the above identity that∫

G
|µ(Λ(x))− ν(Λ(x))|p ω(dx) =

∑
e=⟨u,v⟩∈E

∫
(u,v)

|µ(γe)− ν(γe)|p ω(dx)

=
∑
e∈E

∣∣µ(γe)− ν(γe)
∣∣pω(e).

This together with Proposition 4.5 yields the postulated result.

A.2.8 Proof of Proposition 5.1

We begin with the following auxiliary result.

Lemma A.9. Let µ, ν ∈ M(G). Then, µ = ν if and only if µ(Λ(x)) = ν(Λ(x)) for every x in G.

Proof. It is obvious that µ = ν implies that µ(Λ(x)) = ν(Λ(x)) for every x in G. Now assume that µ(Λ(x)) = ν(Λ(x))
for every x in G. We first claim that µ({a}) = ν({a}) for any a ∈ G. Let a ∈ G be arbitray. Then there are two possibility
for a: either a is a node or a is an interior point of an edge. We consider these two cases saperately.

• (i) a is an interior point of an edge e ∈ E (i.e. a is not a node):

Let {an}∞n=1 be a sequence of distinct points on the same edge e as a such that dG(an, z0) > dG(a, z0) for every n ≥ 1 and
an → a as n → ∞. It follows that Λ(an) ⊂ Λ(a) and Λ(a) \ Λ(an) ↓ {a} as n → ∞. As a consequence, we have

µ({a}) = lim
n→∞

µ(Λ(a) \ Λ(an)) = lim
n→∞

[
µ(Λ(a))− µ(Λ(an))

]
.

But as µ(Λ(x)) = ν(Λ(x)) for every x in G, we thus obtain

µ({a}) = lim
n→∞

[
ν(Λ(a))− ν(Λ(an))

]
= lim

n→∞
ν(Λ(a) \ Λ(an)) = ν({a})
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as claimed.

• (ii) a is a node:

We can assume that a is a common node for edges e1, ..., ek. Then for each i ∈ {1, ..., k}, let {ain}∞n=1 be a sequence of
distinct points on edge ei such that dG(ain, z0) > dG(a, z0) for every n ≥ 1 and ain → a as n → ∞. These choices yield
Λ(ain) ⊂ Λ(a) and Λ(a) \ ∪k

i=1Λ(a
i
n) ↓ {a} as n → ∞. Using this and the assumption µ(Λ(x)) = ν(Λ(x)) for every x in

G, we obtain

µ({a}) = lim
n→∞

[
µ(Λ(a))−

k∑
i=1

µ(Λ(ain))
]
= lim

n→∞

[
ν(Λ(a))−

k∑
i=1

ν(Λ(ain))
]
= ν({a}).

Thus, we have proved the claim that µ({a}) = ν({a}) for every a ∈ G.

On the other hand, for any points x, y belonging to the same edge

µ(⟨x, y)) = µ(Λ(x))− µ(Λ(y)) = ν(Λ(x))− ν(Λ(y)) = ν(⟨x, y)),

where ⟨x, y) denotes the line segment in Rn connecting two points x, y but without its right end-point x (while ⟨x, y⟩
include both end-points).

Thus, by combining them, we infer further that µ(⟨x, y⟩) = ν(⟨x, y⟩) for any x, y ∈ e and for any edge e ∈ E. It follows
that µ = ν, and the proof is complete.

Proof of Proposition 5.1. We note first that the quantity USαp depends only on the values of the weights at the root z0 of the
graph. This comes from the fact that only w1(z0) and w2(z0) are used in the definition of Uα

p′ .

i) This follows immediately from Proposition 4.5 in the main text.

ii) It follows from Definition 4.3 that USαp (µ, µ) = 0 and USαp satisfies the triangle inequality. As the constant function
f = 0 belongs to the constraint set Uα

p′ , we also have USαp (µ, ν) ≥ 0. Next, assume that USαp (µ, ν) = 0. Then by
Proposition 4.5 in the main text, we get

b

(∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx)

) 1
p

+Θ|µ(G)− ν(G)| = 0.

As Θ > 0 by our assumption of α, we must have

µ(G) = ν(G) and
∫
G
|µ(Λ(x))− ν(Λ(x))|p ω(dx) = 0.

Therefore, µ(Λ(x)) = ν(Λ(x)) for every x ∈ G. By using Lemma A.9, we then conclude that µ = ν.

iii) Due to the assumption w1(z0) = w2(z0) we have f ∈ Uα
p′ if and only if −f ∈ Uα

p′ . Hence we obtain from Definition 4.3
that USαp (µ, ν) = USαp (ν, µ). This together with ii) implies that (M(G),USαp ) is a metric space. Its completeness follows
from (Piccoli and Rossi, 2014, Proposition 4). As a complete metric space, it is well known that (M(G),USαp ) is a geodesic
space if and only if for every µ, ν ∈ M(G) there exists σ ∈ M(G) such that

USαp (µ, σ) = USαp (ν, σ) =
1

2
USαp (µ, ν).

To verify the latter, take σ := µ+ν
2 . Then using Definition 4.3 in the main text, we obtain

USαp (µ, σ) =
1

2
sup
f∈Uα

p′

∫
G
f(µ− ν) =

1

2
USαp (µ, ν)

and
USαp (ν, σ) =

1

2
sup
f∈Uα

p′

∫
G
f(ν − µ) =

1

2
USαp (ν, µ) =

1

2
USαp (µ, ν).
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A.2.9 Proof of Proposition 5.3

Proof of Proposition 5.3. i) From its definition, we have Uα
∞ = Lα with Lα being the set defined in (Le and Nguyen, 2021,

Section 3.2). As a consequence, we obtain USα1 (µ, ν) = dα(µ, ν). On the other hand, Proposition A.4 yields for any
1 ≤ p ≤ ∞ that

USα1 (µ, ν)−Θ|µ(G)− ν(G)| ≤ ω∗(G)
1
p′
[
USαp (µ, ν)−Θ|µ(G)− ν(G)|

]
.

Therefore, we conclude that

ω∗(G)
− 1

p′
[
dα(µ, ν)−Θ|µ(G)− ν(G)|

]
≤ USαp (µ, ν)−Θ|µ(G)− ν(G)|.

By moving and combining terms we arrive at

USαp (µ, ν) ≥ ω∗(G)
− 1

p′ dα(µ, ν) + Θ[1− ω∗(G)
− 1

p′ ]|µ(G)− ν(G)|.

ii) Let m̄ ≜ µ(G) = ν(G). From the definition of the p-Wasserstein distance, we have

Wp(µ, ν)
p = inf

γ∈Π(µ,ν)

∫
G×G

dG(x, y)
pγ(dx,dy)

≤
[
sup
x,y∈G

dG(x, y)
]p−1

inf
γ∈Π(µ,ν)

∫
G×G

dG(x, y)γ(dx, dy)

=
[
sup
x,y∈G

dG(x, y)
]p−1W1(µ, ν),

where
Π(µ, ν) ≜

{
γ ∈ M(G×G) : γ(G×G) = m̄, γ1 = µ, γ2 = ν

}
.

Therefore, the first statement will follow if we can show that

USαp (µ, ν) ≥ bW1(µ, ν). (24)

Since µ(G) = ν(G), we have from Lemma A.6 that

USαp (µ, ν) = sup
{∫

G
f(µ− ν) : f ∈ W 1,p′

(G, ω), ∥f ′∥Lp′ (G,ω) ≤ b
}
.

Hence by taking g ≜ f/b, we can rewrite this identity as

USαp (µ, ν) = b sup
{∫

G
g(µ− ν) : g ∈ W 1,p′

(G, ω), ∥g′∥Lp′ (G,ω) ≤ 1
}

= bSp(µ, ν),

where Sp is the balanced Sobolev transport distance defined in (Le et al., 2022, Definition 3.2). On the other hand, we have
Sp(µ, ν) ≥ ω∗(G)

− 1
p′ W1(µ, ν) by (Le et al., 2022, Lemma 4.3). Therefore, we obtain (24) as desired.

Alternatively, we can derive (24) as follows. By using Uα
∞ = Lα as in the proof of part i) and the observation about the

translation invariant in the proof of Lemma A.6, we see that

dα(µ, ν) = sup
{∫

G
f(µ− ν) : f ∈ Uα

∞

}
= sup

{∫
G
f(µ− ν) : f ∈ W 1,∞(G, ω∗), ∥f ′∥L∞(G,ω∗) ≤ b

}
.

Then due to Lemma A.2, we can further rewrite as

dα(µ, ν) = sup
{∫

G
f(µ− ν) : f ∈ C(G), |f(x)− f(y)| ≤ b dG(x, y)

}
= b sup

{∫
G
g(µ− ν) : g ∈ C(G), |g(x)− g(y)| ≤ 1 dG(x, y)

}
= bW1(µ, ν).
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On the other hand, part i) above gives

USαp (µ, ν) ≥ ω∗(G)
− 1

p′ dα(µ, ν).

Therefore, we obtain
USαp (µ, ν) ≥ b ω∗(G)

− 1
p′ W1(µ, ν),

for every 1 ≤ p ≤ ∞.

For p = 1, the equality happens since p′ = ∞ and

USα1 (µ, ν) = sup
{∫

G
f(µ− ν) : f ∈ Uα

∞
}
= bW1(µ, ν).

Thus, the second statement follows.

A.2.10 Proof of Proposition 5.4

Proof of Proposition 5.4. We first prove that ℓp distance is negative definite for 1 ≤ p ≤ 2, where

ℓp(x, z) ≜

(
m∑
i=1

∣∣x(i) − z(i)
∣∣p)1/p

for x, z ∈ Rm.

It is easy to see that the function (u, v) 7→ (u− v)2 is negative definite for u, v ∈ R. Using this and by applying (Berg et al.,
1984, Corollary 2.10), the function (u, v) 7→ (u− v)p is negative definite for 1 ≤ p ≤ 2.

Therefore, for 1 ≤ p ≤ 2, the function ℓpp is negative definite since it is a sum of negative definite functions. Using this and
by applying (Berg et al., 1984, Corollary 2.10), we have ℓp is negative definite for 1 ≤ p ≤ 2.

We are now ready to prove the Proposition 5.4. From Proposition 4.5, we have

USαp (µ, ν) = b
(∑

e∈E

we |µ(γe)− ν(γe)|p
) 1

p

+Θ|µ(G)− ν(G)|.

Let m = |E|. Then, µ 7→
{
w

1
p
e µ(γe)

}
e∈E

can be regarded as a feature map for measure µ onto Rm
+ . Therefore, the first

term of USαp is equivalent to b times the ℓp distance between two feature maps of measures µ, ν on Rm
+ respectively. Recall

that b ≥ 0. Thus, the first term of USαp is negative definite for 1 ≤ p ≤ 2.

Additionally, the second term of USαp is Θ times the ℓ1 distance between µ(G) and ν(G). Since w1(z0) = w2(z0) and
α ≤ bλ

2 + w1(z0), we also have from (9) that Θ = w1(z0) +
bλ
2 − α ≥ 0. Therefore, the second term of USαp is also

negative definite.

Hence, USαp is negative definite for any 1 ≤ p ≤ 2.

B FURTHER RESULTS AND DISCUSSIONS

B.1 Brief Reviews

We give brief reviews for some definitions used in our work.

B.1.1 Length Measure on Graphs

We recall the definition and properties in (Le et al., 2022, §4.1) about the length measure on graphs.

Definition B.1 (Length measure). Let ω∗ be the unique Borel measure on G such that the restriction of ω∗ on any edge is
the length measure of that edge. That is, ω∗ satisfies:
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i) For any edge e connecting two nodes u and v, we have ω∗(⟨x, y⟩) = (t − s)we whenever x = (1 − s)u + sv and
y = (1− t)u+ tv for s, t ∈ [0, 1) with s ≤ t. Here, ⟨x, y⟩ is the line segment in e connecting x and y.

ii) For any Borel set F ⊂ G, we have
ω∗(F ) =

∑
e∈E

ω∗(F ∩ e).

The next lemma asserts that ω∗ is closely connected to the graph metric dG, and thus justifies the terminology of a length
measure.
Lemma B.2 (ω∗ is the length measure on graph). Suppose that G has no short cuts, namely, any edge e is a shortest path
connecting its two end-points. Then, ω∗ is a length measure in the sense that

ω∗([x, y]) = dG(x, y)

for any shortest path [x, y] connecting x and y. In particular, ω∗ has no atom in the sense that ω∗({x}) = 0 for every x in
G.

B.1.2 Wasserstein distances

We recall here the definition of the p-Wasserstein distances with graph metric ground cost on G.
Definition B.3. Let 1 ≤ p < ∞. Suppose that µ and ν are two nonnegative Borel measures on G satisfying µ(G) = ν(G).
Then the p-Wasserstein distance between µ and ν is defined by

Wp(µ, ν)
p = inf

γ∈Π(µ,ν)

∫
G×G

dG(x, y)
pγ(dx, dy),

where
Π(µ, ν) ≜

{
γ ∈ M(G×G) : γ(G×G) = m̄, γ1 = µ, γ2 = ν

}
with m̄ ≜ µ(G) = ν(G).

B.1.3 Kernels

We review some important definitions and theorems/corollaries about kernels that are used in our work.

• Positive Definite Kernels (Berg et al., 1984, pp. 66–67). A kernel function k : Ω× Ω → R is called positive definite
if for every positive integer m and every points x1, x2, ..., xm ∈ Ω, we have

m∑
i,j=1

cicjk(xi, xj) ≥ 0 for every c1, ..., cm ∈ R.

• Negative Definite Kernels (Berg et al., 1984, pp. 66–67). A kernel function k : Ω×Ω → R is called negative definite
if for every integer m ≥ 2 and every points x1, x2, ..., xm ∈ Ω, we have

m∑
i,j=1

cicjk(xi, xj) ≤ 0, for every c1, ..., cm ∈ R s.t.
m∑
i=1

ci = 0.

• Theorem 3.2.2 in (Berg et al., 1984, pp. 74). Let κ be a negative definite kernel. Then for every t > 0, the kernel

kt(x, z) ≜ exp (−tκ(x, z))

is positive definite.

• Definition 2.6 in (Berg et al., 1984, pp. 76). A positive definite kernel κ is called infinitely divisible if for each n ∈ N∗,
there exists a positive definite kernel κn such that

κ = (κn)
n.

• Corollary 2.10 in (Berg et al., 1984, pp. 78). Let κ be a negative definite kernel. Then for 0 < t < 1, the kernel

kt(x, z) ≜ [κ(x, z)]
t

is negative definite.
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B.2 Further Discussions

In this subsection, we discuss some extension for our work and describe more details for some parts in the main manuscript.

Path length for points in G. We can canonically measure a path length connecting any two points x, y ∈ G where x, y
are not necessary to be nodes in V . Indeed, for two points x, y ∈ Rn belonging to the same edge e = ⟨u, v⟩ which connects
two nodes u and v in V , then we have

x = (1− s)u+ sv,

y = (1− t)u+ tv,

for some numbers t, s ∈ [0, 1]. Therefore, the length of the path connecting x and y along the edge e (i.e., the line segment
⟨x, y⟩) is defined by |t− s|we. Hence, the length for an arbitrary path in G can be similarly defined by breaking down into
pieces over edges and summing over their corresponding lengths (Le et al., 2022).

Lipschitz nonnegative weight function on graph G. An example of b-Lipschitz nonegative weight function on G is

w(x) = a1dG(z0, x) + a0,

for some constants a1 ∈ [0, b] and a0 ∈ [0,∞).

Extension to measures supported on G. The closed-form formula for USαp in (10) can be extended for measures with
finite supports on G (i.e., measures which may have supports on edges) by using the same strategy to measure a path length
connecting z0 and y for any z0, y ∈ G (see §2). More precisely, we break down edges containing supports into pieces and
sum over their corresponding values instead of the sum over edges for USαp in (10).

About the assumption of uniqueness property of the shortest paths on G. As discussed in the supplementary of (Le
et al., 2022), since we ∈ R for any edge e ∈ E of graph G., it is almost surely that every node in the graph can be regarded
as unique-path root node (with a high probability, lengths of paths connecting any two nodes in graph G are different).
Additionally, for some special graph, e.g., a grid of nodes, there is no unique-path root node for such graph. However,
by perturbing each node of such graph (or lengths of edges in G in case G is a non-physical graph, i.e., we) with a small
deviation ε, we can obtain a graph satisfying the unique-path root node assumption.

About the unbalanced Sobolev transport. Similar to the work (Le et al., 2022), we assume that we know the graph metric
space (i.e., the graph structure) where supports of measures are belongs to. Giving such graph, we define the unbalanced
Sobolev transport for measures which may have different total mass and are supported on that graph metric space. We leave
a question to learn an optimal graph metric structure from data (i.e., supports of measures) for unbalanced Sobolev transport
for future work.

About graphs GLog and GSqrt (Le et al., 2022). First, we use a clustering method, e.g., the farthest-point clustering, to
partition supports of measures into at most M clusters.7 Then, let V denote the set of centroids of these clusters. For edges,
in graph GLog, we randomly choose M log(M) edges; and M3/2 edges for graph GSqrt, we also denote the set of those
sampled edges as Ẽ.

For each edge e, its corresponding weight we is computed by the Euclidean distance between the two corresponding nodes
of e. Let nc be the number of connected components in the graph G̃(V, Ẽ), we then randomly add (nc − 1) more edges
between these nc connected components to construct a connected graph G from G̃.Let Ec be the set of these (nc − 1) added
edges and denote set E = Ẽ ∪ Ec, then G(V,E) is the considered graph.

Datasets and Computational Devices. For document dataset (i.e., TWITTER, RECIPE, CLASSIC, AMAZON), orbit
dataset (Orbit) and a 10-class subset of MPEG7 dataset, one can contact the authors of (Le et al., 2022) to access to these
datasets. For computational devices, we run all of our experiments on commodity hardware.

B.3 Further Empirical Results

In this subsection, we provide further empirical results for our work.
7M is the input number of clusters for the clustering method. Therefore, the result has at most M clusters depending on input data.
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B.3.1 Extended Empirical Results for the Main Text

Similar to Figure 3 in the main text for TDA, we illustrate the effect of the number of slices for document classification with
graph GSqrt in Figure 4.

We also consider a graph G with a different setting:GLog. Recall that for Figure 1, Figure 2, Figure 3 in the main text and
Figure 4, results are for graph GSqrt where M = 104 for document datasets, M = 103 for MPEG7 dataset and M = 102

for Orbit dataset.8 We illustrate corresponding results for graph GLog in Figure 5, Figure 6, Figure 7, and Figure 8
respectively.
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Figure 4: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GSqrt.
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Figure 5: SVM results and time consumption for kernel matrices in document classification with graph GLog. For each
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unique words for each document respectively.
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Figure 6: SVM results and time consumption for kernel matrices in TDA with graph GLog. For each dataset, the numbers in
the parenthesis are respectively the number of PD; and the maximum number of points in PD.

B.3.2 Further Empirical Results

We also provides further results for document classification and TDA as follow:

For document classification.

• For M = 102, we illustrate the SVM results and time consumption for kernels matrices and the effect of the number of
slices for graph GSqrt in Figure 9 and Figure 10 respectively. The corresponding results for graph GLog are in Figure 11
and Figure 12.

8There is a typo in the main text (§6): It should be M = 103 is for MPEG7 and M = 102 is for Orbit.
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Figure 7: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GLog.
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Figure 8: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GLog.

• For M = 103, we illustrate the SVM results and time consumption for kernels matrices and the effect of the number
of slices for graph GSqrt in Figure 13 and Figure 14 respectively. The corresponding results for graph GLog are in
Figure 15 and Figure 16.

• For M = 104, we illustrate the SVM results and time consumption for kernels matrices and the effect of the number
of slices for graph GSqrt in Figure 17 and Figure 18 respectively. The corresponding results for graph GLog are in
Figure 19 and Figure 20.

• For M = 4 × 104, we illustrate the SVM results and time consumption for kernels matrices and the effect of the
number of slices for graph GSqrt in Figure 21 and Figure 22 respectively. The corresponding results for graph GLog are
in Figure 23 and Figure 24.

For TDA.

• For M = 102, we illustrate the SVM results and time consumption for kernels matrices and the effect of the number
of slices for graph GSqrt in Figure 25 and Figure 26 respectively. The corresponding results for graph GLog are in
Figure 27 and Figure 28.

• For M = 103, we illustrate the SVM results and time consumption for kernels matrices and the effect of the number of
slices for graph GSqrt in Figure 29 and Figure 30 respectively. The corresponding results for graph GLog are in Figure 31
and Figure 32.

• For M = 104 on Orbit dataset and M = 103 on MPEG7 dataset (due to the same size of MPEG7 dataset), we
illustrate the SVM results and time consumption for kernels matrices and the effect of the number of slices for graph
GSqrt in Figure 33 and Figure 34 respectively. The corresponding results for graph GLog are in Figure 35 and Figure 36.

With different exponent p for UST. We also carry out experiments for different p in unbalanced Sobolev transport
using the same setting for M in the main text (i.e., M = 104 for document datasets, M = 103 for MPEG7 dataset and
M = 102 for Orbit dataset) on graph GSqrt and graph GLog. Figure 37 and Figure 38 illustrate performances on document
classification and TDA respectively with graph GSqrt. For graph GLog, the corresponding results are shown in Figure 39 and
Figure 40.9

9We skip plots about time consumption since the time consumption of UST for p = 1 and p = 2 are almost identical. Please refer to
other Figures where we illustrate the time consumption of UST for p = 1.
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Figure 9: SVM results and time consumption for kernel matrices in document classification with graph GSqrt with M = 102.
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Figure 10: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GSqrt with M = 102.

With Sinkhorn divergence-based approach for UOT (Séjourné et al., 2019) as an extra baseline. Furthermore, we
also consider Sinkhorn divergence-based approach for UOT (SDUOT) (Séjourné et al., 2019) as an extra baseline. As we
noted in the main manuscript, SDUOT is the debiased version of Sinkhorn-based approach for UOT (SUOT) which may be
helpful for applications. Both SDUOT and SUOT are empirically indefinite and they have the same computational complexity.

We illustrate SVM results for document classification and TDA with the extra baseline SDUOT for both graph GSqrt and GLog
corresponding to Figure 1 (in the main text), Figure 2 (in the main text), Figure 5, and Figure 6 in Figure 41, Figure 42,
Figure 43, Figure 44 respectively.

B.3.3 Further Discussions on Empirical Results

The unbalanced Sobolev transport (UST) USα
p versus dα of entropy partial transport (EPT) on a tree. Overall,

performances of the UST compare favorably with those of dα of EPT on a tree. Moreover, time consumption of UST is
comparable to that of dα of EPT on trees. So, by exploiting the full graph structure, UST improves performances of dα of
EPT on a tree and still keeps the advantage about the computational complexity.

The unbalanced Sobolev transport (UST) versus Sinkhorn-based unbalanced optimal transport (UOT). The
performances of UST is comparable to those of Sinkhorn-based UOT. Recall that kernels for UST are positive definite while
kernels for Sinkhorn-based UOT are empirically indefinite. This indefiniteness may affect performances of Sinkhorn-UOT
in some settings (e.g., datasets or graph structure). It is worth noting that the UST is several order faster than Sinkhorn-based
UOT. Therefore, it is prohibited to apply Sinkhorn-based UOT for large-scale settings while our proposed approach (UST)
is scalable to such settings.

The effects of the number of slices (i.e., the number of root nodes used for averaging). In general, when one increases
the number of slices for the UST (and dα of EPT on a tree), their corresponding performances are also increased but it
comes with a trade-off about time consumption (i.e., linear to the number of slices). We observe that 10 slices seems a good
trade-off between performances and time consumption, similar to observations in (Le and Nguyen, 2021).

Unbalanced Sobolev transport with different p. In our experiments on document classification and TDA, we observe
that p = 1 for UST consistently gives better performances than p = 2 for UST.10 Generally, one may turn parameter p to

10Recall that UST with p = 1 has a stronger connection to EPT on graphs thatn UST with p = 2 as illustrated in Lemma A.2.
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Figure 11: SVM results and time consumption for kernel matrices in document classification with graph GLog with M = 102.
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Figure 12: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GLog with M = 102.

improve performances of UST in applications.

The extra baseline: Sinkhorn divergence-based approach for UOT. In our experiments, the performances of the extra
baseline SDUOT are relative with those of SUOT when comparing with performances of dα (EPT on a tree) and our proposed
UST. The debias property of SDUOT improves performances of SUOT in some datasets, especially for datasets in TDA tasks
(Orbit and MPEG7). For document datasets, performances of SDUOT and SUOT are comparative (the role of debias property
is not clear).
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Figure 13: SVM results and time consumption for kernel matrices in document classification with graph GSqrt with M = 103.
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Figure 14: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GSqrt with M = 103.
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Figure 15: SVM results and time consumption for kernel matrices in document classification with graph GLog with M = 103.
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Figure 16: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GLog with M = 103.

0.67

0.68

0.69

0.7

0.71

0.72

A
ve

ra
ge

 A
cc

ur
ac

y

TWITTER (3/3108/26)

102

103

104

Ti
m

e 
C

on
su

m
pt

io
n 

(s
)

0.45

0.5

0.55

RECIPE (15/4370/340)

102

104

0.93

0.94

0.95

0.96

CLASSIC (4/7093/197)

103

104

105

0.84

0.86

0.88

0.9

0.92

AMAZON (4/8000/884)

103

104

105
SUOT
d0

US1
0

Figure 17: SVM results and time consumption for kernel matrices in document classification with graph GSqrt with M = 104.
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Figure 18: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GSqrt with M = 104.
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Figure 19: SVM results and time consumption for kernel matrices in document classification with graph GLog with M = 104.
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Figure 20: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GLog with M = 104.
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Figure 21: SVM results and time consumption for kernel matrices in document classification with graph GSqrt with
M = 4× 104.
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Figure 22: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GSqrt with M = 4× 104.
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Figure 23: SVM results and time consumption for kernel matrices in document classification with graph GLog with
M = 4× 104.
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Figure 24: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in document
classification with graph GLog with M = 4× 104.
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Figure 25: SVM results and time consumption for kernel matrices in TDA with graph GSqrt with M = 102.
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Figure 26: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GSqrt with M = 102.
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Figure 27: SVM results and time consumption for kernel matrices in TDA with graph GLog with M = 102.
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Figure 28: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GLog with M = 102.
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Figure 29: SVM results and time consumption for kernel matrices in TDA with graph GSqrt with M = 103.
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Figure 30: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GSqrt with M = 103.
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Figure 31: SVM results and time consumption for kernel matrices in TDA with graph GLog with M = 103.
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Figure 32: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GLog with M = 103.
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Figure 33: SVM results and time consumption for kernel matrices in TDA with graph GSqrt with M = 104 for Orbit and
with M = 103 for MPEG7.
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Figure 34: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GSqrt with M = 104 for Orbit and with M = 103 for MPEG7.
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Figure 35: SVM results and time consumption for kernel matrices in TDA with graph GLog with M = 104 for Orbit and
with M = 103 for MPEG7.
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Figure 36: SVM results and time consumption for kernel matrices of slice variants for UST and EPT on a tree in TDA with
graph GLog with M = 104 for Orbit and with M = 103 for MPEG7.
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Figure 37: SVM results and time consumption for kernel matrices in document classification with graph GSqrt with M = 104.
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Figure 38: SVM results and time consumption for kernel matrices in TDA with graph GSqrt with M = 102 for Orbit and
with M = 103 for MPEG7.
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Figure 39: SVM results and time consumption for kernel matrices in document classification with graph GLog with M = 104.

0.45

0.5

0.55

0.6

0.65

A
ve

ra
ge

 A
cc

ur
ac

y

Orbit

0.45

0.5

0.55

0.6

0.65

0.7

0.75
MPEG7

US1
0

US1
0

Figure 40: SVM results and time consumption for kernel matrices in TDA with graph GLog with M = 102 for Orbit and
with M = 103 for MPEG7.
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Figure 41: SVM results for document classification with graph GSqrt with an extra baseline (SDUOT).
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Figure 42: SVM results for TDA with graph GSqrt with an extra baseline (SDUOT).
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Figure 43: SVM results for document classification with graph GLog with an extra baseline (SDUOT).
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Figure 44: SVM results for TDA with graph GLog with an extra baseline (SDUOT).
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