EEGNN: Edge Enhanced Graph Neural Network with a Bayesian
Nonparametric Graph Model

Yirui Liu'? Xinghao Qiao’
London School of Economics and Political Science
3Bayes Business School, City, University of London

Abstract

Training deep graph neural networks (GNNs)
poses a challenging task, as the performance of
GNNs may suffer from the number of hidden
message-passing layers. The literature has fo-
cused on the proposals of over-smoothing and
under-reaching to explain the performance dete-
rioration of deep GNNs. In this paper, we pro-
pose a new explanation for such deteriorated per-
formance phenomenon, mis-simplification, that
is, mistakenly simplifying graphs by preventing
self-loops and forcing edges to be unweighted.
We show that such simplifying can reduce the
potential of message-passing layers to capture
the structural information of graphs. In view
of this, we propose a new framework, edge en-
hanced graph neural network (EEGNN). EEGNN
uses the structural information extracted from the
proposed Dirichlet mixture Poisson graph model
(DMPGM), a Bayesian nonparametric model for
graphs, to improve the performance of various
deep message-passing GNNs. We propose a
Markov chain Monte Carlo inference framework
for DMPGM. Experiments over different datasets
show that our method achieves considerable per-
formance increase compared to baselines.

1 INTRODUCTION

Graph neural networks (GNNs) (Zhou et al.|[2020; [Wu et al.}
2020) are important tools for analyzing graph data, such as
social network (You et al., [2020), transportation network
(Chen et al., |2021a), molecular graph (Huang et al.| 2020),
biological network (Zhang et al.,2021), financial transaction
network (Wang et al}|2021)), academic citation graph (Xu

Proceedings of the 26™ International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

Liying Wang? Jessica Lam*
2J.P. Morgan

4University of Oxford

et al.| 2021}, and knowledge graph (Ji et al.| 2021)). GNNs
have become popular with their state-of-the-art performance
by applying deep learning methodologies to graphs. Among
them, message passing neural networks (MPNN) (Gilmer
et al.| 2017) uses message-passing layers to compute node
embeddings. Examples of MPNNs include graph convo-
lutional neural networks (GCN) (Kipf and Welling, [2017)),
GraphSAGE (Hamilton et al.| 2017), graph attention net-
works (GAT) (Velickovic et al,, 2018), and gated graph
neural networks (GGNN) (Li et al.,[2016)). Similar to stan-
dard multi-layer perceptron (MLP) in deep learning, the
message passing layer in a GNN framework aggregates in-
formation from the local neighbors of each node, and then
transforms the information via an activation function into
the embedding (Hamilton, |2020). A node embedding can
aggregate information over N hop neighbors, in the form
of N hidden message-passing layers, thus incorporating
further reaches of the graph.

Although deeper layers in non-graph neural networks often
achieve better performance (Krizhevsky et al.| 2012; [He
et al., 2016), GNNs typically perform best with only 2 to
4 hop neighbors, that is, 2 to 4 hidden layers. In contrast,
using a larger number of layers, termed as deep stacking,
may lead to a substantial drop in the performance for GNNs
(Klicpera et al.| 2019; Rong et al.| 2019; L1 et al., [2020;
Chen et al.,|2020b). One explanation for this phenomenon
is the over-smoothing. By applying graph convolution re-
peatedly over many hidden layers, the representation of
the nodes will be indistinguishable. As a result, the over-
smoothing can jeopardize the performance of deep GNNs.
Another explanation is the under-reaching. When GNNs
aggregate messages over long paths, the information propa-
gation across distant nodes in the graph becomes difficult
because it is susceptible to bottlenecks (Alon and Yahav,
2020). This causes GNNSs to perform poorly in predicting
tasks that require remote interaction (Singh et all 2021}
Hwang et al., 2021)).

Many efforts have been devoted to addressing these limita-
tions. To handle the over-smoothing, DropEdge (Rong et al.,
2019) and DropNode (Huang et al.l 2021) were proposed to
randomly remove a certain number of edges or nodes from

Edge Enhanced Graph Neural Network

the input graph at each training epoch. These methods are
likened to Dropout (Srivastava et al.,|2014)), which randomly
drops hidden neurons in neural networks to prevent overfit-
ting. On the contrary, to address the under-reaching, virtual
edges (Gilmer et al., 2017), super nodes (Scarselli et al.|
2009; [Hwang et al., 2021)), or short-cut edges (Allamanis
et al., [2018)) can be added to the original graph. However,
none of the aforementioned methods consider adding or
removing based on the structural information of the graph.
Instead, the pattern of deciding which nodes or edges to
be added or removed comes from an arbitrarily random se-
lection. Although dropout has been effective in non-graph
neural networks, its random removal and addition of nodes
can disturb the graph structure, thus compromising the per-
formance of GNNSs that relies on the structure to propagate
information.

Different from the over-smoothing and under-reaching, we
propose a new explanation for performance deterioration of
deeper GNNs from the perspective of misusing edge struc-
tural information, mis-simplification, explained as follows.
Most observed graphs are recorded as simple graphs, where
self-loops are not allowed, and all edges are unweighted
and undirected (Shafiel, 2015). In a natural way, GNNs are
designed for learning such simple graphs that can be con-
structed by collapsing multiple edges into a single edge as
well as removing self-loops. This approach, however, dis-
cards the information inherent in the original network. Take
one example, for a source node connected to many neigh-
boring target nodes (see node 1 in Figure|[Ta)), its self-loop
has an equal weight to neighboring non-loop edge, which
may under-weigh the importance of this node. Take another
example, no matter how similar the two nodes are (see nodes
1 and 2 in Figure[Ta)), only one edge is allowed to connect
the pair of nodes, and as a result, the information passing
between both nodes is restricted. Furthermore, edge (1, 2)
should play a more important role in message passing than
edge (1, 3), because node 2 is a key node with 3 sub-nodes
in total, while node 3 is just a sub-node of node 2. However,
typical GNNss treat these two edges indifferently as they are
equally weighted in the simple graph. Therefore, such mis-
simplification can reduce the potential of message-passing
layers to capture structural information in GNNs.

To solve this issue, we propose an edge-enhanced graph
neural network (EEGNN), which incorporates edge struc-
tural information in the message-passing layer. First, we
assume that there is an underlying virtual multigraph, al-
lowing for self-loops and for multiple edges between pairs
of nodes, and the observed graph model can be viewed as a
transformation of the virtual multigraph. As illustrated in
Figure [T} the above Figure [Tajs the original observed sim-
ple graph, while the below Figure[Ib|is the corresponding
virtual graph. Second, to build the virtual multigraph that
can capture the edge structural information, we propose the
Dirichlet mixture Poisson graph model, a Bayesian non-

(a) The observed simple graph

(b) The corresponding virtual multigraph

Figure 1: The observed simple graph versus the virtual
multigraph. The red edges are virtual edges in the virtual
multigraph. In particular, the red circles are virtual self-
loops.

parametric model. Following |Caron and Fox| (2017), the
interactions between nodes are modelled by assigning a so-
ciability parameter to each node. Then, the counts of edges
are generated from a Poisson distribution, where the Poisson
rate is the product of sociability parameters of the nodes
in two ends. Finally, in the framework of EEGNN, we can
then replace the observed graph in a GNN with the virtual
multigraph. In this architecture, message-passing layers can
then assign weights proportionally to the importance of the
edges, thus passing the information from nodes to nodes in
a more reasonable manner.

The main contribution of our paper is fourfold.

e We outline a new explanation for the poor performance
of deep GNN:ss;

e We propose a new way to enhance existing GNN meth-
ods by utilizing the structural information of graphs;

e We propose a Bayesian nonparametric graph model
and its Monte Carlo Markov chain (MCMC) inference
procedure;

e We demonstrate the superior sample performance of
our proposal over existing methods through the experi-
ments on six real datasets and a financial application.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

2 Preliminaries

2.1 GNN and Message Passing Layer

We begin by introducing some notation. Let G = (V| E)
be a graph with node set V' = {vy,..., vy} and edge
set E = {e1,...,e g}, where |V| and |E| denote the
number of nodes and edges in G, respectively. The ad-
jacency matrix A € RIVIXIVI is defined as Ay = 1if
(vs,v5) € E and 0 otherwise. The corresponding degree ma-
trix D € RIVI*IVIis defined as D = diag(Dy, ..., Djy|),
where D; = le‘;ll A;j. We denote the data matrix by

X e R™*IVI whose j-th column corresponds to a m-
dimensional feature vector of node j.

GNN is a neural network model to process graphs for node
classification, edge prediction and graph classification (Gori
et al., 20055 |Zhou et al.| 2020} |Wang et al., [2021). Within
various GNNgs, information is exchanged between nodes and
is updated by neural networks via message passing layers
(Gilmer et al., 2017). Specifically, the initial representa-
tion, hY for node 4, is generated by a function of this node’s
features. Then, the message passing layers update the rep-
resentation based on this node’s neighbors. The message
passing contains two steps: the aggregation step and the
update step. Denote the representation for node i in layer {
by hﬁ A message passing layer in GNN can be expressed as

hit! = UPDATE(h!, AGGREGATE(R, | j € 45)), (1)

where AGGREGATE(+) denotes a permutation-invariant
function, such as the sum, mean, and maximum, to send
information from one node to another through edges, and
UPDATE(+) denotes linear or nonlinear differentiable func-
tions such as MLP, .#; denotes the neighborhood of node 7,
that is, the set of nodes directly connected to node <. For ex-
ample, the vanilla GCN uses h! ™! = O'(Z‘j‘jl P hé“Wl |
j € N; U {i}), or in matrix form, H'*! = o(PH'W')
(Kipf and Welling, 2017), APPNP uses H!*! = (1 —
a)PH' + aH (Klicpera et al., 2019), and GCNII uses
H'"' = o((1—a)PH'+aH)((1—B)I,+BW')) (Chen
et al., 2020b), where P = (D + I)"2(A+ I)(D + 1)~ 2,
H' is the representation for all nodes in layer [, o and
W are respectively the activation function and the cor-
responding weight in a neural network layer, and « and /3
are hyperparameters. The formulas above show that the
GNN treats each edge with equal weight and hence leads to
mis-simplification. In order to solve this issue, we adopt a
Bayesian nonparametric sparse graph model to generate the
virtual edges and virtual multigraph.

2.2 Bayesian Nonparametric Sparse Graph Model

In contrast with other graph models that are based on
node feature embeddings, |Caron and Fox| (2017) repre-
sent the observed graph G as a point process on R2,

3111151

(51T 1a]

(b) Dirichlet mixture Poisson graph model (DMPGM)

Figure 2: Bayesian nonparametric graph model. Figure
illustrates the model in |Caron and Fox| (2017), while Fig-
ure [2b] illustrates the proposed graph model in this paper.
The left sub-figures show the proxy for nodes, 6;s, and the
number of edges among them. The right sub-figures dis-
play the corresponding multigraph. In Figure [2b] red and
blue are used to indicate two clusters in the edges. The
circles around nodes denote self-loops. Finally, the number
of circles or links denotes the multiplicity.

G = Z” 2i,j0(9,,0;)» where Dirac function (g, g, is equal
to 1 at (6;,6,) and equal to O elsewhere, z; ; is the multi-
plicity for edge (4, j), and 0; is a proxy for node i on the
real axis, as illustrated in Figure 2a] Note that the same
definition for node ¢ is also applied to node j, but we omit
the explanation for node j to avoid redundancy. This repre-
sentation specifies the source and target nodes for each edge.
To model the possibility for two nodes constructing an edge,
a sociability parameter w; > 0 is assigned to node ¢ for each
i =1,...,|V]. Following|Aldous|(1997), the graph model
can be factorized as p(4;; = 1) = 1 — exp(—2w;w;)
fori # jand p(A;; = 1) = 1 — exp(—w?) otherwise.
This is equivalent to modelling an unobserved integer-
valued multigraph as z;; ~ Poisson(w;w;) and setting
Ajj = 1,,,42,,>0- To model the sparsity property in real
graphs, that is, | E| = o(|V/|?), the sociability is generated
from a completely random measure with infinite activity

Zij

Edge Enhanced Graph Neural Network

(Caron and Foxl,2017), such as gamma process, stable pro-
cess and inverse Gaussian process (Ghosal and Van der
Vaart, 2017). See also Appendix [A] for a short review of
completely random measures. This model allows for self-
loop and multi-edges, and thus can be used to build a virtual
multigraph. However, as the Poisson intensity is factorized
as the outer product of a vector with itself, only one feature
for each node is considered, which restricts the capability
of this model in confronting real data. To address this issue,
we propose a novel model in Section [3.1] below.

3 METHODOLOGY

3.1 Dirichlet Mixture Poisson Graph Model

To adopt the latent community information among nodes
in the graph, mixed-membership stochastic block model
(Airoldi et al.[2008]) associates each node with latent cluster
distributions. In an analogy, we add cluster-membership
features to each pair of edges instead of nodes. Specifically,
we extend the graph model in (Caron and Fox| (2017) by
proposing the following Dirichlet mixture Poisson graph
model (DMPGM),

m = (71,72,) ~ GEM(«),

[ee]
WO = Z ’LUO’i(Sei ~ CRM(KJ,U),

i=1
0
Wi = > wy,i0s, ~ TP(Wp),)
i=1
0
Zig ~ POiSSOH(Z TrWk,5 X ’LUkJ'),
k=1

Aij = min(zij + Zji7 1)]1i#j7

for 4,7,k € Nt, where GEM(«) is the distribution for
atom sizes of a Dirichlet process DP(«) and each atom
corresponds to a distinct cluster. Moreover, CRM(x, v) de-
notes a completely random measure with v¢(dw, df) =
k(df)v(dw) as its Levy measure, and I'P(H) denotes
gamma process with the base measure H. See Appendix [A]
for details of these stochastic processes. We summarize
the probabilistic generative steps as follows. First, the clus-
ter distribution 7 is assigned with a prior GEM(«), which
allows for infinitely many clusters. Second, we use a hierar-
chical structure to generate values for the node sociability
parameter in each cluster. Wy, sampled from a completely
random measure, is used as the base measure in I'P(T)
for W}, such that wy, ; belongs to gamma distribution param-
eterized by wo ;, wy; ~ Gamma(wy ;). This hierarchical
setting is designed to ensure the components in W, share
atom locations (Teh et al., [2006} [Liu et al., [2022)). Finally,
following (Caron and Fox|(2017), an undirected multigraph
2.i.j #ij0(0i,0;) is generated from a Poisson process, where
z;; 18 the Poisson-distributed multiplicity for edge (¢, 7). By

aggregating multiple edges to a single edge for each pair
of nodes and removing self-loops, a simple graph is trans-
formed from the multigraph. The corresponding adjacent
matrix A = (A;;) to the observable simple graph can then
be generated. An example of DMPGM is illustrated in

Figure 2

DMPGM can be equivalently expressed under a mixture
model framework. Specifically, a set of edges in each cluster
is sampled from Poisson(mw?), where Wy, = 220:1 W
As a consequence, this is equivalent to sampling the total
number of edges n from Poisson(\) with A = Y7 | w3,
and then assigning each edge a cluster membership from
Categorical (™ i = L). Following the same method-
ology, for each edge, a pair of nodes is then sampled from
Categorical(“=*, <>, ... in the cluster k. Hence, a re-
lationship between edges and nodes is constructed. We
summarise this equivalent expression for DMPGM as fol-
lows,

o8]
n~ Poisson(Z T 3),
k=1
—92 —2
. 1w DX 3
k~Categorlcal(! L, 2 2,-~-)a ®
A A
i,j ~ Categormal(#7 ¥7 X ')a
Wy Wi

where other structures in equation (2)) remain the same. In
Appendix [C] we show that DMPGM enjoys similar proper-
ties as the model in|Caron and Fox|(2017) in the following
theorem.

Theorem 1 The graph constructed by DMPGM is sparse if
CRM in (2) has infinite activity.

For example, using the gamma process as the completely
random measure leads to a sparse graph in the DMPGM,
which makes it more effective for modeling real-life data.

It is worth noting that DMPGM extends the model in |Caron
and Fox|(2017) by assuming that edges can belong to differ-
ent clusters. As a result, DMPGM is more flexible and ap-
plicable in modelling real data. We also note that DMPGM
is distinct from the overlapping communities graph model
(Todeschini et al.| 2020) and graph Poisson factorization
(Zhou, 2015)), because we assign a Dirichlet prior for the
clustering distribution, and hence can allow a nonparamet-
ric estimation of the number of edge clusters. Moreover,
Williamson| (2016) uses the hierarchical Dirichlet process
(HDP) (Teh et al., |2006) to construct the graph. However,
as HDP only models the node distribution within a cluster,
the number of edges is ignored. As a result, this model
cannot be used for EEGNN framework. Finally, a genera-
tive model that shares some fundamental similarities with
DMPGM is proposed by Ricci et al.|(2022). However, this
concurrent work does not investigate the use of a Bayesian
nonparametric graph model to improve GNNs.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

3.2 MCMC Inference Framework

We propose a detailed MCMC framework to infer the pos-
teriors for DMPGM in a nonparametric way. Following
Caron and Fox| (2017) and|Liu et al.|(2022)), the posterior
distribution for Wy, = 202 | wy, ;0g,, k > 0, are restricted
to the weights {wy, ; } because the locations {6;} of both ob-
served and unobserved nodes are not likelihood identifiable,
thus being ignored. Moreover, given the observed nodes
set V, the weights for each W}, are truncated to a (|V| +
1)-dimensional vector, wy = (Wk,0, Wk,1,- -, Wk, |v|)"
where wy, ; corresponds to the weight on an observed node
iforl < i < |V, and wy is the sum of weights for
all unobserved nodes. Similarly, the posterior distribu-
tion for 7 is truncated to a (K + 1)-dimensional vector,
7 = (mo,71,...,7K)", where K is the truncated number
of clusters and is inferred adaptively in Step 4 below, and
7 corresponds to the cluster without any observation. Con-
sequently, given the truncation levels |V| and K for W}
and 7, respectively, DMPGM contains the following pa-
rameters to infer: 7, {wy }x>0, 2 = {2i;}a,,-1 and cluster
membership ¢ = {ciji}a,,=1,1<i<z,;-

We next propose a MCMC inference framework that can in-
fer the number of edge clusters in a Bayesian nonparametric
manner in the following steps.

Step 1 Update wo,1, ..., wo,|v||Wo, 2, ¢ using Hamilto-
nian Monte Carlo (Kroese et al., [2011)), where wg =
ZLZ'O wo,; with the log-posterior and its gradient pro-
vided in Appendix

Step 2 Update wy 1, ..., wy v||Wk, wo, 2z,¢ for k =

1,..., K given the conjugacy, where wy, = Zl‘jo W 5.

We sample Wy ; ~ Dirichlet(vg, v1, ..., v)y|), where

Vi VI s
Vi = Wo,; + 2551 ki Tyt = D35 2y i lesi=k +

1.,,,=k}, and then compute wy, ; = Wy Wy ;.

Step 3 Update g, 71,...,TK|z,¢ using the con-
jugacy. Analogous to Step 2, we sam-
ple m, ~ Dirichlet(ng,nq,...,nx), where
n, = SV ‘J.V=‘1 [1y, —p for k> 0 and

ng = .

Step 4 Update the latent edge cluster membership
cijil{wg tx=o0, 7 for each pair (7, j) such that A;; =1
and for ! = 1,..., z;. For each edge we sample from
the multinomial distribution p(c;;; = k) o€ mpwg jwy 5
fork = 0,1..., K. In this step, if kK = 0 is sampled,
we add a new cluster (Teh et al., 20065 |Bryant and
Sudderth, 2012; [Liu et al., 2022), and increase the
truncated number of clusters from K to K + 1.

Step 5 Update the unobserved z; |
Truncated—Poisson(Z,CK=0 Trwg,wy,;) for each pair
(i,7) such that A;; = 1, where truncated Pois-
son is a conditional probability distribution of a

T, Wi ~

Poisson-distributed random variable with strictly posi-
tive counts (Cohenl, [1960).

Step 6 Update the wy, and wy using Metropolis—Hastings
(Kroese et al., 2011) algorithm based on the log-
posterior provided in Appendix

We iterate over Steps 1-6 until convergence. For the MCMC
algorithm, the global variables are updated in linear time,
and the Monte Carlo step iteratively samples from K clus-
ters. Therefore, the computational complexity is dominated
by O(K max{|V|, |E]}).

3.3 Edge Enhanced Message Passing

In conventional message passing layers built from a sim-
ple graph, information for node ¢ is obtained from edges
connected to its neighboring nodes in .#; and from its self-
loop. In these layers, each edge (i,j) for j € ; u {i}
has equal weight, resulting in mis-simplification of the more
complex structural information for the GNN, as described in
Section[I] To overcome this mis-simplification, we sample
artificial edges given the estimated DMPGM, from which
we construct a virtual multigraph

G* = (V,E,T), 7‘((7»7])) = Zij, (4)

where the multiplicity-map r : £ — NT assigns to each
edge an integer to represent its multiplicity, and z;; in
DMPGM is defined in (2) and is inferred from Step 5 in
Section[3.2] In this way, we can extract the edge structural
information, via the inferred multiplicity for each edge, us-
ing the DMPGM model to build the virtual multigraph. For
example, as illustrated in Figure[I] two artificial self-loops
are added to nodes 1, one artificial self-loop is added to
nodes 2, and the edge (1, 2) is assigned with multiplicity 2,
where the multiplicity is determined by 217 = 2, 290 = 1
and z12+ 291 = 2, respectively. We then replace the original
simple graph in the message passing layers by the generated
virtual multigraph, that is,

hi+1 —UPDATE' (b, 7(i, 1),

&)
1/11 .o .

AGGREGATE! (h!, 7 (i, 5) | j €).
For example, for GCN, APPNP and GCNII, we replace P
by P, where P is defined as

J

In addition, as the virtual multigraph already contains self-
loops, there is no need to add the self-loops again to the
message passing layers. This is different from conventional
GNNs, where the self-loops are often added and forced
to be a single edge. Though GIN (Xu et al., 2019) and

Edge Enhanced Graph Neural Network

JKNet (Xu et al.| [2018)) also assign different weights for
self-loops empirically, we are the first to propose a method
to systematically determine the relative weights for self-
loops and other edges.

In summary, conditional on the updated parameters of
DMPGM in each iteration, we sample the multiplicity of
each edge. Then a set of multiedges and self-loops are gen-
erated from DMPGM, which can be used to build a virtual
graph and update GNN trainable parameters. We present
the proposed EEGNN algorithm in Algorithm 1]

Algorithm 1: EEGNN Algorithm
Iterate Step 1 to Step 6 in Section [3.2]till the MCMC
chains converge.
Set up initialization of trainable parameters in EEGNN.
repeat
1. Build the virtual graph and sample P according to
@. ~
2. Use P to replace P,
3. Update GNN parameters using the gradient descent,
4. Obtain a new sampling for the parameters in
DMPGM by implementing Step 1 to Step 6,
until the convergence of the loss function of EEGNN

It is worth noting that we opted not to employ the stochastic
block model in our study as it produces only dense graphs
where the number of edges increases proportionally to the
square of the number of nodes, whereas real-world networks
tend to be sparse (Caron and Fox| |2017). Moreover, the
stochastic block model does not allow for constructing a
virtual multi-graph on edges. To build the virtual multi-
graph, it is needed to use a statistical model on edges instead
of on nodes.

3.4 Comparison with Other Methods

Our proposed method, EEGNN, addresses the performance
deterioration of deep GNNs by using the structural infor-
mation extracted from a Bayesian nonparametric graph
model, DMPGM, to improve the performance of various
deep message-passing GNNs. This is in contrast to rele-
vant methods such as the attention and edge-label guided
GNNSs (Zhou et al,[2022) and edge-enhanced graph convolu-
tion networks (Cui et al.| 2020), which focus on integrating
syntactic dependency or dependency label information into
GCN to perform event detection or named entity recogni-
tion, respectively. Edge-feature-enhanced GNNs (Gong and!
Chengl 2019), another competing method, focuses on inte-
grating edge features instead of extracting edge information
based on the observed graph in an unsupervised-learning
fashion. Our EEGNN framework differs from these meth-
ods as it addresses the issue of mis-simplification in deep
GNNs and uses structural information from DMPGM to
improve performance.

4 EXPERIMENTS

4.1 Datasets and Bayesian Estimation

In this section, we demonstrate through real data examples
that EEGNN can effectively use the edge structural infor-
mation to improve the performance for various GNNs. We
conduct empirical experiments to compare EEGNN with
representative baselines across six well-established network
datasets. First, Cora, Citeseer, and PubMed are standard
benchmark datasets for citation networks (Yang et al.|[2016).
In these networks, nodes represent papers, and edges indi-
cate cross citations between papers. Node features are the
bag-of-words embedding of the contents, and node labels
are academic subjects. Second, Texas, Cornell, and Wis-
consin are webpage cross-link networks (Pei et al., [2020).
Their nodes represent web pages of universities, and edges
represent hyperlinks between them. Node features are bag-
of-words embedding of the websites. Node labels contain
five categories for the webs including students, projects,
courses, staff, and faculty. Statistics for these datasets are
summarized in in Table[T}

Table 1: Graph datasets statistics.

Dataset Cora Citeseer PubMed Texas Wisconsin Cornell

Nodes 2,708 3,327 19,717 183 183 183
Edges 5,429 4,732 44,338 309 499 295
Degrees 3.88 2.84 450 3.38 5.45 3.22
Features 1,433 3,703 500 1,703 1,703 1,703
Classes 7 6 3 5 5 5

Our experiments are implemented by using a gamma pro-
cess as the completely random measure in (2)). Following
Section [3.2] we infer the parameters of DMPGM using
MCMC in the following way. We use population based
training (Jaderberg et al.,|[2017) to tune the hyperparame-
ters in DMPGM. For each dataset, we grow the MCMC
chain up to 50,000 epochs. Figures [3aand 3b|display the
log-likelihood and number of clusters with respect to train-
ing epochs for the Texas dataset. (The training results for
the other datasets are shown in Appendix [D]) Figure [34]
shows that the log-likelihood of 7exas for the DMPGM
converges after 10,000 epochs. Moreover, benefiting from
the Bayesian nonparametric model, we can infer the num-
ber of edge clusters in a data-adaptive manner (Liu et al.|
2022). Figure [3b|shows that the inferred number of edges
per node (termed as multiplicity of virtual edges per node)
rises from an initial value of 10 to 50 at the start of training
and then converges to around 35. The inferred edge multi-
plicity is displayed in the histograms in Figure These
histograms show that a large proportion of the edges in the
observed graph have underlying multi-edges, suggesting the
mis-simplification in the original observed graph.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

—3200 {

—3400 4

—3600

—3800 1

log likelihood

—4000 4

—4200 4

T T T T T T
0 10000 20000 30000 40000 50000
iterations

(a) The training log likelihood of DMPGM

number of clusters
N) w w 3
o w o v [=]

=
&

T T T T T T
o 10000 20000 30000 40000 50000
iterations

(b) The inferred number of edge clusters

10 15 2.0 2.5 3.0 35 4.0 4.5

(c) Histogram of the expected multiplicity of virtual edges

Figure 3: The MCMC inference results for 7exas.

4.2 Comparison with Baselines

With the inference results of DMPGM, following Sec-
tion[3.3] we implement the experiments to compare baseline
GNNs and their edge enhanced versions. For the baseline

GNNs, we chose SGC and its variant,
including APPNP (Klicpera et al.,[2019) and GCNII

2020a)), and hence name their edge enhanced versions
as EE-SGC, EE-APPNP and EE-GCNII, respectively. To

make a fair comparison, we follow the settings of the ‘sweet
point” GNN hyperparameter configuration in
for all datasets. The details of these hyperparameter
settings are collected in Appendix [E] For all experiments,
the GNNS are trained with a maximum of 1000 epochs and
an early stopping patience of 100 epochs. To analyze the ef-
fect of EEGNN with different numbers of layers, we run the
experiments for 2, 16, 32 and 64 layers. We randomly split
node features in each dataset into training and test sets, train
the baseline GNNs and the edge enhanced versions using
the same training set, and then compute the node clustering
accuracy on the test set. In the transductive learning frame-
work for GNNE, it is noted that the edge information is not
partitioned as described in [Kipf and Welling| (2017)). We re-
peat this procedure 50 times for each model and dataset. The
mean predictive accuracy and the corresponding standard
deviation are reported in Table 2]

We observe a few apparent patterns. First, EEGNN can im-
prove the performance of the baseline models in most cases.
For example, SGC, the backbone GNN for various models,
performs poorly with 32 layers (see Table 2c). However,
with the aid of our EEGNN framework, the accuracy of the
SGC model is increased by more than 6% for Cora, and by
approximately 2% across other candidate datasets. More-
over, SGC performs even worse with 64 layers for Cora
and Pubmed (see Table[2d). EEGNNG largely improve the
prediction accuracy in both cases, by 9.89% and 23.30%,
respectively. It is worth noting that the improvements are
attained without changing any other settings. As using
virtual multigraph or observed simple graph brings in the
only difference, this provides strong evidence to reveal that
EEGNN can be used as a tool to enhance baseline GNNs by
alleviating the mis-simplification problem.

Second, for APPNP and GCNII, EEGNNs achieve similar
accuracies on the Cora, Citeseer and PubMed datasets, but
substantially improve the performance on Texas, Wisconsin
and Cornell. Especially, with 64 layers, EE-GCNII for Texas
leads to more than 6% improvement, and EE-APPNP for
Citeseer results in more than 10% increase in the predictive
accuracy. On the other hand, as APPNP and GCNII have
already reached relatively high accuracy (approximately
70% — 80%) on the Cora, Citeseer and PubMed, further
enhancement to higher accuracy tends to be difficult.

Finally, we observe that EEGNN has a larger impact on
the performance of deeper SGC on the Cora, Citeseer and
PubMed. With only 2 layers, edge enhanced versions behave
slightly worse than baseline models. However, with 32 or
64 layers, EEGNNs achieve considerable improvements.
This is because the mis-simplification applies to all layers.
Therefore, the distortion of edge structural information is
accumulated from the first to the last layer, resulting in
severe performance deterioration.

Edge Enhanced Graph Neural Network

Table 2: Results on real datasets: mean accuracy (%) + standard deviation (%)

(a) Number of layers: 2

Cora Citeseer PubMed Texas Wisconsin Cornell
SGC 77.01+0.34 69.18+0.35 75.46+0.28 56.16+4.99 48.59+6.59 57.84+2.76
EE-SGC 76.78+0.29 69.60+0.37 75.80+0.21 61.24+6.48 53.45+8.95 58.92+3.55
APPNP 82.22+0.39 71.73+0.76 79.41+0.48 61.41+527 52.55+7.44 57.73+2.74
EE-APPNP 81.484+0.47 71.45+0.54 78.90+0.52 66.80+3.74 66.23+2.93 60.17+6.00
GCNII 82.21+0.67 67.65+0.96 77.91+1.71 61.35+8.18 72.51+4.91 74.22+8.75
EE-GCNII 81.94+0.51 81.484+0.59 77.30+0.97 64.22+9.02 70.94+6.10 75.68+9.78
(b) Number of layers: 16
Cora Citeseer PubMed Texas Wisconsin Cornell
SGC 73.11+0.43 67.79+0.56 70.45+0.17 56.274+4.92 48.63+6.62 57.84+2.76
EE-SGC 73.07+0.34 68.55+0.35 70.60+0.25 59.96+6.46 50.59+8.72 57.84+2.76
APPNP 83.70+0.20 72.51+0.52 80.42+0.30 60.76+5.05 53.29+7.09 57.68+2.79
EE-APPNP 83.4740.66 73.20+0.92 77.90+0.36 66.08+4.62 66.08+3.17 61.30+7.18
GCNII 84.77+0.37 72.30+0.80 78.60+0.52 66.38+8.69 70.71+2.40 74.49+8.98
EE-GCNII 84.104+0.57 72.50+1.40 78.81+0.66 73.30+3.85 78.94+4.90 75.24+8.08
(c) Number of layers: 32
Cora Citeseer PubMed Texas Wisconsin Cornell
SGC 59.94+0.56 66.17+0.50 68.97+0.19 56.16+4.99 48.59+6.59 57.84+2.76
EE-SGC 66.46+0.83 67.68+0.44 70.68+0.68 59.46+6.16 50.59+8.72 58.92+3.15
APPNP 83.55+0.50 72.11+0.64 80.22+0.34 61.57+5.28 52.71+7.34 57.78+2.75
EE-APPNP 83.79+0.39 72.47+0.53 79.23+0.27 66.00+4.33 66.39+3.09 61.84+7.56
GCNIIL 85.34+0.53 73.26+0.86 79.89+0.33 70.49+5.48 69.06+2.70 74.05+8.56
EE-GCNII 85.70+0.41 73.45+1.40 79.72+0.43 75.24+3.72 79.37+0.43 74.86+7.84
(d) Number of layers: 64
Cora Citeseer PubMed Texas Wisconsin Cornell
SGC 25.65+1.93 63.08+0.52 40.98+1.73 56.16+4.99 48.55+6.58 57.84+2.76
EE-SGC 35.54+1.36 65.42+0.17 64.28+0.82 59.46+6.16 50.31+8.42 58.92+3.15
APPNP 83.584+0.49 72.10+0.48 80.42+0.42 61.19+529 53.06+7.10 57.68+2.74
EE-APPNP 83.76+0.41 72.16+0.65 79.94+0.22 66.00+4.08 66.63+3.12 61.75+7.43
GCNII 85.46+0.31 73.44+1.00 80.08+0.37 69.57+5.70 68.63+1.05 73.194+8.83
EE-GCNII 85.54+0.59 72.24+1.26 79.93+046 75.62+3.65 76.57+3.89 73.26+7.39

4.3 Application in Financial Data

GNN is widely used in the financial industry for the predic-
tion of stock and bond prices (Wang et al., 2021} Sharma!
and Sharmal 2020; Feng et al.| [2022). To evaluate the ef-
ficacy of EEGNN in real-world financial data, we conduct
an empirical study using EE-SGC to replace SGC in the
current literature and then make a comparison. We use the
component stocks from the ‘FTSE UK 50 index’ with high
capitalization and complete records between 2016-01-01
and 2017-12-31. We first construct the graph based on the
Pearson correlations between stock returns, by connecting
two stocks if their correlation is larger than 0.3. As shown in
Figure 4] stocks, indicated by nodes are connected accord-
ing to their pairwise correlation. Then, we build a learning

pipeline using a sequential model of a long short-term mem-
ory (LSTM) network, SGC/EE-SGC, and a fully-connected
layer. The model was trained using the data in 2016 and
tested on the data in 2017. Moreover, the historical returns
were used as input data, and the mean squared error be-
tween the model outputs and the realized next-day returns
was used as the loss function. The Long 20% strategy is
adopted to build the portfolio as described in|Pacreau et al.
(2021)). For each trading day, we build a long only portfolio
consisting of the top 20% stocks according to the predictive
returns. The accumulated returns of the portfolio are shown
in Figure [5] where the initial portfolio value is set to be
$100. The results show that the portfolio constructed using
EEGNN, which achieved better predictive accuracy, had
higher returns.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

ANTO

Figure 4: The graph between FTSE UK 50 component
stocks. Nodes in green denote individual stocks with their
abbreviations in capital letters.

— SGC
EESGC
120 A

p

100 -

H
=)
o

H
B
o

cumlative returns

=
o
o

T T T T T T T
2017-01 2017-03 2017-05 2017-07 2017-09 2017-11 2018-01
time

Figure 5: The comparison of cumulative returns using SGC
and EE-SGC.

S CONCLUSION

This paper presents a novel explanation for the performance
deterioration of deeper GNNS: mis-simplification. We pro-
pose DMPGM, a Bayesian nonparametric graph model and
its MCMC inference framework. Using the information ob-
tained from DMPGM, we replace the original simple graph
by the virtual graph, and use the virtual graph to aggregate
the information in the graph. The experiments over various
real datasets demonstrate that EEGNN can improve the per-
formance of baseline GNN methods. Our paper paves a new
way to use information extracted by statistical graph mod-
elling to improve the performance of GNNs. One limitation
of our proposal is that EEGNN only adds the virtual edges
to the observed graph without removing edges according
to the structural information. It is left for future work to
develop a framework that allows to add and remove edges
with the structural information simultaneously.

Acknowledgments

We thank the anonymous reviewers for their useful com-
ments during the review process.

Opinions expressed in this paper are those of the authors,
and do not necessarily reflect the view of J.P. Morgan. Opin-
ions and estimates constitute our judgement as of the date
of this Material, are for informational purposes only and are
subject to change without notice. This Material is not the
product of J.P. Morgan’s Research Department and there-
fore, has not been prepared in accordance with legal require-
ments to promote the independence of research, including
but not limited to, the prohibition on the dealing ahead of
the dissemination of investment research. This Material is
not intended as research, a recommendation, advice, offer
or solicitation for the purchase or sale of any financial prod-
uct or service, or to be used in any way for evaluating the
merits of participating in any transaction. It is not a research
report and is not intended as such. Past performance is
not indicative of future results. Please consult your own
advisors regarding legal, tax, accounting or any other as-
pects including suitability implications for your particular
circumstances. J.P. Morgan disclaims any responsibility or
liability whatsoever for the quality, accuracy or complete-
ness of the information herein, and for any reliance on, or
use of this material in any way. Important disclosures at:
www.jpmorgan.com/disclosures.

References

Airoldi, E. M., Blei, D. M., Fienberg, S. E., and Xing, E. P.
(2008). Mixed membership stochastic blockmodels. Jour-
nal of Machine Learning Research, 9(65):1981-2014.

Aldous, D. (1997). Brownian excursions, critical random
graphs and the multiplicative coalescent. The Annals of
Probability, 25(2):812-854.

Allamanis, M., Brockschmidt, M., and Khademi, M. (2018).
Learning to represent pograms with graphs. In Interna-
tional Conference on Learning Representations.

Alon, U. and Yahav, E. (2020). On the bottleneck of graph
neural networks and its practical implications. In Interna-
tional Conference on Learning Representations.

Bryant, M. and Sudderth, E. B. (2012). Truly nonparamet-
ric online variational inference for hierarchical Dirichlet
processes. In Advances in Neural Information Processing
Systems 25, pages 2699-2707.

Caron, F. and Fox, E. B. (2017). Sparse graphs using ex-
changeable random measures. Journal of the Royal Sta-
tistical Society: Series B, 79(5):1295-1366.

Chen, B., Bécigneul, G., Ganea, O.-E., Barzilay, R., and
Jaakkola, T. (2021a). Optimal transport graph neural
networks. arXiv:2006.04804.

Chen, D., Lin, Y., Li, W., Li, P., Zhou, J., and Sun, X.
(2020a). Measuring and relieving the over-smoothing

Edge Enhanced Graph Neural Network

problem for graph neural networks from the topological
view. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3438-3445.

Chen, M., Wei, Z., Huang, Z., Ding, B., and Li, Y. (2020b).
Simple and deep graph convolutional networks. In Pro-
ceedings of the 37th International Conference on Ma-
chine Learning, pages 1725-1735. PMLR.

Chen, T., Zhou, K., Duan, K., Zheng, W., Wang, P., Hu,
X., and Wang, Z. (2021b). Bag of tricks for training
deeper graph neural networks: a comprehensive bench-
mark study. arXiv:2108.10521.

Cohen, A. C. (1960). Estimating the parameter in a condi-
tional poisson distribution. Biometrics, 16(2):203.

Cui, S., Yu, B,, Liu, T., Zhang, Z., Wang, X., and Shi, J.
(2020). Edge-enhanced graph convolution networks for
event detection with syntactic relation. In Findings of
the Association for Computational Linguistics: EMNLP
2020, pages 2329-23309.

Feng, S., Xu, C., Zuo, Y., Chen, G., Lin, F., and XiaHou,
J. (2022). Relation-aware Dynamic Attributed Graph
Attention Network for Stocks Recommendation. Pattern
Recognition, 121:108119.

Ferguson, T. S. (1973). A Bayesian analysis of some non-
parametric problems. The Annals of Statistics, 1(2):209—
230.

Ghosal, S. and Van der Vaart, A. (2017). Fundamentals of
Nonparametric Bayesian Inference. Cambridge Univer-
sity Press, Cambridge.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. (2017). Neural message passing for quan-
tum chemistry. In International Conference on Machine
Learning, pages 1263-1272.

Gong, L. and Cheng, Q. (2019). Exploiting edge features for
graph neural networks. In Proceedings of the IEEE/CVF
conference on Computer Vision and Pattern Recognition,
pages 9211-9219.

Gori, M., Monfardini, G., and Scarselli, F. (2005). A new
model for learning in graph domains. In Proceedings.
2005 IEEE International Joint Conference on Neural
Networks, 2005., volume 2, pages 729-734.

Hamilton, W., Ying, Z., and Leskovec, J. (2017). Inductive
representation learning on large graphs. In Advances in
Neural Information Processing Systems, volume 30.

Hamilton, W. L. (2020). Graph representation learning.
Synthesis Lectures on Artificial Intelligence and Machine
Learning, 14(3):1-159.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep
residual learning for image recognition. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition,
pages 770-778.

Huang, K., Xiao, C., Glass, L. M., Zitnik, M., and Sun, J.
(2020). SkipGNN: Predicting molecular interactions with
skip-graph networks. Scientific Reports, 10(1):1-16.

Huang, W., Rong, Y., Xu, T., Sun, F., and Huang, J. (2021).
Tackling over-smoothing for general graph convolutional
networks. arXiv:2008.09864.

Hwang, E., Thost, V., Dasgupta, S. S., and Ma, T. (2021).
Revisiting virtual nodes in graph neural networks for link
prediction.

Jaderberg, M., Dalibard, V., Osindero, S., Czarnecki, W. M.,
Donahue, J., Razavi, A., Vinyals, O., Green, T., Dunning,
I., Simonyan, K., and others (2017). Population based
training of neural networks. arXiv:1711.09846.

Ji, S., Pan, S., Cambria, E., Marttinen, P., and Philip, S. Y.
(2021). A survey on knowledge graphs: Representation,
acquisition, and applications. /EEE Transactions on Neu-
ral Networks and Learning Systems, 33(2):494-514.

Kingman, J. F. C. (1993). Poisson Processes. Clarendon
Press, Oxford.

Kipf, T. N. and Welling, M. (2017). Semi-supervised classi-
fication with graph convolutional networks. In Interna-
tional Conference on Learning Representations.

Klicpera, J., Bojchevski, A., and Giinnemann, S. (2019).
Predict then propagate: Graph neural networks meet per-
sonalized PageRank. In International Conference on
Learning Representations.

Krizhevsky, A., Sutskever, 1., and Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. In Advances in Neural Information Processing
Systems, volume 25.

Kroese, D. P., Taimre, T., and Botev, Z. 1. (2011). Handbook
of Monte Carlo Methods. Wiley.

Li, G., Xiong, C., Thabet, A., and Ghanem, B. (2020).
DeeperGCN: All you need to train deeper GCNs.
arXiv:2006.07739.

Li, Y., Tarlow, D., Brockschmidt, M., and Zemel, R. S.
(2016). Gated graph sequence neural networks. In Inter-
national Conference on Learning Representations.

Liu, Y., Qiao, X., and Lam, J. (2022). CATVI: Conditional
and adaptively truncated variational inference for hierar-
chical bayesian nonparametric models. In Proceedings
of the 25th International Conference on Artificial Intelli-
gence and Statistics, pages 3647-3662.

Pacreau, G., Lezmi, E., and Xu, J. (2021). Graph neural
networks for asset management. SSRN Scholarly Paper.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
(2020). Geom-gcn: Geometric graph convolutional net-
works. In International Conference on Learning Repre-
sentations.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

Ricci, F. Z., Guindani, M., and Sudderth, E. B. (2022).
Thinned random measures for sparse graphs with over-
lapping communities. In Advances In Neural Information
Processing systems.

Rong, Y., Huang, W., Xu, T., and Huang, J. (2019). DropE-
dge: Towards Deep Graph Convolutional Networks on
Node Classification. In International Conference on
Learning Representations.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. (2009). The graph neural network model.
IEEE Transactions on Neural Networks, 20(1):61-80.

Shafie, T. (2015). A multigraph approach to social network
analysis. Journal of Social Structure, 16(1):1-21.

Sharma, S. and Sharma, R. (2020). Forecasting Transac-
tional Amount in Bitcoin Network Using Temporal GNN
Approach. In International Conference on Advances in
Social Networks Analysis and Mining, pages 478-485.

Singh, A., Huang, Q., Huang, S. L., Bhalerao, O., He, H.,
Lim, S.-N., and Benson, A. R. (2021). Edge proposal sets
for link prediction. arXiv:2106.15810.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, 1.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overfitting. Journal of
Machine Learning Research, 15(56):1929—-1958.

Teh, Y. W., Jordan, M. 1., Beal, M. J., and Blei, D. M. (2006).
Hierarchical Dirichlet processes. Journal of the American
Statistical Association, 101(476):1566-1581.

Todeschini, A., Miscouridou, X., and Caron, F. (2020). Ex-
changeable random measures for sparse and modular
graphs with overlapping communities. Journal of the
Royal Statistical Society: Series B, 82(2):487-520.

Velickovié, P., Cucurull, G., Casanova, A., Romero, A., Li0,
P., and Bengio, Y. (2018). Graph attention networks. In
International Conference on Learning Representations.

Wang, J., Zhang, S., Xiao, Y., and Song, R. (2021). A
Review on graph neural network methods in financial
applications. arXiv:2111.15367.

Williamson, S. A. (2016). Nonparametric network mod-
els for link prediction. Journal of Machine Learning
Research, 17(202):1-21.

Wu, F,, Souza, A., Zhang, T., Fifty, C., Yu, T., and Wein-
berger, K. (2019). Simplifying graph convolutional net-
works. In International Conference on Machine Learning,
pages 6861-6871.

Wu, Z., Pan, S., Chen, F,, Long, G., Zhang, C., and Philip,
S. Y. (2020). A comprehensive survey on graph neural
networks. IEEFE Transactions on Neural Networks and
Learning Systems, 32(1):4-24.

Xu, F, Yao, Q., Hui, P, and Li, Y. (2021). Automorphic
wquivalence-aware graph neural network. In Advances
in Neural Information Processing Systems, volume 34.

Xu, K., Hu, W,, Leskovec, J., and Jegelka, S. (2019). How
powerful are graph neural networks? In International
Conference on Learning Representations.

Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K.-i.,
and Jegelka, S. (2018). Representation learning on graphs
with jumping knowledge networks. In International Con-
ference on Machine Learning, pages 5453-5462.

Yang, Z., Cohen, W., and Salakhudinov, R. (2016). Revis-
iting semi-supervised learning with graph embeddings.
In International conference on Machine Learning, pages
40-48. PMLR.

You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., and Shen, Y.
(2020). Graph contrastive learning with augmentations.
In Advances in Neural Information Processing Systems,
volume 33, pages 5812-5823.

Zhang, W., Sheng, Z., Jiang, Y., Xia, Y., Gao, J., Yang,
Z., and Cui, B. (2021). Evaluating deep graph neural
networks. arXiv:2108.00955.

Zhou, J., Cui, G., Hu, S., Zhang, Z., Yang, C., Liu, Z., Wang,
L., Li, C., and Sun, M. (2020). Graph neural networks: A
review of methods and applications. Al Open, 1:57-81.

Zhou, M. (2015). Infinite edge partition models for over-
lapping community detection and link prediction. In
Proceedings of the 18th International Conference on Ar-
tificial Intelligence and Statistics, pages 1135-1143.

Zhou, R., Xie, Z., Wan, J., Zhang, J., Liao, Y., and Liu, Q.
(2022). Attention and edge-label guided graph convolu-
tional networks for named entity recognition. In Proceed-
ings of the 2022 Conference on Empirical Methods in
Natural Language Processing, pages 6499-6510.

Supplementary Material for ‘EEGNN: Edge Enhanced Graph Neural Network
with a Bayesian Nonparametric Graph Model’

This supplementary material contains a short review of completely random measures in Appendix [A] the details of MCMC
steps in Appendix [B] technical proofs and derivations in Appendix|C] the results of MCMC for several datasets in Appendix[D]
hyperparameter settings in Appendix [E| and computational complexity analysis and code in Appendix [F}

A Completely Random Measure

Completely random measures (Ghosal and Van der Vaart, 2017), including gamma process, inverse Gaussian process and
stable process, are commonly used as priors for infinite-dimensional latent variables in Bayesian nonparametric models,
because their realizations are atomic measures with countable-dimensional supports. Suppose that (£2, &) is a Polish sample
space, © is the set of all bounded measures on (2,) and ./ is a o-algebra on ©. A complete random measure from
(O,) into (2, F) can be characterized by its Laplace transform (Kingman,|1993),

B) =ep{ | | a—eulanan),

where A is any measurable subset of 2 and v¢(dz, ds) is called the intensity measure. If v¢(dz, ds) = k(dx)v(ds), where
(+) and v(+) are measures on €2 and (0, oo], respectively, the completely random measure is homogeneous and v(-) is called
the Lévy measure. If Sgo v(ds) = oo, the complete random measure is finite activity.

We can view this completely random measure as a Poisson process on the product space Q2 x (0, 0] using the intensity
measure and denote this completely random measure as CRM(k, v). For example, the gamma process I'P(x) has Lévy
measure v(ds) = s~ te~*ds such that Q(A) ~ I'(k(A),1) if @ ~ I'P(k), where I'(«,) is a gamma distribution with
density %xo‘_le_ﬂm. Therefore, its normalization, Dirichlet process P ~ DP(x) (Ferguson,|1973) satisfies

(P(Ay), ..., P(A,)) ~ Dirichlet(k(A1), ..., (Ay))

for any partition 2 = (A;,..., A,), where | J;_; A; = Qand A; (| 4; = & for any 7 and j. Griffiths—Engen-McCloskey
(GEM) distribution, which is the distribution of the weights in a Dirichlet process. For (71,72, - -) ~ GEM(a), it can be
sampled by 7; = g; H;: g1, where g; ~ Beta(1, «) independently (Ghosal and Van der Vaart, 2017).

B MCMC technical details and derivations

B.1 Derivations for Step 1

With the setup of DMPGM in (2)) and the formula of moments for Dirichlet-multinomial distribution, we obtain that

4

N
r +
p(wo,1, ..., wo v | Wo, 2, €) o€ HPU;(W))1—[(wo,i + 1) vam 'u(wo—Zwo,i),
0 i=1

o + Nk I'(wo ;) 1

where ny, ; Zlv‘l Y {e,, =k + Le;, =k}, v(-) is the weight intensity measure for the complete random measure of
Wo, and u() is the density function for Wy (2) that can be derived using its Laplace transform. To infer the posterior
distributions for these parameters, we present the gradient of the log-posterior with respect to wg, which will be used in
Hamiltonian Monte Carlo,

V| K
Ve logp(wo,1, ..., wo v | Wo, 2, €) Z 2 (nki + woi) — ®(wos)}

V] 14

+ Z Vw(],i IOgv(woyi) + vwo,i log ’U,('LT)O - Z wO,i)7
i=1 i=1

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

where @ is the digamma function.

B.2 Derivations for Step 6

By the formulas of the densities for Poisson distribution and gamma distribution, we have that

—2\Nnk 77!‘),;’@2
o (mpwi)™ e R 1
w Wo, T, C, 2) L . w (& .
p(k | 0,7,6C,) nk' P(U_)()) k
Therefore, the log-posterior with respect to wy, is
log p(wy, | wo, 0, ¢, 2) = (2ng + Wo — 1) log Wy, — Wy, — Wi, + constant.

Similarly, following|Caron and Fox| (2017 and |[Liu et al.| (2022), we obtain that

K
]. 0o —1 T
p(wg | wg, T, €, 2) o —w,; ° e " - u(wp).
(0|) 1 gyt (o)
and hence the corresponding log-posterior is
K
log p(wg | Wk, 7, ¢, z) = logu(wy) + Wy Z log(wy,) — K logI'(wg) + constant.
k=1

C Technical Proofs and Derivations

C.1 Proof of Theorem[Il

The proof for Theorems 3 and 4 in|Caron and Fox|(2017) can be directly adapted to DMPGM, Therefore, we only provide a
sketch of the proof. First, we show that Theorem 3 in|Caron and Fox|(2017) also holds for DMPGM. We use

Dij | {Wi} ~ Poisson(> mWi([i — 1, i)W([j — 1,4])),
k
to replace (54) in Appendix C.2 of |Caron and Fox|(2017). Consequently, (55) holds because for any k£ we have
Wi ([0, a])/Wo([0, ¢]) = O(1) almost surely as o — 0. (B.1)
Second, we show that Theorem 4 in|Caron and Fox|(2017) also holds for DMPGM. Specifically, (59) becomes
1
X, | {WIEQ)} ~ Poisson[iw{W(cS’,?))}],

so that (62) in (Caron and Fox| [2017) can be achieved by (B.I)). Finally, we complete the proof of Theorem [I|for DMPGM
by keeping the remaining parts of the proof of Theorem 4 in|Caron and Fox|(2017) unchanged.

D Inference results for DMPGM

The log likelihood and the number of edge clusters in the training process are shown in Figure[6]and Figure[7] respectively.
The inferred edge multiplicity is shown in Figure([§]

E Hyperparameters

We list the hyperparameters used in our experiments in Table 3] below.

F Data and Code

We obtained the datasets from the publically available source https://pytorch-geometric.readthedocs.io/
en/latest/modules/datasets.html. All data do not contain personally identifiable information or offensive
content. We conducted our experiments on a c5d.4xlarge instance on the AWS EC2 platform, with 16 vCPUs and 32
GB RAM. The codes for training conventional GNNs are from https://github.com/VITA-Group/Deep_GCN_
Benchmarking/under MIT license.

https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://pytorch-geometric.readthedocs.io/en/latest/modules/datasets.html
https://github.com/VITA-Group/Deep_GCN_Benchmarking
https://github.com/VITA-Group/Deep_GCN_Benchmarking

Edge Enhanced Graph Neural Network

~115000

~120000

-125000

~130000

-135000

~140000

~145000

-150000

-3200

-3400

-3600

-3800

log likelihood

~4000

—4200

55

50

45

40

35

number of clusters

T

30

25

20

40

35

30

25

number of clusters

¥

20

)

°

10000 20000 30000 40000 50000
iterations

(a) Cora

°

10000 20000 30000 40000 50000
iterations

(d) Texas

le6
-1.250
—-115000
-1.275
—120000
-1.300
—125000
3 -1325
g
-130000 H
£ 1350
E
—135000 e
-1.375
—140000
-1.400
—145000
—1.425
—150000
] 10000 20000 30000 40000 50000] 10000 20000 30000 40000 50000
iterations iterations
(b) Citeseer (c) PubMed
—4800 —3400
—-5000
-3600
-5200
- —5400 © —3800
3 3
H g
= =
T —5600 T
2 2
= o —4000
2 -5800 2
—6000 —4200
-6200
—4400
—6400
] 10000 20000 30000 40000 50000] 10000 20000 30000 40000 50000
iterations iterations

(e) Wisconsin (f) Cornell

Figure 6: Log-likelihood over the course of the MCMC chain for each dataset.

°

10000 20000 30000 40000 50000
iterations

(a) Cora

°

10000 20000 30000 40000 50000
iterations

(d) Texas

60
70
p 30 [
g 2 60
3 2
3 N —
S 4
5 3
£ £ 50
2 2
30
40
20
] 10000 20000 30000 40000 50000] 10000 20000 30000 40000 50000
iterations iterations
(b) Citeseer (c) PubMed
35
30.0
30 275
s s 25.0
g 25 g
= T 225
5 5
g g 20.0
g 2
£ 20 £
2 2
17.5
5 15.0
125
10
0 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000

iterations iterations

(e) Wisconsin (f) Cornell

Figure 7: Number of clusters inferred by DMPGM over the course of the MCMC chain.

Yirui Liu, Xinghao Qiao, Liying Wang, Jessica Lam

o o o
10 1 1 10 10 ' | 1 1

10 11 12 13 14 15 1000 1025 1050 1075 1100 1125 1150 1175 1.000 1025 1050 1075 1100 1125 1150 1175 1200

(a) Cora (b) Citeseer (c) PubMed

45 100 125 150 175 200 225 250 275 3.00 10 15 2.0 2.5 3.0 35 4.0 45

(d) Texas (e) Wisconsin (f) Cornell

Figure 8: Histograms of the expected multiplicity of virtual edges formed in the EEGNN framework using each dataset.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 256 256 64 64 64
alpha 0.1 0.1 0.1 0.1 0.1 0.1
weight_decay 0.0005 0.0005 0.0005 0.0001 0.0005 0.0005
Ir 0.01 0.01 0.01 0.1 0.01 0.01
dropout 0.6 0.7 0.6 0.5 0.5 0.5

(a) Hyperparameters for SGC and EE-SGC.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 64 64 64 64 64
alpha 0.1 0.1 0.1 0.1 0.1 0.1
Ir 0.01 0.01 0.01 0.01 0.01 0.01
dropout 0. 0. 0. 0. 0. 0.
weight_decay1 0.005 0.005 0.005 0.005 0.005 0.005
weight_decay2 0. 0. 0. 0. 0. 0.

embedding_dropout 0.5 0.5 0.5 0.5 0.5 0.5

(b) Hyperparameters for APPNP and EE-APPNP.

Cora Citeseer PubMed Texas Wisconsin Cornell

dim_hidden 64 256 256 64 64 64
alpha 0.1 0.1 0.1 0.5 0.5 0.5
lamda 0.5 0.6 0.4 1.5 1.0 1.0

weight_decayl 0.01 0.01 0.0005 0.0001 0.0005 0.0001
weight_decay2 0.0005 0.0005 0.0005 0.0001 0.0005 0.0001
Ir 0.01 0.01 0.01 0.01 0.01 0.01
dropout 0.6 0.7 0.6 0.5 0.5 0.5

(c) Hyperparameters for GCNII and EE-GCNII.

Table 3: Hyperparameters in the training.

	INTRODUCTION
	Preliminaries
	GNN and Message Passing Layer
	Bayesian Nonparametric Sparse Graph Model

	METHODOLOGY
	Dirichlet Mixture Poisson Graph Model
	MCMC Inference Framework
	Edge Enhanced Message Passing
	Comparison with Other Methods

	EXPERIMENTS
	Datasets and Bayesian Estimation
	Comparison with Baselines
	Application in Financial Data

	CONCLUSION
	Completely Random Measure
	MCMC technical details and derivations
	Derivations for Step 1
	Derivations for Step 6

	Technical Proofs and Derivations
	Proof of Theorem 1

	Inference results for DMPGM
	Hyperparameters
	Data and Code

